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ABSTRACT

The direct calculation of the elastic and piezoel ectric tensors of solids can be ac-
complished by treating homogeneous strain within the framework of density- functional
perturbation theory. By formulating the energy functional in reduced coordinates, we
show that the strain perturbation enters only through metric tensors, and can be treated in
amanner exactly paralleling the treatment of other perturbations. We present an analysis
of the strain perturbation of the plane-wave pseudopotential functional, including the in-
ternal strain terms necessary to treat the atomic-relaxation contributions. Procedures for
computationally verifying these expressions by comparison with numerical derivatives of

ground-state calculations are described and illustrated.
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. INTRODUCTION

Two seminal contributions to the theory of the electronic structure of solids were
the quantum mechanical theory of stress* and density-functional perturbation theory.
The ability to calculate stress was readily incorporated into density- functional pseudopo-
tential calculations of the ground-state total energies of solids, and finite-difference de-
rivatives of the stress with respect to strain deformations of the unit cell were shown to
yield the elastic tensor.® Density-functional perturbation theory (DFPT) was widely ap-
plied to the direct calculation of phonon spectra, interatomic force constants, Born effec-
tive charges, dielectric tensors, and a variety of other properties.*

The general structure of DFPT is based upon the systematic expansion of the
variational expression for the density- functional theory (DFT) total energy® in powers of
aparameter | characterizing some dependence of the energy functional.® Such parame-
ters as the internal atomic coordinates and the macroscopic electric field” could be han-
dled in this framework in a conceptually straightforward manner.®° Treating macro-
scopic strain as a parameter within this formalism, however, was apparently less straight-
forward. A canonical-transformation approach to this problem introduced by Baroni et
al.®® will bereviewed in Sec. IIIA.

The current approach is based on an overall formulation of the DFT energy ex-
pression in reduced coordinates, which introduces real- and reciprocal-space metric ten
sors into every term in this expression. This formulation will be introduced in Sec. I11B,
and the treatment of the strain derivatives of each term will be detailed in Secs. 111C-H.
In these subsections, we will specialize to the plane-wave representation and norm
conserving pseudopotentials.!* The advantage of the metric tensor approach is that it puts
strain on an equal footing with other parameters characterizing the energy functional, and
provides a straightforward if sometimes tedious procedure for evaluating the strain de-
rivatives. While only the first and second derivatives necessary for the evaluationof the
elastic and piezoel ectric tensors within DFPT are presented here, extensions of the for-
malism to higher derivatives to evaluate such quantities as nonlinear elastic constants and
Grineisen parameters should be straightforward.

The reduced- coordinate metric tensors were previousy used by Souza and Mar-
tins as dynamical variables in molecular dynamics simulations with variable unit cell
shape.'? This study has some common conceptual elements with the work presented
here, but is not related to the utilization of the metric tensors within DFPT. An unrelated
use of the real-space metric tensor in DFT was presented by Rogers and Rappe.’® Their
interest was in calculating the stress tensor field as a function which could vary within the
unit cell of a periodic system, and could be formulated as a derivative with respect to a
Riemannian metric tensor field. Thisisto be contrasted with the metric tensors treated
here, which are constant throughout space, and related to stresses integrated over bound-
ing surfaces of a unit cell.



Sec. |11 briefly reviews DFPT and introduces notation that will be used subse-
quently. Sec. I1l, asindicated above, presents the details of the metric tensor formulation.
In Sec. IV we discuss the comparison of the new, DFPT results for elastic and piezoel ec-
tric tensors with the old, numerical-derivative approach and present an illustrative exam-
ple. We discuss both the clamped-atom case in which all the atoms are displaced propor-
tionally to the strain, and the relaxed-atom case, in which only the unit cells are strained
and the atomic positions readjust. In Sec. V, we summarize our findings and comment on
extensions to other representations of DFT.

II. DENSITY-FUNCTIONAL PERTURBATION THEORY

We will briefly recap density-functional perturbation theory in its lowest order both
for completeness and to point out the differences present in the context of the strain per-
turbation in the reduced-coordinate formulation. The notation will follow Gonze® as
closaly as possible. The ground-state electronic energy in DFT is derived by minimizing
the functional

Euly a} =AY a|T+Varly )+ B[] )

subject to the orthogonality constraint <y .

Y »)=d,, where T isthekinetic energy,

V,, the external potential, the sum is over occupied states a , and E,, . is the Hartree and
exchange-correlation energy functional of the density
nr)=ay.ya.r). )
The set of wave functions minimizing E, satisfy the K ohn-Sham equations®
Hly.)=ely.). 3)
where the Hamiltonian operator is
H=T+V, +—d§HXC =T +V, Ve (4)
n

Within the framework of the reduced-coordinate formulation, all problems have
an invariant unit cell, a cube of unit dimensions, and an invariant basis set, plane waves
periodic in this smple cubic lattice. Aswill be described in detail in Sec. 111, the actual
cell shape and dimensions are absorbed into the definitions of all the operators acting on
this basis set through the introduction of metric tensorsin real and reciprocal space.
While DFPT is usualy formulated as an expansion of the response to changesin V,,, in
our case the kinetic energy, Hartree energy, and exchange-correlation energy all have ex-
plicit strain dependencies, as well as the implicit strain dependence of the latter two
through strain-induced changes of the density.

The usual formulation of DFPT posits a deperdence of E, on aparameter | and
develops E, (I ) and all its componentsin a power seriesin | 8
X(1)=XO+] XO +] 2X@ +... (5



where X canbe E,, T, V,,, Yy, (), n(r), e, or H. Thelowest-order expansion of
the Kohn-Sham equation, Eq. (3), is

H © |y (0)> —e©® y (0)>_ (6)
The second-order energy E{, in aform which is stationary relative to variationsin the
first order wave functions y @, is adlight generalization of Eq. (13) of Ref. [g],
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where the first-order density is given by
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andy @ is varied subject to the constraint
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for al occupied states a and b . The appearance of afirst-order kinetic energy term,
T®, isaconsequence of our formulation of the strain perturbation, and will be clarified
in Sec. 111C below. In Eq. (7) we have departed from Ref. [8] in representing the | de-
rivativesof E,,. aspartia derivativesto make clear that only the explicit | dependence
isto be considered.

