FLTK 1.3.0 Programming Manual

(ik

Revision 9 by F. Costantini, D. Gibson, M. Melcher,
A. Schlosser, B. Spitzak and M. Sweet.

Copyright 1998-2010 by Bill Spitzak and others.

Generated by Doxygen 1.5.7.1

December 27, 2010

Contents

1 FLTK Programming Manual

2 Preface
2.1 Organization e e e
22 ConventionsS e e e e e
2.3 ADbreviationso
2.4 Copyrights and Trademarks e

3 Introduction to FLTK

3.1 History of FLTK o
32 Features
33 LACeNSING o oo e e
3.4 WhatDoes "FLTK" Mean? i
3.5 Building and Installing FLTK Under UNIX and MacOS X
3.6 Building FLTK Under Microsoft Windows
3.7 Building FLTK Under OS/2
3.8 Internet Resources e e e
39 Reporting Bugs

4 FLTK Basics

4.1 Writing Your First FLTK Program
4.2 Compiling Programs with Standard Compilers
4.3 Compiling Programs with Makefiles
4.4 Compiling Programs with Microsoft Visual C++.
45 Naming e
4.6 HeaderFiles

5 Common Widgets and Attributes
5.1 Buttons e e e e e
52 TeXt . o vt e

wn W B~ W

O O o0 oo 2

10
11
12
12
13

15
16
18
19
20
20
20

ii

CONTENTS

5.3 Valuators,
54 Groups.o e

5.5 Setting the Size and Position of Widgets

56 Colors
57 BoxTypes
5.8 Labelsand Label Types
59 Callbacks L.
5.10 Shortcuts

Designing a Simple Text Editor

6.1 Determining the Goals of the Text Editor

6.2 Designing the Main Window

6.3 Variables o
6.4 MenubarsandMenus
6.5 EditingtheText
6.6 The ReplaceDialog
6.7 Callbacks
6.8 OtherFunctions
6.9 The main() Function
6.10 Compiling the Editor
6.11 The Final Product
6.12 Advanced Features

Drawing Things in FLTK

7.1 When Can You Draw Things in FLTK?
7.2 Drawing Functions
73 Colors

74 DrawingImages,

Handling Events

8.1 The FLTKEventModel
82 MouseEvents L
83 FocusEvents,, .
84 Keyboard Events,
85 WidgetEvents oL
8.6 ClipboardEvents
87 DragandDropEvents
8.8 Fli:event_*()methods

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS iii

8.9 EventPropagation. e e 76
8.10 FLTK Compose-Character Sequences v v v v v i v i v oo 77
9 Adding and Extending Widgets 79
9.1 Subclassing e e e e e e e 80
9.2 Making a Subclass of FI_Widget o . 80
9.3 The Constructor L 80
9.4 Protected Methods of FI_Widget 81
9.5 Handling Events. e e e 83
9.6 Drawingthe Widget e 84
9.7 Resizingthe Widget L e 85
9.8 Making a Composite Widget 85
9.9 CutandPaste Support. L e e 87
9.10 Drag And Drop Support. e 87
9.11 Making asubclassof FI_ Window 87
10 Using OpenGL 89
10.1 Using OpenGL in FLTK 90
10.2 Making a Subclass of FI_GI_Window 90
10.3 Using OpenGL in Normal FLTK Windows 92
10.4 OpenGL Drawing Functions 93
10.5 Speedingup OpenGL e 94
10.6 Using OpenGL Optimizer with FLTK 94
11 Programming with FLUID 97
11.1 Whatis FLUID? 98
11.2 Running FLUID Under UNIX 99
11.3 Running FLUID Under Microsoft Windows 99
11.4 Compiling flfiles 99
11.5 AShort Tutorial 100
11.6 FLUID Reference o . s et e 107
11.7 GUIAttributes 115
11.8 Selecting and Moving Widgets Lo o 122
11.9 Tmage Labels e e 122
11.10Internationalization with FLUID 124
I1.11Known limitations 126
12 Advanced FLTK 127

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

iv CONTENTS
12.1 Multithreading e 128
13 Unicode and UTF-8 Support 131
13.1 About Unicode, ISO 10646 and UTF-8 132
13.2 Unicode in FLTK o e 133
13.3 Illegal Unicode and UTF8 sequences 134
13.4 FLTK Unicode and UTFS8 functions, 135
13.5 FLTK Unicode versions of systemcalls 138
14 FLTK Enumerations 141
14.1 Version Numbers e 142
142 Bvents o e e 142
14.3 Callback "When" Conditions i 143
14.4 Fl::event_button() Values 143
14.5 Flievent_key() Values o o . o e 144
14.6 Fli:event_state() Values e 145
14.7 Alignment Values e e e 145
14.8 Fonts e 146
149 Colors o o 146
T4 10CUISOIS .« o oo ot e e e e e e 148
14.11FD "When" Conditions o i v it e e 148
14.12Damage Masks e e e e 148
15 GLUT Compatibility 149
15.1 Using the GLUT Compatibility Header File 150
15.2 Known Problems 150
15.3 Mixing GLUT and FLTK Code 151
15.4 class FIL_Glut_Window e e 151
16 Forms Compatibility 155
16.1 Importing Forms Layout Files 156
16.2 Using the Compatibility Header File 156
16.3 Problems You Will Encounter 156
16.4 Additional Notes 158
17 Operating System Issues 161
17.1 Accessing the OS Interfaces i 162
17.2 The UNIX (X11)Interface i 162
17.3 The Windows (WIN32) Interface 168

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS

18

19

20

21

22

23

24

25

26

27

17.4 The Mac OS Interface

Migrating Code from FLTK 1.0 to 1.1
18.1 Color Values.
18.2 Cut and Paste Support
18.3 File Chooser

18.4 Function Names
18.5 Image Support.
18.6 Keyboard Navigation

Migrating Code from FLTK 1.1 to 1.3

19.1 Migrating From FLTK 1.0
19.2 FI_Scroll Widget
19.3 Unicode (UTF-8)

19.4 Widget Coordinate Representation

Developer Information

20.1 Non-ASCII characters
20.2 Document Structure
20.3 Creating Links
20.4 Paragraph Layout
20.5 Hack for missing "tiny.gif" file . .

20.6 Navigation Elements

Software License

Example Source Code

22.1 Example Applications

Deprecated List

Todo List

Module Index

251 Modules

Class Index

26.1 Class Hierarchy

Class Index

27.1 ClassList

170

173
174
174
174
174
175
175

177
178
178
178
178

179
182
183
183
184
185
185

187

195
196

205

207

213
213

215
215

219

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

vi CONTENTS
28 File Index 223
28.1 File List o e e e 223
29 Module Documentation 229
29.1 Callback function typedefs e 229
29.2 Windows handling functions oL 231
29.3 Events handling functions Lo 234
29.4 Selection & Clipboard functions L 246
29.5 Screen functionsl e 248
29.6 Color & Fontfunctions e 250
29.7 Drawing functions i e e e e e e e e e 260
29.8 Multithreading support functions L 281
29.9 Safe widget deletion support functions Lo 283
29.10Cairo support functions and classes oL oL 287
29.11Unicode and UTF-8 functions it 289
29.12Mac OS X-specific functions e 298
29.13Common Dialogs classes and functions L. 300
29.14File names and URI utility functions 309
30 Class Documentation 315
30.1 FlClassReference 315
30.2 Fl_Adjuster Class Reference i 339
30.3 Fl_Bitmap Class Reference 342
30.4 FI_BMP_Image Class Reference 345
30.5 FI_Box Class Reference e 346
30.6 Fl_Browser Class Reference 348
30.7 Fl_Browser_Class Reference 370
30.8 Fl_Button Class Reference e 387
30.9 Fl_Cairo_State Class Reference e 392
30.10F1_Cairo_Window Class Reference v i 3903
30.11F1_ChartClass Reference 395
30.12FL_CHART_ENTRY Struct Reference 401
30.13F1_Check_Browser Class Reference 402
30.14F1_Check_Button Class Reference 406
30.15F1_Choice Class Reference i 408
30.16F1_Clock Class Reference o i i i e e e 412
30.17F1_Clock_Output Class Reference 415

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS vii

30.18F1_Color_Chooser Class Reference v v i it . 419
30.19F1_Counter Class Reference e 424
30.20FI_Device Class Reference 428
30.21F1_Device_Plugin Class Reference 430
30.22F1_Dial Class Reference 431
30.23F1_Display_Device Class Reference 434
30.24F1_Double_Window Class Reference 436
30.25F1_End Class Reference e 440
30.26F1_File_Browser Class Reference i 441
30.27F1_File_Chooser Class Reference 444
30.28F1_File_Icon Class Reference o o i e 453
30.29F1_File_Input Class Reference 459
30.30F1_Fill_Dial Class Reference e 462
30.31F1_Fill_Slider Class Reference i i 463
30.32F1_Float_Input Class Reference 464
30.33F1_Font_Descriptor Class Reference 465
30.34F]_FormsBitmap Class Reference 466
30.35F1_FormsPixmap Class Reference 468
30.36FI_Free Class Reference 470
30.37F1_GDI_Graphics_Driver Class Reference 473
30.38F1_GIF _Image Class Reference, 475
30.39F1_GIl_Window Class Reference 476
30.40F1_Glut_Bitmap_Font Struct Reference 484
30.41F_Glut_Window Class Reference 485
30.42F1_Graphics_Driver Class Reference 488
30.43F1_Group Class Reference 508
30.44F1_Help_Dialog Class Reference 519
30.45F1_Help_Font_Style Struct Reference 523
30.46F1_Help_Link Struct Reference 524
30.47F1_Help_Target Struct Reference 525
30.48F1_Help_View Class Reference, 526
30.49F1_Hold_Browser Class Reference v i 535
30.50F1_Image Class Reference i 536
30.51F_Input Class Reference 541
30.52F_Input_Class Reference 545
30.53F1_Input_Choice Class Reference 563

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

viii CONTENTS
30.54F_Int_Input Class Reference 567
30.55F1_JPEG_Image Class Reference 568
30.56F1_Label Struct Reference 570
30.57F1_Light_Button Class Reference 572
30.58F1_Menu_ Class Reference 574
30.59F1_Menu_Bar Class Reference e 589
30.60F1_Menu_Button Class Reference 592
30.61F1_Menu_Item Struct Reference 596
30.62F1_Menu_Window Class Reference 610
30.63F1_Multi_Browser Class Reference 613
30.64F1_Multiline_Input Class Reference 614
30.65F1_Multiline_Output Class Reference 616
30.66F1_Native_File_Chooser Class Reference 617
30.67F1_Output Class Reference i e 624
30.68F1_Overlay_Window Class Reference 626
30.69F1_Pack Class Reference i e 629
30.70F1_Paged_Device Class Reference 631
30.71F1_Paged_Device::page_format Struct Reference 638
30.72F1_Pixmap Class Reference 639
30.73F1_Plugin Class Reference 643
30.74F1_Plugin_Manager Class Reference 645
30.75FI_PNG_Image Class Reference 647
30.76F1_PNM_Image Class Reference 648
30.77F1_Positioner Class Reference 649
30.78F1_PostScript_File_Device Class Reference 653
30.79F1_PostScript_Graphics_Driver Class Reference 658
30.80F1_PostScript_Printer Class Reference 661
30.81F1_Preferences Class Reference 663
30.82F1_Preferences::Name Class Reference 677
30.83F1_Printer Class Reference e 679
30.84F1_Progress Class Reference 685
30.85F1_Quartz_Graphics_Driver Class Reference 687
30.86F1_Repeat_Button Class Reference 689
30.87F1_Return_Button Class Reference 691
30.88FI_RGB_Image Class Reference 693
30.89F1_Roller Class Reference e 697

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS ix

30.90F1_Round_Button Class Reference 700
30.91F1_Round_Clock Class Reference 701
30.92F1_Scroll Class Reference 702
30.93F1_Scrollbar Class Reference e 708
30.94F1_Secret_Input Class Reference 712
30.95F1_Select_Browser Class Reference . 713
30.96F1_Shared_Image Class Reference 714
30.97F1_Simple_Counter Class Reference 719
30.98F1_Single_Window Class Reference 720
30.99F1_Slider Class Reference 723
30.1081_Spinner Class Reference 727
30.10F1_Surface_Device Class Reference 732
30.10F1_Sys_Menu_Bar Class Reference 735
30.10F1_System_Printer Class Reference 739
30.10F1_Table Class Reference e 744
30.10¥1_Table Row Class Reference 763
30.10&1_Tabs Class Reference 767
30.10F1_Text_Buffer Class Reference i i 771
30.10¥1_Text_Display Class Reference 788
30.10%1_Text_Display::Style_Table_Entry Struct Reference 821
30.1101_Text_Editor Class Reference 822
30.11F1_Text_Editor::Key_Binding Struct Reference 829
30.11F1_Text_Selection Class Reference i 830
30.11F]_Tile Class Reference 833
30.11#1_Tiled_Image Class Reference 836
30.11¥]_Timer Class Reference 839
30.11&1_Toggle_Button Class Reference 842
30.11F1_Tooltip Class Reference i 843
30.1181_Tree Class Reference 0 i e 847
30.11%1_Tree_Item Class Reference @ i it it i 873
30.1201_Tree_Item_Array Class Reference 885
30.12F1_Tree_Prefs Class Reference i 888
30.12F1_Valuator Class Reference 893
30.12F1_Value_Input Class Reference 899
30.12#1_Value_Output Class Reference, 904
30.12¥1_Value_Slider Class Reference o o e 908

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

CONTENTS

30.12&1_Widget Class Reference

30.12F1_Widget_Tracker Class Reference

30.1281_Window Class Reference
30.12%1_Wizard Class Reference
30.1361_XBM_Image Class Reference
30.13F1_Xlib_Graphics_Driver Class Reference
30.13F1_XPM_Image Class Reference

31 File Documentation

31.1 Enumerations.H File Reference
31.2 fl_arc.cxx File Reference
31.3 fl_arci.cxx File Reference
31.4 fl_boxtype.cxx File Reference
31.5 fl_color.cxx File Reference
31.6 Fl_Color_Chooser.H File Reference . . .
31.7 fl_curve.cxx File Reference
31.8 Fl_Device.H File Reference
31.9 fl_draw.H File Reference
31.1011_line_style.cxx File Reference
31.11F1_Paged_Device.cxx File Reference . . .
31.12F1_Paged_Device.H File Reference
31.13F1_PostScript.H File Reference
31.14F1_Printer.H File Reference
31.15f1_rect.cxx File Reference
31.16F1_Shared_Image.H File Reference
31.17f_show_colormap.H File Reference . . .
31.18F1 Tree.H File Reference
31.19F1_Tree_Item.H File Reference

31.20F1_Tree_Item_Array.H File Reference

31.21F1_Tree_Prefs.H File Reference
31.2211_types.h File Reference
31.23f1_utf8.h File Reference
31.2411_vertex.cxx File Reference
31.25F1_Widget.H File Reference
31.26gl.h File Reference

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 1

FLTK Programming Manual

FLTK 1.3.0 Programming Manual

(\i Revision 9 by F. Costantini, D. Gibson,
\ / M. Melcher, A. Schlosser, B. Spitzak and

M. Sweet.

Copyright 1998-2010 by Bill Spitzak and others.

