
Parallel computing with Elmer

ElmerTeam

CSC – IT Center for Science

Serial workflow of Elmer

All steps in the workflow are serial

Typically solution of the linear system is the main bottle-neck

For larger problems bottle-necks starts to appear in all phases
of the serial workflow

SOLUTION

VISUALIZATION

ASSEMBLY

MESHING

Algorithmic scalability

Each algorithm has a characteristic scaling law that sets
the lower limit to how the solution time increases with
problem size

Typical scaling for linear solvers

Multigrid: O(~n log(n))

Iterative Krylov methods: O(~n^1.5)

The parallel implementation cannot hope to beat this
limit

– Targeting very large problems the starting point should be
nearly optimal algorithm!

CPU time for serial pre-processing and solution

CPU time for solution – one level vs. multilevel

T

Example: Scalability model

T(solution) > T(tet meshing) > T(partitioning) > T(hex meshing)

The solution is the first bottleneck even for simple equations, for
complex equations and transient problems even more so!

Motivation for using optimal linear solvers

Comparison of scaling in linear elasticity between
different preconditioners: ILU1 vs. block preconditioning
with multigrid

At smallest system performance about the same

Increasing size with 8^3=512 gives the block solver
scalability of O(~1.03) while ILU1 fails to converge

BiCGstab(4)+ILU1 GCR+BP(AMG)

#dofs T(s) #iters T(s) #iters

7,662 1.12 36 1.19 34

40,890 11.77 76 6.90 45

300,129 168.72 215 70.68 82

2,303,472 >21,244* >5000* 756.45 116

* No convergence was obtained
Simulation Peter Råback, CSC, 2012.

Parallel computing concepts

Parallel computation means executing several tasks
concurrently

– A task encapsulates a sequential program and local data,
and its interface to its environment

– Data of those other tasks is remote

Data dependency means that the computation of one task
requires data from an another task in order to proceed

– FEM is inherently data dependent reflecting the interactions
of the physical reality

Parallel computers

Shared memory
– All cores can access the whole memory

Distributed memory
– All cores have their own memory

– Communication between cores is
needed in order to access the memory
of other cores

Current supercomputers combine
the distributed and shared memory
approaches

Parallel programming models

Message passing (MPI)

– Can be used both in distributed and shared memory
computers

– Programming model allows good parallel scalability

– Programming is quite explicit

Threads (pthreads, OpenMP)

– Can be used only in shared memory computer

– Limited parallel scalability

– Simpler or less explicit programming

Elmer historically uses MPI

– Recent developments towards multithreading using
OpenMP

Work funded partly by IPCC at CSC

Execution model

Parallel program is launched as a set of independent,
identical processes

– The same program code and instructions

– Can reside in different computation nodes

– Or even in different computers

Weak vs. strong parallel scaling

In parallel computing there are two common notions

strong scaling

– How the solution time varies with the number of processors
for a fixed total problem size.

– Optimal case: PT=const.

– A bad algorithm may have excellent strong scaling

– Typically 1e4-1e5 dofs needed in FEM for good scaling

weak scaling

– How the solution time varies with the number of processors
for a fixed problem size per processor.

– Optimal case: T=const.

– Weak scaling is limited by algorithmic scaling

Parallel workflow of Elmer I

Both assembly and solution is done in parallel using MPI

Assembly is trivially parallel

This is the most common parallel workflow

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

ElmerGrid

-partition 2 2 1 0 -partition 2 2 1 1

element-wisenodal

ElmerGrid partitioning by direction

Directional decomposition (Np=Nx*Ny*Nz)

– ElmerGrid 2 2 meshdir –partition Nx Ny Nz Nm

Optional redefinition of major axis with a given normal vector

– -partorder nx ny nz

-metis 4 0

PartMeshDualPartMeshNodal

-metis 4 1

ElmerGrid partitioning by Metis

Using Metis library

– ElmerGrid 2 2 meshdir –metis Np Nm

-metis 4 2

PartGraphKwayPartGraphRecursive

-metis 4 3

ElmerGrid partitioning by Metis, continued

-metis 4 4

PartGraphPKway

The following keywords are related only to the parallel Elmer computations.

