FreeBSD Handbook
Table of Contents
	Preface
	I. Getting Started	1. Introduction	1.1. Synopsis
	1.2. Welcome to FreeBSD!	1.2.1. What Can FreeBSD Do?
	1.2.2. Who Uses FreeBSD?

	1.3. About the FreeBSD Project	1.3.1. A Brief History of FreeBSD
	1.3.2. FreeBSD Project Goals
	1.3.3. The FreeBSD Development Model
	1.3.4. Third Party Programs
	1.3.5. Additional Documentation

	2. Installing FreeBSD	2.1. Synopsis
	2.2. Minimum Hardware Requirements
	2.3. Pre-Installation Tasks	2.3.1. Prepare the Installation Media	2.3.1.1. Writing an Image File to USB

	2.4. Starting the Installation	2.4.1. Booting on i386™ and amd64
	2.4.2. Booting on PowerPC®
	2.4.3. FreeBSD Boot Menu

	2.5. Using bsdinstall	2.5.1. Selecting the Keymap Menu
	2.5.2. Setting the Hostname
	2.5.3. Selecting Components to Install
	2.5.4. Installing from the Network

	2.6. Allocating Disk Space	2.6.1. Designing the Partition Layout
	2.6.2. Guided Partitioning Using UFS
	2.6.3. Manual Partitioning
	2.6.4. Guided Partitioning Using Root-on-ZFS
	2.6.5. Shell Mode Partitioning

	2.7. Fetching Distribution Files
	2.8. Accounts, Time Zone, Services and Hardening	2.8.1. Setting the
	root
	Password
	2.8.2. Setting the Time Zone
	2.8.3. Enabling Services
	2.8.4. Enabling Hardening Security Options
	2.8.5. Add Users
	2.8.6. Final Configuration

	2.9. Network Interfaces	2.9.1. Configuring Network Interfaces

	2.10. Troubleshooting
	2.11. Using the Live CD

	3. FreeBSD Basics	3.1. Synopsis
	3.2. Virtual Consoles and Terminals	3.2.1. Virtual Consoles
	3.2.2. Single User Mode
	3.2.3. Changing Console Video Modes

	3.3. Users and Basic Account Management	3.3.1. Account Types	3.3.1.1. System Accounts
	3.3.1.2. User Accounts
	3.3.1.3. The Superuser Account

	3.3.2. Managing Accounts	3.3.2.1. adduser
	3.3.2.2. rmuser
	3.3.2.3. chpass
	3.3.2.4. passwd
	3.3.2.5. pw

	3.3.3. Managing Groups

	3.4. Permissions	3.4.1. Symbolic Permissions
	3.4.2. FreeBSD File Flags
	3.4.3. The setuid,
	 setgid, and sticky
	 Permissions

	3.5. Directory Structure
	3.6. Disk Organization
	3.7. Mounting and Unmounting File Systems	3.7.1. The fstab File
	3.7.2. Using mount(8)
	3.7.3. Using umount(8)

	3.8. Processes and Daemons	3.8.1. Viewing Processes
	3.8.2. Killing Processes

	3.9. Shells	3.9.1. Changing the Shell
	3.9.2. Advanced Shell Techniques

	3.10. Text Editors
	3.11. Devices and Device Nodes
	3.12. Manual Pages	3.12.1. GNU Info Files

	4. Installing Applications: Packages and Ports	4.1. Synopsis
	4.2. Overview of Software Installation
	4.3. Finding Software
	4.4. Using pkg for Binary Package
 Management	4.4.1. Getting Started with
	pkg
	4.4.2. Quarterly and Latest Ports Branches
	4.4.3. Obtaining Information About Installed Packages
	4.4.4. Installing and Removing Packages
	4.4.5. Upgrading Installed Packages
	4.4.6. Auditing Installed Packages
	4.4.7. Automatically Removing Unused Packages
	4.4.8. Restoring the Package Database
	4.4.9. Removing Stale Packages
	4.4.10. Modifying Package Metadata

	4.5. Using the Ports Collection	4.5.1. Installing Ports	4.5.1.1. Customizing Ports Installation

	4.5.2. Removing Installed Ports
	4.5.3. Upgrading Ports	4.5.3.1. Tools to Upgrade and Manage Ports
	4.5.3.2. Upgrading Ports Using
	 Portmaster
	4.5.3.3. Upgrading Ports Using Portupgrade

	4.5.4. Ports and Disk Space

	4.6. Building Packages with
 Poudriere	4.6.1. Initialize Jails and Port Trees
	4.6.2. Configuring pkg Clients to Use a Poudriere
	Repository

	4.7. Post-Installation Considerations
	4.8. Dealing with Broken Ports

	5. The X Window System	5.1. Synopsis
	5.2. Terminology
	5.3. Installing Xorg
	5.4. Xorg Configuration	5.4.1. Quick Start
	5.4.2. User Group for Accelerated Video
	5.4.3. Kernel Mode Setting (KMS)
	5.4.4. Configuration Files	5.4.4.1. Directory
	5.4.4.2. Single or Multiple Files

	5.4.5. Video Cards
	5.4.6. Monitors
	5.4.7. Input Devices	5.4.7.1. Keyboards
	5.4.7.2. Mice and Pointing Devices

	5.4.8. Manual Configuration

	5.5. Using Fonts in Xorg	5.5.1. Type1 Fonts
	5.5.2. TrueType® Fonts
	5.5.3. Anti-Aliased Fonts

	5.6. The X Display Manager	5.6.1. Configuring XDM
	5.6.2. Configuring Remote Access

	5.7. Desktop Environments	5.7.1. GNOME
	5.7.2. KDE
	5.7.3. Xfce

	5.8. Installing Compiz Fusion	5.8.1. Setting up the FreeBSD nVidia Driver
	5.8.2. Configuring xorg.conf for Desktop
	Effects
	5.8.3. Installing and Configuring Compiz Fusion

	5.9. Troubleshooting	5.9.1. Configuration with Intel® i810
	 Graphics Chipsets
	5.9.2. Adding a Widescreen Flatpanel to the Mix
	5.9.3. Troubleshooting Compiz Fusion

	II. Common Tasks	6. Desktop Applications	6.1. Synopsis
	6.2. Browsers	6.2.1. Firefox
	6.2.2. Konqueror
	6.2.3. Chromium

	6.3. Productivity	6.3.1. Calligra
	6.3.2. AbiWord
	6.3.3. The GIMP
	6.3.4. Apache OpenOffice
	6.3.5. LibreOffice

	6.4. Document Viewers	6.4.1. Xpdf
	6.4.2. gv
	6.4.3. Geeqie
	6.4.4. ePDFView
	6.4.5. Okular

	6.5. Finance	6.5.1. GnuCash
	6.5.2. Gnumeric
	6.5.3. KMyMoney

	7. Multimedia	7.1. Synopsis
	7.2. Setting Up the Sound Card	7.2.1. Configuring a Custom Kernel with Sound Support
	7.2.2. Testing Sound
	7.2.3. Setting up Bluetooth Sound Devices
	7.2.4. Troubleshooting Sound
	7.2.5. Utilizing Multiple Sound Sources
	7.2.6. Setting Default Values for Mixer Channels

	7.3. MP3 Audio	7.3.1. MP3 Players
	7.3.2. Ripping CD Audio Tracks
	7.3.3. Encoding and Decoding MP3s

	7.4. Video Playback	7.4.1. Determining Video Capabilities	7.4.1.1. XVideo

	7.4.2. Ports and Packages Dealing with Video	7.4.2.1. MPlayer and
	 MEncoder
	7.4.2.2. The xine Video
	 Player
	7.4.2.3. The Transcode
	 Utilities

	7.5. TV Cards	7.5.1. Loading the Driver
	7.5.2. Useful Applications
	7.5.3. Troubleshooting

	7.6. MythTV	7.6.1. Hardware
	7.6.2. Setting up the MythTV Backend

	7.7. Image Scanners	7.7.1. Checking the Scanner
	7.7.2. SANE Configuration
	7.7.3. Scanner Permissions

	8. Configuring the FreeBSD Kernel	8.1. Synopsis
	8.2. Why Build a Custom Kernel?
	8.3. Finding the System Hardware
	8.4. The Configuration File
	8.5. Building and Installing a Custom Kernel
	8.6. If Something Goes Wrong

	9. Printing	9.1. Quick Start
	9.2. Printer Connections	9.2.1. Summary

	9.3. Common Page Description Languages	9.3.1. Converting PostScript® to Other
	PDLs
	9.3.2. Summary

	9.4. Direct Printing
	9.5. LPD (Line Printer Daemon)	9.5.1. Initial Setup
	9.5.2. Printing with lpr(1)
	9.5.3. Filters	9.5.3.1. Preventing Stairstepping on Plain Text Printers
	9.5.3.2. Fancy Plain Text on PostScript® Printers with
	 print/enscript
	9.5.3.3. Printing PostScript® to
	 PCL Printers
	9.5.3.4. Smart Filters
	9.5.3.5. Other Smart Filters

	9.5.4. Multiple Queues
	9.5.5. Monitoring and Controlling Printing	9.5.5.1. lpq(1)
	9.5.5.2. lprm(1)
	9.5.5.3. lpc(8)

	9.5.6. Shared Printers	9.5.6.1. Aliases
	9.5.6.2. Header Pages

	9.5.7. References

	9.6. Other Printing Systems	9.6.1. CUPS (Common UNIX® Printing
	System)
	9.6.2. HPLIP
	9.6.3. LPRng

	10. Linux® Binary Compatibility	10.1. Synopsis
	10.2. Configuring Linux® Binary Compatibility	10.2.1. Installing Additional Libraries Manually
	10.2.2. Installing Linux® ELF
	Binaries
	10.2.3. Installing a Linux® RPM Based
	Application
	10.2.4. Configuring the Hostname Resolver

	10.3. Advanced Topics

	11. WINE	11.1. Synopsis
	11.2. WINE Overview & Concepts	11.2.1. What is WINE?
	11.2.2. WINE and the FreeBSD System
	11.2.3. Graphical Versus Text Mode/Terminal Programs in
 WINE
	11.2.4. WINE Derivative Projects	11.2.4.1. Commercial WINE Implementations
	11.2.4.2. WINE Companion Programs

	11.2.5. Alternatives to WINE

	11.3. Installing WINE on FreeBSD	11.3.1. WINE Prerequistes
	11.3.2. Installing WINE via FreeBSD Package Repositories
	11.3.3. Concerns of 32- Versus 64-Bit in WINE
	Installations

	11.4. Running a First WINE Program on FreeBSD	11.4.1. Running a Program from the Command Line
	11.4.2. Running a Program from a GUI

	11.5. Configuring WINE Installation	11.5.1. WINE Prefixes
	11.5.2. Creating and Using WINE Prefixes
	11.5.3. Configuring WINE Prefixes with
	 winecfg	11.5.3.1. Applications
	11.5.3.2. Libraries
	11.5.3.3. Graphics
	11.5.3.4. Desktop Integration
	11.5.3.5. Drives
	11.5.3.6. Audio
	11.5.3.7. About

	11.6. WINE Management GUIs	11.6.1. Winetricks	11.6.1.1. Installing
		 winetricks
	11.6.1.2. Using
		 winetricks

	11.6.2. Homura	11.6.2.1. Installing Homura
	11.6.2.2. Using Homura

	11.6.3. Running Multiple Management GUIs

	11.7. WINE in Multi-User FreeBSD Installations	11.7.1. Issues with Using a Common WINE Prefix
	11.7.2. Installing Applications to a Common Drive
	11.7.3. Using a Common Installation of WINE

	11.8. WINE on FreeBSD FAQ	11.8.1. Basic Installation and Usage	11.8.1.1. How to Install 32-bit and 64-bit WINE on the Same
	 System?
	11.8.1.2. Can DOS Programs Be Run on WINE?
	11.8.1.3. Should the "wine-devel" Package/Port be
	Installed to Use the Development Version of WINE Instead of
	Stable?

	11.8.2. Install Optimization	11.8.2.1. How Should Windows® Hardware (e.g., Graphics) Drivers
	be Handled?
	11.8.2.2. Is There a way to Make Windows® Fonts Look
	Better?
	11.8.2.3. Does Having Windows® Installed Elsewhere on a System
	 Help WINE Operate?

	11.8.3. Application-Specific	11.8.3.1. Where is the Best Place to see if Application X Works on
	WINE?
	11.8.3.2. Is There Anything That Will Help Games Run
	Better?
	11.8.3.3. Is There Anywhere FreeBSD WINE Users Gather to Exchange
	Tips and Tricks?

	11.8.4. Other OS Resources

	III. System Administration	12. Configuration and Tuning	12.1. Synopsis
	12.2. Starting Services	12.2.1. Extended Application Configuration
	12.2.2. Using Services to Start Services

	12.3. Configuring cron(8)	12.3.1. Creating a User Crontab

	12.4. Managing Services in FreeBSD	12.4.1. Managing System-Specific Configuration

	12.5. Setting Up Network Interface Cards	12.5.1. Locating the Correct Driver	12.5.1.1. Using Windows® NDIS Drivers

	12.5.2. Configuring the Network Card
	12.5.3. Testing and Troubleshooting	12.5.3.1. Testing the Ethernet Card
	12.5.3.2. Troubleshooting

	12.6. Virtual Hosts
	12.7. Configuring System Logging	12.7.1. Configuring Local Logging
	12.7.2. Log Management and Rotation
	12.7.3. Configuring Remote Logging	12.7.3.1. Log Server Configuration
	12.7.3.2. Log Client Configuration
	12.7.3.3. Debugging Log Servers
	12.7.3.4. Security Considerations

	12.8. Configuration Files	12.8.1. /etc
	Layout
	12.8.2. Hostnames	12.8.2.1. /etc/resolv.conf
	12.8.2.2. /etc/hosts

	12.9. Tuning with sysctl(8)	12.9.1. sysctl.conf
	12.9.2. sysctl(8) Read-only

	12.10. Tuning Disks	12.10.1. Sysctl Variables	12.10.1.1. vfs.vmiodirenable
	12.10.1.2. vfs.write_behind
	12.10.1.3. vfs.hirunningspace
	12.10.1.4. vm.swap_idle_enabled
	12.10.1.5. hw.ata.wc
	12.10.1.6. SCSI_DELAY
	 (kern.cam.scsi_delay)

	12.10.2. Soft Updates	12.10.2.1. More Details About Soft Updates

	12.11. Tuning Kernel Limits	12.11.1. File/Process Limits	12.11.1.1. kern.maxfiles
	12.11.1.2. kern.ipc.soacceptqueue

	12.11.2. Network Limits	12.11.2.1. net.inet.ip.portrange.*
	12.11.2.2. TCP Bandwidth Delay Product

	12.11.3. Virtual Memory	12.11.3.1. kern.maxvnodes

	12.12. Adding Swap Space	12.12.1. Swap on a New Hard Drive or Existing Partition
	12.12.2. Creating a Swap File

	12.13. Power and Resource Management	12.13.1. Configuring ACPI
	12.13.2. Common Problems	12.13.2.1. Mouse Issues
	12.13.2.2. Suspend/Resume
	12.13.2.3. System Hangs
	12.13.2.4. Panics
	12.13.2.5. System Powers Up After Suspend or Shutdown
	12.13.2.6. BIOS Contains Buggy Bytecode

	12.13.3. Overriding the Default AML
	12.13.4. Getting and Submitting Debugging Info
	12.13.5. References

	13. The FreeBSD Booting Process	13.1. Synopsis
	13.2. FreeBSD Boot Process	13.2.1. The Boot Manager
	13.2.2. Stage One and Stage Two
	13.2.3. Stage Three
	13.2.4. Last Stage	13.2.4.1. Single-User Mode
	13.2.4.2. Multi-User Mode

	13.3. Configuring Boot Time Splash Screens
	13.4. Device Hints
	13.5. Shutdown Sequence

	14. Security	14.1. Synopsis
	14.2. Introduction	14.2.1. Preventing Logins
	14.2.2. Permitted Account Escalation
	14.2.3. Password Hashes
	14.2.4. Password Policy Enforcement
	14.2.5. Detecting Rootkits
	14.2.6. Binary Verification
	14.2.7. System Tuning for Security

	14.3. One-time Passwords	14.3.1. Initializing OPIE
	14.3.2. Insecure Connection Initialization
	14.3.3. Generating a Single One-time Password
	14.3.4. Generating Multiple One-time Passwords
	14.3.5. Restricting Use of UNIX® Passwords

	14.4. TCP Wrapper	14.4.1. Initial Configuration
	14.4.2. Advanced Configuration

	14.5. Kerberos	14.5.1. Setting up a Heimdal KDC
	14.5.2. Configuring a Server to Use
	Kerberos
	14.5.3. Configuring a Client to Use
	Kerberos
	14.5.4. MIT Differences
	14.5.5. Kerberos Tips, Tricks, and
	Troubleshooting
	14.5.6. Mitigating Kerberos
	Limitations
	14.5.7. Resources and Further Information

	14.6. OpenSSL	14.6.1. Generating Certificates
	14.6.2. Using Certificates

	14.7. VPN over
	IPsec	14.7.1. Configuring a VPN on FreeBSD

	14.8. OpenSSH	14.8.1. Using the SSH Client Utilities	14.8.1.1. Key-based Authentication
	14.8.1.2. SSH Tunneling

	14.8.2. Enabling the SSH Server
	14.8.3. SSH Server Security

	14.9. Access Control Lists	14.9.1. Enabling ACL Support
	14.9.2. Using ACLs

	14.10. Monitoring Third Party Security Issues
	14.11. FreeBSD Security Advisories	14.11.1. Format of a Security Advisory

	14.12. Process Accounting	14.12.1. Enabling and Utilizing Process Accounting

	14.13. Resource Limits	14.13.1. Configuring Login Classes
	14.13.2. Enabling and Configuring Resource Limits

	14.14. Shared Administration with Sudo	14.14.1. Logging Output

	15. Jails	15.1. Synopsis
	15.2. Terms Related to Jails
	15.3. Creating and Controlling Jails	15.3.1. Installing a Jail	15.3.1.1. To install a Jail from the Internet
	15.3.1.2. To install a Jail from an ISO
	15.3.1.3. To build and install a Jail from source

	15.3.2. Configuring the Host

	15.4. Fine Tuning and Administration	15.4.1. System Tools for Jail Tuning in FreeBSD
	15.4.2. High-Level Administrative Tools in the FreeBSD Ports
	Collection
	15.4.3. Keeping Jails Patched and up to Date

	15.5. Updating Multiple Jails	15.5.1. Creating the Template
	15.5.2. Creating Jails
	15.5.3. Upgrading

	15.6. Managing Jails with
	ezjail	15.6.1. Installing ezjail
	15.6.2. Initial Setup
	15.6.3. Creating and Starting a New Jail
	15.6.4. Updating Jails	15.6.4.1. Updating the Operating System
	15.6.4.2. Updating Ports

	15.6.5. Controlling Jails	15.6.5.1. Stopping and Starting Jails
	15.6.5.2. Archiving and Restoring Jails

	15.6.6. Full Example: BIND in a
	Jail

	16. Mandatory Access Control	16.1. Synopsis
	16.2. Key Terms
	16.3. Understanding MAC Labels	16.3.1. Label Configuration
	16.3.2. Predefined Labels
	16.3.3. Numeric Labels
	16.3.4. User Labels
	16.3.5. Network Interface Labels

	16.4. Planning the Security Configuration
	16.5. Available MAC Policies	16.5.1. The MAC See Other UIDs Policy
	16.5.2. The MAC BSD Extended Policy
	16.5.3. The MAC Interface Silencing Policy
	16.5.4. The MAC Port Access Control List Policy
	16.5.5. The MAC Partition Policy
	16.5.6. The MAC Multi-Level Security Module
	16.5.7. The MAC Biba Module
	16.5.8. The MAC Low-watermark Module

	16.6. User Lock Down
	16.7. Nagios in a MAC Jail	16.7.1. Create an Insecure User Class
	16.7.2. Configure Users
	16.7.3. Create the Contexts File
	16.7.4. Loader Configuration
	16.7.5. Testing the Configuration

	16.8. Troubleshooting the MAC Framework

	17. Security Event Auditing	17.1. Synopsis
	17.2. Key Terms
	17.3. Audit Configuration	17.3.1. Event Selection Expressions
	17.3.2. Configuration Files	17.3.2.1. The audit_control File
	17.3.2.2. The audit_user File

	17.4. Working with Audit Trails	17.4.1. Live Monitoring Using Audit Pipes
	17.4.2. Rotating and Compressing Audit Trail Files

	18. Storage	18.1. Synopsis
	18.2. Adding Disks
	18.3. Resizing and Growing Disks
	18.4. USB Storage Devices	18.4.1. Device Configuration
	18.4.2. Automounting Removable Media

	18.5. Creating and Using CD Media	18.5.1. Supported Devices
	18.5.2. Burning a CD
	18.5.3. Writing Data to an ISO File
	System
	18.5.4. Using Data CDs
	18.5.5. Duplicating Audio CDs

	18.6. Creating and Using DVD Media	18.6.1. Configuration
	18.6.2. Burning Data DVDs
	18.6.3. Burning a DVD-Video
	18.6.4. Using a DVD+RW
	18.6.5. Using a DVD-RW
	18.6.6. Multi-Session
	18.6.7. For More Information
	18.6.8. Using a DVD-RAM

	18.7. Creating and Using Floppy Disks
	18.8. Backup Basics	18.8.1. File System Backups
	18.8.2. Directory Backups
	18.8.3. Using Data Tapes for Backups
	18.8.4. Third-Party Backup Utilities
	18.8.5. Emergency Recovery

	18.9. Memory Disks	18.9.1. Attaching and Detaching Existing Images
	18.9.2. Creating a File- or Memory-Backed Memory Disk

	18.10. File System Snapshots
	18.11. Disk Quotas	18.11.1. Enabling Disk Quotas
	18.11.2. Setting Quota Limits
	18.11.3. Checking Quota Limits and Disk Usage
	18.11.4. Quotas over NFS

	18.12. Encrypting Disk Partitions	18.12.1. Disk Encryption with
	gbde
	18.12.2. Disk Encryption with geli

	18.13. Encrypting Swap	18.13.1. Configuring Encrypted Swap
	18.13.2. Encrypted Swap Verification

	18.14. Highly Available Storage
	(HAST)	18.14.1. HAST Operation
	18.14.2. HAST Configuration	18.14.2.1. Failover Configuration

	18.14.3. Troubleshooting	18.14.3.1. Recovering from the Split-brain Condition

	19. GEOM: Modular Disk Transformation Framework	19.1. Synopsis
	19.2. RAID0 - Striping
	19.3. RAID1 - Mirroring	19.3.1. Metadata Issues
	19.3.2. Creating a Mirror with Two New Disks
	19.3.3. Creating a Mirror with an Existing Drive
	19.3.4. Troubleshooting
	19.3.5. Recovering from Disk Failure

	19.4. RAID3 - Byte-level Striping with
	Dedicated Parity	19.4.1. Creating a Dedicated RAID3
	Array

	19.5. Software RAID Devices	19.5.1. Creating an Array
	19.5.2. Multiple Volumes
	19.5.3. Converting a Single Drive to a Mirror
	19.5.4. Inserting New Drives into the Array
	19.5.5. Removing Drives from the Array
	19.5.6. Stopping the Array
	19.5.7. Checking Array Status
	19.5.8. Deleting Arrays
	19.5.9. Deleting Unexpected Arrays

	19.6. GEOM Gate Network
	19.7. Labeling Disk Devices	19.7.1. Label Types and Examples

	19.8. UFS Journaling Through GEOM

	20. The Z File System (ZFS)	20.1. What Makes ZFS Different
	20.2. Quick Start Guide	20.2.1. Single Disk Pool
	20.2.2. RAID-Z
	20.2.3. Recovering RAID-Z
	20.2.4. Data Verification

	20.3. zpool Administration	20.3.1. Creating and Destroying Storage Pools
	20.3.2. Adding and Removing Devices
	20.3.3. Checking the Status of a Pool
	20.3.4. Clearing Errors
	20.3.5. Replacing a Functioning Device
	20.3.6. Dealing with Failed Devices
	20.3.7. Scrubbing a Pool
	20.3.8. Self-Healing
	20.3.9. Growing a Pool
	20.3.10. Importing and Exporting Pools
	20.3.11. Upgrading a Storage Pool
	20.3.12. Displaying Recorded Pool History
	20.3.13. Performance Monitoring
	20.3.14. Splitting a Storage Pool

	20.4. zfs Administration	20.4.1. Creating and Destroying Datasets
	20.4.2. Creating and Destroying Volumes
	20.4.3. Renaming a Dataset
	20.4.4. Setting Dataset Properties	20.4.4.1. Getting and Setting Share Properties

	20.4.5. Managing Snapshots	20.4.5.1. Creating Snapshots
	20.4.5.2. Comparing Snapshots
	20.4.5.3. Snapshot Rollback
	20.4.5.4. Restoring Individual Files from Snapshots

	20.4.6. Managing Clones
	20.4.7. Replication	20.4.7.1. Incremental Backups
	20.4.7.2. Sending Encrypted Backups over
	 SSH

	20.4.8. Dataset, User, and Group Quotas
	20.4.9. Reservations
	20.4.10. Compression
	20.4.11. Zstandard Compression
	20.4.12. Deduplication
	20.4.13. ZFS and Jails

	20.5. Delegated Administration	20.5.1. Delegating Dataset Creation
	20.5.2. Delegating Permission Delegation

	20.6. Advanced Topics	20.6.1. Tuning
	20.6.2. ZFS on i386	20.6.2.1. Memory
	20.6.2.2. Kernel Configuration
	20.6.2.3. Loader Tunables

	20.7. Additional Resources
	20.8. ZFS Features and Terminology

	21. Other File Systems	21.1. Synopsis
	21.2. Linux® File Systems	21.2.1. ext2

	22. Virtualization	22.1. Synopsis
	22.2. FreeBSD as a Guest on Parallels for
 Mac OS® X	22.2.1. Installing FreeBSD on Parallels/Mac OS® X
	22.2.2. Configuring FreeBSD on
	Parallels

	22.3. FreeBSD as a Guest on Virtual PC
 for Windows®	22.3.1. Installing FreeBSD on
	Virtual PC
	22.3.2. Configuring FreeBSD on Virtual
	 PC

	22.4. FreeBSD as a Guest on VMware Fusion
 for Mac OS®	22.4.1. Installing FreeBSD on
	VMware Fusion
	22.4.2. Configuring FreeBSD on VMware
	 Fusion

	22.5. FreeBSD as a Guest on VirtualBox™
	22.6. FreeBSD as a Host with VirtualBox™	22.6.1. Installing VirtualBox™
	22.6.2. VirtualBox™ USB Support
	22.6.3. VirtualBox™ Host
	DVD/CD Access

	22.7. FreeBSD as a Host with
 bhyve	22.7.1. Preparing the Host
	22.7.2. Creating a FreeBSD Guest
	22.7.3. Creating a Linux® Guest
	22.7.4. Booting bhyve Virtual Machines
	with UEFI Firmware
	22.7.5. Graphical UEFI Framebuffer for
	bhyve Guests
	22.7.6. Using ZFS with
	bhyve Guests
	22.7.7. Virtual Machine Consoles
	22.7.8. Managing Virtual Machines
	22.7.9. Persistent Configuration

	22.8. FreeBSD as a Xen™-Host	22.8.1. Hardware Requirements for Xen™ Dom0
	22.8.2. Xen™ Dom0 Control Domain Setup
	22.8.3. Xen™ DomU Guest VM Configuration
	22.8.4. Troubleshooting	22.8.4.1. Host Boot Troubleshooting
	22.8.4.2. Guest Creation Troubleshooting

	23. Localization -
 i18n/L10n Usage and
 Setup	23.1. Synopsis
	23.2. Using Localization	23.2.1. Setting Locale for Login Shell	23.2.1.1. Login Classes Method	23.2.1.1.1. Utilities Which Change Login Classes

	23.2.1.2. Shell Startup File Method

	23.2.2. Console Setup
	23.2.3. Xorg Setup

	23.3. Finding i18n Applications
	23.4. Locale Configuration for Specific Languages	23.4.1. Russian Language (KOI8-R Encoding)
	23.4.2. Additional Language-Specific Resources

	24. Updating and Upgrading FreeBSD	24.1. Synopsis
	24.2. FreeBSD Update	24.2.1. The Configuration File
	24.2.2. Applying Security Patches
	24.2.3. Performing Major and Minor Version Upgrades	24.2.3.1. Custom Kernels with FreeBSD 9.X and Later
	24.2.3.2. Upgrading Packages After a Major Version
	 Upgrade

	24.2.4. System State Comparison

	24.3. Updating the Documentation Set	24.3.1. Updating Documentation from Source
	24.3.2. Updating Documentation from Ports

	24.4. Tracking a Development Branch	24.4.1. Using FreeBSD-CURRENT
	24.4.2. Using FreeBSD-STABLE

	24.5. Updating FreeBSD from Source	24.5.1. Quick Start
	24.5.2. Preparing for a Source Update
	24.5.3. Updating the Source
	24.5.4. Building from Source	24.5.4.1. Performing a Clean Build
	24.5.4.2. Setting the Number of Jobs
	24.5.4.3. Building Only the Kernel
	24.5.4.4. Building a Custom Kernel

	24.5.5. Installing the Compiled Code
	24.5.6. Completing the Update	24.5.6.1. Merging Configuration Files with
	 mergemaster(8)
	24.5.6.2. Checking for Outdated Files and Libraries
	24.5.6.3. Restarting After the Update

	24.6. Tracking for Multiple Machines

	25. DTrace	25.1. Synopsis
	25.2. Implementation Differences
	25.3. Enabling DTrace Support
	25.4. Using DTrace

	26. USB Device Mode / USB OTG	26.1. Synopsis
	26.2. USB Virtual Serial Ports	26.2.1. Configuring USB Device Mode Serial Ports
	26.2.2. Connecting to USB Device Mode Serial Ports from
	FreeBSD
	26.2.3. Connecting to USB Device Mode Serial Ports from
	Mac OS®
	26.2.4. Connecting to USB Device Mode Serial Ports from
	Linux
	26.2.5. Connecting to USB Device Mode Serial Ports from
	Microsoft Windows 10

	26.3. USB Device Mode Network
 Interfaces
	26.4. USB Virtual Storage Device	26.4.1. Configuring USB Mass Storage Target Using the cfumass
	Startup Script
	26.4.2. Configuring USB Mass Storage Using Other Means

	IV. Network Communication	27. Serial Communications	27.1. Synopsis
	27.2. Serial Terminology and Hardware	27.2.1. Serial Cables and Ports
	27.2.2. Serial Port Configuration

	27.3. Terminals	27.3.1. Terminal Configuration
	27.3.2. Troubleshooting the Connection

	27.4. Dial-in Service	27.4.1. Modem Configuration
	27.4.2. Troubleshooting

	27.5. Dial-out Service	27.5.1. Using a Stock Hayes Modem
	27.5.2. Using AT Commands
	27.5.3. The @ Sign Does Not Work
	27.5.4. Dialing from the Command Line
	27.5.5. Setting the bps Rate
	27.5.6. Accessing a Number of Hosts Through a Terminal
	Server
	27.5.7. Using More Than One Line with
	tip
	27.5.8. Using the Force Character
	27.5.9. Upper Case Characters
	27.5.10. File Transfers with tip
	27.5.11. Using zmodem with
	tip?

	27.6. Setting Up the Serial Console	27.6.1. Quick Serial Console Configuration
	27.6.2. In-Depth Serial Console Configuration
	27.6.3. Setting a Faster Serial Port Speed
	27.6.4. Entering the DDB Debugger from the Serial Line

	28. PPP	28.1. Synopsis
	28.2. Configuring PPP	28.2.1. Basic Configuration
	28.2.2. Advanced Configuration	28.2.2.1. PAP and CHAP Authentication
	28.2.2.2. Using PPP Network Address
	 Translation Capability

	28.2.3. Final System Configuration
	28.2.4. Using ppp
	28.2.5. Configuring Dial-in Services

	28.3. Troubleshooting PPP Connections	28.3.1. Check the Device Nodes
	28.3.2. Connecting Manually
	28.3.3. Debugging

	28.4. Using PPP over Ethernet (PPPoE)	28.4.1. Using a PPPoE Service Tag
	28.4.2. PPPoE with a 3Com®
	HomeConnect® ADSL
	Modem Dual Link

	28.5. Using PPP over
 ATM (PPPoA)	28.5.1. Using mpd
	28.5.2. Using pptpclient

	29. Electronic Mail	29.1. Synopsis
	29.2. Mail Components
	29.3. Sendmail Configuration
	Files
	29.4. Changing the Mail Transfer Agent	29.4.1. Disable Sendmail
	29.4.2. Replace the Default MTA

	29.5. Troubleshooting
	29.6. Advanced Topics	29.6.1. Basic Configuration
	29.6.2. Mail for a Domain

	29.7. Setting Up to Send Only
	29.8. Using Mail with a Dialup Connection
	29.9. SMTP Authentication
	29.10. Mail User Agents	29.10.1. mail
	29.10.2. mutt
	29.10.3. alpine

	29.11. Using fetchmail
	29.12. Using procmail

	30. Network Servers	30.1. Synopsis
	30.2. The inetd
 Super-Server	30.2.1. Configuration File
	30.2.2. Command-Line Options
	30.2.3. Security Considerations

	30.3. Network File System (NFS)	30.3.1. Configuring the Server
	30.3.2. Configuring the Client
	30.3.3. Locking
	30.3.4. Automating Mounts with autofs(5)

	30.4. Network Information System
 (NIS)	30.4.1. NIS Terms and Processes
	30.4.2. Machine Types
	30.4.3. Planning Considerations	30.4.3.1. Choosing a NIS Domain Name
	30.4.3.2. Physical Server Requirements

	30.4.4. Configuring the NIS Master
	Server	30.4.4.1. Initializing the NIS Maps
	30.4.4.2. Adding New Users

	30.4.5. Setting up a NIS Slave Server
	30.4.6. Setting Up an NIS Client
	30.4.7. NIS Security	30.4.7.1. Barring Some Users

	30.4.8. Using Netgroups
	30.4.9. Password Formats

	30.5. Lightweight Directory Access Protocol
	(LDAP)	30.5.1. LDAP Terminology and Structure
	30.5.2. Configuring an LDAP Server

	30.6. Dynamic Host Configuration Protocol
 (DHCP)	30.6.1. Configuring a DHCP Client
	30.6.2. Installing and Configuring a DHCP
	Server

	30.7. Domain Name System (DNS)	30.7.1. Reasons to Run a Name Server
	30.7.2. DNS Server Configuration

	30.8. Apache HTTP Server	30.8.1. Configuring and Starting Apache
	30.8.2. Virtual Hosting
	30.8.3. Apache Modules	30.8.3.1. SSL support
	30.8.3.2. mod_perl
	30.8.3.3. mod_php
	30.8.3.4. HTTP2 Support

	30.8.4. Dynamic Websites	30.8.4.1. Django
	30.8.4.2. Ruby on Rails

	30.9. File Transfer Protocol (FTP)	30.9.1. Configuration

	30.10. File and Print Services for Microsoft® Windows® Clients
 (Samba)	30.10.1. Server Configuration	30.10.1.1. Global Settings
	30.10.1.2. Security Settings
	30.10.1.3. Samba Users

	30.10.2. Starting Samba

	30.11. Clock Synchronization with NTP	30.11.1. NTP Configuration	30.11.1.1. The /etc/ntp.conf file
	30.11.1.2. NTP entries in /etc/rc.conf
	30.11.1.3. Ntpd and the unpriveleged
	 ntpd user

	30.11.2. Using NTP with a
	PPP Connection

	30.12. iSCSI Initiator and Target
 Configuration	30.12.1. Configuring an iSCSI Target	30.12.1.1. Authentication

	30.12.2. Configuring an iSCSI Initiator	30.12.2.1. Connecting to a Target Without a Configuration
	 File
	30.12.2.2. Connecting to a Target with a Configuration
	 File

	31. Firewalls	31.1. Synopsis
	31.2. Firewall Concepts
	31.3. PF	31.3.1. Enabling PF
	31.3.2. PF Rulesets	31.3.2.1. A Simple Gateway with NAT
	31.3.2.2. Creating an FTP Proxy
	31.3.2.3. Managing ICMP	31.3.2.3.1. Path MTU Discovery

	31.3.2.4. Using Tables
	31.3.2.5. Using Overload Tables to Protect
	 SSH
	31.3.2.6. Protecting Against SPAM
	31.3.2.7. Network Hygiene
	31.3.2.8. Handling Non-Routable Addresses

	31.3.3. Enabling ALTQ

	31.4. IPFW	31.4.1. Enabling IPFW
	31.4.2. IPFW Rule Syntax
	31.4.3. Example Ruleset
	31.4.4. In-kernel NAT	31.4.4.1. Port Redirection
	31.4.4.2. Address Redirection
	31.4.4.3. Userspace NAT

	31.4.5. The IPFW Command	31.4.5.1. Logging Firewall Messages
	31.4.5.2. Building a Rule Script

	31.4.6. IPFW Kernel Options

	31.5. IPFILTER (IPF)	31.5.1. Enabling IPF
	31.5.2. IPF Rule Syntax
	31.5.3. Example Ruleset
	31.5.4. Configuring NAT
	31.5.5. Viewing IPF Statistics
	31.5.6. IPF Logging

	31.6. Blacklistd	31.6.1. Enabling Blacklistd
	31.6.2. Creating a Blacklistd Ruleset	31.6.2.1. Local Rules
	31.6.2.2. Remote Rules

	31.6.3. Blacklistd Client Configuration
	31.6.4. Blacklistd Management
	31.6.5. Removing Hosts from the Block List

	32. Advanced Networking	32.1. Synopsis
	32.2. Gateways and Routes	32.2.1. Routing Basics
	32.2.2. Configuring a Router with Static Routes
	32.2.3. Troubleshooting
	32.2.4. Multicast Considerations