This software and manual are provided under the terms of the GNU Library General Public License.
Permission is granted to reproduce this manual or any portion for any purpose, provided this copyright
and permission notice are preserved.

FLTK Programming Manual

Preface

Introduction to FLTK

FLTK Basics

Common Widgets and Attributes

* Colors

* Box Types

* Labels and Label Types
* Drawing Images

Designing a Simple Text Editor
Drawing Things in FLTK
Handling Events

¢ Fl::event_x() methods
» Event Propagation

Adding and Extending Widgets
Using OpenGL
Programming with FLUID

e GUI Attributes

 Selecting and Moving Widgets

* Image Labels

Advanced FLTK
Unicode and UTF-8 Support

Appendices:

FLTK Enumerations

GLUT Compatibility
— class F1_Glut_Window

Forms Compatibility

Operating System Issues

Migrating Code from FLTK 1.0 to 1.1
Migrating Code from FLTK 1.1to 1.3
Developer Information

Software License

Example Source Code

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 2

Preface

4 Preface

This manual describes the Fast Light Tool Kit ("FLTK") version 1.3.0, a C++ Graphical User Interface
("GUI") toolkit for UNIX, Microsoft Windows and MacOS.

Each of the chapters in this manual is designed as a tutorial for using FLTK, while the appendices provide
a convenient reference for all FLTK widgets, functions, and operating system interfaces.

This manual may be printed, modified, and/or used under the terms of the FLTK license provided in
Software License.

2.1 Organization

This manual is organized into the following chapters and appendices:

¢ Introduction to FLTK

* FLTK Basics

* Common Widgets and Attributes

* Designing a Simple Text Editor

* Drawing Things in FLTK

e Handling Events

* Adding and Extending Widgets

* Using OpenGL

* Programming with FLUID

* Advanced FLTK

¢ Unicode and UTF-8 Support

* FLTK Enumerations

* GLUT Compatibility

* Forms Compatibility

* Operating System Issues

e Migrating Code from FLTK 1.0 to 1.1
* Migrating Code from FLTK 1.1 to 1.3
* Developer Information

» Software License

» Example Source Code

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

2.2 Conventions 5

2.2 Conventions

This manual was generated using Doxygen (see http://www.stack.nl/~dimitri/doxygen/)
to process the source code itself, special comments in the code, and additional documentation files. In
general, Doxygen recognizes and denotes the following entities as shown:

* classes, such as F1I_Widget,

* methods, such as F1_Widget::callback(FI_Callbackx cb, voidx p),
* functions, such as fl_draw(const char *str, int X, int y),

e internal links, such as Conventions,

e external links, such as http://www.stack.nl/~dimitri/doxygen/

Other code samples and commands are shown in regular courier type.

2.3 Abbreviations

The following abbreviations are used in this manual:

X11

The X Window System version 11.

Xlib
The X Window System interface library.

WIN32

The Microsoft Windows 32-bit Application Programmer’s Interface.

MacOS
The Apple Macintosh OS 8.6 and later, including OS X.

2.4 Copyrights and Trademarks

FLTK is Copyright 1998-2010 by Bill Spitzak and others. Use and distribution of FLTK is governed by the
GNU Library General Public License with 4 exceptions, located in Software License.

UNIX is a registered trademark of the X Open Group, Inc. Microsoft and Windows are registered trade-
marks of Microsoft Corporation. OpenGL is a registered trademark of Silicon Graphics, Inc. Apple,
Macintosh, MacOS, and Mac OS X are registered trademarks of Apple Computer, Inc.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/

Preface

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 3

Introduction to FLTK

8 Introduction to FLTK

The Fast Light Tool Kit ("FLTK", pronounced "fulltick") is a cross-platform C++ GUI toolkit for
UNIX®/Linux®(X11), Microsoft®Windows®, and MacOS®X.

FLTK provides modern GUI functionality without the bloat and supports 3D graphics via OpenGL®and
its built-in GLUT emulation. It was originally developed by Mr. Bill Spitzak and is currently maintained
by a small group of developers across the world with a central repository in the US.

3.1 History of FLTK

It has always been Bill’s belief that the GUI API of all modern systems is much too high level. Toolkits
(even FLTK) are not what should be provided and documented as part of an operating system. The system
only has to provide arbitrary shaped but featureless windows, a powerful set of graphics drawing calls, and
a simple unalterable method of delivering events to the owners of the windows. NeXT (if you ignored
NextStep) provided this, but they chose to hide it and tried to push their own baroque toolkit instead.

Many of the ideas in FLTK were developed on a NeXT (but not using NextStep) in 1987 in a C toolkit Bill
called "views". Here he came up with passing events downward in the tree and having the handle routine
return a value indicating whether it used the event, and the table-driven menus. In general he was trying to
prove that complex UI ideas could be entirely implemented in a user space toolkit, with no knowledge or
support by the system.

After going to film school for a few years, Bill worked at Sun Microsystems on the (doomed) NeWS
project. Here he found an even better and cleaner windowing system, and he reimplemented "views" atop
that. NeWS did have an unnecessarily complex method of delivering events which hurt it. But the designers
did admit that perhaps the user could write just as good of a button as they could, and officially exposed
the lower level interface.

With the death of NeWS Bill realized that he would have to live with X. The biggest problem with X is
the "window manager", which means that the toolkit can no longer control the window borders or drag the
window around.

At Digital Domain Bill discovered another toolkit, "Forms". Forms was similar to his work, but provided
many more widgets, since it was used in many real applications, rather than as theoretical work. He decided
to use Forms, except he integrated his table-driven menus into it. Several very large programs were created
using this version of Forms.

The need to switch to OpenGL and GLX, portability, and a desire to use C++ subclassing required a rewrite
of Forms. This produced the first version of FLTK. The conversion to C++ required so many changes it
made it impossible to recompile any Forms objects. Since it was incompatible anyway, Bill decided to
incorporate his older ideas as much as possible by simplifying the lower level interface and the event
passing mechanism.

Bill received permission to release it for free on the Internet, with the GNU general public license. Re-
sponse from Internet users indicated that the Linux market dwarfed the SGI and high-speed GL market, so
he rewrote it to use X for all drawing, greatly speeding it up on these machines. That is the version you
have now.

Digital Domain has since withdrawn support for FLTK. While Bill is no longer able to actively develop it,
he still contributes to FLTK in his free time and is a part of the FLTK development team.

3.2 Features

FLTK was designed to be statically linked. This was done by splitting it into many small objects and
designing it so that functions that are not used do not have pointers to them in the parts that are used, and
thus do not get linked in. This allows you to make an easy-to-install program or to modify FLTK to the

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

3.3 Licensing 9

exact requirements of your application without worrying about bloat. FLTK works fine as a shared library,
though, and is now included with several Linux distributions.

Here are some of the core features unique to FLTK:

sizeof(FI_Widget) == 64 to 92.

* The "core" (the "hello" program compiled & linked with a static FLTK library using gcc on a 486
and then stripped) is 114K.

* The FLUID program (which includes every widget) is 538k.

» Written directly atop core libraries (Xlib, WIN32 or Cocoa) for maximum speed, and carefully opti-
mized for code size and performance.

* Precise low-level compatibility between the X11, WIN32 and MacOS versions - only about 10% of
the code is different.

* Interactive user interface builder program. Output is human-readable and editable C++ source code.
* Support for overlay hardware, with emulation if none is available.

* Very small & fast portable 2-D drawing library to hide Xlib, WIN32, or QuickDraw.

* OpenGL/Mesa drawing area widget.

* Support for OpenGL overlay hardware on both X11 and WIN32, with emulation if none is available.
» Text widgets with Emacs key bindings, X cut & paste, and support for character composition.

* Compatibility header file for the GLUT library.

» Compatibility header file for the XForms library.

3.3 Licensing

FLTK comes with complete free source code. FLTK is available under the terms of the GNU Library
General Public License with exceptions that allow for static linking. Contrary to popular belief, it can be
used in commercial software - even Bill Gates could use it!

3.4 What Does "FLTK'" Mean?

FLTK was originally designed to be compatible with the Forms Library written for SGI machines. In that
library all the functions and structures started with "fl_". This naming was extended to all new methods
and widgets in the C++ library, and this prefix was taken as the name of the library. It is almost impossible
to search for "FL" on the Internet, due to the fact that it is also the abbreviation for Florida. After much
debating and searching for a new name for the toolkit, which was already in use by several people, Bill
came up with "FLTK", including a bogus excuse that it stands for "The Fast Light Toolkit".

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

10

Introduction to FLTK

3.5 Building and Installing FLTK Under UNIX and MacOS X

In most cases you can just type "make". This will run configure with the default of no options and then

compile everything.

FLTK uses GNU autoconf to configure itself for your UNIX platform. The main things that the configure
script will look for are the X11 and OpenGL (or Mesa) header and library files. If these cannot be found
in the standard include/library locations you’ll need to define the CFLAGS, CXXFLAGS, and LDFLAGS

environment variables. For the Bourne and Korn shells you’d use:

CFLAGS=-Iincludedir; export CFLAGS
CXXFLAGS=-Iincludedir; export CXXFLAGS
LDFLAGS=-Llibdir; export LDFLAGS

For C shell and tcsh, use:

setenv CFLAGS "-Iincludedir"
setenv CXXFLAGS "-Iincludedir"
setenv LDFLAGS "-Llibdir"

By default configure will look for a C++ compiler named CC, c++, g++, or gcc in that order. To use

another compiler you need to set the CXX environment variable:

CXX=x1C; export CXX
setenv CXX "x1C"

The CC environment variable can also be used to override the default C compiler (cc or gcc), which is

used for a few FLTK source files.

You can run configure yourself to get the exact setup you need. Type "./configure <options>", where

options are:

—enable-cygwin

Enable the Cygwin libraries under WIN32

—enable-debug
Enable debugging code & symbols

—disable-gl
Disable OpenGL support

—enable-shared

Enable generation of shared libraries

—enable-threads

Enable multithreading support

—enable-xdbe

Enable the X double-buffer extension

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

3.6 Building FLTK Under Microsoft Windows 11

—enable-xft

Enable the Xft library for anti-aliased fonts under X11
—enable-x11

When targeting cygwin, build with X11 GUI instead of windows GDI
—enable-cp936

Under X11, enable use of the GB2312 locale
—bindir=/path

Set the location for executables [default = $prefix/bin]
—datadir=/path

Set the location for data files. [default = $prefix/share]
—libdir=/path

Set the location for libraries [default = $prefix/lib]
—includedir=/path

Set the location for include files. [default = $prefix/include]
—mandir=/path

Set the location for man pages. [default = $prefix/man]
—prefix=/dir

Set the directory prefix for files [default = /ust/local]

When the configure script is done you can just run the "make" command. This will build the library, FLUID
tool, and all of the test programs.

To install the library, become root and type "make install". This will copy the "fluid" executable to "bindir",
the header files to "includedir", and the library files to "libdir".

3.6 Building FLTK Under Microsoft Windows

There are three ways to build FLTK under Microsoft Windows. The first is to use the Visual C++ 5.0
project files under the "visualc" directory. Just open (or double-click on) the "fitk.dsw" file to get the whole
shebang.

The second method is to use the configure script included with the FLTK software; this has only been
tested with the Cygwin tools:

sh configure —--prefix=C:/FLTK
make

The final method is to use a GNU-based development tool with the files in the "makefiles" directory.
To build using one of these tools simply copy the appropriate makeinclude and config files to the main
directory and do a make:

copy makefiles\Makefile.<env> Makefile
make

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

12 Introduction to FLTK

3.6.1 Using the Visual C++ DLL Library

The "fitkdll.dsp" project file builds a DLL-version of the FLTK library. Because of name mangling differ-
ences between PC compilers (even between different versions of Visual C++!) you can only use the DLL
that is generated with the same version compiler that you built it with.

When compiling an application or DLL that uses the FLTK DLL, you will need to define the FI,_DLL
preprocessor symbol to get the correct linkage commands embedded within the FLTK header files.

3.7 Building FLTK Under OS/2

The current OS/2 build requires XFree86 for OS/2 to work. A native Presentation Manager version has not
been implemented yet (volunteers are welcome!).

The current set of Makefiles/configuration failes assumes that EMX 0.9d and libExt (from
http://posix2.sourceforge.net) is installed.

