
RFC 9006
TCP Usage Guidance in the Internet of Things (IoT)

Abstract
This document provides guidance on how to implement and use the Transmission Control
Protocol (TCP) in Constrained-Node Networks (CNNs), which are a characteristic of the Internet
of Things (IoT). Such environments require a lightweight TCP implementation and may not make
use of optional functionality. This document explains a number of known and deployed
techniques to simplify a TCP stack as well as corresponding trade-offs. The objective is to help
embedded developers with decisions on which TCP features to use.

Stream: Internet Engineering Task Force (IETF)
RFC: 9006
Category: Informational
Published: March 2021
ISSN: 2070-1721
Authors: C. Gomez

UPC
J. Crowcroft
University of Cambridge

M. Scharf
Hochschule Esslingen

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9006

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Gomez, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9006
https://www.rfc-editor.org/info/rfc9006
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents
1. Introduction

2. Characteristics of CNNs Relevant for TCP

2.1. Network and Link Properties

2.2. Usage Scenarios

2.3. Communication and Traffic Patterns

3. TCP Implementation and Configuration in CNNs

3.1. Addressing Path Properties

3.1.1. Maximum Segment Size (MSS)

3.1.2. Explicit Congestion Notification (ECN)

3.1.3. Explicit Loss Notifications

3.2. TCP Guidance for Single-MSS Stacks

3.2.1. Single-MSS Stacks -- Benefits and Issues

3.2.2. TCP Options for Single-MSS Stacks

3.2.3. Delayed Acknowledgments for Single-MSS Stacks

3.2.4. RTO Calculation for Single-MSS Stacks

3.3. General Recommendations for TCP in CNNs

3.3.1. Loss Recovery and Congestion/Flow Control

3.3.1.1. Selective Acknowledgments (SACKs)

3.3.2. Delayed Acknowledgments

3.3.3. Initial Window

4. TCP Usage Recommendations in CNNs

4.1. TCP Connection Initiation

4.2. Number of Concurrent Connections

4.3. TCP Connection Lifetime

5. Security Considerations

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 2

1. Introduction
The Internet Protocol suite is being used for connecting Constrained-Node Networks (CNNs) to
the Internet, enabling the so-called Internet of Things (IoT) . In order to meet the
requirements that stem from CNNs, the IETF has produced a suite of new protocols specifically
designed for such environments (see, e.g.,). New IETF protocol stack components
include the IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) adaptation layer

, the IPv6 Routing Protocol for Low-Power and Lossy Networks
(RPL) , and the Constrained Application Protocol (CoAP) .

As of this writing, the main transport-layer protocols in IP-based IoT scenarios are UDP and TCP.
TCP has been criticized, often unfairly, as a protocol that is unsuitable for the IoT. It is true that
some TCP features, such as relatively long header size, unsuitability for multicast, and always-
confirmed data delivery, are not optimal for IoT scenarios. However, many typical claims on TCP
unsuitability for IoT (e.g., a high complexity, connection-oriented approach incompatibility with
radio duty-cycling and spurious congestion control activation in wireless links) are not valid, can
be solved, or are also found in well-accepted IoT end-to-end reliability mechanisms (see a
detailed analysis in).

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. TCP Implementations for Constrained Devices

A.1. uIP

A.2. lwIP

A.3. RIOT

A.4. TinyOS

A.5. FreeRTOS

A.6. uC/OS

A.7. Summary

Acknowledgments

Authors' Addresses

[RFC7228]

[RFC8352]

[RFC4944][RFC6282][RFC6775]
[RFC6550] [RFC7252]

[IntComp]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 3

At the application layer, CoAP was developed over UDP . However, the integration of
some CoAP deployments with existing infrastructure is being challenged by middleboxes such as
firewalls, which may limit and even block UDP-based communications. This is the main reason
why a CoAP over TCP specification has been developed .

Other application-layer protocols not specifically designed for CNNs are also being considered for
the IoT space. Some examples include HTTP/2 and even HTTP/1.1, both of which run over TCP by
default , and the Extensible Messaging and Presence Protocol (XMPP)

. TCP is also used by non-IETF application-layer protocols in the IoT space such as the
Message Queuing Telemetry Transport (MQTT) and its lightweight variants.

TCP is a sophisticated transport protocol that includes optional functionality (e.g., TCP options)
that may improve performance in some environments. However, many optional TCP extensions
require complex logic inside the TCP stack and increase the code size and the memory
requirements. Many TCP extensions are not required for interoperability with other standard-
compliant TCP endpoints. Given the limited resources on constrained devices, careful selection of
optional TCP features can make an implementation more lightweight.

This document provides guidance on how to implement and configure TCP and guidance on how
applications should use TCP in CNNs. The overarching goal is to offer simple measures to allow
for lightweight TCP implementation and suitable operation in such environments. A TCP
implementation following the guidance in this document is intended to be compatible with a TCP
endpoint that is compliant to the TCP standards, albeit possibly with a lower performance. This
implies that such a TCP client would always be able to connect with a standard-compliant TCP
server, and a corresponding TCP server would always be able to connect with a standard-
compliant TCP client.

This document assumes that the reader is familiar with TCP. A comprehensive survey of the TCP
standards can be found in RFC 7414 . Similar guidance regarding the use of TCP in
special environments has been published before, e.g., for cellular wireless networks .

2. Characteristics of CNNs Relevant for TCP

2.1. Network and Link Properties
CNNs are defined in as networks whose characteristics are influenced by being
composed of a significant portion of constrained nodes. The latter are characterized by
significant limitations on processing, memory, and energy resources, among others .
The first two dimensions pose constraints on the complexity and memory footprint of the
protocols that constrained nodes can support. The latter requires techniques to save energy, such
as radio duty-cycling in wireless devices and the minimization of the number of
messages transmitted/received (and their size).

[RFC7252]

[RFC8323]

[RFC7230] [RFC7540]
[RFC6120]

[MQTT]

[RFC7414]
[RFC3481]

[RFC7228]

[RFC7228]

[RFC8352]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 4

 lists typical network constraints in CNNs, including low achievable bitrate/throughput,
high packet loss and high variability of packet loss, highly asymmetric link characteristics, severe
penalties for using larger packets, limits on reachability over time, etc. CNNs may use wireless or
wired technologies (e.g., Power Line Communication), and the transmission rates are typically
low (e.g., below 1 Mbps).

For use of TCP, one challenge is that not all technologies in a CNN may be aligned with typical
Internet subnetwork design principles . For instance, constrained nodes often use
physical- / link-layer technologies that have been characterized as 'lossy', i.e., exhibit a relatively
high bit error rate. Dealing with corruption loss is one of the open issues in the Internet

.

2.2. Usage Scenarios
There are different deployment and usage scenarios for CNNs. Some CNNs follow the star
topology, whereby one or several hosts are linked to a central device that acts as a router
connecting the CNN to the Internet. Alternatively, CNNs may also follow the multihop topology

.

In constrained environments, there can be different types of devices . For example,
there can be devices with a single combined send/receive buffer, a separate send and receive
buffer, or a pool of multiple send/receive buffers. In the latter case, it is possible that buffers are
also shared for other protocols.

One key use case for TCP in CNNs is a model where constrained devices connect to unconstrained
servers in the Internet. But it is also possible that both TCP endpoints run on constrained devices.
In the first case, communication will possibly traverse a middlebox (e.g., a firewall, NAT, etc.).
Figure 1 illustrates such a scenario. Note that the scenario is asymmetric, as the unconstrained
device will typically not suffer the severe constraints of the constrained device. The
unconstrained device is expected to be mains-powered, have a high amount of memory and
processing power, and be connected to a resource-rich network.

Assuming that a majority of constrained devices will correspond to sensor nodes, the amount of
data traffic sent by constrained devices (e.g., sensor node measurements) is expected to be higher
than the amount of data traffic in the opposite direction. Nevertheless, constrained devices may
receive requests (to which they may respond), commands (for configuration purposes and for
constrained devices including actuators), and relatively infrequent firmware/software updates.

[RFC7228]

[RFC3819]

[RFC6077]

[RFC6606]

[RFC7228]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 5

Unidirectional transfers:

Request-response patterns:

Bulk data transfers:

2.3. Communication and Traffic Patterns
IoT applications are characterized by a number of different communication patterns. The
following non-comprehensive list explains some typical examples:

An IoT device (e.g., a sensor) can (repeatedly) send updates to the
other endpoint. There is not always a need for an application response back to the IoT device.

An IoT device receiving a request from the other endpoint, which
triggers a response from the IoT device.

A typical example for a long file transfer would be an IoT device firmware
update.

A typical communication pattern is that a constrained device communicates with an
unconstrained device (cf. Figure 1). But it is also possible that constrained devices communicate
amongst themselves.

3. TCP Implementation and Configuration in CNNs
This section explains how a TCP stack can deal with typical constraints in CNN. The guidance in
this section relates to the TCP implementation and its configuration.

3.1. Addressing Path Properties
3.1.1. Maximum Segment Size (MSS)

Assuming that IPv6 is used, and for the sake of lightweight implementation and operation, unless
applications require handling large data units (i.e., leading to an IPv6 datagram size greater than
1280 bytes), it may be desirable to limit the IP datagram size to 1280 bytes in order to avoid the
need to support Path MTU Discovery . In addition, an IP datagram size of 1280 bytes
avoids incurring IPv6-layer fragmentation .

Figure 1: TCP Communication between a Constrained Device and an Unconstrained Device,
Traversing a Middlebox

 +---------------+
 o o <-------- TCP communication -----> | |
 o o | |
 o o | Unconstrained |
 o o +-----------+ | device |
 o o o ------ | Middlebox | ------- | |
 o o +-----------+ | (e.g., cloud) |
 o o o | |
 +---------------+
 Constrained devices

[RFC8201]
[RFC8900]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 6

An IPv6 datagram size exceeding 1280 bytes can be avoided by setting the TCP MSS to 1220 bytes
or less. Note that it is already a requirement for TCP implementations to consume payload space
instead of increasing datagram size when including IP or TCP options in an IP packet to be sent

. Therefore, it is not required to advertise an MSS smaller than 1220 bytes in order to
accommodate TCP options.

Note that setting the MTU to 1280 bytes is possible for link-layer technologies in the CNN space,
even if some of them are characterized by a short data unit payload size, e.g., up to a few tens or
hundreds of bytes. For example, the maximum frame size in IEEE 802.15.4 is 127 bytes. 6LoWPAN
defined an adaptation layer to support IPv6 over IEEE 802.15.4 networks. The adaptation layer
includes a fragmentation mechanism, since IPv6 requires the layer below to support an MTU of
1280 bytes , while IEEE 802.15.4 lacks fragmentation mechanisms. 6LoWPAN defines an
IEEE 802.15.4 link MTU of 1280 bytes . Other technologies, such as Bluetooth low
energy , ITU-T G.9959 , or Digital Enhanced Cordless Telecommunications
(DECT) Ultra Low Energy (ULE) , also use 6LoWPAN-based adaptation layers in order to
enable IPv6 support. These technologies do support link-layer fragmentation. By exploiting this
functionality, the adaptation layers that enable IPv6 over such technologies also define an MTU
of 1280 bytes.

On the other hand, there exist technologies also used in the CNN space, such as Master Slave (MS)
/ Token Passing (TP) , Narrowband IoT (NB-IoT) , or IEEE 802.11ah

, that do not suffer the same degree of frame size limitations as the technologies
mentioned above. It is recommended that the MTU for MS/TP be 1500 bytes ; the MTU
in NB-IoT is 1600 bytes, and the maximum frame payload size for IEEE 802.11ah is 7991 bytes.

Using a larger MSS (to a suitable extent) may be beneficial in some scenarios, especially when
transferring large payloads, as it reduces the number of packets (and packet headers) required
for a given payload. However, the characteristics of the constrained network need to be
considered. In particular, in a lossy network where unreliable fragment delivery is used, the
amount of data that TCP unnecessarily retransmits due to fragment loss increases (and
throughput decreases) quickly with the MSS. This happens because the loss of a fragment leads to
the loss of the whole fragmented packet being transmitted. Unnecessary data retransmission is
particularly harmful in CNNs due to the resource constraints of such environments. Note that,
while the original 6LoWPAN fragmentation mechanism does not offer reliable
fragment delivery, fragment recovery functionality for 6LoWPAN or 6Lo environments has been
standardized .

3.1.2. Explicit Congestion Notification (ECN)

ECN allows a router to signal in the IP header of a packet that congestion is rising, for
example, when a queue size reaches a certain threshold. An ECN-enabled TCP receiver will echo
back the congestion signal to the TCP sender by setting a flag in its next TCP Acknowledgment
(ACK). The sender triggers congestion control measures as if a packet loss had happened.

[RFC6691]

[RFC8200]
[RFC4944]

[RFC7668] [RFC7428]
[RFC8105]

[RFC8163] [RFC8376] [6LO-
WLANAH]

[RFC8163]

[RFC4944]

[RFC8931]

[RFC3168]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 7

RFC 8087 outlines the principal gains in terms of increased throughput, reduced delay,
and other benefits when ECN is used over a network path that includes equipment that supports
Congestion Experienced (CE) marking. In the context of CNNs, a remarkable feature of ECN is
that congestion can be signaled without incurring packet drops (which will lead to
retransmissions and consumption of limited resources such as energy and bandwidth).

ECN can further reduce packet losses since congestion control measures can be applied earlier
. Fewer lost packets implies that the number of retransmitted segments decreases,

which is particularly beneficial in CNNs, where energy and bandwidth resources are typically
limited. Also, it makes sense to try to avoid packet drops for transactional workloads with small
data sizes, which are typical for CNNs. In such traffic patterns, it is more difficult and often
impossible to detect packet loss without retransmission timeouts (e.g., as there may not be three
duplicate ACKs). Any retransmission timeout slows down the data transfer significantly. In
addition, if the constrained device uses power-saving techniques, a retransmission timeout will
incur a wake-up action, in contrast to ACK clock-triggered sending. When the congestion window
of a TCP sender has a size of one segment and a TCP ACK with an ECN signal (ECN-Echo (ECE)
flag) arrives at the TCP sender, the TCP sender resets the retransmit timer, and the sender will
only be able to send a new packet when the retransmit timer expires. Effectively, at that moment,
the TCP sender reduces its sending rate from 1 segment per Round-Trip Time (RTT) to 1 segment
per Retransmission Timeout (RTO) and reduces the sending rate further on each ECN signal
received in subsequent TCP ACKs. Otherwise, if an ECN signal is not present in a subsequent TCP
ACK, the TCP sender resumes the normal ACK-clocked transmission of segments .

ECN can be incrementally deployed in the Internet. Guidance on configuration and usage of ECN
is provided in RFC 7567 . Given the benefits, more and more TCP stacks in the Internet
support ECN, and it makes sense to specifically leverage ECN in controlled environments such as
CNNs. As of this writing, there is ongoing work to extend the types of TCP packets that are ECN
capable, including pure ACKs . Such a feature may further increase the benefits of
ECN in CNN environments. Note, however, that supporting ECN increases implementation
complexity.

3.1.3. Explicit Loss Notifications

There has been a significant body of research on solutions capable of explicitly indicating
whether a TCP segment loss is due to corruption, in order to avoid activation of congestion
control mechanisms . While such solutions may provide significant
improvement, they have not been widely deployed and remain as experimental work. In fact, as
of today, the IETF has not standardized any such solution.

