
RFC 9106
Argon2 Memory-Hard Function for Password
Hashing and Proof-of-Work Applications

Abstract
This document describes the Argon2 memory-hard function for password hashing and proof-of-
work applications. We provide an implementer-oriented description with test vectors. The
purpose is to simplify adoption of Argon2 for Internet protocols. This document is a product of
the Crypto Forum Research Group (CFRG) in the IRTF.

Stream: Internet Research Task Force (IRTF)
RFC: 9106
Category: Informational
Published: September 2021
ISSN: 2070-1721
Authors:

 A. Biryukov
University of Luxembourg

D. Dinu
University of Luxembourg

D. Khovratovich
ABDK Consulting

S. Josefsson
SJD AB

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Research Task Force (IRTF). The IRTF publishes the
results of Internet-related research and development activities. These results might not be
suitable for deployment. This RFC represents the consensus of the Crypto Forum Research Group
of the Internet Research Task Force (IRTF). Documents approved for publication by the IRSG are
not candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9106

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Biryukov, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9106
https://www.rfc-editor.org/info/rfc9106
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Requirements Language

2. Notation and Conventions

3. Argon2 Algorithm

3.1. Argon2 Inputs and Outputs

3.2. Argon2 Operation

3.3. Variable-Length Hash Function H'

3.4. Indexing

3.4.1. Computing the 32-Bit Values J_1 and J_2

3.4.2. Mapping J_1 and J_2 to Reference Block Index [l][z]

3.5. Compression Function G

3.6. Permutation P

4. Parameter Choice

5. Test Vectors

5.1. Argon2d Test Vectors

5.2. Argon2i Test Vectors

5.3. Argon2id Test Vectors

6. IANA Considerations

7. Security Considerations

7.1. Security as a Hash Function and KDF

7.2. Security against Time-Space Trade-off Attacks

7.3. Security for Time-Bounded Defenders

7.4. Recommendations

8. References

8.1. Normative References

8.2. Informative References

Acknowledgements

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 2

x^y

2. Notation and Conventions

integer x multiplied by itself integer y times

Authors' Addresses

1. Introduction
This document describes the memory-hard function for password hashing
and proof-of-work applications. We provide an implementer-oriented description with test
vectors. The purpose is to simplify adoption of Argon2 for Internet protocols. This document
corresponds to version 1.3 of the Argon2 hash function.

Argon2 is a . It is a streamlined design. It aims at the highest
memory-filling rate and effective use of multiple computing units, while still providing defense
against trade-off attacks. Argon2 is optimized for the x86 architecture and exploits the cache and
memory organization of the recent Intel and AMD processors. Argon2 has one primary variant,
Argon2id, and two supplementary variants, Argon2d and Argon2i. Argon2d uses data-dependent
memory access, which makes it suitable for cryptocurrencies and proof-of-work applications
with no threats from side-channel timing attacks. Argon2i uses data-independent memory
access, which is preferred for password hashing and password-based key derivation. Argon2id
works as Argon2i for the first half of the first pass over the memory and as Argon2d for the rest,
thus providing both side-channel attack protection and brute-force cost savings due to time-
memory trade-offs. Argon2i makes more passes over the memory to protect from

.

Argon2id be supported by any implementation of this document, whereas Argon2d and
Argon2i be supported.

Argon2 is also a mode of operation over a fixed-input-length compression function G and a
variable-input-length hash function H. Even though Argon2 can be potentially used with an
arbitrary function H, as long as it provides outputs up to 64 bytes, the

 is used in this document.

For further background and discussion, see the .

This document represents the consensus of the Crypto Forum Research Group (CFRG).

Argon2 [ARGON2ESP]

memory-hard function [HARD]

trade-off
attacks [AB15]

MUST
MAY

BLAKE2b function
[BLAKE2]

Argon2 paper [ARGON2]

1.1. Requirements Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 3

a*b

c-d

E_f

g / h

I(j)

K || L

a XOR b

a mod b

a >>> n

trunc(a)

floor(a)

ceil(a)

extract(a, i)

|A|

LE32(a)

LE64(a)

int32(s)

int64(s)

length(P)

ZERO(P)

multiplication of integer a and integer b

subtraction of integer d from integer c

variable E with subscript index f

integer g divided by integer h. The result is a rational number.

function I evaluated at j

string K concatenated with string L

bitwise exclusive-or between bitstrings a and b

remainder of integer a modulo integer b, always in range [0, b-1]

rotation of 64-bit string a to the right by n bits

the 64-bit value, truncated to the 32 least significant bits

the largest integer not bigger than a

the smallest integer not smaller than a

the i-th set of 32 bits from bitstring a, starting from 0-th

the number of elements in set A

32-bit integer a converted to a byte string in little endian (for example, 123456
(decimal) is 40 E2 01 00)

64-bit integer a converted to a byte string in little endian (for example, 123456
(decimal) is 40 E2 01 00 00 00 00 00)

32-bit string s is converted to a non-negative integer in little endian

64-bit string s is converted to a non-negative integer in little endian

the byte length of string P expressed as 32-bit integer

the P-byte zero string

3. Argon2 Algorithm

3.1. Argon2 Inputs and Outputs
Argon2 has the following input parameters:

Message string P, which is a password for password hashing applications. It have a
length not greater than 2^(32)-1 bytes.
Nonce S, which is a salt for password hashing applications. It have a length not greater
than 2^(32)-1 bytes. 16 bytes is for password hashing. The salt be
unique for each password.

• MUST

• MUST
RECOMMENDED SHOULD

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 4

Degree of parallelism p determines how many independent (but synchronizing)
computational chains (lanes) can be run. It be an integer value from 1 to 2^(24)-1.
Tag length T be an integer number of bytes from 4 to 2^(32)-1.
Memory size m be an integer number of kibibytes from 8*p to 2^(32)-1. The actual
number of blocks is m', which is m rounded down to the nearest multiple of 4*p.
Number of passes t (used to tune the running time independently of the memory size)
be an integer number from 1 to 2^(32)-1.
Version number v be one byte 0x13.
Secret value K is . If used, it have a length not greater than 2^(32)-1 bytes.
Associated data X is . If used, it have a length not greater than 2^(32)-1 bytes.
Type y be 0 for Argon2d, 1 for Argon2i, or 2 for Argon2id.

The Argon2 output, or "tag", is a string T bytes long.

•
MUST

• MUST
• MUST

• MUST

• MUST
• OPTIONAL MUST
• OPTIONAL MUST
• MUST

3.2. Argon2 Operation
Argon2 uses an internal compression function G with two 1024-byte inputs, a 1024-byte output,
and an internal hash function H^x(), with x being its output length in bytes. Here, H^x() applied
to string A is the BLAKE2b () function, which takes (d,ll,kk=0,nn=x) as
parameters, where d is A padded to a multiple of 128 bytes and ll is the length of d in bytes. The
compression function G is based on its internal permutation. A variable-length hash function H'
built upon H is also used. G is described in Section 3.5, and H' is described in Section 3.3.

The Argon2 operation is as follows.

Establish H_0 as the 64-byte value as shown below. If K, X, or S has zero length, it is just
absent, but its length field remains.

Allocate the memory as m' 1024-byte blocks, where m' is derived as:

For p lanes, the memory is organized in a matrix B[i][j] of blocks with p rows (lanes) and q =
m' / p columns.
Compute B[i][0] for all i ranging from (and including) 0 to (not including) p.

[BLAKE2], Section 3.3

1.

Figure 1: H_0 Generation

H_0 = H^(64)(LE32(p) || LE32(T) || LE32(m) || LE32(t) ||
 LE32(v) || LE32(y) || LE32(length(P)) || P ||
 LE32(length(S)) || S || LE32(length(K)) || K ||
 LE32(length(X)) || X)

2.

Figure 2: Memory Allocation

m' = 4 * p * floor (m / 4p)

3.

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 5

https://www.rfc-editor.org/rfc/rfc7693#section-3.3

Compute B[i][1] for all i ranging from (and including) 0 to (not including) p.

If the number of passes t is larger than 1, we repeat step 5. We compute B[i][0] and B[i][j] for
all i raging from (and including) 0 to (not including) p and for all j ranging from (and
including) 1 to (not including) q. However, blocks are computed differently as the old value
is XORed with the new one:

After t steps have been iterated, the final block C is computed as the XOR of the last column:

The output tag is computed as H'^T(C).

Figure 3: Lane Starting Blocks

B[i][0] = H'^(1024)(H_0 || LE32(0) || LE32(i))

4.