	32.3. Wireless Networking	32.3.1. Wireless Networking Basics
	32.3.2. Quick Start
	32.3.3. Basic Setup	32.3.3.1. Kernel Configuration
	32.3.3.2. Setting the Correct Region

	32.3.4. Infrastructure Mode	32.3.4.1. FreeBSD Clients	32.3.4.1.1. How to Find Access Points
	32.3.4.1.2. Basic Settings	32.3.4.1.2.1. Selecting an Access Point
	32.3.4.1.2.2. Authentication
	32.3.4.1.2.3. Getting an IP Address with
	 DHCP
	32.3.4.1.2.4. Static IP Address

	32.3.4.1.3. WPA	32.3.4.1.3.1. WPA-PSK
	32.3.4.1.3.2. WPA with
	 EAP-TLS
	32.3.4.1.3.3. WPA with
	 EAP-TTLS
	32.3.4.1.3.4. WPA with
	 EAP-PEAP

	32.3.4.1.4. WEP

	32.3.5. Ad-hoc Mode
	32.3.6. FreeBSD Host Access Points	32.3.6.1. Basic Settings
	32.3.6.2. Host-based Access Point Without Authentication or
	 Encryption
	32.3.6.3. WPA2 Host-based Access Point	32.3.6.3.1. WPA2-PSK

	32.3.6.4. WEP Host-based Access Point

	32.3.7. Using Both Wired and Wireless Connections
	32.3.8. Troubleshooting

	32.4. USB Tethering
	32.5. Bluetooth	32.5.1. Loading Bluetooth Support
	32.5.2. Finding Other Bluetooth Devices
	32.5.3. Device Pairing
	32.5.4. Network Access with
	PPP Profiles
	32.5.5. Bluetooth Protocols	32.5.5.1. Logical Link Control and Adaptation Protocol
	 (L2CAP)
	32.5.5.2. Radio Frequency Communication
	 (RFCOMM)
	32.5.5.3. Service Discovery Protocol
	 (SDP)
	32.5.5.4. OBEX Object Push
	 (OPUSH)
	32.5.5.5. Serial Port Profile (SPP)

	32.5.6. Troubleshooting

	32.6. Bridging	32.6.1. Enabling the Bridge
	32.6.2. Enabling Spanning Tree
	32.6.3. Bridge Interface Parameters
	32.6.4. SNMP Monitoring

	32.7. Link Aggregation and Failover	32.7.1. Configuration Examples

	32.8. Diskless Operation with PXE	32.8.1. Setting Up the PXE
	 Environment
	32.8.2. Configuring the DHCP Server
	32.8.3. Debugging PXE Problems

	32.9. IPv6	32.9.1. Background on IPv6 Addresses
	32.9.2. Configuring IPv6
	32.9.3. Connecting to a Provider
	32.9.4. Router Advertisement and Host Auto Configuration
	32.9.5. IPv6 and IPv6
	Address Mapping

	32.10. Common Address Redundancy Protocol
	(CARP)	32.10.1. Using CARP on FreeBSD 10 and
	Later
	32.10.2. Using CARP on FreeBSD 9 and
	Earlier

	32.11. VLANs

	V. Appendices	A. Obtaining FreeBSD	A.1. CD and
 DVD Sets
	A.2. FTP Sites
	A.3. Using Subversion	A.3.1. Introduction
	A.3.2. Root SSL Certificates
	A.3.3. Svnlite
	A.3.4. Installation
	A.3.5. Running Subversion
	A.3.6. Subversion Mirror
	Sites
	A.3.7. For More Information

	A.4. Using rsync

	B. Bibliography	B.1. Books Specific to FreeBSD
	B.2. Users' Guides
	B.3. Administrators' Guides
	B.4. Programmers' Guides
	B.5. Operating System Internals
	B.6. Security Reference
	B.7. Hardware Reference
	B.8. UNIX® History
	B.9. Periodicals, Journals, and Magazines

	C. Resources on the Internet	C.1. Websites
	C.2. Mailing Lists	C.2.1. List Summary
	C.2.2. How to Subscribe
	C.2.3. List Charters
	C.2.4. Filtering on the Mailing Lists

	C.3. Usenet Newsgroups	C.3.1. BSD Specific Newsgroups
	C.3.2. Other UNIX® Newsgroups of Interest
	C.3.3. X Window System

	C.4. Official Mirrors

	D. OpenPGP Keys	D.1. Officers	D.1.1. Security Officer Team <security-officer@FreeBSD.org>
	D.1.2. Security Team Secretary <secteam-secretary@FreeBSD.org>
	D.1.3. Core Team Secretary <core-secretary@FreeBSD.org>
	D.1.4. Ports Management Team Secretary <portmgr-secretary@FreeBSD.org>
	D.1.5. <doceng-secretary@FreeBSD.org>

	FreeBSD Glossary
	Index

List of Figures
	2.1. FreeBSD Boot Loader Menu
	2.2. FreeBSD Boot Options Menu
	2.3. Welcome Menu
	2.4. Keymap Loading
	2.5. Keymap Selection Menu
	2.6. Keymap Testing Menu
	2.7. Setting the Hostname
	2.8. Selecting Components to Install
	2.9. Installing from the Network
	2.10. Partitioning Choices
	2.11. Selecting from Multiple Disks
	2.12. Selecting Entire Disk or Partition
	2.13. Confirmation
	2.14. Select Partition Scheme
	2.15. Review Created Partitions
	2.16. Final Confirmation
	2.17. Manually Create Partitions
	2.18. Manually Create Partitions
	2.19. Manually Create Partitions
	2.20. ZFS Partitioning Menu
	2.21. ZFS Pool Type
	2.22. Disk Selection
	2.23. Invalid Selection
	2.24. Rescan Devices
	2.25. Analyzing a Disk
	2.26. Pool Name
	2.27. Swap Amount
	2.28. Last Chance
	2.29. Disk Encryption Password
	2.30. Initializing Encryption
	2.31. Fetching Distribution Files
	2.32. Verifying Distribution Files
	2.33. Extracting Distribution Files
	2.34. Setting the root Password
	2.35. Select a Region
	2.36. Select a Country
	2.37. Select a Time Zone
	2.38. Confirm Time Zone
	2.39. Select Date
	2.40. Select Time
	2.41. Selecting Additional Services to Enable
	2.42. Selecting Hardening Security Options
	2.43. Add User Accounts
	2.44. Enter User Information
	2.45. Exit User and Group Management
	2.46. Final Configuration
	2.47. Manual Configuration
	2.48. Complete the Installation
	2.49. Choose a Network Interface
	2.50. Scanning for Wireless Access Points
	2.51. Choosing a Wireless Network
	2.52. WPA2 Setup
	2.53. Choose IPv4 Networking
	2.54. Choose IPv4 DHCP
	 Configuration
	2.55. IPv4 Static Configuration
	2.56. Choose IPv6 Networking
	2.57. Choose IPv6 SLAAC Configuration
	2.58. IPv6 Static Configuration
	2.59. DNS Configuration
	2.60. Choosing a Mirror
	32.1. PXE Booting Process with
	 NFS Root Mount

List of Tables
	2.1. Partitioning Schemes
	3.1. Utilities for Managing User Accounts
	3.2. UNIX® Permissions
	3.3. Disk Device Names
	3.4. Common Environment Variables
	5.1. XDM Configuration Files
	7.1. Common Error Messages
	9.1. Output PDLs
	13.1. Loader Built-In Commands
	13.2. Kernel Interaction During Boot
	14.1. Login Class Resource Limits
	17.1. Default Audit Event Classes
	17.2. Prefixes for Audit Event Classes
	23.1. Common Language and Country Codes
	23.2. Defined Terminal Types for Character Sets
	23.3. Available Console from Ports Collection
	23.4. Available Input Methods
	24.1. FreeBSD Versions and Repository Paths
	27.1. RS-232C Signal Names
	27.2. DB-25 to DB-25 Null-Modem Cable
	27.3. DB-9 to DB-9 Null-Modem Cable
	27.4. DB-9 to DB-25 Null-Modem Cable
	30.1. NIS Terminology
	30.2. Additional Users
	30.3. Additional Systems
	30.4. DNS Terminology
	31.1. Useful pfctl Options
	32.1. Commonly Seen Routing Table Flags
	32.2. Station Capability Codes
	32.3. Reserved IPv6 Addresses

List of Examples
	2.1. Creating Traditional Split File System
	 Partitions
	3.1. Install a Program As the Superuser
	3.2. Adding a User on FreeBSD
	3.3. rmuser Interactive Account
	 Removal
	3.4. Using chpass as
	 Superuser
	3.5. Using chpass as Regular
	 User
	3.6. Changing Your Password
	3.7. Changing Another User's Password as the
	 Superuser
	3.8. Adding a Group Using pw(8)
	3.9. Adding User Accounts to a New Group Using
	 pw(8)
	3.10. Adding a New Member to a Group Using pw(8)
	3.11. Using id(1) to Determine Group Membership
	3.12. Sample Disk, Slice, and Partition Names
	3.13. Conceptual Model of a Disk
	5.1. Select Intel® Video Driver in a File
	5.2. Select Radeon Video Driver in a File
	5.3. Select VESA Video Driver in a
		File
	5.4. Select scfb Video Driver in a
		File
	5.5. Set Screen Resolution in a File
	5.6. Manually Setting Monitor Frequencies
	5.7. Setting a Keyboard Layout
	5.8. Setting Multiple Keyboard Layouts
	5.9. Enabling Keyboard Exit from X
	5.10. Setting the Number of Mouse Buttons
	12.1. Sample Log Server Configuration
	12.2. Creating a Swap File
	13.1. boot0 Screenshot
	13.2. boot2 Screenshot
	13.3. Configuring an Insecure Console in
	 /etc/ttys
	14.1. Create a Secure Tunnel for
	 SMTP
	14.2. Secure Access of a POP3
	 Server
	14.3. Bypassing a Firewall
	15.1. mergemaster(8) on Untrusted Jail
	15.2. mergemaster(8) on Trusted Jail
	15.3. Running BIND in a Jail
	18.1. Using dump over
	 ssh
	18.2. Using dump over
	 ssh with RSH
	 Set
	18.3. Backing Up the Current Directory with
	 tar
	18.4. Restoring Up the Current Directory with
	 tar
	18.5. Using ls and cpio
	 to Make a Recursive Backup of the Current Directory
	18.6. Backing Up the Current Directory with
	 pax
	19.1. Labeling Partitions on the Boot Disk
	24.1. Increasing the Number of Build Jobs
	27.1. Configuring Terminal Entries
	30.1. Reloading the inetd
	 Configuration File
	30.2. Mounting an Export with autofs(5)
	30.3. Sample /etc/ntp.conf
	32.1. LACP Aggregation with a Cisco®
	 Switch
	32.2. Failover Mode
	32.3. Failover Mode Between Ethernet and Wireless
	 Interfaces

Chapter 1. Introduction
Restructured, reorganized, and parts rewritten
	 by Jim Mock. 1.1. Synopsis
Thank you for your interest in FreeBSD! The following chapter
 covers various aspects of the FreeBSD Project, such as its
 history, goals, development model, and so on.
After reading this chapter you will know:
	How FreeBSD relates to other computer operating
	 systems.

	The history of the FreeBSD Project.

	The goals of the FreeBSD Project.

	The basics of the FreeBSD open-source development
	 model.

	And of course: where the name “FreeBSD” comes
	 from.

1.2. Welcome to FreeBSD!
FreeBSD is an Open Source, standards-compliant Unix-like
 operating system for x86 (both 32 and 64 bit), ARM®, AArch64,
 RISC-V®, MIPS®, POWER®, PowerPC®, and Sun UltraSPARC®
 computers. It provides all the features that are
 nowadays taken for granted, such as preemptive multitasking,
 memory protection, virtual memory, multi-user facilities, SMP
 support, all the Open Source development tools for different
 languages and frameworks, and desktop features centered around
 X Window System, KDE, or GNOME. Its particular strengths
 are:
	Liberal Open Source license,
	 which grants you rights to freely modify and extend
	 its source code and incorporate it in both Open Source
	 projects and closed products without imposing
	 restrictions typical to copyleft licenses, as well
	 as avoiding potential license incompatibility
	 problems.

	Strong TCP/IP networking
	 - FreeBSD
	 implements industry standard protocols with ever
	 increasing performance and scalability. This makes
	 it a good match in both server, and routing/firewalling
	 roles - and indeed many companies and vendors use it
	 precisely for that purpose.

	Fully integrated OpenZFS support,
	 including root-on-ZFS, ZFS Boot Environments, fault
	 management, administrative delegation, support for jails,
	 FreeBSD specific documentation, and system installer
	 support.

	Extensive security features,
	 from the Mandatory Access Control framework to Capsicum
	 capability and sandbox mechanisms.

	Over 30 thousand prebuilt
	 packages for all supported architectures,
	 and the Ports Collection which makes it easy to build your
	 own, customized ones.

	Documentation - in addition
	 to Handbook and books from different authors that cover
	 topics ranging from system administration to kernel
	 internals, there are also the man(1) pages, not only
	 for userspace daemons, utilities, and configuration files,
	 but also for kernel driver APIs (section 9) and individual
	 drivers (section 4).

	Simple and consistent repository structure
	 and build system - FreeBSD uses a single
	 repository for all of its components, both kernel and
	 userspace. This, along with an unified and easy to
	 customize build system and a well thought out development
	 process makes it easy to integrate FreeBSD with build
	 infrastructure for your own product.

	Staying true to Unix philosophy,
	 preferring composability instead of monolithic “all
	 in one” daemons with hardcoded behavior.

	
	 Binary compatibility with Linux,
	 which makes it possible to run many Linux binaries without
	 the need for virtualisation.

FreeBSD is based on the 4.4BSD-Lite release from Computer
 Systems Research Group (CSRG) at the University of California at Berkeley, and
 carries on the distinguished tradition of BSD systems
 development. In addition to the fine work provided by CSRG,
 the FreeBSD Project has put in many thousands of man-hours
 into extending the functionality and fine-tuning the system
 for maximum performance and reliability
 in real-life load situations. FreeBSD offers performance and
 reliability on par with other Open Source and commercial
 offerings, combined with cutting-edge features not available
 anywhere else.
1.2.1. What Can FreeBSD Do?
The applications to which FreeBSD can be put are truly
	limited only by your own imagination. From software
	development to factory automation, inventory control to
	azimuth correction of remote satellite antennae; if it can be
	done with a commercial UNIX® product then it is more than
	likely that you can do it with FreeBSD too! FreeBSD also benefits
	significantly from literally thousands of high quality
	applications developed by research centers and universities
	around the world, often available at little to no cost.
Because the source code for FreeBSD itself is freely
	available, the system can also be customized to an almost
	unheard of degree for special applications or projects, and in
	ways not generally possible with operating systems from most
	major commercial vendors. Here is just a sampling of some of
	the applications in which people are currently using
	FreeBSD:
	Internet Services: The robust
	 TCP/IP networking built into FreeBSD makes it an ideal
	 platform for a variety of Internet services such
	 as:
	Web servers

	IPv4 and IPv6 routing

	Firewalls
		and NAT
		(“IP masquerading”) gateways

	FTP servers

	
		
		
		Email servers

	And more...

	Education: Are you a student of
	 computer science or a related engineering field? There
	 is no better way of learning about operating systems,
	 computer architecture and networking than the hands on,
	 under the hood experience that FreeBSD can provide. A number
	 of freely available CAD, mathematical and graphic design
	 packages also make it highly useful to those whose primary
	 interest in a computer is to get
	 other work done!

	Research: With source code for
	 the entire system available, FreeBSD is an excellent platform
	 for research in operating systems as well as other
	 branches of computer science. FreeBSD's freely available
	 nature also makes it possible for remote groups to
	 collaborate on ideas or shared development without having
	 to worry about special licensing agreements or limitations
	 on what may be discussed in open forums.

	Networking: Need a new
	 router? A name server (DNS)? A firewall to keep people out of your
	 internal network? FreeBSD can easily turn that unused
	 PC sitting in the corner into an advanced router with
	 sophisticated packet-filtering capabilities.

	Embedded: FreeBSD makes an
	 excellent platform to build embedded systems upon.
	
	 With support for the ARM®, MIPS® and PowerPC®
	 platforms, coupled with a robust network stack, cutting
	 edge features and the permissive BSD
	 license FreeBSD makes an excellent foundation for
	 building embedded routers, firewalls, and other
	 devices.

	
	
	
	
	 Desktop: FreeBSD makes a
	 fine choice for an inexpensive desktop solution
	 using the freely available X11 server.
	 FreeBSD offers a choice from many open-source desktop
	 environments, including the standard
	 GNOME and
	 KDE graphical user interfaces.
	 FreeBSD can even boot “diskless” from
	 a central server, making individual workstations
	 even cheaper and easier to administer.

	Software Development: The basic
	 FreeBSD system comes with a full suite of development
	 tools including a full
	 C/C++
	 compiler and debugger suite.
	 Support for many other languages are also available
	 through the ports and packages collection.

FreeBSD is available to download free of charge, or can be
	obtained on either CD-ROM or DVD. Please see
	Appendix A, Obtaining FreeBSD for more information about obtaining
	FreeBSD.
1.2.2. Who Uses FreeBSD?
FreeBSD has been known for its web serving capabilities -
	sites that run on FreeBSD include
	Hacker News,
	Netcraft,
	NetEase,
	Netflix,
	Sina,
	Sony Japan,
	Rambler,
	Yahoo!, and
	Yandex.

FreeBSD's advanced features, proven security, predictable
	release cycle, and permissive license have led to its use as a
	platform for building many commercial and open source
	appliances, devices, and products. Many of the world's
	largest IT companies use FreeBSD:
	Apache
	 - The Apache Software Foundation runs most of
	 its public facing infrastructure, including possibly one
	 of the largest SVN repositories in the world with over 1.4
	 million commits, on FreeBSD.

	Apple
	 - OS X borrows heavily from FreeBSD for the
	 network stack, virtual file system, and many userland
	 components. Apple iOS also contains elements borrowed
	 from FreeBSD.

	Cisco
	 - IronPort network security and anti-spam
	 appliances run a modified FreeBSD kernel.

	Citrix
	 - The NetScaler line of security appliances
	 provide layer 4-7 load balancing, content caching,
	 application firewall, secure VPN, and mobile cloud network
	 access, along with the power of a FreeBSD shell.

	Dell EMC Isilon
	 - Isilon's enterprise storage appliances
	 are based on FreeBSD. The extremely liberal FreeBSD license
	 allowed Isilon to integrate their intellectual property
	 throughout the kernel and focus on building their product
	 instead of an operating system.

	Quest
	 KACE
	 - The KACE system management appliances run
	 FreeBSD because of its reliability, scalability, and the
	 community that supports its continued development.

	iXsystems
	 - The TrueNAS line of unified storage
	 appliances is based on FreeBSD. In addition to their
	 commercial products, iXsystems also manages development of
	 the open source projects TrueOS and FreeNAS.

	Juniper
	 - The JunOS operating system that powers all
	 Juniper networking gear (including routers, switches,
	 security, and networking appliances) is based on FreeBSD.
	 Juniper is one of many vendors that showcases the
	 symbiotic relationship between the project and vendors of
	 commercial products. Improvements generated at Juniper
	 are upstreamed into FreeBSD to reduce the complexity of
	 integrating new features from FreeBSD back into JunOS in the
	 future.

	McAfee
	 - SecurOS, the basis of McAfee enterprise
	 firewall products including Sidewinder is based on
	 FreeBSD.

	NetApp
	 - The Data ONTAP GX line of storage
	 appliances are based on FreeBSD. In addition, NetApp has
	 contributed back many features, including the new BSD
	 licensed hypervisor, bhyve.

	Netflix
	 - The OpenConnect appliance that Netflix
	 uses to stream movies to its customers is based on FreeBSD.
	 Netflix has made extensive contributions to the codebase
	 and works to maintain a zero delta from mainline FreeBSD.
	 Netflix OpenConnect appliances are responsible for
	 delivering more than 32% of all Internet traffic in North
	 America.

	Sandvine
	 - Sandvine uses FreeBSD as the basis of their
	 high performance real-time network processing platforms
	 that make up their intelligent network policy control
	 products.

	Sony
	 - The PlayStation 4 gaming console runs a
	 modified version of FreeBSD.

	Sophos
	 - The Sophos Email Appliance product is based
	 on a hardened FreeBSD and scans inbound mail for spam and
	 viruses, while also monitoring outbound mail for malware
	 as well as the accidental loss of sensitive
	 information.

	Spectra
	 Logic
	 - The nTier line of archive grade storage
	 appliances run FreeBSD and OpenZFS.

	Stormshield
	 - Stormshield Network Security appliances
	 are based on a hardened version of FreeBSD. The BSD license
	 allows them to integrate their own intellectual property with
	 the system while returning a great deal of interesting
	 development to the community.

	The Weather
	 Channel
	 - The IntelliStar appliance that is installed
	 at each local cable provider's headend and is responsible
	 for injecting local weather forecasts into the cable TV
	 network's programming runs FreeBSD.

	Verisign
	 - Verisign is responsible for operating the
	 .com and .net root domain registries as well as the
	 accompanying DNS infrastructure. They rely on a number of
	 different network operating systems including FreeBSD to
	 ensure there is no common point of failure in their
	 infrastructure.

	Voxer
	 - Voxer powers their mobile voice messaging
	 platform with ZFS on FreeBSD. Voxer switched from a Solaris
	 derivative to FreeBSD because of its superior documentation,
	 larger and more active community, and more developer
	 friendly environment. In addition to critical features
	 like ZFS and DTrace, FreeBSD also offers
	 TRIM support for ZFS.

	Fudo
	 Security
	 - The FUDO security appliance allows
	 enterprises to monitor, control, record, and audit
	 contractors and administrators who work on their systems.
	 Based on all of the best security features of FreeBSD
	 including ZFS, GELI, Capsicum, HAST, and
	 auditdistd.

FreeBSD has also spawned a number of related open source
	projects:
	BSD
	 Router
	 - A FreeBSD based replacement for large
	 enterprise routers designed to run on standard PC
	 hardware.

	FreeNAS
	 - A customized FreeBSD designed to be used as a
	 network file server appliance. Provides a python based
	 web interface to simplify the management of both the UFS
	 and ZFS file systems. Includes support for NFS, SMB/CIFS,
	 AFP, FTP, and iSCSI. Includes an extensible plugin system
	 based on FreeBSD jails.

	GhostBSD
	 - is derived from FreeBSD, uses the GTK
	 environment to provide a beautiful looks and comfortable
	 experience on the modern BSD platform offering a natural
	 and native UNIX® work environment.

	mfsBSD
	 - A toolkit for building a FreeBSD system image
	 that runs entirely from memory.

	NAS4Free
	 - A file server distribution based on FreeBSD
	 with a PHP powered web interface.

	OPNSense
	 - OPNsense is an open source, easy-to-use and
	 easy-to-build FreeBSD based firewall and routing platform.
	 OPNsense includes most of the features available in
	 expensive commercial firewalls, and more in many cases.
	 It brings the rich feature set of commercial offerings
	 with the benefits of open and verifiable sources.

	TrueOS
	 - TrueOS is based on the legendary security
	 and stability of FreeBSD. TrueOS follows FreeBSD-CURRENT, with
	 the latest drivers, security updates, and packages
	 available.

	MidnightBSD
	 - is a FreeBSD derived operating system
	 developed with desktop users in mind. It includes all the
	 software you'd expect for your daily tasks: mail,
	 web browsing, word processing, gaming, and much
	 more.

	NomadBSD
	 - is a persistent live system for USB flash
	 drives, based on FreeBSD. Together with automatic hardware
	 detection and setup, it is configured to be used as a
	 desktop system that works out of the box, but can also be
	 used for data recovery, for educational purposes, or to
	 test FreeBSD's hardware compatibility.

	pfSense
	 - A firewall distribution based on FreeBSD with
	 a huge array of features and extensive IPv6
	 support.

	ZRouter
	 - An open source alternative firmware for
	 embedded devices based on FreeBSD. Designed to replace the
	 proprietary firmware on off-the-shelf routers.

A list of
	 testimonials from companies basing their products and
	 services on FreeBSD can be found at the FreeBSD
	 Foundation website. Wikipedia also maintains a list
	 of products based on FreeBSD.
1.3. About the FreeBSD Project
The following section provides some background information
 on the project, including a brief history, project goals, and
 the development model of the project.
1.3.1. A Brief History of FreeBSD
The FreeBSD Project had its genesis in the early part
	of 1993, partially as the brainchild of the Unofficial
	386BSDPatchkit's last 3 coordinators: Nate Williams,
	Rod Grimes and Jordan Hubbard.
The original goal was to produce an intermediate snapshot
	of 386BSD in order to fix a number of problems that
	the patchkit mechanism was just not capable of solving. The
	early working title for the project was 386BSD 0.5 or 386BSD
	Interim in reference of that fact.
386BSD was Bill Jolitz's operating system, which had been
	up to that point suffering rather severely from almost a
	year's worth of neglect. As the patchkit swelled ever more
	uncomfortably with each passing day, they decided to assist
	Bill by providing this interim “cleanup”
	snapshot. Those plans came to a rude halt when Bill Jolitz
	suddenly decided to withdraw his sanction from the project
	without any clear indication of what would be done
	instead.
The trio thought that the goal remained worthwhile, even
	without Bill's support, and so they adopted the name "FreeBSD"
	coined by David Greenman. The initial objectives were set
	after consulting with the system's current users and, once it
	became clear that the project was on the road to perhaps even
	becoming a reality, Jordan contacted Walnut Creek CDROM with
	an eye toward improving FreeBSD's distribution channels for those
	many unfortunates without easy access to the Internet. Walnut
	Creek CDROM not only supported the idea of distributing FreeBSD
	on CD but also went so far as to provide the project with a
	machine to work on and a fast Internet connection. Without
	Walnut Creek CDROM's almost unprecedented degree of faith in
	what was, at the time, a completely unknown project, it is
	quite unlikely that FreeBSD would have gotten as far, as fast, as
	it has today.
The first CD-ROM (and general net-wide) distribution was
	FreeBSD 1.0, released in December of 1993. This was based
	on the 4.3BSD-Lite (“Net/2”) tape from U.C.
	Berkeley, with many components also provided by 386BSD and the
	Free Software Foundation. It was a fairly reasonable success
	for a first offering, and they followed it with the highly
	successful FreeBSD 1.1 release in May of 1994.
Around this time, some rather unexpected storm clouds
	formed on the horizon as Novell and U.C. Berkeley settled
	their long-running lawsuit over the legal status of the
	Berkeley Net/2 tape. A condition of that settlement was U.C.
	Berkeley's concession that large parts of Net/2 were
	“encumbered” code and the property of Novell, who
	had in turn acquired it from AT&T some time previously.
	What Berkeley got in return was Novell's
	“blessing” that the 4.4BSD-Lite release, when
	it was finally released, would be declared unencumbered and
	all existing Net/2 users would be strongly encouraged to
	switch. This included FreeBSD, and the project was given until
	the end of July 1994 to stop shipping its own Net/2 based
	product. Under the terms of that agreement, the project was
	allowed one last release before the deadline, that release
	being FreeBSD 1.1.5.1.
FreeBSD then set about the arduous task of literally
	re-inventing itself from a completely new and rather
	incomplete set of 4.4BSD-Lite bits. The “Lite”
	releases were light in part because Berkeley's CSRG had
	removed large chunks of code required for actually
	constructing a bootable running system (due to various legal
	requirements) and the fact that the Intel port of 4.4 was
	highly incomplete. It took the project until November of 1994
	to make this transition, and in December it released
	FreeBSD 2.0 to the world. Despite being still more than a
	little rough around the edges, the release was a significant
	success and was followed by the more robust and easier to
	install FreeBSD 2.0.5 release in June of 1995.
Since that time, FreeBSD has made a series of releases each
	time improving the stability, speed, and feature set of the
	previous version.
For now, long-term development projects continue to take
	place in the 10.X-CURRENT (trunk) branch, and snapshot
	releases of 10.X are continually made available from the
	 snapshot server as work progresses.
1.3.2. FreeBSD Project Goals
Contributed by Jordan Hubbard. The goals of the FreeBSD Project are to provide software
	that may be used for any purpose and without strings attached.
	Many of us have a significant investment in the code (and
	project) and would certainly not mind a little financial
	compensation now and then, but we are definitely not prepared
	to insist on it. We believe that our first and foremost
	“mission” is to provide code to any and all
	comers, and for whatever purpose, so that the code gets the
	widest possible use and provides the widest possible benefit.
	This is, I believe, one of the most fundamental goals of Free
	Software and one that we enthusiastically support.
That code in our source tree which falls under the GNU
	General Public License (GPL) or Library General Public License
	(LGPL) comes with slightly more strings attached, though at
	least on the side of enforced access rather than the usual
	opposite. Due to the additional complexities that can evolve
	in the commercial use of GPL software we do, however, prefer
	software submitted under the more relaxed BSD license when
	it is a reasonable option to do so.
1.3.3. The FreeBSD Development Model
Contributed by Satoshi Asami. The development of FreeBSD is a very open and flexible
	process, being literally built from the contributions of
	thousands of people around the world, as can be seen from our
	list
	 of contributors. FreeBSD's development infrastructure
	allow these thousands of contributors to collaborate over the
	Internet. We are constantly on the lookout for new developers
	and ideas, and those interested in becoming more closely
	involved with the project need simply contact us at the
	FreeBSD technical discussions mailing list. The FreeBSD announcements mailing list is also available to those
	wishing to make other FreeBSD users aware of major areas of
	work.
Useful things to know about the FreeBSD Project and its
	development process, whether working independently or in close
	cooperation:
	The SVN repositories
	
	

	

	

	

	

	
	 For several years, the central source tree for FreeBSD
	 was maintained by
	 CVS
	 (Concurrent Versions System), a freely available source
	 code control tool. In June 2008, the Project switched
	 to using SVN
	 (Subversion). The switch was deemed necessary, as the
	 technical limitations imposed by
	 CVS were becoming obvious due
	 to the rapid expansion of the source tree and the amount
	 of history already stored. The Documentation Project
	 and Ports Collection repositories also moved from
	 CVS to
	 SVN in May 2012 and July
	 2012, respectively. Please refer to the Obtaining the Source
		section for more information on obtaining the
		FreeBSD src/ repository and Using the Ports
		Collection for details on obtaining the FreeBSD
	 Ports Collection.

	The committers list
	The committers
	 are the people who have
	 write access to the Subversion
	 tree, and are authorized to make modifications to the
	 FreeBSD source (the term “committer” comes
	 from commit, the source control
	 command which is used to bring new changes into the
	 repository). Anyone can submit a bug to the Bug
	 Database. Before submitting a bug report, the
	 FreeBSD mailing lists, IRC channels, or forums can be used to
	 help verify that an issue is actually a bug.

	The FreeBSD core team
	The FreeBSD core team
	 would be equivalent to the board of
	 directors if the FreeBSD Project were a company. The
	 primary task of the core team is to make sure the
	 project, as a whole, is in good shape and is heading in
	 the right directions. Inviting dedicated and
	 responsible developers to join our group of committers
	 is one of the functions of the core team, as is the
	 recruitment of new core team members as others move on.
	 The current core team was elected from a pool of
	 committer candidates in June 2020. Elections are held
	 every 2 years.
Note:
Like most developers, most members of the
		core team are also volunteers when
		it comes to FreeBSD development and do not benefit from
		the project financially, so “commitment”
		should also not be misconstrued as meaning
		“guaranteed support.” The
		“board of directors” analogy above is not
		very accurate, and it may be more suitable to say that
		these are the people who gave up their lives in favor
		of FreeBSD against their better judgement!

	Outside contributors
	Last, but definitely not least, the largest group of
	 developers are the users themselves who provide feedback
	 and bug fixes to us on an almost constant basis. The
	 primary way of keeping in touch with FreeBSD's more
	 non-centralized development is to subscribe to the
	 FreeBSD technical discussions mailing list where such things are discussed. See
	 Appendix C, Resources on the Internet for more information about
	 the various FreeBSD mailing lists.
The
		 FreeBSD Contributors List
	 is a long and growing one, so why not join
	 it by contributing something back to FreeBSD today?
Providing code is not the only way of contributing
	 to the project; for a more complete list of things that
	 need doing, please refer to the FreeBSD Project
		web site.

In summary, our development model is organized as a loose
	set of concentric circles. The centralized model is designed
	for the convenience of the users of FreeBSD,
	who are provided with an easy way of tracking one central code
	base, not to keep potential contributors out! Our desire is to
	present a stable operating system with a large set of coherent
	application programs that the
	users can easily install and use — this model works very
	well in accomplishing that.
All we ask of those who would join us as FreeBSD developers
	is some of the same dedication its current people have to its
	continued success!
1.3.4. Third Party Programs
In addition to the base distributions, FreeBSD offers a
	ported software collection with thousands of commonly
	sought-after programs. At the time of this writing, there
	were over 24,000 ports! The list of ports ranges from
	http servers, to games, languages, editors, and almost
	everything in between. The entire Ports Collection requires
	approximately 500 MB. To compile a port, you simply
	change to the directory of the program you wish to install,
	type make install, and let the system do
	the rest. The full original distribution for each port you
	build is retrieved dynamically so you need only enough disk
	space to build the ports you want. Almost every port is also
	provided as a pre-compiled “package”, which can
	be installed with a simple command
	(pkg install) by those who do not wish to
	compile their own ports from source. More information on
	packages and ports can be found in
	Chapter 4, Installing Applications: Packages and Ports.
1.3.5. Additional Documentation
All supported FreeBSD versions provide an option in the
	installer to
	install additional documentation under
	/usr/local/share/doc/freebsd during the
	initial system setup. Documentation may also be installed at
	any later time using packages as described in
	Section 24.3.2, “Updating Documentation from Ports”. You may view the
	locally installed manuals with any HTML capable browser using
	the following URLs:
	The FreeBSD Handbook
	/usr/local/share/doc/freebsd/handbook/index.html

	The FreeBSD FAQ
	/usr/local/share/doc/freebsd/faq/index.html

You can also view the master (and most frequently updated)
	copies at https://www.FreeBSD.org/.
Chapter 2. Installing FreeBSD
Restructured, reorganized, and parts rewritten
	 by Jim Mock. Updated for bsdinstall by Gavin Atkinson and Warren Block. Updated for root-on-ZFS by Allan Jude. 2.1. Synopsis
There are several different ways of getting FreeBSD to run,
 depending on the environment. Those are:
	Virtual Machine images, to download and import on a
	 virtual environment of choice. These can be downloaded from
	 the Download
	 FreeBSD page. There are images for KVM
	 (“qcow2”), VMWare (“vmdk”),
	 Hyper-V (“vhd”), and raw device images that are
	 universally supported. These are not installation images,
	 but rather the preconfigured (“already
	 installed”) instances, ready to run and perform
	 post-installation tasks.

	Virtual Machine images available at Amazon's AWS
	 Marketplace, Microsoft
	 Azure Marketplace, and Google
	 Cloud Platform, to run on their respective hosting
	 services. For more information on deploying FreeBSD on Azure
	 please consult the relevant chapter in the Azure
	 Documentation.

	SD card images, for embedded systems such as Raspberry
	 Pi or BeagleBone Black. These can be downloaded from the
	 Download
	 FreeBSD page. These files must be uncompressed and
	 written as a raw image to an SD card, from which the board
	 will then boot.

	Installation images, to install FreeBSD on
	 a hard drive for the usual desktop, laptop, or server
	 systems.

The rest of this chapter describes the fourth case,
 explaining how to install FreeBSD using the text-based
 installation program named
 bsdinstall.
In general, the installation instructions in this chapter
 are written for the i386™ and AMD64
 architectures. Where applicable, instructions specific to other
 platforms will be listed. There may be minor differences
 between the installer and what is shown here, so use this
 chapter as a general guide rather than as a set of literal
 instructions.
Note:
Users who prefer to install FreeBSD using a graphical
 installer may be interested in
 GhostBSD,
 MidnightBSD or
 NomadBSD.

After reading this chapter, you will know:
	The minimum hardware requirements and FreeBSD supported
	 architectures.

	How to create the FreeBSD installation media.

	How to start
	 bsdinstall.

	The questions bsdinstall will
	 ask, what they mean, and how to answer them.

	How to troubleshoot a failed installation.

	How to access a live version of FreeBSD before committing
	 to an installation.

Before reading this chapter, you should:
	Read the supported hardware list that shipped with the
	 version of FreeBSD to be installed and verify that the system's
	 hardware is supported.

2.2. Minimum Hardware Requirements
The hardware requirements to install FreeBSD vary by
 architecture. Hardware architectures and devices supported by a
 FreeBSD release are listed on the FreeBSD Release
 Information page. The FreeBSD download page
 also has recommendations for choosing the correct image for
 different architectures.
A FreeBSD installation requires a minimum of 96 MB of
 RAM and 1.5 GB of free hard drive space.
 However, such small amounts of memory and disk space are really
 only suitable for custom applications like embedded appliances.
 General-purpose desktop systems need more resources.
 2-4 GB RAM and at least 8 GB hard drive space is a
 good starting point.
These are the processor requirements for each
 architecture:
	amd64
	This is the most common desktop and laptop processor
	 type, used in most modern systems. Intel® calls it
	 Intel64. Other manufacturers sometimes
	 call it x86-64.
Examples of amd64 compatible processors
	 include: AMD Athlon™64, AMD Opteron™,
	 multi-core Intel® Xeon™, and
	 Intel® Core™ 2 and later processors.

	i386
	Older desktops and laptops often use this 32-bit, x86
	 architecture.
Almost all i386-compatible processors with a floating
	 point unit are supported. All Intel® processors 486 or
	 higher are supported.
FreeBSD will take advantage of Physical Address
	 Extensions (PAE) support on
	 CPUs with this feature. A kernel with
	 the PAE feature enabled will detect
	 memory above 4 GB and allow it to be used by the
	 system. However, using PAE places
	 constraints on device drivers and other features of
	 FreeBSD.

	powerpc
	All New World ROM Apple®
	 Mac® systems with built-in USB
	 are supported. SMP is supported on
	 machines with multiple CPUs.
A 32-bit kernel can only use the first 2 GB of
	 RAM.

	sparc64
	Systems supported by FreeBSD/sparc64 are listed at
	 the FreeBSD/sparc64
	 Project.
SMP is supported on all systems
	 with more than 1 processor. A dedicated disk is required
	 as it is not possible to share a disk with another
	 operating system at this time.

