Coil Modeling with ElmerFEM

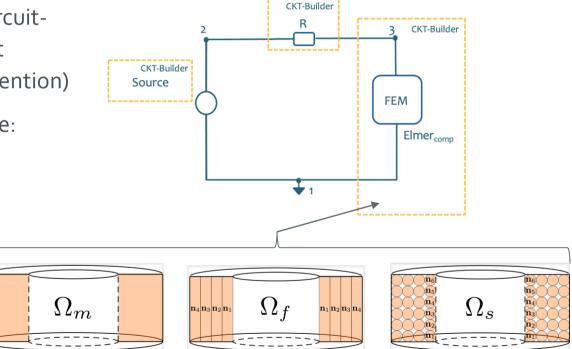
using Elmer Circuit Builder

Jonathan Velasco ElmerTeam CSC – IT Center for Science, Finland

CSC 8 Dec 2021

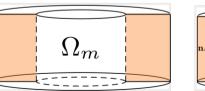
csc

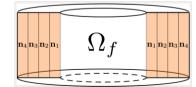
Circuit modeling background

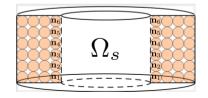

- Elmer has the ability to solve magnetoquasistatic equations strongly coupled with electrical circuits
- Elmer Circuits module was was developed as in collaboration between Finnish universities research labs and industrial partners in SEMTEC funded by TEKES (Business Finland).
- ElmerCircuit Builder is a complementary tool for the Circuit module making the writing of the circuit defeniotions easier

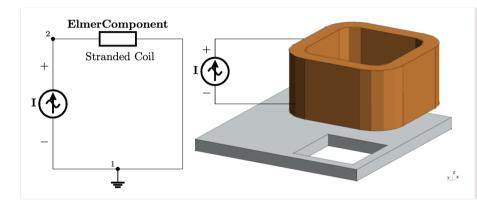
What is the Elmer Circuit Builder?

- Python module to automate circuitmatrix creation based on circuit connections (terminal/pin convention)
- Electrical Components Available:


 Voltage Sources (V)
 Current Sources (I)
 Resistors (R)
 Inductors (L)
 Capacitors (C)
- FEM Coil types


 Massive, Stranded and Foil




What kind of problems are we solving with the CircuitBuilder?

- Current conducting coils/wires (2D/3D) coupled to electrical circuit networks
- Coil Models (CircuitsAndDynamics.F90)
 - Massive (Solid conducting material)
 - Stranded (Homogenized)
 - Foil winding (Homogenized)
- Magnetodynamics av Formulation

ElmerSolver: Basic Structure of SIF file

- Basic idea: Sections + Keywords
- Each section starts with SectionName and ends with with "End"
 Alternative for one keyword SectionName :: Keyword
- In each section we may have an arbitrary number of keywords
- Keywords are of type

 Real : real valued number
 Integer : integer number
 Logical : True or False
 String: not case-sensitive text
 File: case-sensitive text

- Sections are ○ Header **Constants** ○ Simulation ○ Solver i **○ Body i** • Equation i • Body Force i ○ Material i Initial Condition i Boundary Condition i • Component i **ORUN Contro**
- Not all sections are needed

Example of minimal sif file

! Minimal sif file example Check Keywords "Warn"

```
Header :: Mesh DB "." "square"
```

Simulation

```
Max Output Level = 5
Coordinate System = Cartesian
Simulation Type = Steady
Output Intervals(1) = 1
Steady State Max Iterations = 1
Post File = "case.vtu"
End
```

Ena

Body 1 Equation = 1 Material = 1 End

Equation 1 Active Solvers(1) = 1 End

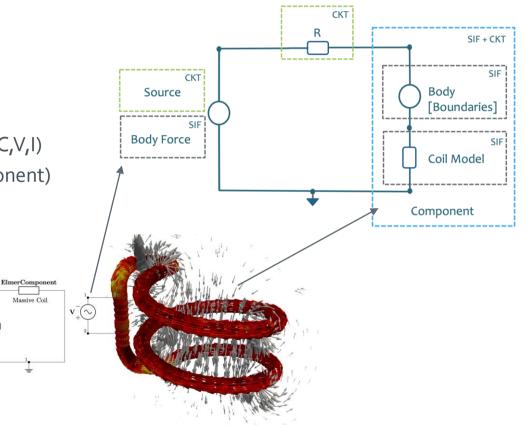
Solver 1

```
Equation = "ModelPDE"
Variable = "Field"
Procedure = "ModelPDE" "AdvDiffSolver"
Linear System Solver = Direct
End
```

