
RFC 8844
Unknown Key-Share Attacks on Uses of TLS with the
Session Description Protocol (SDP)

Abstract
This document describes unknown key-share attacks on the use of Datagram Transport Layer
Security for the Secure Real-Time Transport Protocol (DTLS-SRTP). Similar attacks are described
on the use of DTLS-SRTP with the identity bindings used in Web Real-Time Communications
(WebRTC) and SIP identity. These attacks are difficult to mount, but they cause a victim to be
misled about the identity of a communicating peer. This document defines mitigation techniques
that implementations of RFC 8122 are encouraged to deploy.

Stream: Internet Engineering Task Force (IETF)
RFC: 8844
Updates: 8122
Category: Standards Track
Published: January 2021
ISSN: 2070-1721
Authors: M. Thomson

Mozilla
E. Rescorla
Mozilla

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8844

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Thomson & Rescorla Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8844
https://www.rfc-editor.org/rfc/rfc8122
https://www.rfc-editor.org/info/rfc8844
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents
1. Introduction

2. Unknown Key-Share Attack

2.1. Limits on Attack Feasibility

2.2. Interactions with Key Continuity

2.3. Third-Party Call Control

3. Unknown Key-Share Attack with Identity Bindings

3.1. Example

3.2. The external_id_hash TLS Extension

3.2.1. Calculating external_id_hash for WebRTC Identity

3.2.2. Calculating external_id_hash for PASSporT

4. Unknown Key-Share Attack with Fingerprints

4.1. Example

4.2. Unique Session Identity Solution

4.3. The external_session_id TLS Extension

5. Session Concatenation

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Acknowledgements

Authors' Addresses

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 2

1. Introduction
The use of Transport Layer Security (TLS) with the Session Description Protocol (SDP)

 is defined in . Further use with Datagram Transport Layer Security (DTLS)
 and the Secure Real-time Transport Protocol (SRTP) is defined as DTLS-SRTP

.

In these specifications, key agreement is performed using TLS or DTLS, with authentication being
tied back to the session description (or SDP) through the use of certificate fingerprints.
Communication peers check that a hash, or fingerprint, provided in the SDP matches the
certificate that is used in the TLS or DTLS handshake.

WebRTC identity (see) and SIP identity both provide a
mechanism that binds an external identity to the certificate fingerprints from a session
description. However, this binding is not integrity protected and is therefore vulnerable to an
identity misbinding attack, also known as an unknown key-share (UKS) attack, where the
attacker binds their identity to the fingerprint of another entity. A successful attack leads to the
creation of sessions where peers are confused about the identity of the participants.

This document describes a TLS extension that can be used in combination with these identity
bindings to prevent this attack.

A similar attack is possible with the use of certificate fingerprints alone. Though attacks in this
setting are likely infeasible in existing deployments due to the narrow preconditions (see Section
2.1), this document also describes mitigations for this attack.

The mechanisms defined in this document are intended to strengthen the protocol by preventing
the use of unknown key-share attacks in combination with other protocol or implementation
vulnerabilities. RFC 8122 is updated by this document to recommend the use of
these mechanisms.

This document assumes that signaling is integrity protected. However, as
 explains, many deployments that use SDP do not guarantee integrity of session

signaling and so are vulnerable to other attacks. offers key continuity
mechanisms as a potential means of reducing exposure to attack in the absence of integrity
protection. Section 2.2 provides some analysis of the effect of key continuity in relation to the
described attacks.

The key words " ", " ", " ", " ", " ", " ", "
", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[TLS13]
[SDP] [FINGERPRINT]
[DTLS] [SRTP] [DTLS-
SRTP]

Section 7 of [WEBRTC-SEC] [SIP-ID]

[FINGERPRINT]

Section 7 of
[FINGERPRINT]

[FINGERPRINT]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc8827#section-7
https://www.rfc-editor.org/rfc/rfc8122#section-7

2. Unknown Key-Share Attack
In an unknown key-share attack , a malicious participant in a protocol claims to control a
key that is in reality controlled by some other actor. This arises when the identity associated with
a key is not properly bound to the key.

An endpoint that can acquire the certificate fingerprint of another entity can advertise that
fingerprint as their own in SDP. An attacker can use a copy of that fingerprint to cause a victim to
communicate with another unaware victim, even though the first victim believes that it is
communicating with the attacker.

When the identity of communicating peers is established by higher-layer signaling constructs,
such as those in SIP identity or WebRTC , this allows an attacker to bind
their own identity to a session with any other entity.

The attacker obtains an identity assertion for an identity it controls, but binds that to the
fingerprint of one peer. The attacker is then able to cause a TLS connection to be established
where two victim endpoints communicate. The victim that has its fingerprint copied by the
attack correctly believes that it is communicating with the other victim; however, the other
victim incorrectly believes that it is communicating with the attacker.

An unknown key-share attack does not result in the attacker having access to any confidential
information exchanged between victims. However, the failure in mutual authentication can
enable other attacks. A victim might send information to the wrong entity as a result. Where
information is interpreted in context, misrepresenting that context could lead to the information
being misinterpreted.

A similar attack can be mounted based solely on the SDP fingerprint attribute
without compromising the integrity of the signaling channel.

This attack is an aspect of SDP-based protocols upon which the technique known as third-party
call control (3PCC) relies. 3PCC exploits the potential for the identity of a signaling peer
to be different than the media peer, allowing the media peer to be selected by the signaling peer.
Section 2.3 describes the consequences of the mitigations described here for systems that use
3PCC.

[UKS]

[SIP-ID] [WEBRTC-SEC]

[FINGERPRINT]

[RFC3725]

2.1. Limits on Attack Feasibility
The use of TLS with SDP depends on the integrity of session signaling. Assuming signaling
integrity limits the capabilities of an attacker in several ways. In particular:

An attacker can only modify the parts of the session signaling that they are responsible for
producing, namely their own offers and answers.
No entity will successfully establish a session with a peer unless they are willing to
participate in a session with that peer.

1.

2.

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 4

The combination of these two constraints make the spectrum of possible attacks quite limited. An
attacker is only able to switch its own certificate fingerprint for a valid certificate that is
acceptable to its peer. Attacks therefore rely on joining two separate sessions into a single
session. Section 4 describes an attack on SDP signaling under these constraints.

Systems that rely on strong identity bindings, such as those defined in or , have
a different threat model, which admits the possibility of attack by an entity with access to the
signaling channel. Attacks under these conditions are more feasible as an attacker is assumed to
be able both to observe and to modify signaling messages. Section 3 describes an attack that
assumes this threat model.

[WEBRTC] [SIP-ID]

2.2. Interactions with Key Continuity
Systems that use key continuity (as defined in or as recommended in

) might be able to detect an unknown key-share attack if a session
with either the attacker or the genuine peer (i.e., the victim whose fingerprint was copied by an
attacker) was established in the past. Whether this is possible depends on how key continuity is
implemented.

Implementations that maintain a single database of identities with an index of peer keys could
discover that the identity saved for the peer key does not match the claimed identity. Such an
implementation could notice the disparity between the actual keys (those copied from a victim)
and the expected keys (those of the attacker).

In comparison, implementations that first match based on peer identity could treat an unknown
key-share attack as though their peer had used a newly configured device. The apparent addition
of a new device could generate user-visible notices (e.g., "Mallory appears to have a new device").
However, such an event is not always considered alarming; some implementations might silently
save a new key.

Section 15.1 of [ZRTP]
Section 7 of [FINGERPRINT]

2.3. Third-Party Call Control
Third-party call control (3PCC) is a technique where a signaling peer establishes a call
that is terminated by a different entity. An unknown key-share attack is very similar in effect to
some 3PCC practices, so use of 3PCC could appear to be an attack. However, 3PCC that follows
RFC 3725 guidance is unaffected, and peers that are aware of changes made by a 3PCC controller
can correctly distinguish actions of a 3PCC controller from an attack.

3PCC as described in RFC 3725 is incompatible with SIP identity , as SIP Identity relies on
creating a binding between SIP requests and SDP. The controller is the only entity that generates
SIP requests in RFC 3725. Therefore, in a 3PCC context, only the use of the fingerprint attribute
without additional bindings or WebRTC identity is possible.

The attack mitigation mechanisms described in this document will prevent the use of 3PCC if
peers have different views of the involved identities or the value of SDP tls-id attributes.

[RFC3725]

[SIP-ID]

[WEBRTC-SEC]

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc6189#section-15.1
https://www.rfc-editor.org/rfc/rfc8122#section-7

For 3PCC to work with the proposed mechanisms, TLS peers need to be aware of the signaling so
that they can correctly generate and check the TLS extensions. For a connection to be
successfully established, a 3PCC controller needs either to forward SDP without modification or
to avoid modifications to fingerprint, tls-id, and identity attributes. A controller that
follows the best practices in RFC 3725 is expected to forward SDP without modification, thus
ensuring the integrity of these attributes.