The first-order wave functions which minimize E{? subject to Eq. (9) satisfy the

self-consistent Sternheimer equation** which is the Euler-Lagrange equation for this
functional,

R(H®- "Ry &) =-RH®ly ), (10
where P, isthe projector onto unoccupied states (conduction bands) and
H® =T® yy® 4yO

ext Hxc ?
2
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Eq. (10) can be solved by a variety of methods, including Green's functiorf and conj u-
gate-gradient® approaches. While we have lumped the Hartree and exchange-correlation
energies and potentials into single terms above following Ref.[8], we will treat them



separately as E,, V,,, E.,and V. in the detailed analysis presented in Secs. I1F and
111G below.

Practical calculations require finite Bloch wave-vector sums to approximate Bril-
louin-zone (BZ) integrations. In the case of metals, discontinuous changes in state occu-
pancies as eigenvalues at the finite set of k points cross the Fermi surface can lead to
computational instabilities. Finite-temperature formulations of DFT'® smooth the varia-
tion of occupancy number with eigenvalue and solve this problem. Eqg. (10) must be

modified in this case for statesin a band of energies around the Fermi energy e, ,>*® and
the first-order wave functions in this band can be expressed in a form reminiscent of or-
dinary finite-temperature perturbation theory. While first-order variations of e vanish
for perturbations with finite wave vector, the fires-order Fermi energy e and its contri-
butionsto y ' and hence n® must be included for zero-wave-vector perturbations in-
cluding strain.* An expression for e® isgiven in Eq. (79) of Ref. [4], but we prefer a
simple alternative expression,

o =& e el - o) /4 1el?- el (12)

where ffe)isthe derivative of the Fermi function, e{” and e'” are the zero-order eigen-
values and Fermi energy, and the first-order eigenvalues are given by

e ={y ). (13)
We note that the energy dependence of f ¢ confines the contributions in the sumsin Eq.
(12) to states within the band discussed above. Since the self- consistent contributions to
H® depend on e? , it must be converged in the iterative process of solving the Stern-
heimer equation (as modified for finite temperature).>*®

Excepting the diagonal elements of the elastic tensor, all of the quantities we wish to
compute involve mixed second derivatives of E, with respect to two different perturba-
tions. The generalization of Eq. (5) to this case is®

X1 ,)=XO+1 X 41 X4 | X0 o (14)
While stationary expressions for such mixed derivatives of E, can be derived, we havein
fact implemented these cal culations using the simpler non-stationary expression

E|1|2—0a.< (12) (0)>

(0)> 1 ﬂ Ech
20, o
which requires the first-order wave functions for only one of the perturbations, and just
the non-self-consistent Hamiltonian terms for the other.? For metals, y {'?) derived as

(T 40D 4 U

HxcO0

(15)

+é <y ;0) |(T(| 1l2) +V@(<|[1I 2)) y

discussed in the preceding paragraph can be used, and Fermi weighting factors f_(el®)
should be included in the a sums. We will refer to the terms involving only
y P and n@in Egs. (7) and (15) as the frozenwave-function contributions. In the follow-



ing sections, we will refer to mixed derivatives with respect to a strain component and an
internal atomic-coordinate component as “internal strain” (a term whose usage in the lit-
erature is somewhat ambiguous).

Calculation of the piezoelectric tensor involves mixed second derivatives of E,
with respect to components of the strain ? and the electric field £ . It isbeyond the
scope of the present discussion to review the modern Berry-phase theory of polarization
in solids.”'” However, this theory has been successfully applied within DPFT to the
mixed derivative with respect to £ and atomic displacements, which yields Born effec-
tive charges, among other quantities. A ssimple alternative expression to Eg. (15) can be
derived for that particular case, Eq. (42) of Ref. [9]. The analogous expression for mixed
h-& derivativesis

T°E, p & <|y Gl (hab>>dk (16)
5 ( ﬂ km km '
1T‘c/'j 1-[hab (2p)3 Bz M

wherey ® isthe first-order wave function in the presence of the so-called /k pertur-
bation (an intermediate step in computing electric- field-perturbed quantities”®), and

y Misthe first-order wave function for strain. We have replaced the generic a occupied-
state subscript by the Bloch wave vector, band pair kmand explicitly indicated the Bril-
louin zone (BZ) integration. Our conventions with regard to reduced quantities and vec-
tor and tensor components will be explained in the following section. We remark that

there are neither frozen-wave-function nor clamped-ion contributions to this mixed de-
rivative.

I11. STRAIN AND INTERNAL STRAIN DERIVATIVES

This section develops our strain formalism and derives al the terms required for its
treatment within DFPT. In Sec. A, the formal expression for a strained solid is intro-
duced, and its unique issues are discussed in terms of the existing treatment of Ref. [10].
In Sec. B, our notation and conventions for the reduced-coordinate formulation are intro-
duced, along with the metric tensors which are central to our treatment and their strain
derivatives. Secs. C-G treat in turn the kinetic, local pesudopotential, nonlocal pseudo-
potential, Hartree, and exchange-correlation energies. In each of these sections, we de-
rive the first-derivative operator terms needed in the Hamiltonian H appearing in Eq.
(10), the self-consistent Sternheimer equation, and in the first line of Eq. (15), the nont
stationary expression for the mixed second-order energies. We also derive the frozen
wave-function terms in the second line of Eq. (15) for second derivatives with respect to
two strains and with respect to ore strain and one atomic displacement. For the kinetic
and non-local terms, these are given as matrix elements of operators whose expectation
values are to be evaluated using the y (¥ wave functions, while for the local pseudopoten
tial, Hartree, and exchange-correlation energies, these contributions are expressed in
terms of the ground-state density n®. Finally, Sec. G treats the ion-ion interactions,
which are an important contribution to the total energy of a solid, but lie outside the
framework of DFPT since they don’t involve the electrons. The second derivatives of the



ion-ion energy must be added to the termsin Eq. (15) to obtain the elastic and internal-
strain tensors.