2.5. Using bsdinstall
This section shows the order of the
 bsdinstall menus and the type of
 information that will be asked before the system is installed.
 Use the arrow keys to highlight a menu option, then
 Space to select or deselect that menu item.
 When finished, press Enter to save the
 selection and move onto the next screen.
2.5.1. Selecting the Keymap Menu
Before starting the process,
	bsdinstall will load the keymap
	files as show in Figure 2.4, “Keymap Loading”.
[image: Keymap Loading]

Figure 2.4. Keymap Loading

After the keymaps have been loaded
	bsdinstall displays the
	menu shown in Figure 2.5, “Keymap Selection Menu”. Use the
	up and down arrows to select the keymap that most closely
	represents the mapping of the keyboard attached to the system.
	Press Enter to save the selection.
[image: Keymap Selection Menu]

Figure 2.5. Keymap Selection Menu

Note:
Pressing Esc will exit this menu
	and use the default keymap. If the choice of keymap is not
	clear, United States of America
	ISO-8859-1 is also a safe option.

In addition, when selecting a different keymap, the user
	can try the keymap and ensure it is correct before proceeding
	as shown in Figure 2.6, “Keymap Testing Menu”.
[image: Keymap Testing Menu]

Figure 2.6. Keymap Testing Menu

2.5.2. Setting the Hostname
The next bsdinstall menu is
	used to set the hostname for the newly installed
	system.
[image: Setting the Hostname]

Figure 2.7. Setting the Hostname

Type in a hostname that is unique for the network. It
	should be a fully-qualified hostname, such as machine3.example.com.
2.5.3. Selecting Components to Install
Next, bsdinstall will prompt to
	select optional components to install.
[image: Selecting Components to Install]

Figure 2.8. Selecting Components to Install

Deciding which components to install will depend largely
	on the intended use of the system and the amount of disk space
	available. The FreeBSD kernel and userland, collectively known
	as the base system, are always
	installed. Depending on the architecture, some of these
	components may not appear:
	base-dbg - Base tools like
	 cat,
	 ls among many others with
	 debug symbols activated.

	kernel-dbg - Kernel and modules with
	 debug symbols activated.

	lib32-dbg - Compatibility libraries
	 for running 32-bit applications on a 64-bit version of
	 FreeBSD with debug symbols activated.

	lib32 - Compatibility libraries for
	 running 32-bit applications on a 64-bit version of
	 FreeBSD.

	ports - The FreeBSD Ports Collection
	 is a collection of files which automates the downloading,
	 compiling and installation of third-party software
	 packages. Chapter 4, Installing Applications: Packages and Ports discusses how to use
	 the Ports Collection.
Warning:
The installation program does not check for
	 adequate disk space. Select this option only if
	 sufficient hard disk space is available. The FreeBSD Ports
	 Collection takes up about 500 MB of disk
	 space.

	src - The complete FreeBSD source code
	 for both the kernel and the userland. Although not
	 required for the majority of applications, it may be
	 required to build device drivers, kernel modules, or some
	 applications from the Ports Collection. It is also used
	 for developing FreeBSD itself. The full source tree requires
	 1 GB of disk space and recompiling the entire FreeBSD
	 system requires an additional 5 GB of space.

	tests - FreeBSD Test Suite.

2.5.4. Installing from the Network
The menu shown in
	Figure 2.9, “Installing from the Network” only appears
	when installing from a -bootonly.iso or
	-mini-memstick.img as this installation
	media does not hold copies of the installation files.
	Since the installation files must be retrieved over a network
	connection, this menu indicates that the network interface must
	be configured first. If this menu is shown in any step of the
	process remember to follow the instructions in
	Section 2.9.1, “Configuring Network Interfaces”.
[image: Installing from the Network]

Figure 2.9. Installing from the Network

2.7. Fetching Distribution Files
Installation time will vary depending on the distributions
 chosen, installation media, and speed of the computer. A series
 of messages will indicate the progress.
First, the installer formats the selected disk(s) and
 initializes the partitions. Next, in the case of a
 bootonly media or
 mini memstick, it downloads the selected
 components:
[image: Fetching Distribution Files]

Figure 2.31. Fetching Distribution Files

Next, the integrity of the distribution files is verified
 to ensure they have not been corrupted during download or
 misread from the installation media:
[image: Verifying Distribution Files]

Figure 2.32. Verifying Distribution Files

Finally, the verified distribution files are extracted to
 the disk:
[image: Extracting Distribution Files]

Figure 2.33. Extracting Distribution Files

Once all requested distribution files have been extracted,
 bsdinstall displays the first
 post-installation configuration screen. The available
 post-configuration options are described in the next
 section.
2.8. Accounts, Time Zone, Services and Hardening
2.8.1. Setting the
	root
	Password
First, the root
	password must be set. While entering the password, the
	characters being typed are not displayed on the screen. After
	the password has been entered, it must be entered again. This
	helps prevent typing errors.
[image: Setting the root Password]

Figure 2.34. Setting the root Password

2.8.2. Setting the Time Zone
The next series of menus are used to determine the correct
	local time by selecting the geographic region, country, and
	time zone. Setting the time zone allows the system to
	automatically correct for regional time changes, such as
	daylight savings time, and perform other time zone related
	functions properly.
The example shown here is for a machine located in the
	mainland time zone of Spain, Europe. The selections will
	vary according to the geographical location.
[image: Select a Region]

Figure 2.35. Select a Region

The appropriate region is selected using the arrow keys
	and then pressing Enter.
[image: Select a Country]

Figure 2.36. Select a Country

Select the appropriate country using the arrow keys and
	press Enter.
[image: Select a Time Zone]

Figure 2.37. Select a Time Zone

The appropriate time zone is selected using the arrow keys
	and pressing Enter.
[image: Confirm Time Zone]

Figure 2.38. Confirm Time Zone

Confirm the abbreviation for the time zone is
	correct.
[image: Select Date]

Figure 2.39. Select Date

The appropriate date is selected using the arrow keys
	and then pressing
	[Set Date].
	Otherwise, the date selection can be skipped by pressing
	[Skip].
[image: Select Time]

Figure 2.40. Select Time

The appropriate time is selected using the arrow keys
	and then pressing
	[Set Time].
	Otherwise, the time selection can be skipped by pressing
	[Skip].
2.8.3. Enabling Services
The next menu is used to configure which system services
	will be started whenever the system boots. All of these
	services are optional. Only start the services that are
	needed for the system to function.
[image: Selecting Additional Services to Enable]

Figure 2.41. Selecting Additional Services to Enable

Here is a summary of the services which can be enabled in
	this menu:
	local_unbound - Enable the DNS
	 local unbound. It is necessary to keep in mind that this
	 is the unbound of the base system and is only meant for
	 use as a local caching forwarding resolver. If the
	 objective is to set up a resolver for the entire network
	 install dns/unbound.

	sshd - The Secure Shell
	 (SSH) daemon is used to remotely access
	 a system over an encrypted connection. Only enable this
	 service if the system should be available for remote
	 logins.

	moused - Enable this service if the
	 mouse will be used from the command-line system
	 console.

	ntpdate - Enable the automatic
	 clock synchronization at boot time. The functionality of
	 this program is now available in the ntpd(8) daemon.
	 After a suitable period of mourning, the ntpdate(8)
	 utility will be retired.

	ntpd - The Network Time Protocol
	 (NTP) daemon for automatic clock
	 synchronization. Enable this service if there is a
	 Windows®, Kerberos, or LDAP server on
	 the network.

	powerd - System power control
	 utility for power control and energy saving.

	dumpdev - Enabling crash dumps is
	 useful in debugging issues with the system, so users are
	 encouraged to enable crash dumps.

2.8.4. Enabling Hardening Security Options
The next menu is used to configure which security
	options will be enabled. All of these options are optional.
	But their use is encouraged.
[image: Selecting Hardening Security Options]

Figure 2.42. Selecting Hardening Security Options

Here is a summary of the options which can be enabled in
	this menu:
	hide_uids - Hide processes running
	 as other users to prevent the unprivileged users to see
	 other running processes in execution by other users (UID)
	 preventing information leakage.

	hide_gids - Hide processes running
	 as other groups to prevent the unprivileged users to see
	 other running processes in execution by other groups (GID)
	 preventing information leakage.

	hide_jail - Hide processes running
	 in jails to prevent the unprivileged users to see
	 processes running inside the jails.

	read_msgbuf - Disabling reading
	 kernel message buffer for unprivileged users prevent from
	 using dmesg(8) to view messages from the kernel's log
	 buffer.

	proc_debug - Disabling process
	 debugging facilities for unprivileged users disables
	 a variety of unprivileged inter-process debugging
	 services, including some procfs functionality, ptrace(),
	 and ktrace(). Please note that this will also prevent
	 debugging tools, for instance lldb(1), truss(1),
	 procstat(1), as well as some built-in debugging
	 facilities in certain scripting language like PHP, etc.,
	 from working for unprivileged users.

	random_pid - Randomize the PID of
	 newly created processes.

	clear_tmp - Clean
	 /tmp when the system starts
	 up.

	disable_syslogd - Disable opening
	 syslogd network socket. By
	 default FreeBSD runs syslogd in a
	 secure way with -s. That prevents the
	 daemon from listening for incoming UDP requests
	 at port 514. With this option enabled
	 syslogd will run with the flag
	 -ss which prevents
	 syslogd from opening any port.
	 To get more information consult syslogd(8).

	disable_sendmail - Disable the
	 sendmail mail transport agent.

	secure_console - When this option
	 is enabled, the prompt requests the root password when
	 entering single-user mode.

	disable_ddtrace - DTrace can run
	 in a mode that will actually affect the running kernel.
	 Destructive actions may not be used unless they have
	 been explicitly enabled. To enable this option when using
	 DTrace use -w. To get more
	 information consult dtrace(1).

2.8.5. Add Users
The next menu prompts to create at least one user account.
	It is recommended to login to the system using a user account
	rather than as root.
	When logged in as root, there are essentially no
	limits or protection on what can be done. Logging in as a
	normal user is safer and more secure.
Select [Yes] to add new
	users.
[image: Add User Accounts]

Figure 2.43. Add User Accounts

Follow the prompts and input the requested information for
	the user account. The example shown in Figure 2.44, “Enter User Information” creates the asample user account.
[image: Enter User Information]

Figure 2.44. Enter User Information

Here is a summary of the information to input:
	Username - The name the user will
	 enter to log in. A common convention is to use the first
	 letter of the first name combined with the last name, as
	 long as each username is unique for the system. The
	 username is case sensitive and should not contain any
	 spaces.

	Full name - The user's full name.
	 This can contain spaces and is used as a description for
	 the user account.

	Uid - User ID.
	 Typically, this is left blank so the system will assign a
	 value.

	Login group - The user's group.
	 Typically this is left blank to accept the default.

	Invite user into
	 other groups? - Additional groups to which the
	 user will be added as a member. If the user needs
	 administrative access, type wheel
	 here.

	Login class - Typically left blank
	 for the default.

	Shell - Type in one of the listed
	 values to set the interactive shell for the user. Refer
	 to Section 3.9, “Shells” for more information about
	 shells.

	Home directory - The user's home
	 directory. The default is usually correct.

	Home directory permissions -
	 Permissions on the user's home directory. The default is
	 usually correct.

	Use password-based authentication?
	 - Typically yes so that the user is
	 prompted to input their password at login.

	Use an empty password? -
	 Typically no as it is insecure to have
	 a blank password.

	Use a random password? - Typically
	 no so that the user can set their own
	 password in the next prompt.

	Enter password - The password for
	 this user. Characters typed will not show on the
	 screen.

	Enter password again - The password
	 must be typed again for verification.

	Lock out the account after
	 creation? - Typically no so
	 that the user can login.

After entering everything, a summary is shown for review.
	If a mistake was made, enter no and try
	again. If everything is correct, enter yes
	to create the new user.
[image: Exit User and Group Management]

Figure 2.45. Exit User and Group Management

If there are more users to add, answer the Add
	 another user? question with
	yes. Enter no to finish
	adding users and continue the installation.
For more information on adding users and user management,
	see Section 3.3, “Users and Basic Account Management”.
2.8.6. Final Configuration
After everything has been installed and configured, a
	final chance is provided to modify settings.
[image: Final Configuration]

Figure 2.46. Final Configuration

Use this menu to make any changes or do any additional
	configuration before completing the installation.
	Add User - Described in Section 2.8.5, “Add Users”.

	Root Password - Described in Section 2.8.1, “Setting the
	root
	Password”.

	Hostname - Described in Section 2.5.2, “Setting the Hostname”.

	Network - Described in Section 2.9.1, “Configuring Network Interfaces”.

	Services - Described in Section 2.8.3, “Enabling Services”.

	System Hardening - Described in
	 Section 2.8.4, “Enabling Hardening Security Options”.

	Time Zone - Described in Section 2.8.2, “Setting the Time Zone”.

	Handbook - Download and install the
	 FreeBSD Handbook.

After any final configuration is complete, select
	Exit.
[image: Manual Configuration]

Figure 2.47. Manual Configuration

bsdinstall will prompt if there
	are any additional configuration that needs to be done before
	rebooting into the new system. Select
	[Yes] to exit to a shell
	within the new system or
	[No] to proceed to the last
	step of the installation.
[image: Complete the Installation]

Figure 2.48. Complete the Installation

If further configuration or special setup is needed,
	select [Live CD] to
	boot the install media into Live CD
	mode.
If the installation is complete, select
	[Reboot] to reboot the
	computer and start the new FreeBSD system. Do not forget to
	remove the FreeBSD install media or the computer may boot from it
	again.
As FreeBSD boots, informational messages are displayed.
	After the system finishes booting, a login prompt is
	displayed. At the login: prompt, enter the
	username added during the installation. Avoid logging in as
	root. Refer to
	Section 3.3.1.3, “The Superuser Account” for instructions on how to
	become the superuser when administrative access is
	needed.
The messages that appeared during boot can be reviewed by
	pressing Scroll-Lock to turn on the
	scroll-back buffer. The PgUp,
	PgDn, and arrow keys can be used to scroll
	back through the messages. When finished, press
	Scroll-Lock again to unlock the display and
	return to the console. To review these messages once the
	system has been up for some time, type less
	 /var/run/dmesg.boot from a command prompt. Press
	q to return to the command line after
	viewing.
If sshd was enabled in Figure 2.41, “Selecting Additional Services to Enable”, the first boot may be
	a bit slower as the system will generate the
	RSA and DSA keys.
	Subsequent boots will be faster. The fingerprints of the keys
	will be displayed, as seen in this example:
Generating public/private rsa1 key pair.
Your identification has been saved in /etc/ssh/ssh_host_key.
Your public key has been saved in /etc/ssh/ssh_host_key.pub.
The key fingerprint is:
10:a0:f5:af:93:ae:a3:1a:b2:bb:3c:35:d9:5a:b3:f3 root@machine3.example.com
The key's randomart image is:
+--[RSA1 1024]----+
| o.. |
| o . . |
| . o |
| o |
| o S |
| + + o |
|o . + * |
|o+ ..+ . |
|==o..o+E |
+-----------------+
Generating public/private dsa key pair.
Your identification has been saved in /etc/ssh/ssh_host_dsa_key.
Your public key has been saved in /etc/ssh/ssh_host_dsa_key.pub.
The key fingerprint is:
7e:1c:ce:dc:8a:3a:18:13:5b:34:b5:cf:d9:d1:47:b2 root@machine3.example.com
The key's randomart image is:
+--[DSA 1024]----+
| |
| o . . + |
| E .|
| . . o o . . |
| + S = . |
| + . = o |
| + . * . |
| . . o . |
| .o. . |
+-----------------+
Starting sshd.
Refer to Section 14.8, “OpenSSH” for more information
	about fingerprints and SSH.
FreeBSD does not install a graphical environment by default.
	Refer to Chapter 5, The X Window System for more information about
	installing and configuring a graphical window manager.
Proper shutdown of a FreeBSD computer helps protect data and
	hardware from damage. Do not turn off the power
	before the system has been properly shut down! If
	the user is a member of the wheel group, become the
	superuser by typing su at the command line
	and entering the root password. Then, type
	shutdown -p now and the system will shut
	down cleanly, and if the hardware supports it, turn itself
	off.
2.9. Network Interfaces
2.9.1. Configuring Network Interfaces
Next, a list of the network interfaces found on the
	computer is shown. Select the interface to configure.
[image: Choose a Network Interface]

Figure 2.49. Choose a Network Interface

If an Ethernet interface is selected, the installer will
	skip ahead to the menu shown in Figure 2.53, “Choose IPv4 Networking”. If a wireless
	network interface is chosen, the system will instead scan for
	wireless access points:
[image: Scanning for Wireless Access Points]

Figure 2.50. Scanning for Wireless Access Points

Wireless networks are identified by a Service Set
	Identifier (SSID), a short, unique name
	given to each network. SSIDs found during
	the scan are listed, followed by a description of the
	encryption types available for that network. If the desired
	SSID does not appear in the list, select
	[Rescan] to scan again. If
	the desired network still does not appear, check for problems
	with antenna connections or try moving the computer closer to
	the access point. Rescan after each change is made.
[image: Choosing a Wireless Network]

Figure 2.51. Choosing a Wireless Network

Next, enter the encryption information for connecting to
	the selected wireless network. WPA2
	encryption is strongly recommended as older encryption types,
	like WEP, offer little security. If the
	network uses WPA2, input the password, also
	known as the Pre-Shared Key (PSK). For
	security reasons, the characters typed into the input box are
	displayed as asterisks.
[image: WPA2 Setup]

Figure 2.52. WPA2 Setup

Next, choose whether or not an IPv4
	address should be configured on the Ethernet or wireless
	interface:
[image: Choose IPv4 Networking]

Figure 2.53. Choose IPv4 Networking

There are two methods of IPv4
	configuration. DHCP will automatically
	configure the network interface correctly and should be used
	if the network provides a DHCP server.
	Otherwise, the addressing information needs to be input
	manually as a static configuration.
Note:
Do not enter random network information as it will not
	 work. If a DHCP server is not available,
	 obtain the information listed in Required Network Information from
	 the network administrator or Internet service
	 provider.

If a DHCP server is available, select
	[Yes] in the next menu to
	automatically configure the network interface. The installer
	will appear to pause for a minute or so as it finds the
	DHCP server and obtains the addressing
	information for the system.
[image: Choose IPv4 DHCP Configuration]

Figure 2.54. Choose IPv4 DHCP
	 Configuration

If a DHCP server is not available,
	select [No] and input the
	following addressing information in this menu:
[image: IPv4 Static Configuration]

Figure 2.55. IPv4 Static Configuration

	IP Address - The
	 IPv4 address assigned to this computer.
	 The address must be unique and not already in use by
	 another piece of equipment on the local network.

	Subnet Mask - The subnet mask for
	 the network.

	Default Router - The
	 IP address of the network's default
	 gateway.

The next screen will ask if the interface should be
	configured for IPv6. If
	IPv6 is available and desired, choose
	[Yes] to select it.
[image: Choose IPv6 Networking]

Figure 2.56. Choose IPv6 Networking

IPv6 also has two methods of
	configuration. StateLess Address AutoConfiguration
	(SLAAC) will automatically request the
	correct configuration information from a local router. Refer
	to rfc4862
	for more information. Static configuration requires manual
	entry of network information.
If an IPv6 router is available, select
	[Yes] in the next menu to
	automatically configure the network interface. The installer
	will appear to pause for a minute or so as it finds the router
	and obtains the addressing information for the system.
[image: Choose IPv6 SLAAC Configuration]

Figure 2.57. Choose IPv6 SLAAC Configuration

If an IPv6 router is not available,
	select [No] and input the
	following addressing information in this menu:
[image: IPv6 Static Configuration]

Figure 2.58. IPv6 Static Configuration

	IPv6 Address - The
	 IPv6 address assigned to this computer.
	 The address must be unique and not already in use by
	 another piece of equipment on the local network.

	Default Router - The
	 IPv6 address of the network's default
	 gateway.

The last network configuration menu is used to configure
	the Domain Name System (DNS) resolver,
	which converts hostnames to and from network addresses. If
	DHCP or SLAAC was used
	to autoconfigure the network interface, the Resolver
	 Configuration values may already be filled in.
	Otherwise, enter the local network's domain name in the
	Search field. DNS #1
	and DNS #2 are the IPv4
	and/or IPv6 addresses of the
	DNS servers. At least one
	DNS server is required.
[image: DNS Configuration]

Figure 2.59. DNS Configuration

Once the interface is configured, select a mirror site
	that is located in the same region of the world as the
	computer on which FreeBSD is being installed. Files can be
	retrieved more quickly when the mirror is close to the
	target computer, reducing installation time.
[image: Choosing a Mirror]

Figure 2.60. Choosing a Mirror

2.11. Using the Live CD
The welcome menu of bsdinstall,
 shown in Figure 2.3, “Welcome Menu”, provides a
 [Live CD] option. This
 is useful for those who are still wondering whether FreeBSD is the
 right operating system for them and want to test some of the
 features before installing.
The following points should be noted before using the
 [Live CD]:
	To gain access to the system, authentication is
	 required. The username is root and the password is
	 blank.

	As the system runs directly from the installation media,
	 performance will be significantly slower than that of a
	 system installed on a hard disk.

	This option only provides a command prompt and not a
	 graphical interface.

3.3. Users and Basic Account Management
FreeBSD allows multiple users to use the computer at the same
 time. While only one user can sit in front of the screen and
 use the keyboard at any one time, any number of users can log
 in to the system through the network. To use the system, each
 user should have their own user account.
This chapter describes:
	The different types of user accounts on a
	 FreeBSD system.

	How to add, remove, and modify user accounts.

	How to set limits to control the
	 resources that users and
	 groups are allowed to access.

	How to create groups and add users as members of a
	 group.

3.3.1. Account Types
Since all access to the FreeBSD system is achieved using
	accounts and all processes are run by users, user and account
	management is important.
There are three main types of accounts: system accounts,
	user accounts, and the superuser account.
3.3.1.1. System Accounts
System accounts are used to run services such as DNS,
	 mail, and web servers. The reason for this is security; if
	 all services ran as the superuser, they could act without
	 restriction.
Examples of system accounts are
	 daemon,
	 operator,
	 bind,
	 news, and
	 www.
Warning:
Care must be taken when using the operator group, as
	 unintended superuser-like access privileges may be
	 granted, including but not limited to shutdown, reboot,
	 and access to all items in /dev
	 in the group.

nobody is the
	 generic unprivileged system account. However, the more
	 services that use
	 nobody, the more
	 files and processes that user will become associated with,
	 and hence the more privileged that user becomes.
3.3.1.2. User Accounts
User accounts are assigned to real people and are used
	 to log in and use the system. Every person accessing the
	 system should have a unique user account. This allows the
	 administrator to find out who is doing what and prevents
	 users from clobbering the settings of other users.
Each user can set up their own environment to
	 accommodate their use of the system, by configuring their
	 default shell, editor, key bindings, and language
	 settings.
Every user account on a FreeBSD system has certain
	 information associated with it:
	User name
	The user name is typed at the
		login: prompt. Each user must have
		a unique user name. There are a number of rules for
		creating valid user names which are documented in
		passwd(5). It is recommended to use user names
		that consist of eight or fewer, all lower case
		characters in order to maintain backwards
		compatibility with applications.

	Password
	Each account has an associated password.

	User ID (UID)
	The User ID (UID) is a number
		used to uniquely identify the user to the FreeBSD system.
		Commands that allow a user name to be specified will
		first convert it to the UID. It is
		recommended to use a UID less than 65535, since higher
		values may cause compatibility issues with some
		software.

	Group ID (GID)
	The Group ID (GID) is a number
		used to uniquely identify the primary group that the
		user belongs to. Groups are a mechanism for
		controlling access to resources based on a user's
		GID rather than their
		UID. This can significantly reduce
		the size of some configuration files and allows users
		to be members of more than one group. It is
		recommended to use a GID of 65535 or lower as higher
		GIDs may break some software.

	Login class
	Login classes are an extension to the group
		mechanism that provide additional flexibility when
		tailoring the system to different users. Login
		classes are discussed further in
		Section 14.13.1, “Configuring Login Classes”.

	Password change time
	By default, passwords do not expire. However,
		password expiration can be enabled on a per-user
		basis, forcing some or all users to change their
		passwords after a certain amount of time has
		elapsed.

	Account expiration time
	By default, FreeBSD does not expire accounts. When
		creating accounts that need a limited lifespan, such
		as student accounts in a school, specify the account
		expiry date using pw(8). After the expiry time
		has elapsed, the account cannot be used to log in to
		the system, although the account's directories and
		files will remain.

	User's full name
	The user name uniquely identifies the account to
		FreeBSD, but does not necessarily reflect the user's real
		name. Similar to a comment, this information can
		contain spaces, uppercase characters, and be more
		than 8 characters long.

	Home directory
	The home directory is the full path to a directory
		on the system. This is the user's starting directory
		when the user logs in. A common convention is to put
		all user home directories under /home/username
		or /usr/home/username.
		Each user stores their personal files and
		subdirectories in their own home directory.

	User shell
	The shell provides the user's default environment
		for interacting with the system. There are many
		different kinds of shells and experienced users will
		have their own preferences, which can be reflected in
		their account settings.

3.3.1.3. The Superuser Account
The superuser account, usually called
	 root, is used to
	 manage the system with no limitations on privileges. For
	 this reason, it should not be used for day-to-day tasks like
	 sending and receiving mail, general exploration of the
	 system, or programming.
The superuser, unlike other user accounts, can operate
	 without limits, and misuse of the superuser account may
	 result in spectacular disasters. User accounts are unable
	 to destroy the operating system by mistake, so it is
	 recommended to login as a user account and to only become
	 the superuser when a command requires extra
	 privilege.
Always double and triple-check any commands issued as
	 the superuser, since an extra space or missing character can
	 mean irreparable data loss.
There are several ways to gain superuser privilege.
	 While one can log in as
	 root, this is
	 highly discouraged.
Instead, use su(1) to become the superuser. If
	 - is specified when running this command,
	 the user will also inherit the root user's environment. The
	 user running this command must be in the
	 wheel group or
	 else the command will fail. The user must also know the
	 password for the
	 root user
	 account.
In this example, the user only becomes superuser in
	 order to run make install as this step
	 requires superuser privilege. Once the command completes,
	 the user types exit to leave the
	 superuser account and return to the privilege of their user
	 account.
Example 3.1. Install a Program As the Superuser
% configure
% make
% su -
Password:
make install
exit
%

The built-in su(1) framework works well for single
	 systems or small networks with just one system
	 administrator. An alternative is to install the
	 security/sudo package or port. This
	 software provides activity logging and allows the
	 administrator to configure which users can run which
	 commands as the superuser.
3.3.2. Managing Accounts
FreeBSD provides a variety of different commands to manage
	user accounts. The most common commands are summarized in
	Table 3.1, “Utilities for Managing User Accounts”, followed by some
	examples of their usage. See the manual page for each utility
	for more details and usage examples.
Table 3.1. Utilities for Managing User Accounts
	Command	Summary
	adduser(8)	The recommended command-line application for
		adding new users.
	rmuser(8)	The recommended command-line application for
		removing users.
	chpass(1)	A flexible tool for changing user database
		information.
	passwd(1)	The command-line tool to change user
		passwords.
	pw(8)	A powerful and flexible tool for modifying all
		aspects of user accounts.

3.3.2.1. adduser
The recommended program for adding new users is
	 adduser(8). When a new user is added, this program
	 automatically updates /etc/passwd and
	 /etc/group. It also creates a home
	 directory for the new user, copies in the default
	 configuration files from
	 /usr/share/skel, and can optionally
	 mail the new user a welcome message. This utility must be
	 run as the superuser.
The adduser(8) utility is interactive and walks
	 through the steps for creating a new user account. As seen
	 in Example 3.2, “Adding a User on FreeBSD”, either input
	 the required information or press Return
	 to accept the default value shown in square brackets.
	 In this example, the user has been invited into the
	 wheel group,
	 allowing them to become the superuser with su(1).
	 When finished, the utility will prompt to either
	 create another user or to exit.
Example 3.2. Adding a User on FreeBSD
adduser
Username: jru
Full name: J. Random User
Uid (Leave empty for default):
Login group [jru]:
Login group is jru. Invite jru into other groups? []: wheel
Login class [default]:
Shell (sh csh tcsh zsh nologin) [sh]: zsh
Home directory [/home/jru]:
Home directory permissions (Leave empty for default):
Use password-based authentication? [yes]:
Use an empty password? (yes/no) [no]:
Use a random password? (yes/no) [no]:
Enter password:
Enter password again:
Lock out the account after creation? [no]:
Username : jru
Password : ****
Full Name : J. Random User
Uid : 1001
Class :
Groups : jru wheel
Home : /home/jru
Shell : /usr/local/bin/zsh
Locked : no
OK? (yes/no): yes
adduser: INFO: Successfully added (jru) to the user database.
Add another user? (yes/no): no
Goodbye!
#

Note:
Since the password is not echoed when typed, be
	 careful to not mistype the password when creating the user
	 account.

3.3.2.2. rmuser
To completely remove a user from the system, run
	 rmuser(8) as the superuser. This command performs the
	 following steps:
	Removes the user's crontab(1) entry, if one
	 exists.

	Removes any at(1) jobs belonging to the
	 user.

	Kills all processes owned by the user.

	Removes the user from the system's local password
	 file.

	Optionally removes the user's home directory, if it
	 is owned by the user.

	Removes the incoming mail files belonging to the
	 user from /var/mail.

	Removes all files owned by the user from temporary
	 file storage areas such as
	 /tmp.

	Finally, removes the username from all groups to
	 which it belongs in /etc/group. If
	 a group becomes empty and the group name is the same as
	 the username, the group is removed. This complements
	 the per-user unique groups created by
	 adduser(8).

rmuser(8) cannot be used to remove superuser
	 accounts since that is almost always an indication of
	 massive destruction.
By default, an interactive mode is used, as shown
	 in the following example.
Example 3.3. rmuser Interactive Account
	 Removal
rmuser jru
Matching password entry:
jru:*:1001:1001::0:0:J. Random User:/home/jru:/usr/local/bin/zsh
Is this the entry you wish to remove? y
Remove user's home directory (/home/jru)? y
Removing user (jru): mailspool home passwd.
#

3.3.2.3. chpass
Any user can use chpass(1) to change their default
	 shell and personal information associated with their user
	 account. The superuser can use this utility to change
	 additional account information for any user.
When passed no options, aside from an optional username,
	 chpass(1) displays an editor containing user
	 information. When the user exits from the editor, the user
	 database is updated with the new information.
Note:
This utility will prompt for the user's password when
	 exiting the editor, unless the utility is run as the
	 superuser.

In Example 3.4, “Using chpass as
	 Superuser”, the
	 superuser has typed chpass jru and is
	 now viewing the fields that can be changed for this user.
	 If jru runs this
	 command instead, only the last six fields will be displayed
	 and available for editing. This is shown in
	 Example 3.5, “Using chpass as Regular
	 User”.
Example 3.4. Using chpass as
	 Superuser
#Changing user database information for jru.
Login: jru
Password: *
Uid [#]: 1001
Gid [# or name]: 1001
Change [month day year]:
Expire [month day year]:
Class:
Home directory: /home/jru
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:

Example 3.5. Using chpass as Regular
	 User
#Changing user database information for jru.
Shell: /usr/local/bin/zsh
Full Name: J. Random User
Office Location:
Office Phone:
Home Phone:
Other information:

Note:
The commands chfn(1) and chsh(1) are links
	 to chpass(1), as are ypchpass(1),
	 ypchfn(1), and ypchsh(1). Since
	 NIS support is automatic, specifying
	 the yp before the command is not
	 necessary. How to configure NIS is covered in Chapter 30, Network Servers.

3.3.2.4. passwd
Any user can easily change their password using
	 passwd(1). To prevent accidental or unauthorized
	 changes, this command will prompt for the user's original
	 password before a new password can be set:
Example 3.6. Changing Your Password
% passwd
Changing local password for jru.
Old password:
New password:
Retype new password:
passwd: updating the database...
passwd: done

The superuser can change any user's password by
	 specifying the username when running passwd(1). When
	 this utility is run as the superuser, it will not prompt for
	 the user's current password. This allows the password to be
	 changed when a user cannot remember the original
	 password.
Example 3.7. Changing Another User's Password as the
	 Superuser
passwd jru
Changing local password for jru.
New password:
Retype new password:
passwd: updating the database...
passwd: done

Note:
As with chpass(1), yppasswd(1) is a link to
	 passwd(1), so NIS works with
	 either command.

3.3.2.5. pw
The pw(8) utility can create, remove,
	 modify, and display users and groups. It functions as a
	 front end to the system user and group files. pw(8)
	 has a very powerful set of command line options that make it
	 suitable for use in shell scripts, but new users may find it
	 more complicated than the other commands presented in this
	 section.
3.3.3. Managing Groups
A group is a list of users. A group is identified by its
	group name and GID. In FreeBSD, the kernel
	uses the UID of a process, and the list of
	groups it belongs to, to determine what the process is allowed
	to do. Most of the time, the GID of a user
	or process usually means the first group in the list.
The group name to GID mapping is listed
	in /etc/group. This is a plain text file
	with four colon-delimited fields. The first field is the
	group name, the second is the encrypted password, the third
	the GID, and the fourth the comma-delimited
	list of members. For a more complete description of the
	syntax, refer to group(5).
The superuser can modify /etc/group
	using a text editor. Alternatively, pw(8) can be used to
	add and edit groups. For example, to add a group called
	teamtwo and then
	confirm that it exists:
Example 3.8. Adding a Group Using pw(8)
pw groupadd teamtwo
pw groupshow teamtwo
teamtwo:*:1100:

In this example, 1100 is the
	GID of
	teamtwo. Right
	now, teamtwo has no
	members. This command will add
	jru as a member of
	teamtwo.
Example 3.9. Adding User Accounts to a New Group Using
	 pw(8)
pw groupmod teamtwo -M jru
pw groupshow teamtwo
teamtwo:*:1100:jru

The argument to -M is a comma-delimited
	list of users to be added to a new (empty) group or to replace
	the members of an existing group. To the user, this group
	membership is different from (and in addition to) the user's
	primary group listed in the password file. This means that
	the user will not show up as a member when using
	groupshow with pw(8), but will show up
	when the information is queried via id(1) or a similar
	tool. When pw(8) is used to add a user to a group, it
	only manipulates /etc/group and does not
	attempt to read additional data from
	/etc/passwd.
Example 3.10. Adding a New Member to a Group Using pw(8)
pw groupmod teamtwo -m db
pw groupshow teamtwo
teamtwo:*:1100:jru,db

In this example, the argument to -m is a
	comma-delimited list of users who are to be added to the
	group. Unlike the previous example, these users are appended
	to the group and do not replace existing users in the
	group.
Example 3.11. Using id(1) to Determine Group Membership
% id jru
uid=1001(jru) gid=1001(jru) groups=1001(jru), 1100(teamtwo)

In this example,
	jru is a member of
	the groups jru and
	teamtwo.
For more information about this command and the format of
	/etc/group, refer to pw(8) and
	group(5).
3.5. Directory Structure
The FreeBSD directory hierarchy is fundamental to obtaining
 an overall understanding of the system. The most important
 directory is root or, “/”. This directory is the
 first one mounted at boot time and it contains the base system
 necessary to prepare the operating system for multi-user
 operation. The root directory also contains mount points for
 other file systems that are mounted during the transition to
 multi-user operation.
A mount point is a directory where additional file systems
 can be grafted onto a parent file system (usually the root file
 system). This is further described in
 Section 3.6, “Disk Organization”. Standard mount points
 include /usr/, /var/,
 /tmp/, /mnt/, and
 /cdrom/. These directories are usually
 referenced to entries in /etc/fstab. This
 file is a table of various file systems and mount points and is
 read by the system. Most of the file systems in
 /etc/fstab are mounted automatically at
 boot time from the script rc(8) unless their entry includes
 noauto. Details can be found in
 Section 3.7.1, “The fstab File”.
A complete description of the file system hierarchy is
 available in hier(7). The following table provides a brief
 overview of the most common directories.