Figure 4: Second Lane Blocks

B[i][1] = H'^(1024)(H_0 || LE32(1) || LE32(i))

5. Compute B[i][j] for all i ranging from (and including) 0 to (not including) p and for all j
ranging from (and including) 2 to (not including) q. The computation proceed slicewise
(Section 3.4): first, blocks from slice 0 are computed for all lanes (in an arbitrary order of
lanes), then blocks from slice 1 are computed, etc. The block indices l and z are determined
for each i, j differently for Argon2d, Argon2i, and Argon2id.

MUST

Figure 5: Further Block Generation

B[i][j] = G(B[i][j-1], B[l][z])

6.

Figure 6: Further Passes

B[i][0] = G(B[i][q-1], B[l][z]) XOR B[i][0];
B[i][j] = G(B[i][j-1], B[l][z]) XOR B[i][j].

7.

Figure 7: Final Block

C = B[0][q-1] XOR B[1][q-1] XOR ... XOR B[p-1][q-1]

8.

3.3. Variable-Length Hash Function H'
Let V_i be a 64-byte block and W_i be its first 32 bytes. Then we define function H' as follows:

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 6

Figure 8: Function H' for Tag and Initial Block Computations

 if T <= 64
 H'^T(A) = H^T(LE32(T)||A)
 else
 r = ceil(T/32)-2
 V_1 = H^(64)(LE32(T)||A)
 V_2 = H^(64)(V_1)
 ...
 V_r = H^(64)(V_{r-1})
 V_{r+1} = H^(T-32*r)(V_{r})
 H'^T(X) = W_1 || W_2 || ... || W_r || V_{r+1}

3.4. Indexing
To enable parallel block computation, we further partition the memory matrix into SL = 4
vertical slices. The intersection of a slice and a lane is called a segment, which has a length of q/
SL. Segments of the same slice can be computed in parallel and do not reference blocks from
each other. All other blocks can be referenced.

3.4.1. Computing the 32-Bit Values J_1 and J_2

3.4.1.1. Argon2d
J_1 is given by the first 32 bits of block B[i][j-1], while J_2 is given by the next 32 bits of block B[i]
[j-1]:

Figure 9: Single-Pass Argon2 with p Lanes and 4 Slices

 slice 0 slice 1 slice 2 slice 3
 ___/___ ___/___ ___/___ ___/___
 / \ / \ / \ / \
 +----------+----------+----------+----------+
 | | | | | > lane 0
 +----------+----------+----------+----------+
 | | | | | > lane 1
 +----------+----------+----------+----------+
 | | | | | > lane 2
 +----------+----------+----------+----------+
 | | ...
 +----------+----------+----------+----------+
 | | | | | > lane p - 1
 +----------+----------+----------+----------+

Figure 10: Deriving J1,J2 in Argon2d

J_1 = int32(extract(B[i][j-1], 0))
J_2 = int32(extract(B[i][j-1], 1))

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 7

r:
l:
sl:
m':
t:
y:

3.4.1.2. Argon2i
For each segment, we do the following. First, we compute the value Z as:

where

the pass number
the lane number
the slice number
the total number of memory blocks
the total number of passes
the Argon2 type (0 for Argon2d, 1 for Argon2i, 2 for Argon2id)

Then we compute:

which are partitioned into q/(SL) 8-byte values X, which are viewed as X1||X2 and converted to
J_1=int32(X1) and J_2=int32(X2).

The values r, l, sl, m', t, y, and i are represented as 8 bytes in little endian.

3.4.1.3. Argon2id
If the pass number is 0 and the slice number is 0 or 1, then compute J_1 and J_2 as for Argon2i,
else compute J_1 and J_2 as for Argon2d.

3.4.2. Mapping J_1 and J_2 to Reference Block Index [l][z]

The value of l = J_2 mod p gives the index of the lane from which the block will be taken. For the
first pass (r=0) and the first slice (sl=0), the block is taken from the current lane.

The set W contains the indices that are referenced according to the following rules:

If l is the current lane, then W includes the indices of all blocks in the last SL - 1 = 3 segments
computed and finished, as well as the blocks computed in the current segment in the current
pass excluding B[i][j-1].

Figure 11: Input to Compute J1,J2 in Argon2i

Z= (LE64(r) || LE64(l) || LE64(sl) || LE64(m') ||
 LE64(t) || LE64(y))

q/(128*SL) 1024-byte values
G(ZERO(1024),G(ZERO(1024),
Z || LE64(1) || ZERO(968))),
G(ZERO(1024),G(ZERO(1024),
Z || LE64(2) || ZERO(968))),... ,
G(ZERO(1024),G(ZERO(1024),
Z || LE64(q/(128*SL)) || ZERO(968))),

1.

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 8

If l is not the current lane, then W includes the indices of all blocks in the last SL - 1 = 3
segments computed and finished in lane l. If B[i][j] is the first block of a segment, then the
very last index from W is excluded.

Then take a block from W with a nonuniform distribution over [0, |W|) using the following
mapping:

To avoid floating point computation, the following approximation is used:

Then take the zz-th index from W; it will be the z value for the reference block index [l][z].

2.

Figure 12: Computing J1

J_1 -> |W|(1 - J_1^2 / 2^(64))

Figure 13: Computing J1, Part 2

x = J_1^2 / 2^(32)
y = (|W| * x) / 2^(32)
zz = |W| - 1 - y

3.5. Compression Function G
The compression function G is built upon the BLAKE2b-based transformation P. P operates on the
128-byte input, which can be viewed as eight 16-byte registers:

The compression function G(X, Y) operates on two 1024-byte blocks X and Y. It first computes R =
X XOR Y. Then R is viewed as an 8x8 matrix of 16-byte registers R_0, R_1, ... , R_63. Then P is first
applied to each row, and then to each column to get Z:

Figure 14: Blake Round Function P

P(A_0, A_1, ... ,A_7) = (B_0, B_1, ... ,B_7)

Figure 15: Core of Compression Function G

(Q_0, Q_1, Q_2, ... , Q_7) <- P(R_0, R_1, R_2, ... , R_7)
(Q_8, Q_9, Q_10, ... , Q_15) <- P(R_8, R_9, R_10, ... , R_15)
 ...
(Q_56, Q_57, Q_58, ... , Q_63) <- P(R_56, R_57, R_58, ... , R_63)
(Z_0, Z_8, Z_16, ... , Z_56) <- P(Q_0, Q_8, Q_16, ... , Q_56)
(Z_1, Z_9, Z_17, ... , Z_57) <- P(Q_1, Q_9, Q_17, ... , Q_57)
 ...
(Z_7, Z_15, Z 23, ... , Z_63) <- P(Q_7, Q_15, Q_23, ... , Q_63)

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 9

Finally, G outputs Z XOR R:

G: (X, Y) -> R -> Q -> Z -> Z XOR R

Figure 16: Argon2 Compression Function G

 +---+ +---+
 | X | | Y |
 +---+ +---+
 | |
 ---->XOR<----
 --------|
 | \ /
 | +---+
 | | R |
 | +---+
 | |
 | \ /
 | P rowwise
 | |
 | \ /
 | +---+
 | | Q |
 | +---+
 | |
 | \ /
 | P columnwise
 | |
 | \ /
 | +---+
 | | Z |
 | +---+
 | |
 | \ /
 ------>XOR
 |
 \ /

3.6. Permutation P
Permutation P is based on the round function of BLAKE2b. The eight 16-byte inputs S_0, S_1, ... ,
S_7 are viewed as a 4x4 matrix of 64-bit words, where S_i = (v_{2*i+1} || v_{2*i}):

It works as follows:

Figure 17: Matrix Element Labeling

 v_0 v_1 v_2 v_3
 v_4 v_5 v_6 v_7
 v_8 v_9 v_10 v_11
 v_12 v_13 v_14 v_15

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 10

GB(a, b, c, d) is defined as follows:

The modular additions in GB are combined with 64-bit multiplications. Multiplications are the
only difference from the original BLAKE2b design. This choice is done to increase the circuit
depth and thus the running time of ASIC implementations, while having roughly the same
running time on CPUs thanks to parallelism and pipelining.

