CSC

Elmer

Open Source Finite Element Software for Multiphysical Problems

ElmerTeam CSC – IT Center for Science

> Elmer course CSC, 1.-2.6.2017

What is CSC?

- Founded in 1971 as a technical support unit for Univac 1108
- Connected Finland to the Internet in 1988
- Owned by the the Universities and Ministry of Education and Culture of Finland
- Offers IT resources for research, education, culture and administration
- Operates on a non-profit principle
- Facilities in Espoo, close to
 Otaniemi campus and Kajaani
- Staff ~300
- Currently official name is:
 "CSC IT Center for Science"

CSC's Services

Scientific Computing and Software

Funet Network Services

Identity and Access Management

Training services

Research Information Management

Education Management and Student Administration Services

Datacenter and Capacity Services

Consultation and Tailored Solutions

Support in All Phases of Research Process

Produce & Collect

Data nternational esources Modelling Software Supercomputers

> Analyse Cloud Services

Training Data science Computing Software B2SAFE B2SHARE HPC Archive IDA Databases Research longterm preservatic (LTP)

Store

Share & Publish

AVAA B2DROP B2SHARE Databank Etsin Funet FileSender

Plan

Customer Portal Experts Guides Websites Training Service Desk

CSC's Computing Services

Storage services

CSC's Computing Capacity 1989–2015

In 2015: About 2700 active users

CSC presentation

Elmer finite element software for multiphysical problems

Figures by Esko Järvinen, Mikko Lyly, Peter Råback, Timo Veijola (TKK) & Thomas Zwinger

Some Pros and Cons of Finite Element Method

C S C

- Applicable to arbitrary shapes
 - #1 method in engineering
- Non-uniform mesh refinement
- Based on variational principle
 - Approaches functional to be minimized from above
 - Monotonic convergence with mesh size parameter
- Suited for all kinds of PDEs
 - Elliptic, hyperbolic, parabolic
- Natural treatment of BCs
- Vast mathematical literature supports the method

For problems without "shape" and uniform meshes the additional cost of FEM may not be well motivated

- Indirect memory addressing of sparse matrices
- More complex machinery may take focus from the real problem
 - Mesh generation, involved mathemetatics, bigger codes, more complex data structures etc.

Short history of Elmer

- Collaboration of CSC, TKK, VTT, JyU, and Okmetic Ltd.
- 2000 After the initial phase the development driven by number of application projects
 - MEMS, Microfluidics, Acoustics, Crystal Growth, Hemodynamics, Glaciology, Electromagnetics,...
- 2005 Elmer published under GPL-license
- 2007 Elmer version control put under sourceforge.net
 - Resulted to a rapid increase in the number of users
- 2010 Elmer became one of the central codes in PRACE project
- 2012 ElmerSolver library published under LGPL
 - More freedom for serious developers

Developers of Elmer

- Current developers at CSC
 - Core Elmer team: Mika Malinen, Juha Ruokolainen, Peter Råback, Thomas Zwinger, Juhani Kataja
- Other/past developers & contributors
 - CSC: Mikko Lyly, Mikko Byckling, Sampo Sillanpää, Jussi Heikonen, Esko Järvinen, Jari Järvinen, Antti Pursula, Ville Savolainen, Sami Ilvonen, Erik Edelmann

- VTT: Pavel Ponomarev, Janne Keränen, Paul Klinge, Martti Verho
- TKK: Jouni Malinen, Harri Hakula, Mika Juntunen
- Trafotek: Eelis Takala
- LGGE: Olivier Gagliardini, Fabien Gillet-Chaulet,...
- University of Uppsala: Jonas Thies, Josefin Ahlkrona
- etc... (if your name is missing, please ask it to be added)

Elmer in numbers (11/2015)

CSC

Software

- ~400,000 lines of active code
 - ~3/4 in Fortran, 1/4 in C/C++
- ~540 consistency tests
- ~750 pages of documentation
- ~1000 code commits yearly

Community

- ~20,000 downloads for Windows binary yearly
- ~2000 forum postings yearly
- ~100 people participate on Elmer courses in yearly
- Several Elmer related scientifc visits to CSC yearly

Elmer is published under (L)GPL

- Used worldwide by thousands of researchers (?)
- One of the most popular open source multiphysical software

~20k Windows downloads at sf.net in a year

Home / WindowsBinaries (Change File)