3. Unknown Key-Share Attack with Identity Bindings
The identity assertions used for WebRTC () and the Personal Assertion
Token (PASSporT) used in SIP identity (,) are bound to the certificate
fingerprint of an endpoint. An attacker can cause an identity binding to be created that binds an
identity they control to the fingerprint of a first victim.

An attacker can thereby cause a second victim to believe that they are communicating with an
attacker-controlled identity, when they are really talking to the first victim. The attacker does this
by creating an identity assertion that covers a certificate fingerprint of the first victim.

A variation on the same technique can be used to cause both victims to believe they are talking
to the attacker when they are talking to each other. In this case, the attacker performs the
identity misbinding once for each victim.

The authority certifying the identity binding is not required to verify that the entity requesting
the binding actually controls the keys associated with the fingerprints, and this might appear to
be the cause of the problem. SIP and WebRTC identity providers are not required to perform this
validation.

A simple solution to this problem is suggested by . The identity of endpoints is included
under a message authentication code (MAC) during the cryptographic handshake. Endpoints
then validate that their peer has provided an identity that matches their expectations. In TLS, the
Finished message provides a MAC over the entire handshake, so that including the identity in a
TLS extension is sufficient to implement this solution.

Rather than include a complete identity binding, which could be sizable, a collision- and
preimage-resistant hash of the binding is included in a TLS extension as described in Section 3.2.
Endpoints then need only validate that the extension contains a hash of the identity binding they
received in signaling. If the identity binding is successfully validated, the identity of a peer is
verified and bound to the session.

This form of unknown key-share attack is possible without compromising signaling integrity,
unless the defenses described in Section 4 are used. In order to prevent both forms of attack,
endpoints use the external_session_id extension (see Section 4.3) in addition to the
external_id_hash (Section 3.2) so that two calls between the same parties can't be altered by an
attacker.

Section 7 of [WEBRTC-SEC]
[SIP-ID] [PASSPORT]

[SIGMA]

MUST

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc8827#section-7

3.1. Example
In the example shown in Figure 1, it is assumed that the attacker also controls the signaling
channel.

Mallory (the attacker) presents two victims, Norma and Patsy, with two separate sessions. In the
first session, Norma is presented with the option to communicate with Mallory; a second session
with Norma is presented to Patsy.

The attack requires that Mallory obtain an identity binding for her own identity with the
fingerprints presented by Patsy (P), which Mallory might have obtained previously. This false
binding is then presented to Norma ('Signaling1' in Figure 1).

Patsy could be similarly duped, but in this example, a correct binding between Norma's identity
and fingerprint (N) is faithfully presented by Mallory. This session ('Signaling2' in Figure 1) can
be entirely legitimate.

A DTLS session is established directly between Norma and Patsy. In order for this to happen,
Mallory can substitute transport-level information in both sessions, though this is not necessary
if Mallory is on the network path between Norma and Patsy.

As a result, Patsy correctly believes that she is communicating with Norma. However, Norma
incorrectly believes that she is talking to Mallory. As stated in Section 2, Mallory cannot access
media, but Norma might send information to Patsy that Norma might not intend or that Patsy
might misinterpret.

Figure 1: Example Attack on Identity Bindings

 Norma Mallory Patsy
 (fp=N) ----- (fp=P)
 | | |
 |<---- Signaling1 ------>| |
 | Norma=N Mallory=P | |
 | |<---- Signaling2 ------>|
 | | Norma=N Patsy=P |
 | |
 |<=================DTLS (fp=N,P)=================>|
 | |
 (peer = Mallory!) (peer = Norma)

3.2. The external_id_hash TLS Extension
The external_id_hash TLS extension carries a hash of the identity assertion that the endpoint
sending the extension has asserted to its peer. Both peers include a hash of their own identity
assertion.

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 7

Note:

The extension_data for the external_id_hash extension contains a ExternalIdentityHash
struct, described below using the syntax defined in :

Where an identity assertion has been asserted by a peer, this extension includes a SHA- 256 hash
of the assertion. An empty value is used to indicate support for the extension.

For both types of identity assertion, if SHA- 256 should prove to be inadequate in the
future (see), a new TLS extension that uses a different hash function can be defined.

Identity bindings might be provided by only one peer. An endpoint that does not produce an
identity binding generate an empty external_id_hash extension in its ClientHello or -- if a
client provides the extension -- in ServerHello or EncryptedExtensions. An empty extension has a
zero-length binding_hash field.

A peer that receives an external_id_hash extension that does not match the value of the
identity binding from its peer immediately fail the TLS handshake with an
illegal_parameter alert. The absence of an identity binding does not relax this requirement; if
a peer provided no identity binding, a zero-length extension be present to be considered
valid.

Implementations written prior to the definition of the extensions in this document will not
support this extension for some time. A peer that receives an identity binding but does not
receive an external_id_hash extension accept a TLS connection rather than fail a
connection where the extension is absent.

The endpoint performs the validation of the external_id_hash extension in addition to the
validation required by and any verification of the identity assertion

 . An endpoint validate any external_session_id value that is present; see
Section 4.3.

An external_id_hash extension with a binding_hash field that is any length other than 0 or 32
is invalid and cause the receiving endpoint to generate a fatal decode_error alert.

In TLS 1.3, an external_id_hash extension sent by a server be sent in the
EncryptedExtensions message.

Section 3 of [TLS13]

 struct {
 opaque binding_hash<0..32>;
 } ExternalIdentityHash;

[AGILITY]

MUST

MUST

MUST

MAY

[FINGERPRINT] [WEBRTC-
SEC] [SIP-ID] MUST

MUST

MUST

3.2.1. Calculating external_id_hash for WebRTC Identity

A WebRTC identity assertion () is provided as a JSON object that
is encoded into a JSON text. The JSON text is encoded using UTF-8 as described by

. The content of the external_id_hash extension is produced by hashing the
resulting octets with SHA- 256 . This produces the 32 octets of the binding_hash parameter,
which is the sole contents of the extension.

Section 7 of [WEBRTC-SEC] [JSON]
[UTF8] Section

8.1 of [JSON]
[SHA]

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc8446#section-3
https://www.rfc-editor.org/rfc/rfc8827#section-7
https://www.rfc-editor.org/rfc/rfc8259#section-8.1
https://www.rfc-editor.org/rfc/rfc8259#section-8.1

Note:

The SDP identity attribute includes the base64 encoding of the UTF-8 encoding of the
same JSON text. The external_id_hash extension is validated by performing base64 decoding on
the value of the SDP identity attribute, hashing the resulting octets using SHA- 256, and
comparing the results with the content of the extension. In pseudocode form, using the
identity-assertion-value field from the SDP identity attribute grammar as defined in

:

The base64 of the SDP identity attribute is decoded to avoid capturing variations in
padding. The base64-decoded identity assertion could include leading or trailing whitespace
octets. WebRTC identity assertions are not canonicalized; all octets are hashed.

[BASE64]

[WEBRTC-SEC]

external_id_hash = SHA-256(b64decode(identity-assertion-value))

3.2.2. Calculating external_id_hash for PASSporT

Where the compact form of PASSporT is used, it be expanded into the full
form. The base64 encoding used in the SIP Identity (or 'y') header field be decoded then
used as input to SHA- 256. This produces the 32-octet binding_hash value used for creating or
validating the extension. In pseudocode, using the signed-identity-digest parameter from the
Identity header field grammar defined :

[PASSPORT] MUST
MUST

[SIP-ID]

external_id_hash = SHA-256(b64decode(signed-identity-digest))

4. Unknown Key-Share Attack with Fingerprints
An attack on DTLS-SRTP is possible because the identity of peers involved is not established prior
to establishing the call. Endpoints use certificate fingerprints as a proxy for authentication, but as
long as fingerprints are used in multiple calls, they are vulnerable to attack.

Even if the integrity of session signaling can be relied upon, an attacker might still be able to
create a session where there is confusion about the communicating endpoints by substituting the
fingerprint of a communicating endpoint.

An endpoint that is configured to reuse a certificate can be attacked if it is willing to initiate two
calls at the same time, one of which is with an attacker. The attacker can arrange for the victim
to incorrectly believe that it is calling the attacker when it is in fact calling a second party. The
second party correctly believes that it is talking to the victim.

As with the attack on identity bindings, this can be used to cause two victims to both believe they
are talking to the attacker when they are talking to each other.

