
RFC 8945
Secret Key Transaction Authentication for DNS
(TSIG)

Abstract
This document describes a protocol for transaction-level authentication using shared secrets and
one-way hashing. It can be used to authenticate dynamic updates to a DNS zone as coming from
an approved client or to authenticate responses as coming from an approved name server.

No recommendation is made here for distributing the shared secrets; it is expected that a
network administrator will statically configure name servers and clients using some out-of-band
mechanism.

This document obsoletes RFCs 2845 and 4635.

Stream: Internet Engineering Task Force (IETF)
RFC: 8945
STD: 93
Obsoletes: 2845, 4635
Category: Standards Track
Published: November 2020
ISSN: 2070-1721
Authors:

 F. Dupont
ISC

S. Morris
Una�liated

P. Vixie
Farsight

D. Eastlake 3rd
Futurewei

O. Gudmundsson
Cloudflare

B. Wellington
Akamai

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8945

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Dupont, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8945
https://www.rfc-editor.org/rfc/rfc2845
https://www.rfc-editor.org/rfc/rfc4635
https://www.rfc-editor.org/info/rfc8945

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Background

1.2. Protocol Overview

1.3. Document History

2. Key Words

3. Assigned Numbers

4. TSIG RR Format

4.1. TSIG RR Type

4.2. TSIG Record Format

4.3. MAC Computation

4.3.1. Request MAC

4.3.2. DNS Message

4.3.3. TSIG Variables

5. Protocol Details

5.1. Generation of TSIG on Requests

5.2. Server Processing of Request

5.2.1. Key Check and Error Handling

5.2.2. MAC Check and Error Handling

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 2

https://trustee.ietf.org/license-info

1. Introduction

1.1. Background
The Domain Name System (DNS) () is a replicated hierarchical distributed
database system that provides information fundamental to Internet operations, such as name-to-
address translation and mail-handling information.

5.2.3. Time Check and Error Handling

5.2.4. Truncation Check and Error Handling

5.3. Generation of TSIG on Answers

5.3.1. TSIG on TCP Connections

5.3.2. Generation of TSIG on Error Returns

5.4. Client Processing of Answer

5.4.1. Key Error Handling

5.4.2. MAC Error Handling

5.4.3. Time Error Handling

5.4.4. Truncation Error Handling

5.5. Special Considerations for Forwarding Servers

6. Algorithms and Identifiers

7. TSIG Truncation Policy

8. Shared Secrets

9. IANA Considerations

10. Security Considerations

10.1. Issue Fixed in This Document

10.2. Why Not DNSSEC?

11. References

11.1. Normative References

11.2. Informative References

Acknowledgements

Authors' Addresses

[RFC1034] [RFC1035]

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 3

This document specifies use of a message authentication code (MAC), generated using certain
keyed hash functions, to provide an efficient means of point-to-point authentication and integrity
checking for DNS transactions. Such transactions include DNS update requests and responses for
which this can provide a lightweight alternative to the secure DNS dynamic update protocol
described by .

A further use of this mechanism is to protect zone transfers. In this case, the data covered would
be the whole zone transfer including any glue records sent. The protocol described by DNSSEC
(, ,) does not protect glue records and unsigned records.

The authentication mechanism proposed here provides a simple and efficient authentication
between clients and servers, by using shared secret keys to establish a trust relationship between
two entities. Such keys must be protected in a manner similar to private keys, lest a third party
masquerade as one of the intended parties (by forging the MAC). The proposal is unsuitable for
general server-to-server authentication and for servers that speak with many other servers, since
key management would become unwieldy with the number of shared keys going up
quadratically. But it is suitable for many resolvers on hosts that only talk to a few recursive
servers.

1.2. Protocol Overview
Secret Key Transaction Authentication makes use of signatures on messages sent between the
parties involved (e.g., resolver and server). These are known as "transaction signatures", or TSIG.
For historical reasons, in this document, they are referred to as message authentication codes
(MACs).

Use of TSIG presumes prior agreement between the two parties involved (e.g., resolver and
server) as to any algorithm and key to be used. The way that this agreement is reached is outside
the scope of the document.

A DNS message exchange involves the sending of a query and the receipt of one of more DNS
messages in response. For the query, the MAC is calculated based on the hash of the contents and
the agreed TSIG key. The MAC for the response is similar but also includes the MAC of the query
as part of the calculation. Where a response comprises multiple packets, the calculation of the
MAC associated with the second and subsequent packets includes in its inputs the MAC for the
preceding packet. In this way, it is possible to detect any interruption in the packet sequence,
although not its premature termination.

The MAC is contained in a TSIG resource record included in the additional section of the DNS
message.

[RFC3007]

[RFC4033] [RFC4034] [RFC4035]

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 4

1.3. Document History
TSIG was originally specified by . In 2017, two name server implementations strictly
following that document (and the related) were discovered to have security problems
related to this feature (, ,). The
implementations were fixed, but to avoid similar problems in the future, the two documents
were updated and merged, producing this revised specification for TSIG.

While TSIG implemented according to this RFC provides for enhanced security, there are no
changes in interoperability. TSIG on the wire is still the same mechanism described in ;
only the checking semantics have been changed. See Section 10.1 for further details.

[RFC2845]
[RFC4635]

[CVE-2017-3142] [CVE-2017-3143] [CVE-2017-11104]

[RFC2845]

2. Key Words
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Assigned Numbers
This document defines the following Resource Record (RR) type and associated value:

TSIG (250)

In addition, the document also defines the following DNS RCODEs and associated names:

16 (BADSIG)

17 (BADKEY)

18 (BADTIME)

22 (BADTRUNC)

(See concerning the assignment of the value 16 to BADSIG.)

These RCODES may appear within the "Error" field of a TSIG RR.

Section 2.3 of [RFC6895]

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc6895#section-2.3

4. TSIG RR Format

4.1. TSIG RR Type
To provide secret key authentication, we use an RR type whose mnemonic is TSIG and whose
type code is 250. TSIG is a meta-RR and be cached. TSIG RRs are used for
authentication between DNS entities that have established a shared secret key. TSIG RRs are
dynamically computed to cover a particular DNS transaction and are not DNS RRs in the usual
sense.

As the TSIG RRs are related to one DNS request/response, there is no value in storing or
retransmitting them; thus, the TSIG RR is discarded once it has been used to authenticate a DNS
message.

MUST NOT

NAME:

TYPE:

CLASS:

TTL:

RDLENGTH:

RDATA:

4.2. TSIG Record Format
The fields of the TSIG RR are described below. All multi-octet integers in the record are sent in
network byte order (see).

The name of the key used, in domain name syntax. The name should reflect the names
of the hosts and uniquely identify the key among a set of keys these two hosts may share at
any given time. For example, if hosts A.site.example and B.example.net share a key,
possibilities for the key name include <id>.A.site.example, <id>.B.example.net, and
<id>.A.site.example.B.example.net. It should be possible for more than one key to be in
simultaneous use among a set of interacting hosts. This allows for periodic key rotation as per
best operational practices, as well as algorithm agility as indicated by .

The name may be used as a local index to the key involved, but it is recommended that it be
globally unique. Where a key is just shared between two hosts, its name actually need only be
meaningful to them, but it is recommended that the key name be mnemonic and incorporate
the names of participating agents or resources as suggested above.

This be TSIG (250: Transaction SIGnature).

This be ANY.

This be 0.

(variable)

The RDATA for a TSIG RR consists of a number of fields, described below:

Section 2.3.2 of [RFC1035]

[RFC7696]

MUST

MUST

MUST

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc1035#section-2.3.2

The contents of the RDATA fields are:

Algorithm Name:
an octet sequence identifying the TSIG algorithm in the domain name syntax. (Allowed names
are listed in Table 3.) The name is stored in the DNS name wire format as described in

. As per , this name be compressed.

Time Signed:
an unsigned 48-bit integer containing the time the message was signed as seconds since 00:00
on 1970-01-01 UTC, ignoring leap seconds.

Fudge:
an unsigned 16-bit integer specifying the allowed time difference in seconds permitted in the
Time Signed field.

MAC Size:
an unsigned 16-bit integer giving the length of the MAC field in octets. Truncation is indicated
by a MAC Size less than the size of the keyed hash produced by the algorithm specified by the
Algorithm Name.

MAC:
a sequence of octets whose contents are defined by the TSIG algorithm used, possibly
truncated as specified by the MAC Size. The length of this field is given by the MAC Size.
Calculation of the MAC is detailed in Section 4.3.

Original ID:
an unsigned 16-bit integer holding the message ID of the original request message. For a TSIG
RR on a request, it is set equal to the DNS message ID. In a TSIG attached to a response -- or in
cases such as the forwarding of a dynamic update request -- the field contains the ID of the
original DNS request.

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Algorithm Name /
 +-+
 | |
 | Time Signed +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Fudge |
 +-+
 | MAC Size | /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ MAC /
 / /
 +-+
 | Original ID | Error |
 +-+
 | Other Len | /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Other Data /
 / /
 +-+

[RFC1034] [RFC3597] MUST NOT

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 7

Error:
in responses, an unsigned 16-bit integer containing the extended RCODE covering TSIG
processing. In requests, this be zero.

Other Len:
an unsigned 16-bit integer specifying the length of the Other Data field in octets.

Other Data:
additional data relevant to the TSIG record. In responses, this will be empty (i.e., Other Len
will be zero) unless the content of the Error field is BADTIME, in which case it will be a 48-bit
unsigned integer containing the server's current time as the number of seconds since 00:00 on
1970-01-01 UTC, ignoring leap seconds (see Section 5.2.3). This document assigns no meaning
to its contents in requests.

MUST

4.3. MAC Computation
When generating or verifying the contents of a TSIG record, the data listed in the rest of this
section are passed, in the order listed below, as input to MAC computation. The data are passed
in network byte order or wire format, as appropriate and are fed into the hashing function as a
continuous octet sequence with no interfield separator or padding.

4.3.1. Request MAC

Only included in the computation of a MAC for a response message (or the first message in a
multi-message response), the validated request MAC be included in the MAC computation.
If the request MAC failed to validate, an unsigned error message be returned instead
(Section 5.3.2).

The request's MAC, comprising the following fields, is digested in wire format:

Special considerations apply to the TSIG calculation for the second and subsequent messages in a
response that consists of multiple DNS messages (e.g., a zone transfer). These are described in
Section 5.3.1.

4.3.2. DNS Message

In the MAC computation, the whole/complete DNS message in wire format is used.

When creating an outgoing message, the TSIG is based on the message content before the TSIG
RR has been added to the additional section and before the DNS Message Header's ARCOUNT has
been incremented to include the TSIG RR.

MUST
MUST

Field Type Description

MAC Size Unsigned 16-bit integer in network byte order

MAC Data octet sequence exactly as transmitted

Table 1: Request's MAC

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 8

When verifying an incoming message, the TSIG is checked against the message after the TSIG RR
has been removed, the ARCOUNT decremented, and the message ID replaced by the original
message ID from the TSIG if those IDs differ. (This could happen, for example, when forwarding a
dynamic update request.)