Date Range: 2012-04-01 to 2013-03-31

DOWNLOADS

19 185

In the selected date range

TOP COUNTRY

United States

16% of downloaders

TOP OS

Windows

93% of downloaders

OS downloads as: Percent

	Country +	Android +	BSD +	Linux +	Macintosh +	Unknown +	Windows +	Total A
1.	United States	0%	0%	3%	3%	1%	80%	3,182
2.	Germany	0%	0%	4%	1%	0%	80%	2,313
3.	Italy	0%	0%	3%	1%	0%	80%	1,537
4.	France	0%	0%	4%	1%	1%	79%	798
5.	India	0%	0%	6%	1%	4%	78%	782
6.	Russia	0%	0%	4%	0%	0%	77%	772
7.	United Kingdom	0%	0%	3%	2%	0%	81%	642
8.	China	0%	0%	3%	1%	1%	78%	637
9.	Japan	0%	0%	2%	2%	0%	77%	599
10.	Spain	0%	0%	6%	0%	20%	63%	561
11.	Poland	0%	0%	2%	0%	0%	87%	532
12.	Canada	1%	0%	2%	2%	0%	85%	410
13.	Brazil	0%	0%	4%	1%	0%	88%	391
14.	Finland	0%	0%	2%	1%	0%	78%	300

Elmer finite element software

- Elmer is actually a suite of several programs
- Some components may also be used independently
- ElmerGUI Preprocessing
- ElmerSolver FEM Solution
 - Each physical equation is a dynamically loaded library to the main program
- ElmerGrid structured meshing, mesh import & partitioning
- ElmerPost Postprocessing

CSC

ElmerGrid

ElmerGUI

ElmerGUI

- Graphical user interface of Elmer
 - Based on the Qt library (GPL)
 - Developed at CSC since 2/2008
- Mesh generation
 - Plugins for Tetgen, Netgen, and ElmerGrid
 - CAD interface based on OpenCascade
- Easiest tool for case specification
 - Even educational use
 - Parallel computation
- New solvers easily supported through GUI
 - XML based menu definition
- Also built-in postprocessing with ElmerVTK

ElmerGrid

- Creation of 2D and 3D structured meshes
 - Rectangular basic topology
 - Extrusion, rotation
 - Simple mapping algorhitms
- Mesh Import
 - About ten different formats:
 Ansys, Abaqus, Fidap, Comsol, Gmsh,...
 - Gmsh import example:
 >ElmerGrid 14 2 mesh.msh -autoclean
- Mesh manipulation
 - Increase/decrease order
 - Scale, rotate, translate
- Partitioning
 - Simple geometry based partitioning
 - Metis partitioning example:
 >ElmerGrid 1 2 step.grd -metis 10
- Usable via ElmerGUI
 - All features not accessible (e.g. partitioning)

ElmerSolver

- Assembly and solution of the finite element equations and beyond
- Large number of auxiliary routines
- Note: When we talk of
 Elmer we mainly mean
 ElmerSolver

raback@hippu4:/fs/elmer/elmerfem/fem/tests/heateq> ElmerSolver ELMER SOLVER (v 7.0) STARTED AT: 2014/10/15 18:44:51 MAIN:							
MAIN: ====================================							
MAIN:MAIN: MAIN: MAIN: Reading Model: TempDist sif							
 HeatSolve: HeatSolve: TEMPERATURE ITERATION 1 HeatSolve: HeatSolve: HeatSolve: Starting Assembly HeatSolve: Assembly done ComputeChange: NS (ITER=1) (NRM,RELC): (0.76801649E-01 2.0000000) :: he1 							
 HeatSolve: HeatSolve: TEMPERATURE ITERATION 10 HeatSolve: HeatSolve: HeatSolve: Starting Assembly HeatSolve: Assembly done ComputeChange: NS (ITER=10) (NRM,RELC): (0.76801649E-02 0.10526316) :: he1							
 ElmerSolver: *** Elmer Solver: ALL DONE *** ElmerSolver: The end SOLVER TOTAL TIME(CPU,REAL): 1.09 1.18 ELMER SOLVER FINISHED AT: 2014/10/15 18:44:52							

SERIAL WORKFLOW: VISUALIZATION

ElmerSolver – Finite element shapes

- OD: vertex
- ID: edge
- 2D: triangles, quadrilateral
- 3D: tetrahedrons, prisms, pyramids, hexahedrons