3.2. TCP Guidance for Single-MSS Stacks
This section discusses TCP stacks that allow transferring a single MSS. More general guidance is
provided in Section 3.3.

[RFC8087]

[RFC2884]

[RFC3168]

[RFC7567]

[TCPM-ECN]

[ETEN] [RFC2757]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 8

3.2.2. TCP Options for Single-MSS Stacks

A TCP implementation needs to support, at a minimum, TCP options 2, 1, and 0. These are,
respectively, the MSS option, the No-Operation option, and the End Of Option List marker

. None of these are a substantial burden to support. These options are sufficient for
interoperability with a standard-compliant TCP endpoint, albeit many TCP stacks support
additional options and can negotiate their use. A TCP implementation is permitted to silently
ignore all other TCP options.

A TCP implementation for a constrained device that uses a single-MSS TCP receive or transmit
window size may not benefit from supporting the following TCP options: Window Scale

, TCP Timestamps , Selective Acknowledgment (SACK) , and SACK-
Permitted . Also, other TCP options may not be required on a constrained device with a
very lightweight implementation. With regard to the Window Scale option, note that it is only
useful if a window size greater than 64 kB is needed.

Note that a TCP sender can benefit from the TCP Timestamps option in detecting
spurious RTOs. The latter are quite likely to occur in CNN scenarios due to a number of reasons
(e.g., route changes in a multihop scenario, link-layer retries, etc.). The header overhead incurred
by the Timestamps option (of up to 12 bytes) needs to be taken into account.

3.2.1. Single-MSS Stacks -- Benefits and Issues

A TCP stack can reduce the memory requirements by advertising a TCP window size of 1 MSS
and also transmit, at most, 1 MSS of unacknowledged data. In that case, both congestion and flow
control implementation are quite simple. Such a small receive and send window may be
sufficient for simple message exchanges in the CNN space. However, only using a window of 1
MSS can significantly affect performance. A stop-and-wait operation results in low throughput
for transfers that exceed the length of 1 MSS, e.g., a firmware download. Furthermore, a single-
MSS solution relies solely on timer-based loss recovery, therefore missing the performance gain
of Fast Retransmit and Fast Recovery (which requires a larger window size; see Section 3.3.1).

If CoAP is used over TCP with the default setting for NSTART in RFC 7252 , a CoAP
endpoint is not allowed to send a new message to a destination until a response for the previous
message sent to that destination has been received. This is equivalent to an application-layer
window size of 1 data unit. For this use of CoAP, a maximum TCP window of 1 MSS may be
sufficient, as long as the CoAP message size does not exceed 1 MSS. An exception in CoAP over
TCP, though, is the Capabilities and Settings Message (CSM) that must be sent at the start of the
TCP connection. The first application message carrying user data is allowed to be sent
immediately after the CSM message. If the sum of the CSM size plus the application message size
exceeds the MSS, a sender using a single-MSS stack will need to wait for the ACK confirming the
CSM before sending the application message.

[RFC7252]

[RFC0793]

[RFC7323] [RFC7323] [RFC2018]
[RFC2018]

[RFC7323]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 9

3.2.4. RTO Calculation for Single-MSS Stacks

The RTO calculation is one of the fundamental TCP algorithms . There is a fundamental
trade-off: a short, aggressive RTO behavior reduces wait time before retransmissions, but it also
increases the probability of spurious timeouts. The latter leads to unnecessary waste of
potentially scarce resources in CNNs such as energy and bandwidth. In contrast, a conservative
timeout can result in long error recovery times and, thus, needlessly delay data delivery.

If a TCP sender uses a very small window size, and it cannot benefit from Fast Retransmit and
Fast Recovery or SACK, the RTO algorithm has a large impact on performance. In that case, RTO
algorithm tuning may be considered, although careful assessment of possible drawbacks is
recommended .

As an example, adaptive RTO algorithms defined for CoAP over UDP have been found to perform
well in CNN scenarios .

3.2.3. Delayed Acknowledgments for Single-MSS Stacks

TCP Delayed Acknowledgments are meant to reduce the number of ACKs sent within a TCP
connection, thus reducing network overhead, but they may increase the time until a sender may
receive an ACK. In general, usefulness of Delayed ACKs depends heavily on the usage scenario
(see Section 3.3.2). There can be interactions with single-MSS stacks.

When traffic is unidirectional, if the sender can send at most 1 MSS of data or the receiver
advertises a receive window not greater than the MSS, Delayed ACKs may unnecessarily
contribute delay (up to 500 ms) to the RTT , which limits the throughput and can
increase data delivery time. Note that, in some cases, it may not be possible to disable Delayed
ACKs. One known workaround is to split the data to be sent into two segments of smaller size. A
standard-compliant TCP receiver may immediately acknowledge the second MSS of data, which
can improve throughput. However, this "split hack" may not always work since a TCP receiver is
required to acknowledge every second full-sized segment, but not two consecutive small
segments. The overhead of sending two IP packets instead of one is another downside of the
"split hack".

Similar issues may happen when the sender uses the Nagle algorithm, since the sender may need
to wait for an unnecessarily Delayed ACK to send a new segment. Disabling the algorithm will
not have impact if the sender can only handle stop-and-wait operation at the TCP level.

For request-response traffic, when the receiver uses Delayed ACKs, a response to a data message
can piggyback an ACK, as long as the latter is sent before the Delayed ACK timer expires, thus
avoiding unnecessary ACKs without payload. Disabling Delayed ACKs at the request sender
allows an immediate ACK for the data segment carrying the response.

[RFC5681]

[RFC6298]

[RFC8961]

[Commag] [CORE-FASOR]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 10

3.3. General Recommendations for TCP in CNNs
This section summarizes some widely used techniques to improve TCP, with a focus on their use
in CNNs. The TCP extensions discussed here are useful in a wide range of network scenarios,
including CNNs. This section is not comprehensive. A comprehensive survey of TCP extensions is
published in RFC 7414 .[RFC7414]

3.3.1. Loss Recovery and Congestion/Flow Control

Devices that have enough memory to allow a larger (i.e., more than 3 MSS of data) TCP window
size can leverage a more efficient loss recovery than the timer-based approach used for a smaller
TCP window size (see Section 3.2.1) by using Fast Retransmit and Fast Recovery , at the
expense of slightly greater complexity and Transmission Control Block (TCB) size. Assuming that
Delayed ACKs are used by the receiver, a window size of up to 5 MSS is required for Fast
Retransmit and Fast Recovery to work efficiently: in a given TCP transmission of full-sized
segments 1, 2, 3, 4, and 5, if segment 2 gets lost, and the ACK for segment 1 is held by the Delayed
ACK timer, then the sender should get an ACK for segment 1 when 3 arrives and duplicate ACKs
when segments 4, 5, and 6 arrive. It will retransmit segment 2 when the third duplicate ACK
arrives. In order to have segments 2, 3, 4, 5, and 6 sent, the window has to be of at least 5 MSS.
With an MSS of 1220 bytes, a buffer of a size of 5 MSS would require 6100 bytes.

The example in the previous paragraph did not use a further TCP improvement such as Limited
Transmit . The latter may also be useful for any transfer that has more than one
segment in flight. Small transfers tend to benefit more from Limited Transmit, because they are
more likely to not receive enough duplicate ACKs. Assuming the example in the previous
paragraph, Limited Transmit allows sending 5 MSS with a congestion window (cwnd) of three
segments, plus two additional segments for the first two duplicate ACKs. With Limited Transmit,
even a cwnd of two segments allows sending 5 MSS, at the expense of additional delay
contributed by the Delayed ACK timer for the ACK that confirms segment 1.

When a multiple-segment window is used, the receiver will need to manage the reception of
possible out-of-order received segments, requiring sufficient buffer space. Note that even when a
window of 1 MSS is used, out-of-order arrival should also be managed, as the sender may send
multiple sub-MSS packets that fit in the window. (On the other hand, the receiver is free to simply
drop out-of-order segments, thus forcing retransmissions.)

3.3.1.1. Selective Acknowledgments (SACKs)
If a device with less severe memory and processing constraints can afford advertising a TCP
window size of several MSSs, it makes sense to support the SACK option to improve performance.
SACK allows a data receiver to inform the data sender of non-contiguous data blocks received,
thus a sender (having previously sent the SACK-Permitted option) can avoid performing
unnecessary retransmissions, saving energy and bandwidth, as well as reducing latency. In
addition, SACK often allows for faster loss recovery when there is more than one lost segment in
a window of data, since SACK recovery may complete with less RTTs. SACK is particularly useful
for bulk data transfers. A receiver supporting SACK will need to keep track of the data blocks that
need to be received. The sender will also need to keep track of which data segments need to be

[RFC5681]

[RFC3042]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 11

3.3.3. Initial Window

 specifies a TCP Initial Window (IW) of roughly 4 kB. Subsequently, RFC 6928
defines an experimental new value for the IW, which in practice will result in an IW of 10 MSS.
Nowadays, the latter is used in many TCP implementations.

Note that a 10-MSS IW was recommended for resource-rich environments (e.g., broadband
environments), which are significantly different from CNNs. In CNNs, many application-layer
data units are relatively small (e.g., below 1 MSS). However, larger objects (e.g., large files
containing sensor readings, firmware updates, etc.) may also need to be transferred in CNNs. If
such a large object is transferred in CNNs, with an IW setting of 10 MSS, there is significant
buffer overflow risk, since many CNN devices support network or radio buffers of a size smaller

resent after learning which data blocks are missing at the receiver. SACK adds 8*n+2 bytes to the
TCP header, where n denotes the number of data blocks received, up to four blocks. For a low
number of out-of-order segments, the header overhead penalty of SACK is compensated by
avoiding unnecessary retransmissions. When the sender discovers the data blocks that have
already been received, it needs to also store the necessary state to avoid unnecessary
retransmission of data segments that have already been received.

3.3.2. Delayed Acknowledgments

For certain traffic patterns, Delayed ACKs may have a detrimental effect, as already noted in
Section 3.2.3. Advanced TCP stacks may use heuristics to determine the maximum delay for an
ACK. For CNNs, the recommendation depends on the expected communication patterns.

When traffic over a CNN is expected mostly to be unidirectional messages with a size typically up
to 1 MSS, and the time between two consecutive message transmissions is greater than the
Delayed ACK timeout, it may make sense to use a smaller timeout or disable Delayed ACKs at the
receiver. This avoids incurring additional delay, as well as the energy consumption of the sender
(which might, e.g., keep its radio interface in receive mode) during that time. Note that disabling
Delayed ACKs may only be possible if the peer device is administered by the same entity
managing the constrained device. For request-response traffic, enabling Delayed ACKs is
recommended at the server end, in order to allow combining a response with the ACK into a
single segment, thus increasing efficiency. In addition, if a client issues requests infrequently,
disabling Delayed ACKs at the client allows an immediate ACK for the data segment carrying the
response.

In contrast, Delayed ACKs allow for a reduced number of ACKs in bulk transfer types of traffic,
e.g., for firmware/software updates or for transferring larger data units containing a batch of
sensor readings.

Note that, in many scenarios, the peer that a constrained device communicates with will be a
general purpose system that communicates with both constrained and unconstrained devices.
Since Delayed ACKs are often configured through system-wide parameters, the behavior of
Delayed ACKs at the peer will be the same regardless of the nature of the endpoints it talks to.
Such a peer will typically have Delayed ACKs enabled.

[RFC5681] [RFC6928]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 12

4. TCP Usage Recommendations in CNNs
This section discusses how TCP can be used by applications that are developed for CNN scenarios.
These remarks are by and large independent of how TCP is exactly implemented.

4.1. TCP Connection Initiation
In the scenario of a constrained device to an unconstrained device illustrated above, a TCP
connection is typically initiated by the constrained device, in order for the device to support
possible sleep periods to save energy.

4.2. Number of Concurrent Connections
TCP endpoints with a small amount of memory may only support a small number of connections.
Each TCP connection requires storing a number of variables in the TCB. Depending on the
internal TCP implementation, each connection may result in further memory overhead, and
connections may compete for scarce resources (e.g., further memory overhead for send and
receive buffers, etc.).

A careful application design may try to keep the number of concurrent connections as small as
possible. A client can, for instance, limit the number of simultaneous open connections that it
maintains to a given server. Multiple connections could, for instance, be used to avoid the "head-
of-line blocking" problem in an application transfer. However, in addition to consuming
resources, using multiple connections can also cause undesirable side effects in congested
networks. For example, the HTTP/1.1 specification encourages clients to be conservative when
opening multiple connections . Furthermore, each new connection will start with a
three-way handshake, therefore increasing message overhead.

Being conservative when opening multiple TCP connections is of particular importance in
Constrained-Node Networks.

than 10 MSS. In order to avoid such a problem, the IW needs to be carefully set in CNNs, based on
device and network resource constraints. In many cases, a safe IW setting will be smaller than 10
MSS.

[RFC7230]

4.3. TCP Connection Lifetime
In order to minimize message overhead, it makes sense to keep a TCP connection open as long as
the two TCP endpoints have more data to send. If applications exchange data rather infrequently,
i.e., if TCP connections would stay idle for a long time, the idle time can result in problems. For
instance, certain middleboxes such as firewalls or NAT devices are known to delete state records
after an inactivity interval. RFC 5382 specifies a minimum value for such an interval
of 124 minutes. Measurement studies have reported that TCP NAT binding timeouts are highly
variable across devices, with the median being around 60 minutes, the shortest timeout being
around 2 minutes, and more than 50% of the devices with a timeout shorter than the
aforementioned minimum timeout of 124 minutes . The timeout duration used
by a middlebox implementation may not be known to the TCP endpoints.

[RFC5382]

[HomeGateway]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 13

In CNNs, such middleboxes may, e.g., be present at the boundary between the CNN and other
networks. If the middlebox can be optimized for CNN use cases, it makes sense to increase the
initial value for filter state inactivity timers to avoid problems with idle connections. Apart from
that, this problem can be dealt with by different connection-handling strategies, each having
pros and cons.

One approach for infrequent data transfer is to use short-lived TCP connections. Instead of trying
to maintain a TCP connection for a long time, it is possible that short-lived connections can be
opened between two endpoints, which are closed if no more data needs to be exchanged. For use
cases that can cope with the additional messages and the latency resulting from starting new
connections, it is recommended to use a sequence of short-lived connections instead of
maintaining a single long-lived connection.

The message and latency overhead that stems from using a sequence of short-lived connections
could be reduced by TCP Fast Open (TFO) , which is an experimental TCP extension, at
the expense of increased implementation complexity and increased TCB size. TFO allows data to
be carried in SYN (and SYN-ACK) segments and to be consumed immediately by the receiving
endpoint. This reduces the message and latency overhead compared to the traditional three-way
handshake to establish a TCP connection. For security reasons, the connection initiator has to
request a TFO cookie from the other endpoint. The cookie, with a size of 4 or 16 bytes, is then
included in SYN packets of subsequent connections. The cookie needs to be refreshed (and
obtained by the client) after a certain amount of time. While a given cookie is used for multiple
connections between the same two endpoints, the latter may become vulnerable to privacy
threats. In addition, a valid cookie may be stolen from a compromised host and may be used to
perform SYN flood attacks, as well as amplified reflection attacks to victim hosts (see

). Nevertheless, TFO is more efficient than frequently opening new TCP connections
with the traditional three-way handshake, as long as the cookie can be reused in subsequent
connections. However, as stated in , TFO deviates from the standard TCP semantics,
since the data in the SYN could be replayed to an application in some rare circumstances.
Applications should not use TFO unless they can tolerate this issue, e.g., by using TLS .
A comprehensive discussion on TFO can be found in RFC 7413 .

