CSC

Elmer on Intel[®] Xeon-Phi

Mikko Byckling (Intel) Juhani Kataja (CSC)

ElmerTeam CSC – IT Center for Science

Elmer course CSC, June 2017

Porting work started already Q2/12
 Focus to build ElmerSolver on a MIC

 MIC = Many Integrated Cores

 Cooperation with Mikko Byckling (Intel) within *Intel Parallel Computing Center* (IPCC)

¹Reduced cost based on Intel internal estimate comparing cost of discrete networking components with the integrated fabric solution

© 2016 Intel Corporation. All rights reserved.

Internally OpenMP threading supported by

- Solver API routines related to element assembly
- Element assembly loop of some solvers already implemented
- Time integration routines
- Sparse matrix vector products
- Library support for OpenMP exists in
 - External BLAS routines
 - External LAPACK routines
 - Direct solvers such as Cholmod, SPQR and Pardiso

- Perform disruptive changes if necessary
 - Maintain backwards compatibility
 - Build backwards compatible interfaces to new methods if necessary
- Optimization order
 - Vectorization
 - Threading
- Tools currently in use
 - Intel Vtune (to find hotspots and non-vectorizable parts of the code on the time critical path)
 - Intel Inspector XE (to find threading bugs)
- Targeting both Xeon and Xeon Phi

- Modern Fortran code with a modular structure
 - Initial focus on Finite element assembly
 - Improve the vectorization properties by changing the key data structures
 - Add OpenMP multithreading
- All ~50 solvers in Elmer need to be modified


```
!$omp parallel do private(Element,n,nd)
D0 t=1,active
Element => GetActiveElement(t)
n = GetElementNOFNodes(Element)
nd = GetElementNOFDOFs(Element)
CALL LocalMatrix(Element, STIFF, FORCE, n,
nd)
CALL DefaultUpdateEquations(STIFF,FORCE,&
UElement=Element)
END D0
!$omp end parallel do
```


Poisson (elliptic problem) solver

- Large vectors (FEM Gauss points
- Mesh colouring (avoid race conditions)
- Tested on Xeon Phi developer N platform
 - Intel® Xeon Phi
 [™]CPU 721 1.30GHz
 - 64 cores (256 HT 4x)
 - 96GB DDR4,16GB MCDR/
 - KNL (KNights Landing)

1 1
Table Sector Table Hill Table
and the second s

Poisson model problem, 1M Hexahedral elements

Poisson model problem, 1M Hexahedral elements

Xeon Phi 7210 (=KNL)

"L3_scatter_ht1_8GP" u 1:(\$3/6.31873) "L3_scatter_ht2_8GP" u 1:(\$3/6.31873) "L3_scatter_ht4_8GP" u 1:(\$3/6.31873) "L3_scatter_ht1_64GP" u 1:(\$3/6.31873) "L3_scatter_ht2_64GP" u 1:(\$3/6.31873) "L3_scatter_ht4_64GP" u 1:(\$3/6.31873) "L3_sisu_8GP" u 1:(\$3/6.31873) "L3_sisu_64GP" u 1:(\$3/6.31873) "L

- Production solver used in Elmer/Ice
- Synthetic ice-sheet goemetry (Bueler-profile) with (Navier-)Stokes solver with non-linear rheology law
- Utilize (C)Pardiso
- Timing of linear system solve
- Compare with Haswell node 24 cores

Conclusions

- If you have a system based on MIC's, you can deploy Elmer/Ice with reasonable performance (similar between Xeon and Xeon Phi)
- Multi-threading (OpenMP) has been introduced to many solvers and will continue
- Assembly can utilize SIMD (=vector units) if we apply pbubbles for stabilization
- Improvements have equally positive impact on traditional CPU's (Xeon Hasswel, Broadwell)