A. Canonical transformation formulation

The application of homogeneous strain to a crystal lattice smply moves the positions
of the atoms and hence changes the DFT external potential,*

cel cel

Ve()=@ aVi(r-t-R) %W Ve (N=a aVilr -+ x-1+ 2], (17)
R t R t

where t denotes the positions of atoms within aunit cell, R isthe set of lattice vectors,

and ? isthe Cauchy infinitesimal strain tensor.'® From the point of view of the infinite

|attice the difference, V.” - V.., can never be asmall perturbation. Within a single unit

cell, of course, an infinitesimal strain will produce an infinitessmal change in potential.
However, it also changes the boundary conditions, so the perturbed wave functions can
not be expanded in abasis of the unperturbed wave functions, and DFPT is not applica-
ble.

One solution to this problem was proposed by Baroni et al.!° They introduced aficti-
tious strained self-consistent Hamiltonian obtained from the unstrained Hamiltonian
through a scale transformation,

Hae (. N) = Hop g1+ 2) 1,(142) (18)
Eigenfunctionsof HZ.. obey the same boundary conditions as those of the actual

strained Hamiltonian HZ... The spectrum of HZ.. isidentica to that of the unstrained
Hamiltonian since the two are related by a unitary transformation, and the wave functions
and charge density i’ of HZ.. are generated by simple transformations of the corre-

sponding unstrained quantities. The energy difference between the fictitious and un-
strained systems is easily computed. The strategy is to then compute the energy differ-

ence between the system described by HZ.. and that described by the real strained Ham:
iltonianH 2. using DFPT.*°

One difficulty in carrying this out is that the Hartree and exchange-correlation terms
in HZ.. are not the Hartree and xc potentials produced by f’. However, HZ.. canbe
interpreted as a genuine K ohn-Sham Hamiltonian by modifying the external potential .*°

While we don’t question the validity of this two-step approach, it does change the
structure of the calculations from that of ordinary, periodicity-preserving perturbations
such as changes in internal atomic coordinates t . Moreover, Baroni et al. present their
analysis in terms of uniform dilation and local potentials,'® and the steps to treat arbitrary
strains and non-local pseudopotentials appear to be rather norttrivial within their formu-
lation.

Another formulation for the direct calculation of the DFT elastic tensor was given by
Hebbache.® While citing the work of Baroni et al.,'° this author included only the fro-



zen-wave-function contributions, and failed to consider the y ® and n® contributions to
E® shown in Eq. (7).

B. Reduced-coordinate for mulation

The reduced coordinates are defined in real space using the basis of three primitive
|lattice vectors R ordered according to their index i to form a right-handed coordinate
system. We will follow the convention of using Latin indices i,j,k,... running from 1 to
3 to indicate reduced-coordinate components, and Greek indices a,b,g,... toindicate
Cartesian components.? Thus the components of the primitive lattice are R’ , those of
the primitive reciprocal lattice vectors GJ.Pare Gapl. , and the pair satisfy the relationship

é. R;iG:j =2pd; , (19)
where the summation range 1,3 will be understood for Cartesian and reduced components

throughout. We will notate the reduced counterparts of vectors using atilde, so areal-
space vector X and its counterpart X are related by

X, =4 RiX;. (20)

We will denote the sum of a Bloch vector in the first Brillouin zone and a reciprocal lat-
tice vector by K =k + G , and the reduced counterpart by K , with components related
by

K. =a K. (21)

Essentially every term in the electron energy functional can be expressed as dot
products of vectorsin real or reciprocal space. The introduction of the metric tensors
? for real spaceand  for reciprocal space,

X =4 RR,, i =8G6d, (22)

allows us to express dot products (in real units) in terms of reduced vector components,
for example
K&K =3 K¢ K. (23)
i
One further quantity that enters into the energy functional, the unit cell volume W, can
also be expressed in terms of either metric tensor, for example as (det[X;; Y2, but the

specia dependence of W on strain leads us to represent it as a separate entity.

The advantage we obtain from formulating DFT in reduced coordinates is that the
boundary conditions never change. The unit cell isaunit cube. Granted, the price we
pay for thisis a pervasive dependence of all the components of the reduced-coordinate
self-consistent Hamiltonian on strain through the metric tensors. However, these are all



sraightforward parametric dependencies, similar in every way to dependencies on pa-
rameters such as internal atomic coordinates, and DFPT can be applied in a straightfor-

ward manner. We will derive expressions for the various terms entering into H®, H® |
and other components of the 2"%order energy in Secs. [1IC to I11H below.

The derivatives of rea space and reciprocal space vectors with respect to strain

are’®

X K
L =d, X, , ﬂ—g:-da K, - (249)
1-[hab ’ 1-[hab ’

Applying these rules to the metric tensors, we find that their first and second strain de-
rivatives are

a ﬂXI
Xi(jb)o—J:Rc:Dijo"'PgiR:j’ (25)
TIhab
i ° LTI GGy - GyG. (26)
1-[hab
and
xewo TN g (RIR] +RIR]) +dy (R +RIR)
ij ﬂhwﬂhab ag i j i j bg i i i i (27)
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I m— ag( bi ~d j di bj) bg( ai —d di aj) (28)

+d,4 (GyGg; +G;Gy)) +0hy (GG + GG,

bi™gj i~gj giaj

where we have introduced the notation of parenthesized Cartesian superscripts to denote
strain derivatives. It can be verified that these formulas are invariant under interchange
of (@a,b) or (g,d) index pairs. Thisisamanifestation of the fact that antisymmetric

components of ?correspond to rotations rather than strains, under which the metric ten
Sors are invariant.

The strain derivative of the unit-cell volume Wis sufficiently simple so as not to
warrant additional notation,
w

—=d_ W 29

ﬂhab ab ( )
The extension to second derivativesis obvious. Finaly, it is easily shown from EqQ. (19)
that

K XX = 2pK %X, (30)

so dot products between real and reciprocal vectors do not involve the metric tensors and
are strain independent.



We note that DFPT yields second derivatives of the energy per unit cell. This has
the consequence that the naturally defined “elastic tensor” as calculated in DFPT,

. 1 T°E,
Chg 0 ————, 31
abgd Wﬂhabﬂhw ( )

is not equal to the conventional elastic tensor

o8y _ T 19E, _
Cabgd - Y — “abgd
fh,, Th, Wih,

where s , isthe stress tensor. If the reference state of the system has had its lattice par

d.pS g » (32)

rameters fully relaxed, C and C areidentical. However, for calculations of the elastic
tensor of materials under stress, Eq. (32) gives important corrections, and the Voigt sym-
metry under the interchange ab « ¢d can be violated.?