Figure 18: Feeding Matrix Elements to GB

 GB(v_0, v_4, v_8, v_12)
 GB(v_1, v_5, v_9, v_13)
 GB(v_2, v_6, v_10, v_14)
 GB(v_3, v_7, v_11, v_15)

 GB(v_0, v_5, v_10, v_15)
 GB(v_1, v_6, v_11, v_12)
 GB(v_2, v_7, v_8, v_13)
 GB(v_3, v_4, v_9, v_14)

Figure 19: Details of GB

 a = (a + b + 2 * trunc(a) * trunc(b)) mod 2^(64)
 d = (d XOR a) >>> 32
 c = (c + d + 2 * trunc(c) * trunc(d)) mod 2^(64)
 b = (b XOR c) >>> 24

 a = (a + b + 2 * trunc(a) * trunc(b)) mod 2^(64)
 d = (d XOR a) >>> 16
 c = (c + d + 2 * trunc(c) * trunc(d)) mod 2^(64)
 b = (b XOR c) >>> 63

4. Parameter Choice
Argon2d is optimized for settings where the adversary does not get regular access to system
memory or CPU, i.e., they cannot run side-channel attacks based on the timing information, nor
can they recover the password much faster using garbage collection. These settings are more
typical for backend servers and cryptocurrency minings. For practice, we suggest the following
settings:

Cryptocurrency mining, which takes 0.1 seconds on a 2 GHz CPU using 1 core -- Argon2d with
2 lanes and 250 MB of RAM.

Argon2id is optimized for more realistic settings, where the adversary can possibly access the
same machine, use its CPU, or mount cold-boot attacks. We suggest the following settings:

Backend server authentication, which takes 0.5 seconds on a 2 GHz CPU using 4 cores --
Argon2id with 8 lanes and 4 GiB of RAM.

•

•

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 11

Key derivation for hard-drive encryption, which takes 3 seconds on a 2 GHz CPU using 2
cores -- Argon2id with 4 lanes and 6 GiB of RAM.
Frontend server authentication, which takes 0.5 seconds on a 2 GHz CPU using 2 cores --
Argon2id with 4 lanes and 1 GiB of RAM.

We recommend the following procedure to select the type and the parameters for practical use of
Argon2.

If a uniformly safe option that is not tailored to your application or hardware is acceptable,
select Argon2id with t=1 iteration, p=4 lanes, m=2^(21) (2 GiB of RAM), 128-bit salt, and 256-
bit tag size. This is the FIRST option.
If much less memory is available, a uniformly safe option is Argon2id with t=3 iterations, p=4
lanes, m=2^(16) (64 MiB of RAM), 128-bit salt, and 256-bit tag size. This is the SECOND

 option.
Otherwise, start with selecting the type y. If you do not know the difference between the
types or you consider side-channel attacks to be a viable threat, choose Argon2id.
Select p=4 lanes.
Figure out the maximum amount of memory that each call can afford and translate it to the
parameter m.
Figure out the maximum amount of time (in seconds) that each call can afford.
Select the salt length. A length of 128 bits is sufficient for all applications but can be reduced
to 64 bits in the case of space constraints.
Select the tag length. A length of 128 bits is sufficient for most applications, including key
derivation. If longer keys are needed, select longer tags.
If side-channel attacks are a viable threat or if you're uncertain, enable the memory-wiping
option in the library call.
Run the scheme of type y, memory m, and p lanes using a different number of passes t.
Figure out the maximum t such that the running time does not exceed the affordable time. If
it even exceeds for t = 1, reduce m accordingly.
Use Argon2 with determined values m, p, and t.

•

•

1.

RECOMMENDED
2.

RECOMMENDED
3.

4.
5.

6.
7.

8.

9.

10.

11.

5. Test Vectors
This section contains test vectors for Argon2.

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 12

5.1. Argon2d Test Vectors
We provide test vectors with complete outputs (tags). For the convenience of developers, we also
provide some interim variables -- concretely, the first and last memory blocks of each pass.

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 13

=======================================
Argon2d version number 19
=======================================
Memory: 32 KiB
Passes: 3
Parallelism: 4 lanes
Tag length: 32 bytes
Password[32]: 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
Secret[8]: 03 03 03 03 03 03 03 03
Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
Pre-hashing digest: b8 81 97 91 a0 35 96 60
 bb 77 09 c8 5f a4 8f 04
 d5 d8 2c 05 c5 f2 15 cc
 db 88 54 91 71 7c f7 57
 08 2c 28 b9 51 be 38 14
 10 b5 fc 2e b7 27 40 33
 b9 fd c7 ae 67 2b ca ac
 5d 17 90 97 a4 af 31 09

 After pass 0:
Block 0000 [0]: db2fea6b2c6f5c8a
Block 0000 [1]: 719413be00f82634
Block 0000 [2]: a1e3f6dd42aa25cc
Block 0000 [3]: 3ea8efd4d55ac0d1
...
Block 0031 [124]: 28d17914aea9734c
Block 0031 [125]: 6a4622176522e398
Block 0031 [126]: 951aa08aeecb2c05
Block 0031 [127]: 6a6c49d2cb75d5b6

 After pass 1:
Block 0000 [0]: d3801200410f8c0d
Block 0000 [1]: 0bf9e8a6e442ba6d
Block 0000 [2]: e2ca92fe9c541fcc
Block 0000 [3]: 6269fe6db177a388
...
Block 0031 [124]: 9eacfcfbdb3ce0fc
Block 0031 [125]: 07dedaeb0aee71ac
Block 0031 [126]: 074435fad91548f4
Block 0031 [127]: 2dbfff23f31b5883

 After pass 2:
Block 0000 [0]: 5f047b575c5ff4d2
Block 0000 [1]: f06985dbf11c91a8
Block 0000 [2]: 89efb2759f9a8964
Block 0000 [3]: 7486a73f62f9b142
...
Block 0031 [124]: 57cfb9d20479da49
Block 0031 [125]: 4099654bc6607f69
Block 0031 [126]: f142a1126075a5c8
Block 0031 [127]: c341b3ca45c10da5
Tag: 51 2b 39 1b 6f 11 62 97
 53 71 d3 09 19 73 42 94

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 14

 f8 68 e3 be 39 84 f3 c1
 a1 3a 4d b9 fa be 4a cb

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 15

5.2. Argon2i Test Vectors

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 16

=======================================
Argon2i version number 19
=======================================
Memory: 32 KiB
Passes: 3
Parallelism: 4 lanes
Tag length: 32 bytes
Password[32]: 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
Secret[8]: 03 03 03 03 03 03 03 03
Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
Pre-hashing digest: c4 60 65 81 52 76 a0 b3
 e7 31 73 1c 90 2f 1f d8
 0c f7 76 90 7f bb 7b 6a
 5c a7 2e 7b 56 01 1f ee
 ca 44 6c 86 dd 75 b9 46
 9a 5e 68 79 de c4 b7 2d
 08 63 fb 93 9b 98 2e 5f
 39 7c c7 d1 64 fd da a9

 After pass 0:
Block 0000 [0]: f8f9e84545db08f6
Block 0000 [1]: 9b073a5c87aa2d97
Block 0000 [2]: d1e868d75ca8d8e4
Block 0000 [3]: 349634174e1aebcc
...
Block 0031 [124]: 975f596583745e30
Block 0031 [125]: e349bdd7edeb3092
Block 0031 [126]: b751a689b7a83659
Block 0031 [127]: c570f2ab2a86cf00

 After pass 1:
Block 0000 [0]: b2e4ddfcf76dc85a
Block 0000 [1]: 4ffd0626c89a2327
Block 0000 [2]: 4af1440fff212980
Block 0000 [3]: 1e77299c7408505b
...
Block 0031 [124]: e4274fd675d1e1d6
Block 0031 [125]: 903fffb7c4a14c98
Block 0031 [126]: 7e5db55def471966
Block 0031 [127]: 421b3c6e9555b79d

 After pass 2:
Block 0000 [0]: af2a8bd8482c2f11
Block 0000 [1]: 785442294fa55e6d
Block 0000 [2]: 9256a768529a7f96
Block 0000 [3]: 25a1c1f5bb953766
...
Block 0031 [124]: 68cf72fccc7112b9
Block 0031 [125]: 91e8c6f8bb0ad70d
Block 0031 [126]: 4f59c8bd65cbb765
Block 0031 [127]: 71e436f035f30ed0
Tag: c8 14 d9 d1 dc 7f 37 aa
 13 f0 d7 7f 24 94 bd a1

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 17

 c8 de 6b 01 6d d3 88 d2
 99 52 a4 c4 67 2b 6c e8

5.3. Argon2id Test Vectors

=======================================
Argon2id version number 19
=======================================
Memory: 32 KiB, Passes: 3,
Parallelism: 4 lanes, Tag length: 32 bytes
Password[32]: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
Secret[8]: 03 03 03 03 03 03 03 03
Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
Pre-hashing digest: 28 89 de 48 7e b4 2a e5 00 c0 00 7e d9 25 2f
 10 69 ea de c4 0d 57 65 b4 85 de 6d c2 43 7a 67 b8 54 6a 2f 0a
 cc 1a 08 82 db 8f cf 74 71 4b 47 2e 94 df 42 1a 5d a1 11 2f fa
 11 43 43 70 a1 e9 97