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 9

4.1. Example
To mount this attack, two sessions need to be created with the same endpoint at almost precisely
the same time. One of those sessions is initiated with the attacker, the second session is created
toward another honest endpoint. The attacker convinces the first endpoint that their session with
the attacker has been successfully established, but media is exchanged with the other honest
endpoint. The attacker permits the session with the other honest endpoint to complete only to
the extent necessary to convince the other honest endpoint to participate in the attacked session.

In addition to the constraints described in Section 2.1, the attacker in this example also needs the
ability to view and drop packets between victims. That is, the attacker needs to be on path for
media.

The attack shown in Figure 2 depends on a somewhat implausible set of conditions. It is intended
to demonstrate what sort of attack is possible and what conditions are necessary to exploit this
weakness in the protocol.

In this scenario, there are two sessions initiated at the same time by Norma. Signaling is shown
with single lines ('-'), DTLS and media with double lines ('=').

The first session is established with Mallory, who falsely uses Patsy's certificate fingerprint
(denoted with 'fp=P'). A second session is initiated between Norma and Patsy. Signaling for both
sessions is permitted to complete.

Once signaling is complete on the first session, a DTLS connection is established. Ostensibly, this
connection is between Mallory and Norma, but Mallory forwards DTLS and media packets sent
to her by Norma to Patsy. These packets are denoted 'DTLS1' because Norma associates these
with the first signaling session ('Signaling1').

Figure 2: Example Attack Scenario Using Fingerprints

 Norma Mallory Patsy
 (fp=N) ----- (fp=P)
 | | |
 +---Signaling1 (fp=N)--->| |
 +-----Signaling2 (fp=N)------------------------>|
 |<-------------------------Signaling2 (fp=P)----+
 |<---Signaling1 (fp=P)---+ |
 | | |
 |=======DTLS1=======>(Forward)======DTLS1======>|
 |<======DTLS2========(Forward)<=====DTLS2=======|
 |=======Media1======>(Forward)======Media1=====>|
 |<======Media2=======(Forward)<=====Media2======|
 | | |
 |=======DTLS2========>(Drop) |
 | | |

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 10

Mallory also intercepts packets from Patsy and forwards those to Norma at the transport address
that Norma associates with Mallory. These packets are denoted 'DTLS2' to indicate that Patsy
associates these with the second signaling session ('Signaling2'); however, Norma will interpret
these as being associated with the first signaling session ('Signaling1').

The second signaling exchange ('Signaling2'), which is between Norma and Patsy, is permitted to
continue to the point where Patsy believes that it has succeeded. This ensures that Patsy believes
that she is communicating with Norma. In the end, Norma believes that she is communicating
with Mallory, when she is really communicating with Patsy. Just like the example in Section 3.1,
Mallory cannot access media, but Norma might send information to Patsy that Norma might not
intend or that Patsy might misinterpret.

Though Patsy needs to believe that the second signaling session has been successfully
established, Mallory has no real interest in seeing that session also be established. Mallory only
needs to ensure that Patsy maintains the active session and does not abandon the session
prematurely. For this reason, it might be necessary to permit the signaling from Patsy to reach
Norma in order to allow Patsy to receive a call setup completion signal, such as a SIP ACK. Once
the second session is established, Mallory might cause DTLS packets sent by Norma to Patsy to be
dropped. However, if Mallory allows DTLS packets to pass, it is likely that Patsy will discard them
as Patsy will already have a successful DTLS connection established.

For the attacked session to be sustained beyond the point that Norma detects errors in the second
session, Mallory also needs to block any signaling that Norma might send to Patsy asking for the
call to be abandoned. Otherwise, Patsy might receive a notice that the call has failed and thereby
abort the call.

This attack creates an asymmetry in the beliefs about the identity of peers. However, this attack
is only possible if the victim (Norma) is willing to conduct two sessions nearly simultaneously; if
the attacker (Mallory) is on the network path between the victims; and if the same certificate --
and therefore the SDP fingerprint attribute value -- is used by Norma for both sessions.

Where Interactive Connectivity Establishment (ICE) is used, Mallory also needs to ensure
that connectivity checks between Patsy and Norma succeed, either by forwarding checks or by
answering and generating the necessary messages.

[ICE]

4.2. Unique Session Identity Solution
The solution to this problem is to assign a new identifier to communicating peers. Each endpoint
assigns their peer a unique identifier during call signaling. The peer echoes that identifier in the
TLS handshake, binding that identity into the session. Including this new identity in the TLS
handshake means that it will be covered by the TLS Finished message, which is necessary to
authenticate it (see).

Successfully validating that the identifier matches the expected value means that the connection
corresponds to the signaled session and is therefore established between the correct two
endpoints.

[SIGMA]

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 11

This solution relies on the unique identifier given to DTLS sessions using the SDP tls-id
attribute . This field is already required to be unique. Thus, no two offers or answers
from the same client will have the same value.

A new external_session_id extension is added to the TLS or DTLS handshake for connections
that are established as part of the same call or real-time session. This carries the value of the
tls-id attribute and provides integrity protection for its exchange as part of the TLS or DTLS
handshake.

[DTLS-SDP]

4.3. The external_session_id TLS Extension
The external_session_id TLS extension carries the unique identifier that an endpoint selects.
When used with SDP, the value include the tls-id attribute from the SDP that the
endpoint generated when negotiating the session. This document only defines use of this
extension for SDP; other methods of external session negotiation can use this extension to
include a unique session identifier.

The extension_data for the external_session_id extension contains an ExternalSessionId
struct, described below using the syntax defined in :

For SDP, the session_id field of the extension includes the value of the tls-id SDP attribute as
defined in (that is, the tls-id-value ABNF production). The value of the tls-id
attribute is encoded using ASCII .

Where RTP and RTCP are not multiplexed, it is possible that the two separate DTLS
connections carrying RTP and RTCP can be switched. This is considered benign since these
protocols are designed to be distinguishable as SRTP provides key separation. Using RTP/
RTCP multiplexing further avoids this problem.

The external_session_id extension is included in a ClientHello, and if the extension is present
in the ClientHello, either ServerHello (for TLS and DTLS versions older than 1.3) or
EncryptedExtensions (for TLS 1.3).

Endpoints check that the session_id parameter in the extension that they receive includes
the tls-id attribute value that they received in their peer's session description. Endpoints can
perform string comparison by ASCII decoding the TLS extension value and comparing it to the
SDP attribute value or by comparing the encoded TLS extension octets with the encoded SDP
attribute value. An endpoint that receives an external_session_id extension that is not
identical to the value that it expects abort the connection with a fatal illegal_parameter
alert.

The endpoint performs the validation of the external_id_hash extension in addition to the
validation required by .

MUST

[TLS13]

 struct {
 opaque session_id<20..255>;
 } ExternalSessionId;

[DTLS-SDP]
[ASCII]

[RTP]

[SRTP]
[RTCP-MUX]

MUST

MUST

[FINGERPRINT]

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 12

If an endpoint communicates with a peer that does not support this extension, it will receive a
ClientHello, ServerHello, or EncryptedExtensions message that does not include this extension.
An endpoint choose to continue a session without this extension in order to interoperate
with peers that do not implement this specification.

In TLS 1.3, an external_session_id extension sent by a server be sent in the
EncryptedExtensions message.

This defense is not effective if an attacker can rewrite tls-id values in signaling. Only the
mechanism in external_id_hash is able to defend against an attacker that can compromise
session integrity.

MAY

MUST

5. Session Concatenation
Use of session identifiers does not prevent an attacker from establishing two concurrent sessions
with different peers and forwarding signaling from those peers to each other. Concatenating two
signaling sessions in this way creates two signaling sessions, with two session identifiers, but
only the TLS connections from a single session are established as a result. In doing so, the
attacker creates a situation where both peers believe that they are talking to the attacker when
they are talking to each other.

In the absence of any higher-level concept of peer identity, an attacker who is able to copy the
session identifier from one signaling session to another can cause the peers to establish a direct
TLS connection even while they think that they are connecting to the attacker. This differs from
the attack described in the previous section in that there is only one TLS connection rather than
two. This kind of attack is prevented by systems that enable peer authentication, such as WebRTC
identity or SIP identity ; however, these systems do not prevent
establishing two back-to-back connections as described in the previous paragraph.

Use of the external_session_id does not guarantee that the identity of the peer at the TLS layer
is the same as the identity of the signaling peer. The advantage that an attacker gains by
concatenating sessions is limited unless data is exchanged based on the assumption that
signaling and TLS peers are the same. If a secondary protocol uses the signaling channel with the
assumption that the signaling and TLS peers are the same, then that protocol is vulnerable to
attack. While out of scope for this document, a signaling system that can defend against session
concatenation requires that the signaling layer is authenticated and bound to any TLS
connections.