-partition int[4] : the mesh will be partitioned in main directions

-partorder real[3] : in the above method, the direction of the ordering

-metis int[2] : the mesh will be partitioned with Metis

-halo : create halo for the partitioning

-indirect : create indirect connections in the partitioning

-periodic int[3] : decleare the periodic coordinate directions for parallel meshes

-partjoin int : number of partitions in the data to be joined

-saveinterval int[3] : the first, last and step for fusing parallel data

-partorder real[3] : in the above method, the direction of the ordering

-partoptim : apply aggressive optimization to node sharing

-partbw : minimize the bandwidth of partition-partion couplings

-parthypre : number the nodes continously partitionwise

Parallel options of ElmerGrid

Mesh structure of Elmer

Serial

meshdir/

mesh.header

size info of the mesh

mesh.nodes

node coordinates

mesh.elements

bulk element defs

mesh.boundary

boundary element defs with
reference to parents

Parallel

meshdir/partitioning.N

/

mesh.n.header

mesh.n.nodes

mesh.n.elements

mesh.n.boundary

mesh.n.shared

information on shared nodes

for each i in [0,N-1]

Parallellism in ElmerSolver library

Parallelization mainly with MPI
– Some work on OpenMP threads

Assembly
– Each partition assemblies it’s own part, no communication

Parallel Linear solvers included in Elmer
– Iterative Krylov methods

CG, BiCGstab, BiCGStabl, QCR, GMRes, TFQMR,…

Require only matrix-vector product with parallel communication

– Geometric Multigrid (GMG)

Utilizes mesh hierarchies created by mesh multiplication

– Preconditioners

ILUn performed block-wise

Diagonal and Vanka exactly the same in parallel

GMG also as a preconditioner

– FETI, Finite element tear and interconnect

Parallel external libraries for Elmer

MUMPS

– Direct solver that may work when averything else fails

Hypre

– Large selection of methods

– Algebraic multigrid: Boomer MG (classical multigrid)

– Parallel ILU preconditioning

– Approximate inverse preconditioning: Parasails

Trilinos

– Interface to ML multigrid solver (agglomeration multigrid)

– Krylov solvers

Serial vs. parallel solution

Serial

Serial mesh files

Command file (.sif) may be given
as an inline parameter

Execution with
ElmerSolver [case.sif]

Writes results to one file

Parallel

Partitioned mesh files

ELMERSOLVER_STARTINFO is
always needed to define the
command file (.sif)

Execution with
mpirun -np N

ElmerSolver_mpi

Calling convention is platform
dependent

Writes results to N files

Observations in parallel runs

Typically good scale-up in parallel runs requires around 1e4
dofs in each partition
– Otherwise communication of shared node data will start to dominate

To take use of the local memory hierarchies the local problem
should not be too big either
– Sometimes superlinear speed-up is observed when the local linear

problem fits to the cache memory

Good scaling has been shown up to thousands of cores

Simulation with over one billion unknowns has been
performed

Preconditioners not always the same in parallel

– May detoriorate parallel performance

Differences in serial and parallel algorithms

Some algorithms are slightly
different in parallel

ILU in ElmerSolver library is
performed only blockwise
which may result to inferior
convergence

Diagonal and vanka
preconditions are exactly the
same in parallel

Parallel postprocessing using Paraview

Use ResultOutputSolver to save data to .vtu files

The operation is almost the same for parallel data as for
serial data

There is a extra file .pvtu that holds is a wrapper for
the parallel .vtu data of each partition

Parallel performance

Cavity lid case solved with the
monolithic N-S solver

Partitioning with Metis

Solver Gmres with ILU0
preconditioner

Louhi: Cray XT4/XT5 with 2.3 GHz 4-core

AMD Opteron. All-in-all 9424 cores and Peak

power of 86.7 Tflops.

Scaling of wall clock time with dofs in the cavity lid case

using GMRES+ILU0. Simulation Juha Ruokolainen, CSC,

visualization Matti Gröhn, CSC, 2009.

Block prec.: Weak scaling of 3D driven-cavity

Elems Dofs #procs Time (s)

34^3 171,500 16 44.2

43^3 340,736 32 60.3

54^3 665,500 64 66.7

68^3 1,314,036 128 73.6

86^3 2,634,012 256 83.5

108^3 5,180,116 512 102.0

132^3 9,410,548 1024 106.8

Velocity solves with Hypre: CG + BoomerAMG preconditioner for the
3D driven-cavity case (Re=100) on Cray XC (Sisu).
Simulation Mika Malinen, CSC, 2013.