To build the XFree86 version of FLTK for OS/2, copy the appropriate makeinclude and config files to the
main directory and do a make:

copy makefiles\Makefile.os2x Makefile
make

3.8 Internet Resources

FLTK is available on the "net in a bunch of locations:

WWWwW

http://www.fltk.org/

http://www.fltk.org/str.php [for reporting bugs]
http://www.fltk.org/software.php [source code]
http://www.fltk.org/newsgroups.php [newsgroup/forums]

FTP

http://ftp.easysw.com/pub/fltk [California, USA, via http]
ftp://ftp.easysw.com/pub/fltk [California, USA via ftp]
ftp://ftp2.easysw.com/pub/fltk [Maryland, USA]
ftp://ftp.funet.fi/pub/mirrors/ftp.easysw.com/pub/fltk [Espoo, Finland]
ftp://linux.mathematik.tu-darmstadt.de/pub/linux/mirrors/misc/fltk
[Germany]

ftp://gd.tuwien.ac.at/hci/fltk [Austria]

NNTP Newsgroups

news://news.easysw.com/ [NNTP interface]
http://fltk.org/newsgroups.php [web interface]

Point your NNTP news reader at news.easysw.com. At minimum, you’ll want to subscribe to the
"fitk.general" group for general FLTK questions and answers.

You can also use the web interface to the newsgroup; just go to the main http://fltk.org/ page and
click on "Forums".

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://posix2.sourceforge.net
http://www.fltk.org/
http://www.fltk.org/str.php
http://www.fltk.org/software.php
http://www.fltk.org/newsgroups.php
http://ftp.easysw.com/pub/fltk
ftp://ftp.easysw.com/pub/fltk
ftp://ftp2.easysw.com/pub/fltk
ftp://ftp.funet.fi/pub/mirrors/ftp.easysw.com/pub/fltk
ftp://linux.mathematik.tu-darmstadt.de/pub/linux/mirrors/misc/fltk
ftp://gd.tuwien.ac.at/hci/fltk
news://news.easysw.com/
http://fltk.org/newsgroups.php
http://fltk.org/

3.9 Reporting Bugs 13

3.9 Reporting Bugs

To report a bug in FLTK, or for feature requests, please use the form at
http://www.fltk.org/str.php, and click on "Submit Bug or Feature Request".

You’ll be prompted for the FLTK version, operating system & version, and compiler that you are using.
We will be unable to provide any kind of help without that basic information.

For general support and questions, please use the fltk.general newsgroup (see above, "NNTP Newsgroups")
or the web interface to the newsgroups at http://fltk.org/newsgroups.php.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.fltk.org/str.php
http://fltk.org/newsgroups.php

14

Introduction to FLTK

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 4

FLTK Basics

16 FLTK Basics

This chapter teaches you the basics of compiling programs that use FLTK.

4.1 Writing Your First FLTK Program

All programs must include the file <FL/F1.H>. In addition the program must include a header file for
each FLTK class it uses. Listing 1 shows a simple "Hello, World!" program that uses FLTK to display the
window.

Listing 1 - "hello.cxx"

#include <FL/F1.H>
#include <FL/F1l_Window.H>
#include <FL/F1l_Box.H>

int main(int argc, char **argv) {
Fl_Window xwindow = new F1l_Window (300,180);
Fl_Box *box = new F1l_Box(20,40,260,100,"Hello, World!");
box->box (FL_UP_BOX) ;
box—->labelsize (36);
box->labelfont (FL_BOLD+FL_ITALIC) ;
box->labeltype (FL_SHADOW_LABEL) ;
window->end () ;
window->show (argc, argv);
return Fl::run();

After including the required header files, the program then creates a window. All following widgets will
automatically be children of this window.

Fl_Window xwindow = new F1_Window (300,180);

Then we create a box with the "Hello, World!" string in it. FLTK automatically adds the new box to
window, the current grouping widget.

Fl_Box *box = new F1l_BRox(20,40,260,100,"Hello, World!"™);

Next, we set the type of box and the size, font, and style of the label:

box->box (FL_UP_BOX) ;
box->labelsize (36);

box->labelfont (FL_BOLD+FL_ITALIC);
box->labeltype (FL_SHADOW_LABEL) ;

We tell FLTK that we will not add any more widgets to window.
window->end () ;

Finally, we show the window and enter the FLTK event loop:

window->show (argc, argv);
return Fl::run();

The resulting program will display the window in Figure 2-1. You can quit the program by closing the
window or pressing the ESCape key.

Figure 4.1: The Hello, World! Window

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

4.1 Writing Your First FLTK Program 17

4.1.1 Creating the Widgets

The widgets are created using the C++ new operator. For most widgets the arguments to the constructor
are:

Fl_Widget (x, y, width, height, label)

The x and y parameters determine where the widget or window is placed on the screen. In FLTK the top
left corner of the window or screen is the origin (i.e. x = 0, y = 0) and the units are in pixels.

The width and height parameters determine the size of the widget or window in pixels. The maximum
widget size is typically governed by the underlying window system or hardware.

label is a pointer to a character string to label the widget with or NULL. If not specified the label defaults
to NULL. The label string must be in static storage such as a string constant because FLTK does not make
a copy of it - it just uses the pointer.

4.1.2 Creating Widget hierarchies

Widgets are commonly ordered into functional groups, which in turn may be grouped again, creating a
hierarchy of widgets. FLTK makes it easy to fill groups by automatically adding all widgets that are
created between a myGroup—>begin () and myGroup—>end (). In this example, myGroup would
be the current group.

Newly created groups and their derived widgets implicitly call begin () in the constructor, effectively
adding all subsequently created widgets to itself until end () is called.

Setting the current group to NULL will stop automatic hierarchies. New widgets can now be added manually
using F1_Group::add(...) andF1_Group::insert(...).

4.1.3 Get/Set Methods

box->box (FL_UP_BOX) sets the type of box the FI_Box draws, changing it from the default of FL_ -
NO_BOX, which means that no box is drawn. In our "Hello, World!" example we use FL_UP_BOX, which
means that a raised button border will be drawn around the widget. More details are available in the Box
Types section.

You could examine the boxtype in by doing box—>box (). FLTK uses method name overloading to
make short names for get/set methods. A "set" method is always of the form "void name(type)", and a
"get" method is always of the form "type name() const".

4.1.4 Redrawing After Changing Attributes

Almost all of the set/get pairs are very fast, short inline functions and thus very efficient. However, the "set"”
methods do not call redraw () - you have to call it yourself. This greatly reduces code size and execution
time. The only common exceptions are value () which calls redraw () and label () which calls
redraw_label () if necessary.

4.1.5 Labels

All widgets support labels. In the case of window widgets, the label is used for the label in the title bar.
Our example program calls the 1abelfont (), labelsize (), and labeltype () methods.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

18 FLTK Basics

The 1labelfont () method sets the typeface and style that is used for the label, which for this example
we are using FL_BOLD and FL_TITALIC. You can also specify typefaces directly.

The labelsize () method sets the height of the font in pixels.

The 1labeltype () method sets the type of label. FLTK supports normal, embossed, and shadowed labels
internally, and more types can be added as desired.

A complete list of all label options can be found in the section on Labels and Label Types.

4.1.6 Showing the Window

The show () method shows the widget or window. For windows you can also provide the command-line
arguments to allow users to customize the appearance, size, and position of your windows.

4.1.7 The Main Event Loop

All FLTK applications (and most GUI applications in general) are based on a simple event processing
model. User actions such as mouse movement, button clicks, and keyboard activity generate events that
are sent to an application. The application may then ignore the events or respond to the user, typically by
redrawing a button in the "down" position, adding the text to an input field, and so forth.

FLTK also supports idle, timer, and file pseudo-events that cause a function to be called when they occur.
Idle functions are called when no user input is present and no timers or files need to be handled - in short,
when the application is not doing anything. Idle callbacks are often used to update a 3D display or do other
background processing.

Timer functions are called after a specific amount of time has expired. They can be used to pop up a
progress dialog after a certain amount of time or do other things that need to happen at more-or-less regular
intervals. FLTK timers are not 100% accurate, so they should not be used to measure time intervals, for
example.

File functions are called when data is ready to read or write, or when an error condition occurs on a file.
They are most often used to monitor network connections (sockets) for data-driven displays.

FLTK applications must periodically check (Fl::check()) or wait (Fl::wait()) for events or use the Fl::run()
method to enter a standard event processing loop. Calling Fl::run() is equivalent to the following code:

while (Fl::wait());

Fl::run() does not return until all of the windows under FLTK control are closed by the user or your program.

4.2 Compiling Programs with Standard Compilers

Under UNIX (and under Microsoft Windows when using the GNU development tools) you will probably
need to tell the compiler where to find the header files. This is usually done using the — T option:

CC -I/usr/local/include ...
gcc -I/usr/local/include ...

The f1tk-config script included with FLTK can be used to get the options that are required by your
compiler:

CC ‘fltk-config --cxxflags' ...

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

4.3 Compiling Programs with Makefiles 19

Similarly, when linking your application you will need to tell the compiler to use the FLTK library:

CC ... -L/usr/local/lib -1fltk -1Xext -1X11 -1m
gcc ... -L/usr/local/lib -1fltk -1Xext -1X11 -1m

Aside from the "fltk" library, there is also a "fltk_forms" library for the XForms compatibility classes,
"fitk_gl" for the OpenGL and GLUT classes, and "fltk_images" for the image file classes, F1_Help_Dialog
widget, and system icon support.

Note:

The libraries are named "fitk.lib", "fitkgl.lib", "fitkforms.lib", and "fltkimages.lib", respectively under
Windows.

As before, the f1tk—config script included with FLTK can be used to get the options that are required
by your linker:

CC ... “fltk-config --1dflags’®

The forms, GL, and images libraries are included with the "—use-foo" options, as follows:

CC ... ‘fltk-config —--use-forms --ldflags’

CC ... ‘“fltk-config --use-gl --1ldflags’

CC ... ‘“fltk-config --use-images --1ldflags’

CC ... ‘“fltk-config --use-forms --use-gl --use-images --1ldflags’

Finally, you can use the f1tk—config script to compile a single source file as a FLTK program:

fltk-config —--compile filename.cpp

fltk-config --use-forms --compile filename.cpp

fltk-config --use-gl —--compile filename.cpp

fltk-config —--use-images —--compile filename.cpp

fltk-config --use-forms --use-gl --use-images —--compile filename.cpp

Any of these will create an executable named filename.

4.3 Compiling Programs with Makefiles

The previous section described how to use £ 1tk—config to build a program consisting of a single source
file from the command line, and this is very convenient for small test programs. But f1tk-config can
also be used to set the compiler and linker options as variables within a Makefile that can be used to
build programs out of multiple source files:

CXX = $(shell fltk-config —--cxx)

DEBUG = —g

CXXFLAGS = $(shell fltk-config --use-gl --use-images --cxxflags) -I.
LDFLAGS = $(shell fltk-config --use-gl --use-images --1ldflags)
LDSTATIC = $(shell fltk-config --use-gl --use-images —--ldstaticflags)
LINK = $(CXX)

TARGET = cube
OBJS = CubeMain.o CubeView.o CubeViewUI.o
SRCS = CubeMain.cxx CubeView.cxx CubeViewUI.cxx

.SUFFIXES: .0 .CxXX

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

20

FLTK Basics

%.0: %$.CxX

$ (CXX) $(CXXFLAGS) $(DEBUG) -c $<
all: $(TARGET)

$(LINK) -o $(TARGET) $(OBJS) $(LDSTATIC)
$ (TARGET) : $ (OBJS)

CubeViewUI.h
CubeView.h CubeViewUI.h
.cxx CubeView.h

CubeMain.o: CubeMain.cxx
CubeView.o: CubeView.cxx
CubeViewUI.o: CubeViewUI

$ (TARGET) $ (OBJS)
rm -f *.0 2> /dev/null
rm —-f $(TARGET) 2> /dev/null

clean:

4.4 Compiling Programs with Microsoft Visual C++

In Visual C++ you will need to tell the compiler where to find the FLTK header files. This can be done
by selecting "Settings" from the "Project” menu and then changing the "Preprocessor” settings under the
"C/C++" tab. You will also need to add the FLTK (FLTK.LIB or FLTKD.LIB) and the Windows Common
Controls (COMCTL32.LIB) libraries to the "Link" settings.

You can build your Microsoft Windows applications as Console or WIN32 applications. If you want to use
the standard C main () function as the entry point, FLTK includes a WinMain () function that will call

your main () function for you.

Note: The Visual C++ 5.0 optimizer is known to cause problems with many programs. We only recommend
using the "Favor Small Code" optimization setting. The Visual C++ 6.0 optimizer seems to be much better

and can be used with the "optimized for speed" setting.

4.5 Naming

All public symbols in FLTK start with the characters *F’ and "L’:

¢ Functions are either F1: : foo () or £1_foo ().

* Class and type names are capitalized: F1_Foo.

» Constants and enumerations are uppercase: FL_FOO.

All header files start with <FL/...>.

4.6 Header Files

The proper way to include FLTK header files is:
#include <FL/Fl_xyz.H>

Note:

Case is significant on many operating systems, and the C standard uses the forward slash (/) to separate
directories. Do not use any of the following include lines:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

4.6 Header Files

21

#include <FL\F1l_xyz.H>
#include <fl/fl_xyz.h>
#include <F1/fl_xyz.h>

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

22

FLTK Basics

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 5

Common Widgets and Attributes

24 Common Widgets and Attributes

This chapter describes many of the widgets that are provided with FLTK and covers how to query and set
the standard attributes.

5.1 Buttons

FLTK provides many types of buttons:

* FI_Button - A standard push button.

F1_Check_Button - A button with a check box.

* FI_Light_Button - A push button with a light.