It is important to note that multiple connections can be created within the same signaling
session. An attacker might concatenate only part of a session, choosing to terminate some
connections (and optionally forward data) while arranging to have peers interact directly for
other connections. It is even possible to have different peers interact for each connection. This
means that the actual identity of the peer for one connection might differ from the peer on
another connection.

[WEBRTC-SEC] [SIP-ID]

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 13

[ASCII]

[BASE64]

[DTLS]

[DTLS-SDP]

8. References

8.1. Normative References

, , , ,
, October 1969, .

, , ,
, October 2006, .

, ,
, , January 2012,
.

,

, , , January 2021,
.

Critically, information about the identity of TLS peers provides no assurances about the identity
of signaling peers and does not transfer between TLS connections in the same session.
Information extracted from a TLS connection therefore be used in a secondary
protocol outside of that connection if that protocol assumes that the signaling protocol has the
same peers. Similarly, security-sensitive information from one TLS connection be used
in other TLS connections even if they are established as a result of the same signaling session.

MUST NOT

MUST NOT

6. Security Considerations
When combined with identity assertions, the mitigations in this document ensure that there is no
opportunity to misrepresent the identity of TLS peers. This assurance is provided even if an
attacker can modify signaling messages.

Without identity assertions, the mitigations in this document prevent the session splicing attack
described in Section 4. Defense against session concatenation (Section 5) additionally requires
that protocol peers are not able to claim the certificate fingerprints of other entities.

7. IANA Considerations
This document registers two extensions in the "TLS ExtensionType Values" registry established in

:

The external_id_hash extension defined in Section 3.2 has been assigned a code point of 55;
it is recommended and is marked as "CH, EE" in TLS 1.3.
The external_session_id extension defined in Section 4.3 has been assigned a code point
of 56; it is recommended and is marked as "CH, EE" in TLS 1.3.

[TLS13]

•

•

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

Josefsson, S. "The Base16, Base32, and Base64 Data Encodings" RFC 4648 DOI
10.17487/RFC4648 <https://www.rfc-editor.org/info/rfc4648>

Rescorla, E. and N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Holmberg, C. and R. Shpount "Session Description Protocol (SDP) Offer/Answer
Considerations for Datagram Transport Layer Security (DTLS) and Transport
Layer Security (TLS)" RFC 8842 DOI 10.17487/RFC8842 <https://
www.rfc-editor.org/info/rfc8842>

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 14

https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc8842
https://www.rfc-editor.org/info/rfc8842

[DTLS-SRTP]

[FINGERPRINT]

[JSON]

[PASSPORT]

[RFC2119]

[RFC8174]

[SDP]

[SHA]

[SIP-ID]

[SRTP]

[TLS13]

[UTF8]

[WEBRTC-SEC]

,

, , , May 2010,
.

,

, , , March 2017,
.

, ,
, , , December 2017,

.

, , ,
, February 2018, .

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

, ,
, , July 2006,
.

,
, , , May 2011,

.

,
, ,

, February 2018, .

,
, , , March

2004, .

, , ,
, August 2018, .

, , , ,
, November 2003,

.

, , , ,
January 2021, .

Fischl, J., Tschofenig, H., and E. Rescorla "Framework for Establishing a Secure
Real-time Transport Protocol (SRTP) Security Context Using Datagram Transport
Layer Security (DTLS)" RFC 5763 DOI 10.17487/RFC5763 <https://
www.rfc-editor.org/info/rfc5763>

Lennox, J. and C. Holmberg "Connection-Oriented Media Transport over the
Transport Layer Security (TLS) Protocol in the Session Description Protocol
(SDP)" RFC 8122 DOI 10.17487/RFC8122 <https://www.rfc-
editor.org/info/rfc8122>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"
STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-
editor.org/info/rfc8259>

Wendt, C. and J. Peterson "PASSporT: Personal Assertion Token" RFC 8225 DOI
10.17487/RFC8225 <https://www.rfc-editor.org/info/rfc8225>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Handley, M., Jacobson, V., and C. Perkins "SDP: Session Description Protocol"
RFC 4566 DOI 10.17487/RFC4566 <https://www.rfc-editor.org/info/
rfc4566>

Eastlake 3rd, D. and T. Hansen "US Secure Hash Algorithms (SHA and SHA-
based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://
www.rfc-editor.org/info/rfc6234>

Peterson, J., Jennings, C., Rescorla, E., and C. Wendt "Authenticated Identity
Management in the Session Initiation Protocol (SIP)" RFC 8224 DOI 10.17487/
RFC8224 <https://www.rfc-editor.org/info/rfc8224>

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K. Norrman "The Secure
Real-time Transport Protocol (SRTP)" RFC 3711 DOI 10.17487/RFC3711

<https://www.rfc-editor.org/info/rfc3711>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Rescorla, E. "WebRTC Security Architecture" RFC 8827 DOI 10.17487/RFC8827
<https://www.rfc-editor.org/info/rfc8827>

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 15

https://www.rfc-editor.org/info/rfc5763
https://www.rfc-editor.org/info/rfc5763
https://www.rfc-editor.org/info/rfc8122
https://www.rfc-editor.org/info/rfc8122
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8225
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc4566
https://www.rfc-editor.org/info/rfc4566
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc8224
https://www.rfc-editor.org/info/rfc3711
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc8827

[AGILITY]

[ICE]

[RFC3725]

[RTCP-MUX]

[RTP]

[SIGMA]

[UKS]

[WEBRTC]

[ZRTP]

8.2. Informative References

,
, , ,

, November 2015, .

,

, , , July 2018,
.

,

, , , , April 2004,
.

,
, , , April 2010,

.

,
, , , ,

July 2003, .

,
,

, , ,
, August 2003,

.

,
, ,

, , , March 1999,
.

,
, ,

.

,
, , , April

2011, .

Housley, R. "Guidelines for Cryptographic Algorithm Agility and Selecting
Mandatory-to-Implement Algorithms" BCP 201 RFC 7696 DOI 10.17487/
RFC7696 <https://www.rfc-editor.org/info/rfc7696>

Keranen, A., Holmberg, C., and J. Rosenberg "Interactive Connectivity
Establishment (ICE): A Protocol for Network Address Translator (NAT)
Traversal" RFC 8445 DOI 10.17487/RFC8445 <https://www.rfc-
editor.org/info/rfc8445>

Rosenberg, J., Peterson, J., Schulzrinne, H., and G. Camarillo "Best Current
Practices for Third Party Call Control (3pcc) in the Session Initiation Protocol
(SIP)" BCP 85 RFC 3725 DOI 10.17487/RFC3725 <https://www.rfc-
editor.org/info/rfc3725>

Perkins, C. and M. Westerlund "Multiplexing RTP Data and Control Packets on a
Single Port" RFC 5761 DOI 10.17487/RFC5761 <https://www.rfc-
editor.org/info/rfc5761>

Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson "RTP: A Transport
Protocol for Real-Time Applications" STD 64 RFC 3550 DOI 10.17487/RFC3550

<https://www.rfc-editor.org/info/rfc3550>

Krawczyk, H. "SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols" Advances in Cryptology -- CRYPTO
2003 Lecture Notes in Computer Science Vol. 2729 DOI
10.1007/978-3-540-45146-4_24 <https://
doi.org/10.1007/978-3-540-45146-4_24>

Blake-Wilson, S. and A. Menezes "Unknown Key-Share Attacks on the Station-to-
Station (STS) Protocol" Public Key Cryptography Lecture Notes in Computer
Science Vol. 1560 DOI 10.1007/3-540-49162-7_12 <https://
doi.org/10.1007/3-540-49162-7_12>

Jennings, C., Boström, H., and J-I. Bruaroey "WebRTC 1.0: Real-time
Communication Between Browsers" W3C Proposed Recommendation <https://
www.w3.org/TR/webrtc/>

Zimmermann, P., Johnston, A., Ed., and J. Callas "ZRTP: Media Path Key
Agreement for Unicast Secure RTP" RFC 6189 DOI 10.17487/RFC6189

<https://www.rfc-editor.org/info/rfc6189>

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 16

https://www.rfc-editor.org/info/rfc7696
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc8445
https://www.rfc-editor.org/info/rfc3725
https://www.rfc-editor.org/info/rfc3725
https://www.rfc-editor.org/info/rfc5761
https://www.rfc-editor.org/info/rfc5761
https://www.rfc-editor.org/info/rfc3550
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/3-540-49162-7_12
https://www.w3.org/TR/webrtc/
https://www.w3.org/TR/webrtc/
https://www.rfc-editor.org/info/rfc6189

Acknowledgements
This problem would not have been discovered if it weren't for discussions with ,

, and . A solution similar to the one presented here was first proposed
by , who provided valuable input on this document.
assisted with a formal model of the solution. and provided significant
review and input.