 After pass 0:
Block 0000 [0]: 6b2e09f10671bd43
Block 0000 [1]: f69f5c27918a21be
Block 0000 [2]: dea7810ea41290e1
Block 0000 [3]: 6787f7171870f893
...
Block 0031 [124]: 377fa81666dc7f2b
Block 0031 [125]: 50e586398a9c39c8
Block 0031 [126]: 6f732732a550924a
Block 0031 [127]: 81f88b28683ea8e5

 After pass 1:
Block 0000 [0]: 3653ec9d01583df9
Block 0000 [1]: 69ef53a72d1e1fd3
Block 0000 [2]: 35635631744ab54f
Block 0000 [3]: 599512e96a37ab6e
...
Block 0031 [124]: 4d4b435cea35caa6
Block 0031 [125]: c582210d99ad1359
Block 0031 [126]: d087971b36fd6d77
Block 0031 [127]: a55222a93754c692

 After pass 2:
Block 0000 [0]: 942363968ce597a4
Block 0000 [1]: a22448c0bdad5760
Block 0000 [2]: a5f80662b6fa8748
Block 0000 [3]: a0f9b9ce392f719f
...
Block 0031 [124]: d723359b485f509b
Block 0031 [125]: cb78824f42375111
Block 0031 [126]: 35bc8cc6e83b1875
Block 0031 [127]: 0b012846a40f346a
Tag: 0d 64 0d f5 8d 78 76 6c 08 c0 37 a3 4a 8b 53 c9 d0
 1e f0 45 2d 75 b6 5e b5 25 20 e9 6b 01 e6 59

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 18

6. IANA Considerations
This document has no IANA actions.

7. Security Considerations

7.1. Security as a Hash Function and KDF
The collision and preimage resistance levels of Argon2 are equivalent to those of the underlying
BLAKE2b hash function. To produce a collision, 2^(256) inputs are needed. To find a preimage, 2^
(512) inputs must be tried.

The KDF security is determined by the key length and the size of the internal state of hash
function H'. To distinguish the output of the keyed Argon2 from random, a minimum of (2^
(128),2^length(K)) calls to BLAKE2b are needed.

7.2. Security against Time-Space Trade-off Attacks
Time-space trade-offs allow computing a memory-hard function storing fewer memory blocks at
the cost of more calls to the internal compression function. The advantage of trade-off attacks is
measured in the reduction factor to the time-area product, where memory and extra
compression function cores contribute to the area and time is increased to accommodate the
recomputation of missed blocks. A high reduction factor may potentially speed up the preimage
search.

The best-known attack on the 1-pass and 2-pass Argon2i is the low-storage attack described in
, which reduces the time-area product (using the peak memory value) by the factor of 5.

The best attack on Argon2i with 3 passes or more is described in , with the reduction
factor being a function of memory size and the number of passes (e.g., for 1 gibibyte of memory,
a reduction factor of 3 for 3 passes, 2.5 for 4 passes, 2 for 6 passes). The reduction factor grows by
about 0.5 with every doubling of the memory size. To completely prevent time-space trade-offs
from , the number of passes exceed the binary logarithm of memory minus 26.
Asymptotically, the best attack on 1-pass Argon2i is given in , with maximal advantage of
the adversary upper bounded by O(m^(0.233)), where m is the number of blocks. This attack is
also asymptotically optimal as also proves the upper bound on any attack is O(m^(0.25)).

The best trade-off attack on t-pass Argon2d is the ranking trade-off attack, which reduces the
time-area product by the factor of 1.33.

The best attack on Argon2id can be obtained by complementing the best attack on the 1-pass
Argon2i with the best attack on a multi-pass Argon2d. Thus, the best trade-off attack on 1-pass
Argon2id is the combined low-storage attack (for the first half of the memory) and the ranking
attack (for the second half), which generate the factor of about 2.1. The best trade-off attack on t-
pass Argon2id is the ranking trade-off attack, which reduces the time-area product by the factor
of 1.33.

[CBS16]
[AB16]

[AB16] MUST
[BZ17]

[BZ17]

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 19

[BLAKE2]

[RFC2119]

[RFC8174]

[AB15]

[AB16]

[ARGON2]

8. References

8.1. Normative References

 and ,
, , ,

November 2015, .

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

8.2. Informative References

 and ,
, , , December 2015,

.

 and ,
, , , March 2016,

.

, , and ,
, March 2017,

.

7.3. Security for Time-Bounded Defenders
A bottleneck in a system employing the password hashing function is often the function latency
rather than memory costs. A rational defender would then maximize the brute-force costs for the
attacker equipped with a list of hashes, salts, and timing information for fixed computing time on
the defender's machine. The attack cost estimates from imply that for Argon2i, 3 passes is
almost optimal for most reasonable memory sizes; for Argon2d and Argon2id, 1 pass maximizes
the attack costs for the constant defender time.

[AB16]

7.4. Recommendations
The Argon2id variant with t=1 and 2 GiB memory is the FIRST option and is
suggested as a default setting for all environments. This setting is secure against side-channel
attacks and maximizes adversarial costs on dedicated brute-force hardware. The Argon2id
variant with t=3 and 64 MiB memory is the SECOND option and is suggested as a
default setting for memory-constrained environments.

RECOMMENDED

RECOMMENDED

Saarinen, M-J., Ed. J-P. Aumasson "The BLAKE2 Cryptographic Hash and
Message Authentication Code (MAC)" RFC 7693 DOI 10.17487/RFC7693

<https://www.rfc-editor.org/info/rfc7693>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Biryukov, A. D. Khovratovich "Tradeoff Cryptanalysis of Memory-Hard
Functions" ASIACRYPT 2015 DOI 10.1007/978-3-662-48800-3_26
<https://eprint.iacr.org/2015/227.pdf>

Alwen, J. J. Blocki "Efficiently Computing Data-Independent Memory-Hard
Functions" CRYPTO 2016 DOI 10.1007/978-3-662-53008-5_9
<https://eprint.iacr.org/2016/115.pdf>

Biryukov, A. Dinu, D. D. Khovratovich "Argon2: the memory-hard function
for password hashing and other applications" <https://
www.cryptolux.org/images/0/0d/Argon2.pdf>

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 20

https://www.rfc-editor.org/info/rfc7693
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://eprint.iacr.org/2015/227.pdf
https://eprint.iacr.org/2016/115.pdf
https://www.cryptolux.org/images/0/0d/Argon2.pdf
https://www.cryptolux.org/images/0/0d/Argon2.pdf

[ARGON2ESP]

[BZ17]

[CBS16]

[HARD]

, , and ,
,

, , March 2016,
.

 and ,
, , , May 2017,

.

, , and ,
,

, , May 2017,
.

 and ,
, , , June 2015,

.

Biryukov, A. Dinu, D. D. Khovratovich "Argon2: New Generation of
Memory-Hard Functions for Password Hashing and Other Applications" Euro
SnP 2016 DOI 10.1109/EuroSP.2016.31 <https://www.cryptolux.org/
images/d/d0/Argon2ESP.pdf>

Blocki, J. S. Zhou "On the Depth-Robustness and Cumulative Pebbling Cost
of Argon2i" TCC 2017 DOI 10.1007/978-3-319-70500-2_15 <https://
eprint.iacr.org/2017/442.pdf>

Boneh, D. Corrigan-Gibbs, H. S. Schechter "Balloon Hashing: A Memory-
Hard Function Providing Provable Protection Against Sequential Attacks"
ASIACRYPT 2016 DOI 10.1007/978-3-662-53887-6_8 <https://
eprint.iacr.org/2016/027.pdf>

Alwen, J. V. Serbinenko "High Parallel Complexity Graphs and Memory-
Hard Functions" STOC '15 DOI 10.1145/2746539.2746622 <https://
eprint.iacr.org/2014/238.pdf>

Acknowledgements
We greatly thank the following individuals who helped in preparing and reviewing this
document: , , , , ,

, , , , , ,
and .

The work described in this document was done before joined Intel, while he was at
the University of Luxembourg.