4.3.3. TSIG Variables

Also included in the digest is certain information present in the TSIG RR. Adding this data
provides further protection against an attempt to interfere with the message.

The RR RDLENGTH and RDATA MAC Size are not included in the input to MAC computation, since
they are not guaranteed to be knowable before the MAC is generated.

The Original ID field is not included in this section, as it has already been substituted for the
message ID in the DNS header and hashed.

For each label type, there must be a defined "Canonical wire format" that specifies how to
express a label in an unambiguous way. For label type 00, this is defined in

. The use of label types other than 00 is not defined for this specification.

4.3.3.1. Time Values Used in TSIG Calculations
The data digested includes the two timer values in the TSIG header in order to defend against
replay attacks. If this were not done, an attacker could replay old messages but update the Time
Signed and Fudge fields to make the message look new. The two fields are collectively named
"TSIG Timers", and for the purpose of MAC calculation, they are hashed in their wire format, in
the following order: first Time Signed, then Fudge.

Source Field Name Notes

TSIG RR NAME Key name, in canonical wire format

TSIG RR CLASS be ANY

TSIG RR TTL be 0

TSIG RDATA Algorithm Name in canonical wire format

TSIG RDATA Time Signed in network byte order

TSIG RDATA Fudge in network byte order

TSIG RDATA Error in network byte order

TSIG RDATA Other Len in network byte order

TSIG RDATA Other Data exactly as transmitted

Table 2: TSIG Variables

MUST

MUST

Section 6.2 of
[RFC4034]

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc4034#section-6.2

5. Protocol Details

5.1. Generation of TSIG on Requests
Once the outgoing record has been constructed, the client performs the keyed hash (Hashed
Message Authentication Code (HMAC)) computation, appends a TSIG record with the calculated
MAC to the additional section (incrementing the ARCOUNT to reflect the additional RR), and
transmits the request to the server. This TSIG record be the only TSIG RR in the message
and be the last record in the additional data section. The client store the MAC and the
key name from the request while awaiting an answer.

The digest components for a request are:

DNS Message (request)

TSIG Variables (request)

MUST
MUST MUST

5.2. Server Processing of Request
If an incoming message contains a TSIG record, it be the last record in the additional
section. Multiple TSIG records are not allowed. If multiple TSIG records are detected or a TSIG
record is present in any other position, the DNS message is dropped and a response with RCODE
1 (FORMERR) be returned. Upon receipt of a message with exactly one correctly placed
TSIG RR, a copy of the TSIG RR is stored and the TSIG RR is removed from the DNS message and
decremented out of the DNS message header's ARCOUNT.

If the TSIG RR cannot be interpreted, the server regard the message as corrupt and return
a FORMERR to the server. Otherwise, the server is to return a TSIG RR in the response.

To validate the received TSIG RR, the server perform the following checks in the following
order:

Check key
Check MAC
Check time values
Check truncation policy

5.2.1. Key Check and Error Handling

If a non-forwarding server does not recognize the key or algorithm used by the client (or
recognizes the algorithm but does not implement it), the server generate an error response
with RCODE 9 (NOTAUTH) and TSIG ERROR 17 (BADKEY). This response be unsigned as
specified in Section 5.3.2. The server log the error. (Special considerations apply to
forwarding servers; see Section 5.5.)

MUST

MUST

MUST
REQUIRED

MUST

1.
2.
3.
4.

MUST
MUST

SHOULD

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 10

5.2.2. MAC Check and Error Handling

Using the information in the TSIG, the server verify the MAC by doing its own calculation
and comparing the result with the MAC received. If the MAC fails to verify, the server
generate an error response as specified in Section 5.3.2 with RCODE 9 (NOTAUTH) and TSIG
ERROR 16 (BADSIG). This response be unsigned, as specified in Section 5.3.2. The server

 log the error.

MUST
MUST

MUST
SHOULD

If the MAC Size field is greater than the keyed hash output length:

If the MAC Size field equals the keyed hash output length:

If the MAC Size field is less than the larger of 10 (octets) and half the length of the hash function
in use:

Otherwise:

5.2.2.1. MAC Truncation
When space is at a premium and the strength of the full length of a MAC is not needed, it is
reasonable to truncate the keyed hash and use the truncated value for authentication. HMAC
SHA-1 truncated to 96 bits is an option available in several IETF protocols, including IPsec and
TLS. However, while this option is kept for backwards compatibility, it may not provide a
security level appropriate for all cases in the modern environment. In these cases, it is preferable
to use a hashing algorithm such as SHA-256-128, SHA-384-192, or SHA-512-256 .

Processing of a truncated MAC follows these rules:

This case be
generated and, if received, cause the DNS message to be dropped and RCODE 1
(FORMERR) to be returned.

The entire keyed hash output is
present and used.

With the exception of certain TSIG error messages described in Section 5.3.2, where it is
permitted that the MAC Size be zero, this case be generated and, if received,
cause the DNS message to be dropped and RCODE 1 (FORMERR) to be returned.

This is sent when the signer has truncated the keyed hash output to an allowable
length, as described in , taking initial octets and discarding trailing octets. TSIG
truncation can only be to an integral number of octets. On receipt of a DNS message with
truncation thus indicated, the locally calculated MAC is similarly truncated, and only the
truncated values are compared for authentication. The request MAC used when calculating
the TSIG MAC for a reply is the truncated request MAC.

[RFC4868]

MUST NOT
MUST

MUST NOT MUST

[RFC2104]

5.2.3. Time Check and Error Handling

If the server time is outside the time interval specified by the request (which is the Time Signed
value plus/minus the Fudge value), the server generate an error response with RCODE 9
(NOTAUTH) and TSIG ERROR 18 (BADTIME). The server also cache the most recent Time
Signed value in a message generated by a key and return BADTIME if a message
received later has an earlier Time Signed value. A response indicating a BADTIME error be
signed by the same key as the request. It include the client's current time in the Time
Signed field, the server's current time (an unsigned 48-bit integer) in the Other Data field, and 6

MUST
SHOULD

SHOULD
MUST

MUST

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 11

in the Other Len field. This is done so that the client can verify a message with a BADTIME error
without the verification failing due to another BADTIME error. In addition, the Fudge field
be set to the fudge value received from the client. The data signed is specified in Section 5.3.2.
The server log the error.

Caching the most recent Time Signed value and rejecting requests with an earlier one could lead
to valid messages being rejected if transit through the network led to UDP packets arriving in a
different order to the one in which they were sent. Implementations should be aware of this
possibility and be prepared to deal with it, e.g., by retransmitting the rejected request with a new
TSIG once outstanding requests have completed or the time given by their Time Signed value
plus the Fudge value has passed. If implementations do retry requests in these cases, a limit

 be placed on the maximum number of retries.

MUST

SHOULD

SHOULD

5.2.4. Truncation Check and Error Handling

If a TSIG is received with truncation that is permitted per Section 5.2.2.1 but the MAC is too short
for the local policy in force, an RCODE 9 (NOTAUTH) and TSIG ERROR 22 (BADTRUNC) be
returned. The server log the error.

MUST
SHOULD

5.3. Generation of TSIG on Answers
When a server has generated a response to a signed request, it signs the response using the same
algorithm and key. The server generate a signed response to a request if either the key
is invalid (e.g., key name or algorithm name are unknown) or the MAC fails validation; see
Section 5.3.2 for details of responding in these cases.

It also generate a signed response to an unsigned request, except in the case of a
response to a client's unsigned TKEY request if the secret key is established on the server side
after the server processed the client's request. Signing responses to unsigned TKEY requests

 be explicitly specified in the description of an individual secret key establishment
algorithm .

The digest components used to generate a TSIG on a response are:

Request MAC

DNS Message (response)

TSIG Variables (response)

(This calculation is different for the second and subsequent message in a multi-message answer;
see below.)

If addition of the TSIG record will cause the message to be truncated, the server alter the
response so that a TSIG can be included. This response contains only the question and a TSIG
record, has the TC bit set, and has an RCODE of 0 (NOERROR). At this point, the client
retry the request using TCP (as per).

MUST NOT

MUST NOT

MUST
[RFC3645]

MUST

SHOULD
Section 4.2.2 of [RFC1035]

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc1035#section-4.2.2

5.3.1. TSIG on TCP Connections

A DNS TCP session, such as a zone transfer, can include multiple DNS messages. Using TSIG on
such a connection can protect the connection from an attack and provide data integrity. The TSIG

 be included on all DNS messages in the response. For backward compatibility, a client that
receives DNS messages and verifies TSIG accept up to 99 intermediary messages without a
TSIG and verify that both the first and last message contain a TSIG.

The first message is processed as a standard answer (see Section 5.3), but subsequent messages
have the following digest components:

Prior MAC (running)

DNS Messages (any unsigned messages since the last TSIG)

TSIG Timers (current message)

The "Prior MAC" is the MAC from the TSIG attached to the last message containing a TSIG. "DNS
Messages" comprises the concatenation (in message order) of all messages after the last message
that included a TSIG and includes the current message. "TSIG Timers" comprises the Time Signed
and Fudge fields (in that order) pertaining to the message for which the TSIG was created; this
means that the successive TSIG records in the stream will have non-decreasing Time Signed
values. Note that only the timers are included in the second and subsequent messages, not all the
TSIG variables.

This allows the client to rapidly detect when the session has been altered; at which point, it can
close the connection and retry. If a client TSIG verification fails, the client close the
connection. If the client does not receive TSIG records frequently enough (as specified above), it

 assume the connection has been hijacked, and it close the connection. The
client treat this the same way as they would any other interrupted transfer (although
the exact behavior is not specified).

MUST
MUST

MUST

MUST

SHOULD SHOULD
SHOULD

5.3.2. Generation of TSIG on Error Returns

When a server detects an error relating to the key or MAC in the incoming request, the server
 send back an unsigned error message (MAC Size == 0 and empty MAC). It

send back a signed error message.

If an error is detected relating to the TSIG validity period or the MAC is too short for the local
policy, the server send back a signed error message. The digest components are:

Request MAC (if the request MAC validated)

DNS Message (response)

TSIG Variables (response)

The reason that the request MAC is not included in this MAC in some cases is to make it possible
for the client to verify the error. If the error is not a TSIG error, the response be generated
as specified in Section 5.3.

SHOULD MUST NOT

SHOULD

MUST

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 13

5.4. Client Processing of Answer
When a client receives a response from a server and expects to see a TSIG, it first checks if the
TSIG RR is present in the response. If not, the response is treated as having a format error and is
discarded.

If the TSIG RR is present, the client performs the same checks as described in Section 5.2. If the
TSIG RR is unsigned as specified in Section 5.3.2 or does not validate, the message be
discarded unless the RCODE is 9 (NOAUTH). In this case, the client attempt to verify the
response as if it were a TSIG error, as described in the following subsections.

Regardless of the RCODE, a message containing a TSIG RR that is unsigned as specified in Section
5.3.2 or that fails verification be considered an acceptable response, as it may have
been spoofed or manipulated. Instead, the client log an error and continue to wait for a
signed response until the request times out.