* FI_Repeat_Button - A push button that repeats when held.

* FI_Return_Button - A push button that is activated by the Enter key.

¢ F1_Round_Button - A button with a radio circle.

FI_Button FI_Return_Button -

FI_Fepeat Button < F|_Round Button

FI_Light Button | [Fl_Check_Button

Figure 5.1: FLTK Button Widgets

All of these buttons just need the corresponding <FL/F1_xyz_Button.H> header file. The constructor
takes the bounding box of the button and optionally a label string:

Fl_Button *button = new F1l_Button(x, y, width, height, "label");
F1_Light_Button xlbutton = new F1_Light_Button(x, y, width, height);
F1_Round_Button *rbutton = new F1l_Round_Button(x, y, width, height, "label");

Each button has an associated t ype () which allows it to behave as a push button, toggle button, or radio
button:

button->type (FL_NORMAL_BUTTON) ;
lbutton->type (FL_TOGGLE_BUTTON) ;
rbutton->type (FL_RADIO_BUTTON) ;

For toggle and radio buttons, the value () method returns the current button state (0 = off, 1 = on). The
set () and clear () methods can be used on toggle buttons to turn a toggle button on or off, respectively.
Radio buttons can be turned on with the setonly () method; this will also turn off other radio buttons in
the same group.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.2 Text 25

5.2 Text

FLTK provides several text widgets for displaying and receiving text:

FI_Input - A one-line text input field.

* FI_Output - A one-line text output field.

F1_Multiline_Input - A multi-line text input field.

FI_Multiline_Output - A multi-line text output field.

FI_Text_Display - A multi-line text display widget.

F1_Text_Editor - A multi-line text editing widget.
* FI_Help_View - A HTML text display widget.

The F1_Output and FI_Multiline_Output widgets allow the user to copy text from the output field but not
change it.

The value () method is used to get or set the string that is displayed:

Fl_Input *input = new F1l_Input(x, y, width, height, "label");
input->value ("Now is the time for all good men...");

The string is copied to the widget’s own storage when you set the value () of the widget.

The F1_Text_Display and F1_Text_Editor widgets use an associated Fl_Text_Buffer class for the value,
instead of a simple string.

5.3 Valuators

Unlike text widgets, valuators keep track of numbers instead of strings. FLTK provides the following
valuators:

* FI_Counter - A widget with arrow buttons that shows the current value.

F1_Dial - A round knob.

* FI_Roller - An SGI-like dolly widget.

FI_Scrollbar - A standard scrollbar widget.

F1_Slider - A scrollbar with a knob.

F1_Value_Slider - A slider that shows the current value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

26 Common Widgets and Attributes

FI_Slider FI_ScroIIbari FI_Adjuster
o FL_VERT_MICE_SLIDER '_
— -+
« N EREE
FL_HORIZOMTAL wi)=hi) i
FL_HORIZONTAL
ﬂ i)
FL_HOR_ALL_SLIDER FI_Counter

— «dqg oo ik

L]

FL_VERT_FILL_SLIDER
4 0.0 | 4

FI_VaIue_SIider FL_SIMPLE_COUNTER
o FL_UERT_MICE_SLIDER
0.00 0.00 F1_Dial

000
000 [N
FL_HOR_SLIDER
0.00
i

FL_HOF_FILL_SLIDER FL_LIME_DI&L FL_ALL_DIAL

oo |f——— FI_Roller
FL_HOR_MICE_SLIDER -

Some widgets have

FL_VERT_ALL_SLIDER color{FL_GREEM}

pnd color2{FL_RED)|

to show the areas
Fl Value Input Fl Value Outbut FL_HORIZONTAL these effect.

ol 0|D.D

Figure 5.2: FLTK valuator widgets

The value () method gets and sets the current value of the widget. The minimum () and maximum ()
methods set the range of values that are reported by the widget.

5.4 Groups

The F1_Group widget class is used as a general purpose "container” widget. Besides grouping radio buttons,
the groups are used to encapsulate windows, tabs, and scrolled windows. The following group classes are
available with FLTK:

* FI_Double_Window - A double-buffered window on the screen.

* FI_GI_Window - An OpenGL window on the screen.

* F1_Group - The base container class; can be used to group any widgets together.

* FI_Pack - A collection of widgets that are packed into the group area.

¢ Fl_Scroll - A scrolled window area.

» Fl_Tabs - Displays child widgets as tabs.

¢ Fl_Tile - A tiled window area.

* F1_Window - A window on the screen.

» FI_Wizard - Displays one group of widgets at a time.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.5 Setting the Size and Position of Widgets 27

5.5 Setting the Size and Position of Widgets

The size and position of widgets is usually set when you create them. You can access them with the x (),
v (),w(),and h () methods.

You can change the size and position by using the position (), resize (), and size () methods:

button->position(x, Vy);
group->resize(x, y, width, height);
window->size (width, height);

If you change a widget’s size or position after it is displayed you will have to call redraw () on the
widget’s parent.

5.6 Colors

FLTK stores the colors of widgets as an 32-bit unsigned number that is either an index into a color palette
of 256 colors or a 24-bit RGB color. The color palette is not the X or WIN32 colormap, but instead is an
internal table with fixed contents.

See the Colors section of Drawing Things in FLTK for implementation details.

There are symbols for naming some of the more common colors:

e FL_BLACK

e FL_RED

e FL_GREEN

e FL_YELLOW
e FL_BLUE

e FL_MAGENTA
* FL_CYAN

e FL_WHITE

e FIL, WHITE
Other symbols are used as the default colors for all FLTK widgets.

¢ FFL_ FOREGROUND_COLOR
e I'L_BACKGROUND_COLOR
e FL_INACTIVE_COLOR

e FL_SELECTION_COLOR

The full list of named color values can be found in FLTK Enumerations.

A color value can be created from its RGB components by using the £1_rgb_color() function, and
decomposed again with F1: :get_color ():

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

28 Common Widgets and Attributes

Fl _Color ¢ = fl_rgb_color (85, 170, 255); // RGB to Fl_Color
Fl::get_color(c, r, g, b); // Fl_Color to RGB

The widget color is set using the color () method:

button->color (FL_RED) ; // set color using named value

Similarly, the label color is set using the labelcolor () method:

button->labelcolor (FL_WHITE) ;

The FI_Color encoding maps to a 32-bit unsigned integer representing RGBI, so it is also possible to
specify a color using a hex constant as a color map index:

button->color (0x000000£ff) ; // colormap index #255 (FL_WHITE)

or specify a color using a hex constant for the RGB components:

button->color
button->color
button->color
button->color

0xf£000000) ; // RGB: red
0x00££0000) ; // RGB: green
0x0000££00) ; // RGB: blue

(
(
(
(OXfEf£££00) ; // RGB: white

Note:

If TrueColor is not available, any RGB colors will be set to the nearest entry in the colormap.

5.7 Box Types

The type FI_Boxtype stored and returned in Fl_Widget::box() is an enumeration defined in Enumera-
tions.H.

Figure 3-3 shows the standard box types included with FLTK.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.7 Box Types 29

oo [oon o | e e
o [oo |

s | v o | BRSNS
oo 0| rovounor || e e

FL_ROUNDED_BOX FL_RSHADOW_EOR) FL_RFLAT_BOX
FL_OWaL_BOR FL_OSHADOW_BOR FL_OFLAT_BOX
."-—- e

FL_ROUND_UF_BOX [FL_ROUND_DOWN_B0 SSSE DIAMOND_UP_Blie S F=TTEHOND_DOW]
.3 _“"-\-._-‘-..‘--""

FL_FLASTIC_UP_EOX FL_FLASTIC_DOWN_BOX | I :]

Figure 5.3: FLTK box types

F1_NO_BOX means nothing is drawn at all, so whatever is already on the screen remains. The FL__ . .._~—
FRAME types only draw their edges, leaving the interior unchanged. The blue color in Figure 3-3 is the
area that is not drawn by the frame types.

5.7.1 Making Your Own Boxtypes

You can define your own boxtypes by making a small function that draws the box and adding it to the table
of boxtypes.

Note:
This interface has changed in FLTK 2.0!

The Drawing Function

The drawing function is passed the bounding box and background color for the widget:

void xyz_draw(int x, int y, int w, int h, F1l_Color c) {

}

A simple drawing function might fill a rectangle with the given color and then draw a black outline:

void xyz_draw(int x, int y, int w, int h, F1l_Color c) {
fl _color(c);
fl_rectf(x, y, w, h);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

30 Common Widgets and Attributes

fl _color (FL_BLACK) ;
fl_rect(x, vy, w, h);
}

F1_Boxtype fl_down(Fl_Boxtype b)

fl_down() returns the "pressed” or "down" version of a box. If no "down" version of a given box exists,
the behavior of this function is undefined and some random box or frame is returned. See Drawing
Functions for more details.

FI_Boxtype fl_frame(FI_Boxtype b)

fl_frame() returns the unfilled, frame-only version of a box. If no frame version of a given box exists,
the behavior of this function is undefined and some random box or frame is returned. See Drawing
Functions for more details.

FI_Boxtype fl_box(FI_Boxtype b)

fl_box() returns the filled version of a frame. If no filled version of a given frame exists, the behavior
of this function is undefined and some random box or frame is returned. See Drawing Functions for
more details.

Adding Your Box Type

The Fl::set_boxtype() method adds or replaces the specified box type:

#define XYZ_BOX FL_FREE_BOXTYPE

Fl::set_boxtype (XYZ_BOX, xyz_draw, 1, 1, 2, 2);

The last 4 arguments to Fl::set_boxtype() are the offsets for the %, y, width, and height values that
should be subtracted when drawing the label inside the box.

A complete box design contains four box types in this order: a filled, neutral box (UP_BOX), a filled,
depressed box (DOWN_BOX), and the same as outlines only (UP_FRAME and DOWN_FRAME). The function
fl_down(Fl_Boxtype) expects the neutral design on a boxtype with a numerical value evenly dividable by
two. fl_frame(Fl_Boxtype) expects the UP_BOX design at a value dividable by four.

5.8 Labels and Label Types

The label (), align(), labelfont (), labelsize(), labeltype(), image (), and
deimage () methods control the labeling of widgets.

label()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.8 Labels and Label Types 31

The label () method sets the string that is displayed for the label. Symbols can be included with the
label string by escaping them using the "@" symbol - "@ @" displays a single at sign. Figure 3-4 shows
the available symbols.

m 4 b M L
- [[= | &[]

4 & q H I
| @ <- i < 0 < i [<
I 4l o — =+
el | B &= - (G- &+
= il — ¢ D
- | || Earrow @returnarrow @sguare
O 5

Zeircle 2line meny @ Upadrrow & Dndrrow

Figure 5.4: FLTK label symbols

The @ sign may also be followed by the following optional "formatting" characters, in this order:
» ’# forces square scaling, rather than distortion to the widget’s shape.

e +[1-9] or -[1-9] tweaks the scaling a little bigger or smaller.

’$’ flips the symbol horizontally, ” flips it vertically.

[0-9] - rotates by a multiple of 45 degrees. ’5’ and 6’ do no rotation while the others point in the
direction of that key on a numeric keypad. ’0’, followed by four more digits rotates the symbol by
that amount in degrees.

"

Thus, to show a very large arrow pointing downward you would use the label string "@+92 — ".

align()

The align () method positions the label. The following constants are defined and may be OR’d together
as needed:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

32 Common Widgets and Attributes

e FL_ALIGN_CENTER - center the label in the widget.

e FL_ALIGN_TOP - align the label at the top of the widget.

e FL_ALIGN_BOTTOM - align the label at the bottom of the widget.
* FL_ALIGN_LEFT - align the label to the left of the widget.

e FIL_ALIGN_RIGHT - align the label to the right of the widget.

* FI_ALIGN_INSIDE - align the label inside the widget.

e FIL_ALIGN_CLIP - clip the label to the widget’s bounding box.

* FL_ALIGN_WRAP - wrap the label text as needed.

e FL_TEXT_OVER_IMAGE - show the label text over the image.

* FL_IMAGE_OVER_TEXT - show the label image over the text (default).

labeltype()

The labeltype () method sets the type of the label. The following standard label types are included:

e FI,_NORMAL_LABEL - draws the text.

e FIL_NO_LABEL - does nothing.

e FIL_SHADOW_LABEL - draws a drop shadow under the text.

e FIL_ENGRAVED_LABEL - draws edges as though the text is engraved.
* FL_EMBOSSED_LABEL - draws edges as thought the text is raised.

e FL_ICON_LABEL - draws the icon associated with the text.

image() and deimage()

The image () and deimage () methods set an image that will be displayed with the widget. The
deimage () method sets the image that is shown when the widget is inactive, while the image () method
sets the image that is shown when the widget is active.

To make an image you use a subclass of FI_Image.

Making Your Own Label Types

Label types are actually indexes into a table of functions that draw them. The primary purpose of this is to
use this to draw the labels in ways inaccessible through the fl_font() mechanism (e.g. FL_ENGRAVED_—
LABEL) or with program-generated letters or symbology.

Note:
This interface has changed in FLTK 2.0!

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.8 Labels and Label Types 33

Label Type Functions

To setup your own label type you will need to write two functions: one to draw and one to measure the
label. The draw function is called with a pointer to a F1_Label structure containing the label information,
the bounding box for the label, and the label alignment:

void xyz_draw (const F1l_Label *label, int x, int y, int w, int h, F1_Align align) {

}

The label should be drawn inside this bounding box, even if FI,_ALIGN_INSIDE is not enabled. The
function is not called if the label value is NULL.

The measure function is called with a pointer to a F1_Label structure and references to the width and height:
void xyz_measure (const F1l_Label xlabel, int &w, int &h) {

}

The function should measure the size of the label and set w and h to the size it will occupy.