Another approach is to use long-lived TCP connections with application-layer heartbeat
messages. Various application protocols support such heartbeat messages (e.g., CoAP over TCP

). Periodic application-layer heartbeats can prevent early filter state record deletion in
middleboxes. If the TCP binding timeout for a middlebox to be traversed by a given connection is
known, middlebox filter state deletion will be avoided if the heartbeat period is lower than the
middlebox TCP binding timeout. Otherwise, the implementer needs to take into account that
middlebox TCP binding timeouts fall in a wide range of possible values , and it
may be hard to find a proper heartbeat period for application-layer heartbeat messages.

One specific advantage of heartbeat messages is that they also allow liveness checks at the
application level. In general, it makes sense to realize liveness checks at the highest protocol
layer possible that is meaningful to the application, in order to maximize the depth of the
liveness check. In addition, timely detection of a dead peer may allow savings in terms of TCB
memory use. However, the transmission of heartbeat messages consumes resources. This aspect
needs to be assessed carefully, considering the characteristics of each specific CNN.

[RFC7413]

Section 5 of
[RFC7413]

[RFC7413]

[RFC7413]
[RFC7413]

[RFC8323]

[HomeGateway]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 14

https://www.rfc-editor.org/rfc/rfc7413#section-5

[RFC0793]

7. References

7.1. Normative References

, , , ,
, September 1981, .

A TCP implementation may also be able to send "keep-alive" segments to test a TCP connection.
According to , keep-alives are an optional TCP mechanism that is turned off by default,
i.e., an application must explicitly enable it for a TCP connection. The interval between keep-alive
messages must be configurable, and it must default to no less than two hours. With this large
timeout, TCP keep-alive messages might not always be useful to avoid deletion of filter state
records in some middleboxes. However, sending TCP keep-alive probes more frequently risks
draining power on energy- constrained devices.

[RFC1122]

5. Security Considerations
Best current practices for securing TCP and TCP-based communication also applies to CNN. As an
example, use of TLS is strongly recommended if it is applicable. However, note that
TLS protects only the contents of the data segments.

There are TCP options that can actually protect the transport layer. One example is the TCP
Authentication Option (TCP-AO) . However, this option adds overhead and complexity.
TCP-AO typically has a size of 16-20 bytes. An implementer needs to asses the trade-off between
security and performance when using TCP-AO, considering the characteristics (in terms of
energy, bandwidth, and computational power) of the environment where TCP will be used.

For the mechanisms discussed in this document, the corresponding considerations apply. For
instance, if TFO is used, the security considerations of RFC 7413 apply.

Constrained devices are expected to support smaller TCP window sizes than less-limited devices.
In such conditions, segment retransmission triggered by RTO expiration is expected to be
relatively frequent, due to lack of (enough) duplicate ACKs, especially when a constrained device
uses a single-MSS implementation. For this reason, constrained devices running TCP may appear
as particularly appealing victims of the so-called "shrew" Denial-of-Service (DoS) attack ,
whereby one or more sources generate a packet spike targeted to coincide with consecutive RTO-
expiration-triggered retry attempts of a victim node. Note that the attack may be performed by
Internet-connected devices, including constrained devices in the same CNN as the victim, as well
as remote ones. Mitigation techniques include RTO randomization and attack blocking by routers
able to detect shrew attacks based on their traffic pattern.

[RFC8446]

[RFC5925]

[RFC7413]

[SHREW]

6. IANA Considerations
This document has no IANA actions.

Postel, J. "Transmission Control Protocol" STD 7 RFC 793 DOI 10.17487/
RFC0793 <https://www.rfc-editor.org/info/rfc793>

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 15

https://www.rfc-editor.org/info/rfc793

[RFC1122]

[RFC2018]

[RFC3042]

[RFC3168]

[RFC5681]

[RFC6298]

[RFC6691]

[RFC6928]

[RFC7228]

[RFC7323]

[RFC7413]

[RFC7567]

[RFC8200]

, ,
, , , October 1989,

.

, , , and ,
, , , October 1996,

.

, , and ,
, , , January 2001,

.

, , and ,
, , , September 2001,

.

, , and , , ,
, September 2009, .

, , , and ,
, , , June 2011,

.

, , ,
, July 2012, .

, , , and ,
, , , April 2013,

.

, , and ,
, , , May 2014,

.

, , , and ,
, , , September 2014,

.

, , , and , , ,
, December 2014, .

 and ,
, , , , July 2015,

.

 and , ,
, , , July 2017,

.

7.2. Informative References

Braden, R., Ed. "Requirements for Internet Hosts - Communication Layers" STD
3 RFC 1122 DOI 10.17487/RFC1122 <https://www.rfc-editor.org/
info/rfc1122>

Mathis, M. Mahdavi, J. Floyd, S. A. Romanow "TCP Selective
Acknowledgment Options" RFC 2018 DOI 10.17487/RFC2018
<https://www.rfc-editor.org/info/rfc2018>

Allman, M. Balakrishnan, H. S. Floyd "Enhancing TCP's Loss Recovery
Using Limited Transmit" RFC 3042 DOI 10.17487/RFC3042
<https://www.rfc-editor.org/info/rfc3042>

Ramakrishnan, K. Floyd, S. D. Black "The Addition of Explicit Congestion
Notification (ECN) to IP" RFC 3168 DOI 10.17487/RFC3168
<https://www.rfc-editor.org/info/rfc3168>

Allman, M. Paxson, V. E. Blanton "TCP Congestion Control" RFC 5681 DOI
10.17487/RFC5681 <https://www.rfc-editor.org/info/rfc5681>

Paxson, V. Allman, M. Chu, J. M. Sargent "Computing TCP's Retransmission
Timer" RFC 6298 DOI 10.17487/RFC6298 <https://www.rfc-editor.org/
info/rfc6298>

Borman, D. "TCP Options and Maximum Segment Size (MSS)" RFC 6691 DOI
10.17487/RFC6691 <https://www.rfc-editor.org/info/rfc6691>

Chu, J. Dukkipati, N. Cheng, Y. M. Mathis "Increasing TCP's Initial
Window" RFC 6928 DOI 10.17487/RFC6928 <https://www.rfc-
editor.org/info/rfc6928>

Bormann, C. Ersue, M. A. Keranen "Terminology for Constrained-Node
Networks" RFC 7228 DOI 10.17487/RFC7228 <https://www.rfc-
editor.org/info/rfc7228>

Borman, D. Braden, B. Jacobson, V. R. Scheffenegger, Ed. "TCP Extensions
for High Performance" RFC 7323 DOI 10.17487/RFC7323
<https://www.rfc-editor.org/info/rfc7323>

Cheng, Y. Chu, J. Radhakrishnan, S. A. Jain "TCP Fast Open" RFC 7413 DOI
10.17487/RFC7413 <https://www.rfc-editor.org/info/rfc7413>

Baker, F., Ed. G. Fairhurst, Ed. "IETF Recommendations Regarding Active
Queue Management" BCP 197 RFC 7567 DOI 10.17487/RFC7567
<https://www.rfc-editor.org/info/rfc7567>

Deering, S. R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD
86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/
rfc8200>

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 16

https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2018
https://www.rfc-editor.org/info/rfc3042
https://www.rfc-editor.org/info/rfc3168
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6298
https://www.rfc-editor.org/info/rfc6691
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc6928
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc7413
https://www.rfc-editor.org/info/rfc7567
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200

[6LO-WLANAH]

[Commag]

[CORE-FASOR]

[Dunk]

[ETEN]

[GNRC]

[HomeGateway]

[IntComp]

[MQTT]

[RFC2757]

[RFC2884]

, , and , ,
, , 19 October 2015,

.

, , , and ,
,

, , July 2016,
.

, , , and ,
, ,

, 19 October 2020,
.

, , ,
, May 2003, .

, , , and ,
,

, , June 2004,
.

, , , , , ,
, , and ,

,
, January 2018.

, , , , , and ,
,

,
, November 2010,

.

, , and ,
, ,

, January 2018,
.

,
, , June 2016.

, , , , and ,
, , , January 2000,

.

 and ,
, , , July 2000,

.

Del Carpio Vega, L. Robles, M. R. Morabito "IPv6 over 802.11ah" Work in
Progress Internet-Draft, draft-delcarpio-6lo-wlanah-01
<https://tools.ietf.org/html/draft-delcarpio-6lo-wlanah-01>

Betzler, A. Gomez, C. Demirkol, I. J. Paradells "CoAP Congestion Control
for the Internet of Things" IEEE Communications Magazine, Vol. 54, Issue 7, pp.
154-160 DOI 10.1109/MCOM.2016.7509394 <https://doi.org/10.1109/
MCOM.2016.7509394>

Jarvinen, I. Kojo, M. Raitahila, I. Z. Cao "Fast-Slow Retransmission
Timeout and Congestion Control Algorithm for CoAP" Work in Progress
Internet-Draft, draft-ietf-core-fasor-01 <https://tools.ietf.org/
html/draft-ietf-core-fasor-01>

Dunkels, A. "Full TCP/IP for 8-Bit Architectures" MobiSys '03, pp. 85-98 DOI
10.1145/1066116.106611 <https://doi.org/10.1145/1066116.106611>

Krishnan, R. Sterbenz, J. Eddy, W. C. Partridge "Explicit transport error
notification (ETEN) for error-prone wireless and satellite networks" Computer
Networks DOI 10.1016/j.comnet.2004.06.012 <https://doi.org/10.1016/
j.comnet.2004.06.012>

Lenders, M. Kietzmann, P. Hahm, O. Petersen, H. Gündoğa, C. Baccelli, E.
Schleiser, K. Schmidt, T. M. Wählisch "Connecting the World of Embedded
Mobiles: The RIOT Approach to Ubiquitous Networking for the IoT"
arXiv:1801.02833v1 [cs.NI]

Haetoenen, S. Nyrhinen, A. Eggert, L. Strowes, S. Sarolahti, P. M. Kojo
"An Experimental Study of Home Gateway Characteristics" Proceedings of the
10th ACM SIGCOMM conference on Internet measurement, pp. 260-266 DOI
10.1145/1879141.1879174 <https://
doi.org/10.1145/1879141.1879174>

Gomez, C. Arcia-Moret, A. J. Crowcroft "TCP in the Internet of Things: from
Ostracism to Prominence" IEEE Internet Computing, Vol. 22, Issue 1, pp. 29-41
DOI 10.1109/MIC.2018.112102200 <https://doi.org/10.1109/
MIC.2018.112102200>

ISO/IEC "Information technology -- Message Queuing Telemetry Transport
(MQTT) v3.1.1" ISO/IEC 20922:2016

Montenegro, G. Dawkins, S. Kojo, M. Magret, V. N. Vaidya "Long Thin
Networks" RFC 2757 DOI 10.17487/RFC2757 <https://www.rfc-
editor.org/info/rfc2757>

Hadi Salim, J. U. Ahmed "Performance Evaluation of Explicit Congestion
Notification (ECN) in IP Networks" RFC 2884 DOI 10.17487/RFC2884
<https://www.rfc-editor.org/info/rfc2884>

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 17

https://tools.ietf.org/html/draft-delcarpio-6lo-wlanah-01
https://doi.org/10.1109/MCOM.2016.7509394
https://doi.org/10.1109/MCOM.2016.7509394
https://tools.ietf.org/html/draft-ietf-core-fasor-01
https://tools.ietf.org/html/draft-ietf-core-fasor-01
https://doi.org/10.1145/1066116.106611
https://doi.org/10.1016/j.comnet.2004.06.012
https://doi.org/10.1016/j.comnet.2004.06.012
https://doi.org/10.1145/1879141.1879174
https://doi.org/10.1145/1879141.1879174
https://doi.org/10.1109/MIC.2018.112102200
https://doi.org/10.1109/MIC.2018.112102200
https://www.rfc-editor.org/info/rfc2757
https://www.rfc-editor.org/info/rfc2757
https://www.rfc-editor.org/info/rfc2884

[RFC3481]

[RFC3819]

[RFC4944]

[RFC5382]

[RFC5925]

[RFC6077]

[RFC6120]

[RFC6282]

[RFC6550]

[RFC6606]

[RFC6775]

, , , , and ,
, ,

, , February 2003,
.

, , , , , ,
, , and ,

, , , , July 2004,
.

, , , and ,
, , ,

September 2007, .

, , , , and ,
, , , ,

October 2008, .

, , and , , ,
, June 2010, .

, , , and ,
, , ,

February 2011, .

, ,
, , March 2011,

.

 and ,
, , , September 2011,

.

, , , , , , ,
, , and ,

, , , March 2012,
.

, , , and ,

, , , May 2012,
.

, , , and ,

, , , November 2012,
.

Inamura, H., Ed. Montenegro, G., Ed. Ludwig, R. Gurtov, A. F. Khafizov
"TCP over Second (2.5G) and Third (3G) Generation Wireless Networks" BCP 71
RFC 3481 DOI 10.17487/RFC3481 <https://www.rfc-editor.org/
info/rfc3481>

Karn, P., Ed. Bormann, C. Fairhurst, G. Grossman, D. Ludwig, R. Mahdavi, J.
Montenegro, G. Touch, J. L. Wood "Advice for Internet Subnetwork
Designers" BCP 89 RFC 3819 DOI 10.17487/RFC3819 <https://
www.rfc-editor.org/info/rfc3819>

Montenegro, G. Kushalnagar, N. Hui, J. D. Culler "Transmission of IPv6
Packets over IEEE 802.15.4 Networks" RFC 4944 DOI 10.17487/RFC4944

<https://www.rfc-editor.org/info/rfc4944>

Guha, S., Ed. Biswas, K. Ford, B. Sivakumar, S. P. Srisuresh "NAT
Behavioral Requirements for TCP" BCP 142 RFC 5382 DOI 10.17487/RFC5382

<https://www.rfc-editor.org/info/rfc5382>

Touch, J. Mankin, A. R. Bonica "The TCP Authentication Option" RFC 5925
DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Papadimitriou, D., Ed. Welzl, M. Scharf, M. B. Briscoe "Open Research
Issues in Internet Congestion Control" RFC 6077 DOI 10.17487/RFC6077

<https://www.rfc-editor.org/info/rfc6077>

Saint-Andre, P. "Extensible Messaging and Presence Protocol (XMPP): Core" RFC
6120 DOI 10.17487/RFC6120 <https://www.rfc-editor.org/info/
rfc6120>

Hui, J., Ed. P. Thubert "Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks" RFC 6282 DOI 10.17487/RFC6282
<https://www.rfc-editor.org/info/rfc6282>

Winter, T., Ed. Thubert, P., Ed. Brandt, A. Hui, J. Kelsey, R. Levis, P. Pister, K.
Struik, R. Vasseur, JP. R. Alexander "RPL: IPv6 Routing Protocol for Low-
Power and Lossy Networks" RFC 6550 DOI 10.17487/RFC6550
<https://www.rfc-editor.org/info/rfc6550>

Kim, E. Kaspar, D. Gomez, C. C. Bormann "Problem Statement and
Requirements for IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN) Routing" RFC 6606 DOI 10.17487/RFC6606 <https://
www.rfc-editor.org/info/rfc6606>

Shelby, Z., Ed. Chakrabarti, S. Nordmark, E. C. Bormann "Neighbor
Discovery Optimization for IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs)" RFC 6775 DOI 10.17487/RFC6775
<https://www.rfc-editor.org/info/rfc6775>

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 18

https://www.rfc-editor.org/info/rfc3481
https://www.rfc-editor.org/info/rfc3481
https://www.rfc-editor.org/info/rfc3819
https://www.rfc-editor.org/info/rfc3819
https://www.rfc-editor.org/info/rfc4944
https://www.rfc-editor.org/info/rfc5382
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc6077
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc6282
https://www.rfc-editor.org/info/rfc6550
https://www.rfc-editor.org/info/rfc6606
https://www.rfc-editor.org/info/rfc6606
https://www.rfc-editor.org/info/rfc6775

[RFC7230]

[RFC7252]

[RFC7414]

[RFC7428]

[RFC7540]

[RFC7668]

[RFC8087]

[RFC8105]

[RFC8163]

[RFC8201]

[RFC8323]

[RFC8352]

 and ,
, , , June 2014,

.