Sam Scott Hugo
Krawczyk Richard Barnes

Karthik Bhargavan Thyla van der Merwe
Adam Roach Paul E. Jones

Authors' Addresses
Martin Thomson
Mozilla

 mt@lowentropy.net Email:

Eric Rescorla
Mozilla

 ekr@rtfm.com Email:

RFC 8844 SDP UKS January 2021

Thomson & Rescorla Standards Track Page 17

mailto:mt@lowentropy.net
mailto:ekr@rtfm.com

	RFC 8844
	Unknown Key-Share Attacks on Uses of TLS with the Session Description Protocol (SDP)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Unknown Key-Share Attack
	2.1. Limits on Attack Feasibility
	2.2. Interactions with Key Continuity
	2.3. Third-Party Call Control

	3. Unknown Key-Share Attack with Identity Bindings
	3.1. Example
	3.2. The external_id_hash TLS Extension
	3.2.1. Calculating external_id_hash for WebRTC Identity
	3.2.2. Calculating external_id_hash for PASSporT

	4. Unknown Key-Share Attack with Fingerprints
	4.1. Example
	4.2. Unique Session Identity Solution
	4.3. The external_session_id TLS Extension

	5. Session Concatenation
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgements
	Authors' Addresses

 Unknown Key-Share Attacks on Uses of TLS with the Session Description Protocol (SDP)

 Mozilla

 mt@lowentropy.net

 Mozilla

 ekr@rtfm.com

 Unknown Key-Share Attack
 SDP
 DTLS-SRTP
 WebRTC
 SIP identity

 This document describes unknown key-share attacks on the use of
 Datagram Transport Layer Security for the Secure Real-Time Transport
 Protocol (DTLS-SRTP). Similar attacks are described on the use of
 DTLS-SRTP with the identity bindings used in Web Real-Time
 Communications (WebRTC) and SIP identity. These attacks are difficult
 to mount, but they cause a victim to be misled about the identity of a
 communicating peer. This document defines mitigation techniques that
 implementations of RFC 8122 are encouraged to deploy.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Unknown Key-Share Attack

 . Limits on Attack Feasibility

 . Interactions with Key Continuity

 . Third-Party Call Control

 . Unknown Key-Share Attack with Identity Bindings

 . Example

 . The external_id_hash TLS Extension

 . Calculating external_id_hash for WebRTC Identity

 . Calculating external_id_hash for PASSporT

 . Unknown Key-Share Attack with Fingerprints

 . Example

 . Unique Session Identity Solution

 . The external_session_id TLS Extension

 . Session Concatenation

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 The use of Transport Layer Security (TLS) with the Session Description Protocol (SDP) is defined in . Further use with Datagram Transport Layer Security
 (DTLS) and the Secure
 Real-time Transport Protocol (SRTP) is defined as DTLS-SRTP .
 In these specifications, key agreement is performed using TLS or DTLS, with
authentication being tied back to the session description (or SDP) through the
use of certificate fingerprints. Communication peers check that a hash, or
fingerprint, provided in the SDP matches the certificate that is used in the TLS
or DTLS handshake.
 WebRTC identity (see)
and SIP identity both provide a mechanism that binds an
external identity to the certificate fingerprints from a session description.
However, this binding is not integrity protected and is therefore vulnerable to an
identity misbinding attack, also known as an unknown key-share (UKS) attack, where the
attacker binds their identity to the fingerprint of another entity. A
successful attack leads to the creation of sessions where peers are confused
about the identity of the participants.
 This document describes a TLS extension that can be used in combination with
these identity bindings to prevent this attack.
 A similar attack is possible with the use of certificate fingerprints alone.
 Though attacks in this setting are likely infeasible in existing
 deployments due to the narrow preconditions
(see), this document also
describes mitigations for this attack.
 The mechanisms defined in this document are intended to strengthen the protocol
by preventing the use of unknown key-share attacks in combination with other protocol
or implementation vulnerabilities. RFC 8122 is updated by this
document to recommend the use of these mechanisms.
 This document assumes that signaling is integrity protected. However, as
 explains, many deployments that use SDP do not
guarantee integrity of session signaling and so are vulnerable to other attacks.
 offers key continuity mechanisms as a potential means of
reducing exposure to attack in the absence of integrity protection.
 provides some analysis of the effect of key continuity in
relation to the described attacks.

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Unknown Key-Share Attack
 In an unknown key-share attack , a malicious participant in a protocol
claims to control a key that is in reality controlled by some other actor. This
arises when the identity associated with a key is not properly bound to the key.
 An endpoint that can acquire the certificate fingerprint of another entity can
advertise that fingerprint as their own in SDP.
 An attacker can use a copy of that fingerprint to cause a victim to
 communicate with another unaware victim, even though the first victim believes
 that it is communicating with the attacker.

 When the identity of communicating peers is established by higher-layer
signaling constructs, such as those in SIP identity or WebRTC
 , this allows an attacker to bind their own identity to a session
with any other entity.
 The attacker obtains an identity assertion for an identity it controls, but
binds that to the fingerprint of one peer. The attacker is then able to cause a
TLS connection to be established where two victim endpoints communicate. The
victim that has its fingerprint copied by the attack correctly believes that it
is communicating with the other victim; however, the other victim incorrectly
believes that it is communicating with the attacker.
 An unknown key-share attack does not result in the attacker having access to any
confidential information exchanged between victims. However, the failure in
mutual authentication can enable other attacks. A victim might send information
to the wrong entity as a result. Where information is interpreted in context,
misrepresenting that context could lead to the information being misinterpreted.
 A similar attack can be mounted based solely on the SDP fingerprint attribute
 without compromising the integrity of the signaling channel.
 This attack is an aspect of SDP-based protocols upon which the technique known as
third-party call control (3PCC) relies. 3PCC exploits the
potential for the identity of a signaling peer to be different than the media
peer, allowing the media peer to be selected by the signaling peer.
 describes the consequences of the mitigations described here for
systems that use 3PCC.

 Limits on Attack Feasibility
 The use of TLS with SDP depends on the integrity of session signaling. Assuming
signaling integrity limits the capabilities of an attacker in several ways. In
particular:

 An attacker can only modify the parts of the session signaling that they are
responsible for producing, namely their own offers and answers.
 No entity will successfully establish a session with a peer unless they are
willing to participate in a session with that peer.

 The combination of these two constraints make the spectrum of possible attacks
quite limited. An attacker is only able to switch its own certificate
fingerprint for a valid certificate that is acceptable to its peer. Attacks
therefore rely on joining two separate sessions into a single session.
describes an attack on SDP signaling under these constraints.
 Systems that rely on strong identity bindings, such as those defined in
 or , have a different threat model, which admits the
possibility of attack by an entity with access to the signaling channel.
Attacks under these conditions are more feasible as an attacker is assumed to be
able both to observe and to modify signaling messages. describes an attack
that assumes this threat model.

 Interactions with Key Continuity
 Systems that use key continuity (as defined in

or as recommended in) might be able to detect an
unknown key-share attack if a session with either the attacker or the genuine
peer (i.e., the victim whose fingerprint was copied by an attacker) was
established in the past. Whether this is possible depends on how key continuity
is implemented.
 Implementations that maintain a single database of identities with an index of
peer keys could discover that the identity saved for the peer key does not match
the claimed identity. Such an implementation could notice the disparity between
the actual keys (those copied from a victim) and the expected keys (those of the
attacker).
 In comparison, implementations that first match based on peer identity could
treat an unknown key-share attack as though their peer had used a
newly configured device. The apparent addition of a new device could generate
user-visible notices (e.g., "Mallory appears to have a new device"). However,
such an event is not always considered alarming; some implementations might
silently save a new key.

 Third-Party Call Control
 Third-party call control (3PCC) is a technique where a signaling
peer establishes a call that is terminated by a different entity. An unknown
key-share attack is very similar in effect to some 3PCC practices, so use of
3PCC could appear to be an attack. However, 3PCC that follows RFC 3725 guidance
is unaffected, and peers that are aware of changes made by a 3PCC controller can
correctly distinguish actions of a 3PCC controller from an attack.
 3PCC as described in RFC 3725 is incompatible with SIP identity , as
SIP Identity relies on creating a binding between SIP requests and SDP. The
controller is the only entity that generates SIP requests in RFC 3725.
Therefore, in a 3PCC context, only the use of the fingerprint attribute
without additional bindings or WebRTC identity is possible.
 The attack mitigation mechanisms described in this document will prevent the use
of 3PCC if peers have different views of the involved identities or the value
of SDP tls-id attributes.
 For 3PCC to work with the proposed mechanisms, TLS peers need to be aware of the
signaling so that they can correctly generate and check the TLS extensions. For
a connection to be successfully established, a 3PCC controller needs either to
forward SDP without modification or to avoid modifications to fingerprint,
 tls-id, and identity attributes. A controller that follows the best
practices in RFC 3725 is expected to forward SDP without modification, thus
ensuring the integrity of these attributes.