	Directory	Description
	/	Root directory of the file system.
	/bin/	User utilities fundamental to both single-user
		and multi-user environments.
	/boot/	Programs and configuration files used during
		operating system bootstrap.
	/boot/defaults/	Default boot configuration files. Refer to
		loader.conf(5) for details.
	/dev/	Device nodes. Refer to intro(4) for
		details.
	/etc/	System configuration files and scripts.
	/etc/defaults/	Default system configuration files. Refer to
		rc(8) for details.
	/etc/mail/	Configuration files for mail transport agents
		such as sendmail(8).
	/etc/periodic/	Scripts that run daily, weekly, and monthly,
		via cron(8). Refer to periodic(8) for
		details.
	/etc/ppp/	ppp(8) configuration files.
	/mnt/	Empty directory commonly used by system
		administrators as a temporary mount point.
	/proc/	Process file system. Refer to procfs(5),
		mount_procfs(8) for details.
	/rescue/	Statically linked programs for emergency
		recovery as described in rescue(8).
	/root/	Home directory for the
		root
		account.
	/sbin/	System programs and administration utilities
		fundamental to both single-user and multi-user
		environments.
	/tmp/	Temporary files which are usually
		not preserved across a system
		reboot. A memory-based file system is often mounted
		at /tmp. This can be automated
		using the tmpmfs-related variables of rc.conf(5)
		or with an entry in /etc/fstab;
		refer to mdmfs(8) for details.
	/usr/	The majority of user utilities and
		applications.
	/usr/bin/	Common utilities, programming tools, and
		applications.
	/usr/include/	Standard C include files.
	/usr/lib/	Archive libraries.
	/usr/libdata/	Miscellaneous utility data files.
	/usr/libexec/	System daemons and system utilities executed
		by other programs.
	/usr/local/	Local executables and libraries. Also used as
		the default destination for the FreeBSD ports framework.
		Within
		/usr/local, the
		general layout sketched out by hier(7) for
		/usr should be
		used. Exceptions are the man directory, which is
		directly under /usr/local rather than
		under /usr/local/share, and
		the ports documentation is in share/doc/port.
	/usr/obj/	Architecture-specific target tree produced by
		building the /usr/src
		tree.
	/usr/ports/	The FreeBSD Ports Collection (optional).
	/usr/sbin/	System daemons and system utilities executed
		by users.
	/usr/share/	Architecture-independent files.
	/usr/src/	BSD and/or local source files.
	/var/	Multi-purpose log, temporary, transient, and
		spool files. A memory-based file system is sometimes
		mounted at
		/var. This can
		be automated using the varmfs-related variables in
		rc.conf(5) or with an entry in
		/etc/fstab; refer to
		mdmfs(8) for details.
	/var/log/	Miscellaneous system log files.
	/var/mail/	User mailbox files.
	/var/spool/	Miscellaneous printer and mail system spooling
		directories.
	/var/tmp/	Temporary files which are usually preserved
		across a system reboot, unless
		/var is a
		memory-based file system.
	/var/yp/	NIS maps.

3.8. Processes and Daemons
FreeBSD is a multi-tasking operating system. Each program
 running at any one time is called a
 process. Every running command starts
 at least one new process and there are a number of system
 processes that are run by FreeBSD.
Each process is uniquely identified by a number called a
 process ID (PID).
 Similar to files, each process has one owner and group, and
 the owner and group permissions are used to determine which
 files and devices the process can open. Most processes also
 have a parent process that started them. For example, the
 shell is a process, and any command started in the shell is a
 process which has the shell as its parent process. The
 exception is a special process called init(8) which is
 always the first process to start at boot time and which always
 has a PID of 1.
Some programs are not designed to be run with continuous
 user input and disconnect from the terminal at the first
 opportunity. For example, a web server responds to web
 requests, rather than user input. Mail servers are another
 example of this type of application. These types of programs
 are known as daemons. The term daemon
 comes from Greek mythology and represents an entity that is
 neither good nor evil, and which invisibly performs useful
 tasks. This is why the BSD mascot is the cheerful-looking
 daemon with sneakers and a pitchfork.
There is a convention to name programs that normally run as
 daemons with a trailing “d”. For example,
 BIND is the Berkeley Internet Name
 Domain, but the actual program that executes is
 named. The
 Apache web server program is
 httpd and the line printer spooling daemon
 is lpd. This is only a naming convention.
 For example, the main mail daemon for the
 Sendmail application is
 sendmail, and not
 maild.
3.8.1. Viewing Processes
To see the processes running on the system, use ps(1)
	or top(1). To display a static list of the currently
	running processes, their PIDs, how much
	memory they are using, and the command they were started with,
	use ps(1). To display all the running processes and
	update the display every few seconds in order to interactively
	see what the computer is doing, use top(1).
By default, ps(1) only shows the commands that are
	running and owned by the user. For example:
% ps
 PID TT STAT TIME COMMAND
8203 0 Ss 0:00.59 /bin/csh
8895 0 R+ 0:00.00 ps
The output from ps(1) is organized into a number of
	columns. The PID column displays the
	process ID. PIDs are assigned starting at
	1, go up to 99999, then wrap around back to the beginning.
	However, a PID is not reassigned if it is
	already in use. The TT column shows the
	tty the program is running on and STAT
	shows the program's state. TIME is the
	amount of time the program has been running on the CPU. This
	is usually not the elapsed time since the program was started,
	as most programs spend a lot of time waiting for things to
	happen before they need to spend time on the CPU. Finally,
	COMMAND is the command that was used to
	start the program.
A number of different options are available to change the
	information that is displayed. One of the most useful sets is
	auxww, where a displays
	information about all the running processes of all users,
	u displays the username and memory usage of
	the process' owner, x displays
	information about daemon processes, and ww
	causes ps(1) to display the full command line for each
	process, rather than truncating it once it gets too long to
	fit on the screen.
The output from top(1) is similar:
% top
last pid: 9609; load averages: 0.56, 0.45, 0.36 up 0+00:20:03 10:21:46
107 processes: 2 running, 104 sleeping, 1 zombie
CPU: 6.2% user, 0.1% nice, 8.2% system, 0.4% interrupt, 85.1% idle
Mem: 541M Active, 450M Inact, 1333M Wired, 4064K Cache, 1498M Free
ARC: 992M Total, 377M MFU, 589M MRU, 250K Anon, 5280K Header, 21M Other
Swap: 2048M Total, 2048M Free

 PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
 557 root 1 -21 r31 136M 42296K select 0 2:20 9.96% Xorg
 8198 dru 2 52 0 449M 82736K select 3 0:08 5.96% kdeinit4
 8311 dru 27 30 0 1150M 187M uwait 1 1:37 0.98% firefox
 431 root 1 20 0 14268K 1728K select 0 0:06 0.98% moused
 9551 dru 1 21 0 16600K 2660K CPU3 3 0:01 0.98% top
 2357 dru 4 37 0 718M 141M select 0 0:21 0.00% kdeinit4
 8705 dru 4 35 0 480M 98M select 2 0:20 0.00% kdeinit4
 8076 dru 6 20 0 552M 113M uwait 0 0:12 0.00% soffice.bin
 2623 root 1 30 10 12088K 1636K select 3 0:09 0.00% powerd
 2338 dru 1 20 0 440M 84532K select 1 0:06 0.00% kwin
 1427 dru 5 22 0 605M 86412K select 1 0:05 0.00% kdeinit4
The output is split into two sections. The header (the
	first five or six lines) shows the PID of
	the last process to run, the system load averages (which are a
	measure of how busy the system is), the system uptime (time
	since the last reboot) and the current time. The other
	figures in the header relate to how many processes are
	running, how much memory and swap space has been used, and how
	much time the system is spending in different CPU states. If
	the ZFS file system module has been loaded,
	an ARC line indicates how much data was
	read from the memory cache instead of from disk.
Below the header is a series of columns containing similar
	information to the output from ps(1), such as the
	PID, username, amount of CPU time, and the
	command that started the process. By default, top(1)
	also displays the amount of memory space taken by the process.
	This is split into two columns: one for total size and one for
	resident size. Total size is how much memory the application
	has needed and the resident size is how much it is actually
	using now.
top(1) automatically updates the display every two
	seconds. A different interval can be specified with
	-s.
3.8.2. Killing Processes
One way to communicate with any running process or daemon
	is to send a signal using kill(1).
	There are a number of different signals; some have a specific
	meaning while others are described in the application's
	documentation. A user can only send a signal to a process
	they own and sending a signal to someone else's process will
	result in a permission denied error. The exception is the
	root user, who can
	send signals to anyone's processes.
The operating system can also send a signal to a process.
	If an application is badly written and tries to access memory
	that it is not supposed to, FreeBSD will send the process the
	“Segmentation Violation” signal
	(SIGSEGV). If an application has been
	written to use the alarm(3) system call to be alerted
	after a period of time has elapsed, it will be sent the
	“Alarm” signal
	(SIGALRM).
Two signals can be used to stop a process:
	SIGTERM and SIGKILL.
	SIGTERM is the polite way to kill a process
	as the process can read the signal, close any log files it may
	have open, and attempt to finish what it is doing before
	shutting down. In some cases, a process may ignore
	SIGTERM if it is in the middle of some task
	that cannot be interrupted.
SIGKILL cannot be ignored by a
	process. Sending a SIGKILL to a
	process will usually stop that process there and then.
	[1].
Other commonly used signals are SIGHUP,
	SIGUSR1, and SIGUSR2.
	Since these are general purpose signals, different
	applications will respond differently.
For example, after changing a web server's configuration
	file, the web server needs to be told to re-read its
	configuration. Restarting httpd would
	result in a brief outage period on the web server. Instead,
	send the daemon the SIGHUP signal. Be
	aware that different daemons will have different behavior, so
	refer to the documentation for the daemon to determine if
	SIGHUP will achieve the desired
	results.
Procedure 3.1. Sending a Signal to a Process
This example shows how to send a signal to
	 inetd(8). The inetd(8) configuration file is
	 /etc/inetd.conf, and inetd(8) will
	 re-read this configuration file when it is sent a
	 SIGHUP.
	Find the PID of the process to send
	 the signal to using pgrep(1). In this example, the
	 PID for inetd(8) is 198:
% pgrep -l inetd
198 inetd -wW

	Use kill(1) to send the signal. As
	 inetd(8) is owned by
	 root, use
	 su(1) to become
	 root
	 first.
% su
Password:
/bin/kill -s HUP 198
Like most UNIX® commands, kill(1) will not print
	 any output if it is successful. If a signal is sent to a
	 process not owned by that user, the message
	 kill: PID: Operation
	 not permitted will be displayed. Mistyping
	 the PID will either send the signal to
	 the wrong process, which could have negative results, or
	 will send the signal to a PID that is
	 not currently in use, resulting in the error
	 kill: PID: No such
	 process.
Why Use /bin/kill?:
Many shells provide kill as a
	 built in command, meaning that the shell will send the
	 signal directly, rather than running
	 /bin/kill. Be aware that different
	 shells have a different syntax for specifying the name
	 of the signal to send. Rather than try to learn all of
	 them, it can be simpler to specify
	 /bin/kill.

When sending other signals, substitute
	TERM or KILL with the
	name of the signal.
Important:
Killing a random process on the system is a bad idea.
	 In particular, init(8), PID 1, is
	 special. Running /bin/kill -s KILL 1 is
	 a quick, and unrecommended, way to shutdown the system.
	 Always double check the arguments to
	 kill(1) before pressing
	 Return.

[1] There are a few tasks that cannot be
	 interrupted. For example, if the process is trying to
	 read from a file that is on another computer on the
	 network, and the other computer is unavailable, the
	 process is said to be “uninterruptible”.
	 Eventually the process will time out, typically after two
	 minutes. As soon as this time out occurs the process will
	 be killed.

3.9. Shells
A shell provides a command line
 interface for interacting with the operating system. A shell
 receives commands from the input channel and executes them.
 Many shells provide built in functions to help with everyday
 tasks such as file management, file globbing, command line
 editing, command macros, and environment variables. FreeBSD comes
 with several shells, including the Bourne shell (sh(1)) and
 the extended C shell (tcsh(1)). Other shells are available
 from the FreeBSD Ports Collection, such as
 zsh and bash.
The shell that is used is really a matter of taste. A C
 programmer might feel more comfortable with a C-like shell such
 as tcsh(1). A Linux® user might prefer
 bash. Each shell has unique properties that
 may or may not work with a user's preferred working environment,
 which is why there is a choice of which shell to use.
One common shell feature is filename completion. After a
 user types the first few letters of a command or filename and
 presses Tab, the shell completes the rest of
 the command or filename. Consider two files called
 foobar and football.
 To delete foobar, the user might type
 rm foo and press Tab to
 complete the filename.
But the shell only shows rm foo. It was
 unable to complete the filename because both
 foobar and football
 start with foo. Some shells sound a beep or
 show all the choices if more than one name matches. The user
 must then type more characters to identify the desired filename.
 Typing a t and pressing Tab
 again is enough to let the shell determine which filename is
 desired and fill in the rest.
Another feature of the shell is the use of environment
 variables. Environment variables are a variable/key pair stored
 in the shell's environment. This environment can be read by any
 program invoked by the shell, and thus contains a lot of program
 configuration. Table 3.4, “Common Environment Variables” provides a list
 of common environment variables and their meanings. Note that
 the names of environment variables are always in
 uppercase.
Table 3.4. Common Environment Variables
	Variable	Description
	USER	Current logged in user's name.
	PATH	Colon-separated list of directories to search for
	 binaries.
	DISPLAY	Network name of the
	 Xorg
	 display to connect to, if available.
	SHELL	The current shell.
	TERM	The name of the user's type of terminal. Used to
	 determine the capabilities of the terminal.
	TERMCAP	Database entry of the terminal escape codes to
	 perform various terminal functions.
	OSTYPE	Type of operating system.
	MACHTYPE	The system's CPU architecture.
	EDITOR	The user's preferred text editor.
	PAGER	The user's preferred utility for viewing text one
	 page at a time.
	MANPATH	Colon-separated list of directories to search for
	 manual pages.

How to set an environment variable differs between shells.
 In tcsh(1) and csh(1), use
 setenv to set environment variables. In
 sh(1) and bash, use
 export to set the current environment
 variables. This example sets the default EDITOR
 to /usr/local/bin/emacs for the
 tcsh(1) shell:
% setenv EDITOR /usr/local/bin/emacs
The equivalent command for bash
 would be:
% export EDITOR="/usr/local/bin/emacs"
To expand an environment variable in order to see its
 current setting, type a $ character in front
 of its name on the command line. For example,
 echo $TERM displays the current
 $TERM setting.
Shells treat special characters, known as meta-characters,
 as special representations of data. The most common
 meta-character is *, which represents any
 number of characters in a filename. Meta-characters can be used
 to perform filename globbing. For example, echo
	* is equivalent to ls because
 the shell takes all the files that match *
 and echo lists them on the command
 line.
To prevent the shell from interpreting a special character,
 escape it from the shell by starting it with a backslash
 (\). For example, echo
	$TERM prints the terminal setting whereas
 echo \$TERM literally prints the string
 $TERM.
3.9.1. Changing the Shell
The easiest way to permanently change the default shell is
	to use chsh. Running this command will
	open the editor that is configured in the
	EDITOR environment variable, which by default
	is set to vi(1). Change the Shell:
	line to the full path of the new shell.
Alternately, use chsh -s which will set
	the specified shell without opening an editor. For example,
	to change the shell to bash:
% chsh -s /usr/local/bin/bash
Note:
The new shell must be present in
	 /etc/shells. If the shell was
	 installed from the FreeBSD Ports Collection as described in
	 Chapter 4, Installing Applications: Packages and Ports, it should be automatically added
	 to this file. If it is missing, add it using this command,
	 replacing the path with the path of the shell:
echo /usr/local/bin/bash >> /etc/shells
Then, rerun chsh(1).

3.9.2. Advanced Shell Techniques
Written by Tom Rhodes. The UNIX® shell is not just a command interpreter, it
	acts as a powerful tool which allows users to execute
	commands, redirect their output, redirect their input and
	chain commands together to improve the final command output.
	When this functionality is mixed with built in commands, the
	user is provided with an environment that can maximize
	efficiency.
Shell redirection is the action of sending the output or
	the input of a command into another command or into a file.
	To capture the output of the ls(1) command, for example,
	into a file, redirect the output:
% ls > directory_listing.txt
The directory contents will now be listed in
	directory_listing.txt. Some commands can
	be used to read input, such as sort(1). To sort this
	listing, redirect the input:
% sort < directory_listing.txt
The input will be sorted and placed on the screen. To
	redirect that input into another file, one could redirect the
	output of sort(1) by mixing the direction:
% sort < directory_listing.txt > sorted.txt
In all of the previous examples, the commands are
	performing redirection using file descriptors. Every UNIX®
	system has file descriptors, which include standard input
	(stdin), standard output (stdout), and standard error
	(stderr). Each one has a purpose, where input could be a
	keyboard or a mouse, something that provides input. Output
	could be a screen or paper in a printer. And error would be
	anything that is used for diagnostic or error messages. All
	three are considered I/O based file
	descriptors and sometimes considered streams.
Through the use of these descriptors, the shell allows
	output and input to be passed around through various commands
	and redirected to or from a file. Another method of
	redirection is the pipe operator.
The UNIX® pipe operator, “|” allows the
	output of one command to be directly passed or directed to
	another program. Basically, a pipe allows the standard
	output of a command to be passed as standard input to another
	command, for example:
% cat directory_listing.txt | sort | less
In that example, the contents of
	directory_listing.txt will be sorted and
	the output passed to less(1). This allows the user to
	scroll through the output at their own pace and prevent it
	from scrolling off the screen.
3.11. Devices and Device Nodes
A device is a term used mostly for hardware-related
 activities in a system, including disks, printers, graphics
 cards, and keyboards. When FreeBSD boots, the majority of the boot
 messages refer to devices being detected. A copy of the boot
 messages are saved to
 /var/run/dmesg.boot.
Each device has a device name and number. For example,
 ada0 is the first SATA hard drive,
 while kbd0 represents the
 keyboard.
Most devices in FreeBSD must be accessed through special
 files called device nodes, which are located in
 /dev.
3.12. Manual Pages
The most comprehensive documentation on FreeBSD is in the form
 of manual pages. Nearly every program on the system comes with
 a short reference manual explaining the basic operation and
 available arguments. These manuals can be viewed using
 man:
% man command
where command is the name of the
 command to learn about. For example, to learn more about
 ls(1), type:
% man ls
Manual pages are divided into sections which represent the
 type of topic. In FreeBSD, the following sections are
 available:
	User commands.

	System calls and error numbers.

	Functions in the C libraries.

	Device drivers.

	File formats.

	Games and other diversions.

	Miscellaneous information.

	System maintenance and operation commands.

	System kernel interfaces.

In some cases, the same topic may appear in more than one
 section of the online manual. For example, there is a
 chmod user command and a
 chmod() system call. To tell man(1)
 which section to display, specify the section number:
% man 1 chmod
This will display the manual page for the user command
 chmod(1). References to a particular section of the
 online manual are traditionally placed in parenthesis in
 written documentation, so chmod(1) refers to the user
 command and chmod(2) refers to the system call.
If the name of the manual page is unknown, use man
	-k to search for keywords in the manual page
 descriptions:
% man -k mail
This command displays a list of commands that have the
 keyword “mail” in their descriptions. This is
 equivalent to using apropos(1).
To read the descriptions for all of the commands in
 /usr/bin, type:
% cd /usr/bin
% man -f * | more
or
% cd /usr/bin
% whatis * |more
3.12.1. GNU Info Files
FreeBSD includes several applications and utilities produced
	by the Free Software Foundation (FSF). In addition to manual
	pages, these programs may include hypertext documents called
	info files. These can be viewed using
	info(1) or, if editors/emacs is
	installed, the info mode of
	emacs.
To use info(1), type:
% info
For a brief introduction, type h. For
	a quick command reference, type ?.
Chapter 4. Installing Applications: Packages and Ports
4.1. Synopsis
FreeBSD is bundled with a rich collection of system tools as
 part of the base system. In addition, FreeBSD provides two
 complementary technologies for installing third-party software:
 the FreeBSD Ports Collection, for installing from source, and
 packages, for installing from pre-built binaries. Either
 method may be used to install software from local media or
 from the network.
After reading this chapter, you will know:
	The difference between binary packages and ports.

	How to find third-party software that has been ported
	 to FreeBSD.

	How to manage binary packages using
	 pkg.

	How to build third-party software from source using the
	 Ports Collection.

	How to find the files installed with the application
	 for post-installation configuration.

	What to do if a software installation fails.

4.2. Overview of Software Installation
The typical steps for installing third-party software on a
 UNIX® system include:
	Find and download the software, which might be
	 distributed in source code format or as a binary.

	Unpack the software from its distribution format. This
	 is typically a tarball compressed with a program such as
	 compress(1), gzip(1), bzip2(1) or
	 xz(1).

	Locate the documentation in
	 INSTALL, README
	 or some file in a doc/ subdirectory and
	 read up on how to install the software.

	If the software was distributed in source format,
	 compile it. This may involve editing a
	 Makefile or running a
	 configure script.

	Test and install the software.

A FreeBSD port is a collection of files
 designed to automate
 the process of compiling an application from source code. The
 files that comprise a port contain all the necessary information
 to automatically download, extract, patch, compile, and install
 the application.
If the software has not already been adapted and tested
 on FreeBSD, the source code might need editing in
 order for it to install and run properly.
However, over 24,000
 third-party applications have already been ported to FreeBSD. When
 feasible, these applications are made available for download as
 pre-compiled packages.
Packages
 can be manipulated with the FreeBSD package management
 commands.
Both packages and ports understand dependencies. If a
 package or port is used to install an application and a
 dependent library is not already installed, the library will
 automatically be installed first.
A FreeBSD package contains pre-compiled copies of all the
 commands for an application, as well as any configuration files
 and documentation. A package can be manipulated with the
 pkg(8) commands, such as
 pkg install.
While the two technologies are similar, packages and
 ports each have their own strengths. Select the technology that
 meets your requirements for installing a particular
 application.
Package Benefits
	A compressed package tarball is typically smaller than
	 the compressed tarball containing the source code for the
	 application.

	Packages do not require compilation time. For large
	 applications, such as Mozilla,
	 KDE, or
	 GNOME, this can be important
	 on a slow system.

	Packages do not require any understanding of the process
	 involved in compiling software on FreeBSD.

Port Benefits
	Packages are normally compiled with conservative
	 options because they have to run on the maximum number of
	 systems. By compiling from the port, one can change the
	 compilation options.

	Some applications have compile-time options relating to
	 which features are installed. For example,
	 Apache can be configured with a
	 wide variety of different built-in options.
In some cases, multiple packages will exist for the same
	 application to specify certain settings. For example,
	 Ghostscript is available as a
	 ghostscript package and a
	 ghostscript-nox11 package, depending on
	 whether or not Xorg is installed.
	 Creating multiple packages rapidly becomes impossible if an
	 application has more than one or two different compile-time
	 options.

	The licensing conditions of some software forbid binary
	 distribution. Such software must be distributed as source
	 code which must be compiled by the end-user.

	Some people do not trust binary distributions or prefer
	 to read through source code in order to look for potential
	 problems.

	Source code is needed in
	 order to apply custom patches.

To keep track of updated ports, subscribe to the
 FreeBSD ports mailing list and the FreeBSD ports bugs mailing list.
Warning:
Before installing any application, check https://vuxml.freebsd.org/
	for security issues related to the application or type
	pkg audit -F to check all installed
	applications for known vulnerabilities.

The remainder of this chapter explains how to use packages
 and ports to install and manage third-party software on
 FreeBSD.
4.4. Using pkg for Binary Package
 Management
pkg is the next generation
 replacement for the traditional FreeBSD package management tools,
 offering many features that make dealing with binary packages
 faster and easier.
For sites wishing to only use prebuilt binary packages
 from the FreeBSD mirrors, managing packages with
 pkg can be sufficient.
However, for those sites building from source or using their
 own repositories, a separate port management tool
 will be needed.
Since pkg only works with
 binary packages, it
 is not a replacement for such tools. Those tools can be
 used to install software from both binary packages
 and the Ports Collection, while
 pkg installs only binary
 packages.
4.4.1. Getting Started with
	pkg
FreeBSD includes a bootstrap utility which can be used to
	download and install pkg
	and its manual pages. This utility is designed to work
	with versions of FreeBSD starting with
	10.X.
Note:
Not all FreeBSD versions and architectures
	 support this bootstrap process. The current list is at
	 https://pkg.freebsd.org/.
	 For other cases,
	 pkg must instead be installed
	 from the Ports Collection or as a binary package.

To bootstrap the system, run:
/usr/sbin/pkg
You must have a working Internet connection for the
	bootstrap process to succeed.
Otherwise, to install the port, run:
cd /usr/ports/ports-mgmt/pkg
make
make install clean
When upgrading an existing system that originally used the
	older pkg_* tools, the database must be converted to the
	new format, so that the new tools are aware of the already
	installed packages. Once pkg has
	been installed, the
	package database must be converted from the traditional format
	to the new format by running this command:
pkg2ng
Note:
This step is not required for new installations that
	do not yet have any third-party software
	installed.

Important:
This step is not reversible. Once the package database
	 has been converted to the pkg
	 format, the traditional pkg_* tools
	 should no longer be used.

Note:
The package database conversion may emit errors as the
	 contents are converted to the new version. Generally, these
	 errors can be safely ignored. However, a list of
	 software that was not successfully converted
	 is shown after pkg2ng finishes.
	 These applications must be manually reinstalled.

To ensure that the Ports Collection registers
	new software with pkg instead of
	the traditional packages database, FreeBSD versions earlier than
	10.X require this line in
	/etc/make.conf:
WITH_PKGNG=	yes
By default, pkg uses the
	binary packages from the FreeBSD
	package mirrors (the repository).
	For information about building a custom
	package repository, see
	Section 4.6, “Building Packages with
 Poudriere”.
Additional pkg configuration
	options are described in pkg.conf(5).
Usage information for pkg is
	available in the pkg(8) manual page or by running
	pkg without additional arguments.
Each pkg command argument is
	documented in a command-specific manual page. To read the
	manual page for pkg install, for example,
	run either of these commands:
pkg help install
man pkg-install
The rest of this section demonstrates common binary
	package management tasks which can be performed using
	pkg. Each demonstrated command
	provides many switches to customize its use. Refer to a
	command's help or man page for details and more
	examples.
4.4.2. Quarterly and Latest Ports Branches
The Quarterly branch provides users
	with a more predictable and stable experience for port and
	package installation and upgrades. This is done essentially
	by only allowing non-feature updates. Quarterly branches aim
	to receive security fixes (that may be version updates, or
	backports of commits), bug fixes and ports compliance or
	framework changes. The Quarterly branch is cut from HEAD at
	the beginning of every (yearly) quarter in January, April,
	July, and October. Branches are named according to the year
	(YYYY) and quarter (Q1-4) they are created in. For example,
	the quarterly branch created in January 2016, is named 2016Q1.
	And the Latest branch provides the latest
	versions of the packages to the users.
To switch from quarterly to latest run the following
	commands:
cp /etc/pkg/FreeBSD.conf /usr/local/etc/pkg/repos/FreeBSD.conf
Edit the file
	/usr/local/etc/pkg/repos/FreeBSD.conf
	and change the string quarterly to
	latest in the url:
	line.
The result should be similar to the following:
FreeBSD: {
 url: "pkg+http://pkg.FreeBSD.org/${ABI}/latest",
 mirror_type: "srv",
 signature_type: "fingerprints",
 fingerprints: "/usr/share/keys/pkg",
 enabled: yes
}
And finally run this command to update from the new
	(latest) repository metadata.
pkg update -f
4.4.3. Obtaining Information About Installed Packages
Information about the packages installed on a system
	can be viewed by running pkg info which,
	when run without any switches, will list the package version
	for either all installed packages or the specified
	package.
For example, to see which version of
	pkg is installed, run:
pkg info pkg
pkg-1.1.4_1
4.4.4. Installing and Removing Packages
To install a binary package use the following command,
	where packagename is the name of
	the package to install:
pkg install packagename
This command uses repository data to determine which
	version of the software to install and if it has any
	uninstalled dependencies. For example, to install
	curl:
pkg install curl
Updating repository catalogue
/usr/local/tmp/All/curl-7.31.0_1.txz 100% of 1181 kB 1380 kBps 00m01s

/usr/local/tmp/All/ca_root_nss-3.15.1_1.txz 100% of 288 kB 1700 kBps 00m00s

Updating repository catalogue
The following 2 packages will be installed:

 Installing ca_root_nss: 3.15.1_1
 Installing curl: 7.31.0_1

The installation will require 3 MB more space

0 B to be downloaded

Proceed with installing packages [y/N]: y
Checking integrity... done
[1/2] Installing ca_root_nss-3.15.1_1... done
[2/2] Installing curl-7.31.0_1... done
Cleaning up cache files...Done
The new package and any additional packages that were
	 installed as dependencies can be seen in the installed
	 packages list:
pkg info
ca_root_nss-3.15.1_1	The root certificate bundle from the Mozilla Project
curl-7.31.0_1	Non-interactive tool to get files from FTP, GOPHER, HTTP(S) servers
pkg-1.1.4_6	New generation package manager
Packages that are no longer needed can be removed with
	 pkg delete. For example:
pkg delete curl
The following packages will be deleted:

	curl-7.31.0_1

The deletion will free 3 MB

Proceed with deleting packages [y/N]: y
[1/1] Deleting curl-7.31.0_1... done
4.4.5. Upgrading Installed Packages
Installed packages can be upgraded to their latest
	versions by running:
pkg upgrade
This command will compare the installed versions with
	those available in the repository catalogue and upgrade them
	from the repository.
4.4.6. Auditing Installed Packages
Software vulnerabilities are regularly discovered
	in third-party applications. To address this,
	pkg includes a built-in auditing
	mechanism. To determine if there are any known
	vulnerabilities for the software installed on the system,
	run:
pkg audit -F
4.4.7. Automatically Removing Unused Packages
Removing a package may leave behind dependencies which
	are no longer required. Unneeded packages that were installed
	as dependencies (leaf packages) can be automatically detected
	and removed using:
pkg autoremove
Packages to be autoremoved:
	ca_root_nss-3.15.1_1

The autoremoval will free 723 kB

Proceed with autoremoval of packages [y/N]: y
Deinstalling ca_root_nss-3.15.1_1... done
Packages installed as dependencies are
	called automatic packages. Non-automatic
	packages, i.e the packages that were explicity installed not
	as a dependency to another package, can be listed
	using:
pkg prime-list
nginx
openvpn
sudo
pkg prime-list is an alias command
	declared in /usr/local/etc/pkg.conf.
	There are many others that can be used to query the package
	database of the system. For instance, command
	pkg prime-origins can be used to get the
	origin port directory of the list mentioned above:
pkg prime-origins
www/nginx
security/openvpn
security/sudo
This list can be used to rebuild all packages
	installed on a system using build tools such as
	ports-mgmt/poudriere or
	ports-mgmt/synth.
Marking an installed package as automatic can be
 done using:
pkg set -A 1 devel/cmake
Once a package is a leaf package and is marked
	as automatic, it gets selected by
	pkg autoremove.
Marking an installed package as not
	automatic can be done using:
pkg set -A 0 devel/cmake
4.4.8. Restoring the Package Database
Unlike the traditional package management system,
	pkg includes its own package
	database backup mechanism. This functionality is enabled by
	default.
Tip:
To disable the periodic script from backing up the
	 package database, set
	 daily_backup_pkgdb_enable="NO" in
	 periodic.conf(5).

To restore the contents of a previous package database
	backup, run the following command replacing
	/path/to/pkg.sql with the location
	of the backup:
pkg backup -r /path/to/pkg.sql
Note:
If restoring a backup taken by the periodic script,
	 it must be decompressed prior to being restored.

To run a manual backup of the
	pkg database, run the following
	command, replacing /path/to/pkg.sql
	with a suitable file name and location:
pkg backup -d /path/to/pkg.sql
4.4.9. Removing Stale Packages
By default, pkg stores
	binary packages in a cache directory defined by
	PKG_CACHEDIR in pkg.conf(5). Only copies
	of the latest installed packages are kept. Older versions of
	pkg kept all previous packages. To
	remove these outdated binary packages, run:
pkg clean
The entire cache may be cleared by running:
pkg clean -a
4.4.10. Modifying Package Metadata
Software within the FreeBSD Ports Collection can
	undergo major version number changes. To address this,
	pkg has a built-in command to
	update package origins. This can be useful, for example, if
	lang/php5 is renamed to
	lang/php53 so that
	lang/php5 can now
	represent version 5.4.
To change the package origin for the above example,
	run:
pkg set -o lang/php5:lang/php53
As another example, to update
	lang/ruby18 to
	lang/ruby19, run:
pkg set -o lang/ruby18:lang/ruby19
As a final example, to change the origin of the
	libglut shared libraries from
	graphics/libglut to
	graphics/freeglut, run:
pkg set -o graphics/libglut:graphics/freeglut
Note:
When changing package origins, it is important to
	 reinstall packages that are dependent on the package with
	 the modified origin. To force a reinstallation of dependent
	 packages, run:
pkg install -Rf graphics/freeglut

4.6. Building Packages with
 Poudriere
Poudriere is a
 BSD-licensed utility for creating and testing
 FreeBSD packages. It uses FreeBSD jails to set up isolated
 compilation environments. These jails can be used to build
 packages for versions of FreeBSD that are different from the system
 on which it is installed, and also to build packages for i386 if
 the host is an amd64 system. Once the packages are
 built, they are in a layout identical to the official mirrors.
 These packages are usable by pkg(8) and other package
 management tools.
Poudriere is installed using
 the ports-mgmt/poudriere package
 or port. The installation includes a sample configuration
 file /usr/local/etc/poudriere.conf.sample.
 Copy this file to
 /usr/local/etc/poudriere.conf. Edit the
 copied file to suit the local configuration.
While ZFS is not required on the system
 running poudriere, it is beneficial.
 When ZFS is used,
 ZPOOL must be specified in
 /usr/local/etc/poudriere.conf and
 FREEBSD_HOST should be set to a nearby
 mirror. Defining CCACHE_DIR enables the use
 of devel/ccache to cache
 compilation and reduce build times for frequently-compiled code.
 It may be convenient to put
 poudriere datasets in an isolated
 tree mounted at /poudriere. Defaults for the
 other configuration values are adequate.
The number of processor cores detected is used to define how
 many builds will run in parallel. Supply enough virtual memory,
 either with RAM or swap space. If virtual
 memory runs out, the compilation jails will stop and be torn
 down, resulting in weird error messages.
4.6.1. Initialize Jails and Port Trees
After configuration, initialize
	poudriere so that it installs a
	jail with the required FreeBSD tree and a ports tree. Specify a
	name for the jail using -j and the FreeBSD
	version with -v. On systems running
	FreeBSD/amd64, the architecture can be set with
	-a to either i386 or
	amd64. The default is the
	architecture shown by uname.
poudriere jail -c -j 11amd64 -v 11.4-RELEASE
[00:00:00] Creating 11amd64 fs at /poudriere/jails/11amd64... done
[00:00:00] Using pre-distributed MANIFEST for FreeBSD 11.4-RELEASE amd64
[00:00:00] Fetching base for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/base.txz 125 MB 4110 kBps 31s
[00:00:33] Extracting base... done
[00:00:54] Fetching src for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/src.txz 154 MB 4178 kBps 38s
[00:01:33] Extracting src... done
[00:02:31] Fetching lib32 for FreeBSD 11.4-RELEASE amd64
/poudriere/jails/11amd64/fromftp/lib32.txz 24 MB 3969 kBps 06s
[00:02:38] Extracting lib32... done
[00:02:42] Cleaning up... done
[00:02:42] Recording filesystem state for clean... done
[00:02:42] Upgrading using ftp
/etc/resolv.conf -> /poudriere/jails/11amd64/etc/resolv.conf
Looking up update.FreeBSD.org mirrors... 3 mirrors found.
Fetching public key from update4.freebsd.org... done.
Fetching metadata signature for 11.4-RELEASE from update4.freebsd.org... done.
Fetching metadata index... done.
Fetching 2 metadata files... done.
Inspecting system... done.
Preparing to download files... done.
Fetching 124 patches.....10....20....30....40....50....60....70....80....90....100....110....120.. done.
Applying patches... done.
Fetching 6 files... done.
The following files will be added as part of updating to
11.4-RELEASE-p1:
/usr/src/contrib/unbound/.github
/usr/src/contrib/unbound/.github/FUNDING.yml
/usr/src/contrib/unbound/contrib/drop2rpz
/usr/src/contrib/unbound/contrib/unbound_portable.service.in
/usr/src/contrib/unbound/services/rpz.c
/usr/src/contrib/unbound/services/rpz.h
/usr/src/lib/libc/tests/gen/spawnp_enoexec.sh
The following files will be updated as part of updating to
11.4-RELEASE-p1:
[…]
Installing updates...Scanning //usr/share/certs/blacklisted for certificates...
Scanning //usr/share/certs/trusted for certificates...
 done.
11.4-RELEASE-p1
[00:04:06] Recording filesystem state for clean... done
[00:04:07] Jail 11amd64 11.4-RELEASE-p1 amd64 is ready to be used
poudriere ports -c -p local -m svn+https
[00:00:00] Creating local fs at /poudriere/ports/local... done
[00:00:00] Checking out the ports tree... done
On a single computer, poudriere
	can build ports with multiple configurations, in multiple
	jails, and from different port trees. Custom configurations
	for these combinations are called sets.
	See the CUSTOMIZATION section of poudriere(8) for details
	after ports-mgmt/poudriere or
	ports-mgmt/poudriere-devel is
	installed.
The basic configuration shown here puts a single jail-,
	port-, and set-specific make.conf in
	/usr/local/etc/poudriere.d.
	The filename in this example is created by combining the jail
	name, port name, and set name:
	11amd64-local-workstation-make.conf.
	The system make.conf and this new file
	are combined at build time to create the
	make.conf used by the build jail.
Packages to be built are entered in
	11amd64-local-workstation-pkglist:
editors/emacs
devel/git
ports-mgmt/pkg
...
Options and dependencies for the specified ports are
	configured:
poudriere options -j 11amd64 -p local -z workstation -f 11amd64-local-workstation-pkglist
Finally, packages are built and a package
	repository is created:
poudriere bulk -j 11amd64 -p local -z workstation -f 11amd64-local-workstation-pkglist
While running, pressing Ctrl+t
	displays the current state of the build.
	Poudriere also builds files in
	/poudriere/logs/bulk/jailname
	that can be used with a web server to display build
	information.
After completion, the new packages are now available for
	installation from the poudriere
	repository.
For more information on using
	poudriere, see poudriere(8)
	and the main web site, https://github.com/freebsd/poudriere/wiki.
4.6.2. Configuring pkg Clients to Use a Poudriere
	Repository
While it is possible to use both a custom repository along
	side of the official repository, sometimes it is useful to
	disable the official repository. This is done by creating a
	configuration file that overrides and disables the official
	configuration file. Create
	/usr/local/etc/pkg/repos/FreeBSD.conf
	that contains the following:
FreeBSD: {
	enabled: no
}
Usually it is easiest to serve a poudriere repository to
	the client machines via HTTP. Set up a webserver to serve up
	the package directory, for instance:
	/usr/local/poudriere/data/packages/11amd64,
	where 11amd64
	is the name of the build.
If the URL to the package repository is:
	http://pkg.example.com/11amd64, then the
	repository configuration file in
	/usr/local/etc/pkg/repos/custom.conf
	would look like:
custom: {
	url: "http://pkg.example.com/11amd64",
	enabled: yes,
}
4.7. Post-Installation Considerations
Regardless of whether the software was installed from a
 binary package or port, most third-party applications require
 some level of configuration after installation. The following
 commands and locations can be used to help determine what was
 installed with the application.
	Most applications install at least one default
	 configuration file in /usr/local/etc.
	 In cases where an application has a large number of
	 configuration files, a subdirectory will be created to hold
	 them. Often, sample configuration files are installed which
	 end with a suffix such as .sample. The
	 configuration files should be reviewed and possibly
	 edited to meet the system's needs. To edit a sample file,
	 first copy it without the .sample
	 extension.