5.4.1. Key Error Handling

If an RCODE on a response is 9 (NOTAUTH), but the response TSIG validates and the TSIG key is
recognized by the client but is different from that used on the request, then this is a key-related
error. The client retry the request using the key specified by the server. However, this
should never occur, as a server sign a response with a different key to that used to
sign the request.

5.4.2. MAC Error Handling

If the response RCODE is 9 (NOTAUTH) and TSIG ERROR is 16 (BADSIG), this is a MAC-related
error, and clients retry the request with a new request ID, but it would be better to try a
different shared key if one is available. Clients keep track of how many MAC errors are
associated with each key. Clients log this event.

5.4.3. Time Error Handling

If the response RCODE is 9 (NOTAUTH) and the TSIG ERROR is 18 (BADTIME) or the current time
does not fall in the range specified in the TSIG record, then this is a time-related error. This is an
indication that the client and server clocks are not synchronized. In this case, the client
log the event. DNS resolvers adjust any clocks in the client based on BADTIME errors,
but the server's time in the Other Data field be logged.

MUST
SHOULD

SHOULD NOT
SHOULD

MAY
MUST NOT

MAY
SHOULD

SHOULD

SHOULD
MUST NOT

SHOULD

5.4.4. Truncation Error Handling

If the response RCODE is 9 (NOTAUTH) and the TSIG ERROR is 22 (BADTRUNC), then this is a
truncation-related error. The client retry with a lesser truncation up to the full HMAC
output (no truncation), using the truncation used in the response as a hint for what the server
policy allowed (Section 7). Clients log this event.

MAY

SHOULD

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 14

5.5. Special Considerations for Forwarding Servers
A server acting as a forwarding server of a DNS message check for the existence of a
TSIG record. If the name on the TSIG is not of a secret that the server shares with the originator,
the server forward the message unchanged including the TSIG. If the name of the TSIG is of
a key this server shares with the originator, it process the TSIG. If the TSIG passes all
checks, the forwarding server , if possible, include a TSIG of its own to the destination or
the next forwarder. If no transaction security is available to the destination and the message is a
query, and if the corresponding response has the AD flag (see) set, the forwarder
clear the AD flag before adding the TSIG to the response and returning the result to the system
from which it received the query.

SHOULD

MUST
MUST

MUST

[RFC4035] MUST

6. Algorithms and Identifiers
The only message digest algorithm specified in the first version of these specifications
was "HMAC-MD5" (see and). Although a review of its security some years
ago concluded that "it may not be urgent to remove HMAC-MD5 from the existing
protocols", with the availability of more secure alternatives, the opportunity has been taken to
make the implementation of this algorithm optional.

 added mandatory support in TSIG for SHA-1 . SHA-1 collisions
have been demonstrated , so the MD5 security considerations described in

 apply to SHA-1 in a similar manner. Although support for hmac-sha1 in
TSIG is still mandatory for compatibility reasons, existing uses be replaced with hmac-
sha256 or other SHA-2 digest algorithms (, ,).

Use of TSIG between two DNS agents is by mutual agreement. That agreement can include the
support of additional algorithms and criteria as to which algorithms and truncations are
acceptable, subject to the restriction and guidelines in Section 5.2.2.1. Key agreement can be by
the TKEY mechanism or some other mutually agreeable method.

Implementations that support TSIG also implement HMAC SHA1 and HMAC SHA256 and
 implement gss-tsig and the other algorithms listed below. SHA-1 truncated to 96 bits (12

octets) be implemented.

[RFC2845]
[RFC1321] [RFC2104]

[RFC6151]

[RFC4635] [FIPS180-4] [RFC3174]
[SHA1SHAMBLES]

Section 2 of [RFC6151]
SHOULD

[FIPS180-4] [RFC3874] [RFC6234]

[RFC2930]

MUST
MAY

SHOULD

Algorithm Name Implementation Use

HMAC-MD5.SIG-ALG.REG.INT

gss-tsig

hmac-sha1

hmac-sha224

hmac-sha256

MAY MUST NOT

MAY MAY

MUST NOT RECOMMENDED

MAY MAY

MUST RECOMMENDED

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 15

https://www.rfc-editor.org/rfc/rfc6151#section-2

8. Shared Secrets
Secret keys are very sensitive information and all available steps should be taken to protect them
on every host on which they are stored. Generally, such hosts need to be physically protected. If
they are multi-user machines, great care should be taken so that unprivileged users have no
access to keying material. Resolvers often run unprivileged, which means all users of a host
would be able to see whatever configuration data are used by the resolver.

Algorithm Name Implementation Use

hmac-sha256-128

hmac-sha384

hmac-sha384-192

hmac-sha512

hmac-sha512-256

Table 3: Algorithms for Implementations Supporting TSIG

MAY MAY

MAY MAY

MAY MAY

MAY MAY

MAY MAY

7. TSIG Truncation Policy
As noted above, two DNS agents (e.g., resolver and server) must mutually agree to use TSIG.
Implicit in such an "agreement" are criteria as to acceptable keys, algorithms, and (with the
extensions in this document) truncations. Local policies require the rejection of TSIGs, even
though they use an algorithm for which implementation is mandatory.

When a local policy permits acceptance of a TSIG with a particular algorithm and a particular
non-zero amount of truncation, it also permit the use of that algorithm with lesser
truncation (a longer MAC) up to the full keyed hash output.

Regardless of a lower acceptable truncated MAC length specified by local policy, a reply
be sent with a MAC at least as long as that in the corresponding request. Note, if the request
specified a MAC length longer than the keyed hash output, it will be rejected by processing rules
(Section 5.2.2.1, case 1).

Implementations permitting multiple acceptable algorithms and/or truncations permit
this list to be ordered by presumed strength and allow different truncations for the
same algorithm to be treated as separate entities in this list. When so implemented, policies

 accept a presumed stronger algorithm and truncation than the minimum strength
required by the policy.

MAY

SHOULD

SHOULD

SHOULD
SHOULD

SHOULD

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 16

A name server usually runs privileged, which means its configuration data need not be visible to
all users of the host. For this reason, a host that implements transaction-based authentication
should probably be configured with a "stub resolver" and a local caching and forwarding name
server. This presents a special problem for , which otherwise depends on clients to
communicate only with a zone's authoritative name servers.

Use of strong, random shared secrets is essential to the security of TSIG. See for a
discussion of this issue. The secret be at least as long as the keyed hash output

.

9. IANA Considerations
IANA maintains a registry of algorithm names to be used as "Algorithm Names", as defined in
Section 4.2 . Algorithm names are text strings encoded using the syntax of a domain
name. There is no structure to the names, and algorithm names are compared as if they were
DNS names, i.e., comparison is case insensitive. Previous specifications (and

) defined values for the HMAC-MD5 and some HMAC-SHA algorithms. IANA has also
registered "gss-tsig" as an identifier for TSIG authentication where the cryptographic operations
are delegated to the Generic Security Service (GSS) . This document adds to the allowed
algorithms, and the registry has been updated with the names listed in Table 3.

New algorithms are assigned using the IETF Review policy defined in . The algorithm
name HMAC-MD5.SIG-ALG.REG.INT looks like a fully qualified domain name for historical
reasons; other algorithm names are simple, single-component names.

IANA maintains a registry of RCODEs (error codes) (see , including "TSIG Error
values" to be used for "Error" values, as defined in Section 4.2. This document defines the
RCODEs as described in Section 3. New error codes are assigned and specified as in .

10. Security Considerations
The approach specified here is computationally much less expensive than the signatures
specified in DNSSEC. As long as the shared secret key is not compromised, strong authentication
is provided between two DNS systems, e.g., for the last hop from a local name server to the user
resolver or between primary and secondary name servers.

Recommendations for choosing and maintaining secret keys can be found in . If the
client host has been compromised, the server should suspend the use of all secrets known to that
client. If possible, secrets should be stored in an encrypted form. Secrets should never be
transmitted in the clear over any network. This document does not address the issue on how to
distribute secrets except that it mentions the possibilities of manual configuration and the use of
TKEY . Secrets be shared by more than two entities; any such additional
sharing would allow any party knowing the key to impersonate any other such party to members
of the group.

[RFC2136]

[RFC4086]
SHOULD

[RFC2104]

[IANA-TSIG]

[RFC2845]
[RFC4635]

[RFC3645]

[RFC8126]

[IANA-RCODEs]

[RFC6895]

[RFC2104]

[RFC2930] SHOULD NOT

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 17

This mechanism does not authenticate source data, only its transmission between two parties
who share some secret. The original source data can come from a compromised zone master or
can be corrupted during transit from an authentic zone master to some "caching forwarder".
However, if the server is faithfully performing the full DNSSEC security checks, then only
security-checked data will be available to the client.

A Fudge value that is too large may leave the server open to replay attacks. A Fudge value that is
too small may cause failures if machines are not time synchronized or there are unexpected
network delays. The value in most situations is 300 seconds.

To prevent cross-algorithm attacks, there only be one algorithm associated with any
given key name.

In several cases where errors are detected, an unsigned error message must be returned. This
can allow for an attacker to spoof or manipulate these responses. Section 5.4 recommends
logging these as errors and continuing to wait for a signed response until the request times out.

Although the strength of an algorithm determines its security, there have been some arguments
that mild truncation can strengthen a MAC by reducing the information available to an attacker.
However, excessive truncation clearly weakens authentication by reducing the number of bits an
attacker has to try to break the authentication by brute force .

Significant progress has been made recently in cryptanalysis of hash functions of the types used
here. While the results so far should not affect HMAC, the stronger SHA-256 algorithm is being
made mandatory as a precaution.

See also the Security Considerations section of from which the limits on truncation in
this RFC were taken.

10.2. Why Not DNSSEC?
DNS has been extended by DNSSEC (, , and) to provide for data
origin authentication, and public key distribution, all based on public key cryptography and
public key based digital signatures. To be practical, this form of security generally requires
extensive local caching of keys and tracing of authentication through multiple keys and
signatures to a pre-trusted locally configured key.

RECOMMENDED

SHOULD

[RFC2104]

[RFC2104]

10.1. Issue Fixed in This Document
When signing a DNS reply message using TSIG, the MAC computation uses the request message's
MAC as an input to cryptographically relate the reply to the request. The original TSIG
specification required that the time values be checked before the request's MAC. If the
time was invalid, some implementations failed to carry out further checks and could use an
invalid request MAC in the signed reply.

This document makes it mandatory that the request MAC is considered to be invalid until it has
been validated; until then, any answer must be unsigned. For this reason, the request MAC is
now checked before the time values.