Adding Your Label Type

The Fl::set_labeltype() method creates a label type using your draw and measure functions:

#define XYZ_LABEL FL_FREE_LABELTYPE

Fl::set_labeltype (XYZ_LABEL, xyz_draw, xyz_measure);

The label type number n can be any integer value starting at the constant FI,_FREE_LABELTYPE. Once
you have added the label type you can use the 1abeltype () method to select your label type.

The Fl::set_labeltype() method can also be used to overload an existing label type such as FI,_NORMAL_ -
LABEL.

Making your own symbols

It is also possible to define your own drawings and add them to the symbol list, so they can be rendered as
part of any label.

To create a new symbol, you implement a drawing function void drawit (F1_Color c) which typi-
cally uses the functions described in Drawing Complex Shapes to generate a vector shape inside a two-by-
two units sized box around the origin. This function is then linked into the symbols table using fl_add_-
symbol():

int fl_add_symbol (const char xname, void (xdrawit) (F1l_Color), int scalable)

name is the name of the symbol without the "@"; scalable must be set to 1 if the symbol is generated
using scalable vector drawing functions.

int fl_draw_symbol (const char *name,int x,int y,int w,int h,F1l_Color col)

This function draws a named symbol fitting the given rectangle.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

34 Common Widgets and Attributes

5.9 Callbacks

Callbacks are functions that are called when the value of a widget changes. A callback function is sent a
F1_Widget pointer of the widget that changed and a pointer to data that you provide:

void xyz_callback (F1_Widget =*w, void =xdata) {

}

The callback () method sets the callback function for a widget. You can optionally pass a pointer to
some data needed for the callback:

int xyz_data;

button->callback (xyz_callback, &xyz_data);

Normally callbacks are performed only when the value of the widget changes. You can change this using
the F1_Widget::when() method:

button->when (FL_WHEN_NEVER) ;
button->when (FL_WHEN_CHANGED) ;
button->when (FL_WHEN_RELEASE) ;
button->when (FL_WHEN_RELEASE_ALWAYS) ;
button->when (FL_WHEN_ENTER_KEY) ;
button->when (FL_WHEN_ENTER_KEY_ALWAYS) ;
(

button->when (FL_WHEN_CHANGED | FL_WHEN_NOT_CHANGED) ;

Note:

You cannot delete a widget inside a callback, as the widget may still be accessed by FLTK after your
callback is completed. Instead, use the Fl::delete_widget() method to mark your widget for deletion
when it is safe to do so.

Hint:

Many programmers new to FLTK or C++ try to use a non-static class method instead of a static class
method or function for their callback. Since callbacks are done outside a C++ class, the this pointer
is not initialized for class methods.

To work around this problem, define a static method in your class that accepts a pointer to the class,
and then have the static method call the class method(s) as needed. The data pointer you provide to the
callback () method of the widget can be a pointer to the instance of your class.

class Foo {

void my_callback (F1_Widget »*w);
static void my_static_callback (F1_Widget »*w, void xf) { ((Foo x)f)->my_callback(w); }

w->callback (my_static_callback, (void «*)this);

5.10 Shortcuts

Shortcuts are key sequences that activate widgets such as buttons or menu items. The shortcut ()
method sets the shortcut for a widget:

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

5.10 Shortcuts 35

button->shortcut
button->shortcut
button->shortcut
button->shortcut
button->shortcut
button->shortcut

FL_Enter);

FL_SHIFT + 'b’");

FL_CTRL + ’'b’);

FL_ALT + '"b’");

FL_CTRL + FL_ALT + 'b’);
0); // no shortcut

The shortcut value is the key event value - the ASCII value or one of the special keys described in
Fl::event_key() Values combined with any modifiers like Shift ,Alt , and Control.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

36

Common Widgets and Attributes

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 6

Designing a Simple Text Editor

38 Designing a Simple Text Editor

This chapter takes you through the design of a simple FLTK-based text editor.

6.1 Determining the Goals of the Text Editor

Since this will be the first big project you’ll be doing with FLTK, lets define what we want our text editor
to do:

1. Provide a menubar/menus for all functions.

2. Edit a single text file, possibly with multiple views.
3. Load from a file.

4. Save to afile.

5. Cut/copy/delete/paste functions.

6. Search and replace functions.

7. Keep track of when the file has been changed.

6.2 Designing the Main Window

Now that we’ve outlined the goals for our editor, we can begin with the design of our GUI Obviously the
first thing that we need is a window, which we’ll place inside a class called EditorWindow:

class EditorWindow : public F1_Double_Window {
public:
EditorWindow (int w, int h, const charx t);
~EditorWindow () ;

Fl_Window +*replace_dlg;
F1l_TInput «*replace_find;
F1l_Input +*replace_with;
F1_Button *replace_all;
F1l_Return_Button *replace_next;
F1l_Button *replace_cancel;
Fl_Text_Editor ~xeditor;

char search[256];

6.3 Variables

Our text editor will need some global variables to keep track of things:

int changed = 0;
char filename[256] = "";
Fl_Text_Buffer xtextbuf;

The textbuf variable is the text editor buffer for our window class described previously. We’ll cover the
other variables as we build the application.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.4 Menubars and Menus 39

6.4 Menubars and Menus

The first goal requires us to use a menubar and menus that define each function the editor needs to perform.
The F1_Menu_Item structure is used to define the menus and items in a menubar:

Fl_Menu_TItem menuitems[] = {

{ "sFile", 0, 0, 0, FL_SUBMENU },
{ "&New File", 0, (Fl_Callback *)new_cb },
{ "&Open File...", FL_CTRL + ’'o’, (Fl_Callback x)open_cb },
{ "&¢Insert File...", FL_CTRL + ’'i’, (Fl_Callback x)insert_cb, 0, FL_MENU_DIVIDER },
{ "&Save File", FL_CTRL + ’'s’, (Fl_Callback x)save_cb },
{ "Save File &As...", FL_CTRL + FL_SHIFT + ’'s’, (Fl_Callback =x)saveas_cb, 0, FL_MENU_DIVIDER
{ "New &View", FL_ALT + ’'v’, (Fl_Callback x)view_cb, 0 },
{ "&Close View", FL_CTRL + ’'w’, (Fl_Callback x)close_cb, 0, FL_MENU_DIVIDER },
{ "BE&xit", FL_CTRL + ’"qg’, (Fl_Callback x)quit_cb, 0 },
{01},

{ "&Edit", 0, 0, 0, FL_SUBMENU },

{ "&Undo", FL_CTRL + ’'z’, (Fl_Callback *)undo_cb, 0, FL_MENU_DIVIDER },
{ "Cus&t", FL_CTRL + ’'x’, (Fl_Callback x)cut_cb },

{ "&Copy", FL_CTRL + ’'c¢’, (Fl_Callback x)copy_cb },

{ "&Paste", FL_CTRL + ’'v’, (Fl_Callback =*)paste_cb },

{ "&Delete", 0, (Fl_Callback x)delete_cb },

{01},

{ "&Search", 0, 0, 0, FL_SUBMENU },

{ "&Find...", FL_CTRL + ’'f’, (Fl_Callback x)find_cb },
{ "F&ind Again", FL_CTRL + ’'g’, find2_cb },

{ "&Replace...", FL_CTRL + ’'r’, replace_cb },

{ "Re&place Again", FL_CTRL + ’'t’, replace2_cb 1},

{01},

{ 01}
bi

Once we have the menus defined we can create the FI_Menu_Bar widget and assign the menus to it with:

Fl_Menu_Bar *m = new Fl_Menu_Bar (0, 0, 640, 30);
m->copy (menuitems) ;

‘We’ll define the callback functions later.

6.5 Editing the Text

To keep things simple our text editor will use the F1_Text_Editor widget to edit the text:

w—>editor = new F1l_Text_Editor (0, 30, 640, 370);
w—>editor->buffer (textbuf);

So that we can keep track of changes to the file, we also want to add a "modify" callback:

textbuf->add_modify_callback (changed_cb, w);
textbuf->call_modify_callbacks () ;

Finally, we want to use a mono-spaced font like FL_COURIER:

w—>editor->textfont (FL_COURIER) ;

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

}’

40 Designing a Simple Text Editor

6.6 The Replace Dialog

We can use the FLTK convenience functions for many of the editor’s dialogs, however the replace dialog
needs its own custom window. To keep things simple we will have a "find" string, a "replace" string, and
"replace all", "replace next", and "cancel" buttons. The strings are just FI_Input widgets, the "replace all"
and "cancel" buttons are FI_Button widgets, and the "replace next " button is a FI_Return_Button widget:

Find:

Feplace:

Replace All ‘ Feplace Mext - | Cancel |

Figure 6.1: The search and replace dialog

F1_Window #*replace_dlg = new F1_Window (300, 105, "Replace");

Fl_Input *replace_find new F1l_Input (70, 10, 200, 25, "Find:");

F1l_Input *replace_with new F1_TInput (70, 40, 200, 25, "Replace:");
Fl_Button xreplace_all new F1l_Button (10, 70, 90, 25, "Replace All");
Fl_Button *replace_next = new F1l_Button (105, 70, 120, 25, "Replace Next");
Fl_Button xreplace_cancel = new Fl_Button (230, 70, 60, 25, "Cancel");

6.7 Callbacks

Now that we’ve defined the GUI components of our editor, we need to define our callback functions.

6.7.1 changed_cb()

This function will be called whenever the user changes any text in the editor widget:

void changed_cb(int, int nInserted, int nDeleted, int, const char*, void* v) {
if ((nInserted || nDeleted) && !loading) changed = 1;
EditorWindow »w = (EditorWindow =*)v;
set_title(w);
if (loading) w->editor->show_insert_position();

The set_title () function is one that we will write to set the changed status on the current file. We’re
doing it this way because we want to show the changed status in the window’s title bar.

6.7.2 copy_cb()

This callback function will call Fl_Text_Editor::kf_copy() to copy the currently selected text to the clip-
board:

void copy_cb (F1l_Widget*, void* v) {
EditorWindowx e = (EditorWindow=)v;
Fl _Text_Editor::kf_copy (0, e->editor);
}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.7 Callbacks 41

6.7.3 cut_ch()

This callback function will call F1_Text_Editor::kf_cut() to cut the currently selected text to the clipboard:

void cut_cb (F1_Widget*, wvoid* v) {

EditorWindowx e = (EditorWindow=)v;
Fl_Text_Editor::kf_cut (0, e->editor);

6.7.4 delete_cb()

This callback function will call FI_Text_Buffer::remove_selection() to delete the currently selected text to
the clipboard:

void delete_cb (F1_Widgets, voidx v) {

}

textbuf->remove_selection();

6.7.5 find_cb()

This callback function asks for a search string using the fl_input() convenience function and then calls the
find2_cb () function to find the string:

void find_cb (F1_Widget* w, voidx v) {

EditorWindow* e = (EditorWindowx)v;
const char xval;

val = fl_input ("Search String:", e->search);
if (val != NULL) {
// User entered a string - go find it!
strcpy (e->search, val);
find2_cb(w, v);

6.7.6 find2_ch()

This function will find the next occurrence of the search string. If the search string is blank then we want
to pop up the search dialog:

void find2_cb (F1_Widget* w, voidx v) {

EditorWindow* e = (EditorWindowx)v;

if (e->search[0] == "\0'") {
// Search string is blank; get a new one...
find_cb(w, Vv);

return;
}
int pos = e->editor->insert_position();
int found = textbuf->search_forward(pos, e->search, &pos);
if (found) {

// Found a match; select and update the position...
textbuf->select (pos, post+strlen(e->search));
e->editor->insert_position (pos+strlen(e->search));
e->editor->show_insert_position();

}

else fl_alert ("No occurrences of \’%s\’ found!", e->search);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

42 Designing a Simple Text Editor

If the search string cannot be found we use the fl_alert() convenience function to display a message to that
effect.

6.7.7 mew_cb()

This callback function will clear the editor widget and current filename. It also calls the check_save ()
function to give the user the opportunity to save the current file first as needed:

void new_cb (F1_Widget*, wvoidx*) {
if (!check_save()) return;

filename[0] = "\0';

textbuf->select (0, textbuf->length());
textbuf->remove_selection () ;

changed = 0;
textbuf->call_modify_callbacks();

6.7.8 open_cbh()
This callback function will ask the user for a filename and then load the specified file into the input widget
and current filename. It also calls the check_save () function to give the user the opportunity to save

the current file first as needed:

void open_cb (F1_Widget*, voidx*) {

if (!check_save()) return;
char xnewfile = fl_file_chooser ("Open File?", "x", filename);
if (newfile != NULL) load_file(newfile, -1);

We call the 1oad_file () function to actually load the file.