Finally, we point out that when higher-order elastic properties are to be consid-
ered as extensions of this approach, the connection between the Cauchy infinitesimal
strain and the conventional Lagrangian strain needs to be taken into account.*8

C. Kinetic energy

The wave functions y (2 and y () are to be expanded as sums of reduced plane waves,

Vi) =8 cac|K), (33)
G

so most of the operators involved in the Sternheimer equation and the second-order ener-
gieswill be expressed in terms of their reduced plane-wave matrix elements. Expressed
in the reduced plane-wave basis, the kinetic energy acquires strain dependence through
the reciprocal-space metric tensor. It remains a diagonal operator in the reduced plane -
wave basis, and its strain derivatives are found rather trivialy from the metric tensor de-
rivatives given in the previous section. However, in procedures in which the real unit cell
varies, such as constant-pressure molecular dynamics or lattice parameter optimization, it
may be desirable to add afunction fg, (e, ) to thekinetic energy e, which smoothly be-

comes large approaching the plane-wave cutoff energy. Thiswill force the wave-
function coefficients to zero at the cutoff and regularize the variation of the energy. %
While the DFPT calculation is of course done with afixed unit cell, it may be desirable to
keep the smoothing function used in optimizing the cell parameters to ensure that stresses
remain below the limit achieved in the optimization. Incorporating this generalization,
the reduced- coordinate operators are

<K (11T|K> =[e + Tou (& Ndi g » (34)
where
e =

N

ai KK, (35)
ij

10
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and primes denote derivativesof f;,,. Thekinetic energy operator has no explicit de-

pendence on atomic positions, so the mixed second derivative term for internal strain is
zero.

D. Local pseudopotential

Operations of thelocal pseudopotential component of V,,, V... , on the wave func-
tions are most efficiently evaluated in reduced real space, followed by Fourier transfor-
mation to obtain the<K| components. This appliesto the first-order local potential as

well, so the strain derivative of V__ operating on |y ﬁ2)> is evaluated as

<K | Vo

y )= TV Ry QO d (38)

The first-order potential |tself IS most conveniently evaluated in reciprocal space. Fol-
lowing EQ. (23), the squared magnitude of the reciprocal lattice vectors expressed in
terms of reduced coordinatesis

2=31,GG,. (39)
ij

The potential components are given by

18 oer € Ve (G) o < < U
(ab) _ 2piGx, 3 K'Loc . (ab) >
VLoc (G) _V_Vak- € gdakaLoc (G) + 2G ?. L G‘|G] 31 (40)
where v, . isthe Fourier transform of the local pseudopotential of the atom k at site T, ,
¥
Vk Loc(G):4p c‘)jO(Gr)VkLoc(r)rzdr! (41)
0

¢ . isitsfirst derivative. We have omitted the conventiona W * normdization in

Eq. (41) and placed it in Eq. (40) so that the Fourier transform atomic potentials depend
on strain only through their arguments. We note that the phases (or structure factors) do
not contribute to the strain derivatives.

and v&

11



The second derivative of the local pseudopotential energy with respect to two
strains occurring in Eq. (15) can be expressed entirely in terms of the Fourier components
of the zero-order density,

ﬂzE oc g - 20iG %, e V¢Loc G . . (a
h - :é. n(GO)é. eZJGf éjabdginLoc (G)_ : ( )é (dabl i(jgd)+dgdl |(J ®)
ﬂ abﬂhgd G0 k e 2G ij (42)

- |
4G° 4G° 4y
where & is the second derivative. Finally, mixed second derivatives with respect to

one strain component and one reduced-atomic-coordinate component are required for in-
ternal strain,

< = G G)d < = < < U
iy i(jabgi))GiGj_i_?/lgEoc( )_ VS’LOC( )Oé . '@b)GiGjékI. i f(?d)GkGl s

Ve . (G = =~ U
—_— =- 5 € UpV lﬁ—()é i i(jb)GiGj G (43
fih,, T G é 2G i 1]

E. Non-local pseudopotential

The first strain derivative of the semi-local form of norm-conserving pseudopoten
tials'! was given by Nielsen and Martin.® The fully separable form introduced by Klein-
man and Bylander?® and its generalization by Bléchl?* are far more widely used today
because of their computational efficiency. The matrix elements of the nonlocal pseudo-
potentials are most commonly expressed in the form

1o ik« Skt
<K“fVNL|K>=V—Vaé Ve (KDY Qe Frd € Vi (IK DY 0 F i) (44)

kim
where each Fourier-transformed separable atomic potentia is
¥
Vi, (K D) =4p i, (K [ r)v, (r)rdr, (45)
0

Vi, (r) isthe real-space potential in angular momentum channel ¢ for the atom k , and
j, are spherical Bessel functions. We show the single-projector form, but the generaliza-

tion to more projectors™ is obvious. We have omitted the conventional W/ in Eq. (45)
asintheloca casein Sec. D. The first strain derivative of Eq. (44) was initialy given by
Bylander et al.,*® but their expression had substantial omissions which were corrected by
|.-H. Leeet al.?® Theresulting expression is quite cumbersome, not suitable for evalua-
tion in terms of reduced coordinates and the metric tensors, and appears to be extremely
difficult to extend to higher derivatives.

To transform Eq. (44) so that it is suitable for our purposes, we explicitly carry
out the m sum to obtain

12



AV, |Kﬁ:%é (20 +1) X%y, (|K O) P, (c0Stc i) € < vy, (K ), (46)
k¢

where P, are Legendre polynomialsand q,. . isthe angle between Kdand K . Introduc-
ing the modified function

A (K SKEKGK K K ) 4p (20 +1)| KUK | P (CoSTyqe ), (47)
where A ,isapolynomial in the three dot products, and the modified potential form factor
e (KK © v, (K )/IK T, (48)

we reformulate Eq. (46) as

KAV, |K = vivé R f (KK GA , (K BKEK OK K K) e "% f_(K %K),  (49)

k/m

Eq. (49) is now straightforward to express in reduced coordinates. First, we observe that
the phases constituting the structure factors are independent of the metric tensors,

K xt, =2pK x,, and will thus be independent of strain. After introducing the metric
tensors and reduced wave vectorsin A ,, we obtain

a7 s 1 iK L K@)
a<¢|VNL IKn:_é. R fk/,(é. | inl‘Kg')
W, i (50)
Aﬁ(é. i Ki¢zj¢'é i ij Kicﬁj’ é. i inin) SR fke(é i iniKJ)
i i i i

If A , Isexpanded, we observe that it is a polynomial in which al terms are products of ¢

components K¢ and ¢ components K, . We can regroup terms and formulate Eq. (50) in
terms of such tensor products,?’