[RFC2845]

[RFC4033] [RFC4034] [RFC4035]

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 18

[FIPS180-4]

[RFC1034]

[RFC1035]

[RFC2119]

[RFC2845]

[RFC3597]

[RFC4635]

One difficulty with the DNSSEC scheme is that common DNS implementations include simple
"stub" resolvers which do not have caches. Such resolvers typically rely on a caching DNS server
on another host. It is impractical for these stub resolvers to perform general DNSSEC
authentication and they would naturally depend on their caching DNS server to perform such
services for them. To do so securely requires secure communication of queries and responses.
DNSSEC provides public key transaction signatures to support this, but such signatures are very
expensive computationally to generate. In general, these require the same complex public key
logic that is impractical for stubs.

A second area where use of straight DNSSEC public key based mechanisms may be impractical is
authenticating dynamic update requests. DNSSEC provides for request signatures but
with DNSSEC they, like transaction signatures, require computationally expensive public key
cryptography and complex authentication logic. Secure Domain Name System Dynamic Update
() describes how different keys are used in dynamically updated zones.

11. References

11.1. Normative References

, ,
, , August 2015,

.

, , , ,
, November 1987, .

, , ,
, , November 1987,

.

, , ,
, , March 1997,
.

,
, , ,

May 2000, .

, ,
, , September 2003,

.

,
, , ,

August 2006, .

[RFC2136]

[RFC3007]

National Institute of Standards and Technology "Secure Hash Standard (SHS)"
FIPS PUB 180-4 DOI 10.6028/NIST.FIPS.180-4 <https://
doi.org/10.6028/NIST.FIPS.180-4>

Mockapetris, P. "Domain names - concepts and facilities" STD 13 RFC 1034 DOI
10.17487/RFC1034 <https://www.rfc-editor.org/info/rfc1034>

Mockapetris, P. "Domain names - implementation and specification" STD 13
RFC 1035 DOI 10.17487/RFC1035 <https://www.rfc-editor.org/
info/rfc1035>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Vixie, P., Gudmundsson, O., Eastlake 3rd, D., and B. Wellington "Secret Key
Transaction Authentication for DNS (TSIG)" RFC 2845 DOI 10.17487/RFC2845

<https://www.rfc-editor.org/info/rfc2845>

Gustafsson, A. "Handling of Unknown DNS Resource Record (RR) Types" RFC
3597 DOI 10.17487/RFC3597 <https://www.rfc-editor.org/info/
rfc3597>

Eastlake 3rd, D. "HMAC SHA (Hashed Message Authentication Code, Secure
Hash Algorithm) TSIG Algorithm Identifiers" RFC 4635 DOI 10.17487/RFC4635

<https://www.rfc-editor.org/info/rfc4635>

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 19

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2845
https://www.rfc-editor.org/info/rfc3597
https://www.rfc-editor.org/info/rfc3597
https://www.rfc-editor.org/info/rfc4635

[RFC8174]

[CVE-2017-11104]

[CVE-2017-3142]

[CVE-2017-3143]

[IANA-RCODEs]

[IANA-TSIG]

[RFC1321]

[RFC2104]

[RFC2136]

[RFC2930]

[RFC3007]

[RFC3174]

[RFC3645]

, ,
, , , May 2017,

.

11.2. Informative References

,
, June 2017,

.

,
, June 2017,

.

,
, June 2017,

.

, , .

, ,
.

, , ,
, April 1992, .

,
, , , February 1997,

.

,
, , , April

1997, .

, , ,
, September 2000, .

, , ,
, November 2000,

.

, , ,
, September 2001,

.

,

, , , October 2003,
.

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Common Vulnerabilities and Exposures "CVE-2017-11104: Improper TSIG
validity period check can allow TSIG forgery" <https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2017-11104>

Common Vulnerabilities and Exposures "CVE-2017-3142: An error in TSIG
authentication can permit unauthorized zone transfers" <https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3142>

Common Vulnerabilities and Exposures "CVE-2017-3143: An error in TSIG
authentication can permit unauthorized dynamic updates" <https://
cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3143>

IANA "DNS RCODEs" <https://www.iana.org/assignments/dns-parameters/>

IANA "TSIG Algorithm Names" <https://www.iana.org/assignments/tsig-
algorithm-names/>

Rivest, R. "The MD5 Message-Digest Algorithm" RFC 1321 DOI 10.17487/
RFC1321 <https://www.rfc-editor.org/info/rfc1321>

Krawczyk, H., Bellare, M., and R. Canetti "HMAC: Keyed-Hashing for Message
Authentication" RFC 2104 DOI 10.17487/RFC2104 <https://
www.rfc-editor.org/info/rfc2104>

Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound "Dynamic Updates in the
Domain Name System (DNS UPDATE)" RFC 2136 DOI 10.17487/RFC2136

<https://www.rfc-editor.org/info/rfc2136>

Eastlake 3rd, D. "Secret Key Establishment for DNS (TKEY RR)" RFC 2930 DOI
10.17487/RFC2930 <https://www.rfc-editor.org/info/rfc2930>

Wellington, B. "Secure Domain Name System (DNS) Dynamic Update" RFC 3007
DOI 10.17487/RFC3007 <https://www.rfc-editor.org/info/
rfc3007>

Eastlake 3rd, D. and P. Jones "US Secure Hash Algorithm 1 (SHA1)" RFC 3174
DOI 10.17487/RFC3174 <https://www.rfc-editor.org/info/
rfc3174>

Kwan, S., Garg, P., Gilroy, J., Esibov, L., Westhead, J., and R. Hall "Generic
Security Service Algorithm for Secret Key Transaction Authentication for DNS
(GSS-TSIG)" RFC 3645 DOI 10.17487/RFC3645 <https://www.rfc-
editor.org/info/rfc3645>

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 20

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11104
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11104
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3142
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3142
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3143
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-3143
https://www.iana.org/assignments/dns-parameters/
https://www.iana.org/assignments/tsig-algorithm-names/
https://www.iana.org/assignments/tsig-algorithm-names/
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2136
https://www.rfc-editor.org/info/rfc2930
https://www.rfc-editor.org/info/rfc3007
https://www.rfc-editor.org/info/rfc3007
https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc3645
https://www.rfc-editor.org/info/rfc3645

[RFC3874]

[RFC4033]

[RFC4034]

[RFC4035]

[RFC4086]

[RFC4868]

[RFC6151]

[RFC6234]

[RFC6895]

[RFC7696]

[RFC8126]

[SHA1SHAMBLES]

, , ,
, September 2004, .

,
, , , March 2005,

.

,
, , , March 2005,

.

,
, ,

, March 2005, .

,
, , , , June 2005,

.

,
, , , May 2007,

.

,
, , , March

2011, .

,
, , , May 2011,

.

, , ,
, , April 2013,
.

,
, , ,

, November 2015, .

,
, , , , June

2017, .

, , January 2020,
.

Housley, R. "A 224-bit One-way Hash Function: SHA-224" RFC 3874 DOI
10.17487/RFC3874 <https://www.rfc-editor.org/info/rfc3874>

Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose "DNS Security
Introduction and Requirements" RFC 4033 DOI 10.17487/RFC4033
<https://www.rfc-editor.org/info/rfc4033>

Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose "Resource Records for
the DNS Security Extensions" RFC 4034 DOI 10.17487/RFC4034
<https://www.rfc-editor.org/info/rfc4034>

Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose "Protocol
Modifications for the DNS Security Extensions" RFC 4035 DOI 10.17487/
RFC4035 <https://www.rfc-editor.org/info/rfc4035>

Eastlake 3rd, D., Schiller, J., and S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Kelly, S. and S. Frankel "Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-
SHA-512 with IPsec" RFC 4868 DOI 10.17487/RFC4868 <https://
www.rfc-editor.org/info/rfc4868>

Turner, S. and L. Chen "Updated Security Considerations for the MD5 Message-
Digest and the HMAC-MD5 Algorithms" RFC 6151 DOI 10.17487/RFC6151

<https://www.rfc-editor.org/info/rfc6151>

Eastlake 3rd, D. and T. Hansen "US Secure Hash Algorithms (SHA and SHA-
based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://
www.rfc-editor.org/info/rfc6234>

Eastlake 3rd, D. "Domain Name System (DNS) IANA Considerations" BCP 42
RFC 6895 DOI 10.17487/RFC6895 <https://www.rfc-editor.org/info/
rfc6895>

Housley, R. "Guidelines for Cryptographic Algorithm Agility and Selecting
Mandatory-to-Implement Algorithms" BCP 201 RFC 7696 DOI 10.17487/
RFC7696 <https://www.rfc-editor.org/info/rfc7696>

Cotton, M., Leiba, B., and T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leurent, G. and T. Peyrin "SHA-1 is a Shambles" <https://
eprint.iacr.org/2020/014.pdf>

Acknowledgements
The security problem addressed by this document was reported by from
Synacktiv.

Clément Berthaux

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 21

https://www.rfc-editor.org/info/rfc3874
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc4034
https://www.rfc-editor.org/info/rfc4035
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4868
https://www.rfc-editor.org/info/rfc4868
https://www.rfc-editor.org/info/rfc6151
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6895
https://www.rfc-editor.org/info/rfc6895
https://www.rfc-editor.org/info/rfc7696
https://www.rfc-editor.org/info/rfc8126
https://eprint.iacr.org/2020/014.pdf
https://eprint.iacr.org/2020/014.pdf

, , , , , and
 participated in the discussions that prompted this document. ,

, and made extremely helpful suggestions concerning the structure
and wording of the updated document.

Stephen Morris would like to thank Internet Systems Consortium for its support of his
participation in the creation of this document.

Peter van Dijk Benno Overeinder Willem Toroop Ondrej Sury Mukund Sivaraman Ralph
Dolmans Mukund Sivaraman
Martin Hoffman Tony Finch

Authors' Addresses
Francis Dupont
Internet Systems Consortium, Inc.
PO Box 360

, Newmarket NH 03857
United States of America

 Francis.Dupont@fdupont.fr Email:

Stephen Morris
Unaffiliated
United Kingdom

 sa.morris8@gmail.com Email:

Paul Vixie
Farsight Security Inc
Suite 180
177 Bovet Road

, San Mateo CA 94402
United States of America

 paul@redbarn.org Email:

Donald E. Eastlake 3rd
Futurewei Technologies
2386 Panoramic Circle

, Apopka FL 32703
United States of America

 d3e3e3@gmail.com Email:

Olafur Gudmundsson
Cloudflare
United States of America

 olafur+ietf@cloudflare.com Email:

Brian Wellington
Akamai
United States of America

 bwelling@akamai.com Email:

RFC 8945 DNS TSIG November 2020

Dupont, et al. Standards Track Page 22

mailto:Francis.Dupont@fdupont.fr
mailto:sa.morris8@gmail.com
mailto:paul@redbarn.org
mailto:d3e3e3@gmail.com
mailto:olafur+ietf@cloudflare.com
mailto:bwelling@akamai.com

	RFC 8945
	Secret Key Transaction Authentication for DNS (TSIG)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Background
	1.2. Protocol Overview
	1.3. Document History

	2. Key Words
	3. Assigned Numbers
	4. TSIG RR Format
	4.1. TSIG RR Type
	4.2. TSIG Record Format
	4.3. MAC Computation
	4.3.1. Request MAC
	4.3.2. DNS Message
	4.3.3. TSIG Variables
	4.3.3.1. Time Values Used in TSIG Calculations

	5. Protocol Details
	5.1. Generation of TSIG on Requests
	5.2. Server Processing of Request
	5.2.1. Key Check and Error Handling
	5.2.2. MAC Check and Error Handling
	5.2.2.1. MAC Truncation

	5.2.3. Time Check and Error Handling
	5.2.4. Truncation Check and Error Handling

	5.3. Generation of TSIG on Answers
	5.3.1. TSIG on TCP Connections
	5.3.2. Generation of TSIG on Error Returns

	5.4. Client Processing of Answer
	5.4.1. Key Error Handling
	5.4.2. MAC Error Handling
	5.4.3. Time Error Handling
	5.4.4. Truncation Error Handling

	5.5. Special Considerations for Forwarding Servers

	6. Algorithms and Identifiers
	7. TSIG Truncation Policy
	8. Shared Secrets
	9. IANA Considerations
	10. Security Considerations
	10.1. Issue Fixed in This Document
	10.2. Why Not DNSSEC?