6.7.9 paste_cb()

This callback function will call F1_Text_Editor::kf_paste() to paste the clipboard at the current position:

void paste_cb (F1_Widget*, voidx v) {
EditorWindowx e = (EditorWindow=)v;
F1l_Text_Editor::kf_paste (0, e->editor);
}

6.7.10 quit_cb()

The quit callback will first see if the current file has been modified, and if so give the user a chance to save
it. It then exits from the program:

void quit_cb (F1_Widget*, wvoidx*) {
if (changed && !check_save())
return;

exit (0);
}

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.7 Callbacks

43

6.7.11 replace_cb()
The replace callback just shows the replace dialog:

void replace_cb (Fl_Widgetx, voidx v) {
EditorWindowx e = (EditorWindow=)v;
e—>replace_dlg—>show();

6.7.12 replace2_cb()

This callback will replace the next occurrence of the replacement string. If nothing has been entered for

the replacement string, then the replace dialog is displayed instead:

void replace2_cb (F1_Widgetx, voidx v) {
EditorWindowx e = (EditorWindow=)v;
const char xfind = e->replace_find->value();
const char xreplace = e->replace_with->value();

if (£ind[0] == "\0") {
// Search string is blank; get a new one...
e->replace_dlg->show () ;
return;

e->replace_dlg->hide();

int pos = e->editor->insert_position();
int found = textbuf->search_forward(pos, find, é&pos);

if (found) {
// Found a match; update the position and replace text...
textbuf->select (pos, poststrlen(find));
textbuf->remove_selection();
textbuf->insert (pos, replace);
textbuf->select (pos, poststrlen(replace));
e->editor->insert_position (pos+strlen (replace));
e->editor->show_insert_position();

}

else fl_alert ("No occurrences of \’%s\’ found!", find);

6.7.13 replall_cb()
This callback will replace all occurrences of the search string in the file:

void replall_cb(Fl_Widgetx, voidx v) {
EditorWindow* e = (EditorWindowx)v;
const char »find = e->replace_find->value();
const char xreplace = e->replace_with->value();

find = e->replace_find->value();

if (£ind[0] == ’"\0'") {
// Search string is blank; get a new one...
e->replace_dlg—->show();
return;

e->replace_dlg->hide();

e->editor->insert_position(0);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

44 Designing a Simple Text Editor

int times = 0;

// Loop through the whole string
for (int found = 1; found;) {
int pos = e->editor->insert_position();
found = textbuf->search_forward(pos, find, &pos);

if (found) {
// Found a match; update the position and replace text...
textbuf->select (pos, pos+strlen(find));
textbuf->remove_selection () ;
textbuf->insert (pos, replace);
e->editor->insert_position (pos+strlen(replace));
e->editor->show_insert_position();

times++;
}
}
if (times) fl_message ("Replaced %d occurrences.", times);
else fl_alert ("No occurrences of \’%s\’ found!", find);

6.7.14 replcan_cb()
This callback just hides the replace dialog:

void replcan_cb (Fl_Widgetx, voidx v) {
EditorWindow* e = (EditorWindowx)v;
e->replace_dlg->hide();

6.7.15 save_cb()
This callback saves the current file. If the current filename is blank it calls the "save as" callback:

void save_cb (void) {
if (filename[0] == "\0’") {
// No filename - get one!
saveas_cb () ;
return;

}

else save_file(filename);

The save_file () function saves the current file to the specified filename.

6.7.16 saveas_cb()
This callback asks the user for a filename and saves the current file:

void saveas_cb (void) {
char *newfile;

newfile = fl_file_chooser ("Save File As?", "x", filename);
if (newfile != NULL) save_file(newfile);

The save_file () function saves the current file to the specified filename.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.8 Other Functions 45

6.8 Other Functions

Now that we’ve defined the callback functions, we need our support functions to make it all work:

6.8.1 check_save()

This function checks to see if the current file needs to be saved. If so, it asks the user if they want to save
it:

int check_save (void) {

if (!changed) return 1;
int r = fl_choice ("The current file has not been saved.\n"
"Would you like to save it now?",
"Cancel", "Save", "Discard");
if (r == 1) {
save_cb(); // Save the file...

return !changed;

return (r == 2) 2 1 : 0;

6.8.2 load_file()

This function loads the specified file into the textbuf variable:

int loading = 0;
void load_file(char xnewfile, int ipos) {
loading = 1;

int insert = (ipos != -1);
changed = insert;
if (!'insert) strcpy(filename, "");
int r;
if (!insert) r = textbuf->loadfile(newfile);
else r = textbuf->insertfile (newfile, ipos);
if (r)
fl_alert ("Error reading from file \’%s\’:\n%s.", newfile, strerror(errno));
else
if (!insert) strcpy(filename, newfile);

loading = 0;
textbuf->call_modify_callbacks();

When loading the file we use the Fl_Text_Buffer::loadfile() method to "replace” the text in the buffer, or
the FI_Text_Buffer::insertfile() method to insert text in the buffer from the named file.

6.8.3 save_file()

This function saves the current buffer to the specified file:

void save_file(char *newfile) {
if (textbuf->savefile (newfile))
fl_alert ("Error writing to file \’%s\’:\n%s.", newfile, strerror(errno));
else
strcpy (filename, newfile);

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

46 Designing a Simple Text Editor

changed = 0;
textbuf->call_modify_callbacks();
}

6.8.4 set_title()
This function checks the changed variable and updates the window label accordingly:

void set_title(F1l_Windowx w) {
if (filename[0] == ’\0’) strcpy(title, "Untitled");
else {
char =xslash;
slash = strrchr (filename, ’/’);
#ifdef WIN32

if (slash == NULL) slash = strrchr(filename, "\\’);
#endif
if (slash != NULL) strcpy(title, slash + 1);

else strcpy(title, filename);

}
if (changed) strcat(title, " (modified)");

w—>label (title);
}

6.9 The main() Function

Once we’ve created all of the support functions, the only thing left is to tie them all together with the
main () function. The main () function creates a new text buffer, creates a new view (window) for the
text, shows the window, loads the file on the command-line (if any), and then enters the FLTK event loop:

int main(int argc, char *xargv) {
textbuf = new F1l_Text_Buffer;

Fl_Window* window = new_view();
window->show (1, argv);
if (argc > 1) load_file(argv[1l], -1);

return Fl::run();

6.10 Compiling the Editor

The complete source for our text editor can be found in the test/editor.cxx source file. Both the
Makefile and Visual C++ workspace include the necessary rules to build the editor. You can also compile
it using a standard compiler with:

CC -o editor editor.cxx —-1fltk -1Xext -1X11 -1m

or by using the £1tk—-config script with:

fltk-config —-compile editor.cxx

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.11 The Final Product 47

As noted in Compiling Programs with Standard Compilers, you may need to include compiler and linker
options to tell them where to find the FLTK library. Also, the CC command may also be called gcc or c++
on your system.

Congratulations, you’ve just built your own text editor!

6.11 The Final Product

The final editor window should look like the image in Figure 4-2.

File Edit Search |

S8 Id: editor.exx,v 1.2.2.3.2.5 2001712709 12:52:13 fﬂ
A simple text editor program for the Fast Light Too
Ff This program is described in Chapter 4 of the FLTE

£ Copyright 1998-2001 by Bill Bpitzak and others.

Ff This library is free software; you can redistribute
S modify it under the terms of the GNU Library Genera
£f License as published by the Free Boftware Foundatio
Ff wersion 2 of the License, or (at your option) any 1

ff This library is distributed in the hope that it wil
£ but WITHOUT ANY WAREANTY; without even the implied
£/ MERCHAWNTABILITY or FITHNESS FORE & PARTICULAE PURPOSE
A4 Library General Public License for more details.

£ ¥Tou should have received a copy of the GNU Likrary

/ License along with this library; if not, write to L
/ Foundation, Inc., 59 Temple Place, BSuite 330, Bosto
£
F
|

TSA.
-
| LIJ

Figure 6.2: The completed editor window

6.12 Advanced Features

Now that we’ve implemented the basic functionality, it is time to show off some of the advanced features
of the FI_Text_Editor widget.

6.12.1 Syntax Highlighting

The F1_Text_Editor widget supports highlighting of text with different fonts, colors, and sizes. The imple-
mentation is based on the excellent NEd it text editor core, from http://www.nedit.org/, which
uses a parallel "style" buffer which tracks the font, color, and size of the text that is drawn.

Styles are defined using the FI_Text_Display::Style_Table_Entry structure defined in <FL/F1_Text_-
Display.H>:

struct Style_Table_Entry {

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

http://www.nedit.org/
http://www.nedit.org/,

48 Designing a Simple Text Editor

Fl_Color color;

F1l_Font font;

int size;

unsigned attr;
bi

The color member sets the color for the text, the font member sets the FLTK font index to use, and the

s1ize member sets the pixel size of the text. The attr member is currently not used.
For our text editor we’ll define 7 styles for plain code, comments, keywords, and preprocessor directives:
Fl_Text_Display::Style_Table_Entry styletable[] = { // Style table

FL_BLACK, FL_COURIER, FL_NORMAL_SIZE }, // A - Plain
FL_DARK_GREEN, FL_COURIER_ITALIC, FL_NORMAL_SIZE }, // B - Line comments

{

{

{ FL_DARK_GREEN, FL_COURIER_ITALIC, FL_NORMAL_SIZE }, // C - Block comments
{ FL_BLUE, FL_COURIER, FL_NORMAL_SIZE }, // D - Strings

{ FL_DARK_RED, FL_COURIER, FL_NORMAL_SIZE }, // E - Directives

{ FL_DARK_RED, FL_COURIER_BOLD, FL_NORMAL_SIZE }, // F - Types

{ FL_BLUE, FL_COURIER_BOLD, FL_NORMAL_SIZE } // G - Keywords

bi

You’ll notice that the comments show a letter next to each style - each style in the style buffer is referenced
using a character starting with the letter "A’.

You call the highlight_data () method to associate the style data and buffer with the text editor
widget:

F1l_Text_Buffer xstylebuf;

w->editor->highlight_data (stylebuf, styletable,
sizeof (styletable) / sizeof (styletable[0]),
"A’, style_unfinished_cb, 0);

Finally, you need to add a callback to the main text buffer so that changes to the text buffer are mirrored in
the style buffer:

textbuf->add_modify_callback (style_update, w->editor);

The style_update () function, like the change_cb () function described earlier, is called whenever
text is added or removed from the text buffer. It mirrors the changes in the style buffer and then updates
the style data as necessary:

//
// "style_update()’ - Update the style buffer...
//
void
style_update (int pos, // I - Position of update
int nInserted, // I — Number of inserted chars
int nDeleted, // I - Number of deleted chars
int nRestyled, // I - Number of restyled chars
const char *deletedText, // I - Text that was deleted
void *cbArg) | // I - Callback data
int start, // Start of text
end; // End of text
char last, // Last style on line
xstyle, // Style data
*text; // Text data

// If this is just a selection change, Jjust unselect the style buffer...

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.12 Advanced Features 49

if (nInserted == 0 && nDeleted == 0) {
stylebuf->unselect ();
return;

// Track changes in the text buffer...

if (nInserted > 0) {
// Insert characters into the style buffer...
style = new char[nInserted + 1];
memset (style, "A’, nlInserted);
style[nInserted] = "\0’;

stylebuf->replace (pos, pos + nDeleted, style);
delete[] style;

} else {
// Just delete characters in the style buffer...
stylebuf->remove (pos, pos + nDeleted);

// Select the area that was just updated to avoid unnecessary
// callbacks. ..
stylebuf->select (pos, pos + nInserted - nDeleted);

// Re-parse the changed region; we do this by parsing from the
// beginning of the line of the changed region to the end of
// the line of the changed region... Then we check the last
// style character and keep updating if we have a multi-line
// comment character...

start = textbuf->line_start (pos);

end = textbuf->line_end(pos + nInserted - nDeleted);
text = textbuf->text_range(start, end);

style = stylebuf->text_range(start, end);

last = style[end - start - 1];

style_parse(text, style, end - start);

stylebuf->replace (start, end, style);
((F1_Text_Editor «)cbArg)->redisplay_range (start, end);

if (last != style[end - start - 1]) {
// The last character on the line changed styles, so reparse the
// remainder of the buffer...
free (text);
free(style);

end textbuf->length();
text = textbuf->text_range(start, end);
style = stylebuf->text_range(start, end);

style_parse (text, style, end - start);

stylebuf->replace(start, end, style);
((F1_Text_Editor *)cbArg)->redisplay_range (start, end);

free (text);
free(style);

The style_parse () function scans a copy of the text in the buffer and generates the necessary style
characters for display. It assumes that parsing begins at the start of a line:

//
// 'style_parse()’ - Parse text and produce style data.
//

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

50

Designing a Simple Text Editor

void
style_parse (const char xtext,
char *style,
int length) {
char current;
int col;
int last;
char buf[255],
*bufptr;
const char xtemp;
for (current = xstyle, col = 0, last = 0; length > 0; length --, text ++)
if (current == 'A") {
// Check for directives, comments, strings, and keywords...
if (col == 0 && *text == "#') {
// Set style to directive
current = 'E’;
} else if (strncmp(text, "//", 2) == 0) {
current = 'B’;
} else if (strncmp(text, "/*", 2) == 0) {
current = 'C’;
} else if (strncmp (text, "\\\"", 2) == 0) {

// Quoted quote...

xstyle++ = current;
xstyle++ = current;
text ++;
length -—;
col += 2;
continue;
} else if (*text == "\"7) {
current = ’'D’;

} else if (!last && islower (*text)) {
// Might be a keyword...

for (temp = text, bufptr = buf;
islower (xtemp) && bufptr < (buf + sizeof (buf) - 1);
sbufptr++ = xtemp++);
if (!islower (xtemp)) {
spbufptr = "\0’;
bufptr = buf;

if (bsearch (&bufptr, code_types,
sizeof (code_types) / sizeof (code_types[0]),
sizeof (code_types[0]), compare_keywords)) {
while (text < temp) {

*stylet+ = "F';

text ++;

length —-—;

col ++;

text ——;

length ++;
last = 1;
continue;

} else if (bsearch (&bufptr, code_keywords,
sizeof (code_keywords)
sizeof (code_keywords[0]),

while (text < temp) {
xstyle++ = 'G’;
text ++;
length ——;
col ++;

compare_keywords)) {

text ——;

{

/ sizeof (code_keywords[0]),

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

6.12 Advanced Features

51

length ++;
last = 1;
continue;

}

} else if (current == ’'C’ && strncmp(text, "x/",
// Close a C comment...
*style++ = current;

*style++ = current;
text ++;

length -—;

current = 'A’;

col += 2;

continue;

} else if (current == 'D’) {
// Continuing in string...
if (strncmp (text, "\\\"", 2) == 0) {

// Quoted end quote...
+style++ = current;
*style++ = current;
text ++;

length —-—;

col += 2;

continue;

} else if (*text == "\"7) {
// End quote...
*style++ = current;
col ++;
current = "A’;
continue;

// Copy style info...

if (current == "A’ && (xtext == "{’ || *text == "}"))
else xstyle++ = current;
col ++;
last = isalnum(*text) || xtext == '.’;
if (xtext == "\n’) {
// Reset column and possibly reset the style
col = 0;
if (current == ’'B’ || current == 'E’) current =

*style++

G’ ;

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

52

Designing a Simple Text Editor

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

Chapter 7

Drawing Things in FLTK

54 Drawing Things in FLTK

This chapter covers the drawing functions that are provided with FLTK.