, , and ,
, , , June 2014,

.

, , , , and ,
, ,

, February 2015, .

 and ,
, , , February 2015,

.

, , and ,
, , , May 2015,

.

, , , , , and ,
, , , October

2015, .

 and ,
, , , March 2017,

.

, , , , and ,

, ,
, May 2017, .

, , , and ,
, ,

, May 2017, .

, , , and ,
, , , , July 2017,

.

, , , , , and
, ,

, , February 2018,
.

, , , and ,
, , , April 2018,

.

Fielding, R., Ed. J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" RFC 7230 DOI 10.17487/RFC7230
<https://www.rfc-editor.org/info/rfc7230>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol
(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-
editor.org/info/rfc7252>

Duke, M. Braden, R. Eddy, W. Blanton, E. A. Zimmermann "A Roadmap for
Transmission Control Protocol (TCP) Specification Documents" RFC 7414 DOI
10.17487/RFC7414 <https://www.rfc-editor.org/info/rfc7414>

Brandt, A. J. Buron "Transmission of IPv6 Packets over ITU-T G.9959
Networks" RFC 7428 DOI 10.17487/RFC7428 <https://www.rfc-
editor.org/info/rfc7428>

Belshe, M. Peon, R. M. Thomson, Ed. "Hypertext Transfer Protocol Version
2 (HTTP/2)" RFC 7540 DOI 10.17487/RFC7540 <https://www.rfc-
editor.org/info/rfc7540>

Nieminen, J. Savolainen, T. Isomaki, M. Patil, B. Shelby, Z. C. Gomez "IPv6
over BLUETOOTH(R) Low Energy" RFC 7668 DOI 10.17487/RFC7668

<https://www.rfc-editor.org/info/rfc7668>

Fairhurst, G. M. Welzl "The Benefits of Using Explicit Congestion
Notification (ECN)" RFC 8087 DOI 10.17487/RFC8087 <https://
www.rfc-editor.org/info/rfc8087>

Mariager, P. Petersen, J., Ed. Shelby, Z. Van de Logt, M. D. Barthel
"Transmission of IPv6 Packets over Digital Enhanced Cordless
Telecommunications (DECT) Ultra Low Energy (ULE)" RFC 8105 DOI 10.17487/
RFC8105 <https://www.rfc-editor.org/info/rfc8105>

Lynn, K., Ed. Martocci, J. Neilson, C. S. Donaldson "Transmission of IPv6
over Master-Slave/Token-Passing (MS/TP) Networks" RFC 8163 DOI 10.17487/
RFC8163 <https://www.rfc-editor.org/info/rfc8163>

McCann, J. Deering, S. Mogul, J. R. Hinden, Ed. "Path MTU Discovery for IP
version 6" STD 87 RFC 8201 DOI 10.17487/RFC8201 <https://www.rfc-
editor.org/info/rfc8201>

Bormann, C. Lemay, S. Tschofenig, H. Hartke, K. Silverajan, B. B. Raymor,
Ed. "CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets"
RFC 8323 DOI 10.17487/RFC8323 <https://www.rfc-editor.org/
info/rfc8323>

Gomez, C. Kovatsch, M. Tian, H. Z. Cao, Ed. "Energy-Efficient Features of
Internet of Things Protocols" RFC 8352 DOI 10.17487/RFC8352
<https://www.rfc-editor.org/info/rfc8352>

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 19

https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7414
https://www.rfc-editor.org/info/rfc7428
https://www.rfc-editor.org/info/rfc7428
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7668
https://www.rfc-editor.org/info/rfc8087
https://www.rfc-editor.org/info/rfc8087
https://www.rfc-editor.org/info/rfc8105
https://www.rfc-editor.org/info/rfc8163
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8352

[RFC8376]

[RFC8446]

[RFC8900]

[RFC8931]

[RFC8961]

[RIOT]

[SHREW]

[TCPM-ECN]

, , ,
, May 2018, .

, , ,
, August 2018, .

, , , , , and ,
, , , ,

September 2020, .

,
, , ,

November 2020, .

, , , ,
, November 2020,

.

, , , , , ,
, , and ,

,
, , March 2018,

.

 and ,
, ,

, August 2003, .

 and ,
, ,

, 16 February 2021,
.

Appendix A. TCP Implementations for Constrained Devices
This section overviews the main features of TCP implementations for constrained devices. The
survey is limited to open-source stacks with a small footprint. It is not meant to be all-
encompassing. For more powerful embedded systems (e.g., with 32-bit processors), there are
further stacks that comprehensively implement TCP. On the other hand, please be aware that this
Annex is based on information available as of the writing.

A.1. uIP
uIP is a TCP/IP stack, targeted for 8- and 16-bit microcontrollers, which pioneered TCP/IP
implementations for constrained devices. uIP has been deployed with Contiki and the Arduino
Ethernet shield. A code size of ~5 kB (which comprises checksumming, IPv4, ICMP, and TCP) has
been reported for uIP . Later versions of uIP implement IPv6 as well.

Farrell, S., Ed. "Low-Power Wide Area Network (LPWAN) Overview" RFC 8376
DOI 10.17487/RFC8376 <https://www.rfc-editor.org/info/rfc8376>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Bonica, R. Baker, F. Huston, G. Hinden, R. Troan, O. F. Gont "IP
Fragmentation Considered Fragile" BCP 230 RFC 8900 DOI 10.17487/RFC8900

<https://www.rfc-editor.org/info/rfc8900>

Thubert, P., Ed. "IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN) Selective Fragment Recovery" RFC 8931 DOI 10.17487/RFC8931

<https://www.rfc-editor.org/info/rfc8931>

Allman, M. "Requirements for Time-Based Loss Detection" BCP 233 RFC 8961
DOI 10.17487/RFC8961 <https://www.rfc-editor.org/info/
rfc8961>

Baccelli, E. Gündoğa, C. Hahm, O. Kietzmann, P. Lenders, M. Petersen, H.
Schleiser, K. Schmidt, T. M. Wählisch "RIOT: An Open Source Operating
System for Low-End Embedded Devices in the IoT" IEEE Internet of Things
Journal, Vol. 5, Issue 6 DOI 10.1109/JIOT.2018.2815038 <https://
doi.org/10.1109/JIOT.2018.2815038>

Nyrhinen, A. E. Knightly "Low-Rate TCP-Targeted Denial of Service Attacks
(The Shrew vs. the Mice and Elephants)" SIGCOMM'03 DOI
10.1145/863955.863966 <https://doi.org/10.1145/863955.863966>

Bagnulo, M. B. Briscoe "ECN++: Adding Explicit Congestion Notification
(ECN) to TCP Control Packets" Work in Progress Internet-Draft, draft-ietf-tcpm-
generalized-ecn-07 <https://tools.ietf.org/html/draft-ietf-tcpm-
generalized-ecn-07>

[Dunk]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 20

https://www.rfc-editor.org/info/rfc8376
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8900
https://www.rfc-editor.org/info/rfc8931
https://www.rfc-editor.org/info/rfc8961
https://www.rfc-editor.org/info/rfc8961
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1145/863955.863966
https://tools.ietf.org/html/draft-ietf-tcpm-generalized-ecn-07
https://tools.ietf.org/html/draft-ietf-tcpm-generalized-ecn-07

uIP uses the same global buffer for both incoming and outgoing traffic, which has a size of a
single packet. In case of a retransmission, an application must be able to reproduce the same
user data that had been transmitted. Multiple connections are supported but need to share the
global buffer.

The MSS is announced via the MSS option on connection establishment, and the receive window
size (of 1 MSS) is not modified during a connection. Stop-and-wait operation is used for sending
data. Among other optimizations, this allows for the avoidance of sliding window operations,
which use 32-bit arithmetic extensively and are expensive on 8-bit CPUs.

Contiki uses the "split hack" technique (see Section 3.2.3) to avoid Delayed ACKs for senders using
a single segment.

The code size of the TCP implementation in Contiki-NG has been measured to be 3.2 kB on
CC2538DK, cross-compiling on Linux.

A.2. lwIP
lwIP is a TCP/IP stack, targeted for 8- and 16-bit microcontrollers. lwIP has a total code size of ~14
kB to ~22 kB (which comprises memory management, checksumming, network interfaces, IPv4,
ICMP, and TCP) and a TCP code size of ~9 kB to ~14 kB . Both IPv4 and IPv6 are supported
in lwIP since v2.0.0.

In contrast with uIP, lwIP decouples applications from the network stack. lwIP supports a TCP
transmission window greater than a single segment, as well as the buffering of incoming and
outgoing data. Other implemented mechanisms comprise slow start, congestion avoidance, fast
retransmit, and fast recovery. SACK and Window Scale support has been recently added to lwIP.

A.3. RIOT
The RIOT TCP implementation (called "GNRC TCP") has been designed for Class 1 devices

. The main target platforms are 8- and 16-bit microcontrollers, with 32-bit platforms
also supported. GNRC TCP offers a similar function set as uIP, but it provides and maintains an
independent receive buffer for each connection. In contrast to uIP, retransmission is also
handled by GNRC TCP. For simplicity, GNRC TCP uses a single-MSS implementation. The
application programmer does not need to know anything about the TCP internals; therefore,
GNRC TCP can be seen as a user-friendly uIP TCP implementation.

The MSS is set on connections establishment and cannot be changed during connection lifetime.
GNRC TCP allows multiple connections in parallel, but each TCB must be allocated somewhere in
the system. By default, there is only enough memory allocated for a single TCP connection, but it
can be increased at compile time if the user needs multiple parallel connections.

The RIOT TCP implementation offers an optional Portable Operating System Interface (POSIX)
socket wrapper that enables POSIX compliance, if needed.

Further details on RIOT and GNRC can be found in and .

[Dunk]

[RFC7228]

[RIOT] [GNRC]

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 21

A.4. TinyOS
TinyOS was important as a platform for early constrained devices. TinyOS has an experimental
TCP stack that uses a simple non-blocking library-based implementation of TCP, which provides a
subset of the socket interface primitives. The application is responsible for buffering. The TCP
library does not do any receive-side buffering. Instead, it will immediately dispatch new, in-order
data to the application or otherwise drop the segment. A send buffer is provided by the
application. Multiple TCP connections are possible. Recently, there has been little work on the
stack.

A.5. FreeRTOS
FreeRTOS is a real-time operating system kernel for embedded devices that is supported by 16-
and 32-bit microprocessors. Its TCP implementation is based on multiple-segment window size,
although a "Tiny-TCP" option, which is a single-MSS variant, can be enabled. Delayed ACKs are
supported, with a 20 ms Delayed ACK timer as a technique intended "to gain performance".

A.6. uC/OS
uC/OS is a real-time operating system kernel for embedded devices, which is maintained by
Micrium. uC/OS is intended for 8-, 16-, and 32-bit microprocessors. The uC/OS TCP
implementation supports a multiple-segment window size.

A.7. Summary
None of the implementations considered in this Annex support ECN or TFO.

uIP lwIP orig lwIP 2.1 RIOT TinyOS FreeRTOS uC/OS

Code Size (kB) <5 ~9 to ~14 38 <7 N/A <9.2 N/A

Memory (a) (T1) (T4) (T3) N/A (T2) N/A

TCP Features

Single-Segm. Yes No No Yes No No No

Slow start No Yes Yes No Yes No Yes

Fast rec/retx No Yes Yes No Yes No Yes

Keep-alive No No Yes No No Yes Yes

Win. Scale No No Yes No No Yes No

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 22

(T1):

(T2):

(T3):

(T4):

(a):

(I):

Mult.:

N/A:

Legend:

TCP-only, on x86 and AVR platforms

TCP-only, on ARM Cortex-M platform

TCP-only, on ARM Cortex-M0+ platform (NOTE: RAM usage for the same platform is ~2.5
kB for one TCP connection plus ~1.2 kB for each additional connection)

TCP-only, on CC2538DK, cross-compiling on Linux

Includes IP, ICMP, and TCP on x86 and AVR platforms. The Contiki-NG TCP
implementation has a code size of 3.2 kB on CC2538DK, cross-compiling on Linux

Optional POSIX socket wrapper that enables POSIX compliance if needed

Multiple

Not Available

uIP lwIP orig lwIP 2.1 RIOT TinyOS FreeRTOS uC/OS

TCP timest. No No Yes No No Yes No

SACK No No Yes No No Yes No

Del. ACKs No Yes Yes No No Yes Yes

Socket No No Optional (I) Subset Yes Yes

Concur. Conn. Yes Yes Yes Yes Yes Yes Yes

TLS supported No No Yes Yes Yes Yes Yes

Table 1: Summary of TCP Features for Different Lightweight TCP Implementations

Acknowledgments
The work of has been funded in part by the Spanish Government (Ministerio de
Educacion, Cultura y Deporte) through Jose Castillejo grants CAS15/00336 and CAS18/00170; the
European Regional Development Fund (ERDF); the Spanish Government through projects
TEC2016-79988-P, PID2019-106808RA-I00, AEI/FEDER, and UE; and the Generalitat de Catalunya
Grant 2017 SGR 376. Part of his contribution to this work has been carried out during his stays as
a visiting scholar at the Computer Laboratory of the University of Cambridge.

The authors appreciate the feedback received for this document. The following folks provided
comments that helped improve the document: , , ,

, , , , , ,
, , , , , ,

, , , , , ,

Carles Gomez

Carsten Bormann Zhen Cao Wei Genyu Ari
Keränen Abhijan Bhattacharyya Andres Arcia-Moret Yoshifumi Nishida Joe Touch Fred Baker
Nik Sultana Kerry Lynn Erik Nordmark Markku Kojo Hannes Tschofenig David Black Ilpo
Jarvinen Emmanuel Baccelli Stuart Cheshire Gorry Fairhurst Ingemar Johansson Ted Lemon

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 23

and . provided details and kindly performed Random Access
Memory (RAM) and Read-Only Memory (ROM) usage measurements on the RIOT TCP
implementation. provided details on the OpenWSN TCP implementation.

 kindly performed code size measurements on the Contiki-NG and lwIP 2.1.2 TCP
implementations. He also provided details on the uIP TCP implementation.