O(~1.14)

Block preconditioning in Elmer

In Parallel runs a central challenge is to have good
parallel preconditioners

This problem is increasingly difficult for PDEs with vector fields

– Navier-Stokes, elasticity equation,...

Idea: Use as preconditioner a procedure where the components are
solved one-by-one (like in Gauss-Seidel) and the solution is used as
a search direction in an outer Krylov method

Number of outer iterations may be shown to be bounded

Individual blocks may be solved with optimally scaling methods
(AMG)

PARA2012 Presentation: M. Malinen et al.

”Parallel Block Preconditioning by Using the Solver of Elmer”

Example: Weak scaling of Elmer (FETI)

#Procs Dofs Time (s) Efficiency

8 0.8 47.80 -

64 6.3M 51.53 0.93

125 12.2M 51.98 0.92

343 33.7M 53.84 0.89

512 50.3M 53.90 0.89

1000 98.3M 54.54 0.88

1331 131M 55.32 0.87

1728 170M 55.87 0.86

2197 216M 56.43 0.85

2744 270M 56.38 0.85

3375 332M 57.24 0.84

Solution of Poisson equation with FETI method where local problem (of size
32^3=32,768 nodes) and coarse problem (distributed to 10 partitions) is solved with
MUMPS. Simulation with Cray XC (Sisu) by Juha Ruokolainen, CSC, 2013.

Scalability of edge element AV solver for end-windings

Magnetic field strength (left) and electric potential (right)
of an electrical engine end-windings. Meshing M. Lyly,

ABB. Simulation (Cray XC, Sisu) J. Ruokolainen, CSC, 2013.

#Procs Time(s) T2P/TP

4 1366 -

8 906 1.5

16 260 3.5

32 122 2.1

64 58.1 2.1

128 38.2 1.8

256 18.1 2.1

Hybridization in Elmer

Preliminary work on
Open MP + MPI hybridization

Open MP pragmas have been added
for
– Matrix assembly

– Sparse matrix-vector multiplication

The current implementation is
efficient for
– iterative Krylov methods with

– diagonal or Vanka as preconditioner

Scaling within one CPU is excellent

Hybridization will become increasingly
important when the number of cores
increase

#threds T(s)

1 341

2 130

4 69

8 47

16 38

32 27

Table: Navier-Stokes equation solved with
BiCGStabl(4) and Vanka preconditioning on a
HP ProLiant DL580 G7 with quad-core Intel

Xeon processors.

Parallel workflow in Elmer II

Large meshes may be finilized at the parallel level

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

MESHING

MESH
MULTIPLICATION

Finalizing the mesh in parallel level

First make a coarse mesh and partition it

Division of existing elements (2^DIM^n -fold problem-size)
– Known as ”Mesh Multiplication”

– In Simulation block set ”Mesh Levels = N”

– There is a geometric multigrid that utilizes the mesh hierarchy

– Simple inheritance of mesh grading

Increase of element order (p-elements)
– There is also a p-multigrid in Elmer

Extrusion of 2D layer into 3D for special cases
– Example: Greenland Ice-sheet

For complex geometries this is often not an option
– Optimal mesh grading difficult to maintain

– Geometric accuracy cannot be increased

Example, Mesh multiplication of Swiss Cheese

Mesh multiplication on parallel level was applied to the
swiss cheese case after partitioning with Metis

Mesh grading is nicely maintained

Presentation of spherical balls is not improved

Mesh multiplication, close-up

Splitting effects visible
in partition interfaces

Mesh grading nicely
preserved

Mesh Multiplication, example

Implemented in Elmer as internal strategy ~2005

Mesh multiplication was applied to two meshes
– Mesh A: structured, 62500 hexahedrons

– Mesh B: unstructured, 65689 tetrahedrons

The CPU time used is negligible

Mesh #splits #elems #procs T_center
(s)

T_graded
(s)