Jean-Philippe Aumasson Samuel Neves Joel Alwen Jeremiah Blocki Bill Cox Arnold
Reinhold Solar Designer Russ Housley Stanislav Smyshlyaev Kenny Paterson Alexey Melnikov

Gwynne Raskind

Daniel Dinu

Authors' Addresses
Alex Biryukov
University of Luxembourg

 alex.biryukov@uni.lu Email:

Daniel Dinu
University of Luxembourg

 daniel.dinu@intel.com Email:

Dmitry Khovratovich
ABDK Consulting

 khovratovich@gmail.com Email:

Simon Josefsson
SJD AB

 simon@josefsson.org Email:
 http://josefsson.org/ URI:

RFC 9106 Argon2 September 2021

Biryukov, et al. Informational Page 21

https://www.cryptolux.org/images/d/d0/Argon2ESP.pdf
https://www.cryptolux.org/images/d/d0/Argon2ESP.pdf
https://eprint.iacr.org/2017/442.pdf
https://eprint.iacr.org/2017/442.pdf
https://eprint.iacr.org/2016/027.pdf
https://eprint.iacr.org/2016/027.pdf
https://eprint.iacr.org/2014/238.pdf
https://eprint.iacr.org/2014/238.pdf
mailto:alex.biryukov@uni.lu
mailto:daniel.dinu@intel.com
mailto:khovratovich@gmail.com
mailto:simon@josefsson.org
http://josefsson.org/

	RFC 9106
	Argon2 Memory-Hard Function for Password Hashing and Proof-of-Work Applications
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Notation and Conventions
	3. Argon2 Algorithm
	3.1. Argon2 Inputs and Outputs
	3.2. Argon2 Operation
	3.3. Variable-Length Hash Function H'
	3.4. Indexing
	3.4.1. Computing the 32-Bit Values J_1 and J_2
	3.4.1.1. Argon2d
	3.4.1.2. Argon2i
	3.4.1.3. Argon2id

	3.4.2. Mapping J_1 and J_2 to Reference Block Index [l][z]

	3.5. Compression Function G
	3.6. Permutation P

	4. Parameter Choice
	5. Test Vectors
	5.1. Argon2d Test Vectors
	5.2. Argon2i Test Vectors
	5.3. Argon2id Test Vectors

	6. IANA Considerations
	7. Security Considerations
	7.1. Security as a Hash Function and KDF
	7.2. Security against Time-Space Trade-off Attacks
	7.3. Security for Time-Bounded Defenders
	7.4. Recommendations

	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgements
	Authors' Addresses

 Argon2 Memory-Hard Function for Password Hashing and Proof-of-Work Applications

 University of Luxembourg

 alex.biryukov@uni.lu

 University of Luxembourg

 daniel.dinu@intel.com

 ABDK Consulting

 khovratovich@gmail.com

 SJD AB

 simon@josefsson.org
 http://josefsson.org/

 Crypto Forum
 Argon2d
 Argon2i
 Argon2id
 KDF
 Cryptocurrency
 Time-Space Trade-Off Attacks
 Security

 This document describes the Argon2 memory-hard function for
 password hashing and proof-of-work applications. We provide an
 implementer-oriented description with
 test vectors. The purpose is to simplify adoption of Argon2 for
 Internet protocols. This document is a product of the Crypto Forum Research Group (CFRG)
 in the IRTF.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Research Task Force
 (IRTF). The IRTF publishes the results of Internet-related
 research and development activities. These results might not be
 suitable for deployment. This RFC represents the consensus of the Crypto Forum
 Research Group of the Internet Research Task Force (IRTF).
 Documents approved for publication by the IRSG are not
 candidates for any level of Internet Standard; see Section 2 of RFC
 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Requirements Language

 . Notation and Conventions

 . Argon2 Algorithm

 . Argon2 Inputs and Outputs

 . Argon2 Operation

 . Variable-Length Hash Function H'

 . Indexing

 . Computing the 32-Bit Values J_1 and J_2

 . Mapping J_1 and J_2 to Reference Block Index [l][z]

 . Compression Function G

 . Permutation P

 . Parameter Choice

 . Test Vectors

 . Argon2d Test Vectors

 . Argon2i Test Vectors

 . Argon2id Test Vectors

 . IANA Considerations

 . Security Considerations

 . Security as a Hash Function and KDF

 . Security against Time-Space Trade-off Attacks

 . Security for Time-Bounded Defenders

 . Recommendations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 This document describes the Argon2 memory-hard function for
 password hashing and proof-of-work applications. We provide an
 implementer-oriented description with
 test vectors. The purpose is to simplify adoption of Argon2 for
 Internet protocols. This document corresponds to version 1.3 of the Argon2 hash
 function.
 Argon2 is a memory-hard function. It is a streamlined design.
 It aims at the highest memory-filling rate and effective use of
 multiple computing units, while still providing defense against
 trade-off attacks. Argon2 is optimized for the x86 architecture
 and exploits the cache and memory organization of the recent
 Intel and AMD processors. Argon2 has one primary variant, Argon2id, and two supplementary variants, Argon2d and
 Argon2i. Argon2d uses data-dependent memory
 access, which makes it suitable for cryptocurrencies and
 proof-of-work applications with no threats from side-channel
 timing attacks. Argon2i uses data-independent memory access,
 which is preferred for password hashing and password-based key
 derivation. Argon2id works as Argon2i for the first half of the first pass over the
memory and as Argon2d for the rest, thus providing both side-channel attack protection and
		brute-force cost savings due to time-memory trade-offs. Argon2i makes more passes over the
 memory to protect from trade-off attacks.
 Argon2id MUST be supported by any implementation of this document, whereas Argon2d and Argon2i MAY be supported.

 Argon2 is also a mode of operation over a fixed-input-length compression function G and
	 a variable-input-length hash function H. Even though Argon2 can be potentially used with an arbitrary function H,
	 as long as it provides outputs up to 64 bytes, the BLAKE2b function is used in this document.
 For further background and discussion, see the Argon2 paper.
 This document represents the consensus of the Crypto Forum Research
 Group (CFRG).

 Requirements Language

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Notation and Conventions

 x^y
 integer x multiplied by itself integer y times
 a*b
 multiplication of integer a and integer b
 c-d
 subtraction of integer d from integer c
 E_f
 variable E with subscript index f
 g / h
 integer g divided by integer h. The result is a rational number.
 I(j)
 function I evaluated at j
 K || L
 string K concatenated with string L
 a XOR b
 bitwise exclusive-or between bitstrings a and b
 a mod b
 remainder of integer a modulo integer b, always in range [0, b-1]
 a >>> n
 rotation of 64-bit string a to the right by n bits
 trunc(a)
 the 64-bit value, truncated to the 32 least significant
 bits
 floor(a)
 the largest integer not bigger than a
 ceil(a)
 the smallest integer not smaller than a
 extract(a, i)
 the i-th set of 32 bits from bitstring a, starting from 0-th
 |A|
 the number of elements in set A
 LE32(a)
 32-bit integer a converted to a byte string in little endian (for example, 123456 (decimal) is 40 E2 01 00)
 LE64(a)
 64-bit integer a converted to a byte string in little endian (for example, 123456 (decimal) is 40 E2 01 00 00 00 00 00)
 int32(s)
 32-bit string s is converted to a non-negative integer in little endian
 int64(s)
 64-bit string s is converted to a non-negative integer in little endian
 length(P)
 the byte length of string P expressed as 32-bit integer
 ZERO(P)
 the P-byte zero string

 Argon2 Algorithm

 Argon2 Inputs and Outputs
 Argon2 has the following input parameters:

 Message string P, which is a password for password hashing
	 applications. It MUST have a length not greater than 2^(32)-1 bytes.
 Nonce S, which is a salt for password hashing applications. It MUST have a length not greater than 2^(32)-1 bytes. 16 bytes is RECOMMENDED for
	 password hashing. The salt SHOULD be unique for each password.
 Degree of parallelism p determines how many independent
	 (but synchronizing) computational chains (lanes) can be
	 run. It MUST be an integer value from 1 to 2^(24)-1.
 Tag length T MUST be an integer number of bytes from 4 to
	 2^(32)-1.
 Memory size m MUST be an integer number of kibibytes from
	 8*p to 2^(32)-1. The actual number of blocks is m', which is
	 m rounded down to the nearest multiple of 4*p.
 Number of passes t (used to tune the running time
	 independently of the memory size) MUST be an integer number
	 from 1 to 2^(32)-1.
 Version number v MUST be one byte 0x13.
 Secret value K is OPTIONAL. If used, it MUST have a length not greater than
	 2^(32)-1 bytes.
 Associated data X is OPTIONAL. If used, it MUST have a length not greater than 2^(32)-1
	 bytes.
 Type y MUST be 0 for Argon2d, 1 for Argon2i, or 2 for Argon2id.

 The Argon2 output, or "tag", is a string T bytes long.