	Applications which provide documentation will install
	 it into /usr/local/share/doc and many
	 applications also install manual pages. This documentation
	 should be consulted before continuing.

	Some applications run services which must be added
	 to /etc/rc.conf before starting the
	 application. These applications usually install a startup
	 script in /usr/local/etc/rc.d. See
	 Starting
	 Services for more information.
Note:
By design, applications do not run their startup
	 script upon installation, nor do they run their stop
	 script upon deinstallation or upgrade. This decision
	 is left to the individual system administrator.

	Users of csh(1) should run
	 rehash to rebuild the known binary list
	 in the shells PATH.

	Use pkg info to determine which
	 files, man pages, and binaries were installed with the
	 application.

4.8. Dealing with Broken Ports
When a port does not build or
 install, try the following:
	Search to see if there is a fix pending for the port in
	 the Problem
	 Report database. If so, implementing the proposed
	 fix may fix the issue.

	Ask the maintainer of the port for help. Type
	 make maintainer
	 in the ports skeleton or read the port's
	 Makefile to find the maintainer's
	 email address. Remember to include the
	 $FreeBSD: line from the port's
	 Makefile and the output leading up to
	 the error in the email to the maintainer.
Note:
Some ports are not maintained by an individual but
	 instead by a group maintainer represented by a mailing
	 list. Many, but not all, of these addresses look
	 like <freebsd-listname@FreeBSD.org>.
	 Please take this into account when sending an
	 email.
In particular, ports maintained by
	 <ports@FreeBSD.org> are not
	 maintained by a specific individual. Instead, any fixes
	 and support come from the general community who subscribe
	 to that mailing list. More volunteers are always
	 needed!

If there is no response to the email, use
	 Bugzilla to submit a bug report using the
	 instructions in Writing
	 FreeBSD Problem Reports.

	Fix it! The Porter's
	 Handbook includes detailed information on the
	 ports infrastructure so that you can fix the occasional
	 broken port or even submit your own!

	Install the package instead of the port using the
	 instructions in Section 4.4, “Using pkg for Binary Package
 Management”.

Chapter 5. The X Window System
5.1. Synopsis
An installation of FreeBSD using
 bsdinstall does not automatically
 install a graphical user interface. This chapter describes how
 to install and configure Xorg,
 which provides the open source X Window System used to provide a
 graphical environment. It then describes how to find and
 install a desktop environment or window manager.
Note:
Users who prefer an installation method that automatically
	configures the Xorg should refer
	to GhostBSD,
	MidnightBSD
	 or
	NomadBSD.

For more information on the video hardware that
 Xorg supports, refer to the x.org website.
After reading this chapter, you will know:
	The various components of the X Window System, and how
	 they interoperate.

	How to install and configure
	 Xorg.

	How to install and configure several window managers
	 and desktop environments.

	How to use TrueType® fonts in
	 Xorg.

	How to set up your system for graphical logins
	 (XDM).

Before reading this chapter, you should:
	Know how to install additional third-party
	 software as described in Chapter 4, Installing Applications: Packages and Ports.

5.2. Terminology
While it is not necessary to understand all of the details
 of the various components in the X Window System and how they
 interact, some basic knowledge of these components can be
 useful.
	X server
	X was designed from the beginning to be
	 network-centric, and adopts a “client-server”
	 model. In this model, the “X server” runs on
	 the computer that has the keyboard, monitor, and mouse
	 attached. The server's responsibility includes tasks such
	 as managing the display, handling input from the keyboard
	 and mouse, and handling input or output from other devices
	 such as a tablet or a video projector. This confuses some
	 people, because the X terminology is exactly backward to
	 what they expect. They expect the “X server”
	 to be the big powerful machine down the hall, and the
	 “X client” to be the machine on their
	 desk.

	X client
	Each X application, such as
	 XTerm or
	 Firefox, is a
	 “client”. A client sends messages to the
	 server such as “Please draw a window at these
	 coordinates”, and the server sends back messages
	 such as “The user just clicked on the OK
	 button”.
In a home or small office environment, the X server
	 and the X clients commonly run on the same computer. It
	 is also possible to run the X server on a less powerful
	 computer and to run the X applications on a more powerful
	 system. In this scenario, the communication between the X
	 client and server takes place over the network.

	window manager
	X does not dictate what windows should look like
	 on-screen, how to move them around with the mouse, which
	 keystrokes should be used to move between windows, what
	 the title bars on each window should look like, whether or
	 not they have close buttons on them, and so on. Instead,
	 X delegates this responsibility to a separate window
	 manager application. There are dozens of window
	 managers available. Each window manager provides
	 a different look and feel: some support virtual desktops,
	 some allow customized keystrokes to manage the desktop,
	 some have a “Start” button, and some are
	 themeable, allowing a complete change of the desktop's
	 look-and-feel. Window managers are available in the
	 x11-wm category of the Ports
	 Collection.
Each window manager uses a different configuration
	 mechanism. Some expect configuration file written by hand
	 while others provide graphical tools for most
	 configuration tasks.

	desktop environment
	KDE and
	 GNOME are considered to be
	 desktop environments as they include an entire suite of
	 applications for performing common desktop tasks. These
	 may include office suites, web browsers, and games.

	focus policy
	The window manager is responsible for the mouse focus
	 policy. This policy provides some means for choosing
	 which window is actively receiving keystrokes and it
	 should also visibly indicate which window is currently
	 active.
One focus policy is called
	 “click-to-focus”. In this model, a window
	 becomes active upon receiving a mouse click. In the
	 “focus-follows-mouse” policy, the window that
	 is under the mouse pointer has focus and the focus is
	 changed by pointing at another window. If the mouse is
	 over the root window, then this window is focused. In the
	 “sloppy-focus” model, if the mouse is moved
	 over the root window, the most recently used window still
	 has the focus. With sloppy-focus, focus is only changed
	 when the cursor enters a new window, and not when exiting
	 the current window. In the “click-to-focus”
	 policy, the active window is selected by mouse click. The
	 window may then be raised and appear in front of all other
	 windows. All keystrokes will now be directed to this
	 window, even if the cursor is moved to another
	 window.
Different window managers support different focus
	 models. All of them support click-to-focus, and the
	 majority of them also support other policies. Consult the
	 documentation for the window manager to determine which
	 focus models are available.

	widgets
	Widget is a term for all of the items in the user
	 interface that can be clicked or manipulated in some way.
	 This includes buttons, check boxes, radio buttons, icons,
	 and lists. A widget toolkit is a set of widgets used to
	 create graphical applications. There are several popular
	 widget toolkits, including Qt, used by
	 KDE, and GTK+, used by
	 GNOME. As a result,
	 applications will have a different look and feel,
	 depending upon which widget toolkit was used to create the
	 application.

5.4. Xorg Configuration
Originally contributed by Warren Block. 5.4.1. Quick Start
Xorg supports most common
	video cards, keyboards, and pointing devices.
Tip:
Video cards, monitors, and input devices are
	 automatically detected and do not require any manual
	 configuration. Do not create xorg.conf
	 or run a -configure step unless automatic
	 configuration fails.

	If Xorg has been used on
	 this computer before, move or remove any existing
	 configuration files:
mv /etc/X11/xorg.conf ~/xorg.conf.etc
mv /usr/local/etc/X11/xorg.conf ~/xorg.conf.localetc

	Add the user who will run
	 Xorg to the
	 video or
	 wheel group to
	 enable 3D acceleration when available. To add user
	 jru to whichever group is
	 available:
pw groupmod video -m jru || pw groupmod wheel -m jru

	The twm window manager is
	 included by default. It is started when
	 Xorg starts:
% startx

	On some older versions of FreeBSD, the system console
	 must be set to vt(4) before switching back to the
	 text console will work properly. See
	 Section 5.4.3, “Kernel Mode Setting (KMS)”.

5.4.2. User Group for Accelerated Video
Access to /dev/dri is needed to allow
	3D acceleration on video cards. It is usually simplest to add
	the user who will be running X to either the video or wheel group. Here,
	pw(8) is used to add user
	slurms to the
	video group, or to
	the wheel group if
	there is no video
	group:
pw groupmod video -m slurms || pw groupmod wheel -m slurms
5.4.3. Kernel Mode Setting (KMS)
When the computer switches from displaying the console to
	a higher screen resolution for X, it must set the video
	output mode. Recent versions of
	Xorg use a system inside the kernel to do
	these mode changes more efficiently. Older versions of FreeBSD
	use sc(4), which is not aware of the
	KMS system. The end result is that after
	closing X, the system console is blank, even though it is
	still working. The newer vt(4) console avoids this
	problem.
Add this line to /boot/loader.conf
	to enable vt(4):
kern.vty=vt
5.4.4. Configuration Files
Manual configuration is usually not necessary. Please do
	not manually create configuration files unless
	autoconfiguration does not work.
5.4.4.1. Directory
Xorg looks in several
	 directories for configuration files.
	 /usr/local/etc/X11/ is the recommended
	 directory for these files on FreeBSD. Using this directory
	 helps keep application files separate from operating system
	 files.
Storing configuration files in the legacy
	 /etc/X11/ still works. However, this
	 mixes application files with the base FreeBSD files and is not
	 recommended.
5.4.4.2. Single or Multiple Files
It is easier to use multiple files that each configure a
	 specific setting than the traditional single
	 xorg.conf. These files are stored in
	 the xorg.conf.d/ subdirectory of the
	 main configuration file directory. The full path is
	 typically
	 /usr/local/etc/X11/xorg.conf.d/.
Examples of these files are shown later in this
	 section.
The traditional single xorg.conf
	 still works, but is neither as clear nor as flexible as
	 multiple files in the xorg.conf.d/
	 subdirectory.
5.4.5. Video Cards
Because of changes made in recent versions of FreeBSD, it
	is now possible to use graphics drivers provided by the Ports
	framework or as packages. As such, users can use one of the
	following drivers available from
	graphics/drm-kmod.
	Intel KMS driver
Radeon KMS driver
AMD KMS driver
	2D and 3D acceleration is supported on most
	 Intel KMS driver graphics cards provided by Intel®.
Driver name: i915kms
2D and 3D acceleration is supported on most older
	 Radeon KMS driver graphics cards provided by AMD®.
Driver name: radeonkms
2D and 3D acceleration is supported on most newer
	 AMD KMS driver graphics cards provided by AMD®..
Driver name: amdgpu
For reference, please see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units
	 or https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units
	 for a list of supported GPUs.

	Intel®
	3D acceleration is supported on most Intel®
	 graphics up to Ivy Bridge (HD Graphics 2500, 4000, and
	 P4000), including Iron Lake (HD Graphics) and
	 Sandy Bridge (HD Graphics 2000).
Driver name: intel
For reference, see https://en.wikipedia.org/wiki/List_of_Intel_graphics_processing_units.

	AMD® Radeon
	2D and 3D acceleration is supported on Radeon
	 cards up to and including the HD6000 series.
Driver name: radeon
For reference, see https://en.wikipedia.org/wiki/List_of_AMD_graphics_processing_units.

	NVIDIA
	Several NVIDIA drivers are available in the
	 x11 category of the Ports
	 Collection. Install the driver that matches the video
	 card.
For reference, see https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units.

	Hybrid Combination Graphics
	Some notebook computers add additional graphics
	 processing units to those built into the chipset or
	 processor. Optimus combines
	 Intel® and NVIDIA hardware.
	 Switchable Graphics or
	 Hybrid Graphics are a combination
	 of an Intel® or AMD® processor and an AMD® Radeon
	 GPU.
Implementations of these hybrid graphics systems
	 vary, and Xorg on FreeBSD is
	 not able to drive all versions of them.
Some computers provide a BIOS
	 option to disable one of the graphics adapters or select
	 a discrete mode which can be used
	 with one of the standard video card drivers. For
	 example, it is sometimes possible to disable the NVIDIA
	 GPU in an Optimus system. The
	 Intel® video can then be used with an Intel®
	 driver.
BIOS settings depend on the model
	 of computer. In some situations, both
	 GPUs can be left enabled, but
	 creating a configuration file that only uses the main
	 GPU in the Device
	 section is enough to make such a system
	 functional.

	Other Video Cards
	Drivers for some less-common video cards can be
	 found in the x11-drivers directory
	 of the Ports Collection.
Cards that are not supported by a specific driver
	 might still be usable with the
	 x11-drivers/xf86-video-vesa driver.
	 This driver is installed by x11/xorg.
	 It can also be installed manually as
	 x11-drivers/xf86-video-vesa.
	 Xorg attempts to use this
	 driver when a specific driver is not found for the video
	 card.
x11-drivers/xf86-video-scfb is a
	 similar nonspecialized video driver that works on many
	 UEFI and ARM® computers.

	Setting the Video Driver in a File
	To set the Intel® driver in a configuration
	 file:
Example 5.1. Select Intel® Video Driver in a File
/usr/local/etc/X11/xorg.conf.d/driver-intel.conf
Section "Device"
	Identifier "Card0"
	Driver "intel"
	# BusID "PCI:1:0:0"
EndSection
If more than one video card is present, the
		BusID identifier can be uncommented
		and set to select the desired card. A list of video
		card bus IDs can be displayed with
		pciconf -lv | grep -B3
		 display.

To set the Radeon driver in a configuration
	 file:
Example 5.2. Select Radeon Video Driver in a File
/usr/local/etc/X11/xorg.conf.d/driver-radeon.conf
Section "Device"
	Identifier "Card0"
	Driver "radeon"
EndSection

To set the VESA driver in a
	 configuration file:
Example 5.3. Select VESA Video Driver in a
		File
/usr/local/etc/X11/xorg.conf.d/driver-vesa.conf
Section "Device"
	Identifier "Card0"
	Driver "vesa"
EndSection

To set the scfb driver for use
	 with a UEFI or ARM® computer:
Example 5.4. Select scfb Video Driver in a
		File
/usr/local/etc/X11/xorg.conf.d/driver-scfb.conf
Section "Device"
	Identifier "Card0"
	Driver "scfb"
EndSection

5.4.6. Monitors
Almost all monitors support the Extended Display
	Identification Data standard (EDID).
	Xorg uses EDID
	to communicate with the monitor and detect the supported
	resolutions and refresh rates. Then it selects the most
	appropriate combination of settings to use with that
	monitor.
Other resolutions supported by the monitor can be
	chosen by setting the desired resolution in configuration
	files, or after the X server has been started with
	xrandr(1).
	Using xrandr(1)
	Run xrandr(1) without any parameters to see a
	 list of video outputs and detected monitor modes:
% xrandr
Screen 0: minimum 320 x 200, current 3000 x 1920, maximum 8192 x 8192
DVI-0 connected primary 1920x1200+1080+0 (normal left inverted right x axis y axis) 495mm x 310mm
 1920x1200 59.95*+
 1600x1200 60.00
 1280x1024 85.02 75.02 60.02
 1280x960 60.00
 1152x864 75.00
 1024x768 85.00 75.08 70.07 60.00
 832x624 74.55
 800x600 75.00 60.32
 640x480 75.00 60.00
 720x400 70.08
DisplayPort-0 disconnected (normal left inverted right x axis y axis)
HDMI-0 disconnected (normal left inverted right x axis y axis)
This shows that the DVI-0 output
	 is being used to display a screen resolution of
	 1920x1200 pixels at a refresh rate of about 60 Hz.
	 Monitors are not attached to the
	 DisplayPort-0 and
	 HDMI-0 connectors.
Any of the other display modes can be selected with
	 xrandr(1). For example, to switch to 1280x1024 at
	 60 Hz:
% xrandr --mode 1280x1024 --rate 60
A common task is using the external video output on
	 a notebook computer for a video projector.
The type and quantity of output connectors varies
	 between devices, and the name given to each output
	 varies from driver to driver. What one driver calls
	 HDMI-1, another might call
	 HDMI1. So the first step is to run
	 xrandr(1) to list all the available
	 outputs:
% xrandr
Screen 0: minimum 320 x 200, current 1366 x 768, maximum 8192 x 8192
LVDS1 connected 1366x768+0+0 (normal left inverted right x axis y axis) 344mm x 193mm
 1366x768 60.04*+
 1024x768 60.00
 800x600 60.32 56.25
 640x480 59.94
VGA1 connected (normal left inverted right x axis y axis)
 1280x1024 60.02 + 75.02
 1280x960 60.00
 1152x864 75.00
 1024x768 75.08 70.07 60.00
 832x624 74.55
 800x600 72.19 75.00 60.32 56.25
 640x480 75.00 72.81 66.67 60.00
 720x400 70.08
HDMI1 disconnected (normal left inverted right x axis y axis)
DP1 disconnected (normal left inverted right x axis y axis)
Four outputs were found: the built-in panel
	 LVDS1, and external
	 VGA1, HDMI1, and
	 DP1 connectors.
The projector has been connected to the
	 VGA1 output. xrandr(1) is now
	 used to set that output to the native resolution of the
	 projector and add the additional space to the right side
	 of the desktop:
% xrandr --output VGA1 --auto --right-of LVDS1
--auto chooses the resolution and
	 refresh rate detected by EDID. If
	 the resolution is not correctly detected, a fixed value
	 can be given with --mode instead of
	 the --auto statement. For example,
	 most projectors can be used with a 1024x768 resolution,
	 which is set with
	 --mode 1024x768.
xrandr(1) is often run from
	 .xinitrc to set the appropriate
	 mode when X starts.

	Setting Monitor Resolution in a File
	To set a screen resolution of 1024x768 in a
	 configuration file:
Example 5.5. Set Screen Resolution in a File
/usr/local/etc/X11/xorg.conf.d/screen-resolution.conf
Section "Screen"
	Identifier "Screen0"
	Device "Card0"
	SubSection "Display"
	Modes "1024x768"
	EndSubSection
EndSection

The few monitors that do not have
	 EDID can be configured by setting
	 HorizSync and
	 VertRefresh to the range of
	 frequencies supported by the monitor.
Example 5.6. Manually Setting Monitor Frequencies
/usr/local/etc/X11/xorg.conf.d/monitor0-freq.conf
Section "Monitor"
	Identifier "Monitor0"
	HorizSync 30-83 # kHz
	VertRefresh 50-76 # Hz
EndSection

5.4.7. Input Devices
5.4.7.1. Keyboards
	Keyboard Layout
	The standardized location of keys on a keyboard
		is called a layout. Layouts and
		other adjustable parameters are listed in
		xkeyboard-config(7).
A United States layout is the default. To select
		an alternate layout, set the
		XkbLayout and
		XkbVariant options in an
		InputClass. This will be applied
		to all input devices that match the class.
This example selects a French keyboard
		layout.
Example 5.7. Setting a Keyboard Layout
/usr/local/etc/X11/xorg.conf.d/keyboard-fr.conf
Section	"InputClass"
	Identifier	"KeyboardDefaults"
	MatchIsKeyboard	"on"
	Option		"XkbLayout" "fr"
EndSection

Example 5.8. Setting Multiple Keyboard Layouts
Set United States, Spanish, and Ukrainian
		 keyboard layouts. Cycle through these layouts by
		 pressing
		 Alt+Shift. x11/xxkb or
		 x11/sbxkb can be used for
		 improved layout switching control and
		 current layout indicators.
/usr/local/etc/X11/xorg.conf.d/kbd-layout-multi.conf
Section	"InputClass"
	Identifier	"All Keyboards"
	MatchIsKeyboard	"yes"
	Option		"XkbLayout" "us, es, ua"
EndSection

	Closing Xorg From the
	 Keyboard
	X can be closed with a combination of keys.
		By default, that key combination is not set because it
		conflicts with keyboard commands for some
		applications. Enabling this option requires changes
		to the keyboard InputDevice
		section:
Example 5.9. Enabling Keyboard Exit from X
/usr/local/etc/X11/xorg.conf.d/keyboard-zap.conf
Section	"InputClass"
	Identifier	"KeyboardDefaults"
	MatchIsKeyboard	"on"
	Option		"XkbOptions" "terminate:ctrl_alt_bksp"
EndSection

5.4.7.2. Mice and Pointing Devices
Important:
If using xorg-server 1.20.8 or
	 later under FreeBSD 12.1 and not
	 using moused(8), add
	 kern.evdev.rcpt_mask=12 to
	 /etc/sysctl.conf.

Many mouse parameters can be adjusted with configuration
	 options. See mousedrv(4) for a full list.
	Mouse Buttons
	The number of buttons on a mouse can be set in the
		mouse InputDevice section of
		xorg.conf. To set the number of
		buttons to 7:
Example 5.10. Setting the Number of Mouse Buttons
/usr/local/etc/X11/xorg.conf.d/mouse0-buttons.conf
Section "InputDevice"
	Identifier "Mouse0"
	Option "Buttons" "7"
EndSection

5.4.8. Manual Configuration
In some cases, Xorg
	autoconfiguration does not work with particular hardware, or a
	different configuration is desired. For these cases, a custom
	configuration file can be created.
Warning:
Do not create manual configuration files unless
	 required. Unnecessary manual configuration can prevent
	 proper operation.

A configuration file can be generated by
	Xorg based on the detected
	hardware. This file is often a useful starting point for
	custom configurations.
Generating an xorg.conf:
Xorg -configure
The configuration file is saved to
	/root/xorg.conf.new. Make any changes
	desired, then test that file (using -retro
	so there is a visible background) with:
Xorg -retro -config /root/xorg.conf.new
After the new configuration has been adjusted and tested,
	it can be split into smaller files in the normal location,
	/usr/local/etc/X11/xorg.conf.d/.
5.5. Using Fonts in Xorg
5.5.1. Type1 Fonts
The default fonts that ship with
	Xorg are less than ideal for
	typical desktop publishing applications. Large presentation
	fonts show up jagged and unprofessional looking, and small
	fonts are almost completely unintelligible. However, there
	are several free, high quality Type1 (PostScript®) fonts
	available which can be readily used with
	Xorg. For instance, the URW font
	collection (x11-fonts/urwfonts) includes
	high quality versions of standard type1 fonts (Times Roman®, Helvetica®, Palatino® and others). The
	Freefonts collection (x11-fonts/freefonts)
	includes many more fonts, but most of them are intended for
	use in graphics software such as the
	Gimp, and are not complete enough
	to serve as screen fonts. In addition,
	Xorg can be configured to use
	TrueType® fonts with a minimum of effort. For more details
	on this, see the X(7) manual page or Section 5.5.2, “TrueType® Fonts”.
To install the above Type1 font collections from binary
	packages, run the following commands:
pkg install urwfonts
Alternatively, to build from the Ports Collection, run the
	following commands:
cd /usr/ports/x11-fonts/urwfonts
make install clean
And likewise with the freefont or other collections. To
	have the X server detect these fonts, add an appropriate line
	to the X server configuration file
	(/etc/X11/xorg.conf), which reads:
FontPath "/usr/local/share/fonts/urwfonts/"
Alternatively, at the command line in the X session
	run:
% xset fp+ /usr/local/share/fonts/urwfonts
% xset fp rehash
This will work but will be lost when the X session is
	closed, unless it is added to the startup file
	(~/.xinitrc for a normal
	startx session, or
	~/.xsession when logging in through a
	graphical login manager like XDM).
	A third way is to use the new
	/usr/local/etc/fonts/local.conf as
	demonstrated in Section 5.5.3, “Anti-Aliased Fonts”.
5.5.2. TrueType® Fonts
Xorg has built in support for
	rendering TrueType® fonts. There are two different modules
	that can enable this functionality. The freetype module is
	used in this example because it is more consistent with the
	other font rendering back-ends. To enable the freetype module
	just add the following line to the "Module"
	section of /etc/X11/xorg.conf.
Load "freetype"
Now make a directory for the TrueType® fonts (for
	example, /usr/local/share/fonts/TrueType)
	and copy all of the TrueType® fonts into this directory.
	Keep in mind that TrueType® fonts cannot be directly taken
	from an Apple® Mac®; they must be in
	UNIX®/MS-DOS®/Windows® format for use by
	Xorg. Once the files have been
	copied into this directory, use
	mkfontscale to create a
	fonts.dir, so that the X font renderer
	knows that these new files have been installed.
	mkfontscale can be installed as a
	package:
pkg install mkfontscale
Then create an index of X font files in a
	directory:
cd /usr/local/share/fonts/TrueType
mkfontscale
Now add the TrueType® directory to the font path. This
	is just the same as described in Section 5.5.1, “Type1 Fonts”:
% xset fp+ /usr/local/share/fonts/TrueType
% xset fp rehash
or add a FontPath line to
	xorg.conf.
Now Gimp,
	LibreOffice, and all of the
	other X applications should now recognize the installed
	TrueType® fonts. Extremely small fonts (as with text in a
	high resolution display on a web page) and extremely large
	fonts (within LibreOffice) will
	look much better now.
5.5.3. Anti-Aliased Fonts
All fonts in Xorg that are
	found in /usr/local/share/fonts/ and
	~/.fonts/ are automatically made
	available for anti-aliasing to Xft-aware applications. Most
	recent applications are Xft-aware, including
	KDE,
	GNOME, and
	Firefox.
To control which fonts are anti-aliased, or to
	configure anti-aliasing properties, create (or edit, if it
	already exists) the file
	/usr/local/etc/fonts/local.conf. Several
	advanced features of the Xft font system can be tuned using
	this file; this section describes only some simple
	possibilities. For more details, please see
	fonts-conf(5).
This file must be in XML format. Pay careful attention to
	case, and make sure all tags are properly closed. The file
	begins with the usual XML header followed by a DOCTYPE
	definition, and then the <fontconfig>
	tag:
<?xml version="1.0"?>
 <!DOCTYPE fontconfig SYSTEM "fonts.dtd">
 <fontconfig>
As previously stated, all fonts in
	/usr/local/share/fonts/ as well as
	~/.fonts/ are already made available to
	Xft-aware applications. To add another directory
	outside of these two directory trees, add a line like
	this to
	/usr/local/etc/fonts/local.conf:
<dir>/path/to/my/fonts</dir>
After adding new fonts, and especially new font
	directories, rebuild
	the font caches:
fc-cache -f
Anti-aliasing makes borders slightly fuzzy, which makes
	very small text more readable and removes
	“staircases” from large text, but can cause
	eyestrain if applied to normal text. To exclude font sizes
	smaller than 14 point from anti-aliasing, include these
	lines:
 <match target="font">
	 <test name="size" compare="less">
		<double>14</double>
	 </test>
	 <edit name="antialias" mode="assign">
		<bool>false</bool>
	 </edit>
	</match>
	<match target="font">
	 <test name="pixelsize" compare="less" qual="any">
		<double>14</double>
	 </test>
	 <edit mode="assign" name="antialias">
		<bool>false</bool>
	 </edit>
	</match>
Spacing for some monospaced fonts might also be
	inappropriate with anti-aliasing. This seems to be an issue
	with KDE, in particular. One
	possible fix is to force the spacing for such fonts
	to be 100. Add these lines:
	<match target="pattern" name="family">
	 <test qual="any" name="family">
	 <string>fixed</string>
	 </test>
	 <edit name="family" mode="assign">
	 <string>mono</string>
	 </edit>
	</match>
	<match target="pattern" name="family">
	 <test qual="any" name="family">
		<string>console</string>
	 </test>
	 <edit name="family" mode="assign">
		<string>mono</string>
	 </edit>
	</match>
(this aliases the other common names for fixed fonts as
	"mono"), and then add:
 <match target="pattern" name="family">
	 <test qual="any" name="family">
		 <string>mono</string>
	 </test>
	 <edit name="spacing" mode="assign">
		 <int>100</int>
	 </edit>
	 </match>
Certain fonts, such as Helvetica, may have a problem when
	anti-aliased. Usually this manifests itself as a font that
	seems cut in half vertically. At worst, it may cause
	applications to crash. To avoid this, consider adding the
	following to local.conf:
 <match target="pattern" name="family">
	 <test qual="any" name="family">
		 <string>Helvetica</string>
	 </test>
	 <edit name="family" mode="assign">
		 <string>sans-serif</string>
	 </edit>
	 </match>
After editing
	local.conf, make certain to end the file
	with the </fontconfig> tag. Not
	doing this will cause changes to be ignored.
Users can add personalized settings by creating their own
	~/.config/fontconfig/fonts.conf. This
	file uses the same XML format described
	above.
One last point: with an LCD screen, sub-pixel sampling may
	be desired. This basically treats the (horizontally
	separated) red, green and blue components separately to
	improve the horizontal resolution; the results can be
	dramatic. To enable this, add the line somewhere in
	local.conf:
	 <match target="font">
	 <test qual="all" name="rgba">
		 <const>unknown</const>
	 </test>
	 <edit name="rgba" mode="assign">
		 <const>rgb</const>
	 </edit>
	 </match>
Note:
Depending on the sort of display,
	 rgb may need to be changed to
	 bgr, vrgb or
	 vbgr: experiment and see which works
	 best.

5.6. The X Display Manager
Originally contributed by Seth Kingsley. Xorg provides an X Display
 Manager, XDM, which can be used for
 login session management. XDM
 provides a graphical interface for choosing which display server
 to connect to and for entering authorization information such as
 a login and password combination.
This section demonstrates how to configure the X Display
 Manager on FreeBSD. Some desktop environments provide their own
 graphical login manager. Refer to Section 5.7.1, “GNOME” for instructions on how to configure
 the GNOME Display Manager and Section 5.7.2, “KDE” for
 instructions on how to configure the KDE Display Manager.
5.6.1. Configuring XDM
To install XDM, use the
	x11/xdm package or port. Once installed,
	XDM can be configured to run when
	the machine boots up by editing this entry in
	/etc/ttys:
ttyv8 "/usr/local/bin/xdm -nodaemon" xterm off secure
Change the off to on
	and save the edit. The ttyv8 in this entry
	indicates that XDM will run on the
	ninth virtual terminal.
The XDM configuration directory
	is located in /usr/local/etc/X11/xdm.
	This directory contains several files used to change the
	behavior and appearance of XDM, as
	well as a few scripts and programs used to set up the desktop
	when XDM is running. Table 5.1, “XDM Configuration Files” summarizes the function of each
	of these files. The exact syntax and usage of these files is
	described in xdm(1).
Table 5.1. XDM Configuration Files
	File	Description
	Xaccess	The protocol for connecting to
		XDM is called the X Display
		Manager Connection Protocol
		(XDMCP). This file is a client
		authorization ruleset for controlling
		XDMCP connections from remote
		machines. By default, this file does not allow any
		remote clients to connect.
	Xresources	This file controls the look and feel of the
		XDM display chooser and
		login screens. The default configuration is a simple
		rectangular login window with the hostname of the
		machine displayed at the top in a large font and
		“Login:” and “Password:”
		prompts below. The format of this file is identical
		to the app-defaults file described in the
		Xorg
		documentation.
	Xservers	The list of local and remote displays the chooser
		should provide as login choices.
	Xsession	Default session script for logins which is run by
		XDM after a user has logged
		in. This points to a customized session
		script in ~/.xsession.
	Xsetup_*	Script to automatically launch applications
		before displaying the chooser or login interfaces.
		There is a script for each display being used, named
		Xsetup_*, where
		* is the local display number.
		Typically these scripts run one or two programs in the
		background such as
		xconsole.
	xdm-config	Global configuration for all displays running
		on this machine.
	xdm-errors	Contains errors generated by the server program.
		If a display that XDM is
		trying to start hangs, look at this file for error
		messages. These messages are also written to the
		user's ~/.xsession-errors on a
		per-session basis.
	xdm-pid	The running process ID of
		XDM.

5.6.2. Configuring Remote Access
By default, only users on the same system can login using
	XDM. To enable users on other
	systems to connect to the display server, edit the access
	control rules and enable the connection listener.
To configure XDM to listen for
	any remote connection, comment out the
	DisplayManager.requestPort line in
	/usr/local/etc/X11/xdm/xdm-config by
	putting a ! in front of it:
! SECURITY: do not listen for XDMCP or Chooser requests
! Comment out this line if you want to manage X terminals with xdm
DisplayManager.requestPort: 0
Save the edits and restart XDM.
	To restrict remote access, look at the example entries in
	/usr/local/etc/X11/xdm/Xaccess and refer
	to xdm(1) for further information.
5.7. Desktop Environments
Contributed by Valentino Vaschetto. This section describes how to install three popular desktop
 environments on a FreeBSD system. A desktop environment can range
 from a simple window manager to a complete suite of desktop
 applications. Over a hundred desktop environments are available
 in the x11-wm category of the Ports
 Collection.
5.7.1. GNOME
GNOME is a user-friendly
	desktop environment. It includes a panel for starting
	applications and displaying status, a desktop, a set of tools
	and applications, and a set of conventions that make it easy
	for applications to cooperate and be consistent with each
	other. More information regarding
	GNOME on FreeBSD can be found at https://www.FreeBSD.org/gnome.
	That web site contains additional documentation about
	installing, configuring, and managing
	GNOME on FreeBSD.
This desktop environment can be installed from a
	package:
pkg install gnome3
To instead build GNOME from
	ports, use the following command.
	GNOME is a large application and
	will take some time to compile, even on a fast
	computer.
cd /usr/ports/x11/gnome3
make install clean
GNOME
	requires /proc to be mounted. Add this
	line to /etc/fstab to mount this file
	system automatically during system startup:
proc /proc procfs rw 0 0
GNOME uses
	D-Bus and
	HAL for a message bus and hardware
	abstraction. These applications are automatically installed
	as dependencies of GNOME. Enable
	them in /etc/rc.conf so they will be
	started when the system boots:
dbus_enable="YES"
hald_enable="YES"
After installation,
	configure Xorg to start
	GNOME. The easiest way to do this
	is to enable the GNOME Display Manager,
	GDM, which is installed as part of
	the GNOME package or port. It can
	be enabled by adding this line to
	/etc/rc.conf:
gdm_enable="YES"
It is often desirable to also start all
	GNOME services. To achieve this,
	add a second line to /etc/rc.conf:
gnome_enable="YES"
GDM will start
	automatically when the system boots.
A second method for starting
	GNOME is to type
	startx from the command-line after
	configuring ~/.xinitrc. If this file
	already exists, replace the line that starts the current
	window manager with one that starts
	/usr/local/bin/gnome-session. If this
	file does not exist, create it with this command:
% echo "exec /usr/local/bin/gnome-session" > ~/.xinitrc
A third method is to use XDM as
	the display manager. In this case, create an executable
	~/.xsession:
% echo "exec /usr/local/bin/gnome-session" > ~/.xsession
5.7.2. KDE
KDE is another easy-to-use
	desktop environment. This desktop provides a suite of
	applications with a consistent look and feel, a standardized
	menu and toolbars, keybindings, color-schemes,
	internationalization, and a centralized, dialog-driven desktop
	configuration. More information on
	KDE can be found at http://www.kde.org/.
	For FreeBSD-specific information, consult http://freebsd.kde.org.
To install the KDE package,
	type:
pkg install x11/kde5
To instead build the KDE port,
	use the following command. Installing the port will provide a
	menu for selecting which components to install.
	KDE is a large application and will
	take some time to compile, even on a fast computer.
cd /usr/ports/x11/kde5
make install clean
KDE requires
	/proc to be mounted. Add this line to
	/etc/fstab to mount this file system
	automatically during system startup:
proc /proc procfs rw 0 0
KDE uses
	D-Bus and
	HAL for a message bus and hardware
	abstraction. These applications are automatically installed
	as dependencies of KDE. Enable
	them in /etc/rc.conf so they will be
	started when the system boots:
dbus_enable="YES"
hald_enable="YES"
Since KDE Plasma 5, the KDE Display Manager,
	KDM is no longer developed.
	A possible replacement is SDDM.
	To install it, type:
pkg install x11/sddm
Add this line to
	/etc/rc.conf:
sddm_enable="YES"
A second method for launching
	KDE Plasma is to type
	startx from the command line. For this to
	work, the following line is needed in
	~/.xinitrc:
exec ck-launch-session startplasma-x11
A third method for starting KDE
	 Plasma is through
	XDM. To do so, create
	an executable ~/.xsession as
	follows:
% echo "exec ck-launch-session startplasma-x11" > ~/.xsession
Once KDE Plasma is started,
	refer to its built-in help system for more information on how
	to use its various menus and applications.
5.7.3. Xfce
Xfce is a desktop environment
	based on the GTK+ toolkit used by
	GNOME. However, it is more
	lightweight and provides a simple, efficient, easy-to-use
	desktop. It is fully configurable, has a main panel with
	menus, applets, and application launchers, provides a file
	manager and sound manager, and is themeable. Since it is
	fast, light, and efficient, it is ideal for older or slower
	machines with memory limitations. More information on
	Xfce can be found at http://www.xfce.org.
To install the Xfce
	package:
pkg install xfce
Alternatively, to build the port:
cd /usr/ports/x11-wm/xfce4
make install clean
Xfce uses
	D-Bus for a message bus. This
	application is automatically installed as dependency of
	Xfce. Enable it in
	/etc/rc.conf so it will be started when
	the system boots:
dbus_enable="YES"
Unlike GNOME or
	KDE,
	Xfce does not provide its own login
	manager. In order to start Xfce
	from the command line by typing startx,
	first create ~/.xinitrc with this
	command:
% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xinitrc
An alternate method is to use
	XDM. To configure this method,
	create an executable ~/.xsession:
% echo ". /usr/local/etc/xdg/xfce4/xinitrc" > ~/.xsession
Part II. Common Tasks
Now that the basics have been covered, this part of the
	book discusses some frequently used features of FreeBSD. These
	chapters:
	Introduce popular and useful desktop applications:
	 browsers, productivity tools, document viewers, and
	 more.