7.1 When Can You Draw Things in FLTK?

There are only certain places you can execute drawing code in FLTK. Calling these functions at other
places will result in undefined behavior!

* The most common place is inside the virtual F1_Widget::draw() method. To write code here, you
must subclass one of the existing F1_Widget classes and implement your own version of draw().

* You can also create custom boxtypes and labeltypes. These involve writing small procedures that
can be called by existing F1_Widget::draw() methods. These "types" are identified by an 8-bit index
that is stored in the widget’s box (), labeltype (), and possibly other properties.

* You can call FI_Window::make_current() to do incremental update of a widget. Use FI_-
Widget::window() to find the window.

7.2 Drawing Functions

To use the drawing functions you must first include the <FL/fl_draw.H> header file. FLTK provides the
following types of drawing functions:

* Boxes

* Clipping

* Colors

* Line Dashes and Thickness
* Drawing Fast Shapes

¢ Drawing Complex Shapes
e Drawing Text

* Fonts

¢ Character Encoding

* Drawing Overlays

* Drawing Images

* Direct Image Drawing

* Direct Image Reading

* Image Classes

* Offscreen Drawing

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.2 Drawing Functions 55

7.2.1 Boxes

FLTK provides three functions that can be used to draw boxes for buttons and other UI controls. Each
function uses the supplied upper-lefthand corner and width and height to determine where to draw the box.

void fl_draw_box(Fl_Boxtype b, int x, int y, int w, int h, F1_Color c);

The £1_draw_box() function draws a standard boxtype b in the specified color c.

void fl_frame(const char s, int x, int y, int w, int h)

void fl_frame2(const char s, int X, int y, int w, int h)

The £1_frame() and £1_ frame?2() functions draw a series of line segments around the given box.
The string s must contain groups of 4 letters which specify one of 24 standard grayscale values, where
"A’ is black and X’ is white. The results of calling these functions with a string that is not a multiple
of 4 characters in length are undefined.

The only difference between £1_ frame() and £1_ frame2() is the order of the line segments:
e For £1_ frame() the order of each set of 4 characters is: top, left, bottom, right.

e For £1_frame?2() the order of each set of 4 characters is: bottom, right, top, left.

Note that fl_frame(FI_Boxtype b) is described in the Box Types section.

7.2.2 Clipping

You can limit all your drawing to a rectangular region by calling £1_push_clip(), and put the drawings
back by using £1_pop_clip(). This rectangle is measured in pixels and is unaffected by the current
transformation matrix.

In addition, the system may provide clipping when updating windows which may be more complex than a
simple rectangle.

void fl_push_clip(int x, int y, int w, int h)

void fl_clip(int X, int y, int w, int h)

Intersect the current clip region with a rectangle and push this new region onto the stack.

The £1_clip() version is deprecated and will be removed from future releases.

void fl_push_no_clip()

Pushes an empty clip region on the stack so nothing will be clipped.

void fl_pop_clip()

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

56 Drawing Things in FLTK

Restore the previous clip region.

Note: You must call £1_pop_clip() once for every time you call £1_push_clip(). If you return
to FLTK with the clip stack not empty unpredictable results occur.

int fl_not_clipped(int X, int y, int w, int h)

Returns non-zero if any of the rectangle intersects the current clip region. If this returns 0 you don’t
have to draw the object.

Note: Under X this returns 2 if the rectangle is partially clipped, and 1 if it is entirely inside the clip
region.

int fl_clip_box(int x, int y, int w, int h, int &X, int &Y, int &W, int &H)

Intersect the rectangle x, v, w, h with the current clip region and returns the bounding box of the
result in X, Y, W, H. Returns non-zero if the resulting rectangle is different than the original. This
can be used to limit the necessary drawing to a rectangle. W and H are set to zero if the rectangle is
completely outside the region.

void fl_clip_region(FI_Region r)
FI_Region fl_clip_region()

Replace the top of the clip stack with a clipping region of any shape. FI_Region is an operating system
specific type. The second form returns the current clipping region.

7.3 Colors

FLTK manages colors as 32-bit unsigned integers, encoded as RGBI. When the RGB bytes are non-zero,
the value is treated as RGB. If these bytes are zero, the I byte will be used as an index into the colormap.

Values from 0 to 255, i.e. the I index value, represent colors from the FLTK 1.3.x standard colormap
and are allocated as needed on screens without TrueColor support. The FI_Color enumeration type de-
fines the standard colors and color cube for the first 256 colors. All of these are named with symbols in
<FL/Enumerations.H>.

Color values greater than 255 are treated as 24-bit RGB values. These are mapped to the closest color
supported by the screen, either from one of the 256 colors in the FLTK 1.3.x colormap or a direct RGB
value on TrueColor screens.

FI_Color fl_rgb_color(uchar r, uchar g, uchar b)
FI_Color fl_rgb_color(uchar grayscale)

Generate F1_Color out of specified 8-bit RGB values or one 8-bit grayscale value.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 57

void fl_color(F1_Color ¢)

void fl_color(int ¢)

Sets the color for all subsequent drawing operations. Please use the first form: the second form is only
provided for back compatibility.

For colormapped displays, a color cell will be allocated out of £1__colormap the first time you use
a color. If the colormap fills up then a least-squares algorithm is used to find the closest color.

F1_Color fl_color()

Returns the last color that was set using £1_color(). This can be used for state save/restore.

void fl_color(uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations. The closest possible match to the RGB color is
used. The RGB color is used directly on TrueColor displays. For colormap visuals the nearest index
in the gray ramp or color cube is used.

unsigned Fl::get_color(Fl_Color 1)
void Fl::get_color(FI_Color i, uchar &red, uchar &green, uchar &blue)

Generate RGB values from a colormap index value i. The first returns the RGB as a 32-bit unsigned
integer, and the second decomposes the RGB into three 8-bit values.

Todo

work out why Fl::get_color() does not give links!

Fl::get_system_colors()
Fl::foreground()
Fl::background()
Fl::background2()

The first gets color values from the user preferences or the system, and the other routines are used to
apply those values.

Fl::own_colormap()
Fl::free_color(FI_Color i, int overlay)

Fl::set_color(Fl_Color i, unsigned c)

Fl::own_colormap () is used to install a local colormap [X11 only].

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

58 Drawing Things in FLTK

Fl::free_color() and Fl::set_color () are used to remove and replace entries from the
colormap.

Todo

work out why these do not give links!

There are two predefined graphical interfaces for choosing colors. The function fl_show_colormap() shows
a table of colors and returns an Fl_Color index value. The Fl_Color_Chooser widget provides a standard
RGB color chooser.

As the F1_Color encoding maps to a 32-bit unsigned integer representing RGBI, it is also possible to specify
a color using a hex constant as a color map index:

// COLOR MAP INDEX
color (0x000000I1I)

| Color map index (8 bits)
Must be zero

button->color (0x000000£ff) ; // colormap index #255 (FL_WHITE)

or specify a color using a hex constant for the RGB components:

// RGB COLOR ASSIGNMENTS
color (0xRRGGBRBO0O)
[
| | | Must be zero
| | Blue (8 bits)
| Green (8 bits)
Red (8 bits)

button->color (0x£f£000000) ; // RGB: red
button->color (0x00££0000) ; // RGB: green
button->color (0x0000££00) ; // RGB: blue
button->color (Oxff££££00) ; // RGB: white

Note:

If TrueColor is not available, any RGB colors will be set to the nearest entry in the colormap.

7.3.1 Line Dashes and Thickness

FLTK supports drawing of lines with different styles and widths. Full functionality is not available under
Windows 95, 98, and Me due to the reduced drawing functionality these operating systems provide.

void fl_line_style(int style, int width, chars dashes)

Set how to draw lines (the "pen"). If you change this it is your responsibility to set it back to the default
with f1_line_style (0).

Note: Because of how line styles are implemented on WIN32 systems, you must set the line style after
setting the drawing color. If you set the color after the line style you will lose the line style settings!

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 59

style is a bitmask which is a bitwise-OR of the following values. If you don’t specify a dash type
you will get a solid line. If you don’t specify a cap or join type you will get a system-defined default
of whatever value is fastest.

e P, SOLID —————

e F'I,_ DASH - - - -
e FLDOT
e FI,_ DASHDOT - . -
e FI,_ DASHDOTDOT - .. -
e F'I,_ CAP_FLAT

e F'I,_ CAP_ROUND

* FL_CAP_SQUARE (extends past end point 1/2 line width)
e FL_JOIN_MITER (pointed)

e FI,_ JOIN_ROUND

e F1L_JOIN_BEVEL (flat)

width is the number of pixels thick to draw the lines. Zero results in the system-defined default,
which on both X and Windows is somewhat different and nicer than 1.

dashes is a pointer to an array of dash lengths, measured in pixels. The first location is how long to
draw a solid portion, the next is how long to draw the gap, then the solid, etc. It is terminated with a
zero-length entry. A NULL pointer or a zero-length array results in a solid line. Odd array sizes are not
supported and result in undefined behavior.

Note: The dashes array does not work under Windows 95, 98, or Me, since those operating systems
do not support complex line styles.

7.3.2 Drawing Fast Shapes

These functions are used to draw almost all the FLTK widgets. They draw on exact pixel boundaries and
are as fast as possible. Their behavior is duplicated exactly on all platforms FLTK is ported. It is undefined
whether these are affected by the transformation matrix, so you should only call these while the matrix is
set to the identity matrix (the default).

void fl_point(int x, int y)

Draw a single pixel at the given coordinates.

void fl_rectf(int x, int y, int w, int h)

void fl_rectf(int X, int y, int w, int h)

Color a rectangle that exactly fills the given bounding box.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

60 Drawing Things in FLTK

void fl_rectf(int x, int y, int w, int h, uchar r, uchar g, uchar b)

Color a rectangle with "exactly" the passed r, g, b color. On screens with less than 24 bits of color
this is done by drawing a solid-colored block using fl_draw_image() so that the correct color shade is
produced.

void fl_rect(int x, int y, int w, int h)

void fl_rect(int X, int y, int w, int h, F1_Color c)
Draw a 1-pixel border inside this bounding box.

void fl_line(int X, int y, int x1, int y1)

void fl_line(int x, int y, int X1, int y1, int X2, int y2)
Draw one or two lines between the given points.

void fl_loop(int X, int y, int x1, int y1, int X2, int y2)

void fl_loop(int x, int y, int X1, int y1, int X2, int y2, int X3, int y3)
Outline a 3 or 4-sided polygon with lines.

void fl_polygon(int x, int y, int x1, int y1, int X2, int y2)

void fl_polygon(int x, int y, int X1, int y1, int X2, int y2, int X3, int y3)
Fill a 3 or 4-sided polygon. The polygon must be convex.

void fl_xyline(int X, int y, int x1)
void fl_xyline(int x, int y, int x1, int y2)

void fl_xyline(int x, int y, int x1, int y2, int x3)

Draw horizontal and vertical lines. A horizontal line is drawn first, then a vertical, then a horizontal.

void fl_yxline(int x, int y, int y1)
void fl_yxline(int x, int y, int y1, int x2)

void fl_yxline(int x, int y, int y1, int X2, int y3)

Draw vertical and horizontal lines. A vertical line is drawn first, then a horizontal, then a vertical.

void fl_arc(int X, int y, int w, int h, double al, double a2)

void fl_pie(int X, int y, int w, int h, double al, double a2)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 61

Draw ellipse sections using integer coordinates. These functions match the rather limited circle draw-
ing code provided by X and WIN32. The advantage over using fl_arc() with floating point coordinates
is that they are faster because they often use the hardware, and they draw much nicer small circles,
since the small sizes are often hard-coded bitmaps.

If a complete circle is drawn it will fit inside the passed bounding box. The two angles are measured
in degrees counterclockwise from 3’oclock and are the starting and ending angle of the arc, a2 must
be greater or equal to al.

f£1_arc() draws a series of lines to approximate the arc. Notice that the integer version of £1_arc()
has a different number of arguments to the other fl_arc() function described later in this chapter.

f1_pie() draws a filled-in pie slice. This slice may extend outside the line drawn by £1_arc(); to
avoid this use w—1 and h—-1.