 Unknown Key-Share Attack with Identity Bindings
 The identity assertions used for WebRTC
() and the
Personal Assertion Token (PASSporT) used in SIP identity (,) are bound
to the certificate fingerprint of an endpoint. An attacker can cause an identity
binding to be created that binds an identity they control to the fingerprint of
a first victim.
 An attacker can thereby cause a second victim to believe that they are
communicating with an attacker-controlled identity, when they are really talking
to the first victim. The attacker does this by creating an identity assertion
that covers a certificate fingerprint of the first victim.
 A variation on the same technique can be used to cause both victims to
believe they are talking to the attacker when they are talking to each other.
In this case, the attacker performs the identity misbinding once for each
victim.
 The authority certifying the identity binding is not required to
 verify that the entity requesting the binding actually controls the
 keys associated with the fingerprints, and this might appear to be
 the cause of the problem. SIP and WebRTC identity providers are not
 required to perform this validation.
 A simple solution to this problem is suggested by . The identity of
endpoints is included under a message authentication code (MAC) during the
cryptographic handshake. Endpoints then validate that their peer has provided
an identity that matches their expectations. In TLS, the Finished message
provides a MAC over the entire handshake, so that including the identity in a
TLS extension is sufficient to implement this solution.
 Rather than include a complete identity binding, which could be
sizable, a collision- and preimage-resistant hash of the binding is included
in a TLS extension as described in . Endpoints then need
only validate that the extension contains a hash of the identity binding they
received in signaling. If the identity binding is successfully validated, the
identity of a peer is verified and bound to the session.
 This form of unknown key-share attack is possible without compromising signaling
integrity, unless the defenses described in are used. In order to
prevent both forms of attack, endpoints MUST use the external_session_id
extension (see) in addition to the external_id_hash
() so that two calls between the same parties can't be
altered by an attacker.

 Example
 In the example shown in , it is assumed that the attacker
also controls the signaling channel.
 Mallory (the attacker) presents two victims, Norma and Patsy, with two separate
sessions. In the first session, Norma is presented with the option to
communicate with Mallory; a second session with Norma is presented to Patsy.

 Example Attack on Identity Bindings

 Norma Mallory Patsy
 (fp=N) ----- (fp=P)
 | | |
 |<---- Signaling1 ------>| |
 | Norma=N Mallory=P | |
 | |<---- Signaling2 ------>|
 | | Norma=N Patsy=P |
 | |
 |<=================DTLS (fp=N,P)=================>|
 | |
 (peer = Mallory!) (peer = Norma)

 The attack requires that Mallory obtain an identity binding for her own identity
with the fingerprints presented by Patsy (P), which Mallory might have obtained
previously. This false binding is then presented to Norma ('Signaling1' in
).
 Patsy could be similarly duped, but in this example, a correct binding between
Norma's identity and fingerprint (N) is faithfully presented by Mallory. This
session ('Signaling2' in) can be entirely legitimate.
 A DTLS session is established directly between Norma and Patsy.
 In order for this to happen, Mallory can substitute transport-level
 information in both sessions, though this is not necessary if Mallory
 is on the network path between Norma and Patsy.

 As a result, Patsy correctly believes that she is communicating with Norma.
However, Norma incorrectly believes that she is talking to Mallory. As stated in
 , Mallory cannot access media, but Norma might send information to Patsy
that Norma might not intend or that Patsy might misinterpret.

 The external_id_hash TLS Extension
 The external_id_hash TLS extension carries a hash of the identity assertion
that the endpoint sending the extension has asserted to its peer. Both peers
include a hash of their own identity assertion.
 The extension_data for the external_id_hash extension contains a
 ExternalIdentityHash struct, described below using the syntax defined in
 :

 struct {
 opaque binding_hash<0..32>;
 } ExternalIdentityHash;

 Where an identity assertion has been asserted by a peer, this extension includes
a SHA-256 hash of the assertion. An empty value is used to indicate support for
the extension.

 Note:

 For both types of identity assertion, if SHA-256 should prove to be inadequate
in the future (see), a new TLS extension
that uses a different hash function can be defined.

 Identity bindings might be provided by only one peer. An endpoint that does not
produce an identity binding MUST generate an empty external_id_hash extension
in its ClientHello or -- if a client provides the extension -- in ServerHello or
EncryptedExtensions. An empty extension has a zero-length binding_hash field.
 A peer that receives an external_id_hash extension that does not match the
value of the identity binding from its peer MUST immediately fail the TLS
handshake with an illegal_parameter alert. The absence of an identity binding
does not relax this requirement; if a peer provided no identity binding, a
zero-length extension MUST be present to be considered valid.
 Implementations written prior to the definition of the extensions in this
document will not support this extension for some time. A peer that receives an
identity binding but does not receive an external_id_hash extension MAY accept
a TLS connection rather than fail a connection where the extension is absent.

 The endpoint performs the validation of the external_id_hash extension
 in addition to the validation required by and any verification
 of the identity assertion .
 An endpoint MUST validate any external_session_id value that is present; see .

 An external_id_hash extension with a binding_hash field
that is any length other than 0 or 32 is invalid
and MUST cause the receiving endpoint to generate a fatal decode_error alert.
 In TLS 1.3, an external_id_hash extension sent by a server MUST be sent in the
EncryptedExtensions message.

 Calculating external_id_hash for WebRTC Identity
 A WebRTC identity assertion
() is provided as a JSON
 object that is encoded into a JSON text. The JSON text is
encoded using UTF-8 as described by
 .
The content of the external_id_hash extension is produced by hashing the
resulting octets with SHA-256 . This produces the 32 octets of
the binding_hash parameter, which is the sole contents of the extension.
 The SDP identity attribute includes the base64 encoding of
the UTF-8 encoding of the same JSON text. The external_id_hash extension is
validated by performing base64 decoding on the value of the SDP identity
attribute, hashing the resulting octets using SHA-256, and comparing the results
with the content of the extension. In pseudocode form, using the
 identity-assertion-value field from the SDP identity attribute grammar as
defined in :

external_id_hash = SHA-256(b64decode(identity-assertion-value))

 Note:

 The base64 of the SDP identity attribute is decoded to avoid capturing
variations in padding. The base64-decoded identity assertion could include
leading or trailing whitespace octets. WebRTC identity assertions are not
canonicalized; all octets are hashed.

 Calculating external_id_hash for PASSporT
 Where the compact form of PASSporT
is used, it MUST be expanded
into the full form. The base64 encoding used in the SIP Identity (or 'y')
header field MUST be decoded then used as input to SHA-256. This produces the
32-octet binding_hash value used for creating or validating the extension. In
pseudocode, using the signed-identity-digest parameter from the Identity header field grammar
defined :

external_id_hash = SHA-256(b64decode(signed-identity-digest))

 Unknown Key-Share Attack with Fingerprints
 An attack on DTLS-SRTP is possible because the identity of peers involved is not
established prior to establishing the call. Endpoints use certificate
fingerprints as a proxy for authentication, but as long as fingerprints are used
in multiple calls, they are vulnerable to attack.
 Even if the integrity of session signaling can be relied upon, an attacker might
still be able to create a session where there is confusion about the
communicating endpoints by substituting the fingerprint of a communicating
endpoint.
 An endpoint that is configured to reuse a certificate can be attacked if it is
willing to initiate two calls at the same time, one of which is with an
attacker. The attacker can arrange for the victim to incorrectly believe that
it is calling the attacker when it is in fact calling a second party. The
second party correctly believes that it is talking to the victim.
 As with the attack on identity bindings, this can be used to cause two victims
to both believe they are talking to the attacker when they are talking to each
other.

 Example
 To mount this attack, two sessions need to be created with the same endpoint at
almost precisely the same time. One of those sessions is initiated with the
attacker, the second session is created toward another honest endpoint. The
attacker convinces the first endpoint that their session with the attacker has
been successfully established, but media is exchanged with the other honest
endpoint. The attacker permits the session with the other honest endpoint to
complete only to the extent necessary to convince the other honest endpoint to
participate in the attacked session.
 In addition to the constraints described in , the attacker in this
example also needs the ability to view and drop packets between victims.
That is, the attacker needs to be on path for media.
 The attack shown in depends on a somewhat implausible set
of conditions. It is intended to demonstrate what sort of attack is possible
and what conditions are necessary to exploit this weakness in the protocol.