Michael Tüxen Simon Brummer

Xavi Vilajosana Rahul
Jadhav

Authors' Addresses
Carles Gomez
UPC
C/Esteve Terradas, 7

 08860 Castelldefels
Spain

 carlesgo@entel.upc.edu Email:

Jon Crowcroft
University of Cambridge
JJ Thomson Avenue
Cambridge
CB3 0FD
United Kingdom

 jon.crowcroft@cl.cam.ac.uk Email:

Michael Scharf
Hochschule Esslingen
University of Applied Sciences
Flandernstr. 101

 73732 Esslingen am Neckar
Germany

 michael.scharf@hs-esslingen.de Email:

RFC 9006 TCP in IoT March 2021

Gomez, et al. Informational Page 24

mailto:carlesgo@entel.upc.edu
mailto:jon.crowcroft@cl.cam.ac.uk
mailto:michael.scharf@hs-esslingen.de

	RFC 9006
	TCP Usage Guidance in the Internet of Things (IoT)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Characteristics of CNNs Relevant for TCP
	2.1. Network and Link Properties
	2.2. Usage Scenarios
	2.3. Communication and Traffic Patterns

	3. TCP Implementation and Configuration in CNNs
	3.1. Addressing Path Properties
	3.1.1. Maximum Segment Size (MSS)
	3.1.2. Explicit Congestion Notification (ECN)
	3.1.3. Explicit Loss Notifications

	3.2. TCP Guidance for Single-MSS Stacks
	3.2.1. Single-MSS Stacks -- Benefits and Issues
	3.2.2. TCP Options for Single-MSS Stacks
	3.2.3. Delayed Acknowledgments for Single-MSS Stacks
	3.2.4. RTO Calculation for Single-MSS Stacks

	3.3. General Recommendations for TCP in CNNs
	3.3.1. Loss Recovery and Congestion/Flow Control
	3.3.1.1. Selective Acknowledgments (SACKs)

	3.3.2. Delayed Acknowledgments
	3.3.3. Initial Window

	4. TCP Usage Recommendations in CNNs
	4.1. TCP Connection Initiation
	4.2. Number of Concurrent Connections
	4.3. TCP Connection Lifetime

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. TCP Implementations for Constrained Devices
	A.1. uIP
	A.2. lwIP
	A.3. RIOT
	A.4. TinyOS
	A.5. FreeRTOS
	A.6. uC/OS
	A.7. Summary
	Acknowledgments
	Authors' Addresses

 TCP Usage Guidance in the Internet of Things (IoT)

 UPC

 C/Esteve Terradas, 7
 Castelldefels

 08860
 Spain

 carlesgo@entel.upc.edu

 University of Cambridge

 JJ Thomson Avenue
 Cambridge
 CB3 0FD
 United Kingdom

 jon.crowcroft@cl.cam.ac.uk

 Hochschule Esslingen

 University of Applied Sciences
 Flandernstr. 101
 Esslingen am Neckar

 73732
 Germany

 michael.scharf@hs-esslingen.de

 APP
 LWIG Working Group

 This document provides guidance on how to implement and use the Transmission Control Protocol (TCP) in Constrained-Node Networks (CNNs), which are a characteristic of the Internet of Things (IoT). Such environments require a lightweight TCP implementation and may not make use of optional functionality. This document explains a number of known and deployed techniques to simplify a TCP stack as well as corresponding trade-offs. The objective is to help embedded developers with decisions on which TCP features to use.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Characteristics of CNNs Relevant for TCP

 . Network and Link Properties

 . Usage Scenarios

 . Communication and Traffic Patterns

 . TCP Implementation and Configuration in CNNs

 . Addressing Path Properties

 . Maximum Segment Size (MSS)

 . Explicit Congestion Notification (ECN)

 . Explicit Loss Notifications

 . TCP Guidance for Single-MSS Stacks

 . Single-MSS Stacks -- Benefits and Issues

 . TCP Options for Single-MSS Stacks

 . Delayed Acknowledgments for Single-MSS Stacks

 . RTO Calculation for Single-MSS Stacks

 . General Recommendations for TCP in CNNs

 . Loss Recovery and Congestion/Flow Control

 . Selective Acknowledgments (SACKs)

 . Delayed Acknowledgments

 . Initial Window

 . TCP Usage Recommendations in CNNs

 . TCP Connection Initiation

 . Number of Concurrent Connections

 . TCP Connection Lifetime

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . TCP Implementations for Constrained Devices

 . uIP

 . lwIP

 . RIOT

 . TinyOS

 . FreeRTOS

 . uC/OS

 . Summary

 Acknowledgments

 Authors' Addresses

 Introduction
 The Internet Protocol suite is being used for connecting Constrained-Node Networks (CNNs) to the Internet, enabling the so-called Internet of Things (IoT) . In order to meet the requirements that stem from CNNs, the IETF has produced a suite of new protocols specifically designed for such environments (see, e.g.,).
 New IETF protocol stack components include the IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) adaptation layer
 , the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL)
 , and the Constrained Application Protocol (CoAP) .
 As of this writing, the main transport-layer protocols in IP-based IoT scenarios are UDP and TCP. TCP has been
 criticized, often unfairly, as a protocol that is unsuitable for the IoT. It is true that some TCP features, such as relatively long header size,
 unsuitability for multicast, and always-confirmed data delivery, are not optimal for IoT scenarios. However,
 many typical claims on TCP unsuitability for IoT (e.g., a high complexity, connection-oriented approach incompatibility with radio duty-cycling and spurious congestion control activation
 in wireless links) are not valid, can be solved, or are also found in well-accepted IoT end-to-end reliability mechanisms (see a detailed analysis in).

 At the application layer, CoAP was developed over UDP . However, the integration of some
 CoAP deployments with existing infrastructure is being challenged by
 middleboxes such as firewalls, which may limit and even block UDP-based
 communications. This is the main reason why a CoAP over TCP
 specification has been developed .
 Other application-layer protocols not specifically
 designed for CNNs are also being considered for the IoT space. Some
 examples include HTTP/2 and even HTTP/1.1, both of which run over TCP
 by default , and the Extensible Messaging and Presence Protocol (XMPP) . TCP is also used by non-IETF
 application-layer protocols in the IoT space such as the Message Queuing Telemetry Transport (MQTT) and its
 lightweight variants.
 TCP is a sophisticated transport protocol that includes optional
 functionality (e.g., TCP options) that may improve performance in some environments. However, many
 optional TCP extensions require complex logic inside the TCP stack
 and increase the code size and the memory requirements. Many
 TCP extensions are not required for interoperability with other
 standard-compliant TCP endpoints. Given
 the limited resources on constrained devices, careful selection of optional TCP features can make an implementation more lightweight.

 This document provides guidance on how to implement and configure TCP
 and guidance on how applications should use TCP in CNNs. The overarching goal is to offer simple measures to allow for lightweight TCP implementation and suitable operation in such environments. A TCP implementation following the guidance in this document is intended to be compatible with a TCP endpoint that is compliant to the TCP standards, albeit possibly with a lower performance. This implies that such a TCP client would always be able to connect with a standard-compliant TCP server, and a corresponding TCP server would always be able to connect with a standard-compliant TCP client.
 This document assumes that the reader is familiar with TCP. A comprehensive survey of the TCP standards can be found in RFC 7414 . Similar guidance regarding the use of TCP in special environments has been published before, e.g., for cellular wireless networks .

 Characteristics of CNNs Relevant for TCP

 Network and Link Properties
 CNNs are defined in as networks whose characteristics are influenced by being composed of a significant portion of constrained nodes.
 The latter are characterized by significant limitations on processing, memory, and energy resources, among others .
 The first two dimensions pose constraints on the complexity and memory footprint of the protocols that constrained nodes can support. The latter requires techniques to save energy, such as radio duty-cycling in wireless devices and the minimization of the number of messages transmitted/received (and their size).
 lists typical network constraints in CNNs, including low achievable bitrate/throughput, high packet loss and high variability of packet loss, highly asymmetric link characteristics, severe penalties for using larger packets, limits on reachability over time, etc. CNNs may use wireless or wired technologies (e.g., Power Line Communication), and the transmission rates are typically low (e.g., below 1 Mbps).
 For use of TCP, one challenge is that not all technologies in a CNN may be aligned with typical Internet subnetwork design principles . For instance, constrained nodes often use physical- / link-layer technologies that
 have been characterized as 'lossy', i.e., exhibit a relatively high bit error rate. Dealing with corruption loss is one of the open issues in the Internet .

 Usage Scenarios
 There are different deployment and usage scenarios for CNNs. Some CNNs follow the star topology, whereby one or several hosts are linked to a central
 device that acts as a router connecting the CNN to the Internet. Alternatively, CNNs may also follow the multihop topology .

 In constrained environments, there can be different types of devices .
 For example, there can be devices with a single combined send/receive buffer, a separate send and receive buffer, or a pool
 of multiple send/receive buffers. In the latter case, it is possible that buffers are also shared for other protocols.

 One key use case for TCP in CNNs is a model where
 constrained devices connect to unconstrained servers in the Internet.
 But it is also possible that both TCP endpoints run on constrained
 devices.
 In the first case,
 communication will possibly traverse a middlebox (e.g., a firewall,
 NAT, etc.). Figure 1 illustrates such a scenario. Note that the
 scenario is asymmetric, as the unconstrained device will typically
 not suffer the severe constraints of the constrained device. The
 unconstrained device is expected to be mains-powered, have a high
 amount of memory and processing power, and be connected to a
 resource-rich network.

 Assuming that a majority of constrained devices will correspond to
 sensor nodes, the amount of data traffic sent by constrained devices
 (e.g., sensor node measurements) is expected to be higher than the
 amount of data traffic in the opposite direction. Nevertheless,
 constrained devices may receive requests (to which they may
 respond), commands (for configuration purposes and for constrained
 devices including actuators), and relatively infrequent
 firmware/software updates.

 TCP Communication between a Constrained Device and an Unconstrained Device, Traversing a Middlebox

 +---------------+
 o o <-------- TCP communication -----> | |
 o o | |
 o o | Unconstrained |
 o o +-----------+ | device |
 o o o ------ | Middlebox | ------- | |
 o o +-----------+ | (e.g., cloud) |
 o o o | |
 +---------------+
 Constrained devices

 Communication and Traffic Patterns
 IoT applications are characterized by a number of different communication patterns. The following non-comprehensive list explains some typical examples:

 Unidirectional transfers:
 An IoT device (e.g., a sensor) can (repeatedly) send updates to the other endpoint. There is not always a need for an application response back to the IoT device.
 Request-response patterns:
 An IoT device receiving a request from the other endpoint, which triggers a response from the IoT device.
 Bulk data transfers:
 A typical example for a long file transfer would be an IoT device firmware update.

 A typical communication pattern is that a constrained device communicates with an unconstrained device (cf.). But it is also possible that constrained devices communicate amongst themselves.

 TCP Implementation and Configuration in CNNs
 This section explains how a TCP stack can deal with typical constraints in CNN. The guidance in this section relates to the TCP implementation and its configuration.

 Addressing Path Properties

 Maximum Segment Size (MSS)
 Assuming that IPv6 is used, and for the sake of lightweight implementation and operation, unless applications
 require handling large data units (i.e., leading to an IPv6 datagram
 size greater than 1280 bytes), it may be desirable to limit the IP datagram size to
 1280 bytes in order to avoid the need to support Path MTU Discovery .
 In addition, an IP datagram size of 1280 bytes avoids incurring IPv6-layer fragmentation .

 An IPv6 datagram size exceeding 1280 bytes can be avoided by setting the TCP MSS to 1220 bytes or less. Note that
 it is already a requirement for TCP implementations to consume payload space instead of increasing datagram size when including IP or TCP options
 in an IP packet to be sent . Therefore, it is not required to advertise an MSS smaller than 1220 bytes in order to accommodate TCP options.

 Note that setting the MTU to 1280 bytes is possible for link-layer technologies in the CNN space, even if some of them are characterized by a short data unit payload size, e.g., up to a few tens or hundreds of bytes.
 For example, the maximum frame size in IEEE 802.15.4 is 127 bytes.
 6LoWPAN defined an adaptation layer to support IPv6 over IEEE 802.15.4 networks. The adaptation layer includes a fragmentation mechanism,
 since IPv6 requires the layer below to support an MTU of 1280 bytes , while IEEE 802.15.4 lacks fragmentation mechanisms.
 6LoWPAN defines an IEEE 802.15.4 link MTU of 1280 bytes . Other technologies, such as Bluetooth low energy ,
 ITU-T G.9959 , or Digital Enhanced Cordless
 Telecommunications (DECT) Ultra Low Energy (ULE) , also use 6LoWPAN-based adaptation layers in order to enable
 IPv6 support. These technologies do support link-layer fragmentation. By exploiting this
 functionality, the adaptation layers that enable IPv6 over such technologies also define an MTU of 1280 bytes.

 On the other hand, there exist technologies also used in the CNN space, such as Master Slave (MS) / Token Passing (TP) ,
 Narrowband IoT (NB-IoT) , or IEEE 802.11ah ,
 that do not suffer the same degree of frame size limitations as the technologies mentioned above.
	 It is recommended that the MTU for MS/TP be 1500 bytes ;
 the MTU in NB-IoT is 1600 bytes, and the maximum frame payload size for IEEE 802.11ah is 7991 bytes.

 Using a larger MSS (to a suitable extent) may be beneficial in some scenarios,
 especially when transferring large payloads, as it reduces the number of packets (and packet headers)
 required for a given payload. However, the characteristics of the constrained network need to be considered.
 In particular, in a lossy network where unreliable fragment delivery is used, the amount of data that TCP unnecessarily
 retransmits due to fragment loss increases (and throughput decreases) quickly with the MSS. This happens because the loss of a fragment leads to the
 loss of the whole fragmented packet being transmitted. Unnecessary data retransmission is particularly
 harmful in CNNs due to the resource constraints of such environments.

	 Note that, while the original 6LoWPAN fragmentation
 mechanism does not offer reliable fragment delivery, fragment recovery functionality for 6LoWPAN or 6Lo environments
 has been standardized .

 Explicit Congestion Notification (ECN)
 ECN allows a router to signal
 in the IP header of a packet that congestion is rising, for example,
 when a queue size reaches a certain threshold. An ECN-enabled TCP
 receiver will echo back the congestion signal to the TCP sender by
 setting a flag in its next TCP Acknowledgment (ACK). The sender triggers congestion
 control measures as if a packet loss had happened.

 RFC 8087 outlines the principal gains in terms of increased throughput,
 reduced delay, and other benefits when ECN is used over a network path that includes equipment that supports Congestion Experienced
 (CE) marking. In the context of CNNs, a remarkable feature of ECN is that congestion can be signaled without incurring packet drops (which will lead to retransmissions and consumption of limited resources such as energy and bandwidth).

 ECN can further reduce packet losses since congestion control
 measures can be applied earlier . Fewer lost packets implies
 that the number of retransmitted segments decreases, which is
 particularly beneficial in CNNs, where energy and bandwidth resources
 are typically limited. Also, it makes sense to try to avoid packet
 drops for transactional workloads with small data sizes, which are
 typical for CNNs. In such traffic patterns, it is more difficult and often impossible to
 detect packet loss without retransmission timeouts (e.g., as there
 may not be three duplicate ACKs). Any retransmission timeout slows
 down the data transfer significantly. In addition, if the
 constrained device uses power-saving techniques, a retransmission
 timeout will incur a wake-up action, in contrast to ACK
 clock-triggered sending. When the congestion window of a TCP sender has a
 size of one segment and a TCP ACK with an ECN signal (ECN-Echo (ECE) flag) arrives
 at the TCP sender, the TCP sender resets the retransmit timer, and
 the sender will only be able to send a new packet when the retransmit
 timer expires. Effectively, at that moment, the TCP sender reduces its
 sending rate from 1 segment per Round-Trip Time (RTT) to 1
 segment per Retransmission Timeout (RTO) and reduces the sending rate further on each ECN signal
 received in subsequent TCP ACKs. Otherwise, if an ECN signal is not
 present in a subsequent TCP ACK, the TCP sender resumes the normal
 ACK-clocked transmission of segments .