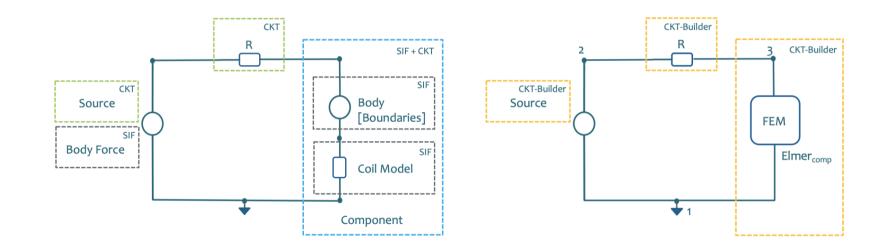
```
Material 1
    diffusion coefficient = 1.0
End
```

```
Boundary Condition 1
Name = "Fixed"
Target Boundaries(1) = 1
Field = 0.0
End
```

```
Boundary Condition 2
Name = "Flux"
Target Boundaries(1) = 2
Field Flux = 1.0
End
```

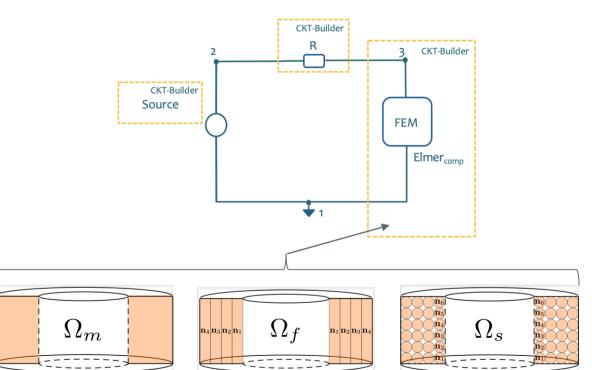

csc

Elmer Circuits: Association between Source Input File (SIF) and Circuit Definition (CKT) Matrix Form Ax'+Bx = f


Massive Coil

v

- Under Circuit File in Matrix Form
 - Source
 - Electrical Components (e.g: R,L,C,V,I)
 - [FEM] Component (ElmerComponent)
- Define in SIF
 - [FEM] Component
 - Coil Model •
 - Body Force 1
 - Voltage or Current (V,I)


Elmer Circuits and Elmer Circuit Builder:

Elmer Circuit Builder: How to use it?

https://github.com/ElmerCSC/elmer-elmag/tree/main/CircuitBuilder

- What do you need?
 - Python 3 and appropriate editor
 IDE not needed but encouraged
- How to install it?
 \$ pip install elmer-circuitbuilder
- How to set it up:
 - Import elmer_circuitbuilder library
 - Setup output file name
 - \circ Set number of circuits
 - Populate circuit with ground/ref node
 and needed electrical components
 Add components to circuit
 Generate Elmer Circuit
 Add .definition to .sif file

Elmer Circuit Builder: The main template

https://github.com/ElmerCSC/elmer-elmag/tree/main/CircuitBuilder

Co

# Im impo from #	# STEP 1				
def main(argv=None):					
	<pre># name output file - do not remove output_file = ""</pre>	# STEP 2			
	<pre># initialize circuits: number of circuits - do not remove c = number_of_circuits(1)</pre>	# STEP 3			
	<pre># reference/ground node needed - do not remove. c[1].ref_node = 1</pre>	# STEP 4			
	# Electrical Network Definition	# STEP 5			
	# Components				
	# Define coil type: massive, stranded, foil				
	# Define dimension related features if needed (closed, open)				
	<pre># store components in array components = [comp1, comp2,] - do not remove c[1].components.append([])</pre>	# STEP 6			
	#				
	<pre># generate elmer circuit.definitions - do not remove / do not edit generate_elmer_circuits(c, output_file)</pre>	# STEP 7			
	return 0				
if _	<pre>ifname == "main": sys.exit(main() or 0)</pre>				

il = ElmerComponent	:("Coil", 1, 2, 1, [1])
	<pre>elmer_circuitbuilder.ElmerComponent definit(self,</pre>
	ElmerComponent is a derived class of the Component class to represent 2D and 3D Coils in Elmer.

's =	۰V	("Vs", 1, 3, 1)				
		elmer_circuitbuilder.V definit(self, name: str, pin1: int, pin2: int, value: float = None) -> None				
		V is a derived class of the Component class to represent ideal voltage sources in Volt.				

Elmer Circuit Builder: output file <circuit_name>.definition https://github.com/ElmerCSC/elmer-elmag/tree/main/CircuitBuilder

ElmerFEM Circuit Generated: November 02, 2021		(2)	
! ! Number of Circuits in Model !	(0.1 perm = zeros(0.1 variables))	! ! Additions in SIF file !	(3)
!		Component 1	
! General Parameters \$ I1 = 10 ! Parameters in Component 1: Coil1 \$ N_Coil1 = 10 ! Number of Turns \$ R_Coil1 = 0.1 ! Coil Resistance	<pre>S C.1.name.1 = "i_I1" S C.1.name.2 = "i_component(1)" C.1.name.3 = "v_I1" C.1.name.4 = "v_component(1)" C.1.name.5 = "u_2_circuit_1"</pre>	Coil Type = "Stranded" Number of Turns = Real \$ N_Coil1 Resistance = Real \$ R_Coil1 ! Additions for 3D Coil Coil Use W Vector = Logical True	
<pre>\$ Ns_Coil1 = 1 ! Sector/Symmetry Coefficient (e.g. 4 is 1/4 of the domain)</pre>	!	W Vector Variable Name = String CoilCurrent e	
	! ! KCL Equations	! Sources in SIF	(4)
	! \$ C.1.B(0,0) = -1 \$ C.1.B(0,1) = 1	Body Force 1	
	<pre>KVL Equations </pre>	Real MATC "I1"	
	<pre>\$ C.1.B(1,2) = 1 \$ C.1.B(1,4) = -1 \$ C.1.B(2,3) = -1 \$ C.1.B(2,3) = 1 \$ C.1.B(2,4) = 1</pre>	! End ! End of Circuit !	
	!		
	!\$ C.1.B(4,0) = 1		