T( (K ) - KZLIT e m) K2|T(2~(/ m) Rg' T(Lem)- 17 (2, m) (51)
where 1. (i,/,m) isanindexing array of non-negative integers. This array can be defined

in a systematic way for tensors from rank 0 up to the highest we shall encounter. The m
index runsfrom 1to (/+1)(¢+2)/2. The matrix element can then be expressed as

o sa 1 oo ik 2 . s .
KAV, [Ki==Q € A, (@ 1 i KROT K §Ciruni )
Wk[mml: ij (52)
e_zpiK)fk sz(é [ inin)Tkm(K)'
i
where eachC,,,.is apolynomial in the componentsof j , whose coefficients can be cal-
culated once for all.?” The notation in Eq. (52) has been chosen to resemble that of Eq.
(44), so that its fully separable form is clear. However, the m and md terms are coupled
both because the T, tensors do not form an orthogonal set like the Y, .., and because the

/m?

shapes of the angular projectors are no longer spherical harmonics when mapped into re-

13



duced coordinates. There is no coupling among different angular momenta ¢ , however,
because deformations cannot change the number of nodes of the projectors.

The procedure for evaluating strain derivatives is now completely straightforward.
The operator 1/h,, applied to Eq. (50) will act on the W *prefactor, on the j j COeffi-

cientsin the A , polynomial, and on the arguments of the f,,. Defining the n" derivative
of f,, with respect to itsargument as f,"wheren =0, 1, 2, ..., we observe

ﬂfk(KO) — s8R . @)z 7

m—fkk? I i Kin7 (53)
so this derivative raises the rank of one of the tensor products by 2. The derivative of Eq.
(50) can be written in aform very similar to Eq. (52),

KD |gp=l § erre f<”“’(a KK Tmens(KY
1-[hab Wkﬂrrm%%
C/m‘?m%(' IJ’I fab))e A fk(?)(a i ij Kin)Tﬂ+2n,m(K) (54)
i
- dabéKqVNL |Kﬁ
where the indices n,n¢ run from 0 to 1 subject to n +n¢£ 1, the m index runs from 1 to

((+2n +1)(¢+ 2 +2)/2, and similarly for md (with n ® nd). The C¥, . matrix ele-

ments are each polynomidsin , and j . The couplings here can be translated back to

more familiar angular momentum terms, since the leading (rank) index of the T, tensors
does correspond to the ordinary ¢ . This derivative operator couples components ¢ on the
rightto /- 2, ¢,and ¢+ 2ontheleft. Thelast term arises from the derivative of the

W *prefactor in Eq. (52).

The extension to second strain derivatives, needed inthe <y © |H@ |y © > con-
tribution to the second-order energies, is similarly straightforward and can be expressed
in nearly the same form,

A7 ﬂzVNL

&K 1 o

K fi= — eIk £ (09 R&OT .. . (K
ﬂhabﬂh | ka%mm (a N ¢) ¢ 2n¢m¢( UM

Chnn Gini 00 2, ‘a"g‘”)ez"'“‘kfm(a i i KiK )Tz m(K)  (55)

ij v j
-dabéiq%uiﬁ- dgdaiq%MMdabdmaiqvm kA

ad ab
where the indices n,n¢ now run from 0 to 2 subject to n +n¢£ 2, the m, md ranges de-

pend on n,n¢ as above, and the C matrix elements are polynomials in components of all

the indicated arguments. Here, possible right-to-left angular momentum couplings are ¢
tol-4, (-2, ¢, (+2, and (+4.
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Finally, we need to consider mixed derivatives with respect to one strain compo-
nent and one atomic displacement. Differentiating Eq. (50) with respect to the reduced

coordinate t7,, will introduce factors - 2piK¢ or 2piK, , and our result will be of the form

47 ﬂZV = o 2p| o ik o > ar SN -
& NL_ | K fi= e® 09 | KKOT,., . ee(K
qﬂt~kkﬂhab | W /g.n k¢ (q] TRAN 9 (+2n 6 m,mt( (D
nngme
Clommarenli 21§ € (G i KR )T pemn(K) (56)
ij
- (jz:lbéz(]:|M~’\ll_|K 4]
ﬂtkk

where the indices n,n ¢ run from 0 to 1 subject to n +n¢£E 1, the new index pair m md run
from 0 to 1 subject to m+mt=1, and the m, m¢ indices span the ranges indicated by the
rank of the respective T tensors. Here, the angular momentum couplingsare ¢ to /- 3,
(-1 ¢+1, and ¢ +3. The expression for the atomic-displacement derivative in the last
term is given by Eq. (55) of Ref. [8].

The task of carrying out the differentiations, collecting terms, and extracting the
coefficients of the T tensors to obtain the C matrix element polynomialsin Egs.(52) and
(54) through (56) appears to be extremely tedious. However, the structure of this proce-
dure is sufficiently ssimple that it is easily automated using a symbolic manipulation pro-
gram.?® Since they depend only on the primitive lattice vectors, these polynomials need
only be evaluated once, and the task of applying the derivative nonlocal potentials to a set
of wave functions is computationally comparable to that of applying the potentials them:
selves. For expectation valuessuch as <y @ |[H® |y @ > certain pair of n,n¢and
m mdindices give hermitian conjugate contributions, and the sums over these indices may

be smplified accordingly.