 Example Attack Scenario Using Fingerprints

 Norma Mallory Patsy
 (fp=N) ----- (fp=P)
 | | |
 +---Signaling1 (fp=N)--->| |
 +-----Signaling2 (fp=N)------------------------>|
 |<-------------------------Signaling2 (fp=P)----+
 |<---Signaling1 (fp=P)---+ |
 | | |
 |=======DTLS1=======>(Forward)======DTLS1======>|
 |<======DTLS2========(Forward)<=====DTLS2=======|
 |=======Media1======>(Forward)======Media1=====>|
 |<======Media2=======(Forward)<=====Media2======|
 | | |
 |=======DTLS2========>(Drop) |
 | | |

 In this scenario, there are two sessions initiated at the same time by Norma.
Signaling is shown with single lines ('-'), DTLS and media with double lines
('=').
 The first session is established with Mallory, who falsely uses Patsy's
certificate fingerprint (denoted with 'fp=P'). A second session is initiated
between Norma and Patsy. Signaling for both sessions is permitted to complete.
 Once signaling is complete on the first session, a DTLS connection is
established. Ostensibly, this connection is between Mallory and Norma, but
Mallory forwards DTLS and media packets sent to her by Norma to Patsy. These
packets are denoted 'DTLS1' because Norma associates these with the first
signaling session ('Signaling1').
 Mallory also intercepts packets from Patsy and forwards those to Norma at the
transport address that Norma associates with Mallory. These packets are denoted
'DTLS2' to indicate that Patsy associates these with the second signaling
session ('Signaling2'); however, Norma will interpret these as being associated
with the first signaling session ('Signaling1').
 The second signaling exchange ('Signaling2'), which is between Norma and Patsy, is
permitted to continue to the point where Patsy believes that it has succeeded.
This ensures that Patsy believes that she is communicating with Norma. In the
end, Norma believes that she is communicating with Mallory, when she is really
communicating with Patsy. Just like the example in , Mallory
cannot access media, but Norma might send information to Patsy that Norma
might not intend or that Patsy might misinterpret.
 Though Patsy needs to believe that the second signaling session has been
successfully established, Mallory has no real interest in seeing that session
also be established. Mallory only needs to ensure that Patsy maintains the
active session and does not abandon the session prematurely. For this reason,
it might be necessary to permit the signaling from Patsy to reach Norma in order to allow
Patsy to receive a call setup completion signal, such as a SIP ACK. Once the
second session is established, Mallory might cause DTLS packets sent by Norma to
Patsy to be dropped. However, if Mallory allows DTLS packets to pass, it is
likely that Patsy will discard them as Patsy will already have a successful DTLS
connection established.
 For the attacked session to be sustained beyond the point that Norma detects
errors in the second session, Mallory also needs to block any signaling that
Norma might send to Patsy asking for the call to be abandoned. Otherwise, Patsy
might receive a notice that the call has failed and thereby abort the call.
 This attack creates an asymmetry in the beliefs about the identity of peers.
However, this attack is only possible if the victim (Norma) is willing to
conduct two sessions nearly simultaneously; if the attacker (Mallory) is on the
network path between the victims; and if the same certificate -- and therefore
the SDP fingerprint attribute value -- is used by Norma for both sessions.
 Where Interactive Connectivity Establishment (ICE)
is used, Mallory also needs to ensure that
connectivity checks between Patsy and Norma succeed, either by forwarding checks
or by answering and generating the necessary messages.

 Unique Session Identity Solution
 The solution to this problem is to assign a new identifier to communicating
peers. Each endpoint assigns their peer a unique identifier during call
signaling. The peer echoes that identifier in the TLS handshake, binding that
identity into the session. Including this new identity in the TLS handshake
means that it will be covered by the TLS Finished message, which is necessary to
authenticate it (see).
 Successfully validating that the identifier matches the expected value means that
the connection corresponds to the signaled session and is therefore established
between the correct two endpoints.
 This solution relies on the unique identifier given to DTLS sessions using the
SDP tls-id attribute . This field is
already required to be unique. Thus, no two offers or answers from the same
client will have the same value.
 A new external_session_id extension is added to the TLS or DTLS handshake for
connections that are established as part of the same call or real-time session.
This carries the value of the tls-id attribute and provides integrity
protection for its exchange as part of the TLS or DTLS handshake.

 The external_session_id TLS Extension
 The external_session_id TLS extension carries the unique identifier that an
endpoint selects. When used with SDP, the value MUST include the tls-id
attribute from the SDP that the endpoint generated when negotiating the session.
This document only defines use of this extension for SDP; other methods of
external session negotiation can use this extension to include a unique session
identifier.
 The extension_data for the external_session_id extension contains an
ExternalSessionId struct, described below using the syntax defined in
 :

 struct {
 opaque session_id<20..255>;
 } ExternalSessionId;

 For SDP, the session_id field of the extension includes the value of the
 tls-id SDP attribute as defined in
(that is, the tls-id-value ABNF production). The value of the tls-id
attribute is encoded using ASCII .
 Where RTP and RTCP are not multiplexed, it is possible that the
two separate DTLS connections carrying RTP and RTCP can be switched. This is
considered benign since these protocols are designed to be distinguishable as
SRTP provides key separation. Using RTP/RTCP multiplexing
 further avoids this problem.
 The external_session_id extension is included in a ClientHello, and if the
extension is present in the ClientHello, either ServerHello (for TLS and DTLS
versions older than 1.3) or EncryptedExtensions (for TLS 1.3).
 Endpoints MUST check that the session_id parameter in the extension that they
receive includes the tls-id attribute value that they received in their peer's
session description. Endpoints can perform string comparison by ASCII decoding
the TLS extension value and comparing it to the SDP attribute value or by comparing
the encoded TLS extension octets with the encoded SDP attribute value. An
endpoint that receives an external_session_id extension that is not identical
to the value that it expects MUST abort the connection with a fatal
 illegal_parameter alert.

 The endpoint performs the validation of the external_id_hash extension in
 addition to the validation required by .

 If an endpoint communicates with a peer that does not support this
extension, it will receive a ClientHello, ServerHello, or EncryptedExtensions message that
does not include this extension. An endpoint MAY choose to continue a session
without this extension in order to interoperate with peers that do not implement
this specification.
 In TLS 1.3, an external_session_id extension sent by a server MUST be sent in
the EncryptedExtensions message.
 This defense is not effective if an attacker can rewrite tls-id values in
signaling. Only the mechanism in external_id_hash is able to defend against
an attacker that can compromise session integrity.

 Session Concatenation
 Use of session identifiers does not prevent an attacker from
establishing two concurrent sessions with different peers and
forwarding signaling from those peers to each other. Concatenating
two signaling sessions in this way creates two signaling sessions,
with two session identifiers, but only the TLS connections from a
single session are established as a result. In doing so, the
attacker creates a situation where both peers believe that they are
talking to the attacker when they are talking to each other.
 In the absence of any higher-level concept of peer identity, an
attacker who is able to copy the session identifier from
one signaling session to another can cause the peers to establish a
direct TLS connection even while they think that they are connecting
to the attacker. This differs from the attack described in the
previous section in that there is only one TLS connection rather than
two. This kind of attack is prevented by systems that enable peer
authentication, such as WebRTC identity or SIP identity
 ; however, these systems do not prevent establishing
two back-to-back connections as described in the previous paragraph.
 Use of the external_session_id does not guarantee that the identity of the
peer at the TLS layer is the same as the identity of the signaling peer. The
advantage that an attacker gains by concatenating sessions is limited unless data is
exchanged based on the assumption that signaling and TLS peers are the same. If a
secondary protocol uses the signaling channel with the assumption that the
signaling and TLS peers are the same, then that protocol is vulnerable to attack.
While out of scope for this document, a signaling system that can defend against session concatenation
requires that the signaling layer is authenticated and bound to any TLS connections.
 It is important to note that multiple connections can be created within the same
signaling session. An attacker might concatenate only part of a session,
choosing to terminate some connections (and optionally forward data) while
arranging to have peers interact directly for other connections. It is even
possible to have different peers interact for each connection. This means that
the actual identity of the peer for one connection might differ from the peer on
another connection.
 Critically, information about the identity of TLS peers provides no assurances
about the identity of signaling peers and does not transfer between TLS
connections in the same session. Information extracted from a TLS connection
therefore MUST NOT be used in a secondary protocol outside of that connection if
that protocol assumes that the signaling protocol has the same peers.
Similarly, security-sensitive information from one TLS connection MUST NOT be
used in other TLS connections even if they are established as a result of the
same signaling session.