Todo
add an FI_Draw_Area_Cb typedef to allow fl_scroll(...) to be doxygenated?

void fl_scroll(int X, int Y, int W, int H, int dx, int dy, void (xdraw_area)(voidx, int,int,int,int), void* data)

Scroll a rectangle and draw the newly exposed portions. The contents of the rectangular area is first
shifted by dx and dy pixels. The callback is then called for every newly exposed rectangular area,

7.3.3 Drawing Complex Shapes

The complex drawing functions let you draw arbitrary shapes with 2-D linear transformations. The func-
tionality matches that found in the Adobe®PostScript™Ilanguage. The exact pixels that are filled are less
defined than for the fast drawing functions so that FLTK can take advantage of drawing hardware. On
both X and WIN32 the transformed vertices are rounded to integers before drawing the line segments: this
severely limits the accuracy of these functions for complex graphics, so use OpenGL when greater accuracy
and/or performance is required.

void fl_push_matrix()

void fl_pop_matrix()

Save and restore the current transformation. The maximum depth of the stack is 4.

void fl_scale(double x,double y)

void fl_scale(double x)

void fl_translate(double x,double y)

void fl_rotate(double d)

void fl_mult_matrix(double a,double b,double c,double d,double x,double y)

Concatenate another transformation onto the current one. The rotation angle is in degrees (not radians)
and is counter-clockwise.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

62 Drawing Things in FLTK

double fl_transform_x(double x, double y)
double fl_transform_y(double x, double y)
double fl_transform_dx(double x, double y)
double fl_transform_dy(double x, double y)

void fl_transformed_vertex(double xf, double yf)

Transform a coordinate or a distance using the current transformation matrix. After transforming
a coordinate pair, it can be added to the vertex list without any further translations using £1_ -
transformed_vertex().

void fl_begin_points()
void fl_end_points()
Start and end drawing a list of points. Points are added to the list with £1_vertex().
void fl_begin_line()
void fl_end_line()
Start and end drawing lines.
void fl_begin_loop()
void fl_end_loop()
Start and end drawing a closed sequence of lines.
void fl_begin_polygon()
void fl_end_polygon()
Start and end drawing a convex filled polygon.

void fl_begin_complex_polygon()
void fl_gap()
void fl_end_complex_polygon()

Start and end drawing a complex filled polygon. This polygon may be concave, may have holes in it,
or may be several disconnected pieces. Call £1_gap() to separate loops of the path. It is unnecessary
but harmless to call £1_gap() before the first vertex, after the last one, or several times in a row.

f1_gap() should only be called between f1_begin_complex_polygon() and f1_end_ -
complex_polygon(). To outline the polygon, use £1_begin_loop() and replace each £1_—
gap() witha £1_end_1oop();fl_begin_loop() pair.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 63

Note: For portability, you should only draw polygons that appear the same whether "even/odd" or
"non-zero" winding rules are used to fill them. Holes should be drawn in the opposite direction of the
outside loop.

void fl_vertex(double x,double y)

Add a single vertex to the current path.

void fl_curve(double X0, double YO, double X1, double Y1, double X2, double Y2, double X3, double
Y3)

Add a series of points on a Bezier curve to the path. The curve ends (and two of the points) are at
X0, Y0 and X3, Y3.

void fl_arc(double x, double y, double r, double start, double end)

Add a series of points to the current path on the arc of a circle; you can get elliptical paths by using
scale and rotate before calling £1_arc(). The center of the circle is given by x and y, and r is its
radius. f1_arc() takes start and end angles that are measured in degrees counter-clockwise from
3 o’clock. If end is less than start then it draws the arc in a clockwise direction.

void fl_circle(double x, double y, double r)

f1_circle(...) is equivalentto £1_arc(...,0,360) but may be faster. It must be the only thing in the
path: if you want a circle as part of a complex polygon you must use £1_arc().

Note: £1_circle() draws incorrectly if the transformation is both rotated and non-square scaled.

7.3.4 Drawing Text

All text is drawn in the current font. It is undefined whether this location or the characters are modified by
the current transformation.

void fl_draw(const char x, int x, int y)

void fl_draw(const char *, int n, int X, int y)

Draw a nul-terminated string or an array of n characters starting at the given location. Text is aligned
to the left and to the baseline of the font. To align to the bottom, subtract £1_descent() from y.
To align to the top, subtract £1_descent() and add £1_height(). This version of £1_draw()
provides direct access to the text drawing function of the underlying OS. It does not apply any special
handling to control characters.

void fl_draw(const charx str, int X, int y, int w, int h, FI_Align align, FI_Image+ img, int draw_symbols)

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

64 Drawing Things in FLTK

Fancy string drawing function which is used to draw all the labels. The string is formatted and aligned
inside the passed box. Handles *\t" and *\n’, expands all other control characters to "X, and aligns
inside or against the edges of the box described by x, y, w and h. See FI_Widget::align() for values
for align. The value FL_ALIGN_INSIDE is ignored, as this function always prints inside the box.

If img is provided and is not NULL, the image is drawn above or below the text as specified by the
align value.

The draw_symbols argument specifies whether or not to look for symbol names starting with the
"@" character.

The text length is limited to 1024 characters per line.

void fl_measure(const char #str, int& w, int& h, int draw_symbols)

Measure how wide and tall the string will be when printed by the £1_draw(...align) function. If the
incoming w is non-zero it will wrap to that width.

int fl_height()

Recommended minimum line spacing for the current font. You can also just use the value of size
passed to fl_font().

int fl_descent()

Recommended distance above the bottom of a £1_height() tall box to draw the text at so it looks
centered vertically in that box.

double fl_width(const charx txt)
double fl_width(const charx txt, int n)
double fl_width(F1_Unichar)

Return the pixel width of a nul-terminated string, a sequence of n characters, or a single character in
the current font.

const charx fl_shortcut_label(int shortcut)

Unparse a shortcut value as used by Fl_Button or FI_Menu_Item into a human-readable string like
"Alt+N". This only works if the shortcut is a character key or a numbered function key. If the shortcut
is zero an empty string is returned. The return value points at a static buffer that is overwritten with
each call.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.3 Colors 65

7.3.5 Fonts

FLTK supports a set of standard fonts based on the Times, Helvetica/Arial, Courier, and Symbol typefaces,
as well as custom fonts that your application may load. Each font is accessed by an index into a font table.

Initially only the first 16 faces are filled in. There are symbolic names for them: FL_HELVETICA, FL_-
TIMES, FL_COURIER, and modifier values FL._BOLD and FL_ITALIC which can be added to these, and
FL_SYMBOL and FL_ZAPF_DINGBATS. Faces greater than 255 cannot be used in FI_Widget labels,
since FI_Widget stores the index as a byte.

void fl_font(int face, int size)

Set the current font, which is then used by the routines described above. You may call this outside a
draw context if necessary to call fl_width(), but on X this will open the display.

The font is identified by a face and a size. The size of the font is measured in pixels and not
"points". Lines should be spaced size pixels apart or more.

int fl_font()

int fl_size()

Returns the face and size set by the most recent call to £1_font (a,b). This can be used to
save/restore the font.

7.3.6 Character Encoding

Todo

Rework the Character Encoding section for UTF-8

FLTK 1 supports western character sets using the eight bit encoding of the user-selected global code page.
For MS Windows and X11, the code page is assumed to be Windows-1252/Latinl, a superset to ISO 8859-
1. On Mac OS X, we assume MacRoman.

FLTK provides the functions fl_latin1_to_local(), fl_local_to_latin1(), fl_mac_roman_to_local(), and fl_-
local_to_mac_roman() to convert strings between both encodings. These functions are only required if
your source code contains "C"-strings with international characters and if this source will be compiled on
multiple platforms.

Assuming that the following source code was written on MS Windows, this example will output the
correct label on OS X and X11 as well. Without the conversion call, the label on OS X would read
Fahrvergn , gen with a deformed umlaut u ("cedille", html "¸").

btn = new F1_Button(10, 10, 300, 25);
btn->copy_label (f1_latinl_to_local ("Fahrvergniigen"));

Note:

If your application uses characters that are not part of both encodings, or it will be used in areas that
commonly use different code pages, you might consider upgrading to FLTK 2 which supports UTF-8
encoding.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

66 Drawing Things in FLTK

Todo

drawing.dox: I fixed the above encoding problem of these ¸ and umlaut characters, but this text
is obsoleted by FLTK 1.3 with UTF-8 encoding, or must be rewritten accordingly: How to use native
(e.g. Windows "ANSI", or ISO-8859-x) encoding in embedded strings for labels, error messages and
more. Please check this (UTF-8) encoding on different OS’es and with different language and font
environments.

For more information about character encodings, see the chapter on Unicode and UTF-8 Support.

7.3.7 Drawing Overlays

These functions allow you to draw interactive selection rectangles without using the overlay hardware.
FLTK will XOR a single rectangle outline over a window.

void fl_overlay_rect(int x, int y, int w, int h);

void fl_overlay_clear();

f1_overlay_rect() draws a selection rectangle, erasing any previous rectangle by XOR’ing it
first. £1_overlay_clear() will erase the rectangle without drawing a new one.

Using these functions is tricky. You should make a widget with both a handle () and draw ()
method. draw () should call £1_overlay_clear() before doing anything else. Your handle ()
method should call window () —>make_current () and then f1_overlay_rect() after FL_-
DRAG events, and should call f1_overlay_clear() after a FL_RELEASE event.

7.4 Drawing Images

To draw images, you can either do it directly from data in your memory, or you can create a FI_Image
object. The advantage of drawing directly is that it is more intuitive, and it is faster if the image data
changes more often than it is redrawn. The advantage of using the object is that FLTK will cache translated
forms of the image (on X it uses a server pixmap) and thus redrawing is much faster.

7.4.1 Direct Image Drawing

The behavior when drawing images when the current transformation matrix is not the identity is not defined,
so you should only draw images when the matrix is set to the identity.

void fl_draw_image(const uchar xbuf,int X,int Y,int W,int H,int D,int L)

void fl_draw_image_mono(const uchar xbuf,int X,int Y,int W,int H,int D,int L)

Draw an 8-bit per color RGB or luminance image. The pointer points at the "r" data of the top-left
pixel. Color data must be in r, g, b order. The top left corner is given by X and Y and the size of
the image is given by W and H. D is the delta to add to the pointer between pixels, it may be any value
greater or equal to 3, or it can be negative to flip the image horizontally. L is the delta to add to the
pointer between lines (if 0 is passed it uses W+D). and may be larger than WxD to crop data, or negative
to flip the image vertically.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.4 Drawing Images 67

Fl:

It is highly recommended that you put the following code before the first show() of any window in
your program to get rid of the dithering if possible:

:visual (FL_RGB) ;

Gray scale (1-channel) images may be drawn. This is done if abs (D) is less than 3, or by calling
f1_draw_image_mono(). Only one 8-bit sample is used for each pixel, and on screens with differ-
ent numbers of bits for red, green, and blue only gray colors are used. Setting D greater than 1 will let
you display one channel of a color image.

Note: The X version does not support all possible visuals. If FLTK cannot draw the image in the
current visual it will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor
visuals up to 32 bits.

typedef void (xF1_Draw_Image_Cb)(void *data,int x,int y,int w,uchar *buf)

void fl_draw_image(F]l_Draw_Image_Cb cb,void *data,int X,int Y,int W,int H,int D)

void fl_draw_image_mono(FI_Draw_Image_Cb cb,void *data,int X,int Y,int W,int H,int D)

Call the passed function to provide each scan line of the image. This lets you generate the image as
it is being drawn, or do arbitrary decompression of stored data, provided it can be decompressed to
individual scan lines easily.

The callback is called with the voidx user data pointer which can be used to point at a structure of
information about the image, and the x, y, and w of the scan line desired from the image. 0,0 is the
upper-left corner of the image, not X, Y. A pointer to a buffer to put the data into is passed. You must
copy w pixels from scanline vy, starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, the first
y may be greater than zero, and w may be less than W. The buffer is long enough to store the entire
W=D pixels, this is for convenience with some decompression schemes where you must decompress
the entire line at once: decompress it into the buffer, and then if x is not zero, copy the data over so the
x' th pixel is at the start of the buffer.

You can assume the y’ s will be consecutive, except the first one may be greater than zero.

If D is 4 or more, you must fill in the unused bytes with zero.

int fl_draw_pixmap(char* constk data, int x, int y, FI_Color bg)

int fl_draw_pixmap(const char* constx cdata, int x, int y, FI_Color bg)

Draws XPM image data, with the top-left corner at the given position. The image is dithered on 8-
bit displays so you won’t lose color space for programs displaying both images and pixmaps. This
function returns zero if there was any error decoding the XPM data.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

68 Drawing Things in FLTK

To use an XPM, do:

#include "foo.xpm"

fl draw_pixmap (foo, X, Y);

Transparent colors are replaced by the optional FI_Color argument. To draw with true transparency
you must use the F1_Pixmap class.

int fl_measure_pixmap(charx constx data, int &w, int &h)

int fl_measure_pixmap(const chars const cdata, int &w, int &h)

An XPM image contains the dimensions in its data. This function finds and returns the width and
height. The return value is non-zero if the dimensions were parsed ok and zero if there was any
problem.

7.4.2 Direct Image Reading
FLTK provides a single function for reading from the current window or off-screen buffer into a RGB(A)
image buffer.

ucharx fl_read_image(uchar *p, int X, int Y, int W, int H, int alpha)

Read a RGB(A) image from the current window or off-screen buffer. The p argument points to a buffer
that can hold the image and must be at least WxHx3 bytes when reading RGB images and WxHx4 bytes
when reading RGBA images. If NULL, £1_read_image() will create an array of the proper size
which can be freed using deletel].

The alpha parameter controls whether an alpha channel is created and the value that is placed in the
alpha channel. If 0, no alpha channel is generated.

7.4.3 Image Classes

FLTK provides a base image class called F1_Image which supports creating, copying, and drawing images
of various kinds, along with some basic color operations. Images can be used as labels for widgets using
the image () and deimage () methods or drawn directly.

The F1_Image class does almost nothing by itself, but is instead supported by three basic image types:

* FI_Bitmap
¢ FI_Pixmap
* FI_RGB_Image

The F1_Bitmap class encapsulates a mono-color bitmap image. The draw () method draws the image
using the current drawing color.

Generated on Mon Dec 27 18:42:35 2010 for FLTK by Doxygen

7.4 Drawing Images 69

The FI_Pixmap class encapsulates a colormapped image. The draw () method draws the image using the
colors in the file, and masks off any transparent colors automatically.

The F1_RGB_Image class encapsulates a full-color (or grayscale) image with 1 to 4 color components.
Images with an even number of components are assumed to contain an alpha channel that is used for
transparency. The transparency provided by the draw() method is either a 24-bit blend