F. Hartree Potential

The operation of the first-order Hartree potential on the zero-order wave functions is
evauated in real space using an analogous expression to that for the local potentia, EQ.
(38). The potential is most easily calculated in reciprocal space, however, where the

Poisson equation is diagonal. The zero-order electron density components néo’ depend
on strain only through their W* normalization factor.® The Fourier components of the
first-order Hartree potential are

é ® 1 ap) = ~ OU
_zg‘e - n(éO) gdab +Eé' i i(jb)GiGj 0, (57)

where n& are the Fourier components of the first-order density for the strain perturba-

tion, and G?is given by Eq. (39). The second-order strain derivatives of the Hartree en
ergy are
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1°E, _ .
i, -2V (0)@' 0yG*+G A (du i 7+
’ (58)

s
)

ol .(Jabgd))éiéj +ZG a i (ab)é.éjékl. i (k?d)ékél

e ey e

There is no Hartree contribution to the internal stral n.
G. Exchange-correlation potential

The operation of the first-order exchange-correlation potential on the zero-order

wave functions is evaluated asin Eq. (38). If the density n‘® consisted only of contribu-
tions from the zero-order wave functions, its explicit strain dependence would arise only

from the W * normalization factor, and would be trivially found from Eq. (29).2° How-
ever, it is frequently desirable to include a nonlinear core correction through model core
charges,*® which significantly complicates the analysis. In this section, we must distin-

guish “electron” and “core” contributions, n® =n® +n_, where the core density is given
by a sum of finite-range spherically- symmetric atom centered functions,

cel
n()=a a r.(r-t -R|). (59)
R k

Congdering for present purposes only local-density functionals, it is straightforward to
show from Eq. (11) that the first-order xc potentia is

vero T oy an® s My en 2 (60
ﬂhab g ab ﬂ
where we define
dv._(n)
o xt 7 61
X dn n® ( )

We have included in Eg. (60) both the explicit strain dependence of the zero-order densi-
ties and the first-order density for the strain perturbation, n®’, which must be evaluated

self-consistently through Egs. (8) and (10). All the termsin Eqgs. (60) and (61) are func-
tions of the real or reduced spatial coordinate, these arguments having been omitted for
clarity.

The model core charge in reduced coordinates, n,(f), isanontrivial function of
strain through the arguments of ther .. Introducing the notation for the magnitude
(“size”) of areduced-coordinate real-space vector

12
o
s(F)= ga X Ff = (62)
fa
and its strain derivative
o TS(F)_ 1 o .
@) (7)o = @b) g
S° S T3 @ (539
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we have

SR R S N N
R k

where r & are the first derivatives of each model core function with respect to its argu-
ment.

Second-order xc terms in Eq. (15) for the strain-strain derivatives require corre-
sponding derivatives of the “size” function,

s@D(F) o s(r) _. a X ax@’”rr b8 X7 (65)
ﬂhabﬂhgd 45 (r) ke Tk 2S % y

in terms of which the core charge second derivatives can be evaluated as

2 = cel
ﬂnc(r) :ééékl'{rlg:cgs(F_fk_Q)Bs(abgd)(f_fk_ﬁ)

Th,, fThg, (66)
+r @ &s(F-t, -R)Us™ (-1, -R)s® (7 -1, -R)}.
The second derivatives of the xc energy are
2
T g q,E0 +WO§(KXCné°) VO)d,dun® - d,, e - g, e 2
fih,, Thy, fhy, M ©7)

+V© ﬂnc +K n, ﬂn d3~
XC ﬂhabﬂhgj XC ﬂhab ﬂhgj g

Finally, second-order derivatives with respect to a strain component and are-
duced- atomic-displacement component are required. The required “size” derivatives are

S(i)(f)o ﬂ;(rr) é S (f)xijrj’ (68)
i j
and
o f=
(1) T -8 g+ ) (. @9
ﬂhabﬂri j

The corresponding equations for the n, derivatives are found by straightforward substitu-
tionsgd ® i andhy ® t; in Egs.(64) and (66). The xc energy second derivative is
ﬂZ

ﬂh bﬂt ki

=W (v - K0 I o Iy I TG )
Oédb( e )ﬂtkl ﬂhabﬂtil ﬂhab ﬂtkia
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H. lon-ion interactions

While not part of E,, the ion+ion interactions contribute a strain-dependent part of
the total energy of asolid. Sincetheionionenergy E, does not involve the electrons, its
first derivatives do not enter into the self-consistent Sternheimer equation of DFPT, Eq.
(10), and need not be considered here. E, is conventionally evaluated as a sum of three
terms using the Ewald summation formula,

1 o € (pG/X)2 %"

EC = 3 7, 7 @ttt 71
1 2pWGafo G2 %¢ th<¢ ( )

1o & erfc(x Jt, - tye- R|)
Ei=-aaz’Z : (72)
! 2 R kk¢ ke |tk - tkc' R|
-x g _,
N R

where Z, aretheion chargesand x is aconvergence parameter. In Eq. (72) and similar

equations below, the k =k d¢term in the sum is to be omitted whenR =0. The strain sec-
ond derivatives of the reciprocal space sum issimilar to Eq. (58), the Hartree term in Sec.
lHIE,

2-G -(PGIX)* el .
°E, - 1 o€ _ é Z, Zk¢e2plG£tk-fkm) &, 0y
ﬂhabﬂhgj pWs, G kk ¢

+(G'2+p2X-2)é (d @ g @) (abgi))é

ab | ij od bij ij
ij

o

(74)
Hpx + 2% G2 +267)§ 1 GG A G G
ij K G

The strain — reduced-atomic-coordinate second derivative is

TE _iZ gty 266 3 & opiGte € 2 L2y b
e*G.a Z &P &y, +(G+px (""GG 75
ot~ Wa & @ Zem e, +(GT ) G (79

The derivatives of the real-space sum involve much of the same analysis as was
applied to the model core charge in Sec. I11G. Let us introduce the compact notation

skk@:s(fk-fm-li) (76)
with asimilar subscript notation for the severa derivativesof s defined in EQs.(63), (65),
(68), and (69). The strain-strain derivative of the real-space sum is then
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ﬂZEIT — XSkkR)
., Thy, J—aaZ B x5 )

R kk¢

+p erfe(xg, @ )/ 257 @ BSERSER (77)

- 8</2%kqp +p erfc(x Siw )/4513@ Hsiiﬁé’”} -
The corresponding strain — reduced-atomic-coordinate expression is obtained from the
analogues of Egs.(68) and (69), and the substitutions gd ® i andh, ® t;in Eq. (77).