 Security Considerations
 When combined with identity assertions, the mitigations in this document ensure
that there is no opportunity to misrepresent the identity of TLS peers. This
assurance is provided even if an attacker can modify signaling messages.
 Without identity assertions, the mitigations in this document prevent the
session splicing attack described in . Defense against session
concatenation () additionally requires that protocol peers are not able to
claim the certificate fingerprints of other entities.

 IANA Considerations
 This document registers two extensions in the "TLS ExtensionType Values"
registry established in :

 The external_id_hash extension defined in has been
assigned a code point of 55; it is recommended and is marked as "CH, EE"
in TLS 1.3.
 The external_session_id extension defined in has
been assigned a code point of 56; it is recommended and is marked as
"CH, EE" in TLS 1.3.

 References

 Normative References

 ASCII format for network interchange

 The Base16, Base32, and Base64 Data Encodings

 This document describes the commonly used base 64, base 32, and base 16 encoding schemes. It also discusses the use of line-feeds in encoded data, use of padding in encoded data, use of non-alphabet characters in encoded data, use of different encoding alphabets, and canonical encodings. [STANDARDS-TRACK]

 Datagram Transport Layer Security Version 1.2

 This document specifies version 1.2 of the Datagram Transport Layer Security (DTLS) protocol. The DTLS protocol provides communications privacy for datagram protocols. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. The DTLS protocol is based on the Transport Layer Security (TLS) protocol and provides equivalent security guarantees. Datagram semantics of the underlying transport are preserved by the DTLS protocol. This document updates DTLS 1.0 to work with TLS version 1.2. [STANDARDS-TRACK]

 Session Description Protocol (SDP) Offer/Answer Considerations for Datagram Transport Layer Security (DTLS) and Transport Layer Security (TLS)

 Framework for Establishing a Secure Real-time Transport Protocol (SRTP) Security Context Using Datagram Transport Layer Security (DTLS)

 This document specifies how to use the Session Initiation Protocol (SIP) to establish a Secure Real-time Transport Protocol (SRTP) security context using the Datagram Transport Layer Security (DTLS) protocol. It describes a mechanism of transporting a fingerprint attribute in the Session Description Protocol (SDP) that identifies the key that will be presented during the DTLS handshake. The key exchange travels along the media path as opposed to the signaling path. The SIP Identity mechanism can be used to protect the integrity of the fingerprint attribute from modification by intermediate proxies. [STANDARDS-TRACK]

 Connection-Oriented Media Transport over the Transport Layer Security (TLS) Protocol in the Session Description Protocol (SDP)

 This document specifies how to establish secure connection-oriented media transport sessions over the Transport Layer Security (TLS) protocol using the Session Description Protocol (SDP). It defines the SDP protocol identifier, 'TCP/TLS'. It also defines the syntax and semantics for an SDP 'fingerprint' attribute that identifies the certificate that will be presented for the TLS session. This mechanism allows media transport over TLS connections to be established securely, so long as the integrity of session descriptions is assured.
 This document obsoletes RFC 4572 by clarifying the usage of multiple fingerprints.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 PASSporT: Personal Assertion Token

 This document defines a method for creating and validating a token that cryptographically verifies an originating identity or, more generally, a URI or telephone number representing the originator of personal communications. The Personal Assertion Token, PASSporT, is cryptographically signed to protect the integrity of the identity of the originator and to verify the assertion of the identity information at the destination. The cryptographic signature is defined with the intention that it can confidently verify the originating persona even when the signature is sent to the destination party over an insecure channel. PASSporT is particularly useful for many personal-communications applications over IP networks and other multi-hop interconnection scenarios where the originating and destination parties may not have a direct trusted relationship.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 SDP: Session Description Protocol

 This memo defines the Session Description Protocol (SDP). SDP is intended for describing multimedia sessions for the purposes of session announcement, session invitation, and other forms of multimedia session initiation. [STANDARDS-TRACK]

 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

 Federal Information Processing Standard, FIPS

 Authenticated Identity Management in the Session Initiation Protocol (SIP)

 The baseline security mechanisms in the Session Initiation Protocol (SIP) are inadequate for cryptographically assuring the identity of the end users that originate SIP requests, especially in an interdomain context. This document defines a mechanism for securely identifying originators of SIP requests. It does so by defining a SIP header field for conveying a signature used for validating the identity and for conveying a reference to the credentials of the signer.
 This document obsoletes RFC 4474.

 The Secure Real-time Transport Protocol (SRTP)

 This document describes the Secure Real-time Transport Protocol (SRTP), a profile of the Real-time Transport Protocol (RTP), which can provide confidentiality, message authentication, and replay protection to the RTP traffic and to the control traffic for RTP, the Real-time Transport Control Protocol (RTCP). [STANDARDS-TRACK]

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 WebRTC Security Architecture

 Informative References

 Guidelines for Cryptographic Algorithm Agility and Selecting Mandatory-to-Implement Algorithms

 Many IETF protocols use cryptographic algorithms to provide confidentiality, integrity, authentication, or digital signature. Communicating peers must support a common set of cryptographic algorithms for these mechanisms to work properly. This memo provides guidelines to ensure that protocols have the ability to migrate from one mandatory-to-implement algorithm suite to another over time.

 Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal

 This document describes a protocol for Network Address Translator (NAT) traversal for UDP-based communication. This protocol is called Interactive Connectivity Establishment (ICE). ICE makes use of the Session Traversal Utilities for NAT (STUN) protocol and its extension, Traversal Using Relay NAT (TURN).
 This document obsoletes RFC 5245.

 Best Current Practices for Third Party Call Control (3pcc) in the Session Initiation Protocol (SIP)

 Third party call control refers to the ability of one entity to create a call in which communication is actually between other parties. Third party call control is possible using the mechanisms specified within the Session Initiation Protocol (SIP). However, there are several possible approaches, each with different benefits and drawbacks. This document discusses best current practices for the usage of SIP for third party call control. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Multiplexing RTP Data and Control Packets on a Single Port

 This memo discusses issues that arise when multiplexing RTP data packets and RTP Control Protocol (RTCP) packets on a single UDP port. It updates RFC 3550 and RFC 3551 to describe when such multiplexing is and is not appropriate, and it explains how the Session Description Protocol (SDP) can be used to signal multiplexed sessions. [STANDARDS-TRACK]

 RTP: A Transport Protocol for Real-Time Applications

 This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guarantee quality-of- service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers. Most of the text in this memorandum is identical to RFC 1889 which it obsoletes. There are no changes in the packet formats on the wire, only changes to the rules and algorithms governing how the protocol is used. The biggest change is an enhancement to the scalable timer algorithm for calculating when to send RTCP packets in order to minimize transmission in excess of the intended rate when many participants join a session simultaneously. [STANDARDS-TRACK]

 SIGMA: The 'SIGn-and-MAc' Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols

 Advances in Cryptology -- CRYPTO 2003
 Lecture Notes in Computer Science
 Vol. 2729

 Unknown Key-Share Attacks on the Station-to-Station (STS) Protocol

 Public Key Cryptography
 Lecture Notes in Computer Science
 Vol. 1560

 WebRTC 1.0: Real-time Communication Between Browsers

 W3C Proposed Recommendation

 ZRTP: Media Path Key Agreement for Unicast Secure RTP

 This document defines ZRTP, a protocol for media path Diffie-Hellman exchange to agree on a session key and parameters for establishing unicast Secure Real-time Transport Protocol (SRTP) sessions for Voice over IP (VoIP) applications. The ZRTP protocol is media path keying because it is multiplexed on the same port as RTP and does not require support in the signaling protocol. ZRTP does not assume a Public Key Infrastructure (PKI) or require the complexity of certificates in end devices. For the media session, ZRTP provides confidentiality, protection against man-in-the-middle (MiTM) attacks, and, in cases where the signaling protocol provides end-to-end integrity protection, authentication. ZRTP can utilize a Session Description Protocol (SDP) attribute to provide discovery and authentication through the signaling channel. To provide best effort SRTP, ZRTP utilizes normal RTP/AVP (Audio-Visual Profile) profiles. ZRTP secures media sessions that include a voice media stream and can also secure media sessions that do not include voice by using an optional digital signature. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Acknowledgements
 This problem would not have been discovered if it weren't for
 discussions with , , and . A
 solution similar to the one presented here was first proposed by
 , who provided valuable input on
 this document. assisted with
 a formal model of the solution. and
 provided significant review and
 input.

 Authors' Addresses

 Mozilla

 mt@lowentropy.net

 Mozilla

 ekr@rtfm.com