	11. References
	11.1. Normative References
	11.2. Informative References

	Acknowledgements
	Authors' Addresses

 Secret Key Transaction Authentication for DNS (TSIG)

 Internet Systems Consortium, Inc.

 PO Box 360
 Newmarket
 NH
 03857
 United States of America

 Francis.Dupont@fdupont.fr

 Unaffiliated

 United Kingdom

 sa.morris8@gmail.com

 Farsight Security Inc

 177 Bovet Road
 Suite 180
 San Mateo
 CA
 94402
 United States of America

 paul@redbarn.org

 Futurewei Technologies

 2386 Panoramic Circle
 Apopka
 FL
 32703
 United States of America

 d3e3e3@gmail.com

 Cloudflare

 United States of America

 olafur+ietf@cloudflare.com

 Akamai

 United States of America

 bwelling@akamai.com

 Operations and Management Area
 Internet Engineering Task Force

 This document describes a protocol for transaction-level authentication
 using shared secrets and one-way hashing. It can be used to authenticate
 dynamic updates to a DNS zone as coming from an approved client or to
 authenticate responses as coming from an approved name server.
 No recommendation is made here for distributing the shared secrets;
 it is expected that a network administrator will statically configure
 name servers and clients using some out-of-band mechanism.
 This document obsoletes RFCs 2845 and 4635.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s)
 controlling the copyright in such materials, this document may not
 be modified outside the IETF Standards Process, and derivative
 works of it may not be created outside the IETF Standards Process,
 except to format it for publication as an RFC or to translate it
 into languages other than English.

 Table of Contents

 . Introduction

 . Background

 . Protocol Overview

 . Document History

 . Key Words

 . Assigned Numbers

 . TSIG RR Format

 . TSIG RR Type

 . TSIG Record Format

 . MAC Computation

 . Request MAC

 . DNS Message

 . TSIG Variables

 . Protocol Details

 . Generation of TSIG on Requests

 . Server Processing of Request

 . Key Check and Error Handling

 . MAC Check and Error Handling

 . Time Check and Error Handling

 . Truncation Check and Error Handling

 . Generation of TSIG on Answers

 . TSIG on TCP Connections

 . Generation of TSIG on Error Returns

 . Client Processing of Answer

 . Key Error Handling

 . MAC Error Handling

 . Time Error Handling

 . Truncation Error Handling

 . Special Considerations for Forwarding Servers

 . Algorithms and Identifiers

 . TSIG Truncation Policy

 . Shared Secrets

 . IANA Considerations

 . Security Considerations

 . Issue Fixed in This Document

 . Why Not DNSSEC?

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction

 Background
 The Domain Name System (DNS) () is a
	replicated hierarchical distributed
 database system that provides information fundamental to Internet
 operations, such as name-to-address translation and mail-handling
	information.
 This document specifies use of a message authentication code
 (MAC), generated using certain keyed hash functions, to
 provide an efficient means of point-to-point authentication and
 integrity checking for DNS transactions. Such transactions include
 DNS update requests and responses for which this can provide a lightweight
 alternative to the secure DNS dynamic update protocol described by
	 .
 A further use of this mechanism is to protect zone transfers.
 In this case, the data covered would be the whole zone transfer
 including any glue records sent. The protocol described by DNSSEC
 (, ,
) does not protect glue records and unsigned
 records.
 The authentication mechanism proposed here provides a
 simple and efficient authentication between clients and servers,
 by using shared secret keys to establish a trust relationship between
 two entities. Such keys must be protected in a manner similar to
 private keys, lest a third party masquerade as one of the intended
 parties (by forging the MAC). The proposal is unsuitable for general
 server-to-server authentication and for servers that speak with many
 other servers, since key management would become unwieldy with the
 number of shared keys going up quadratically. But it is suitable for
 many resolvers on hosts that only talk to a few recursive servers.

 Protocol Overview
 Secret Key Transaction Authentication makes use of signatures
 on messages sent between the parties involved (e.g., resolver and
 server). These are known as "transaction signatures", or TSIG.
 For historical reasons, in this document, they are referred to as
 message authentication codes (MACs).
 Use of TSIG presumes prior agreement between the
 two parties involved (e.g., resolver and server) as to any
 algorithm and key to be used. The way that this agreement
 is reached is outside the scope of the document.
 A DNS message exchange involves the sending of a query and the
 receipt of one of more DNS messages in response. For
 the query, the MAC is calculated based on the hash of the contents
 and the agreed TSIG key. The MAC for the response is similar but
 also includes the MAC of the query as part of the calculation.
 Where a response comprises multiple packets, the calculation of
 the MAC associated with the second and subsequent packets includes in
 its inputs the MAC for the preceding packet.
 In this way, it is possible to detect any interruption in the
 packet sequence, although not its premature termination.
 The MAC is contained in a TSIG resource record included
 in the additional section of the DNS message.

 Document History
 TSIG was originally specified by .
 In 2017, two name server implementations strictly following that document (and
 the related) were discovered to have
 security problems related to this feature (,
 ,). The implementations
 were fixed, but to avoid similar problems in the future, the
 two documents were updated and merged, producing this revised
 specification for TSIG.
 While TSIG implemented according to this RFC provides for enhanced
 security, there are no changes in interoperability. TSIG on the wire
 is still the same mechanism described in ; only the checking semantics have been
	 changed.

	 See for
	further details.

 Key Words

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Assigned Numbers
 This document defines the following Resource Record (RR) type and
 associated value:

 TSIG (250)

 In addition, the document also defines the following DNS RCODEs
 and associated names:

 16 (BADSIG)
 17 (BADKEY)
 18 (BADTIME)
 22 (BADTRUNC)

 (See
 concerning the assignment of the value 16 to BADSIG.)
 These RCODES may appear within the "Error" field of a TSIG RR.

 TSIG RR Format

 TSIG RR Type
 To provide secret key authentication, we use an RR
 type whose mnemonic is TSIG and whose type code is 250.
 TSIG is a meta-RR and MUST NOT be cached. TSIG RRs are
 used for authentication between DNS entities that have
 established a shared secret key. TSIG RRs are dynamically
 computed to cover a particular DNS transaction and are not
 DNS RRs in the usual sense.
 As the TSIG RRs are related to one DNS request/response,
 there is no value in storing or retransmitting them; thus, the
 TSIG RR is discarded once it has been used to authenticate a DNS
 message.

 TSIG Record Format
 The fields of the TSIG RR are described below. All multi-octet integers in the record are sent in network byte
 order (see).

 NAME:

 The name of the key used, in domain
 name syntax. The name should reflect the names of the
 hosts and uniquely identify the key among a set of keys
 these two hosts may share at any given time. For example,
 if hosts
 A.site.example and B.example.net share a key, possibilities
 for the key name include <id>.A.site.example,
 <id>.B.example.net, and
 <id>.A.site.example.B.example.net. It should be
 possible for more than one key to be in simultaneous use
 among a set of interacting hosts. This allows for periodic
 key rotation as per best operational practices, as well as
 algorithm agility as indicated by .
 The name may be used as a local index
 to the key involved, but it is recommended that it be
 globally unique. Where a key is just shared between two
 hosts, its name actually need only be meaningful to
 them, but it is recommended that the key name be mnemonic
 and incorporate the names of participating agents or
 resources as suggested above.

 TYPE:
 This MUST be TSIG (250: Transaction SIGnature).
 CLASS:
 This MUST be ANY.
 TTL:
 This MUST be 0.
 RDLENGTH:
 (variable)
 RDATA:
 The RDATA for a TSIG RR consists of a
 number of fields, described below:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 / Algorithm Name /
 +-+
 | |
 | Time Signed +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | Fudge |
 +-+
 | MAC Size | /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ MAC /
 / /
 +-+
 | Original ID | Error |
 +-+
 | Other Len | /
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Other Data /
 / /
 +-+

 The contents of the RDATA fields are:

 Algorithm Name:
 an octet sequence identifying the TSIG algorithm in the
	 domain name syntax. (Allowed names are listed in .) The name is stored
	 in the DNS name wire format as described in . As per , this name MUST NOT be
	 compressed.
 Time Signed:
 an unsigned 48-bit integer containing the time the message was
	 signed as seconds since 00:00 on 1970-01-01 UTC, ignoring leap
	 seconds.
 Fudge:
 an unsigned 16-bit integer specifying the allowed time
	 difference in seconds permitted in the Time Signed field.
 MAC Size:
 an unsigned 16-bit integer giving the length of the MAC field in
	 octets. Truncation is indicated by a MAC Size less than the size of
	 the keyed hash produced by the algorithm specified by the Algorithm
	 Name.
 MAC:
 a sequence of octets whose contents are defined by the TSIG
	 algorithm used, possibly truncated as specified by the MAC Size. The
	 length of this field is given by the MAC Size. Calculation of the
	 MAC is detailed in .
 Original ID:
 an unsigned 16-bit integer holding the message ID of the
	 original request message. For a TSIG RR on a request, it is set
	 equal to the DNS message ID. In a TSIG attached to a response -- or
	 in cases such as the forwarding of a dynamic update request -- the
	 field contains the ID of the original DNS request.
 Error:
 in responses, an unsigned 16-bit integer containing the extended
	 RCODE covering TSIG processing. In requests, this
	 MUST be zero.
 Other Len:
 an unsigned 16-bit integer specifying the length of the Other
	 Data field in octets.
 Other Data:
 additional data relevant to the TSIG record. In responses, this
	 will be empty (i.e., Other Len will be zero) unless the content of
	 the Error field is BADTIME, in which case it will be a 48-bit
	 unsigned integer containing the server's current time as the number
	 of seconds since 00:00 on 1970-01-01 UTC, ignoring leap seconds (see
). This document assigns
	 no meaning to its contents in requests.

 MAC Computation
 When generating or verifying the contents of a TSIG record,
 the data listed in the rest of this section are passed,
 in the order listed below, as input to MAC computation. The
 data are passed in network byte order or wire format,
 as appropriate and are fed into the hashing function
 as a continuous octet sequence with no interfield separator or
 padding.