Source Time Dependencies (SIF Modifications)

CSC

- The Circuit Builder is NOT a simulation tool. All simulation tweaks must be done within the .sif
- Harmonic

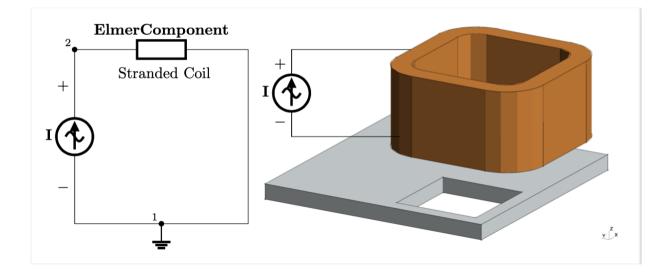
 $\circ \mbox{The Angular Frequency}$ is required in the Simulation Block

```
Simulation

...

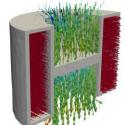
Angular Frequency = Real $ 2*pi*f

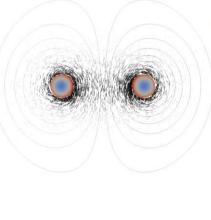
...

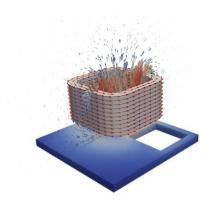

End
```

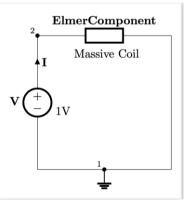
• Transient

 Time dependent functions can be implemented within the Body Force 1 definition. An example of a sinusoidal source:

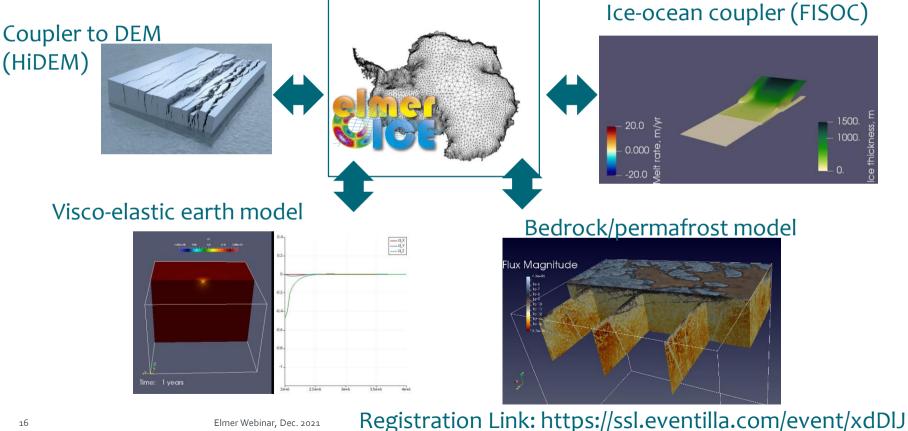

```
Body Force 1
Source = Variable "time"
Real MATC "amplitude*sin(omega*tx(0))"
End
```


Elmer Circuit Builder Demo




Modeling Coils using the Circuit Builder Summary

- Circuit Builder Library:
 - <u>https://pypi.org/project/elmer-</u> <u>circuitbuilder/</u>
 - \circ Main template
 - Transient sources
 - \circ Include in .sif file
- Coil modelling examples:
 - <u>https://github.com/ElmerCSC/elmer-</u> <u>elmag/tree/main/CircuitBuilder</u>



Upcoming webinar: 15.12. Geophysical applications beyond (but in connection to) Elmer/Ice

Most important Elmer resources

<u>http://www.csc.fi/elmer</u>

o Official Homepage of Elmer

• http://www.elmerfem.org

o Discussion forum, wiki, elmerice community

<u>https://github.com/elmercsc/elmerfem</u>

o GIT version control (the future)

<u>http://youtube.com/elmerfem</u>

Youtube channel for Elmer animations

<u>http://www.nic.funet.fi/pub/sci/physics/elmer/</u>

Download repository

• Further information: jonathan.velasco@csc.fi

twitter.com/CSCfi

inkedin.com/company/csc---it-center-for-science

github.com/CSCfi