	Introduce a number of multimedia tools available for
	 FreeBSD.

	Explain the process of building a customized FreeBSD
	 kernel to enable extra functionality.

	Describe the print system in detail, both for desktop
	 and network-connected printer setups.

	Show how to run Linux applications on the FreeBSD
	 system.

Some of these chapters recommend prior reading, and this
	is noted in the synopsis at the beginning of each
	chapter.

Chapter 6. Desktop Applications
6.1. Synopsis
While FreeBSD is popular as a server for its performance and
 stability, it is also suited for day-to-day use as a desktop.
 With over 24,000 applications available as FreeBSD packages
 or ports, it is easy to build a customized desktop that runs
 a wide variety of desktop applications. This chapter
 demonstrates how to install numerous desktop applications,
 including web browsers, productivity software, document viewers,
 and financial software.
Note:
Users who prefer to install a pre-built desktop version
	of FreeBSD rather than configuring one from scratch should
	refer to GhostBSD,
	MidnightBSD
	 or NomadBSD.

Readers of this chapter should know how to:
	Install additional software using packages or
	 ports as described in Chapter 4, Installing Applications: Packages and Ports.

	Install X and a window manager as described in
	 Chapter 5, The X Window System.

For information on how to configure a multimedia
 environment, refer to Chapter 7, Multimedia.
6.2. Browsers
FreeBSD does not come with a pre-installed web browser.
 Instead, the www
 category of the Ports Collection contains many browsers which
 can be installed as a package or compiled from the Ports
 Collection.
The KDE and
 GNOME desktop environments include
 their own HTML browser. Refer to Section 5.7, “Desktop Environments”
 for more information on how to set up these complete
 desktops.
Some lightweight browsers include
 www/dillo2, www/links, and
 www/w3m.
This section demonstrates how to install the following
 popular web browsers and indicates if the application is
 resource-heavy, takes time to compile from ports, or has any
 major dependencies.
	Application Name	Resources Needed	Installation from Ports	Notes
	Firefox	medium	heavy	FreeBSD, Linux®, and localized versions are
	 available
	Konqueror	medium	heavy	Requires KDE
	 libraries
	Chromium	medium	heavy	Requires Gtk+

6.2.1. Firefox
Firefox is an open source
	browser that features a
	standards-compliant HTML display engine, tabbed browsing,
	popup blocking, extensions, improved security, and more.
	Firefox is based on the
	Mozilla codebase.
To install the package of the latest release version of
	Firefox, type:
pkg install firefox
To instead install Firefox
	Extended Support Release (ESR) version, use:
pkg install firefox-esr
The Ports Collection can instead be used to compile the
	desired version of Firefox from
	source code. This example builds
	www/firefox, where
	firefox can be replaced with the ESR or
	localized version to install.
cd /usr/ports/www/firefox
make install clean
6.2.2. Konqueror
Konqueror is more than a web
	browser as it is also a file manager and a multimedia
	viewer. Supports WebKit as well as its own KHTML. WebKit is
	a rendering engine used by many modern browsers including
	Chromium.
Konqueror can be installed as
	a package by typing:
pkg install konqueror
To install from the Ports Collection:
cd /usr/ports/x11-fm/konqueror/
make install clean
6.2.3. Chromium
Chromium is an open source
	browser project that aims to build a safer, faster, and more
	stable web browsing experience.
	Chromium features tabbed browsing,
	popup blocking, extensions, and much more.
	Chromium is the open source project
	upon which the Google Chrome web browser is based.
Chromium can be installed as a
	package by typing:
pkg install chromium
Alternatively, Chromium can be
	compiled from source using the Ports Collection:
cd /usr/ports/www/chromium
make install clean
Note:
The executable for Chromium
	 is /usr/local/bin/chrome, not
	 /usr/local/bin/chromium.

6.3. Productivity
When it comes to productivity, users often look for an
 office suite or an easy-to-use word processor. While some
 desktop environments like
 KDE provide an office suite, there
 is no default productivity package. Several office suites and
 graphical word processors are available for FreeBSD, regardless
 of the installed window manager.
This section demonstrates how to install the following
 popular productivity software and indicates if the application
 is resource-heavy, takes time to compile from ports, or has any
 major dependencies.
	Application Name	Resources Needed	Installation from Ports	Major Dependencies
	Calligra	light	heavy	KDE
	AbiWord	light	light	Gtk+ or
	 GNOME
	The Gimp	light	heavy	Gtk+
	Apache
		OpenOffice	heavy	huge	JDK™ and
	 Mozilla
	LibreOffice	somewhat heavy	huge	Gtk+, or
	 KDE/
	 GNOME, or
	 JDK™

6.3.1. Calligra
The KDE desktop environment includes
	an office suite which can be installed separately from
	KDE.
	Calligra includes standard
	components that can be found in other office suites.
	Words is the word processor,
	Sheets is the spreadsheet program,
	Stage manages slide presentations,
	and Karbon is used to draw
	graphical documents.
In FreeBSD, editors/calligra can be
	installed as a package or a port. To install the
	package:
pkg install calligra
If the package is not available, use the Ports Collection
	instead:
cd /usr/ports/editors/calligra
make install clean
6.3.2. AbiWord
AbiWord is a free word
	processing program similar in look and feel to
	Microsoft® Word. It is fast,
	contains many features, and is user-friendly.
AbiWord can import or export
	many file formats, including some proprietary ones like
	Microsoft® .rtf.
To install the AbiWord
	package:
pkg install abiword
If the package is not available, it can be compiled from
	the Ports Collection:
cd /usr/ports/editors/abiword
make install clean
6.3.3. The GIMP
For image authoring or picture retouching,
	The GIMP provides a sophisticated
	image manipulation program. It can be used as a simple paint
	program or as a quality photo retouching suite. It supports a
	large number of plugins and features a scripting interface.
	The GIMP can read and write a wide
	range of file formats and supports interfaces with scanners
	and tablets.
To install the package:
pkg install gimp
Alternately, use the Ports Collection:
cd /usr/ports/graphics/gimp
make install clean
The graphics category (freebsd.org/ports/graphics.html)
	of the Ports Collection contains several
	GIMP-related plugins, help files,
	and user manuals.
6.3.4. Apache OpenOffice
Apache OpenOffice is an open
	source office suite which is developed under the wing of the
	Apache Software Foundation's Incubator. It includes all of
	the applications found in a complete office productivity
	suite: a word processor, spreadsheet, presentation manager,
	and drawing program. Its user interface is similar to other
	office suites, and it can import and export in various popular
	file formats. It is available in a number of different
	languages and internationalization has been extended to
	interfaces, spell checkers, and dictionaries.
The word processor of Apache
	 OpenOffice uses a native XML file format for
	increased portability and flexibility. The spreadsheet
	program features a macro language which can be interfaced
	with external databases. Apache
	 OpenOffice is stable and runs natively on
	Windows®, Solaris™, Linux®, FreeBSD, and Mac OS® X.
	More information about Apache
	 OpenOffice can be found at openoffice.org.
	For FreeBSD specific information refer to porting.openoffice.org/freebsd/.
To install the Apache
	 OpenOffice package:
pkg install apache-openoffice
Once the package is installed, type the following command
	to launch Apache OpenOffice:
% openoffice-X.Y.Z
where X.Y.Z is the version
	number of the installed version of Apache
	 OpenOffice. The first time
	Apache OpenOffice launches, some
	questions will be asked and a
	.openoffice.org folder will be created in
	the user's home directory.
If the desired Apache
	 OpenOffice package is not available, compiling
	the port is still an option. However, this requires a lot of
	disk space and a fairly long time to compile:
cd /usr/ports/editors/openoffice-4
make install clean
Note:
To build a localized version, replace the previous
	 command with:
make LOCALIZED_LANG=your_language install clean
Replace
	 your_language with the correct
	 language ISO-code. A list of supported language codes is
	 available in
	 files/Makefile.localized, located in
	 the port's directory.

6.3.5. LibreOffice
LibreOffice is a free software
	office suite developed by documentfoundation.org.
	It is compatible with other major office suites and available
	on a variety of platforms. It is a rebranded fork of
	Apache OpenOffice and includes
	applications found in a complete office productivity suite:
	a word processor, spreadsheet, presentation manager, drawing
	program, database management program, and a tool for creating
	and editing mathematical formulæ. It is available in
	a number of different languages and internationalization has
	been extended to interfaces, spell checkers, and
	dictionaries.
The word processor of
	LibreOffice uses a native XML file
	format for increased portability and flexibility. The
	spreadsheet program features a macro language which can be
	interfaced with external databases.
	LibreOffice is stable and runs
	natively on Windows®, Linux®, FreeBSD, and Mac OS® X.
	More information about LibreOffice
	can be found at libreoffice.org.
To install the English version of the
	LibreOffice package:
pkg install libreoffice
The editors category (freebsd.org/ports/editors.html)
	of the Ports Collection contains several localizations for
	LibreOffice. When installing a
	localized package, replace libreoffice
	with the name of the localized package.
Once the package is installed, type the following command
	to run LibreOffice:
% libreoffice
During the first launch, some questions will be asked
	and a .libreoffice folder will be created
	in the user's home directory.
If the desired LibreOffice
	package is not available, compiling the port is still an
	option. However, this requires a lot of disk space and a
	fairly long time to compile. This example compiles the
	English version:
cd /usr/ports/editors/libreoffice
make install clean
Note:
To build a localized version,
	 cd into the port directory of
	 the desired language. Supported languages can be found
	 in the editors category (freebsd.org/ports/editors.html)
	 of the Ports Collection.

7.3. MP3 Audio
Contributed by Chern Lee. This section describes some MP3
 players available for FreeBSD, how to rip audio
 CD tracks, and how to encode and decode
 MP3s.
7.3.1. MP3 Players
A popular graphical MP3 player is
	Audacious. It supports
	Winamp skins and additional
	plugins. The interface is intuitive, with a playlist, graphic
	equalizer, and more. Those familiar with
	Winamp will find
	Audacious simple to use. On FreeBSD,
	Audacious can be installed from the
	multimedia/audacious port or package.
	Audacious is a descendant of XMMS.
The audio/mpg123 package or port
	provides an alternative, command-line MP3
	player. Once installed, specify the MP3
	file to play on the command line. If the system has multiple
	audio devices, the sound device can also be specified:
mpg123 -a /dev/dsp1.0 Foobar-GreatestHits.mp3
High Performance MPEG 1.0/2.0/2.5 Audio Player for Layers 1, 2 and 3
 version 1.18.1; written and copyright by Michael Hipp and others
 free software (LGPL) without any warranty but with best wishes

Playing MPEG stream from Foobar-GreatestHits.mp3 ...
MPEG 1.0 layer III, 128 kbit/s, 44100 Hz joint-stereo
Additional MP3 players are available in
	the FreeBSD Ports Collection.
7.3.2. Ripping CD Audio Tracks
Before encoding a CD or
	CD track to MP3, the
	audio data on the CD must be ripped to the
	hard drive. This is done by copying the raw
	CD Digital Audio (CDDA)
	data to WAV files.
The cdda2wav tool, which is installed
	with the sysutils/cdrtools suite, can be
	used to rip audio information from
	CDs.
With the audio CD in the drive, the
	following command can be issued as
	root to rip an
	entire CD into individual, per track,
	WAV files:
cdda2wav -D 0,1,0 -B
In this example, the
	-D 0,1,0 indicates
	the SCSI device 0,1,0
	containing the CD to rip. Use
	cdrecord -scanbus to determine the correct
	device parameters for the system.
To rip individual tracks, use -t to
	specify the track:
cdda2wav -D 0,1,0 -t 7
To rip a range of tracks, such as track one to seven,
	specify a range:
cdda2wav -D 0,1,0 -t 1+7
To rip from an ATAPI
	(IDE) CDROM drive,
	specify the device name in place of the
	SCSI unit numbers. For example, to rip
	track 7 from an IDE drive:
cdda2wav -D /dev/acd0 -t 7
Alternately, dd can be used to extract
	audio tracks on ATAPI drives, as described
	in Section 18.5.5, “Duplicating Audio CDs”.
7.3.3. Encoding and Decoding MP3s
Lame is a popular
	MP3 encoder which can be installed from the
	audio/lame port. Due to patent issues, a
	package is not available.
The following command will convert the ripped
	WAV file
	audio01.wav to
	audio01.mp3:
lame -h -b 128 --tt "Foo Song Title" --ta "FooBar Artist" --tl "FooBar Album" \
--ty "2014" --tc "Ripped and encoded by Foo" --tg "Genre" audio01.wav audio01.mp3
The specified 128 kbits is a standard
	MP3 bitrate while the 160 and 192 bitrates
	provide higher quality. The higher the bitrate, the larger
	the size of the resulting MP3. The
	-h turns on the
	“higher quality but a little slower”
	mode. The options beginning with --t
	indicate ID3 tags, which usually contain
	song information, to be embedded within the
	MP3 file. Additional encoding options can
	be found in the lame manual
	page.
In order to burn an audio CD from
	MP3s, they must first be converted to a
	non-compressed file format. XMMS
	can be used to convert to the WAV format,
	while mpg123 can be used to convert
	to the raw Pulse-Code Modulation (PCM)
	audio data format.
To convert audio01.mp3 using
	mpg123, specify the name of the
	PCM file:
mpg123 -s audio01.mp3 > audio01.pcm
To use XMMS to convert a
	MP3 to WAV format, use
	these steps:
Procedure 7.1. Converting to WAV Format in
	 XMMS
	Launch XMMS.

	Right-click the window to bring up the
	 XMMS menu.

	Select Preferences under
	 Options.

	Change the Output Plugin to “Disk Writer
	 Plugin”.

	Press Configure.

	Enter or browse to a directory to write the
	 uncompressed files to.

	Load the MP3 file into
	 XMMS as usual, with volume at
	 100% and EQ settings turned off.

	Press Play. The
	 XMMS will appear as if it is
	 playing the MP3, but no music will be
	 heard. It is actually playing the MP3
	 to a file.

	When finished, be sure to set the default Output
	 Plugin back to what it was before in order to listen to
	 MP3s again.

Both the WAV and PCM
	formats can be used with cdrecord.
	When using WAV files, there will be a small
	tick sound at the beginning of each track. This sound is the
	header of the WAV file. The
	audio/sox port or package can be used to
	remove the header:
% sox -t wav -r 44100 -s -w -c 2 track.wav track.raw
Refer to Section 18.5, “Creating and Using CD Media” for more
	information on using a CD burner in
	FreeBSD.
7.5. TV Cards
Original contribution by Josef El-Rayes. Enhanced and adapted by Marc Fonvieille. TV cards can be used to watch broadcast or cable TV on a
 computer. Most cards accept composite video via an
 RCA or S-video input and some cards include a
 FM radio tuner.
FreeBSD provides support for PCI-based TV cards using a
 Brooktree Bt848/849/878/879 video capture chip with the
 bktr(4) driver. This driver supports most Pinnacle PCTV
 video cards. Before purchasing a TV card, consult bktr(4)
 for a list of supported tuners.
7.5.1. Loading the Driver
In order to use the card, the bktr(4) driver must be
	loaded. To automate this at boot time, add the following line
	to /boot/loader.conf:
bktr_load="YES"
Alternatively, one can statically compile support for
	the TV card into a custom kernel. In that case, add the
	following lines to the custom kernel configuration
	file:
device	 bktr
device	iicbus
device	iicbb
device	smbus
These additional devices are necessary as the card
	components are interconnected via an I2C bus. Then, build and
	install a new kernel.
To test that the tuner is correctly detected, reboot the
	system. The TV card should appear in the boot messages, as
	seen in this example:
bktr0: <BrookTree 848A> mem 0xd7000000-0xd7000fff irq 10 at device 10.0 on pci0
iicbb0: <I2C bit-banging driver> on bti2c0
iicbus0: <Philips I2C bus> on iicbb0 master-only
iicbus1: <Philips I2C bus> on iicbb0 master-only
smbus0: <System Management Bus> on bti2c0
bktr0: Pinnacle/Miro TV, Philips SECAM tuner.
The messages will differ according to the hardware. If
	necessary, it is possible to override some of the detected
	parameters using sysctl(8) or custom kernel configuration
	options. For example, to force the tuner to a Philips SECAM
	tuner, add the following line to a custom kernel configuration
	file:
options OVERRIDE_TUNER=6
or, use sysctl(8):
sysctl hw.bt848.tuner=6
Refer to bktr(4) for a description of the available
	sysctl(8) parameters and kernel options.
7.5.2. Useful Applications
To use the TV card, install one of the following
	applications:
	multimedia/fxtv
	 provides TV-in-a-window and image/audio/video capture
	 capabilities.

	multimedia/xawtv
	 is another TV application with similar features.

	audio/xmradio
	 provides an application for using the FM radio tuner of a
	 TV card.

More applications are available in the FreeBSD Ports
	Collection.
7.5.3. Troubleshooting
If any problems are encountered with the TV card, check
	that the video capture chip and the tuner are supported by
	bktr(4) and that the right configuration options were
	used. For more support or to ask questions about supported TV
	cards, refer to the freebsd-multimedia mailing list.
7.6. MythTV
MythTV is a popular, open source Personal Video Recorder
 (PVR) application. This section demonstrates
 how to install and setup MythTV on FreeBSD. Refer to mythtv.org/wiki
 for more information on how to use MythTV.
MythTV requires a frontend and a backend. These components
 can either be installed on the same system or on different
 machines.
The frontend can be installed on FreeBSD using the
 multimedia/mythtv-frontend package or port.
 Xorg must also be installed and
 configured as described in Chapter 5, The X Window System. Ideally, this
 system has a video card that supports X-Video Motion
 Compensation (XvMC) and, optionally, a Linux
 Infrared Remote Control (LIRC)-compatible
 remote.
To install both the backend and the frontend on FreeBSD, use
 the multimedia/mythtv package or port. A
 MySQL™ database server is also required and should
 automatically be installed as a dependency. Optionally, this
 system should have a tuner card and sufficient storage to hold
 recorded data.
7.6.1. Hardware
MythTV uses Video for Linux (V4L) to
	access video input devices such as encoders and tuners. In
	FreeBSD, MythTV works best with USB DVB-S/C/T
	cards as they are well supported by the
	multimedia/webcamd package or port which
	provides a V4L userland application. Any
	Digital Video Broadcasting (DVB) card
	supported by webcamd should work
	with MythTV. A list of known working cards can be found at
	wiki.freebsd.org/WebcamCompat.
	Drivers are also available for Hauppauge cards in the
	multimedia/pvr250 and
	multimedia/pvrxxx ports, but they provide a
	non-standard driver interface that does not work with versions
	of MythTV greater than 0.23. Due to licensing restrictions,
	no packages are available and these two ports must be
	compiled.
The wiki.freebsd.org/HTPC
	page contains a list of all available DVB
	drivers.
7.6.2. Setting up the MythTV Backend
To install MythTV using binary packages:
pkg install mythtv
Alternatively, to install from the Ports Collection:
cd /usr/ports/multimedia/mythtv
make install
Once installed, set up the MythTV database:
mysql -uroot -p < /usr/local/share/mythtv/database/mc.sql
Then, configure the backend:
mythtv-setup
Finally, start the backend:
sysrc mythbackend_enable=yes
service mythbackend start
Chapter 8. Configuring the FreeBSD Kernel
8.1. Synopsis
The kernel is the core of the FreeBSD operating system. It
 is responsible for managing memory, enforcing security controls,
 networking, disk access, and much more. While much of FreeBSD is
 dynamically configurable, it is still occasionally necessary to
 configure and compile a custom kernel.
After reading this chapter, you will know:
	When to build a custom kernel.

	How to take a hardware inventory.

	How to customize a kernel configuration file.

	How to use the kernel configuration file to create and
	 build a new kernel.

	How to install the new kernel.

	How to troubleshoot if things go wrong.

All of the commands listed in the examples in this chapter
 should be executed as root.
8.2. Why Build a Custom Kernel?
Traditionally, FreeBSD used a monolithic kernel. The kernel
 was one large program, supported a fixed list of devices, and in
 order to change the kernel's behavior, one had to compile and
 then reboot into a new kernel.
Today, most of the functionality in the FreeBSD kernel is
 contained in modules which can be dynamically loaded and
 unloaded from the kernel as necessary. This allows the running
 kernel to adapt immediately to new hardware and for new
 functionality to be brought into the kernel. This is known as
 a modular kernel.
Occasionally, it is still necessary to perform static kernel
 configuration. Sometimes the needed functionality is so tied
 to the kernel that it can not be made dynamically loadable.
 Some security environments prevent the loading and unloading of
 kernel modules and require that only needed functionality is
 statically compiled into the kernel.
Building a custom kernel is often a rite of passage for
 advanced BSD users. This process, while time consuming, can
 provide benefits to the FreeBSD system. Unlike the
 GENERIC kernel, which must support a wide
 range of hardware, a custom kernel can be stripped down to only
 provide support for that computer's hardware. This has a number
 of benefits, such as:
	Faster boot time. Since the kernel will only probe the
	 hardware on the system, the time it takes the system to boot
	 can decrease.

	Lower memory usage. A custom kernel often uses less
	 memory than the GENERIC kernel by
	 omitting unused features and device drivers. This is
	 important because the kernel code remains resident in
	 physical memory at all times, preventing that memory from
	 being used by applications. For this reason, a custom
	 kernel is useful on a system with a small amount of
	 RAM.

	Additional hardware support. A custom kernel can add
	 support for devices which are not present in the
	 GENERIC kernel.

Before building a custom kernel, consider the reason for
 doing so. If there is a need for specific hardware support,
 it may already exist as a module.
Kernel modules exist in /boot/kernel
 and may be dynamically loaded into the running kernel using
 kldload(8). Most kernel drivers have a loadable module and
 manual page. For example, the ath(4) wireless Ethernet
 driver has the following information in its manual page:
Alternatively, to load the driver as a module at boot time, place the
following line in loader.conf(5):

 if_ath_load="YES"
Adding if_ath_load="YES" to
 /boot/loader.conf will load this module
 dynamically at boot time.
In some cases, there is no associated module in
 /boot/kernel. This is mostly true for
 certain subsystems.
8.5. Building and Installing a Custom Kernel
Once the edits to the custom configuration file have been
 saved, the source code for the kernel can be compiled using the
 following steps:
Procedure 8.1. Building a Kernel
	Change to this directory:
cd /usr/src

	Compile the new kernel by specifying the name of the
	 custom kernel configuration file:
make buildkernel KERNCONF=MYKERNEL

	Install the new kernel associated with the specified
	 kernel configuration file. This command will copy the new
	 kernel to /boot/kernel/kernel and save
	 the old kernel to
	 /boot/kernel.old/kernel:
make installkernel KERNCONF=MYKERNEL

	Shutdown the system and reboot into the new kernel.
	 If something goes wrong, refer to The kernel does not boot.

By default, when a custom kernel is compiled, all kernel
 modules are rebuilt. To update a kernel faster or to build
 only custom modules, edit /etc/make.conf
 before starting to build the kernel.
For example, this variable specifies the list of modules to
 build instead of using the default of building all
 modules:
MODULES_OVERRIDE = linux acpi
Alternately, this variable lists which modules to exclude
 from the build process:
WITHOUT_MODULES = linux acpi sound
Additional variables are available. Refer to
 make.conf(5) for details.
9.2. Printer Connections
Printers are connected to computer systems in a variety of
 ways. Small desktop printers are usually connected directly to
 a computer's USB port. Older printers are
 connected to a parallel or “printer” port. Some
 printers are directly connected to a network, making it easy for
 multiple computers to share them. A few printers use a rare
 serial port connection.
FreeBSD can communicate with all of these types of
 printers.
	USB
	USB printers can be connected to
	 any available USB port on the
	 computer.
When FreeBSD detects a USB printer,
	 two device entries are created:
	 /dev/ulpt0 and
	 /dev/unlpt0. Data sent to either
	 device will be relayed to the printer. After each print
	 job, ulpt0 resets the
	 USB port. Resetting the port can cause
	 problems with some printers, so the
	 unlpt0 device is usually used
	 instead. unlpt0 does not reset the
	 USB port at all.

	Parallel (IEEE-1284)
	The parallel port device is
	 /dev/lpt0. This device appears
	 whether a printer is attached or not, it is not
	 autodetected.
Vendors have largely moved away from these
	 “legacy” ports, and many computers no longer
	 have them. Adapters can be used to connect a parallel
	 printer to a USB port. With such an
	 adapter, the printer can be treated as if it were actually
	 a USB printer. Devices called
	 print servers can also be used to
	 connect parallel printers directly to a network.

	Serial (RS-232)
	Serial ports are another legacy port, rarely used for
	 printers except in certain niche applications. Cables,
	 connectors, and required wiring vary widely.
For serial ports built into a motherboard, the serial
	 device name is /dev/cuau0 or
	 /dev/cuau1. Serial
	 USB adapters can also be used, and
	 these will appear as
	 /dev/cuaU0.
Several communication parameters must be known to
	 communicate with a serial printer. The most important are
	 baud rate or BPS
	 (Bits Per Second) and parity. Values
	 vary, but typical serial printers use a baud rate of 9600
	 and no parity.

	Network
	Network printers are connected directly to the local
	 computer network.
The DNS hostname of the printer
	 must be known. If the printer is assigned a dynamic
	 address by DHCP, DNS
	 should be dynamically updated so that the host name always
	 has the correct IP address. Network
	 printers are often given static IP
	 addresses to avoid this problem.
Most network printers understand print jobs sent with
	 the LPD protocol. A print queue name
	 can also be specified. Some printers process data
	 differently depending on which queue is used. For
	 example, a raw queue prints the data
	 unchanged, while the text queue adds
	 carriage returns to plain text.
Many network printers can also print data sent
	 directly to port 9100.

9.2.1. Summary
Wired network connections are usually the easiest to
	set up and give the fastest printing. For direct connection
	to the computer, USB is preferred for speed
	and simplicity. Parallel connections work but have
	limitations on cable length and speed. Serial connections are
	more difficult to configure. Cable wiring differs between
	models, and communication parameters like baud rate and parity
	bits must add to the complexity. Fortunately, serial printers
	are rare.
9.3. Common Page Description Languages
Data sent to a printer must be in a language that the
 printer can understand. These languages are called Page
 Description Languages, or PDLs.
	ASCII
	Plain ASCII text is the simplest
	 way to send data to a printer. Characters correspond one
	 to one with what will be printed: an A
	 in the data prints an A on the page.
	 Very little formatting is available. There is no way to
	 select a font or proportional spacing. The forced
	 simplicity of plain ASCII means that
	 text can be printed straight from the computer with little
	 or no encoding or translation. The printed output
	 corresponds directly with what was sent.
Some inexpensive printers cannot print plain
	 ASCII text. This makes them more
	 difficult to set up, but it is usually still
	 possible.

	PostScript®
	PostScript® is almost the opposite of
	 ASCII. Rather than simple text, a
	 PostScript® program is a set of instructions that draw
	 the final document. Different fonts and graphics can be
	 used. However, this power comes at a price. The program
	 that draws the page must be written. Usually this program
	 is generated by application software, so the process is
	 invisible to the user.
Inexpensive printers sometimes leave out PostScript®
	 compatibility as a cost-saving measure.

	PCL (Printer Command Language)
	PCL is an extension of
	 ASCII, adding escape sequences for
	 formatting, font selection, and printing graphics. Many
	 printers provide PCL5 support. Some
	 support the newer PCL6 or
	 PCLXL. These later versions are
	 supersets of PCL5 and can provide
	 faster printing.

	Host-Based
	Manufacturers can reduce the cost of a printer by
	 giving it a simple processor and very little memory.
	 These printers are not capable of printing plain text.
	 Instead, bitmaps of text and graphics are drawn by a
	 driver on the host computer and then sent to the printer.
	 These are called host-based
	 printers.
Communication between the driver and a host-based
	 printer is often through proprietary or undocumented
	 protocols, making them functional only on the most common
	 operating systems.

9.3.1. Converting PostScript® to Other
	PDLs
Many applications from the Ports Collection and FreeBSD
	utilities produce PostScript® output. This table shows
	the utilities available to convert that into other common
	PDLs:
Table 9.1. Output PDLs
	Output
		PDL	Generated By	Notes
	PCL or
		PCL5	print/ghostscript9-base	-sDEVICE=ljet4 for monochrome,
		-sDEVICE=cljet5 for color
	PCLXL or
		PCL6	print/ghostscript9-base	-sDEVICE=pxlmono for
		monochrome, -sDEVICE=pxlcolor for
		color
	ESC/P2	print/ghostscript9-base	-sDEVICE=uniprint
	XQX	print/foo2zjs	

9.3.2. Summary
For the easiest printing, choose a printer that supports
	PostScript®. Printers that support PCL
	are the next preferred. With
	print/ghostscript9-base, these
	printers can be used as if they understood PostScript®
	natively. Printers that support PostScript® or
	PCL directly almost always support direct
	printing of plain ASCII text files
	also.
Line-based printers like typical inkjets usually do not
	support PostScript® or PCL. They often
	can print plain ASCII text files.
	print/ghostscript9-base
	supports the PDLs used by some of these
	printers. However, printing an entire graphic-based page on
	these printers is often very slow due to the large amount of
	data to be transferred and printed.
Host-based printers are often more difficult to set up.
	Some cannot be used at all because of proprietary
	PDLs. Avoid these printers when
	possible.
Descriptions of many PDLs can be found
	at http://www.undocprint.org/formats/page_description_languages.
	The particular PDL used by various models
	of printers can be found at http://www.openprinting.org/printers.
9.4. Direct Printing
For occasional printing, files can be sent directly to a
 printer device without any setup. For example, a file called
 sample.txt can be sent to a
 USB printer:
cp sample.txt /dev/unlpt0
Direct printing to network printers depends on the
 abilities of the printer, but most accept print jobs on port
 9100, and nc(1) can be used with them. To print the
 same file to a printer with the DNS
 hostname of netlaser:
nc netlaser 9100 < sample.txt
9.5. LPD (Line Printer Daemon)
Printing a file in the background is called
 spooling. A spooler allows the user to
 continue with other programs on the computer without waiting for
 the printer to slowly complete the print job.
FreeBSD includes a spooler called lpd(8). Print jobs are
 submitted with lpr(1).
9.5.1. Initial Setup
A directory for storing print jobs is created, ownership
	is set, and the permissions are set to prevent other users
	from viewing the contents of those files:
mkdir -p /var/spool/lpd/lp
chown daemon:daemon /var/spool/lpd/lp
chmod 770 /var/spool/lpd/lp
Printers are defined in
	/etc/printcap. An entry for each printer
	includes details like a name, the port where it is attached,
	and various other settings. Create
	/etc/printcap with these contents:
lp:\				[image: 1]
	:lp=/dev/unlpt0:\	[image: 2]
	:sh:\			[image: 3]
	:mx#0:\			[image: 4]
	:sd=/var/spool/lpd/lp:\	[image: 5]
	:lf=/var/log/lpd-errs:	[image: 6]
	[image: 1]
	The name of this printer. lpr(1) sends print
	 jobs to the lp printer unless another
	 printer is specified with -P, so the
	 default printer should be named
	 lp.

	[image: 2]
	The device where the printer is connected. Replace
	 this line with the appropriate one for the connection type
	 shown here.
	Connection Type	Device Entry in
		 /etc/printcap
	USB	:lp=/dev/unlpt0:\

		 This is the
		 non-resetting
		 USB printer device. If
		 problems are experienced, use
		 ulpt0 instead, which resets
		 the USB port on each
		 use.

	Parallel	:lp=/dev/lpt0:\

	Network	For a printer supporting the
		 LPD protocol:

		 :lp=:rm=network-printer-name:rp=raw:\

		 For printers supporting port 9100
		 printing:

		 :lp=9100@network-printer-name:\

		 For both types, replace
		 network-printer-name
		 with the DNS host name of the
		 network printer.

	Serial	:lp=/dev/cuau0:br=9600:pa=none:\

		 These values are for a typical serial
		 printer connected to a motherboard serial port.
		 The baud rate is 9600, and no parity is
		 used.

	[image: 3]
	Suppress the printing of a header page at the start of
	 a print job.

	[image: 4]
	Do not limit the maximum size of a print job.

	[image: 5]
	The path to the spooling directory for this printer.
	 Each printer uses its own spooling directory.

	[image: 6]
	The log file where errors on this printer will be
	 reported.

After creating /etc/printcap, use
	chkprintcap(8) to test it for errors:
chkprintcap
Fix any reported problems before continuing.
Enable lpd(8) in
	/etc/rc.conf:
lpd_enable="YES"
Start the service:
service lpd start
9.5.2. Printing with lpr(1)
Documents are sent to the printer with
	lpr. A file to be printed can be named on
	the command line or piped into lpr. These
	two commands are equivalent, sending the contents of
	doc.txt to the default printer:
% lpr doc.txt
% cat doc.txt | lpr
Printers can be selected with -P. To
	print to a printer called
	laser:
% lpr -Plaser doc.txt
9.5.3. Filters
The examples shown so far have sent the contents of a text
	file directly to the printer. As long as the printer
	understands the content of those files, output will be printed
	correctly.
Some printers are not capable of printing plain text, and
	the input file might not even be plain text.
Filters allow files to be
	translated or processed. The typical use is to translate one
	type of input, like plain text, into a form that the printer
	can understand, like PostScript® or PCL.
	Filters can also be used to provide additional features, like
	adding page numbers or highlighting source code to make it
	easier to read.
The filters discussed here are
	input filters or
	text filters. These filters convert the
	incoming file into different forms. Use su(1) to become
	root before
	creating the files.
Filters are specified in
	/etc/printcap with the
	if= identifier. To use
	/usr/local/libexec/lf2crlf as a filter,
	modify /etc/printcap like this:
lp:\
	:lp=/dev/unlpt0:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/lp:\
	:if=/usr/local/libexec/lf2crlf:\ [image: 1]
	:lf=/var/log/lpd-errs:
	[image: 1]
	if= identifies the
	 input filter that will be used on
	 incoming text.