ElmerSolver – Finite element basis functions

- Element families
 - Nodal (up to 2-4th degree)
 - p-elements (up to 10th degree)
 - Edge & face –elements
 - H(div) often associated with face elements)
 - H(curl) often associated with "edge" elements)
- Formulations
 - Galerkin, Discontinuous Galerkin
 - Stabilization
 - Residual free bubbles

m

Mapping & Projectors

- For conforming and nonconforming meshes
- For boundary and bulk meshes
- On-the-fly interpolation (no matrix created)
 - Mapping of finite element data
 - from mesh to mesh
 - From boundary to boundary
 - Mapping of data between particles and finite elements
 - Finite element fields at particle locations
 - Particle data to nodal field values
- Creation of interpolation and projection matrices
 - Strong continuity, interpolation: $x_l = Px_r$
 - Weak continuity, Mortar projector: $Qx_l Px_r = 0$

ElmerSolver – Time dependency modes

- Steady-state simulation
- Transient simulation
 - 1st order PDEs:
 - Backward differences formulae (BDF) up to 6th degree

- Newmark Beta (Cranck-Nicolsen with β =0.5)
- 2nd order Runge-Kutta
- Adaptive timestepping
- 2nd order PDEs:
 - Bossak
- Harmonic simulation
- Eigenmode simulation
 - Utilizes (P)Arpack library
- Scanning
 - Special mode for parametric studies etc.

ElmerSolver – Linear solvers

- Iterative Krylov subspace methods
 - HUTiter library (part of Elmer)
 - Optional: Trilinos (Belos) & Hypre
- Multigrid methods
 - AMG (serial only) and GMG included in Elmer
 - Optional: Hypre/BoomerAMG and Trilinos/ML
- Preconditioners
 - ILU, BILU, multigrid, SGS, Jacobi,...
 - Generic block preconditioning
 - Optional: Hypre (Parasails, ILU), Trilinos
- FETI
 - PCG+MUMPS
- Direct solvers
 - Lapack (banded), Umfpack
 - Optional: SuperLU, MUMPS, Pardiso

Application examples of Elmer

Poll on application fields (status 5/2017)

What are your main application fields of Elmer?

Heat transfer	70	28%
Fluid mechanics	65	26%
Solid mechanics	50	20%
Electromagnetics	43	17%
Quantum mechanics	4	2%
Something else (please specify)	14	6%
	Total votes : 246	

Elmer – Heat Transfer

- Heat equation
 - convection
 - diffusion
 - Phase change
 - Temperature control feedback
 - Thermal slip BCs for small Kn number
- Radiation with view factors
 - 2D, axisymmetric use numerical integration
 - 3D based on ray tracing
 - Stand-alone program
- Strongly coupled thermoelectric equation

Associated numerical features

- Steady state, transient
- Stabilization, VMS
- ALE
- Typical couplings
 - Mesh movement
 - Electricity Joule heating
 - Fluid convection
- Known limitations
 - Turbulence modeling not extensively validated
 - ViewFactor computation not possible in parallel

Microfluidics: Flow and heat transfer in a microchip

- Electrokinetically driven flow
- Joule heating
- Heat Transfer influences performance
- Elmer as a tool for prototyping
- Complex geometry
- Complex simulation setup

CSC

T. Sikanen, T. Zwinger, S. Tuomikoski, S. Franssila, R. Lehtiniemi, C.-M. Fager, T. Kotiaho and A. Pursula, Microfluidics and Nanofluidics (2008)

Elmer – Fluid Mechanics

- Navier-Stokes (2D & 3D)
 - Nonnewtonian models
 - Slip coefficients
- RANS turbulence models
 - SST k- Ω
 - k-*ɛ*
 - $v^2 f$
- Large eddy simulation (LES)
 - Variational multiscale method (VMS)
- Reynolds equation
 - Dimensionally reduced N-S equations for small gaps (1D & 2D)

- Associated numberical features
 - Steady-state, transient
 - Stabilization
 - ALE formulation
- Typical couplings
 - FSI
 - Thermal flows (natural convection)
 - Transport
 - Free surface
 - Particle tracker
- Known limitations
 - Only experimental segregated solvers, default solvers monolithic
 - Stronger in the elliptic regime of N-S
 i.e. low Re numbers
 - RANS models have often convergence issues

Czockralski Crystal Growth

- Most crystalline silicon is grown by the Czhockralski (CZ) method
- One of the key application when Elmer development was started in 1995

V. Savolainen et al., *Simulation of large-scale silicon melt flow in magnetic Czochralski growth,* J. Crystal Growth 243 (2002), 243-260.