A 2 4 M 12 0.469 0.769

2 4 M 128 0.039 0.069

3 32 M 128 0.310 0.549

B 2 4.20 M 12 0.369

2 4.20 M 128 0.019

3 33.63 M 128 0.201

Mesh Multiplication, Use in Elmer

Simulation

Max Output Level = 10

Coordinate System = Cartesian

Coordinate Mapping(3) = 1 2 3

Simulation Type = Steady state

Steady State Max Iterations = 1

Output Intervals = 1

Post File = case.ep

Mesh Levels = 2

Mesh Keep = 1

Mesh Grading Power = 3

Mesh Keep Grading = True

End

Parallel internal extrusion

First partition a 2D mesh,
extrude an the parallel level

2D mesh by Gmsh 3D internally extruded mesh

Simulation

Extruded Mesh Levels = 10

Extruded Mesh Density = Variable Coordinate 3

Real MATC f(tx) ! Any function

…

Design Alvar
Aalto, 1936

Using extruded meshes

Meshes can be cheaply adjusted to the geometrical
height models by taking use of the extruded structure

– Beneficial for the simulation of large continental ice-sheets

Parallel workflow in Elmer III

Bottle-necks in preprocessing resolved by parallel meshing

SOLUTION

VISUALIZATION

ASSEMBLY

PARTITIONING

COARSE MESHING

FINE MESHING

Parallel mesh generation

Parallel mesh generation is still
in its infancy

No freely available established
tools (?)

Preliminary work for Elmer performed within PRACE in
Bogazigi Univ., Istanbul

– Y. Yılmaz, C. Özturan*, O. Tosun, A. H. Özer, S. Soner
“Parallel Mesh Generation, Migration and Partitioning for the
Elmer Application”

– Based on netgen serial mesh generation

– Generate coarse mesh -> partition -> mesh refinement

– ”mesh with size 1.4 billion could be generated in under a minute”

– Still experimental, writes mesh into disk for Elmer to read
-> Introduces a possible I/O bottle-neck

Ultimately parallel mesh generation should be integrated with an
API rather than disk I/O

Parallel mesh generation: performance

Y. Yılmaz et. al.: “Parallel Mesh Generation, Migration
and Partitioning for the Elmer Application”

Overcoming bottle-necks in postprocessing

Visualization

– Paraview and Visit excellent tools for parallel visualization

– Still the sheer amount of data may be overwhelming and access to all data is
often an overkill

Reducing data

– Saving only boundaries

– Uniform point clouds

– A priori defined isosurfaces

– Using coarser meshes for output when hierarchy of meshes exist

Extracting data

– Dimensional reduction (3D -> 2D)

– Averaging over time

– Integrals over BCs & bodies

More robust I/O

– Not all cores should write to disk in massively parallel simulations

– HDF5+XDML output available for Elmer, mixed experiences

Example, File size in Swiss Cheese

Memory consumption of vtu-files (for Paraview) was studied in the
”swiss cheese” case

The ResultOutputSolver with different flags was used to write output
in parallel

Saving just boundaries in single precision binary format may save over
90% in files size compared to full data in ascii

With larger problem sizes the benefits are amplified

Binary output Single Prec. Only bound. Bytes/node

- X - 376.0

X - - 236.5

X X - 184.5

X - X 67.2

X X X 38.5

Simulation Peter Råback, CSC, 2012.

Example, saving boundaries in .sif file

Solver 2

Exec Solver = Always

Equation = "result output"

Procedure = "ResultOutputSolve” "ResultOutputSolver"

Output File Name = case

Vtu Format = Logical True

Save Boundaries Only = Logical True

End

Recipes for resolving scalability bottle-necks

Finalize mesh on a parallel level (no I/O)

– Mesh multiplication or parallel mesh generation

Use algorithms that scale well

– E.g. Multigrid methods

If the initial problem is difficult to solve effectively divide
it into simpler sub-problems

– One component at a time -> block preconditioners

GCR + Block Gauss-Seidel + AMG + SGS

– One domain at a time -> FETI

– Splitting schemes (e.g. Pressure correction in CFD)

Analyze results on-the-fly and reduce the amount of data
for visualization

Future outlook

Deeper integration of the workflow

– Heavy pre- and postprocessing internally or via API

Cheaper flops from new multicore environments

– Interesting now also for the finite element solvers

– Usable via reasonable programming effort;
attention to algorithms and implementation

Complex physics introduces always new bottle-necks

– Rotating boundary conditions in parallel…

Thank you for your attention!