Tip:
The backslash line continuation
	 characters at the end of the lines in
	 printcap entries reveal that an entry
	 for a printer is really just one long line with entries
	 delimited by colon characters. An earlier example can be
	 rewritten as a single less-readable line:
lp:lp=/dev/unlpt0:sh:mx#0:sd=/var/spool/lpd/lp:if=/usr/local/libexec/lf2crlf:lf=/var/log/lpd-errs:

9.5.3.1. Preventing Stairstepping on Plain Text Printers
Typical FreeBSD text files contain only a single line feed
	 character at the end of each line. These lines will
	 “stairstep” on a standard printer:
A printed file looks
 like the steps of a staircase
 scattered by the wind
A filter can convert the newline characters into
	 carriage returns and newlines. The carriage returns make
	 the printer return to the left after each line. Create
	 /usr/local/libexec/lf2crlf with these
	 contents:
#!/bin/sh
CR=$'\r'
/usr/bin/sed -e "s/$/${CR}/g"
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/lf2crlf
Modify /etc/printcap to use the
	 new filter:
:if=/usr/local/libexec/lf2crlf:\
Test the filter by printing the same plain text file.
	 The carriage returns will cause each line to start at the
	 left side of the page.
9.5.3.2. Fancy Plain Text on PostScript® Printers with
	 print/enscript
GNU
	 Enscript converts plain text
	 files into nicely-formatted PostScript® for printing on
	 PostScript® printers. It adds page numbers, wraps long
	 lines, and provides numerous other features to make printed
	 text files easier to read. Depending on the local paper
	 size, install either
	 print/enscript-letter or
	 print/enscript-a4 from the
	 Ports Collection.
Create /usr/local/libexec/enscript
	 with these contents:
#!/bin/sh
/usr/local/bin/enscript -o -
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/enscript
Modify /etc/printcap to use the
	 new filter:
:if=/usr/local/libexec/enscript:\
Test the filter by printing a plain text file.
9.5.3.3. Printing PostScript® to
	 PCL Printers
Many programs produce PostScript® documents.
	 However, inexpensive printers often only understand plain
	 text or PCL. This filter converts
	 PostScript® files to PCL before sending
	 them to the printer.
Install the Ghostscript PostScript® interpreter,
	 print/ghostscript9-base,
	 from the Ports Collection.
Create /usr/local/libexec/ps2pcl
	 with these contents:
#!/bin/sh
/usr/local/bin/gs -dSAFER -dNOPAUSE -dBATCH -q -sDEVICE=ljet4 -sOutputFile=- -
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/ps2pcl
PostScript® input sent to this script will be rendered
	 and converted to PCL before being sent on
	 to the printer.
Modify /etc/printcap to use this
	 new input filter:
:if=/usr/local/libexec/ps2pcl:\
Test the filter by sending a small PostScript® program
	 to it:
% printf "%%\!PS \n /Helvetica findfont 18 scalefont setfont \
72 432 moveto (PostScript printing successful.) show showpage \004" | lpr
9.5.3.4. Smart Filters
A filter that detects the type of input and
	 automatically converts it to the correct format for the
	 printer can be very convenient. The first two characters of
	 a PostScript® file are usually %!. A
	 filter can detect those two characters. PostScript® files
	 can be sent on to a PostScript® printer unchanged. Text
	 files can be converted to PostScript® with
	 Enscript as shown earlier.
	 Create /usr/local/libexec/psif with
	 these contents:
#!/bin/sh
#
psif - Print PostScript or plain text on a PostScript printer
#
IFS="" read -r first_line
first_two_chars=`expr "$first_line" : '\(..\)'`

case "$first_two_chars" in
%!)
 # %! : PostScript job, print it.
 echo "$first_line" && cat && exit 0
 exit 2
 ;;
*)
 # otherwise, format with enscript
 (echo "$first_line"; cat) | /usr/local/bin/enscript -o - && exit 0
 exit 2
 ;;
esac
Set the permissions and make it executable:
chmod 555 /usr/local/libexec/psif
Modify /etc/printcap to use this
	 new input filter:
:if=/usr/local/libexec/psif:\
Test the filter by printing PostScript® and plain text
	 files.
9.5.3.5. Other Smart Filters
Writing a filter that detects many different types of
	 input and formats them correctly is challenging.
	 print/apsfilter from the
	 Ports Collection is a smart “magic” filter that
	 detects dozens of file types and automatically converts them
	 to the PDL understood by the printer.
	 See http://www.apsfilter.org for
	 more details.
9.5.4. Multiple Queues
The entries in /etc/printcap are
	really definitions of queues. There can
	be more than one queue for a single printer. When combined
	with filters, multiple queues provide users more control over
	how their jobs are printed.
As an example, consider a networked PostScript® laser
	printer in an office. Most users want to print plain text,
	but a few advanced users want to be able to print PostScript®
	files directly. Two entries can be created for the same
	printer in /etc/printcap:
textprinter:\
	:lp=9100@officelaser:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/textprinter:\
	:if=/usr/local/libexec/enscript:\
	:lf=/var/log/lpd-errs:

psprinter:\
	:lp=9100@officelaser:\
	:sh:\
	:mx#0:\
	:sd=/var/spool/lpd/psprinter:\
	:lf=/var/log/lpd-errs:
Documents sent to textprinter will be
	formatted by the
	/usr/local/libexec/enscript filter shown
	in an earlier example. Advanced users can print PostScript®
	files on psprinter, where no filtering is
	done.
This multiple queue technique can be used to provide
	direct access to all kinds of printer features. A printer
	with a duplexer could use two queues, one for ordinary
	single-sided printing, and one with a filter that sends the
	command sequence to enable double-sided printing and then
	sends the incoming file.
9.5.5. Monitoring and Controlling Printing
Several utilities are available to monitor print jobs and
	check and control printer operation.
9.5.5.1. lpq(1)
lpq(1) shows the status of a user's print
	 jobs. Print jobs from other users are not shown.
Show the current user's pending jobs on a single
	 printer:
% lpq -Plp
Rank Owner Job Files Total Size
1st jsmith 0 (standard input) 12792 bytes
Show the current user's pending jobs on all
	 printers:
% lpq -a
lp:
Rank Owner Job Files Total Size
1st jsmith 1 (standard input) 27320 bytes

laser:
Rank Owner Job Files Total Size
1st jsmith 287 (standard input) 22443 bytes
9.5.5.2. lprm(1)
lprm(1) is used to remove print jobs. Normal users
	 are only allowed to remove their own jobs.
	 root can remove
	 any or all jobs.
Remove all pending jobs from a printer:
lprm -Plp -
dfA002smithy dequeued
cfA002smithy dequeued
dfA003smithy dequeued
cfA003smithy dequeued
dfA004smithy dequeued
cfA004smithy dequeued
Remove a single job from a
	 printer. lpq(1) is used to find the job number.
% lpq
Rank Owner Job Files Total Size
1st jsmith 5 (standard input) 12188 bytes
% lprm -Plp 5
dfA005smithy dequeued
cfA005smithy dequeued
9.5.5.3. lpc(8)
lpc(8) is used to check and modify printer status.
	 lpc is followed by a command and an
	 optional printer name. all can be used
	 instead of a specific printer name, and the command will be
	 applied to all printers. Normal users can view status with
	 lpc(8). Only
	 root can use
	 commands which modify printer status.
Show the status of all printers:
% lpc status all
lp:
	queuing is enabled
	printing is enabled
	1 entry in spool area
	printer idle
laser:
	queuing is enabled
	printing is enabled
	1 entry in spool area
	waiting for laser to come up
Prevent a printer from accepting new jobs, then begin
	 accepting new jobs again:
lpc disable lp
lp:
	queuing disabled
lpc enable lp
lp:
	queuing enabled
Stop printing, but continue to accept new jobs. Then
	 begin printing again:
lpc stop lp
lp:
	printing disabled
lpc start lp
lp:
	printing enabled
	daemon started
Restart a printer after some error condition:
lpc restart lp
lp:
	no daemon to abort
	printing enabled
	daemon restarted
Turn the print queue off and disable printing, with a
	 message to explain the problem to users:
lpc down lp Repair parts will arrive on Monday
lp:
	printer and queuing disabled
	status message is now: Repair parts will arrive on Monday
Re-enable a printer that is down:
lpc up lp
lp:
	printing enabled
	daemon started
See lpc(8) for more commands and options.
9.5.6. Shared Printers
Printers are often shared by multiple users in businesses
	and schools. Additional features are provided to make sharing
	printers more convenient.
9.5.6.1. Aliases
The printer name is set in the first line of the
	 entry in /etc/printcap. Additional
	 names, or aliases, can be added after
	 that name. Aliases are separated from the name and each
	 other by vertical bars:
lp|repairsprinter|salesprinter:\
Aliases can be used in place of the printer name. For
	 example, users in the Sales department print to their
	 printer with
% lpr -Psalesprinter sales-report.txt
Users in the Repairs department print to
	 their printer with
% lpr -Prepairsprinter repairs-report.txt
All of the documents print on that single printer. When
	 the Sales department grows enough to need their own printer,
	 the alias can be removed from the shared printer entry and
	 used as the name of a new printer. Users in both
	 departments continue to use the same commands, but the Sales
	 documents are sent to the new printer.
9.5.6.2. Header Pages
It can be difficult for users to locate their documents
	 in the stack of pages produced by a busy shared printer.
	 Header pages were created to solve this
	 problem. A header page with the user name and document name
	 is printed before each print job. These pages are also
	 sometimes called banner or
	 separator pages.
Enabling header pages differs depending on whether the
	 printer is connected directly to the computer with a
	 USB, parallel, or serial cable, or
	 is connected remotely over a network.
Header pages on directly-connected printers are enabled
	 by removing the :sh:\ (Suppress Header)
	 line from the entry in /etc/printcap.
	 These header pages only use line feed characters for new
	 lines. Some printers will need the
	 /usr/share/examples/printing/hpif
	 filter to prevent stairstepped text. The filter configures
	 PCL printers to print both carriage
	 returns and line feeds when a line feed is received.
Header pages for network printers must be configured on
	 the printer itself. Header page entries in
	 /etc/printcap are ignored. Settings
	 are usually available from the printer front panel or a
	 configuration web page accessible with a web browser.
9.5.7. References
Example files: /usr/share/examples/printing/.
The 4.3BSD Line Printer Spooler
	 Manual,
	/usr/share/doc/smm/07.lpd/paper.ascii.gz.
Manual pages: printcap(5), lpd(8), lpr(1),
	lpc(8), lprm(1), lpq(1).
9.6. Other Printing Systems
Several other printing systems are available in
 addition to the built-in lpd(8). These systems
 offer support for other protocols or additional features.
9.6.1. CUPS (Common UNIX® Printing
	System)
CUPS is a popular printing system
	available on many operating systems. Using
	CUPS on FreeBSD is documented in a separate
	article:../../../../doc/en_US.ISO8859-1/articles/cups
9.6.2. HPLIP
Hewlett Packard provides a printing system that supports
	many of their inkjet and laser printers. The port is
	print/hplip. The main web page
	is at http://hplipopensource.com/hplip-web/index.html.
	The port handles all the installation details on FreeBSD.
	Configuration information is shown at http://hplipopensource.com/hplip-web/install/manual/hp_setup.html.
9.6.3. LPRng
LPRng was developed as an
	enhanced alternative to lpd(8). The port is
	sysutils/LPRng. For details
	and documentation, see
	http://www.lprng.com/.
10.3. Advanced Topics
This section describes how Linux® binary compatibility
 works and is based on an email written to FreeBSD chat mailing list by
 Terry Lambert <tlambert@primenet.com> (Message ID:
 <199906020108.SAA07001@usr09.primenet.com>).
FreeBSD has an abstraction called an
 “execution class loader”. This is a wedge into the
 execve(2) system call.
Historically, the UNIX® loader examined the magic number
 (generally the first 4 or 8 bytes of the file) to see if it was
 a binary known to the system, and if so, invoked the binary
 loader.
If it was not the binary type for the system, the
 execve(2) call returned a failure, and the shell
 attempted to start executing it as shell commands. The
 assumption was a default of
 “whatever the current shell is”.
Later, a hack was made for sh(1) to examine the first
 two characters, and if they were :\n, it
 invoked the csh(1) shell instead.
FreeBSD has a list of loaders, instead of a single loader, with
 a fallback to the #! loader for running shell
 interpreters or shell scripts.
For the Linux® ABI support, FreeBSD sees
 the magic number as an ELF binary. The ELF loader looks for a
 specialized brand, which is a comment
 section in the ELF image, and which is not present on
 SVR4/Solaris™ ELF binaries.
For Linux® binaries to function, they must be
 branded as type Linux
 using brandelf(1):
brandelf -t Linux file
When the ELF loader sees the Linux
 brand, the loader replaces a pointer in the
 proc structure. All system calls are indexed
 through this pointer. In addition, the process is flagged for
 special handling of the trap vector for the signal trampoline
 code, and several other (minor) fix-ups that are handled by the
 Linux® kernel module.
The Linux® system call vector contains, among other things,
 a list of sysent[] entries whose addresses
 reside in the kernel module.
When a system call is called by the Linux® binary, the trap
 code dereferences the system call function pointer off the
 proc structure, and gets the Linux®, not the
 FreeBSD, system call entry points.
Linux® mode dynamically reroots
 lookups. This is, in effect, equivalent to
 union to file system mounts. First, an
 attempt is made to lookup the file in
 /compat/linux/original-path.
 If that fails, the lookup is done in
 /original-path.
 This makes sure that binaries that require other binaries can
 run. For example, the Linux® toolchain can all run under
 Linux® ABI support. It also means that the
 Linux® binaries can load and execute FreeBSD binaries, if there
 are no corresponding Linux® binaries present, and that a
 uname(1) command can be placed in the
 /compat/linux directory tree to ensure that
 the Linux® binaries cannot tell they are not running on
 Linux®.
In effect, there is a Linux® kernel in the FreeBSD kernel.
 The various underlying functions that implement all of the
 services provided by the kernel are identical to both the FreeBSD
 system call table entries, and the Linux® system call table
 entries: file system operations, virtual memory operations,
 signal delivery, and System V IPC. The only difference is that
 FreeBSD binaries get the FreeBSD glue functions,
 and Linux® binaries get the Linux® glue
 functions. The FreeBSD glue functions are
 statically linked into the kernel, and the Linux®
 glue functions can be statically linked, or
 they can be accessed via a kernel module.
Technically, this is not really emulation, it is an
 ABI implementation. It is sometimes called
 “Linux® emulation” because the implementation was
 done at a time when there was no other word to describe what was
 going on. Saying that FreeBSD ran Linux® binaries was not true,
 since the code was not compiled in.
Chapter 11. WINE
Contributed by Aaron Peters. DocBook markup edits by Benedict Reuschling. 11.1. Synopsis
WINE,
 which stands for Wine Is Not an Emulator, is technically a
 software translation layer. It enables to install and run some
 software written for Windows® on FreeBSD (and other)
 systems.
It operates by intercepting system calls, or requests from
 the software to the operating system, and translating them from
 Windows® calls to calls that FreeBSD understands. It will also
 translate any responses as needed into what the Windows®
 software is expecting. So in some ways, it
 emulates a Windows® environment, in that
 it provides many of the resources Windows® applications are
 expecting.
However, it is not an emulator in the traditional sense.
 Many of these solutions operate by constructing an entire other
 computer using software processes in place of hardware
 Virtualization (such as that provided by the
 emulators/qemu port) operates in this way.
 One of the benefits of this approach is the ability to install
 a full version of the OS in question to the emulator. It means
 that the environment will not look any different to applications
 than a real machine, and chances are good that everything will
 work on it. The downside to this approach is the fact that
 software acting as hardware is inherently slower than actual
 hardware. The computer built in software (called the
 guest) requires resources from the real
 machine (the host), and holds on to those
 resources for as long as it is running.
The WINE Project, on the other hand, is much lighter on
 system's resources. It will translate system calls on the fly,
 so while it is difficult to be as fast as a real Windows®
 computer, it can come very close. On the other hand, WINE is
 trying to keep up with a moving target in terms of all the
 different system calls and other functionality it needs to
 support. As a result there may be applications that do not work
 as expected on WINE, will not work at all, or will not even
 install to begin with.
At the end of the day, WINE provides another option to try
 to get a particular Windows® software program running on FreeBSD.
 It can always serve as the first option which, if successful,
 offers a good experience without unnecessarily depleting the
 host FreeBSD system's resources.
This chapter will describe:
	How to install WINE on a FreeBSD system.

	How WINE operates, and how it is different from other
	 alternatives like virtualizaton.

	How to fine-tune WINE to the specific needs of some
	 applications.

	How to install GUI helpers for WINE.

	Common tips and solutions for on FreeBSD.

	Considerations for WINE on FreeBSD in terms of the
	 multi-user environment.

Before reading this chapter, it will be useful to:
	Understand the basics of UNIX®
	 and FreeBSD.

	Know how to install
	 FreeBSD.

	Know how to set up a
	 network connection.

	Know how to install additional
	 third-party software.

11.2. WINE Overview & Concepts
WINE is a complex system, so before running it on a FreeBSD
 system it is worth gaining an understanding of what it is and
 how it works.
11.2.1. What is WINE?
As mentioned in the Synopsis for this chapter,
	WINE is a compatibility layer that allows Windows®
	applications to run on other operating systems. In theory, it
	means these programs should run on systems like FreeBSD,
	macOS, and Android.
When WINE runs a Windows® executable, two things
	occur:
	Firstly, WINE implements an environment that mimics
	 that of various versions of Windows®. For example, if an
	 application requests access to a resource such as RAM,
	 WINE has a memory interface that looks and acts (as far as
	 the application is concerned) like Windows®.

	Then, once that application makes use of that
	 interface, WINE takes the incoming request for space in
	 memory and translates it to something compatible with the
	 host system. In the same way when the application
	 retrieves that data, WINE facilitates fetching it from the
	 host system and passing it back to the Windows®
	 application.

11.2.2. WINE and the FreeBSD System
Installing WINE on a FreeBSD system will entail a few
	different components:
	FreeBSD applications for tasks such as running the
	 Windows® executables, configuring the WINE sub-system, or
	 compiling programs with WINE support.

	A large number of libraries that implement the core
	 functions of Windows® (for example
	 /lib/wine/api-ms-core-memory-l1-1-1.dll.so,
	 which is part of the aforementioned memory
	 interface).

	A number of Windows® executables, which are (or
	 mimic) common utilities (such as
	 /lib/wine/notepad.exe.so, which
	 provides the standard Windows® text editor).

	Additional Windows® assets, in particular fonts (like
	 the Tahoma font, which is stored in
	 share/wine/fonts/tahoma.ttf in
	 the install root).

11.2.3. Graphical Versus Text Mode/Terminal Programs in
 WINE
As an operating system where terminal utilities are
 “first-class citizens,” it is natural to assume
	that WINE will contain extensive support for text-mode
	program. However, the majority of applications for Windows®,
	especially the most popular ones, are designed with a
	graphical user interface (GUI) in mind. Therefore, WINE's
	utilities are designed by default to launch graphical
	programs.
However, there are three methods available to run these
	so-called Console User Interface (CUI) programs:
	The Bare Streams approach will
	 display the output directly to standard output.

	The wineconsole utility can be
	 used with either the user or
	 curses backed to utilize some of the
	 enhancements the WINE system provides for CUI
	 applications.

These approaches are described in greater detail on the
	WINE
	 Wiki.
11.2.4. WINE Derivative Projects
WINE itself is a mature open source project, so it is
	little surprise it is used as the foundation of more complex
	solutions.
11.2.4.1. Commercial WINE Implementations
A number of companies have taken WINE and made it a core
	 of their own, proprietary products (WINE's LGPL license
	 permits this). Two of the most famous of these are as
	 follows:
	Codeweavers CrossOver

This solution provides a simplified
	 “one-click” installation of WINE, which
	 contains additional enhancements and optimizations (although
	 the company contributes many of these back upstream to the
	 WINE project). One area of focus for Codeweavers is to make
	 the most popular applications install and run
	 smoothly.
While the company once produced a native FreeBSD version
	 of their CrossOver solution, it
	 appears to have long been abandoned. While some resources
	 (such as a dedicated
	 forum) are still present, they also have seen no
	 activity for some time.
	Steam Proton

Gaming company Steam also uses WINE to enable Windows®
	 games to install and run on other systems. it is primary
	 target is Linux-based systems, though some support exists
	 for macOS as well.
While Steam does not offer a native FreeBSD client,there
	 are several options for using the Linux® client using
	 FreeBSD's Linux Compatibility Layer.
11.2.4.2. WINE Companion Programs
In addition to proprietary offerings, other projects
	 have released applications designed to work in tandem with
	 the standard, open source version of WINE. The goals for
	 these can range from making installation easier to offering
	 easy ways to get popular software installed.
These solutions are covered in greater detail in the
	 later section on GUI frontends, and
	 include the following:
	winetricks

	Homura

11.2.5. Alternatives to WINE
For FreeBSD users, some alternatives to using WINE are as
	follows:
	Dual-Booting: A straightforward option is to run
	 desired Windows® applications natively on that OS. This
	 of course means existing FreeBSD in order to boot Windows®,
	 so this method is not feasible if access to programs in
	 both systems is required simultaneously.

	Virtual Machines: Virtual Machines (VMs), as mentioned
	 earlier in this chapter, are software processes that
	 emulate full sets of hardware, on which additional
	 operating systems (including Windows®) can be installed
	 and run. Modern tools make VMs easy to create and manage,
	 but this method comes at a cost. A good portion of the
	 host systems resources must be allocated to each VM, and
	 those resources cannot be reclaimed by the host as long as
	 the VM is running. A few examples of VM managers include
	 the open source solutions qemu, bhyve, and VirtualBox.
	 See the chapter on Virtualization for
	 more detail.

	Remote Access: Like many other UNIX®-like systems,
	 FreeBSD can run a variety of applications enabling users to
	 remotely access Windows® computers and use their programs
	 or data. In addtion to clients such as
	 xrdp that connect to the
	 standard Windows® Remote Desktop Protocol, other open
	 source standards such as vnc
	 can also be used (provided a compatible server is present
	 on the other side).

11.3. Installing WINE on FreeBSD
WINE can be installed via the pkg tool, or by compiling the
 port(s).
11.3.1. WINE Prerequistes
Before installing WINE itself, it is useful to have the
	following pre-requisites installed.
	A GUI

Most Windows® programs are expecting to have a graphical
	user interface available. If WINE is installed without one
	present, its dependencies will include the Wayland compositor,
	and so a GUI will be installed along with WINE. But it is
	useful to have the GUI of choice installed, configured,
	and working correctly before installing WINE.
	wine-gecko

The Windows® operating system has for some time had a
	default web browser pre-installed: Internet Explorer. As a
	result, some applications work under the assumption that there
	will always be something capable of displaying web pages. In
	order to provide this functionality, the WINE layer includes a
	web browser component using the Mozilla project's Gecko
	engine. When WINE is first launched it will offer to download
	and install this, and there are reasons users might want it do
	so (these will be covered in a later chapter). But they can
	also install it prior to installing WINE, or alongside the
	install of WINE proper.
Install this package with the following:
pkg install wine-gecko
Alternately, compile the port with the following:
cd /usr/ports/emulator/wine-gecko
make install
	wine-mono

This port installs the MONO framework, an open source
	implementation of Microsoft's .NET. Including this with the
	WINE installation will make it that much more likely that any
	applications written in .NET will install and run on the
	system.
To install the package:
pkg install wine-mono
To compile from the ports collection:
cd /usr/ports/emulator/wine-mono
make install
11.3.2. Installing WINE via FreeBSD Package Repositories
With the pre-requisites in place, install WINE via package
	with the following command:
pkg install wine
Alternately compile the WINE sub-system from source with
	the following:
cd /usr/ports/emulator/wine
make install
11.3.3. Concerns of 32- Versus 64-Bit in WINE
	Installations
Like most software, Windows® applications made the
	upgrade from the older 32-bit architecture to 64 bits. And
	most recent software is written for 64-bit operating systems,
	although modern OSes can sometimes continue to run older
	32-bit programs as well. FreeBSD is no different, having had
	support for 64-bit since the 5.x series.
However, using old software no longer supported by default
	is a common use for emulators, and users commonly turn to WINE
	to play games and use other programs that do not run properly
	on modern hardware. Fortunately, FreeBSD can support all three
	scenarios:
	On modern, 64-bit machine and want to run 64-bit
	 Windows® software, simply install the ports mentioned in
	 the above sections. The ports system will automatically
	 install the 64-bit version.

	Alternately, users might have an older 32-bit machine
	 that they do not want to run with its original, now
	 non-supported software. They can install the 32-bit
	 (i386) version of FreeBSD, then install the ports in the
	 above sections. Again, on a 32-bit machine the ports
	 system will install the corresponding 32-bit version of
	 WINE by default.

However, given a 64-bit version of FreeBSD and need to run
	32-bit Windows®
	applications, installing a different port is required to
	enable 32-bit compatibility. To install the pre-compiled
	package, use the following:
pkg install i386-wine
Or compile the port with the following:
cd /usr/ports/emulator/i386-wine
make install
11.4. Running a First WINE Program on FreeBSD
Now that WINE is installed, the next step is to try it out
	by running a simple program. An easy way to do this is to
	download a self-contained application, i.e., one can
	simply unpack and run without any complex installation
	process.
So-called "portable" versions of applications
	are good choices for this test, as are programs that run with
	only a single executable file.
11.4.1. Running a Program from the Command Line
There are two different methods to launch a Windows
	 program from the terminal. The first, and most
	 straightforward is to navigate to the directory containing
	 the program's executable (.EXE) and
	 issue the following:
% wine program.exe
For applications that take command-line arguments, add
	 them after the executable as usual:
% wine program2.exe -file file.txt
Alternately, supply the full path to the executable to
	 use it in a script, for example:
% wine /home/user/bin/program.exe
11.4.2. Running a Program from a GUI
After installation graphical shells should be updated
	 with new associations for Windows executable
	 (.EXE) files. It will now be possible
	 to browse the system using a file manager, and launch the
	 Windows application in the same way as other files and
	 programs (either a single- or double-click, depending on the
	 desktop's settings).
On most desktops, check to make sure this association is
	 correct by right-clicking on the file, and looking for an
	 entry in the context menu to open the file. One of the
	 options (hopefully the default one) will be with the
	 Wine Windows Program
	 Loader, as shown in the below
	 screenshot:

In the event the program does not run as expected, try
	 launching it from the command line and review any messages
	 displayed in the terminal to troubleshoot.
In the event WINE is not the default application for
	 .EXE files after install, check the
	 MIME associate for this extension in the current desktop
	 environment, graphical shell, or file manager.
11.5. Configuring WINE Installation
With an understanding of what WINE is and how it works at
	a high level, the next step to effectively using it on
	FreeBSD is becoming familiar with its configuration. The
	following sections will describe the key concept of the
	WINE prefix, and illustrate how it is
	used to control the behavior of applications run through
	WINE.
11.5.1. WINE Prefixes
A WINE prefix is a directory,
	 usually located beneath the default location of
	 $HOME/.wine though it can be located
	 elsewhere. The prefix is a set of configurations and
	 support files used by the wine to
	 configure and run the Windows® environment a given
	 application needs. By default, a brand new WINE
	 installation will create the following structure when
	 first launched by a user:
	.update-timestamp: contains the
	 last modified date of
	 file /usr/share/wine/wine.inf. It
	 is used by WINE to determine if a prefix is out of date,
	 and automatically update it if needed.

	dosdevices/: contains
	 information on mappings of Windows® resources to
	 resources on the host FreeBSD system. For example, after a
	 new WINE installation, this should contain at least two
	 entries which enable access to the FreeBSD filesystem using
	 Windows®-style drive letters:
	c:@: A link to
		 drive_c described below.

	z:@: A link to the root
		 directory of the system.

	drive_c/: emulates the main
	 (i.e., C:) drive of a
	 Windows® system. It contains a directory structure
	 and associated files mirroring that of standard
	 Windows® systems. A fresh WINE prefix will contain
	 Windows® 10 directories such as
	 Users and
	 Windows that holds the OS itself.
	 Furthermore, applications installed within a prefix will
	 be located in either Program Files
	 or Program Files (x86), depending
	 on their architecture.

	system.reg: This Registry file
	 contains information on the Windows® installation,
	 which in the case of WINE is the environment in
	 drive_c.

	user.reg: This Registry file
	 contains the current user's personal configurations,
	 made either by varous software or through the use of the
	 Registry Editor.

	userdef.reg: This Registry file
	 is a default set of configurations for newly-created
	 users.

11.5.2. Creating and Using WINE Prefixes
While WINE will create a default prefix in the user's
	 $HOME/.wine/, it is possible to
	 set up multiple prefixes. There are a few reasons to do
	 this:
	The most common reason is to emulate different
	 versions of Windows®, according to the compatibility
	 needs of the software in question.

	In addition, it is common to encounter software that
	 does not work correctly in the default environment, and
	 requires special configuration. it is useful to isolate
	 these in their own, custom prefixes, so the changes do
	 not impact other applications.

	Similarly, copying the default or "main"
	 prefix into a separate "testing" one in order
	 to evaluate an application's compatibility can reduce
	 the chance of corruption.

Creating a prefix from the terminal requires the
	 following command:
% WINEPREFIX="/home/username/.wine-new" winecfg
This will run the winecfg
	 program, which can be used to configure wine prefixes (more
	 on this in a later section). But by providing a directory
	 path value for the WINEPREFIX environment
	 variable, a new prefix is created at that location if one
	 does not already exist.
Supplying the same variable to the
	 wine program will similarly cause
	 the selected program to be run with the specified
	 prefix:
% WINEPREFIX="/home/username/.wine-new" wine program.exe
11.5.3. Configuring WINE Prefixes with
	 winecfg
As described above WINE includes a tool called
	 winecfg to configure prefixes
	 from within a GUI. It contains a variety of functions,
	 which are detailed in the sections below. When
	 winecfg is run from within a
	 prefix, or provided the location of a prefix within the
	 WINEPREFIX variable, it enables the
	 configuration of the selected prefix as described in the
	 below sections.
Selections made on the Applications
	 tab will affect the scope of changes made in the
	 Libraries and
	 Graphics tabs, which will be limited to
	 the application selected. See the section on Using
	 Winecfg in the WINE Wiki for more details.
11.5.3.1. Applications

The Applications contains
	 controls enabling the association of programs with a
	 particular version of Windows®. On first start-up the
	 Application settings section will
	 contain a single entry: Default
		Settings. This corresponds to all the
	 default configurations of the prefix, which (as the
	 disabled Remove application button
	 implies) cannot be deleted.
But additional applications can be added with the
	 following process:
	Click the Add application
		 button.

	Use the provided dialog to select the desired
		 program's executable.

	Select the version of Windows® to be used
		 with the selected program.

11.5.3.2. Libraries

WINE provides a set of open source library files
		as part of its distribution that provide the same
		functions as their Windows® counterparts. However,
		as noted earlier in this chapter, the WINE project is
		always trying to keep pace with new updates to these
		libraries. As a result, the versions that ship with
		WINE may be missing functionality that the latest
		Windows® programs are expecting.
However, winecfg
		makes it possible specify overrides for the built-in
		libraries, particularly there is a version of
		Windows® available on the same machine as the host
		FreeBSD installation. For each library to be
		overridden, do the following:
	Open the New override for
		 library drop-down and select the
		 library to be replaced.

	Click the Add
		 button.

	The new override will appear in the
		 Existing overrides list,
		 notice the native,
		 builtin designation in
		 parentheses.

	Click to select the library.

	Click the Edit
		 button.

	Use the provided dialog to select a
		 corresponding library to be used in place
		 of the built-in one.

Be sure to select a file that is truly the
		 corresponding version of the built-in one, otherwise
		 there may be unexpected behavior.
11.5.3.3. Graphics

The Graphics tab provides
		 some options to make the windows of programs run
		 via WINE operate smoothly with FreeBSD
	Automatic mouse capture when windows are
			full-screen.

	Allowing the FreeBSD window manager to
			decorate the windows, such as their title
			bars, for programs running via WINE.

	Allowing the window manager to control
			windows for programs running via WINE, such as
			running resizing functions on them.

	Create an emulated virtual desktop, within
			which all WINE programs will run. If this
			item is selected, the size of the virtual
			desktop can be specified using the
			Desktop size input
			boxes.

	Setting the screen resolution for programs
			running via WINE.

11.5.3.4. Desktop Integration

This tab allows configuration of the following
		 items:
	The theme and related visual settings to
			be used for programs running via WINE.

	Whether the WINE sub-system should manage
			MIME types (used to determine which
			application opens a particular file type)
			internally.

	Mappings of directories in the host FreeBSD
			system to useful folders within the Windows®
			environment. To change an existing
			association, select the desired item and click
			Browse, then use the
			provided dialog to select a directory.

11.5.3.5. Drives

The Drives tab allows
		 linking of directories in the host FreeBSD system to
		 drive letters in the Windows® environment. The
		 default values in this tab should look familiar,
		 as they're displaying the contents of
		 dosdevices/ in the current
		 WINE prefix. Changes made via this dialog will
		 reflect in dosdevices, and
		 properly-formatted links created in that directory
		 will display in this tab.
To create a new entry, such as for a CD-ROM
		 (mounted at /mnt/cdrom), take
		 the following steps:
	Click the Add
			button.

	In the provided dialog, choose a free
			drive letter.

	Click OK.

	Fill in the Path
			input box by either typing the path to the
			resource, or click
			Browse and use the
			provided dialog to select it.

By default WINE will autodetect the type of
		 resource linked, but this can be manually
		 overridden. See the
			section in the WINE Wiki for more
		 detail on advanced options.
11.5.3.6. Audio

This tab contains some configurable options
		 for routing sound from Windows® programs to the
		 native FreeBSD sound system, including:
	Driver selection

	Default device selection

	Sound test

11.5.3.7. About

The final tab contains information on the WINE
		 project, including a link to the website. It also
		 allows entry of (entirely optional) user
		 information, although this is not sent anywhere as
		 it is in other operating systems.
11.7. WINE in Multi-User FreeBSD Installations
11.7.1. Issues with Using a Common WINE Prefix
Like most UNIX®-like operating systems, FreeBSD is
	 designed for multiple users to be logged in and working at
	 the same time. On the other hand, Windows® is multi-user
	 in the sense that there can be multiple user accounts set up
	 on one system. But the expectation is that only one will be
	 using the physical machine (a desktop or laptop PC) at any
	 given moment.
More recent consumer versions of Windows® have taken
	 some steps to improve the OS in multi-user scenarios. But
	 it is still largely structured around a single-user
	 experience. Furthermore, the measures the WINE project has
	 taken to create acompatible environment means, unlike FreeBSD
	 applications (including WINE itself), it will resemble this
	 single-user environment.
So it follows that each user will have to maintain their
	 own set of configurations, which is potentially good. Yet
	 it is advantageous to install applications, particularly
	 large ones like office suites or games, only once. Two
	 examples of reasons to do this are maintenance (software
	 updates need only be applied once) and efficiency in storage
	 (no duplicated files).
There are two strategies to minimze the impact of
	 multiple WINE users in the system.
11.7.2. Installing Applications to a Common Drive
As shown in the section on WINE Configuration, WINE
	 provides the ability to attach additional drives to a
	 given prefix. In this way, applications can be installed to
	 a common location, while each user will still have an prefix
	 where individual settings may be kept (depending on the
	 program). This is a good setup if there are relatively few
	 applications to be shared between users, and they are
	 programs that require few custom tweaks changes to the
	 prefix in order to function.
The steps to make install applications in this way are
	 as follows:
	First, set up a shared location on the system where
	 the files will be stored, such as
	 /mnt/windows-drive_d/. Creating new
	 directories is described in man page for the
	 mkdir command.

	Next, set permissions for this new directory to allow
	 only desired users to access it. One approach to this is
	 to create a new group such as "windows," add the
	 desired users to that group (see the sub-section on groups
	 in the Handbook's Users and Basic Account Management
	 section), and set to the permissions on the directory to
	 770 (the section on Permissions in the
	 FreeBSD Basics chapter of the Handbook illustrates this
	 process).

	Finally, add the location as a drive to the user's
	 prefix using the winecfg
	 as described in the above section on WINE Configuration
	 in this chapter.

Once complete, applications can be installed to this
	 location, and subsequently run using the assigned drive
	 letter (or the standard UNIX®-style directory path).
	 However, as noted above, only one user should be running
	 these applications (which may be accessing files within
	 their installation directory) at the same time. Some
	 applications may also exhibit unexpected behavior when run
	 by a user who is not the owner, despite being a member of
	 the group that should have full
	 "read/write/execute" permissions for the
	 entire directory.
11.7.3. Using a Common Installation of WINE
If, on the other hand, there are many applications to be
	 shared, or they require specific tuning in order to work
	 correctly, a different approach may be required. In this
	 method, a completely separate user is created specifically
	 for the purposes of storing the WINE prefix and all its
	 installed applications. Individual users are then granted
	 permission to run programs as this user using the
	 su command. The result is
	 that these users can launch a WINE application as they
	 normally would, only it will act as though launched by the
	 newly-created user, and therefore use the
	 centrally-maintained prefix containing both settings and
	 programs. To accomplish this, take the following
	 steps.
Create a new user with the following command (as root),
	 which will step through the required details:
adduser
Enter the username (e.g.,
	 windows) and Full name
	 ("Microsoft Windows"). Then accept the defaults
	 for the remainder of the questions. Next, install the
	 sudo utlity using binary packages
	 with the following:
pkg install sudo
Once installed, edit /etc/sudoers
	 as follows:
User alias specification

define which users can run the wine/windows programs
User_Alias WINDOWS_USERS = user1,user2

define which users can administrate (become root)
User_Alias ADMIN = user1

Cmnd alias specification

define which commands the WINDOWS_USERS may run
Cmnd_Alias WINDOWS = /usr/bin/wine,/usr/bin/winecfg

Defaults
Defaults:WINDOWS_USERS env_reset
Defaults:WINDOWS_USERS env_keep += DISPLAY
Defaults:WINDOWS_USERS env_keep += XAUTHORITY
Defaults !lecture,tty_tickets,!fqdn

User privilege specification
root ALL=(ALL) ALL

Members of the admin user_alias, defined above, may gain root privileges
ADMIN ALL=(ALL) ALL

The WINDOWS_USERS may run WINDOWS programs as user windows without a password
WINDOWS_USERS ALL = (windows) NOPASSWD: WINDOWS
The result of these changes is the users named in the
	User_Alias section are permitted to run
	the programs listed in the
	CmndAlias section
	using the resources listed in the
	Defaults section (the current display) as
	if they were the user listed in the final line of the file.
	In other words, users designates as
	WINDOWS_USERS can run the
	wine and
	winecfg applications as user
	windows. As a bonus, the configuration
	here means they will not be required to enter the password for
	the windows user.
Next provide access to the display back to the
	windows user, as whom the WINE programs
	will be running:
% xhost +local:windows
This should be added to the list of commands run either at
	login or when the default graphical environment starts. Once
	all the above are complete, a user configured as one of the
	WINDOW_USERS in
	sudoers can run programs using the
	shared prefix with the following command:
it is worth noting that multiple users accessing this
	shared environment at the same time is still risky. However,
	consider also that the shared environment can itself contain
	multiple prefixes. In this way an administrator can create a
	tested and verified set of programs, each with its own prefix.
	At the same time, one user can play a game while another works
	with office programs without the need for redundant software
	installations.
11.8. WINE on FreeBSD FAQ
The following section describes some frequently asked
 questions, tips/tricks, or common issues in running WINE on
 FreeBSD, along with their respective answers.
11.8.1. Basic Installation and Usage
11.8.1.1. How to Install 32-bit and 64-bit WINE on the Same
	 System?
As described earlier in this section, the
	wine and
	i386-wine packages conflict with
	one another, and therefore cannot be installed on the same
	system in the normal way. However, multiple installs can be
	achieved using mechanisms like chroots/jails, or by building
	WINE from source (note this does not
	mean building the port).
11.8.1.2. Can DOS Programs Be Run on WINE?
They can, as "Console User Interface"
	applications as mentioned eariler in this section. However,
	there is an arguably better method for running DOS software:
 DOSBox. On the other hand,
	there's little reason not to at least try it. Simply create
	a new prefix, install the software, and if it does not work
	delete the prefix.
11.8.1.3. Should the "wine-devel" Package/Port be
	Installed to Use the Development Version of WINE Instead of
	Stable?
Yes, installing this version will install the
	"development" version of WINE. As with the 32-
	and 64-bit versions, they cannot be installed together with
	the stable versions unless additional measures are
	taken.
Note that WINE also has a "Staging" version,
	which contains the most recent updates. This was at one
	time available as a FreeBSD port; however, it has since been
	removed. It can be compiled directly from source
	however.
11.8.2. Install Optimization
11.8.2.1. How Should Windows® Hardware (e.g., Graphics) Drivers
	be Handled?
Operating system drivers transfer commands between
	applications and hardware. WINE emulates a Windows®
	environment, including the drivers, which in turn use
	FreeBSD's native drivers for this transfer. it is not advisable
	to install Windows® drivers, as the WINE system is designed
	to use the host systems drivers. If, for example,
	a graphics card that benefits from dedicated drivers,
	install them using the standard FreeBSD methods, not Windows®
	installers.
11.8.2.2. Is There a way to Make Windows® Fonts Look
	Better?
A user on the FreeBSD forums suggests this configuration to
	fix out-of-the-box look of WINE fonts, which can be slightly
	pixelated.
According to a
	post in the FreeBSD Forums, adding the following to
	.config/fontconfig/fonts.conf
	 will add anti-aliasing and make text more readable.
<?xml version="1.0"?>
<!DOCTYPE fontconfig SYSTEM "fonts.dtd>"

<fontconfig>

 <!-- antialias all fonts -->
 <match target="font">
 <edit name="antialias" mode="assign"><bool>true</bool></edit>>
 <edit name="hinting" mode="assign"><bool>true</bool></edit>>
 <edit name="hintstyle" mode="assign"><const>hintslight</const></edit>>
 <edit name="rgba" mode="assign"><const>rgb</const></edit>>
 </match>
</fontconfig>
11.8.2.3. Does Having Windows® Installed Elsewhere on a System
	 Help WINE Operate?
It may, depending on the application being run. As
	 mentioned in the section describing
	winecfg, some built-in WINE DLLs
	 and other libraries can be overridden by providing a path to
	 an alternate version. Provided the Windows® partition or
	 drive is mounted to the FreeBSD system and accessible to the
	 user, configuring some of these overrides will use native
	 Windows® libraries and may decrease the chance of
	 unexpected behavior.
11.8.3. Application-Specific
11.8.3.1. Where is the Best Place to see if Application X Works on
	WINE?
The first stop in determining compatibiliy should be the
	WINE
	 AppDB. This is a compilation of reports of
	 programs working (or not) on all supported platforms,
	 although (as previously mentioned), solutions for one
	 platform are often applicable to others.
11.8.3.2. Is There Anything That Will Help Games Run
	Better?
Perhaps. Many Windows® games rely on DirectX, a
	proprietary Microsoft graphics layer. However there are
	projects in the open source community attempting to implement
	support for this technology.
The dxvk project, which is an attempt
	to implement DirectX using the FreeBSD-compatible Vulkan graphics
	sub-system, is one such. Although its primary target is WINE
	on Linux, some
	 FreeBSD users report compiling and using dxvk.
In addition, work is under way on a
 wine-proton port.
	 This will bring the work of Valve, developer of the Steam
	 gaming platform, to FreeBSD. Proton is a distribution of WINE
	 designed to allow many Windows® games to run on other
	 operating systems with minimal setup.
11.8.3.3. Is There Anywhere FreeBSD WINE Users Gather to Exchange
	Tips and Tricks?
There are plenty of places FreeBSD users discuss issues
	related to WINE that can be searched for solutions:
	The FreeBSD
	 forums, particularly the Installation and
	 Maintenance of Ports or Packages or
	 Emulation and virtualization
	 forums.