CZ-growth: Transient simulation

Parallel simulation of silicon meltflows using stabilized finite element method (5.4 million elements).

Simulation Juha Ruokolainen, animation Matti Gröhn, CSC

Elmer in Crystal Growth Simulations

- Elmer has been used extensively in crystal growth simulations: These include crystal and tube growth for silicon, silicon-carbide, NiMnGa and sapphire in Czochralski, HTCVD, sublimation, Bridgman, Vertical
 Gradient Freeze and Heat Exchanger Methods.
- Numerical results have been successfully verified with experiments.
- Elmer is a part of open-source chain from CAD to visualization, and offers an access to parallelism and a number of simultaneous simulations important for industrial R&D.

Simulations Jari Järvinen, Silicom Oy, 2014

Glaceology

- Elmer/Ice is the leading software used in 3D computational glaciology
- Full 3D Stokes equation to model the flow
- Large number of tailored models to deal with the special problems
- Motivated by climate change and sea level rise
- Dedicated community portal elmerice.elmerfem.org

F. Gillet-Chaulet et al., 2012. Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model, The Cryosphere, 6, 1561-1576. 200 km **U (m/a)** 10000

100

100

Thermal creep in light mills

2D compressible Navier-Stokes eq. with heat eq. plus two rarefied gas effects:

Maxwell's wall slip and thermal transpiration

$$u_{\mathbf{X}}(\Gamma) = \frac{2-\sigma}{\sigma}\lambda\left(\frac{\partial u_{\mathbf{X}}}{\partial n} + \frac{\partial u_{n}}{\partial x}\right) + \frac{3\mu}{4\rho T}\frac{\partial T}{\partial x}$$

Smoluchowski's temperature jump

$$T_{\rm G} - T_{\rm W} = \frac{2 - \sigma_T}{\sigma_T} \frac{2\gamma}{\gamma + 1} \frac{\lambda}{Pr} \frac{\partial T}{\partial n}$$

Moritz Nadler, Univ. of Tuebingen, 2008

VMS turbulence modeling

Variational multiscale method (VMS) by Hughes et al. Is a variant of LES particularly suitable for FEM

Elmer – Solid mechanics

- Linear elasticity (2D & 3D)
 - Linear & orthotropic material law
 - Thermal and residual stresses
- Non-linear Elasticity (in geometry)
 (unisotropic, lin & nonlin)
 - Neo hookean material law
- Plate equation
 - Spring, damping
- Shell equation
 - Undocumented facet shell solver
 - new solver under development
- Some capabilities for contact mechanics

Associated numerical features

- Steady-state, harmonic, eigenmode
- Contact mechanics
- Typical physical coupling
 - Fluid-Structure interaction (FSI)
 - Thermal stresses
 - Source for acoustics
- Known limitations
 - Limited selection of material laws
 - Generality of the contact mechanics

MEMS: Inertial sensor

- MEMS provides an ideal field for multiphysical simulation software
- Electrostatics, elasticity and fluid flow are often inherently coupled
- Example shows the effect of holes in the motion of an accelerometer prototype

Figure by VTI Technologies

A. Pursula, P. Råback, S. Lähteenmäki and J. Lahdenperä, *Coupled FEM simulations of accelerometers including nonlinear gas damping with comparison to measurements*, J. Micromech. Microeng. **16** (2006), 2345-2354.

EHDL of patterned surfaces

- Solution of Reynolds & nonlinear elasticity equations
- Simulation Bengt
 Wennehorst,
 Univ. Of Hannover,
 2011

Computational Hemodynamics

- Cardiovascular diseases are the leading cause of deaths in western countries
- Calcification reduces elasticity of arteries
- Modeling of blood flow poses a challenging case of fluid-structure-interaction
- Artificial compressibility is used to enhance the convergence of FSI coupling

E. Järvinen, P. Råback, M. Lyly, J. Salonius. *A* method for partitioned fluid-structure interaction computation of flow in arteries. Medical Eng. & *Physics*, **30** (2008), 917-923