 Argon2 Operation
 Argon2 uses an internal compression function G with two
	1024-byte inputs, a 1024-byte output, and an internal hash
	function H^x(), with x being its output length in bytes. Here, H^x() applied to string A is the BLAKE2b () function, which takes (d,ll,kk=0,nn=x) as parameters,
 where d is A padded to a multiple of 128 bytes
	and ll is the length of d in bytes. The compression function G is based on its internal
	permutation. A variable-length hash function H' built upon H
	is also used. G is described in , and H' is described in
	 .
 The Argon2 operation is as follows.

 Establish H_0 as the 64-byte value as shown
	 below. If K, X, or S has zero length, it is just absent, but its length field remains.

 H_0 Generation

H_0 = H^(64)(LE32(p) || LE32(T) || LE32(m) || LE32(t) ||
 LE32(v) || LE32(y) || LE32(length(P)) || P ||
	LE32(length(S)) || S || LE32(length(K)) || K ||
	LE32(length(X)) || X)

 Allocate the memory as m' 1024-byte blocks, where m' is
	 derived as:

 Memory Allocation

m' = 4 * p * floor (m / 4p)

	 For p lanes, the memory is
	 organized in a matrix B[i][j] of blocks with p rows (lanes)
	 and q = m' / p columns.

 Compute B[i][0] for all i ranging from (and including) 0
	 to (not including) p.

 Lane Starting Blocks

B[i][0] = H'^(1024)(H_0 || LE32(0) || LE32(i))

 Compute B[i][1] for all i ranging from (and including) 0
	 to (not including) p.

 Second Lane Blocks

B[i][1] = H'^(1024)(H_0 || LE32(1) || LE32(i))

 Compute B[i][j] for all i ranging from (and including) 0
	 to (not including) p and for all j ranging from (and
	 including) 2 to (not including) q. The computation MUST proceed slicewise (): first, blocks from slice 0 are computed
 for all lanes (in an arbitrary order of lanes), then blocks from slice 1 are computed, etc. The block indices l
	 and z are determined for each i, j differently for Argon2d, Argon2i, and Argon2id.

 Further Block Generation

B[i][j] = G(B[i][j-1], B[l][z])

 If the number of passes t is larger than 1, we repeat
	 step 5. We compute B[i][0] and B[i][j] for all i raging from (and including) 0 to (not including) p and for all j ranging from
 (and including) 1 to (not including) q. However, blocks are computed differently as the old value is XORed with the new one:

 Further Passes

B[i][0] = G(B[i][q-1], B[l][z]) XOR B[i][0];
B[i][j] = G(B[i][j-1], B[l][z]) XOR B[i][j].

 After t steps have been iterated, the final block C is computed as
	 the XOR of the last column:

 Final Block

C = B[0][q-1] XOR B[1][q-1] XOR ... XOR B[p-1][q-1]

 The output tag is computed as H'^T(C).

 Variable-Length Hash Function H'
 Let V_i be a 64-byte block and W_i be its first 32 bytes. Then we define function H' as follows:

 Function H' for Tag and Initial Block Computations

 if T <= 64
 H'^T(A) = H^T(LE32(T)||A)
 else
 r = ceil(T/32)-2
 V_1 = H^(64)(LE32(T)||A)
 V_2 = H^(64)(V_1)
 ...
 V_r = H^(64)(V_{r-1})
 V_{r+1} = H^(T-32*r)(V_{r})
 H'^T(X) = W_1 || W_2 || ... || W_r || V_{r+1}

 Indexing
 To enable parallel block computation, we further partition the
 memory matrix into SL = 4 vertical slices. The intersection of a
 slice and a lane is called a segment, which has a length of q/SL. Segments of the
 same slice can be computed in parallel and do not reference blocks
 from each other. All other blocks can be referenced.

 Single-Pass Argon2 with p Lanes and 4 Slices

 slice 0 slice 1 slice 2 slice 3
 ___/___ ___/___ ___/___ ___/___
 / \ / \ / \ / \
 +----------+----------+----------+----------+
 | | | | | > lane 0
 +----------+----------+----------+----------+
 | | | | | > lane 1
 +----------+----------+----------+----------+
 | | | | | > lane 2
 +----------+----------+----------+----------+
 | | ...
 +----------+----------+----------+----------+
 | | | | | > lane p - 1
 +----------+----------+----------+----------+

 Computing the 32-Bit Values J_1 and J_2

 Argon2d
 J_1 is given by the first 32 bits of block B[i][j-1],
 while J_2 is given by the next 32 bits of block B[i][j-1]:

 Deriving J1,J2 in Argon2d

J_1 = int32(extract(B[i][j-1], 0))
J_2 = int32(extract(B[i][j-1], 1))

 Argon2i
 For each segment, we do the following. First, we compute the value Z as:

 Input to Compute J1,J2 in Argon2i

Z= (LE64(r) || LE64(l) || LE64(sl) || LE64(m') ||
 LE64(t) || LE64(y))

 where

 r:
 the pass number
 l:
 the lane number
 sl:
 the slice number
 m':
 the total number of memory blocks
 t:
 the total number of passes
 y:
 the Argon2 type (0 for Argon2d,
			1 for Argon2i, 2 for Argon2id)

Then we compute:

q/(128*SL) 1024-byte values
G(ZERO(1024),G(ZERO(1024),
Z || LE64(1) || ZERO(968))),
G(ZERO(1024),G(ZERO(1024),
Z || LE64(2) || ZERO(968))),... ,
G(ZERO(1024),G(ZERO(1024),
Z || LE64(q/(128*SL)) || ZERO(968))),

 which are partitioned into q/(SL) 8-byte values X, which are viewed as X1||X2 and converted to J_1=int32(X1) and J_2=int32(X2).

 The values r, l, sl, m', t, y, and i are represented as 8 bytes in
 little endian.

 Argon2id
 If the pass number is 0 and the slice number is 0 or 1, then compute J_1 and J_2 as
			for Argon2i, else compute J_1 and J_2 as for Argon2d.

 Mapping J_1 and J_2 to Reference Block Index [l][z]
 The value of l = J_2 mod p gives the index of the lane from
 which the block will be taken. For the first pass (r=0) and
 the first slice (sl=0), the block is taken from the current lane.
 The set W contains the indices that are referenced
 according to the following rules:

 If l is the current lane, then W includes the indices of
 all blocks in the last SL - 1 = 3 segments computed and finished, as well as
				the blocks computed in the current segment in the current pass
 excluding B[i][j-1].
 If l is not the current lane, then W includes the indices of
 all blocks in the last SL - 1 = 3 segments computed and finished
 in lane l. If B[i][j] is the first block of a segment, then the
 very last index from W is excluded.

 Then take a block from W with a nonuniform
 distribution over [0, |W|) using the following mapping:

 Computing J1

J_1 -> |W|(1 - J_1^2 / 2^(64))

 To avoid floating point computation, the following approximation
 is used:

 Computing J1, Part 2

x = J_1^2 / 2^(32)
y = (|W| * x) / 2^(32)
zz = |W| - 1 - y

 Then take the zz-th index from W; it will be the z value for the reference block index [l][z].

 Compression Function G
 The compression function G is built upon the BLAKE2b-based transformation P.
 P operates on the 128-byte input, which can be
	viewed as eight 16-byte registers:
	

 Blake Round Function P

P(A_0, A_1, ... ,A_7) = (B_0, B_1, ... ,B_7)

 The compression function G(X, Y) operates on two 1024-byte
	blocks X and Y. It first computes R = X XOR Y. Then R is
	viewed as an 8x8 matrix of 16-byte registers R_0, R_1, ... ,
	R_63. Then P is first applied to each row, and then to each column to
	get Z:

 Core of Compression Function G

(Q_0, Q_1, Q_2, ... , Q_7) <- P(R_0, R_1, R_2, ... , R_7)
(Q_8, Q_9, Q_10, ... , Q_15) <- P(R_8, R_9, R_10, ... , R_15)
 ...
(Q_56, Q_57, Q_58, ... , Q_63) <- P(R_56, R_57, R_58, ... , R_63)
(Z_0, Z_8, Z_16, ... , Z_56) <- P(Q_0, Q_8, Q_16, ... , Q_56)
(Z_1, Z_9, Z_17, ... , Z_57) <- P(Q_1, Q_9, Q_17, ... , Q_57)
 ...
(Z_7, Z_15, Z 23, ... , Z_63) <- P(Q_7, Q_15, Q_23, ... , Q_63)

 Finally, G outputs Z XOR R:

G: (X, Y) -> R -> Q -> Z -> Z XOR R

 Argon2 Compression Function G

 +---+ +---+
 | X | | Y |
 +---+ +---+
 | |
 ---->XOR<----
 --------|
 | \ /
 | +---+
 | | R |
 | +---+
 | |
 | \ /
 | P rowwise
 | |
 | \ /
 | +---+
 | | Q |
 | +---+
 | |
 | \ /
 | P columnwise
 | |
 | \ /
 | +---+
 | | Z |
 | +---+
 | |
 | \ /
 ------>XOR
 |
 \ /

 Permutation P
 Permutation P is based on the round function of BLAKE2b. The eight
 16-byte inputs S_0, S_1, ... , S_7 are viewed as a 4x4 matrix of
 64-bit words, where S_i = (v_{2*i+1} || v_{2*i}):

 Matrix Element Labeling

 v_0 v_1 v_2 v_3
 v_4 v_5 v_6 v_7
 v_8 v_9 v_10 v_11
 v_12 v_13 v_14 v_15

 It works as follows:

 Feeding Matrix Elements to GB

 GB(v_0, v_4, v_8, v_12)
 GB(v_1, v_5, v_9, v_13)
 GB(v_2, v_6, v_10, v_14)
 GB(v_3, v_7, v_11, v_15)

 GB(v_0, v_5, v_10, v_15)
 GB(v_1, v_6, v_11, v_12)
 GB(v_2, v_7, v_8, v_13)
 GB(v_3, v_4, v_9, v_14)

 GB(a, b, c, d) is defined as follows:

 Details of GB

 a = (a + b + 2 * trunc(a) * trunc(b)) mod 2^(64)
 d = (d XOR a) >>> 32
 c = (c + d + 2 * trunc(c) * trunc(d)) mod 2^(64)
 b = (b XOR c) >>> 24

 a = (a + b + 2 * trunc(a) * trunc(b)) mod 2^(64)
 d = (d XOR a) >>> 16
 c = (c + d + 2 * trunc(c) * trunc(d)) mod 2^(64)
 b = (b XOR c) >>> 63

 The modular additions in GB are combined with 64-bit multiplications.
 Multiplications are the only difference from the original BLAKE2b design.
 This choice is done to increase the circuit depth and thus the running
 time of ASIC implementations, while having roughly the same running
 time on CPUs thanks to parallelism and pipelining.
		

 Parameter Choice
 Argon2d is optimized for settings where the adversary does
 not get regular access to system memory or CPU, i.e., they cannot
 run side-channel attacks based on the timing information, nor can they
 recover the password much faster using garbage
 collection. These settings are more typical for backend servers
 and cryptocurrency minings. For practice, we suggest the
 following settings:

 Cryptocurrency mining, which takes 0.1 seconds on a 2 GHz
	CPU using 1 core -- Argon2d with 2 lanes and 250 MB of RAM.

 Argon2id is optimized for more realistic settings, where the
 adversary can possibly access the same machine, use its CPU, or
 mount cold-boot attacks. We suggest the following
 settings:

 Backend server authentication, which takes 0.5 seconds on a
	2 GHz CPU using 4 cores -- Argon2id with 8 lanes and 4 GiB of
	RAM.
 Key derivation for hard-drive encryption, which takes 3
	seconds on a 2 GHz CPU using 2 cores -- Argon2id with 4 lanes
	and 6 GiB of RAM.
 Frontend server authentication, which takes 0.5 seconds on a
	2 GHz CPU using 2 cores -- Argon2id with 4 lanes and 1 GiB of
	RAM.

 We recommend the following procedure to select the type and
 the parameters for practical use of Argon2.

 If a uniformly safe option that is not tailored to your application or hardware is acceptable,
 select Argon2id with t=1 iteration, p=4 lanes, m=2^(21) (2 GiB of RAM), 128-bit salt, and 256-bit tag size.
 This is the FIRST RECOMMENDED option.
 If much less memory is available, a uniformly safe option is Argon2id with t=3 iterations, p=4 lanes, m=2^(16)
 (64 MiB of RAM), 128-bit salt, and 256-bit tag size.
 This is the SECOND RECOMMENDED option.
 Otherwise, start with selecting the type y. If you do not know the difference
	between the types or you consider side-channel attacks to be a viable
	threat, choose Argon2id.
 Select p=4 lanes.
 Figure out the maximum amount of memory that each call
	can afford and translate it to the parameter m.
 Figure out the maximum amount of time (in seconds) that
	each call can afford.
 Select the salt length. A length of 128 bits is sufficient for all
	applications but can be reduced to 64 bits in the case of
	space constraints.
 Select the tag length. A length of 128 bits is sufficient for most
	applications, including key derivation. If longer keys are
	needed, select longer tags.
 If side-channel attacks are a viable threat or if you're uncertain, enable the
	memory-wiping option in the library call.
 Run the scheme of type y, memory m, and p lanes
	using a different number of passes t. Figure out the maximum t
	such that the running time does not exceed the affordable time. If it even exceeds for t = 1, reduce m accordingly.
 Use Argon2 with determined values m,
	p, and t.

 Test Vectors
 This section contains test vectors for Argon2.

 Argon2d Test Vectors
 We provide test vectors with complete outputs (tags). For the convenience of developers, we also provide some interim variables -- concretely, the first and last memory blocks of each pass.

=======================================
Argon2d version number 19
=======================================
Memory: 32 KiB
Passes: 3
Parallelism: 4 lanes
Tag length: 32 bytes
Password[32]: 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
Secret[8]: 03 03 03 03 03 03 03 03
Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
Pre-hashing digest: b8 81 97 91 a0 35 96 60
 bb 77 09 c8 5f a4 8f 04
 d5 d8 2c 05 c5 f2 15 cc
 db 88 54 91 71 7c f7 57
 08 2c 28 b9 51 be 38 14
 10 b5 fc 2e b7 27 40 33
 b9 fd c7 ae 67 2b ca ac
 5d 17 90 97 a4 af 31 09

 After pass 0:
Block 0000 [0]: db2fea6b2c6f5c8a
Block 0000 [1]: 719413be00f82634
Block 0000 [2]: a1e3f6dd42aa25cc
Block 0000 [3]: 3ea8efd4d55ac0d1
...
Block 0031 [124]: 28d17914aea9734c
Block 0031 [125]: 6a4622176522e398
Block 0031 [126]: 951aa08aeecb2c05
Block 0031 [127]: 6a6c49d2cb75d5b6

 After pass 1:
Block 0000 [0]: d3801200410f8c0d
Block 0000 [1]: 0bf9e8a6e442ba6d
Block 0000 [2]: e2ca92fe9c541fcc
Block 0000 [3]: 6269fe6db177a388
...
Block 0031 [124]: 9eacfcfbdb3ce0fc
Block 0031 [125]: 07dedaeb0aee71ac
Block 0031 [126]: 074435fad91548f4
Block 0031 [127]: 2dbfff23f31b5883

 After pass 2:
Block 0000 [0]: 5f047b575c5ff4d2
Block 0000 [1]: f06985dbf11c91a8
Block 0000 [2]: 89efb2759f9a8964
Block 0000 [3]: 7486a73f62f9b142
...
Block 0031 [124]: 57cfb9d20479da49
Block 0031 [125]: 4099654bc6607f69
Block 0031 [126]: f142a1126075a5c8
Block 0031 [127]: c341b3ca45c10da5
Tag: 51 2b 39 1b 6f 11 62 97
 53 71 d3 09 19 73 42 94
 f8 68 e3 be 39 84 f3 c1
 a1 3a 4d b9 fa be 4a cb

 Argon2i Test Vectors

=======================================
Argon2i version number 19
=======================================
Memory: 32 KiB
Passes: 3
Parallelism: 4 lanes
Tag length: 32 bytes
Password[32]: 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
 01 01 01 01 01 01 01 01
Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
Secret[8]: 03 03 03 03 03 03 03 03
Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
Pre-hashing digest: c4 60 65 81 52 76 a0 b3
 e7 31 73 1c 90 2f 1f d8
 0c f7 76 90 7f bb 7b 6a
 5c a7 2e 7b 56 01 1f ee
 ca 44 6c 86 dd 75 b9 46
 9a 5e 68 79 de c4 b7 2d
 08 63 fb 93 9b 98 2e 5f
 39 7c c7 d1 64 fd da a9

 After pass 0:
Block 0000 [0]: f8f9e84545db08f6
Block 0000 [1]: 9b073a5c87aa2d97
Block 0000 [2]: d1e868d75ca8d8e4
Block 0000 [3]: 349634174e1aebcc
...
Block 0031 [124]: 975f596583745e30
Block 0031 [125]: e349bdd7edeb3092
Block 0031 [126]: b751a689b7a83659
Block 0031 [127]: c570f2ab2a86cf00