 Request MAC
 Only included in the computation of a MAC for a response message
 (or the first message in a multi-message response),
 the validated request MAC MUST be included in the MAC
 computation. If the request MAC failed to validate, an unsigned
 error message MUST be returned instead ().
 The request's MAC, comprising the following fields, is digested in
 wire format:

 Request's MAC

 Field
 Type
 Description

 MAC Size
 Unsigned 16-bit integer
 in network byte order

 MAC Data
 octet sequence
 exactly as transmitted

 Special considerations apply to the TSIG calculation for the
	 second and subsequent messages in a response that consists of multiple
	 DNS messages (e.g., a zone transfer).
	
	 These are described in .

 DNS Message
 In the MAC computation, the whole/complete DNS message in
	 wire format is used.
 When creating an outgoing message, the TSIG is based on
	 the message content before
the TSIG
 RR has been added to the additional section and before the
 DNS Message Header's ARCOUNT has been incremented to include
 the TSIG RR.
 When verifying an incoming message, the TSIG is checked against
 the message after the TSIG RR has been removed, the ARCOUNT
 decremented, and the message ID replaced by the original message
 ID from the TSIG if those IDs differ. (This could happen, for
 example, when forwarding a dynamic update request.)

 TSIG Variables
 Also included in the digest is certain information present
 in the TSIG RR. Adding this data provides further protection against an
 attempt to interfere with the message.

 TSIG Variables

 Source
 Field Name
 Notes

 TSIG RR
 NAME
 Key name, in canonical wire format

 TSIG RR
 CLASS

 MUST be ANY

 TSIG RR
 TTL

 MUST be 0

 TSIG RDATA
 Algorithm Name
 in canonical wire format

 TSIG RDATA
 Time Signed
 in network byte order

 TSIG RDATA
 Fudge
 in network byte order

 TSIG RDATA
 Error
 in network byte order

 TSIG RDATA
 Other Len
 in network byte order

 TSIG RDATA
 Other Data
 exactly as transmitted

 The RR RDLENGTH and RDATA MAC Size are not included in the
 input to MAC computation, since they are not guaranteed to be
 knowable before the MAC is generated.
 The Original ID field is not included in this section,
 as it has already been substituted for the message ID in
 the DNS header and hashed.
 For each label type, there must be a defined "Canonical
 wire format" that specifies how to express a label in an
 unambiguous way. For label type 00, this is defined in . The use of
	 label types other than 00 is not defined for this specification.

 Time Values Used in TSIG Calculations
 The data digested includes the two timer values in the
 TSIG header in order to defend against replay attacks. If
 this were not done, an attacker could replay old messages
 but update the Time Signed and Fudge fields to make the
 message look new. The two fields are collectively named "TSIG Timers", and
 for the purpose of MAC calculation, they are hashed in
 their wire format, in the following order: first
 Time Signed, then Fudge.

 Protocol Details

 Generation of TSIG on Requests
 Once the outgoing record has been constructed, the client performs
	the keyed hash (Hashed Message Authentication Code (HMAC))
	computation, appends a TSIG record with the
	calculated MAC to the additional section (incrementing the
	ARCOUNT to reflect the additional RR), and transmits the request to
	the server. This TSIG record MUST be the only TSIG RR
	in the message and MUST be the last record in the
	additional data section. The client MUST store the MAC
	and the key name from the request while awaiting an answer.
 The digest components for a request are:

 DNS Message (request)
 TSIG Variables (request)

 Server Processing of Request
 If an incoming message contains a TSIG record, it MUST
 be the last record in the additional section. Multiple
 TSIG records are not allowed. If multiple TSIG records are detected
 or a TSIG record is present
 in any other position, the DNS message is dropped and a response
 with RCODE 1 (FORMERR) MUST be returned. Upon receipt of
 a message with exactly one correctly placed TSIG RR, a copy of the
 TSIG RR is stored and the TSIG RR is removed from the DNS message
 and decremented out of the DNS message header's ARCOUNT.
 If the TSIG RR cannot be interpreted, the server MUST
 regard the message as corrupt and return a FORMERR to the server.
 Otherwise, the server is REQUIRED to return a TSIG RR in
 the response.
 To validate the received TSIG RR, the server MUST perform the
 following checks in the following order:

 Check key
 Check MAC
 Check time values
 Check truncation policy

 Key Check and Error Handling
 If a non-forwarding server does not recognize the key or
	 algorithm used by the client (or recognizes the algorithm but does
	 not implement it), the server MUST generate an error
	 response with RCODE 9 (NOTAUTH) and TSIG ERROR 17 (BADKEY). This
	 response MUST be unsigned as specified in . The server
	 SHOULD log the error. (Special considerations apply
	 to forwarding servers; see .)

 MAC Check and Error Handling
 Using the information in the TSIG, the server MUST verify
 the MAC by doing its own calculation and comparing the result with
 the MAC received. If the MAC fails to
 verify, the server MUST generate an
 error response as specified in with
 RCODE 9 (NOTAUTH) and TSIG ERROR 16 (BADSIG). This response
 MUST be unsigned, as specified in .
 The server SHOULD log the error.

 MAC Truncation
 When space is at a premium and the strength of the full
 length of a MAC is not needed, it is reasonable to truncate
 the keyed hash and use the truncated value for
 authentication. HMAC SHA-1 truncated to 96 bits is an option
 available in several IETF protocols, including IPsec and TLS.
 However, while this option is kept for backwards compatibility,
 it may not provide a security level appropriate for all cases
 in the modern environment. In these cases, it is preferable to
 use a hashing algorithm such as SHA-256-128, SHA-384-192, or
 SHA-512-256 .
 Processing of a truncated MAC follows these rules:

 If the MAC Size field is greater than the keyed hash output
		length:
 This case MUST NOT be generated and, if
		received, MUST cause the DNS message to be
		dropped and RCODE 1 (FORMERR) to be returned.
 If the MAC Size field equals the keyed hash output length:
 The
	 entire keyed hash output is present and used.
 If the MAC Size field is less than the larger of 10 (octets) and
		half the length of the hash function in use:
 With the
		exception of certain TSIG error messages described
		in , where it is
		permitted that the MAC Size be zero, this case MUST NOT be generated and, if received, MUST
		cause the DNS message to be dropped and RCODE 1 (FORMERR) to
		be returned.
 Otherwise:
 This is sent when the signer has truncated the keyed hash
		output to an allowable length, as described in , taking initial octets and
		discarding trailing octets. TSIG truncation can only be to an
		integral number of octets. On receipt of a DNS message with
		truncation thus indicated, the locally calculated MAC is
		similarly truncated, and only the truncated values are compared
		for authentication. The request MAC used when calculating the
		TSIG MAC for a reply is the truncated request MAC.

 Time Check and Error Handling
 If the server time is outside the time interval specified
 by the request (which is the Time Signed value plus/minus
	 the Fudge value),
 the server MUST generate an error response with RCODE 9
 (NOTAUTH) and TSIG ERROR 18 (BADTIME). The server SHOULD
 also cache the most recent Time Signed value in a message
 generated by a key and SHOULD return BADTIME if a message
 received later has an earlier Time Signed value. A
 response indicating a BADTIME error MUST be signed by the
 same key as the request. It MUST include the client's
 current time in the Time Signed field, the server's current
 time (an unsigned 48-bit integer) in the Other Data field, and 6 in the
 Other Len field. This is done so that the client
 can verify a message with a BADTIME error without the
 verification failing due to another BADTIME error. In
 addition, the Fudge field MUST be set to the fudge value
 received from the client. The data signed is specified in
 . The server
	 SHOULD log the error.
 Caching the most recent Time Signed value and rejecting
 requests with an earlier one could lead to valid messages
 being rejected if transit through the network led to UDP
 packets arriving in a different order to the one in which
 they were sent. Implementations should be aware of
 this possibility and be prepared to deal with it, e.g., by
 retransmitting the rejected request with a new TSIG once
 outstanding requests have completed or the time given by their
 Time Signed value plus the Fudge value has passed. If implementations
 do retry requests in these cases, a limit SHOULD be placed
 on the maximum number of retries.

 Truncation Check and Error Handling
 If a TSIG is received with truncation that is permitted
 per but the MAC is too short
 for the local policy in force, an RCODE 9 (NOTAUTH) and TSIG
 ERROR 22 (BADTRUNC) MUST be returned. The server SHOULD
 log the error.

 Generation of TSIG on Answers
 When a server has generated a response to a signed request,
 it signs the response using the same algorithm and key. The
 server MUST NOT generate a signed response to a request if
 either the key is invalid (e.g., key name or algorithm name are unknown)
 or the MAC fails validation; see for
 details of responding in these cases.
 It also MUST NOT generate a signed
 response to an unsigned request, except in the case of a
 response to a client's unsigned TKEY request if the secret key
 is established on the server side after the server processed the
 client's request. Signing responses to unsigned TKEY requests
 MUST be explicitly specified in the description of an individual
 secret key establishment algorithm .
 The digest components used to generate a TSIG on a response are:

 Request MAC
 DNS Message (response)
 TSIG Variables (response)

 (This calculation is different for the second and subsequent message
 in a multi-message answer; see below.)
 If addition of the TSIG record will cause the message to be truncated,
 the server MUST alter the response so that a TSIG can be included.
 This response contains only the question and a TSIG
 record, has the TC bit set, and has an RCODE of 0 (NOERROR).
	At this point, the
 client SHOULD retry the request using TCP
 (as per).

 TSIG on TCP Connections
 A DNS TCP session, such as a zone transfer, can include multiple
 DNS messages. Using TSIG on such a connection can protect the
 connection from an attack and provide data integrity. The TSIG
 MUST be included on all DNS messages in the response. For backward
 compatibility, a client that receives DNS messages and verifies
 TSIG MUST accept up to 99 intermediary messages without a TSIG and
 MUST verify that both the first and last message contain a TSIG.
 The first message is processed as a standard answer (see), but subsequent messages have
	 the following digest components:

 Prior MAC (running)
 DNS Messages (any unsigned messages since the last TSIG)
 TSIG Timers (current message)

 The "Prior MAC" is the MAC from the TSIG attached to the last
 message containing a TSIG. "DNS Messages" comprises the
 concatenation (in message order) of all messages after the last
 message that included a TSIG and includes the current message.
 "TSIG Timers" comprises the Time Signed and Fudge fields (in
 that order) pertaining to the message for which the TSIG was created;
 this means that the successive TSIG records in the stream will have
 non-decreasing Time Signed values. Note that only the
 timers are included in the second and subsequent messages, not all
 the TSIG variables.
 This allows the client to rapidly detect when the session has
 been altered; at which point, it can close the connection and retry.
 If a client TSIG verification fails, the client MUST close the
 connection. If the client does not receive TSIG records frequently
 enough (as specified above), it SHOULD assume the connection has
 been hijacked, and it SHOULD close the connection. The
	client SHOULD
 treat this the same way as they would any other interrupted transfer
 (although the exact behavior is not specified).