Elmer – Electromagnetics

- StatElecSolve for insulators
 - Computation of capacitance matrix
 - Dielectric surfaces
- StatCurrentSolve for conductors
 - Computation of Joule heating
 - Beedback for desired heating power
- Magnetic induction
 - Induced magnetic field by moving conducting media (silicon)
- MagnetoDynamics2D
 - Applicable also to rotating machines

MagnetoDynamics3D

- Modern AV formulation utilizing edge-elements (1st and 2nd order)
- Steady-state, harmonic, transient
- VectorHelmholtzSolver
 - Solver for the electromagnetics wave equation

- Associated numerical features
 - Mainly formulations based on scalar and vector potential

- Lagrange elements except mixed nodal-edge elements for AV solver
- Typical physical couplings
 - Thermal (Joule heating)
 - Flow (plasma)
 - Electromechanics
- Known limitations
 - One needs to be weary with the Coulomb gauge in some solvers

Simulation of electrical machines

- New developmets enable simulation of electrical machines
- Partners: ABB, CSC, Ingersoll-Rand, Kone, Konecranes, Skanveir, Sulzer, Trafotek, Aalto University, LUT, TUT, VTT, (Kuava)

Modeling of magnetic losses in transformers

Simulation by Eelis Takala, Trafotek, Finland, 2014

Elmer – Acoustics

- Helmholtz Solver
 - Possibility to account for convection
- Linearized time-harmonic
 Navier-Stokes
 - Special equation for the dissipative acoustics
- Thermal Navier-Stokes
 - Ideal gas law
 - Propagation of large amplitude acoutic signals

- Associated numerical features
 - Bubble stabilization
- Typical physical couplings
 - Structural (vibroacoustics)

- Known limitations
 - Limited to small wave numbers
 - N-S equations are quite computitionally intensive

Acoustics: Losses in small cavities

Temperature waves resulting from the Helmholtz equation

Temperature waves computed from the linearized Navier-Stokes equation

Mika Malinen, Boundary conditions in the Schur complement preconditioning of dissipative acoustic equations, SIAM J. Sci. Comput. 29 (2007)

Richard's equation

- Richards equations describes the flow of water in the ground
- Porous flow of variably saturated flow
- Modeled with the van Genuchten material models
- Picture show isolines for pressure head and magnitude of the Darcy flux

Simulation, Peter Råback, CSC

Quantum Mechanics

- Finite element method is used to solve the Kohn-Sham equations of density functional theory (DFT)
- Charge density and wave function of the 61st eigenmode of fullerine C60

CSC

 All electron computations using 300 000 quadratic tets and 400 000 dofs

Simulation Mikko Lyly, CSC, 2006

Optimization in FSI

- Elmer includes some tools that help in the solution of optimization problems
- Profile of the beam is optimized so that the beam bends as little as possible under flow forces

Optimized profiles for Re={0,10,50,100,200}

Pressure and velocity distribution with Re=10

Simulation Peter Råback, CSC

Particle tracker - Granular flow

Simulation Peter Råback, CSC, 2011.

C S C

Elmer – Selected multiphysics features

- Solver is an asbtract dynamically loaded object
 - Solver may be developed and compiled without touching the main library

- No upper limit to the number of Solvers (Currently ~50)
- Solvers may be active in different domains, and even meshes
 - Automatic mapping of field values
- Parameters of the equations are fetched using an overloaded function allowing
 - Constant value
 - Linear or cubic dependence via table
 - Effective command language (MATC)
 - User defined functions with arbitrary dependencies
 - As a result solvers may be weakly coupled without any *a priori* defined manner
- Tailored methods for some difficult strongly coupled problems
 - Consistant modification of equations (e.g. artificial compressibility in FSI, pullin analysis)
 - Monolitic solvers (e.g. Linearized time-harmonic Navier-Stokes)

Solution strategies for coupled problems

Monolithic solution

Reasons to use open source software in CE free as in "beer" vs. free as in "speech"

Most important Elmer resources

<u>http://www.csc.fi/elmer</u>

- Official Homepage of Elmer
- <u>http://sourceforge.net/projects/elmerfem/</u>
 - SVN version control system & Windows binaries
- https://github.com/elmercsc/elmerfem
 - GIT version control (the future)
- <u>http://www.elmerfem.org</u>
 - Discussion forum, wiki & doxygen
- http://youtube.com/elmerfem
 - Youtube channel for Elmer animations
- Further information: elmeradm@csc.fi