 After pass 1:
Block 0000 [0]: b2e4ddfcf76dc85a
Block 0000 [1]: 4ffd0626c89a2327
Block 0000 [2]: 4af1440fff212980
Block 0000 [3]: 1e77299c7408505b
...
Block 0031 [124]: e4274fd675d1e1d6
Block 0031 [125]: 903fffb7c4a14c98
Block 0031 [126]: 7e5db55def471966
Block 0031 [127]: 421b3c6e9555b79d

 After pass 2:
Block 0000 [0]: af2a8bd8482c2f11
Block 0000 [1]: 785442294fa55e6d
Block 0000 [2]: 9256a768529a7f96
Block 0000 [3]: 25a1c1f5bb953766
...
Block 0031 [124]: 68cf72fccc7112b9
Block 0031 [125]: 91e8c6f8bb0ad70d
Block 0031 [126]: 4f59c8bd65cbb765
Block 0031 [127]: 71e436f035f30ed0
Tag: c8 14 d9 d1 dc 7f 37 aa
 13 f0 d7 7f 24 94 bd a1
 c8 de 6b 01 6d d3 88 d2
 99 52 a4 c4 67 2b 6c e8

 Argon2id Test Vectors

=======================================
Argon2id version number 19
=======================================
Memory: 32 KiB, Passes: 3,
Parallelism: 4 lanes, Tag length: 32 bytes
Password[32]: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
Salt[16]: 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
Secret[8]: 03 03 03 03 03 03 03 03
Associated data[12]: 04 04 04 04 04 04 04 04 04 04 04 04
Pre-hashing digest: 28 89 de 48 7e b4 2a e5 00 c0 00 7e d9 25 2f
 10 69 ea de c4 0d 57 65 b4 85 de 6d c2 43 7a 67 b8 54 6a 2f 0a
 cc 1a 08 82 db 8f cf 74 71 4b 47 2e 94 df 42 1a 5d a1 11 2f fa
 11 43 43 70 a1 e9 97

 After pass 0:
Block 0000 [0]: 6b2e09f10671bd43
Block 0000 [1]: f69f5c27918a21be
Block 0000 [2]: dea7810ea41290e1
Block 0000 [3]: 6787f7171870f893
...
Block 0031 [124]: 377fa81666dc7f2b
Block 0031 [125]: 50e586398a9c39c8
Block 0031 [126]: 6f732732a550924a
Block 0031 [127]: 81f88b28683ea8e5

 After pass 1:
Block 0000 [0]: 3653ec9d01583df9
Block 0000 [1]: 69ef53a72d1e1fd3
Block 0000 [2]: 35635631744ab54f
Block 0000 [3]: 599512e96a37ab6e
...
Block 0031 [124]: 4d4b435cea35caa6
Block 0031 [125]: c582210d99ad1359
Block 0031 [126]: d087971b36fd6d77
Block 0031 [127]: a55222a93754c692

 After pass 2:
Block 0000 [0]: 942363968ce597a4
Block 0000 [1]: a22448c0bdad5760
Block 0000 [2]: a5f80662b6fa8748
Block 0000 [3]: a0f9b9ce392f719f
...
Block 0031 [124]: d723359b485f509b
Block 0031 [125]: cb78824f42375111
Block 0031 [126]: 35bc8cc6e83b1875
Block 0031 [127]: 0b012846a40f346a
Tag: 0d 64 0d f5 8d 78 76 6c 08 c0 37 a3 4a 8b 53 c9 d0
 1e f0 45 2d 75 b6 5e b5 25 20 e9 6b 01 e6 59

 IANA Considerations
 This document has no IANA actions.

 Security Considerations

 Security as a Hash Function and KDF
 The collision and preimage resistance levels of Argon2 are equivalent to those of the underlying BLAKE2b hash function.
 To produce a collision, 2^(256) inputs are needed. To find a preimage, 2^(512) inputs must be tried.
 The KDF security is determined by the key length
 and the size of the internal state of hash function H'.
 To distinguish the output of the keyed Argon2 from random, a minimum of (2^(128),2^length(K)) calls to BLAKE2b are needed.

 Security against Time-Space Trade-off Attacks
 Time-space trade-offs allow computing a memory-hard function storing fewer memory blocks at the cost of more calls to
 the internal compression function. The advantage of trade-off attacks is measured in the reduction factor to the time-area
 product, where memory and extra compression function cores contribute to the area and time is increased to accommodate the recomputation
 of missed blocks. A high reduction factor may potentially speed up the preimage search.

 The best-known attack on the 1-pass and 2-pass Argon2i is the low-storage
 attack described in , which reduces the
 time-area product (using the peak memory value) by the factor of 5.

 The best attack on Argon2i with 3 passes or more is described in , with the reduction factor being a function of
	 memory size and the number of passes (e.g., for 1 gibibyte of memory, a reduction factor of 3 for 3 passes, 2.5 for 4 passes, 2 for 6 passes). The reduction
	 factor grows by about 0.5 with every doubling of the memory size.
	 To completely prevent time-space trade-offs from , the
 number of passes MUST exceed the binary logarithm of memory minus 26.
	 Asymptotically, the best attack on 1-pass Argon2i is given in , with maximal advantage
	of the adversary upper bounded by O(m^(0.233)), where m is the number of blocks. This attack is also asymptotically optimal as also proves the upper bound on any attack is O(m^(0.25)).

 The best trade-off attack on t-pass Argon2d is the ranking trade-off attack,
 which reduces the time-area product by the factor of 1.33.

 The best attack on Argon2id can be obtained by complementing the best attack
	 on the 1-pass Argon2i with the best attack on a multi-pass Argon2d.

Thus, the best trade-off attack on 1-pass Argon2id is the combined low-storage attack (for the first half of the memory) and
	 the ranking attack (for the second half), which generate the factor of about 2.1. The best trade-off attack on
 t-pass Argon2id is the ranking trade-off attack,
 which reduces the time-area product by the factor of 1.33.

 Security for Time-Bounded Defenders
 A bottleneck in a system employing the password hashing function
			 is often the function latency rather than memory costs. A rational
			 defender would then maximize the brute-force costs for the attacker equipped
			 with a list of hashes, salts, and timing information for fixed computing time
			 on the defender's machine. The attack cost estimates from
			 imply that for Argon2i, 3 passes is almost optimal for most reasonable memory sizes; for Argon2d and Argon2id, 1 pass maximizes the attack costs for the constant defender time.

 Recommendations

The Argon2id variant with t=1 and 2 GiB memory is the FIRST RECOMMENDED option and is suggested
as a default setting for all environments. This setting is secure against side-channel attacks
and maximizes adversarial costs on dedicated brute-force hardware. The Argon2id variant with t=3 and 64 MiB memory is the SECOND RECOMMENDED option and is suggested
as a default setting for memory-constrained environments.

 References

 Normative References

 The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC)

 This document describes the cryptographic hash function BLAKE2 and makes the algorithm specification and C source code conveniently available to the Internet community. BLAKE2 comes in two main flavors: BLAKE2b is optimized for 64-bit platforms and BLAKE2s for smaller architectures. BLAKE2 can be directly keyed, making it functionally equivalent to a Message Authentication Code (MAC).

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Informative References

 Tradeoff Cryptanalysis of Memory-Hard Functions

 ASIACRYPT 2015

 Efficiently Computing Data-Independent Memory-Hard Functions

 CRYPTO 2016

 Argon2: the memory-hard function for password hashing and other applications

 Argon2: New Generation of Memory-Hard Functions for Password Hashing and Other Applications

 Euro SnP 2016

 On the Depth-Robustness and Cumulative Pebbling Cost of Argon2i

 TCC 2017

 Balloon Hashing: A Memory-Hard Function Providing Provable Protection Against Sequential Attacks

 ASIACRYPT 2016

 High Parallel Complexity Graphs and Memory-Hard Functions

 STOC '15

 Acknowledgements
 We greatly thank the following individuals who helped in preparing and reviewing
 this document: ,
	 , , , , , , ,
 , , , and .
 The work described in this document was done before joined Intel, while he was at the University of Luxembourg.

 Authors' Addresses

 University of Luxembourg

 alex.biryukov@uni.lu

 University of Luxembourg

 daniel.dinu@intel.com

 ABDK Consulting

 khovratovich@gmail.com

 SJD AB

 simon@josefsson.org
 http://josefsson.org/