 Generation of TSIG on Error Returns
 When a server detects an error relating to the key or MAC in the
 incoming request, the
 server SHOULD send back an unsigned error message (MAC Size == 0
 and empty MAC). It MUST NOT send back a signed error message.
 If an error is detected relating to the TSIG
 validity period or the MAC is too short for the local policy,
 the server SHOULD send back a signed error message.
 The digest components are:

 Request MAC (if the request MAC validated)
 DNS Message (response)
 TSIG Variables (response)

 The reason that the request MAC is not included in this MAC in
 some cases is to make it possible for the client to verify the
 error. If the error is not a TSIG error, the response MUST be
 generated as specified in .

 Client Processing of Answer
 When a client receives a response from a server and
	 expects to see a TSIG, it first checks if the TSIG RR is
	 present in the response. If not, the response is treated as
	 having a format error and is discarded.
 If the TSIG RR is present, the client performs the same checks as
 described in . If the TSIG RR is
 unsigned as specified in or does not
 validate, the message MUST be discarded unless the RCODE is 9 (NOAUTH).
 In this case, the client SHOULD attempt to verify the response as if it
 were a TSIG error, as described in the following subsections.
 Regardless of the RCODE, a message containing a TSIG RR that is
 unsigned as specified in or that fails
 verification SHOULD NOT be considered an acceptable response, as it
 may have been spoofed or manipulated. Instead, the
 client SHOULD log an error and continue to wait for a signed response
 until the request times out.

 Key Error Handling
 If an RCODE on a response is 9 (NOTAUTH), but the response
 TSIG validates and the TSIG key is recognized by the client
 but is different from that used on the request, then this is a
 key-related error. The client MAY retry the request using the key
 specified by the server. However, this should never occur, as
 a server MUST NOT sign a response with a different key to that
 used to sign the request.

 MAC Error Handling
 If the response RCODE is 9 (NOTAUTH) and TSIG ERROR
 is 16 (BADSIG), this is a MAC-related error, and clients MAY retry
 the request with a new request ID, but it would be better
 to try a different shared key if one is available. Clients
 SHOULD keep track of how many MAC errors are associated
 with each key. Clients SHOULD log this event.

 Time Error Handling
 If the response RCODE is 9 (NOTAUTH) and the TSIG ERROR
 is 18 (BADTIME) or the current time does not fall in the
 range specified in the TSIG record, then this is a time-related
 error. This is an indication that the client and server
 clocks are not synchronized. In this case, the client
 SHOULD log the event. DNS resolvers MUST NOT adjust any clocks in the client based on BADTIME errors,
	 but the server's time in the Other Data field SHOULD
	 be logged.

 Truncation Error Handling
 If the response RCODE is 9 (NOTAUTH) and the TSIG ERROR
 is 22 (BADTRUNC), then this is a truncation-related error. The client
	 MAY retry with a lesser truncation up to the full
	 HMAC output (no truncation), using the truncation used in the
	 response as a hint for what the server policy allowed (). Clients
	 SHOULD log this event.

 Special Considerations for Forwarding Servers
 A server acting as a forwarding server of a DNS message
 SHOULD check for the existence of a TSIG record. If the name on
 the TSIG is not of a secret that the server shares with the
 originator, the server MUST forward the message unchanged
 including the TSIG. If the name of the TSIG is of a key this
 server shares with the originator, it MUST process the TSIG. If
 the TSIG passes all checks, the forwarding server MUST, if
 possible, include a TSIG of its own to the destination or the
 next forwarder. If no transaction security is available to the
 destination and the message is a query, and if the
 corresponding response has the AD flag (see) set, the forwarder MUST clear the
	AD flag
 before adding the TSIG to the response and returning the result
 to the system from which it received the query.

 Algorithms and Identifiers
 The only message digest algorithm specified in the first
 version of these specifications was
 "HMAC-MD5" (see and).
 Although a review of its security some years ago concluded
 that "it may not be urgent to remove HMAC-MD5 from the existing
 protocols", with the availability of more secure alternatives, the
 opportunity has been taken to make the implementation of this
 algorithm optional.
 added mandatory support in
 TSIG for SHA-1 . SHA-1 collisions have been
 demonstrated , so the MD5
 security considerations described in apply to SHA-1 in a similar manner.
 Although support for hmac-sha1 in TSIG is still mandatory for
 compatibility reasons, existing uses SHOULD be replaced
 with hmac-sha256 or other SHA-2 digest algorithms (, ,).
 Use of TSIG between two DNS agents is by mutual
 agreement. That agreement can include the support of additional
 algorithms and criteria as to which algorithms and truncations are
 acceptable, subject to the restriction and guidelines in
 .
 Key agreement can be by the TKEY mechanism
 or some other mutually agreeable method.
 Implementations that support TSIG MUST
 also implement HMAC SHA1 and HMAC SHA256 and MAY implement
 gss-tsig and the other algorithms listed below. SHA-1 truncated
 to 96 bits (12 octets) SHOULD be implemented.

 Algorithms for Implementations Supporting TSIG

 Algorithm Name
 Implementation
 Use

 HMAC-MD5.SIG-ALG.REG.INT

 MAY

 MUST NOT

 gss-tsig

 MAY

 MAY

 hmac-sha1

 MUST

 NOT RECOMMENDED

 hmac-sha224

 MAY

 MAY

 hmac-sha256

 MUST

 RECOMMENDED

 hmac-sha256-128

 MAY

 MAY

 hmac-sha384

 MAY

 MAY

 hmac-sha384-192

 MAY

 MAY

 hmac-sha512

 MAY

 MAY

 hmac-sha512-256

 MAY

 MAY

 TSIG Truncation Policy
 As noted above, two DNS agents (e.g., resolver and server) must
 mutually agree to use TSIG.
 Implicit in such an "agreement" are criteria as to acceptable keys,
 algorithms, and (with the extensions in this document) truncations.
 Local policies MAY require the rejection of TSIGs, even though
 they use an algorithm for which implementation is mandatory.
 When a local policy permits acceptance of a TSIG with a particular
 algorithm and a particular non-zero amount of truncation, it SHOULD
 also permit the use of that algorithm with lesser truncation (a
 longer MAC) up to the full keyed hash output.
 Regardless of a lower acceptable truncated MAC length specified by
 local policy, a reply SHOULD be sent with a MAC at least as long as
 that in the corresponding request. Note, if the request specified a MAC
 length longer than the keyed hash output, it will be rejected by
 processing rules (, case 1).
 Implementations permitting multiple acceptable algorithms and/or
 truncations SHOULD permit this list to be ordered by presumed
 strength and SHOULD allow different truncations for the same
 algorithm to be treated as separate entities in this list. When so
 implemented, policies SHOULD accept a presumed stronger algorithm and
 truncation than the minimum strength required by the policy.

 Shared Secrets
 Secret keys are very sensitive information and all available
 steps should be taken to protect them on every host on which they
 are stored. Generally, such hosts need to be physically protected.
 If they are multi-user machines, great care should be taken so that
 unprivileged users have no access to keying material. Resolvers
 often run unprivileged, which means all users of a host would be
 able to see whatever configuration data are used by the resolver.
 A name server usually runs privileged, which means its
 configuration data need not be visible to all users of the host.
 For this reason, a host that implements transaction-based
 authentication should probably be configured with a "stub
 resolver" and a local caching and forwarding name server. This
 presents a special problem for , which
 otherwise depends on clients to communicate only with a zone's
 authoritative name servers.
 Use of strong, random shared secrets is essential to the
 security of TSIG. See for a discussion
 of this issue. The secret SHOULD be at least as long as the keyed hash
 output .

 IANA Considerations
 IANA maintains a registry of algorithm names to be used as
 "Algorithm Names", as defined in . Algorithm
 names are text strings encoded using the syntax of a domain name. There
 is no structure to the names, and algorithm names are compared
 as if they were DNS names, i.e., comparison is case
 insensitive. Previous specifications (and)
 defined values for the HMAC-MD5 and some HMAC-SHA
 algorithms. IANA has also registered "gss-tsig" as an identifier for TSIG
 authentication where the cryptographic operations are delegated to the
 Generic Security Service (GSS) . This document
 adds to the allowed algorithms, and the registry has been updated with the
 names listed in .
 New algorithms are assigned using
 the IETF Review policy defined in .
 The algorithm name
 HMAC-MD5.SIG-ALG.REG.INT looks like a fully qualified domain
 name for historical reasons;
 other algorithm names are simple, single-component names.
 IANA maintains a registry of RCODEs (error codes) (see , including
 "TSIG Error values" to be used for "Error" values, as defined in
 . This document defines the RCODEs as
 described in . New error codes are assigned and
 specified as in .

 Security Considerations
 The approach specified here is computationally much less
 expensive than the signatures specified in DNSSEC. As long as
 the shared secret key is not compromised, strong authentication
 is provided between two DNS systems, e.g., for the last hop from
 a local name server to the user resolver or between primary and
 secondary name servers.
 Recommendations for choosing and maintaining secret keys can be found
 in . If the client host has been compromised,
 the server should suspend the use of all secrets known to that client.
 If possible, secrets should be stored in an encrypted form. Secrets should
 never be transmitted in the clear over any network. This document does
 not address the issue on how to distribute secrets except that it
 mentions the possibilities of manual configuration and the use of TKEY
 . Secrets SHOULD NOT be shared by more than two
 entities; any such additional sharing would allow any party knowing the
 key to impersonate any other such party to members of the group.
 This mechanism does not authenticate source data, only its
 transmission between two parties who share some secret. The
 original source data can come from a compromised zone master or
 can be corrupted during transit from an authentic zone master to
 some "caching forwarder". However, if the server is faithfully
 performing the full DNSSEC security checks, then
 only security-checked data will be available to the client.
 A Fudge value that is too large may leave the server open
 to replay attacks. A Fudge value that is too small may cause
 failures if machines are not time synchronized or there are unexpected
 network delays. The RECOMMENDED value in most situations is 300
 seconds.
 To prevent cross-algorithm attacks, there SHOULD only be one
 algorithm associated with any given key name.
 In several cases where errors are detected, an unsigned error
 message must be returned. This can allow for an attacker to spoof
 or manipulate these responses.
 recommends logging these as errors and continuing to wait for a
 signed response until the request times out.
 Although the strength of an algorithm determines its security,
 there have been some arguments that mild truncation can
 strengthen a MAC by reducing the information available to an
 attacker. However, excessive truncation clearly weakens authentication by
 reducing the number of bits an attacker has to try to break the
 authentication by brute force .
 Significant progress has been made recently in cryptanalysis of hash
 functions of the types used here. While the results so far should not
 affect HMAC, the stronger SHA-256 algorithm is being made mandatory as a
 precaution.
 See also the Security Considerations section of from which the limits on truncation
 in this RFC were taken.