The Ewald result for the ion-ioninteraction represents the energy of an array of
point charges interacting with a uniform neutralizing background. In fact, the proper ref-
erence isthe local pseudopotentials, which differ from Coulombic potentials in their core
region, interacting with the uniform background This energy correction is given by

Epsp— core — g ga Zk¢—9a 4p dvk Loc(r) +Z /r] err_ (78)

The only strain dependence is through the W factor, so the second stral n derivative of
thistermissimply d,,d, E o, .-
IV.IMPLEMENTATION AND RESULTS
A. Clamped-atom perturbations

The metric tensor formulation of strain perturbations in DFPT was developed and
tested in stages within the open source ABINIT software package.®? Asanticipated, it
could be merged cleanly into the existing DFPT structure of this code which had previ-
ously been developed to treat atomic-displacement and electric-field perturbations. The
ground-state portions of this code aready calculated relevant first derivatives of the DFT
total energy, in particular atomic forces, stresses using the Nielsen-Martin analysis,* and
polarization using the Berry-phase method. "’ The availability of first derivatives calcu-
lated in a context completely consistent with the newly developed strain second deriva
tives permitted critical comparisons to verify the new formalism and its computational
realization.

Numerical strain derivatives of the various first derivatives were carried out using
the 5-point formula,® and strain increments sufficiently small to ensure an invariant set
of K within the specified energy cutoffs. These comparisons required consistency be-
tween the ground-state DFT and DFPT calculations with regard to cutoffs, Brillouin zone
sampling, etc., but not necessarily complete convergence with respect to these parame-
ters. What was required for accurate comparisons was an exceedingly high level of corn+
vergence of the self-consistent potentials and wave functions, both for the ground-state
numerical derivatives and the DFPT results. This was necessitated by the fact that the
expressions used for the mixed second derivatives, Egs.(15) and (16), are non stationary,
and such convergence errors appear in first-order.
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The level of agreement that can be obtained for the elastic and piezoelectric ten-
sorsisillustrated in Tables | and 1, respectively. The system chosen for this example
was AlP, but with the two-atom unit cell of the zincblende structure randomly distorted in
the range +5% for both the primitive lattice vectors and the relative atomic positions.
This was necessary to obtain a full set of tensor elements for comparison, since most
would otherwise be zero or identical because of symmetry. Stressesin the reference
(nominaly “unstrained”) configuration were not relaxed, so the elastic tensor second-

derivatives needed to be compared toWl‘ﬂ( V\/s(,ﬂb)/‘ﬂhg:| rather than Y's ., /Th,, , follow-

ing Eq. (32). Thisaso enhanced the completeness of these tests, since a subset of the
terms derived in Sec. 111 would mutually cancel for atruly unstrained reference structure.

For the piezoel ectric tensor comparisons, there are two caveats. Eqg. (16) requires

first-order wave functions y : 'for the d / dk perturbation, which are best found from
DFPT.® However, the ground-state cal culations of the polarization perform Berry-phase
integrations on a discrete grid of k points in the Brillouin zone.”'” For optimum consis-
tency, afinite-difference approximation to the y : ' based on the ground-state grid was
used.®® In the limit of alarge k sample, both approaches give the same result as they

must. Results with the DFPT y ak ' in fact converge much more rapidly with zone sample
size. The second issue concerns the effects on the strain numerical derivatives of the po-
larization of the reference configuration. The straight numerical derivatives yield the so-
called “improper” piezoelectric tensor, g, ; = TR, /‘Hhgj , While DFPT yields the “proper”

tensor € ,, . Knowing the reference configuration polarization, the proper tensor can be

calculated from the improper one in a straightforward manner,*® and this has been done
for the comparisonsin Tablell.

B. Relaxed-atom calculations

While homogeneous strain as defined in Eq. (17) moves all atoms proportionally, in a
real experimental situation macroscopic strain only deforms the unit cells, and the atomic
positions readjust. The effects of this relaxation on the elastic and piezoel ectric tensors
can be calculated analytically as corrections to the clamped-atom quantities. These cor-
rections can be computed from the set of mixed second derivatives with respect to one
strain component and one component of each internal atomic coordinate, the “internal
strain.”*® The expressions needed to compute the frozen-wave-function contributions to
internal strain have been given in Sec. 111 for each term in the DFT energy. We have
used the non-stationary expression for mixed second derivatives, Eq. (15), with the
strain-perturbation wave function for y 2 and the atomic-coordinate component first-

order Hamiltonian for H (), whose terms have been given previously.’
The relaxation corrections aso require mixed second derivatives with respect to pairs

of internal-atomic-coordinate components, known as the interatomic force constant ma-
trix, and with respect to one atomic-coordinate component and one el ectric-field compo-
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nent, known as the Born effective charges.*® The DFPT expressions needed to evaluate
these quantities have also been given,® and were previously implemented in the ABINIT

package.®? The expressions combining &l these mixed derivatives to obtain the atomic-
relaxation corrections are straightforward, and will not be detailed here.*

Numerical-derivative comparisons including the relaxations are especialy challeng-
ing. In addition to the considerations discussed above for consistency and convergence
of the clamped-atom quantities, the atomic positions in the incrementally-strained unit
cells must be relaxed in the ground-state DFT calculations until the forces are far smaller
than typically considered necessary for structural optimization. Tables |l and IV give
the relaxed-atom results for the elastic and piezoel ectric tensors for the distorted AIP ex-
ample discussed above. The agreement between the numerical derivatives and the DPFT
results are excellent, but respectively one and two orders of magnitude worse on the av-
erage than for the clamped-atom quantities. Thislevel of agreement required attaining
residual forces less than 10°*° atomic units (Hartree/Bohr) for the 2” 10°°strain increment
needed to satisfy the conditions discussed above. The precision of the required relaxation
illustrates the impracticality of obtaining accurate values for the relaxed-atom quantities
for more complex systems by numerical differentiation. Attempts at further convergence
suggested that the level of agreement shown here is at the limit of numerical precision for
the overall set of calculations.

Comparing the tables of relaxed and unrelaxed tersors, we see that the relaxation cor-
rections to the large components of the elastic tensor, those which would be present for
the zincblende structure without the random distortions, are rather small. For the piezo-
electric tensor however, the only large component, (x, yz), is substantially corrected.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have demonstrated the manner in which strain can be treated within
a standard implementation of density-functional perturbation theory by using reduced co-
ordinates and the subsequent strain dependence of the metric tensor. Expressions neces-
sary to evaluate all the second-order derivatives of the density functional theory energy
have been derived, and it has been established that they are correct and complete by com+
parisons with numerical derivatives. Direct calculation of the elastic and piezoelectric
tensors, including atomic relaxation, is thereby achieved. The level of agreement with
experimental quantitiesis, of course, determined by the fundamental limitations of den
sity-functional theory, and to alesser extent by the pseudopotential approximation and
the quality of the pseudopotentials which are employed.