 ECN can be
 incrementally deployed in the Internet. Guidance on configuration and usage of ECN is provided in RFC 7567 .
 Given the benefits, more and more TCP stacks in the Internet support ECN, and it makes sense to specifically leverage ECN in controlled
 environments such as CNNs. As of this writing, there is ongoing work to extend the types of TCP packets that are ECN capable, including pure ACKs .
 Such a feature may further increase the benefits of ECN in CNN environments. Note, however, that supporting ECN increases implementation complexity.

 Explicit Loss Notifications
 There has been a significant body of research on solutions capable of explicitly indicating whether a TCP segment loss is due to corruption, in order to avoid activation of congestion control mechanisms . While such solutions may provide significant improvement, they have not been widely deployed and remain as experimental work. In fact, as of today, the IETF has not standardized any such solution.

 TCP Guidance for Single-MSS Stacks
 This section discusses TCP stacks that allow transferring a single MSS. More general guidance is provided in .

 Single-MSS Stacks -- Benefits and Issues
 A TCP stack can reduce the memory requirements by advertising a TCP window size of 1 MSS and also transmit, at most, 1 MSS of
 unacknowledged data. In that case, both congestion and flow control implementation are quite simple. Such a small receive and send window
 may be sufficient for simple message exchanges in the CNN space. However, only using a window of 1 MSS can significantly affect
 performance. A stop-and-wait operation results in low throughput for transfers that exceed the length of 1 MSS, e.g., a firmware
 download. Furthermore, a single-MSS solution relies solely on timer-based loss recovery, therefore missing the performance gain of Fast
 Retransmit and Fast Recovery (which requires a larger window size; see).

 If CoAP is used over TCP with the default setting for NSTART in RFC 7252 , a CoAP endpoint is not allowed to send
 a new message to a destination until a response for the previous message sent to that destination has been received. This is equivalent to an
 application-layer window size of 1 data unit. For this use of CoAP, a maximum TCP window of 1 MSS may be sufficient, as long as the
 CoAP message size does not exceed 1 MSS. An exception in CoAP over TCP, though, is the Capabilities and Settings Message (CSM) that must be sent at the
 start of the TCP connection. The first application message carrying user data is allowed to be sent immediately after the CSM message.
 If the sum of the CSM size plus the application message size exceeds the MSS, a sender using a single-MSS stack will need to wait for the ACK confirming
 the CSM before sending the application message.

 TCP Options for Single-MSS Stacks
 A TCP implementation needs to support, at a minimum, TCP options 2, 1, and 0. These are, respectively, the MSS option,
 the No-Operation option, and the End Of Option List marker . None of these are a substantial burden to support.
 These options are sufficient for interoperability with a standard-compliant TCP endpoint, albeit many TCP stacks support additional options
 and can negotiate their use. A TCP implementation is permitted to silently ignore all other TCP options.

 A TCP implementation for a constrained device that uses a single-MSS TCP receive or transmit window size may not benefit from supporting the following TCP options: Window Scale , TCP Timestamps , Selective Acknowledgment (SACK) , and SACK-Permitted . Also, other TCP options may not be required on a constrained device with a very lightweight implementation. With regard to
 the Window Scale option, note that it is only useful if a window size greater than 64 kB is needed.

	 Note that a TCP sender can benefit from the TCP Timestamps option in detecting spurious RTOs. The latter are quite likely to occur
 in CNN scenarios due to a number of reasons (e.g., route changes in a multihop scenario, link-layer retries, etc.). The header overhead incurred
 by the Timestamps option (of up to 12 bytes) needs to be taken into account.

 Delayed Acknowledgments for Single-MSS Stacks
 TCP Delayed Acknowledgments are meant to reduce the number of ACKs sent within a TCP connection, thus reducing network overhead, but
 they may increase the time until a sender may receive an ACK. In general, usefulness of Delayed ACKs depends heavily on the usage
 scenario (see). There can be interactions with single-MSS stacks.

 When traffic is unidirectional, if the sender can send at most 1 MSS of data or the receiver advertises a receive window not greater than the MSS, Delayed ACKs may unnecessarily contribute delay (up to 500 ms) to the RTT , which limits the throughput and can increase data delivery time. Note that, in some cases, it may not be possible to disable Delayed ACKs. One known workaround is to split the
 data to be sent into two segments of smaller size. A standard-compliant TCP receiver may immediately acknowledge the second MSS of data, which
 can improve throughput. However, this "split hack" may not always work since a TCP receiver is required to acknowledge every second full-sized segment, but not two consecutive small segments. The overhead of sending two IP
 packets instead of one is another downside of the "split hack".

 Similar issues may happen when the sender uses the Nagle algorithm, since the sender may need to wait for an unnecessarily Delayed ACK
 to send a new segment. Disabling the algorithm will not have impact if the sender can only handle stop-and-wait operation
 at the TCP level.

 For request-response traffic, when the receiver uses Delayed ACKs, a response to a data message can piggyback an ACK, as long as the latter is sent before the Delayed ACK timer expires, thus avoiding unnecessary ACKs without payload.
 Disabling Delayed ACKs at the request sender allows an immediate ACK for the data segment carrying the response.

 RTO Calculation for Single-MSS Stacks
 The RTO calculation is one of the fundamental TCP algorithms . There is a fundamental trade-off:
 a short, aggressive RTO behavior reduces wait time before retransmissions, but it also increases the probability of spurious timeouts.
 The latter leads to unnecessary waste of potentially scarce resources in CNNs such as energy and bandwidth. In contrast,
 a conservative timeout can result in long error recovery times and, thus, needlessly delay data delivery.

 If a TCP sender uses a very small window size, and it cannot benefit from Fast Retransmit and Fast Recovery or SACK, the RTO algorithm has a
 large impact on performance. In that case, RTO algorithm tuning may be considered, although careful
 assessment of possible drawbacks is recommended .

 As an example, adaptive RTO algorithms defined for CoAP over UDP have been found to perform well in CNN scenarios
 .

 General Recommendations for TCP in CNNs
 This section summarizes some widely used techniques to improve TCP, with a focus on their use in CNNs. The TCP extensions discussed here are useful in a wide range of network scenarios, including CNNs. This section is not comprehensive. A comprehensive survey of TCP extensions is published in RFC 7414 .

 Loss Recovery and Congestion/Flow Control
 Devices that have enough memory to allow a larger (i.e., more than 3 MSS of data) TCP window size can leverage a more efficient loss recovery
 than the timer-based approach used for a smaller TCP window size (see) by
 using Fast Retransmit and Fast Recovery , at the expense of slightly greater complexity and Transmission Control Block (TCB) size.
 Assuming that Delayed ACKs are used by the receiver, a window size of up to 5 MSS is required for Fast Retransmit and Fast Recovery
 to work efficiently: in a given TCP transmission of full-sized segments 1, 2, 3, 4, and 5, if segment 2 gets lost, and the ACK for segment 1
 is held by the Delayed ACK timer, then the sender should get an ACK for segment 1 when 3 arrives and duplicate ACKs when segments 4, 5, and 6
 arrive. It will retransmit segment 2 when the third duplicate ACK arrives. In order to have segments 2, 3, 4, 5, and 6 sent, the window
 has to be of at least 5 MSS. With an MSS of 1220 bytes, a buffer of a size of 5 MSS would require 6100 bytes.

 The example in the previous paragraph did not use a further TCP improvement such as Limited Transmit . The latter
 may also be useful for any transfer that has more than one segment in flight. Small transfers tend
 to benefit more from Limited Transmit, because they are more likely to not receive enough duplicate ACKs. Assuming the example
 in the previous paragraph, Limited Transmit allows sending 5 MSS with a congestion window (cwnd) of three segments, plus two additional
 segments for the first two duplicate ACKs. With Limited Transmit, even a cwnd of two segments allows sending 5 MSS, at the expense of
 additional delay contributed by the Delayed ACK timer for the ACK that confirms segment 1.

 When a multiple-segment window is used, the receiver will need to manage the reception of possible out-of-order received segments,
 requiring sufficient buffer space. Note that even when a window of 1 MSS is used, out-of-order arrival should also be managed, as the sender may send multiple sub-MSS packets that fit in the window. (On the other hand, the receiver is free to simply drop out-of-order segments, thus forcing retransmissions.)

 Selective Acknowledgments (SACKs)

 If a device with less severe memory and processing constraints can
 afford advertising a TCP window size of several MSSs, it makes sense
 to support the SACK option to improve performance. SACK allows a
 data receiver to inform the data sender of non-contiguous data blocks
 received, thus a sender (having previously sent the SACK-Permitted
 option) can avoid performing unnecessary retransmissions, saving
 energy and bandwidth, as well as reducing latency. In addition, SACK often allows for faster loss recovery when there is more than one lost segment in a window of data, since SACK recovery may complete with less RTTs. SACK is
 particularly useful for bulk data transfers. A receiver supporting SACK will need to keep track of the data blocks that need to be received. The sender will also need to keep track of which data segments need to be resent after learning which data blocks are missing at the receiver. SACK adds
 8*n+2 bytes to the TCP header, where n denotes the number of data
 blocks received, up to four blocks. For a low number of out-of-order
 segments, the header overhead penalty of SACK is compensated by
 avoiding unnecessary retransmissions. When the sender discovers the data blocks that have already been received, it needs to also
 store the necessary state to avoid unnecessary retransmission of data segments that have already been received.

 Delayed Acknowledgments
 For certain traffic patterns, Delayed ACKs may have a detrimental effect, as already noted in . Advanced TCP stacks may use heuristics to determine the maximum delay for an ACK. For CNNs, the recommendation depends on the expected communication patterns.

 When traffic over a CNN is expected mostly to be unidirectional messages with a size typically up to 1 MSS, and the time between two
 consecutive message transmissions is greater than the Delayed ACK timeout, it may make sense to use a smaller timeout or disable Delayed ACKs
 at the receiver. This avoids incurring additional delay, as well as the energy consumption of the sender (which might, e.g., keep its radio
 interface in receive mode) during that time. Note that disabling Delayed ACKs may only be possible if the peer device is administered
 by the same entity managing the constrained device. For request-response traffic, enabling Delayed ACKs is recommended at
 the server end, in order to allow combining a response with the ACK into a single segment, thus increasing efficiency. In addition, if
 a client issues requests infrequently, disabling Delayed ACKs at the client allows an immediate ACK for the data segment
 carrying the response.

 In contrast, Delayed ACKs allow for a reduced number of ACKs in bulk transfer types of traffic, e.g., for firmware/software updates or for transferring larger data units containing a batch of sensor readings.

 Note that, in many scenarios, the peer that a constrained device communicates with will be a general purpose system that communicates with both constrained and unconstrained devices. Since Delayed ACKs are often configured through system-wide parameters, the behavior of Delayed ACKs at the peer will be the same regardless of the nature of the endpoints it talks to. Such a peer will typically have Delayed ACKs enabled.

 Initial Window
 specifies a TCP Initial Window (IW) of roughly 4 kB. Subsequently, RFC 6928 defines an experimental new value for the IW,
 which in practice will result in an IW of 10 MSS. Nowadays, the latter is used in many TCP implementations.

 Note that a 10-MSS IW was recommended for resource-rich environments (e.g., broadband environments), which are significantly different from CNNs.
 In CNNs, many application-layer data units are relatively small (e.g., below 1 MSS). However, larger objects (e.g., large files containing
 sensor readings, firmware updates, etc.) may also need to be transferred in CNNs. If such a large object is transferred in CNNs, with an IW
 setting of 10 MSS, there is significant buffer overflow risk, since many CNN devices support network or radio buffers of a size smaller than 10 MSS.
 In order to avoid such a problem, the IW needs to be carefully set in CNNs, based
 on device and network resource constraints. In many cases, a safe IW setting will be smaller than 10 MSS.

 TCP Usage Recommendations in CNNs
 This section discusses how TCP can be used by applications that are developed for CNN scenarios. These remarks are by and large independent of how TCP is exactly implemented.

 TCP Connection Initiation
 In the scenario of a constrained device to an unconstrained device illustrated
 above, a TCP connection is typically initiated by the constrained
 device, in order for the device to support possible sleep periods to
 save energy.

 Number of Concurrent Connections
 TCP endpoints with a small amount of memory may only support a small
 number of connections. Each TCP connection requires storing a number
 of variables in the TCB. Depending on
 the internal TCP implementation, each connection may result in
 further memory overhead, and connections may compete for scarce resources (e.g., further memory overhead for send and receive buffers, etc.).

 A careful application design may try to keep the number of concurrent connections as small as possible. A client can, for instance, limit the number of simultaneous open connections that it maintains to a given server. Multiple connections could, for instance, be used to avoid the "head-of-line blocking" problem in an application transfer. However, in addition to consuming resources, using multiple connections can also cause undesirable side effects in congested networks.
 For example, the HTTP/1.1 specification encourages clients to be conservative when opening multiple connections .
 Furthermore, each new connection will start with a three-way handshake, therefore increasing message overhead.

 Being conservative when opening multiple TCP connections is of particular importance in Constrained-Node Networks.

 TCP Connection Lifetime
 In order to minimize message overhead, it makes sense to keep a TCP connection
 open as long as the two TCP endpoints have more data to send. If applications
 exchange data rather infrequently, i.e., if TCP connections would stay idle for a long time,
 the idle time can result in problems. For instance, certain middleboxes
 such as firewalls or NAT devices are known to delete state records after an inactivity interval.

 RFC 5382 specifies a minimum value for such an interval of 124 minutes. Measurement studies have reported that TCP NAT binding timeouts are highly
 variable across devices,
 with the median being around 60 minutes, the shortest timeout being around 2 minutes, and more than 50% of the devices with a timeout shorter than the
 aforementioned minimum timeout of 124 minutes . The timeout duration used by a
 middlebox implementation may not be known to the TCP endpoints.
 In CNNs, such middleboxes may, e.g., be present at the boundary between the CNN and other networks.
 If the middlebox can be optimized for CNN use cases, it makes sense to increase the initial value
 for filter state inactivity timers to avoid problems with idle connections. Apart from that,
 this problem can be dealt with by different connection-handling strategies, each having pros and cons.
 One approach for infrequent data transfer is to use short-lived TCP connections.
 Instead of trying to maintain a TCP connection for a long time, it is possible that short-lived
 connections can be opened between two endpoints, which are closed if no more data needs
 to be exchanged. For use cases that can cope with the additional messages and the latency
 resulting from starting new connections, it is recommended to use a sequence of short-lived connections instead of maintaining a single long-lived connection.

 The message and latency overhead that stems from using a sequence of short-lived connections could be reduced by TCP Fast Open (TFO) ,
 which is an experimental TCP extension, at the expense of increased implementation complexity and increased TCB size. TFO allows data to be
 carried in SYN (and SYN-ACK) segments and to be consumed immediately
 by the receiving endpoint. This reduces the message and latency overhead compared to
 the traditional three-way handshake to establish a TCP connection.
 For security reasons, the connection initiator has to request a TFO
 cookie from the other endpoint. The cookie, with a size of 4 or 16
 bytes, is then included in SYN packets of subsequent connections.
 The cookie needs to be refreshed (and obtained by the client) after a
 certain amount of time. While a given cookie is used for multiple connections between the same two endpoints,
 the latter may become vulnerable to privacy threats. In addition, a valid cookie may be stolen from a compromised host
 and may be used to perform SYN flood attacks, as well as amplified reflection attacks to victim hosts (see).
 Nevertheless, TFO is more efficient than
 frequently opening new TCP connections with the traditional three-way
 handshake, as long as the cookie can be reused in subsequent
 connections. However, as stated in , TFO deviates from the standard TCP semantics, since the data in the SYN could be replayed
 to an application in some rare circumstances. Applications should not use TFO unless they can tolerate this issue, e.g., by using
 TLS . A comprehensive discussion on TFO can be found in RFC 7413 .