 Issue Fixed in This Document
 When signing a DNS reply message using TSIG, the MAC
 computation uses the request message's MAC as an input to
 cryptographically relate the reply to the request. The
 original TSIG specification required
 that the time values be checked before the request's MAC. If
 the time was invalid, some implementations failed to carry out
 further checks and could use an invalid request MAC in the
 signed reply.
 This document makes it mandatory that the request MAC
 is considered to be invalid until it has been validated;
 until then, any answer must be unsigned. For this reason, the
 request MAC is now checked before the time values.

 Why Not DNSSEC?
 DNS has been extended by DNSSEC
 (, , and
) to provide for data origin
 authentication, and public key distribution, all based on
 public key cryptography and public key based digital
 signatures. To be practical, this form of security
 generally requires extensive local caching of keys and
 tracing of authentication through multiple keys and
 signatures to a pre-trusted locally configured key.
 One difficulty with the DNSSEC scheme is that common DNS
 implementations include simple "stub" resolvers which do not
 have caches. Such resolvers typically rely on a caching DNS
 server on another host. It is impractical for these stub
 resolvers to perform general DNSSEC authentication and they
 would naturally depend on their caching DNS server to
 perform such services for them. To do so securely requires
 secure communication of queries and responses. DNSSEC
 provides public key transaction signatures to support this,
 but such signatures are very expensive computationally to
 generate. In general, these require the same complex public
 key logic that is impractical for stubs.
 A second area where use of straight DNSSEC public key based
	 mechanisms may be impractical is authenticating dynamic update requests. DNSSEC provides for
	 request signatures but with DNSSEC they, like transaction
	 signatures, require computationally expensive public key
	 cryptography and complex authentication logic. Secure Domain Name
	 System Dynamic Update ()
	 describes how different keys are used in dynamically updated
	 zones.

 References

 Normative References

 Secure Hash Standard (SHS)

 National Institute of Standards and Technology

 Domain names - concepts and facilities

 This RFC is the revised basic definition of The Domain Name System. It obsoletes RFC-882. This memo describes the domain style names and their used for host address look up and electronic mail forwarding. It discusses the clients and servers in the domain name system and the protocol used between them.

 Domain names - implementation and specification

 This RFC is the revised specification of the protocol and format used in the implementation of the Domain Name System. It obsoletes RFC-883. This memo documents the details of the domain name client - server communication.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Secret Key Transaction Authentication for DNS (TSIG)

 This protocol allows for transaction level authentication using shared secrets and one way hashing. It can be used to authenticate dynamic updates as coming from an approved client, or to authenticate responses as coming from an approved recursive name server. [STANDARDS-TRACK]

 Handling of Unknown DNS Resource Record (RR) Types

 Extending the Domain Name System (DNS) with new Resource Record (RR) types currently requires changes to name server software. This document specifies the changes necessary to allow future DNS implementations to handle new RR types transparently. [STANDARDS-TRACK]

 HMAC SHA (Hashed Message Authentication Code, Secure Hash Algorithm) TSIG Algorithm Identifiers

 Use of the Domain Name System TSIG resource record requires specification of a cryptographic message authentication code. Currently, identifiers have been specified only for HMAC MD5 (Hashed Message Authentication Code, Message Digest 5) and GSS (Generic Security Service) TSIG algorithms. This document standardizes identifiers and implementation requirements for additional HMAC SHA (Secure Hash Algorithm) TSIG algorithms and standardizes how to specify and handle the truncation of HMAC values in TSIG. [STANDARDS-TRACK]

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Informative References

 CVE-2017-11104: Improper TSIG validity period check can allow TSIG forgery

 Common Vulnerabilities and Exposures

 CVE-2017-3142: An error in TSIG authentication can permit unauthorized zone transfers

 Common Vulnerabilities and Exposures

 CVE-2017-3143: An error in TSIG authentication can permit unauthorized dynamic updates

 Common Vulnerabilities and Exposures

 DNS RCODEs

 IANA

 TSIG Algorithm Names

 IANA

 The MD5 Message-Digest Algorithm

 This document describes the MD5 message-digest algorithm. The algorithm takes as input a message of arbitrary length and produces as output a 128-bit "fingerprint" or "message digest" of the input. This memo provides information for the Internet community. It does not specify an Internet standard.

 HMAC: Keyed-Hashing for Message Authentication

 This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind

 Dynamic Updates in the Domain Name System (DNS UPDATE)

 Using this specification of the UPDATE opcode, it is possible to add or delete RRs or RRsets from a specified zone. Prerequisites are specified separately from update operations, and can specify a dependency upon either the previous existence or nonexistence of an RRset, or the existence of a single RR. [STANDARDS-TRACK]

 Secret Key Establishment for DNS (TKEY RR)

 This document describes a Transaction Key (TKEY) RR that can be used in a number of different modes to establish shared secret keys between a DNS resolver and server. [STANDARDS-TRACK]

 Secure Domain Name System (DNS) Dynamic Update

 This document proposes a method for performing secure Domain Name System (DNS) dynamic updates. [STANDARDS-TRACK]

 US Secure Hash Algorithm 1 (SHA1)

 The purpose of this document is to make the SHA-1 (Secure Hash Algorithm 1) hash algorithm conveniently available to the Internet community. This memo provides information for the Internet community.

 Generic Security Service Algorithm for Secret Key Transaction Authentication for DNS (GSS-TSIG)

 The Secret Key Transaction Authentication for DNS (TSIG) protocol provides transaction level authentication for DNS. TSIG is extensible through the definition of new algorithms. This document specifies an algorithm based on the Generic Security Service Application Program Interface (GSS-API) (RFC2743). This document updates RFC 2845.

 A 224-bit One-way Hash Function: SHA-224

 This document specifies a 224-bit one-way hash function, called SHA-224. SHA-224 is based on SHA-256, but it uses a different initial value and the result is truncated to 224 bits. This memo provides information for the Internet community.

 DNS Security Introduction and Requirements

 The Domain Name System Security Extensions (DNSSEC) add data origin authentication and data integrity to the Domain Name System. This document introduces these extensions and describes their capabilities and limitations. This document also discusses the services that the DNS security extensions do and do not provide. Last, this document describes the interrelationships between the documents that collectively describe DNSSEC. [STANDARDS-TRACK]

 Resource Records for the DNS Security Extensions

 This document is part of a family of documents that describe the DNS Security Extensions (DNSSEC). The DNS Security Extensions are a collection of resource records and protocol modifications that provide source authentication for the DNS. This document defines the public key (DNSKEY), delegation signer (DS), resource record digital signature (RRSIG), and authenticated denial of existence (NSEC) resource records. The purpose and format of each resource record is described in detail, and an example of each resource record is given.
 This document obsoletes RFC 2535 and incorporates changes from all updates to RFC 2535. [STANDARDS-TRACK]

 Protocol Modifications for the DNS Security Extensions

 This document is part of a family of documents that describe the DNS Security Extensions (DNSSEC). The DNS Security Extensions are a collection of new resource records and protocol modifications that add data origin authentication and data integrity to the DNS. This document describes the DNSSEC protocol modifications. This document defines the concept of a signed zone, along with the requirements for serving and resolving by using DNSSEC. These techniques allow a security-aware resolver to authenticate both DNS resource records and authoritative DNS error indications.
 This document obsoletes RFC 2535 and incorporates changes from all updates to RFC 2535. [STANDARDS-TRACK]

 Randomness Requirements for Security

 Security systems are built on strong cryptographic algorithms that foil pattern analysis attempts. However, the security of these systems is dependent on generating secret quantities for passwords, cryptographic keys, and similar quantities. The use of pseudo-random processes to generate secret quantities can result in pseudo-security. A sophisticated attacker may find it easier to reproduce the environment that produced the secret quantities and to search the resulting small set of possibilities than to locate the quantities in the whole of the potential number space.
 Choosing random quantities to foil a resourceful and motivated adversary is surprisingly difficult. This document points out many pitfalls in using poor entropy sources or traditional pseudo-random number generation techniques for generating such quantities. It recommends the use of truly random hardware techniques and shows that the existing hardware on many systems can be used for this purpose. It provides suggestions to ameliorate the problem when a hardware solution is not available, and it gives examples of how large such quantities need to be for some applications. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec

 This specification describes the use of Hashed Message Authentication Mode (HMAC) in conjunction with the SHA-256, SHA-384, and SHA-512 algorithms in IPsec. These algorithms may be used as the basis for data origin authentication and integrity verification mechanisms for the Authentication Header (AH), Encapsulating Security Payload (ESP), Internet Key Exchange Protocol (IKE), and IKEv2 protocols, and also as Pseudo-Random Functions (PRFs) for IKE and IKEv2. Truncated output lengths are specified for the authentication-related variants, with the corresponding algorithms designated as HMAC-SHA-256-128, HMAC-SHA-384-192, and HMAC-SHA-512-256. The PRF variants are not truncated, and are called PRF-HMAC-SHA-256, PRF-HMAC-SHA-384, and PRF-HMAC-SHA-512. [STANDARDS-TRACK]

 Updated Security Considerations for the MD5 Message-Digest and the HMAC-MD5 Algorithms

 This document updates the security considerations for the MD5 message digest algorithm. It also updates the security considerations for HMAC-MD5. This document is not an Internet Standards Track specification; it is published for informational purposes.

 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

 Federal Information Processing Standard, FIPS

 Domain Name System (DNS) IANA Considerations

 This document specifies Internet Assigned Numbers Authority (IANA) parameter assignment considerations for the allocation of Domain Name System (DNS) resource record types, CLASSes, operation codes, error codes, DNS protocol message header bits, and AFSDB resource record subtypes. It obsoletes RFC 6195 and updates RFCs 1183, 2845, 2930, and 3597.

 Guidelines for Cryptographic Algorithm Agility and Selecting Mandatory-to-Implement Algorithms

 Many IETF protocols use cryptographic algorithms to provide confidentiality, integrity, authentication, or digital signature. Communicating peers must support a common set of cryptographic algorithms for these mechanisms to work properly. This memo provides guidelines to ensure that protocols have the ability to migrate from one mandatory-to-implement algorithm suite to another over time.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 SHA-1 is a Shambles

 Acknowledgements
 The security problem addressed by this document was reported by
 from Synacktiv.
 , , , , , and
 participated in the discussions that
 prompted this document. ,
 , and made extremely helpful suggestions concerning the structure and
 wording of the updated document.
 Stephen Morris would like to thank Internet Systems Consortium for its
 support of his participation in the creation of this document.

 Authors' Addresses

 Internet Systems Consortium, Inc.

 PO Box 360
 Newmarket
 NH
 03857
 United States of America

 Francis.Dupont@fdupont.fr

 Unaffiliated

 United Kingdom

 sa.morris8@gmail.com

 Farsight Security Inc

 177 Bovet Road
 Suite 180
 San Mateo
 CA
 94402
 United States of America

 paul@redbarn.org

 Futurewei Technologies

 2386 Panoramic Circle
 Apopka
 FL
 32703
 United States of America

 d3e3e3@gmail.com

 Cloudflare

 United States of America

 olafur+ietf@cloudflare.com

 Akamai

 United States of America

 bwelling@akamai.com