The expressions given here pertain to norm-conserving pseudopotentials.! While the
same approach can in principle be applied to ultrasoft gseudopotentials, 37 the closely re-
lated projector-augmented-wave all-electron method,* and the linear-augmented- plane-
wave method, 3 these all pose significant additional challenges. Thefirst set of chal-
lenges relates to the fact that the nonlocal operators coupling the plane-wave components
of these methods have off-diagonal terms coupling the /m, /&ntspherical harmonic indi-
ces about each atomic site. This precludes the reduction to wave-vector dot products
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achieved in EQ. (49). The second issue concerns the augmentation components of the
wave functions and charge. These functions are not deformed by homogeneous strain in
the manner of the plane waves and plane-wave charge density. Thus the mapping onto
reduced coordinates and derivatives of that mapping entail issues similar to those dis-
cussed in Sec. |11 G in connection with model core charges and the nonlinear core correc-
tion.%® Unlike the core charges, however, the augmentation function are not spherical, so
additional considerations apply. While the implementation of the strain perturbation
within DFPT using these formalisms poses these challenges and requires significant fur-
ther analysis, the metric tensor approach likely remains the most viable.
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Tablel. Comparison of a sample of numerical and DFPT clamped-atom elastic tensor

components, C;bgd , (GPa) for distorted AIP. The strain increment for numerical differ-

entiation is 2 10°. The overall root-mean-squared (rms) differenceis 5" 10° GPa.

ab

o

Numerical

DFPT

Difference

XX

XX

1.2499990E+02

1.2499990E+02

2.400E-05

Yy

XX

6.6990360E+01

6.6990360E+01

-3.900E-06

Y4

XX

6.8396840E+01

6.8396840E+01

-1.500E-06

yzZ

XX

8.8373390E -02

8.8373500E -02

1.054E-07

XZ

XX

-1.1173330E+00

-1.1173330E+00

-4.300E-07

Xy

XX

-4.1892180E -01

-4.1892170E -01

5.700E-08

XX

yZ

8.8374160E -02

8.8373500E-02

-6.607E-07

yy

Yz

5.1544700E+00

5.1544690E+00

-1.030E-06

2z

yZ

-5.5782700E+00

-5.5782700E+00

-2.900E-07

yzZ

yZ

9.0315730E+01

9.0315730E+01

4.500E-06

XZ

yzZ

-4.0474890E -01

-4.0474890E -01

5.000E-08

Xy

yZ

6.4472760E -01

6.4472770E -01

6.400E-08

Tablell. Comparison of a sample of numerical and DFPT clamped-atom proper piezo-
electric tensor components, & ; , (CInm?) for distorted AIP. The strain increment for

numerical differentiation is 2" 10°. The overal rms differenceis 2" 10 C/n?.

a| o Numerical DFPT Difference
X | xx | 2.0211410E-02 | 2.0211400E-02 | -8.700E-09
y | xx | 5.2336140E-02 | 5.2336120E-02 | -1.770E-08
z | xx | 4.0031790E-03 | 4.0031860E-03 | 6.720E-09
X | yy | -8.2697310E-02 | -8.2697310E-02 | 3.000E-10
y |yy | 2.4712180E-03 | 2.4712150E-03 | -3.280E-09
z |yy | 7.3837080E-03 | 7.3837040E-03 | -4.260E-09
X | yz | -6.9263100E-01 | -6.9263100E-01 | -3.600E-08
y | yz | -1.4235180E-03 | -1.4235300E-03 | -1.231E-08
z | yz | -1.3531730E-02 | -1.3531760E-02 | -2.880E-08
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TableIll. Comparison of a sample of numerical and DFPT relaxed-atom elastic tensor
components (GPa) for distorted AlIP. The strain increment for numerical differentiation

is2 10°. Theoveral rmsdifferenceis4” 10° GPa.

ab

o

Numerical

DFPT

Difference

XX

XX

1.2499150E+02

1.2499150E+02

-1.100E-05

yy

XX

6.6999750E+01

6.6999760E+01

8.200E-06

zz

XX

6.8359440E+01

6.8359440E+01

7.000E-07

yzZ

XX

2.2844680E -01

2.2846610E -01

1.927E-05

XZ

XX

-1.1398380E -00

-1.1398280E -00

9.560E-06

Xy

XX

-1.5027680E -02

-1.5117250E -02

-8.957E-05

XX

yz

2.2847050E -01

2.2846610E -01

-4.380E-06

Yy

yZ

1.9400500E -00

1.9400540E -00

3.720E-06

Y74

yz

-2.0792640E -00

-2.0792750E -00

-1.109E-05

yzZ

Yz

6.6593340E+01

6.6593390E+01

5.160E-05

XZ

yZ

7.7397220E -01

7.7397730E -01

5.121E-06

Xy

yZ

-5.6844590E-01

-5.6844910E -01

-3.170E-06

Table V. Comparison of a sample of numerical and DFPT relaxed-atom piezoel ectric

tensor components (C/nf) for distorted AIP. The strain increment for numerical differen
tiation is2” 10°°. The overall rms differenceis 2 10°° C/n?.

o

Numerical

DFPT

Difference

XX

1.7147690E-02

1.7146940E-02

-7.461E-07

XX

5.1070690E-02

5.1070800E-02

1.069E-07

N<[X|D

XX

-8.8396190E-03

-8.8367620E-03

2.857E-06

x

Yy

8.2856910E-03

8.2845410E-03

-1.150E-06

yy

3.7168430E-02

3.7168120E-02

-3.150E-07

N [\<

yy

-8.1020100E-03

-8.1017610E-03

2.494E-07

x

yZ

-3.8719800E-02

-3.8721540E-02

-1.739E-06

yzZ

-1.2451730E-02

-1.2452060E-02

-3.271E-07

N [<

yZ

1.9026870E-02

1.9026930E-02

5.590E-08
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