 Another approach is to use long-lived TCP connections with
 application-layer heartbeat messages. Various application protocols
 support such heartbeat messages (e.g., CoAP over TCP).
 Periodic application-layer heartbeats can prevent early filter state record deletion in middleboxes.
 If the TCP binding timeout for a middlebox to be traversed by a given connection is known, middlebox filter
 state deletion will be avoided if the heartbeat period is lower than the middlebox TCP binding timeout.
 Otherwise, the implementer needs to take into account that middlebox TCP binding timeouts fall in a wide range
 of possible values , and it may be hard to find a proper heartbeat period for application-layer heartbeat messages.

 One specific advantage of heartbeat messages is that they also allow liveness checks at the
 application level. In general, it makes sense to realize
 liveness checks at the highest protocol layer possible that is
 meaningful to the application, in order to maximize the depth of the
 liveness check. In addition, timely detection of a dead peer may
 allow savings in terms of TCB memory use. However, the transmission of
 heartbeat messages consumes resources. This aspect needs to be assessed carefully, considering the characteristics of each specific CNN.

 A TCP implementation may also be able to send "keep-alive" segments to test a TCP connection.
 According to , keep-alives are an optional TCP mechanism that is
 turned off by default, i.e., an application must explicitly enable it for a TCP connection.
 The interval between keep-alive messages must be configurable, and it must default to no less
 than two hours. With this large timeout, TCP keep-alive messages might not always be useful to avoid deletion of
 filter state records in some middleboxes. However, sending TCP keep-alive probes more frequently risks draining power on energy-
 constrained devices.

 Security Considerations
 Best current practices for securing TCP and TCP-based communication also applies to CNN. As an example, use of TLS is strongly recommended if it is applicable.
 However, note that TLS protects only the contents of the data segments.

 There are TCP options that can actually protect the transport layer. One example is the TCP Authentication Option (TCP-AO) .
 However, this option adds overhead and complexity. TCP-AO typically has a size of 16-20 bytes.
 An implementer needs to asses the trade-off between security and performance when using TCP-AO, considering the characteristics (in terms of energy, bandwidth, and computational power)
 of the environment where TCP will be used.

 For the mechanisms discussed in this document, the corresponding considerations apply. For instance, if TFO is used, the security considerations of RFC 7413 apply.
 Constrained devices are expected to support smaller TCP window sizes than less-limited devices. In such conditions, segment retransmission
 triggered by RTO expiration is expected to be relatively frequent, due to lack of (enough) duplicate ACKs, especially when a constrained device
 uses a single-MSS implementation. For this reason, constrained devices running TCP may appear as particularly appealing victims of the so-called
 "shrew" Denial-of-Service (DoS) attack , whereby one or more sources generate a packet spike targeted to coincide with consecutive
 RTO-expiration-triggered retry attempts of a victim node. Note that the attack may be performed by Internet-connected devices,
 including constrained devices in the same CNN as the victim, as well as remote ones. Mitigation techniques include RTO randomization and attack blocking by routers able to detect
 shrew attacks based on their traffic pattern.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Transmission Control Protocol

 Requirements for Internet Hosts - Communication Layers

 This RFC is an official specification for the Internet community. It incorporates by reference, amends, corrects, and supplements the primary protocol standards documents relating to hosts. [STANDARDS-TRACK]

 TCP Selective Acknowledgment Options

 This memo proposes an implementation of SACK and discusses its performance and related issues. [STANDARDS-TRACK]

 Enhancing TCP's Loss Recovery Using Limited Transmit

 This document proposes a new Transmission Control Protocol (TCP) mechanism that can be used to more effectively recover lost segments when a connection's congestion window is small, or when a large number of segments are lost in a single transmission window. [STANDARDS-TRACK]

 The Addition of Explicit Congestion Notification (ECN) to IP

 This memo specifies the incorporation of ECN (Explicit Congestion Notification) to TCP and IP, including ECN's use of two bits in the IP header. [STANDARDS-TRACK]

 TCP Congestion Control

 This document defines TCP's four intertwined congestion control algorithms: slow start, congestion avoidance, fast retransmit, and fast recovery. In addition, the document specifies how TCP should begin transmission after a relatively long idle period, as well as discussing various acknowledgment generation methods. This document obsoletes RFC 2581. [STANDARDS-TRACK]

 Computing TCP's Retransmission Timer

 This document defines the standard algorithm that Transmission Control Protocol (TCP) senders are required to use to compute and manage their retransmission timer. It expands on the discussion in Section 4.2.3.1 of RFC 1122 and upgrades the requirement of supporting the algorithm from a SHOULD to a MUST. This document obsoletes RFC 2988. [STANDARDS-TRACK]

 TCP Options and Maximum Segment Size (MSS)

 This memo discusses what value to use with the TCP Maximum Segment Size (MSS) option, and updates RFC 879 and RFC 2385. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Increasing TCP's Initial Window

 This document proposes an experiment to increase the permitted TCP initial window (IW) from between 2 and 4 segments, as specified in RFC 3390, to 10 segments with a fallback to the existing recommendation when performance issues are detected. It discusses the motivation behind the increase, the advantages and disadvantages of the higher initial window, and presents results from several large-scale experiments showing that the higher initial window improves the overall performance of many web services without resulting in a congestion collapse. The document closes with a discussion of usage and deployment for further experimental purposes recommended by the IETF TCP Maintenance and Minor Extensions (TCPM) working group.

 Terminology for Constrained-Node Networks

 The Internet Protocol Suite is increasingly used on small devices with severe constraints on power, memory, and processing resources, creating constrained-node networks. This document provides a number of basic terms that have been useful in the standardization work for constrained-node networks.

 TCP Extensions for High Performance

 This document specifies a set of TCP extensions to improve performance over paths with a large bandwidth * delay product and to provide reliable operation over very high-speed paths. It defines the TCP Window Scale (WS) option and the TCP Timestamps (TS) option and their semantics. The Window Scale option is used to support larger receive windows, while the Timestamps option can be used for at least two distinct mechanisms, Protection Against Wrapped Sequences (PAWS) and Round-Trip Time Measurement (RTTM), that are also described herein.
 This document obsoletes RFC 1323 and describes changes from it.

 TCP Fast Open

 This document describes an experimental TCP mechanism called TCP Fast Open (TFO). TFO allows data to be carried in the SYN and SYN-ACK packets and consumed by the receiving end during the initial connection handshake, and saves up to one full round-trip time (RTT) compared to the standard TCP, which requires a three-way handshake (3WHS) to complete before data can be exchanged. However, TFO deviates from the standard TCP semantics, since the data in the SYN could be replayed to an application in some rare circumstances. Applications should not use TFO unless they can tolerate this issue, as detailed in the Applicability section.

 IETF Recommendations Regarding Active Queue Management

 This memo presents recommendations to the Internet community concerning measures to improve and preserve Internet performance. It presents a strong recommendation for testing, standardization, and widespread deployment of active queue management (AQM) in network devices to improve the performance of today's Internet. It also urges a concerted effort of research, measurement, and ultimate deployment of AQM mechanisms to protect the Internet from flows that are not sufficiently responsive to congestion notification.
 Based on 15 years of experience and new research, this document replaces the recommendations of RFC 2309.

 Internet Protocol, Version 6 (IPv6) Specification

 This document specifies version 6 of the Internet Protocol (IPv6). It obsoletes RFC 2460.

 Informative References

 IPv6 over 802.11ah

 Work in Progress

 CoAP Congestion Control for the Internet of Things

 IEEE Communications Magazine, Vol. 54, Issue 7, pp. 154-160

 Fast-Slow Retransmission Timeout and Congestion Control Algorithm for CoAP

 University of Helsinki

 University of Helsinki

 University of Helsinki

 Huawei

 This document specifies an alternative retransmission timeout and
 congestion control back off algorithm for the CoAP protocol, called
 Fast-Slow RTO (FASOR).

 The algorithm specified in this document employs an appropriate and
 large enough back off of Retransmission Timeout (RTO) as the major
 congestion control mechanism to allow acquiring unambiguous RTT
 samples with high probability and to prevent building a persistent
 queue when retransmitting. The algorithm also aims to retransmit
 quickly using an accurately managed retransmission timeout when link-
 errors are occuring, basing RTO calculation on unambiguous round-trip
 time (RTT) samples.

 Work in Progress

 Full TCP/IP for 8-Bit Architectures

 MobiSys '03, pp. 85-98

 Explicit transport error notification (ETEN) for error-prone wireless and satellite networks

 Computer Networks

 Connecting the World of Embedded Mobiles: The RIOT Approach to Ubiquitous Networking for the IoT

 arXiv:1801.02833v1 [cs.NI]

 An Experimental Study of Home Gateway Characteristics

 Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, pp. 260-266

 TCP in the Internet of Things: from Ostracism to Prominence

 IEEE Internet Computing, Vol. 22, Issue 1, pp. 29-41

 Information technology -- Message Queuing Telemetry Transport (MQTT) v3.1.1

 ISO/IEC

 ISO/IEC 20922:2016

 Long Thin Networks

 Our goal is to identify a TCP that works for all users, including users of long thin networks. This memo provides information for the Internet community.

 Performance Evaluation of Explicit Congestion Notification (ECN) in IP Networks

 This memo presents a performance study of the Explicit Congestion Notification (ECN) mechanism in the TCP/IP protocol using our implementation on the Linux Operating System. This memo provides information for the Internet community.

 TCP over Second (2.5G) and Third (3G) Generation Wireless Networks

 This document describes a profile for optimizing TCP to adapt so that it handles paths including second (2.5G) and third (3G) generation wireless networks. It describes the relevant characteristics of 2.5G and 3G networks, and specific features of example deployments of such networks. It then recommends TCP algorithm choices for nodes known to be starting or ending on such paths, and it also discusses open issues. The configuration options recommended in this document are commonly found in modern TCP stacks, and are widely available standards-track mechanisms that the community considers safe for use on the general Internet. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Advice for Internet Subnetwork Designers

 This document provides advice to the designers of digital communication equipment, link-layer protocols, and packet-switched local networks (collectively referred to as subnetworks), who wish to support the Internet protocols but may be unfamiliar with the Internet architecture and the implications of their design choices on the performance and efficiency of the Internet. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Transmission of IPv6 Packets over IEEE 802.15.4 Networks

 This document describes the frame format for transmission of IPv6 packets and the method of forming IPv6 link-local addresses and statelessly autoconfigured addresses on IEEE 802.15.4 networks. Additional specifications include a simple header compression scheme using shared context and provisions for packet delivery in IEEE 802.15.4 meshes. [STANDARDS-TRACK]

 NAT Behavioral Requirements for TCP

 This document defines a set of requirements for NATs that handle TCP that would allow many applications, such as peer-to-peer applications and online games to work consistently. Developing NATs that meet this set of requirements will greatly increase the likelihood that these applications will function properly. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The TCP Authentication Option

 This document specifies the TCP Authentication Option (TCP-AO), which obsoletes the TCP MD5 Signature option of RFC 2385 (TCP MD5). TCP-AO specifies the use of stronger Message Authentication Codes (MACs), protects against replays even for long-lived TCP connections, and provides more details on the association of security with TCP connections than TCP MD5. TCP-AO is compatible with either a static Master Key Tuple (MKT) configuration or an external, out-of-band MKT management mechanism; in either case, TCP-AO also protects connections when using the same MKT across repeated instances of a connection, using traffic keys derived from the MKT, and coordinates MKT changes between endpoints. The result is intended to support current infrastructure uses of TCP MD5, such as to protect long-lived connections (as used, e.g., in BGP and LDP), and to support a larger set of MACs with minimal other system and operational changes. TCP-AO uses a different option identifier than TCP MD5, even though TCP-AO and TCP MD5 are never permitted to be used simultaneously. TCP-AO supports IPv6, and is fully compatible with the proposed requirements for the replacement of TCP MD5. [STANDARDS-TRACK]

 Open Research Issues in Internet Congestion Control

 This document describes some of the open problems in Internet congestion control that are known today. This includes several new challenges that are becoming important as the network grows, as well as some issues that have been known for many years. These challenges are generally considered to be open research topics that may require more study or application of innovative techniques before Internet-scale solutions can be confidently engineered and deployed. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Extensible Messaging and Presence Protocol (XMPP): Core

 The Extensible Messaging and Presence Protocol (XMPP) is an application profile of the Extensible Markup Language (XML) that enables the near-real-time exchange of structured yet extensible data between any two or more network entities. This document defines XMPP's core protocol methods: setup and teardown of XML streams, channel encryption, authentication, error handling, and communication primitives for messaging, network availability ("presence"), and request-response interactions. This document obsoletes RFC 3920. [STANDARDS-TRACK]

 Compression Format for IPv6 Datagrams over IEEE 802.15.4-Based Networks

 This document updates RFC 4944, "Transmission of IPv6 Packets over IEEE 802.15.4 Networks". This document specifies an IPv6 header compression format for IPv6 packet delivery in Low Power Wireless Personal Area Networks (6LoWPANs). The compression format relies on shared context to allow compression of arbitrary prefixes. How the information is maintained in that shared context is out of scope. This document specifies compression of multicast addresses and a framework for compressing next headers. UDP header compression is specified within this framework. [STANDARDS-TRACK]

 RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks

 Low-Power and Lossy Networks (LLNs) are a class of network in which both the routers and their interconnect are constrained. LLN routers typically operate with constraints on processing power, memory, and energy (battery power). Their interconnects are characterized by high loss rates, low data rates, and instability. LLNs are comprised of anything from a few dozen to thousands of routers. Supported traffic flows include point-to-point (between devices inside the LLN), point-to-multipoint (from a central control point to a subset of devices inside the LLN), and multipoint-to-point (from devices inside the LLN towards a central control point). This document specifies the IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL), which provides a mechanism whereby multipoint-to-point traffic from devices inside the LLN towards a central control point as well as point-to-multipoint traffic from the central control point to the devices inside the LLN are supported. Support for point-to-point traffic is also available. [STANDARDS-TRACK]

 Problem Statement and Requirements for IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Routing

 IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) are formed by devices that are compatible with the IEEE 802.15.4 standard. However, neither the IEEE 802.15.4 standard nor the 6LoWPAN format specification defines how mesh topologies could be obtained and maintained. Thus, it should be considered how 6LoWPAN formation and multi-hop routing could be supported.
 This document provides the problem statement and design space for 6LoWPAN routing. It defines the routing requirements for 6LoWPANs, considering the low-power and other particular characteristics of the devices and links. The purpose of this document is not to recommend specific solutions but to provide general, layer-agnostic guidelines about the design of 6LoWPAN routing that can lead to further analysis and protocol design. This document is intended as input to groups working on routing protocols relevant to 6LoWPANs, such as the IETF ROLL WG. This document is not an Internet Standards Track specification; it is published for informational purposes.

 Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)

 The IETF work in IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) defines 6LoWPANs such as IEEE 802.15.4. This and other similar link technologies have limited or no usage of multicast signaling due to energy conservation. In addition, the wireless network may not strictly follow the traditional concept of IP subnets and IP links. IPv6 Neighbor Discovery was not designed for non- transitive wireless links, as its reliance on the traditional IPv6 link concept and its heavy use of multicast make it inefficient and sometimes impractical in a low-power and lossy network. This document describes simple optimizations to IPv6 Neighbor Discovery, its addressing mechanisms, and duplicate address detection for Low- power Wireless Personal Area Networks and similar networks. The document thus updates RFC 4944 to specify the use of the optimizations defined here. [STANDARDS-TRACK]

 Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document provides an overview of HTTP architecture and its associated terminology, defines the "http" and "https" Uniform Resource Identifier (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements, and describes related security concerns for implementations.

 The Constrained Application Protocol (CoAP)

 The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.
 CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.

 A Roadmap for Transmission Control Protocol (TCP) Specification Documents

 This document contains a roadmap to the Request for Comments (RFC) documents relating to the Internet's Transmission Control Protocol (TCP). This roadmap provides a brief summary of the documents defining TCP and various TCP extensions that have accumulated in the RFC series. This serves as a guide and quick reference for both TCP implementers and other parties who desire information contained in the TCP-related RFCs.
 This document obsoletes RFC 4614.

 Transmission of IPv6 Packets over ITU-T G.9959 Networks

 This document describes the frame format for transmission of IPv6 packets as well as a method of forming IPv6 link-local addresses and statelessly autoconfigured IPv6 addresses on ITU-T G.9959 networks.

 Hypertext Transfer Protocol Version 2 (HTTP/2)

 This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced perception of latency by introducing header field compression and allowing multiple concurrent exchanges on the same connection. It also introduces unsolicited push of representations from servers to clients.
 This specification is an alternative to, but does not obsolete, the HTTP/1.1 message syntax. HTTP's existing semantics remain unchanged.

 IPv6 over BLUETOOTH(R) Low Energy

 Bluetooth Smart is the brand name for the Bluetooth low energy feature in the Bluetooth specification defined by the Bluetooth Special Interest Group. The standard Bluetooth radio has been widely implemented and available in mobile phones, notebook computers, audio headsets, and many other devices. The low-power version of Bluetooth is a specification that enables the use of this air interface with devices such as sensors, smart meters, appliances, etc. The low-power variant of Bluetooth has been standardized since revision 4.0 of the Bluetooth specifications, although version 4.1 or newer is required for IPv6. This document describes how IPv6 is transported over Bluetooth low energy using IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) techniques.

 The Benefits of Using Explicit Congestion Notification (ECN)

 The goal of this document is to describe the potential benefits of applications using a transport that enables Explicit Congestion Notification (ECN). The document outlines the principal gains in terms of increased throughput, reduced delay, and other benefits when ECN is used over a network path that includes equipment that supports Congestion Experienced (CE) marking. It also discusses challenges for successful deployment of ECN. It does not propose new algorithms to use ECN nor does it describe the details of implementation of ECN in endpoint devices (Internet hosts), routers, or other network devices.

 Transmission of IPv6 Packets over Digital Enhanced Cordless Telecommunications (DECT) Ultra Low Energy (ULE)

 Digital Enhanced Cordless Telecommunications (DECT) Ultra Low Energy (ULE) is a low-power air interface technology that is proposed by the DECT Forum and is defined and specified by ETSI.
 The DECT air interface technology has been used worldwide in communication devices for more than 20 years. It has primarily been used to carry voice for cordless telephony but has also been deployed for data-centric services.
 DECT ULE is a recent addition to the DECT interface primarily intended for low-bandwidth, low-power applications such as sensor devices, smart meters, home automation, etc. As the DECT ULE interface inherits many of the capabilities from DECT, it benefits from operation that is long-range and interference-free, worldwide- reserved frequency band, low silicon prices, and maturity. There is an added value in the ability to communicate with IPv6 over DECT ULE, such as for Internet of Things applications.
 This document describes how IPv6 is transported over DECT ULE using IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) techniques.

 Transmission of IPv6 over Master-Slave/Token-Passing (MS/TP) Networks

 Master-Slave/Token-Passing (MS/TP) is a medium access control method for the RS-485 physical layer and is used primarily in building automation networks. This specification defines the frame format for transmission of IPv6 packets and the method of forming link-local and statelessly autoconfigured IPv6 addresses on MS/TP networks.

 Path MTU Discovery for IP version 6

 This document describes Path MTU Discovery (PMTUD) for IP version 6. It is largely derived from RFC 1191, which describes Path MTU Discovery for IP version 4. It obsoletes RFC 1981.

 CoAP (Constrained Application Protocol) over TCP, TLS, and WebSockets

 The Constrained Application Protocol (CoAP), although inspired by HTTP, was designed to use UDP instead of TCP. The message layer of CoAP over UDP includes support for reliable delivery, simple congestion control, and flow control.
 Some environments benefit from the availability of CoAP carried over reliable transports such as TCP or Transport Layer Security (TLS). This document outlines the changes required to use CoAP over TCP, TLS, and WebSockets transports. It also formally updates RFC 7641 for use with these transports and RFC 7959 to enable the use of larger messages over a reliable transport.

 Energy-Efficient Features of Internet of Things Protocols

 This document describes the challenges for energy-efficient protocol operation on constrained devices and the current practices used to overcome those challenges. It summarizes the main link-layer techniques used for energy-efficient networking, and it highlights the impact of such techniques on the upper-layer protocols so that they can together achieve an energy-efficient behavior. The document also provides an overview of energy-efficient mechanisms available at each layer of the IETF protocol suite specified for constrained-node networks.

 Low-Power Wide Area Network (LPWAN) Overview

 Low-Power Wide Area Networks (LPWANs) are wireless technologies with characteristics such as large coverage areas, low bandwidth, possibly very small packet and application-layer data sizes, and long battery life operation. This memo is an informational overview of the set of LPWAN technologies being considered in the IETF and of the gaps that exist between the needs of those technologies and the goal of running IP in LPWANs.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 IP Fragmentation Considered Fragile

 This document describes IP fragmentation and explains how it introduces fragility to Internet communication.
 This document also proposes alternatives to IP fragmentation and provides recommendations for developers and network operators.

 IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) Selective Fragment Recovery

 This document updates RFC 4944 with a protocol that forwards individual fragments across a route-over mesh and recovers them end to end, with congestion control capabilities to protect the network.

 Requirements for Time-Based Loss Detection

 Many protocols must detect packet loss for various reasons (e.g., to ensure reliability using retransmissions or to understand the level of congestion along a network path). While many mechanisms have been designed to detect loss, ultimately, protocols can only count on the passage of time without delivery confirmation to declare a packet "lost". Each implementation of a time-based loss detection mechanism represents a balance between correctness and timeliness; therefore, no implementation suits all situations. This document provides high-level requirements for time-based loss detectors appropriate for general use in unicast communication across the Internet. Within the requirements, implementations have latitude to define particulars that best address each situation.

 RIOT: An Open Source Operating System for Low-End Embedded Devices in the IoT

 IEEE Internet of Things Journal, Vol. 5, Issue 6

 Low-Rate TCP-Targeted Denial of Service Attacks (The Shrew vs. the Mice and Elephants)

 SIGCOMM'03

 ECN++: Adding Explicit Congestion Notification (ECN) to TCP Control Packets

 Universidad Carlos III de Madrid

 Independent

 This document describes an experimental modification to ECN when used
 with TCP. It allows the use of ECN on the following TCP packets:
 SYNs, pure ACKs, Window probes, FINs, RSTs and retransmissions.

 Work in Progress

 TCP Implementations for Constrained Devices
 This section overviews the main features of TCP implementations for constrained devices. The survey is limited to open-source stacks with a small footprint. It is not meant to be all-encompassing. For more powerful embedded systems (e.g., with 32-bit processors), there are further stacks that comprehensively implement TCP. On the other hand, please be aware that this Annex is based on information available as of the writing.

 uIP
 uIP is a TCP/IP stack, targeted for 8- and 16-bit microcontrollers, which pioneered TCP/IP implementations for constrained devices.
 uIP has been deployed with Contiki and the Arduino Ethernet shield. A code size of ~5 kB (which comprises checksumming, IPv4, ICMP, and TCP)
 has been reported for uIP . Later versions of uIP implement IPv6 as well.
 uIP uses the same global buffer for both incoming and outgoing traffic, which has a
 size of a single packet. In case of a retransmission, an application must be able to reproduce the same user data that had been
 transmitted. Multiple connections are supported but need to share the global buffer.

 The MSS is announced via the MSS option on connection establishment, and the receive window size (of 1 MSS) is not modified during a connection. Stop-and-wait operation is used for sending data. Among other optimizations, this allows for the avoidance of sliding window operations, which use 32-bit arithmetic extensively and are expensive on 8-bit CPUs.
 Contiki uses the "split hack" technique (see) to avoid Delayed ACKs for senders using a single segment.
 The code size of the TCP implementation in Contiki-NG has been measured to be 3.2 kB on CC2538DK, cross-compiling on Linux.

 lwIP
 lwIP is a TCP/IP stack, targeted for 8- and 16-bit microcontrollers. lwIP has a total code size of ~14 kB to ~22 kB
 (which comprises memory management, checksumming, network interfaces, IPv4, ICMP, and TCP) and a TCP code size of ~9 kB to ~14 kB .
 Both IPv4 and IPv6 are supported in lwIP since v2.0.0.
 In contrast with uIP, lwIP decouples applications from the network stack. lwIP supports a TCP transmission window greater than a single segment, as well as the buffering of incoming and outgoing data. Other implemented mechanisms comprise slow start, congestion avoidance, fast retransmit, and fast recovery.
 SACK and Window Scale support has been recently added to lwIP.

 RIOT
 The RIOT TCP implementation (called "GNRC TCP") has been designed for Class 1 devices . The main target platforms are 8- and 16-bit microcontrollers, with 32-bit platforms also supported. GNRC TCP
 offers a similar function set as uIP, but it provides and maintains an independent receive buffer for each connection. In contrast to uIP, retransmission is also handled by GNRC TCP. For simplicity, GNRC TCP uses a single-MSS implementation. The application programmer does not need to know anything about the TCP internals; therefore, GNRC TCP can be seen as a user-friendly uIP TCP implementation.

 The MSS is set on connections establishment and cannot be changed during connection lifetime. GNRC TCP allows multiple connections in parallel, but each TCB must
 be allocated somewhere in the system. By default, there is only enough memory allocated for a single TCP connection, but it can be increased at compile time if the user needs multiple parallel connections.

 The RIOT TCP implementation offers an optional Portable Operating System Interface (POSIX) socket wrapper that enables POSIX compliance, if needed.

 Further details on RIOT and GNRC can be found in and .

 TinyOS
 TinyOS was important as a platform for early constrained devices. TinyOS has an experimental TCP stack that uses a simple non-blocking library-based implementation of TCP, which provides a subset of the socket interface primitives. The application is responsible for buffering. The TCP library does not do any receive-side buffering. Instead, it will immediately dispatch new, in-order data to the application or otherwise drop the segment. A send buffer is provided by the application. Multiple TCP connections are possible. Recently, there has been little work on the stack.

 FreeRTOS
 FreeRTOS is a real-time operating system kernel for embedded devices that
 is supported by 16- and 32-bit microprocessors. Its TCP implementation is based on multiple-segment window size, although a "Tiny-TCP" option, which is a single-MSS variant, can be enabled. Delayed ACKs are supported, with a 20 ms Delayed ACK timer as a technique intended "to gain performance".

 uC/OS
 uC/OS is a real-time operating system kernel for embedded devices, which is maintained by Micrium. uC/OS is intended for 8-, 16-, and 32-bit microprocessors. The uC/OS TCP implementation supports a multiple-segment window size.

 Summary
 None of the implementations considered in this Annex support ECN or TFO.

 Summary of TCP Features for Different Lightweight TCP Implementations

 uIP
 lwIP orig
 lwIP 2.1
 RIOT
 TinyOS
 FreeRTOS
 uC/OS

 Code Size (kB)
 <5
 ~9 to ~14
 38
 <7
 N/A
 <9.2
 N/A

 Memory
 (a)
 (T1)
 (T4)
 (T3)
 N/A
 (T2)
 N/A

 TCP Features

 Single-Segm.
 Yes
 No
 No
 Yes
 No
 No
 No

 Slow start
 No
 Yes
 Yes
 No
 Yes
 No
 Yes

 Fast rec/retx
 No
 Yes
 Yes
 No
 Yes
 No
 Yes

 Keep-alive
 No
 No
 Yes
 No
 No
 Yes
 Yes

 Win. Scale
 No
 No
 Yes
 No
 No
 Yes
 No

 TCP timest.
 No
 No
 Yes
 No
 No
 Yes
 No

 SACK
 No
 No
 Yes
 No
 No
 Yes
 No

 Del. ACKs
 No
 Yes
 Yes
 No
 No
 Yes
 Yes

 Socket
 No
 No
 Optional
 (I)
 Subset
 Yes
 Yes

 Concur. Conn.
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes
 Yes

 TLS supported
 No
 No
 Yes
 Yes
 Yes
 Yes
 Yes

 Legend:

 (T1):
 TCP-only, on x86 and AVR platforms
 (T2):
 TCP-only, on ARM Cortex-M platform
 (T3):
 TCP-only, on ARM Cortex-M0+ platform (NOTE: RAM usage for the same platform
 is ~2.5 kB for one TCP connection plus ~1.2 kB for each additional connection)
 (T4):
 TCP-only, on CC2538DK, cross-compiling on Linux
 (a):
 Includes IP, ICMP, and TCP on x86 and AVR platforms. The Contiki-NG TCP implementation has a code size of 3.2 kB on CC2538DK, cross-compiling on Linux
 (I):
 Optional POSIX socket wrapper that enables POSIX compliance if needed
 Mult.:
 Multiple
 N/A:
 Not Available

 Acknowledgments
 The work of has been funded in part by the Spanish Government (Ministerio de Educacion, Cultura y Deporte) through Jose Castillejo grants CAS15/00336
 and CAS18/00170; the European Regional Development Fund (ERDF); the Spanish Government through projects TEC2016-79988-P, PID2019-106808RA-I00, AEI/FEDER, and UE; and
 the Generalitat de Catalunya Grant 2017 SGR 376.
 Part of his contribution to this work has been carried out during his stays as a visiting scholar at the Computer Laboratory of the University of Cambridge.
 The authors appreciate the feedback received for this document. The
 following folks provided comments that helped improve the document:
 , , , , , , , , , , , , , , , ,
 , , , , , and .
 provided details and kindly performed Random Access Memory (RAM) and Read-Only Memory (ROM) usage measurements on the RIOT TCP implementation. provided details on the OpenWSN TCP implementation.
 kindly performed code size measurements on the Contiki-NG and lwIP 2.1.2 TCP implementations. He also provided details on the uIP TCP implementation.

 Authors' Addresses

 UPC

 C/Esteve Terradas, 7
 Castelldefels

 08860
 Spain

 carlesgo@entel.upc.edu

 University of Cambridge

 JJ Thomson Avenue
 Cambridge
 CB3 0FD
 United Kingdom

 jon.crowcroft@cl.cam.ac.uk

 Hochschule Esslingen

 University of Applied Sciences
 Flandernstr. 101
 Esslingen am Neckar

 73732
 Germany

 michael.scharf@hs-esslingen.de