	FreeBSD
	 IRC channels including #freebsd (for general
		support), #freebsd-games, and others.

	The
		BSD World Discord server's channels including
		bsd-desktop,
		bsd-gaming,
		bsd-wine, and others.

11.8.4. Other OS Resources
There are a number of resources focused on other
	 operating systems that may be useful for FreeBSD users:
	The WINE
	 Wiki has a wealth of information on using WINE,
	 much of which is applicable across many of WINE's
	 supported operating systems.

	Similarly, the documentation available from other OS
	 projects can also be of good value. The
		 WINE page on the Arch Linux Wiki is a
	 particularly good example, although some of the
	 "Third-party applications" (i.e.,
	 "companion applications") are obviously not
	 available on FreeBSD.

	Finally, Codeweavers (a developer of a commercial
	 version of WINE) is an active upstream contributor.
	 Oftentimes answers to questions in their
		support forum can be of aid in troubleshooting
	 problems with the open source version of WINE.

Part III. System Administration
The remaining chapters cover all aspects of FreeBSD system
	administration. Each chapter starts by describing what will
	be learned as a result of reading the chapter, and also
	details what the reader is expected to know before tackling
	the material.
These chapters are designed to be read as the information
	is needed. They do not need to be read in any particular
	order, nor must all of them be read before beginning to use
	FreeBSD.

12.3. Configuring cron(8)
Contributed by Tom Rhodes. One of the most useful utilities in FreeBSD is
 cron. This utility runs in the
 background and regularly checks
 /etc/crontab for tasks to execute and
 searches /var/cron/tabs for custom crontab
 files. These files are used to schedule tasks which
 cron runs at the specified times.
 Each entry in a crontab defines a task to run and is known as a
 cron job.
Two different types of configuration files are used: the
 system crontab, which should not be modified, and user crontabs,
 which can be created and edited as needed. The format used by
 these files is documented in crontab(5). The format of the
 system crontab, /etc/crontab includes a
 who column which does not exist in user
 crontabs. In the system crontab,
 cron runs the command as the user
 specified in this column. In a user crontab, all commands run
 as the user who created the crontab.
User crontabs allow individual users to schedule their own
 tasks. The root user
 can also have a user crontab which can be
 used to schedule tasks that do not exist in the system
 crontab.
Here is a sample entry from the system crontab,
 /etc/crontab:
/etc/crontab - root's crontab for FreeBSD
#
$FreeBSD$
[image: 1]
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin [image: 2]
#
#minute	hour	mday	month	wday	who	command [image: 3]
#
*/5	*	*	*	*	root	/usr/libexec/atrun [image: 4]
	[image: 1]
	Lines that begin with the # character
	 are comments. A comment can be placed in the file as a
	 reminder of what and why a desired action is performed.
	 Comments cannot be on the same line as a command or else
	 they will be interpreted as part of the command; they must
	 be on a new line. Blank lines are ignored.

	[image: 2]
	The equals (=) character is used to
	 define any environment settings. In this example, it is
	 used to define the SHELL and
	 PATH. If the SHELL is
	 omitted, cron will use the
	 default Bourne shell. If the PATH is
	 omitted, the full path must be given to the command or
	 script to run.

	[image: 3]
	This line defines the seven fields used in a system
	 crontab: minute, hour,
	 mday, month,
	 wday, who, and
	 command. The minute
	 field is the time in minutes when the specified command will
	 be run, the hour is the hour when the
	 specified command will be run, the mday
	 is the day of the month, month is the
	 month, and wday is the day of the week.
	 These fields must be numeric values, representing the
	 twenty-four hour clock, or a *,
	 representing all values for that field. The
	 who field only exists in the system
	 crontab and specifies which user the command should be run
	 as. The last field is the command to be executed.

	[image: 4]
	This entry defines the values for this cron job. The
	 */5, followed by several more
	 * characters, specifies that
	 /usr/libexec/atrun is invoked by
	 root every five
	 minutes of every hour, of every day and day of the week, of
	 every month.
Commands can include any number of switches. However,
	 commands which extend to multiple lines need to be broken
	 with the backslash “\” continuation
	 character.

12.3.1. Creating a User Crontab
To create a user crontab, invoke
	crontab in editor mode:
% crontab -e
This will open the user's crontab using the default text
	editor. The first time a user runs this command, it will open
	an empty file. Once a user creates a crontab, this command
	will open that file for editing.
It is useful to add these lines to the top of the crontab
	file in order to set the environment variables and to remember
	the meanings of the fields in the crontab:
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
Order of crontab fields
# minute	hour	mday	month	wday	command
Then add a line for each command or script to run,
	specifying the time to run the command. This example runs the
	specified custom Bourne shell script every day at two in the
	afternoon. Since the path to the script is not specified in
	PATH, the full path to the script is
	given:
0	14	*	*	*	/usr/home/dru/bin/mycustomscript.sh
Tip:
Before using a custom script, make sure it is executable
	 and test it with the limited set of environment variables
	 set by cron. To replicate the environment that would be
	 used to run the above cron entry, use:
env -i SHELL=/bin/sh PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin HOME=/home/dru LOGNAME=dru /usr/home/dru/bin/mycustomscript.sh
The environment set by cron is discussed in
	 crontab(5). Checking that scripts operate correctly in
	 a cron environment is especially important if they include
	 any commands that delete files using wildcards.

When finished editing the crontab, save the file. It
	will automatically be installed and
	cron will read the crontab and run
	its cron jobs at their specified times. To list the cron jobs
	in a crontab, use this command:
% crontab -l
0	14	*	*	*	/usr/home/dru/bin/mycustomscript.sh
To remove all of the cron jobs in a user crontab:
% crontab -r
remove crontab for dru? y
12.6. Virtual Hosts
A common use of FreeBSD is virtual site hosting, where one
 server appears to the network as many servers. This is achieved
 by assigning multiple network addresses to a single
 interface.
A given network interface has one “real”
 address, and may have any number of “alias”
 addresses. These aliases are normally added by placing alias
 entries in /etc/rc.conf, as seen in this
 example:
ifconfig_fxp0_alias0="inet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx"
Alias entries must start with
 alias0 using a
 sequential number such as
 alias0, alias1,
 and so on. The configuration process will stop at the first
 missing number.
The calculation of alias netmasks is important. For a
 given interface, there must be one address which correctly
 represents the network's netmask. Any other addresses which
 fall within this network must have a netmask of all
 1s, expressed as either
 255.255.255.255 or
 0xffffffff.
For example, consider the case where the
 fxp0 interface is connected to two
 networks: 10.1.1.0
 with a netmask of
 255.255.255.0 and
 202.0.75.16 with a
 netmask of
 255.255.255.240. The
 system is to be configured to appear in the ranges
 10.1.1.1 through
 10.1.1.5 and
 202.0.75.17 through
 202.0.75.20. Only
 the first address in a given network range should have a real
 netmask. All the rest
 (10.1.1.2 through
 10.1.1.5 and
 202.0.75.18 through
 202.0.75.20) must be
 configured with a netmask of
 255.255.255.255.
The following /etc/rc.conf entries
 configure the adapter correctly for this scenario:
ifconfig_fxp0="inet 10.1.1.1 netmask 255.255.255.0"
ifconfig_fxp0_alias0="inet 10.1.1.2 netmask 255.255.255.255"
ifconfig_fxp0_alias1="inet 10.1.1.3 netmask 255.255.255.255"
ifconfig_fxp0_alias2="inet 10.1.1.4 netmask 255.255.255.255"
ifconfig_fxp0_alias3="inet 10.1.1.5 netmask 255.255.255.255"
ifconfig_fxp0_alias4="inet 202.0.75.17 netmask 255.255.255.240"
ifconfig_fxp0_alias5="inet 202.0.75.18 netmask 255.255.255.255"
ifconfig_fxp0_alias6="inet 202.0.75.19 netmask 255.255.255.255"
ifconfig_fxp0_alias7="inet 202.0.75.20 netmask 255.255.255.255"
A simpler way to express this is with a space-separated list
 of IP address ranges. The first address
 will be given the
 indicated subnet mask and the additional addresses will have a
 subnet mask of 255.255.255.255.
ifconfig_fxp0_aliases="inet 10.1.1.1-5/24 inet 202.0.75.17-20/28"
12.9. Tuning with sysctl(8)
sysctl(8) is used to make changes to a running FreeBSD
 system. This includes many advanced options of the
 TCP/IP stack and virtual memory system
 that can dramatically improve performance for an experienced
 system administrator. Over five hundred system variables can
 be read and set using sysctl(8).
At its core, sysctl(8) serves two functions: to read
 and to modify system settings.
To view all readable variables:
% sysctl -a
To read a particular variable, specify its name:
% sysctl kern.maxproc
kern.maxproc: 1044
To set a particular variable, use the
 variable=value
 syntax:
sysctl kern.maxfiles=5000
kern.maxfiles: 2088 -> 5000
Settings of sysctl variables are usually either strings,
 numbers, or booleans, where a boolean is 1
 for yes or 0 for no.
To automatically set some variables each time the machine
 boots, add them to /etc/sysctl.conf. For
 more information, refer to sysctl.conf(5) and
 Section 12.9.1, “sysctl.conf”.
12.9.1. sysctl.conf
The configuration file for sysctl(8),
	/etc/sysctl.conf, looks much like
	/etc/rc.conf. Values are set in a
	variable=value form. The specified values
	are set after the system goes into multi-user mode. Not all
	variables are settable in this mode.
For example, to turn off logging of fatal signal exits
	and prevent users from seeing processes started by other
	users, the following tunables can be set in
	/etc/sysctl.conf:
Do not log fatal signal exits (e.g., sig 11)
kern.logsigexit=0

Prevent users from seeing information about processes that
are being run under another UID.
security.bsd.see_other_uids=0
12.9.2. sysctl(8) Read-only
Contributed by Tom Rhodes. In some cases it may be desirable to modify read-only
	sysctl(8) values, which will require a reboot of the
	system.
For instance, on some laptop models the cardbus(4)
	device will not probe memory ranges and will fail with errors
	similar to:
cbb0: Could not map register memory
device_probe_and_attach: cbb0 attach returned 12
The fix requires the modification of a read-only
	sysctl(8) setting. Add
	hw.pci.allow_unsupported_io_range=1 to
	/boot/loader.conf and reboot. Now
	cardbus(4) should work properly.
12.10. Tuning Disks
The following section will discuss various tuning
 mechanisms and options which may be applied to disk
 devices. In many cases, disks with mechanical parts,
 such as SCSI drives, will be the
 bottleneck driving down the overall system performance. While
 a solution is to install a drive without mechanical parts,
 such as a solid state drive, mechanical drives are not
 going away anytime in the near future. When tuning disks,
 it is advisable to utilize the features of the iostat(8)
 command to test various changes to the system. This
 command will allow the user to obtain valuable information
 on system IO.
12.10.1. Sysctl Variables
12.10.1.1. vfs.vmiodirenable
The vfs.vmiodirenable sysctl(8)
	 variable
	 may be set to either 0 (off) or
	 1 (on). It is set to
	 1 by default. This variable controls
	 how directories are cached by the system. Most directories
	 are small, using just a single fragment (typically 1 K)
	 in the file system and typically 512 bytes in the
	 buffer cache. With this variable turned off, the buffer
	 cache will only cache a fixed number of directories, even
	 if the system has a huge amount of memory. When turned on,
	 this sysctl(8) allows the buffer cache to use the
	 VM page cache to cache the directories,
	 making all the memory available for caching directories.
	 However, the minimum in-core memory used to cache a
	 directory is the physical page size (typically 4 K)
	 rather than 512 bytes. Keeping this option enabled
	 is recommended if the system is running any services which
	 manipulate large numbers of files. Such services can
	 include web caches, large mail systems, and news systems.
	 Keeping this option on will generally not reduce
	 performance, even with the wasted memory, but one should
	 experiment to find out.
12.10.1.2. vfs.write_behind
The vfs.write_behind sysctl(8)
	 variable
	 defaults to 1 (on). This tells the file
	 system to issue media writes as full clusters are collected,
	 which typically occurs when writing large sequential files.
	 This avoids saturating the buffer cache with dirty buffers
	 when it would not benefit I/O performance. However, this
	 may stall processes and under certain circumstances should
	 be turned off.
12.10.1.3. vfs.hirunningspace
The vfs.hirunningspace sysctl(8)
	 variable determines how much outstanding write I/O may be
	 queued to disk controllers system-wide at any given
	 instance. The default is usually sufficient, but on
	 machines with many disks, try bumping it up to four or five
	 megabytes. Setting too high a value
	 which exceeds the buffer cache's write threshold can lead
	 to bad clustering performance. Do not set this value
	 arbitrarily high as higher write values may add latency to
	 reads occurring at the same time.
There are various other buffer cache and
	 VM page cache related sysctl(8)
	 values. Modifying these values is not recommended as the
	 VM system does a good job of
	 automatically tuning itself.
12.10.1.4. vm.swap_idle_enabled
The vm.swap_idle_enabled
	 sysctl(8) variable is useful in large multi-user
	 systems with many active login users and lots of idle
	 processes. Such systems tend to generate continuous
	 pressure on free memory reserves. Turning this feature on
	 and tweaking the swapout hysteresis (in idle seconds) via
	 vm.swap_idle_threshold1 and
	 vm.swap_idle_threshold2 depresses the
	 priority of memory pages associated with idle processes more
	 quickly then the normal pageout algorithm. This gives a
	 helping hand to the pageout daemon. Only turn this option
	 on if needed, because the tradeoff is essentially pre-page
	 memory sooner rather than later which eats more swap and
	 disk bandwidth. In a small system this option will have a
	 determinable effect, but in a large system that is already
	 doing moderate paging, this option allows the
	 VM system to stage whole processes into
	 and out of memory easily.
12.10.1.5. hw.ata.wc
Turning off IDE write caching reduces
	 write bandwidth to IDE disks, but may
	 sometimes be necessary due to data consistency issues
	 introduced by hard drive vendors. The problem is that
	 some IDE drives lie about when a write
	 completes. With IDE write caching
	 turned on, IDE hard drives write data
	 to disk out of order and will sometimes delay writing some
	 blocks indefinitely when under heavy disk load. A crash or
	 power failure may cause serious file system corruption.
	 Check the default on the system by observing the
	 hw.ata.wc sysctl(8) variable. If
	 IDE write caching is turned off, one can
	 set this read-only variable to
	 1 in
	 /boot/loader.conf in order to enable
	 it at boot time.
For more information, refer to ata(4).
12.10.1.6. SCSI_DELAY
	 (kern.cam.scsi_delay)
The SCSI_DELAY kernel configuration
	 option may be used to reduce system boot times. The
	 defaults are fairly high and can be responsible for
	 15 seconds of delay in the boot process.
	 Reducing it to 5 seconds usually works
	 with modern drives. The
	 kern.cam.scsi_delay boot time tunable
	 should be used. The tunable and kernel configuration
	 option accept values in terms of
	 milliseconds and
	 not
	 seconds.
12.10.2. Soft Updates
To fine-tune a file system, use tunefs(8). This
	program has many different options. To toggle Soft Updates
	on and off, use:
tunefs -n enable /filesystem
tunefs -n disable /filesystem
A file system cannot be modified with tunefs(8) while
	it is mounted. A good time to enable Soft Updates is before
	any partitions have been mounted, in single-user mode.
Soft Updates is recommended for UFS
	file systems as it drastically improves meta-data performance,
	mainly file creation and deletion, through the use of a memory
	cache. There are two downsides to Soft Updates to be aware
	of. First, Soft Updates guarantee file system consistency
	in the case of a crash, but could easily be several seconds
	or even a minute behind updating the physical disk. If the
	system crashes, unwritten data may be lost. Secondly, Soft
	Updates delay the freeing of file system blocks. If the
	root file system is almost full, performing a major update,
	such as make installworld, can cause the
	file system to run out of space and the update to fail.
12.10.2.1. More Details About Soft Updates
Meta-data updates are updates to non-content data like
	 inodes or directories. There are two traditional approaches
	 to writing a file system's meta-data back to disk.
Historically, the default behavior was to write out
	 meta-data updates synchronously. If a directory changed,
	 the system waited until the change was actually written to
	 disk. The file data buffers (file contents) were passed
	 through the buffer cache and backed up to disk later on
	 asynchronously. The advantage of this implementation is
	 that it operates safely. If there is a failure during an
	 update, meta-data is always in a consistent state. A
	 file is either created completely or not at all. If the
	 data blocks of a file did not find their way out of the
	 buffer cache onto the disk by the time of the crash,
	 fsck(8) recognizes this and repairs the file system
	 by setting the file length to 0.
	 Additionally, the implementation is clear and simple. The
	 disadvantage is that meta-data changes are slow. For
	 example, rm -r touches all the files in a
	 directory sequentially, but each directory change will be
	 written synchronously to the disk. This includes updates to
	 the directory itself, to the inode table, and possibly to
	 indirect blocks allocated by the file. Similar
	 considerations apply for unrolling large hierarchies using
	 tar -x.
The second approach is to use asynchronous meta-data
	 updates. This is the default for a UFS
	 file system mounted with mount -o async.
	 Since all meta-data updates are also passed through the
	 buffer cache, they will be intermixed with the updates of
	 the file content data. The advantage of this
	 implementation is there is no need to wait until each
	 meta-data update has been written to disk, so all operations
	 which cause huge amounts of meta-data updates work much
	 faster than in the synchronous case. This implementation
	 is still clear and simple, so there is a low risk for bugs
	 creeping into the code. The disadvantage is that there is
	 no guarantee for a consistent state of the file system.
	 If there is a failure during an operation that updated
	 large amounts of meta-data, like a power failure or someone
	 pressing the reset button, the file system will be left
	 in an unpredictable state. There is no opportunity to
	 examine the state of the file system when the system comes
	 up again as the data blocks of a file could already have
	 been written to the disk while the updates of the inode
	 table or the associated directory were not. It is
	 impossible to implement a fsck(8) which is able to
	 clean up the resulting chaos because the necessary
	 information is not available on the disk. If the file
	 system has been damaged beyond repair, the only choice
	 is to reformat it and restore from backup.
The usual solution for this problem is to implement
	 dirty region logging, which is also
	 referred to as journaling.
	 Meta-data updates are still written synchronously, but only
	 into a small region of the disk. Later on, they are moved
	 to their proper location. Since the logging area is a
	 small, contiguous region on the disk, there are no long
	 distances for the disk heads to move, even during heavy
	 operations, so these operations are quicker than synchronous
	 updates. Additionally, the complexity of the implementation
	 is limited, so the risk of bugs being present is low. A
	 disadvantage is that all meta-data is written twice, once
	 into the logging region and once to the proper location, so
	 performance “pessimization” might result. On
	 the other hand, in case of a crash, all pending meta-data
	 operations can be either quickly rolled back or completed
	 from the logging area after the system comes up again,
	 resulting in a fast file system startup.
Kirk McKusick, the developer of Berkeley
	 FFS, solved this problem with Soft
	 Updates. All pending meta-data updates are kept in memory
	 and written out to disk in a sorted sequence
	 (“ordered meta-data updates”). This has the
	 effect that, in case of heavy meta-data operations, later
	 updates to an item “catch” the earlier ones
	 which are still in memory and have not already been written
	 to disk. All operations are generally performed in memory
	 before the update is written to disk and the data blocks are
	 sorted according to their position so that they will not be
	 on the disk ahead of their meta-data. If the system
	 crashes, an implicit “log rewind” causes all
	 operations which were not written to the disk appear as if
	 they never happened. A consistent file system state is
	 maintained that appears to be the one of 30 to 60 seconds
	 earlier. The algorithm used guarantees that all resources
	 in use are marked as such in their blocks and inodes.
	 After a crash, the only resource allocation error that
	 occurs is that resources are marked as “used”
	 which are actually “free”. fsck(8)
	 recognizes this situation, and frees the resources that
	 are no longer used. It is safe to ignore the dirty state
	 of the file system after a crash by forcibly mounting it
	 with mount -f. In order to free
	 resources that may be unused, fsck(8) needs to be run
	 at a later time. This is the idea behind the
	 background fsck(8): at system
	 startup time, only a snapshot of the
	 file system is recorded and fsck(8) is run afterwards.
	 All file systems can then be mounted
	 “dirty”, so the system startup proceeds in
	 multi-user mode. Then, background fsck(8) is
	 scheduled for all file systems where this is required, to
	 free resources that may be unused. File systems that do
	 not use Soft Updates still need the usual foreground
	 fsck(8).
The advantage is that meta-data operations are nearly
	 as fast as asynchronous updates and are faster than
	 logging, which has to write the
	 meta-data twice. The disadvantages are the complexity of
	 the code, a higher memory consumption, and some
	 idiosyncrasies. After a crash, the state of the file
	 system appears to be somewhat “older”. In
	 situations where the standard synchronous approach would
	 have caused some zero-length files to remain after the
	 fsck(8), these files do not exist at all with Soft
	 Updates because neither the meta-data nor the file contents
	 have been written to disk. Disk space is not released until
	 the updates have been written to disk, which may take place
	 some time after running rm(1). This may cause problems
	 when installing large amounts of data on a file system
	 that does not have enough free space to hold all the files
	 twice.
12.11. Tuning Kernel Limits
12.11.1. File/Process Limits
12.11.1.1. kern.maxfiles
The kern.maxfiles sysctl(8)
	 variable can be raised or lowered based upon system
	 requirements. This variable indicates the maximum number
	 of file descriptors on the system. When the file descriptor
	 table is full, file: table is full
	 will show up repeatedly in the system message buffer, which
	 can be viewed using dmesg(8).
Each open file, socket, or fifo uses one file
	 descriptor. A large-scale production server may easily
	 require many thousands of file descriptors, depending on the
	 kind and number of services running concurrently.
In older FreeBSD releases, the default value of
	 kern.maxfiles is derived from
	 maxusers in the kernel configuration file.
	 kern.maxfiles grows proportionally to the
	 value of maxusers. When compiling a custom
	 kernel, consider setting this kernel configuration option
	 according to the use of the system. From this number, the
	 kernel is given most of its pre-defined limits. Even though
	 a production machine may not have 256 concurrent users, the
	 resources needed may be similar to a high-scale web
	 server.
The read-only sysctl(8) variable
	 kern.maxusers is automatically sized at
	 boot based on the amount of memory available in the system,
	 and may be determined at run-time by inspecting the value
	 of kern.maxusers. Some systems require
	 larger or smaller values of
	 kern.maxusers and values of
	 64, 128, and
	 256 are not uncommon. Going above
	 256 is not recommended unless a huge
	 number of file descriptors is needed. Many of the tunable
	 values set to their defaults by
	 kern.maxusers may be individually
	 overridden at boot-time or run-time in
	 /boot/loader.conf. Refer to
	 loader.conf(5) and
	 /boot/defaults/loader.conf for more
	 details and some hints.
In older releases, the system will auto-tune
	 maxusers if it is set to
	 0.
	 [2]. When
	 setting this option, set maxusers to
	 at least 4, especially if the system
	 runs Xorg or is used to
	 compile software. The most important table set by
	 maxusers is the maximum number of
	 processes, which is set to
	 20 + 16 * maxusers. If
	 maxusers is set to 1,
	 there can only be
	 36 simultaneous processes, including
	 the 18 or so that the system starts up
	 at boot time and the 15 or so used by
	 Xorg. Even a simple task like
	 reading a manual page will start up nine processes to
	 filter, decompress, and view it. Setting
	 maxusers to 64 allows
	 up to 1044 simultaneous processes, which
	 should be enough for nearly all uses. If, however, the
	 proc table full error is displayed
	 when trying to start another program, or a server is
	 running with a large number of simultaneous users, increase
	 the number and rebuild.
Note:
maxusers does
	 not limit the number of users which
	 can log into the machine. It instead sets various table
	 sizes to reasonable values considering the maximum number
	 of users on the system and how many processes each user
	 will be running.

12.11.1.2. kern.ipc.soacceptqueue
The kern.ipc.soacceptqueue
	 sysctl(8) variable limits the size of the listen queue
	 for accepting new TCP connections. The
	 default value of 128 is typically too low
	 for robust handling of new connections on a heavily loaded
	 web server. For such environments, it is recommended to
	 increase this value to 1024 or higher. A
	 service such as sendmail(8), or
	 Apache may itself limit the
	 listen queue size, but will often have a directive in its
	 configuration file to adjust the queue size. Large listen
	 queues do a better job of avoiding Denial of Service
	 (DoS) attacks.
12.11.2. Network Limits
The NMBCLUSTERS kernel configuration
	option dictates the amount of network Mbufs available to the
	system. A heavily-trafficked server with a low number of
	Mbufs will hinder performance. Each cluster represents
	approximately 2 K of memory, so a value of
	1024 represents 2
	megabytes of kernel memory reserved for network buffers. A
	simple calculation can be done to figure out how many are
	needed. A web server which maxes out at
	1000 simultaneous connections where each
	connection uses a 6 K receive and 16 K send buffer,
	requires approximately 32 MB worth of network buffers
	to cover the web server. A good rule of thumb is to multiply
	by 2, so
	2x32 MB / 2 KB =
	64 MB / 2 kB =
	32768. Values between
	4096 and 32768 are
	recommended for machines with greater amounts of memory.
	Never specify an arbitrarily high value for this parameter
	as it could lead to a boot time crash. To observe network
	cluster usage, use -m with
	netstat(1).
The kern.ipc.nmbclusters loader tunable
	should be used to tune this at boot time. Only older versions
	of FreeBSD will require the use of the
	NMBCLUSTERS kernel config(8)
	option.
For busy servers that make extensive use of the
	sendfile(2) system call, it may be necessary to increase
	the number of sendfile(2) buffers via the
	NSFBUFS kernel configuration option or by
	setting its value in /boot/loader.conf
	(see loader(8) for details). A common indicator that
	this parameter needs to be adjusted is when processes are seen
	in the sfbufa state. The sysctl(8)
	variable kern.ipc.nsfbufs is read-only.
	This parameter nominally scales with
	kern.maxusers, however it may be necessary
	to tune accordingly.
Important:
Even though a socket has been marked as non-blocking,
	 calling sendfile(2) on the non-blocking socket may
	 result in the sendfile(2) call blocking until enough
	 struct sf_buf's are made
	 available.

12.11.2.1. net.inet.ip.portrange.*
The net.inet.ip.portrange.*
	 sysctl(8) variables control the port number ranges
	 automatically bound to TCP and
	 UDP sockets. There are three ranges: a
	 low range, a default range, and a high range. Most network
	 programs use the default range which is controlled by
	 net.inet.ip.portrange.first and
	 net.inet.ip.portrange.last, which default
	 to 1024 and 5000,
	 respectively. Bound port ranges are used for outgoing
	 connections and it is possible to run the system out of
	 ports under certain circumstances. This most commonly
	 occurs when running a heavily loaded web proxy. The port
	 range is not an issue when running a server which handles
	 mainly incoming connections, such as a web server, or has
	 a limited number of outgoing connections, such as a mail
	 relay. For situations where there is a shortage of ports,
	 it is recommended to increase
	 net.inet.ip.portrange.last modestly. A
	 value of 10000, 20000
	 or 30000 may be reasonable. Consider
	 firewall effects when changing the port range. Some
	 firewalls may block large ranges of ports, usually
	 low-numbered ports, and expect systems to use higher ranges
	 of ports for outgoing connections. For this reason, it
	 is not recommended that the value of
	 net.inet.ip.portrange.first be
	 lowered.
12.11.2.2. TCP Bandwidth Delay Product
TCP bandwidth delay product limiting
	 can be enabled by setting the
	 net.inet.tcp.inflight.enable
	 sysctl(8) variable to 1. This
	 instructs the system to attempt to calculate the bandwidth
	 delay product for each connection and limit the amount of
	 data queued to the network to just the amount required to
	 maintain optimum throughput.
This feature is useful when serving data over modems,
	 Gigabit Ethernet, high speed WAN links,
	 or any other link with a high bandwidth delay product,
	 especially when also using window scaling or when a large
	 send window has been configured. When enabling this option,
	 also set net.inet.tcp.inflight.debug to
	 0 to disable debugging. For production
	 use, setting net.inet.tcp.inflight.min
	 to at least 6144 may be beneficial.
	 Setting high minimums may effectively disable bandwidth
	 limiting, depending on the link. The limiting feature
	 reduces the amount of data built up in intermediate route
	 and switch packet queues and reduces the amount of data
	 built up in the local host's interface queue. With fewer
	 queued packets, interactive connections, especially over
	 slow modems, will operate with lower
	 Round Trip Times. This feature only
	 effects server side data transmission such as uploading.
	 It has no effect on data reception or downloading.
Adjusting net.inet.tcp.inflight.stab
	 is not recommended. This parameter
	 defaults to 20, representing 2 maximal
	 packets added to the bandwidth delay product window
	 calculation. The additional window is required to stabilize
	 the algorithm and improve responsiveness to changing
	 conditions, but it can also result in higher ping(8)
	 times over slow links, though still much lower than without
	 the inflight algorithm. In such cases, try reducing this
	 parameter to 15, 10,
	 or 5 and reducing
	 net.inet.tcp.inflight.min to a value such
	 as 3500 to get the desired effect.
	 Reducing these parameters should be done as a last resort
	 only.
12.11.3. Virtual Memory
12.11.3.1. kern.maxvnodes
A vnode is the internal representation of a file or
	 directory. Increasing the number of vnodes available to
	 the operating system reduces disk I/O. Normally, this is
	 handled by the operating system and does not need to be
	 changed. In some cases where disk I/O is a bottleneck and
	 the system is running out of vnodes, this setting needs
	 to be increased. The amount of inactive and free
	 RAM will need to be taken into
	 account.
To see the current number of vnodes in use:
sysctl vfs.numvnodes
vfs.numvnodes: 91349
To see the maximum vnodes:
sysctl kern.maxvnodes
kern.maxvnodes: 100000
If the current vnode usage is near the maximum, try
	 increasing kern.maxvnodes by a value of
	 1000. Keep an eye on the number of
	 vfs.numvnodes. If it climbs up to the
	 maximum again, kern.maxvnodes will need
	 to be increased further. Otherwise, a shift in memory
	 usage as reported by top(1) should be visible and
	 more memory should be active.

[2] The auto-tuning algorithm sets
	 maxusers equal to the amount of
	 memory in the system, with a minimum of
	 32, and a maximum of
	 384.

12.12. Adding Swap Space
Sometimes a system requires more swap space. This section
 describes two methods to increase swap space: adding swap to an
 existing partition or new hard drive, and creating a swap file
 on an existing partition.
For information on how to encrypt swap space, which options
 exist, and why it should be done, refer to Section 18.13, “Encrypting Swap”.
12.12.1. Swap on a New Hard Drive or Existing Partition
Adding a new hard drive for swap gives better performance
	than using a partition on an existing drive. Setting up
	partitions and hard drives is explained in Section 18.2, “Adding Disks” while Section 2.6.1, “Designing the Partition Layout” discusses partition layouts
	and swap partition size considerations.
Use swapon to add a swap partition to
	the system. For example:
swapon /dev/ada1s1b
Warning:
It is possible to use any partition not currently
	 mounted, even if it already contains data. Using
	 swapon on a partition that contains data
	 will overwrite and destroy that data. Make sure that the
	 partition to be added as swap is really the intended
	 partition before running swapon.

To automatically add this swap partition on boot, add an
	entry to /etc/fstab:
/dev/ada1s1b	none	swap	sw	0	0
See fstab(5) for an explanation of the entries in
	/etc/fstab. More information about
	swapon can be found in
	swapon(8).
12.12.2. Creating a Swap File
These examples create a 512M swap file called
	/usr/swap0 instead of using a
	partition.
Using swap files requires that the module needed by
	md(4) has either been built into the kernel or has been
	loaded before swap is enabled. See
	Chapter 8, Configuring the FreeBSD Kernel for information about building
	a custom kernel.
Example 12.2. Creating a Swap File
	Create the swap file:
dd if=/dev/zero of=/usr/swap0 bs=1m count=512

	Set the proper permissions on the new file:
chmod 0600 /usr/swap0

	Inform the system about the swap file by adding a
	 line to /etc/fstab:
md99	none	swap	sw,file=/usr/swap0,late	0	0
The md(4) device md99 is
	 used, leaving lower device numbers available for
	 interactive use.

	Swap space will be added on system startup. To add
	 swap space immediately, use swapon(8):
swapon -aL

Chapter 13. The FreeBSD Booting Process
13.1. Synopsis
The process of starting a computer and loading the operating
 system is referred to as “the bootstrap process”,
 or “booting”. FreeBSD's boot process provides a great
 deal of flexibility in customizing what happens when the system
 starts, including the ability to select from different operating
 systems installed on the same computer, different versions of
 the same operating system, or a different installed
 kernel.
This chapter details the configuration options that can be
 set. It demonstrates how to customize the FreeBSD boot process,
 including everything that happens until the FreeBSD kernel has
 started, probed for devices, and started init(8). This
 occurs when the text color of the boot messages changes from
 bright white to grey.
After reading this chapter, you will recognize:
	The components of the FreeBSD bootstrap system and how they
	 interact.

	The options that can be passed to the components in the
	 FreeBSD bootstrap in order to control the boot process.

	How to configure a customized boot splash screen.

	The basics of setting device hints.

	How to boot into single- and multi-user mode and how to
	 properly shut down a FreeBSD system.

Note:
This chapter only describes the boot process for FreeBSD
	running on x86 and amd64 systems.

13.2. FreeBSD Boot Process
Turning on a computer and starting the operating system
 poses an interesting dilemma. By definition, the computer does
 not know how to do anything until the operating system is
 started. This includes running programs from the disk. If the
 computer can not run a program from the disk without the
 operating system, and the operating system programs are on the
 disk, how is the operating system started?
This problem parallels one in the book The
	Adventures of Baron Munchausen. A character had
 fallen part way down a manhole, and pulled himself out by
 grabbing his bootstraps and lifting. In the early days of
 computing, the term bootstrap was applied
 to the mechanism used to load the operating system. It has
 since become shortened to “booting”.
On x86 hardware, the Basic Input/Output System
 (BIOS) is responsible for loading the
 operating system. The BIOS looks on the hard
 disk for the Master Boot Record (MBR), which
 must be located in a specific place on the disk. The
 BIOS has enough knowledge to load and run the
 MBR, and assumes that the
 MBR can then carry out the rest of the tasks
 involved in loading the operating system, possibly with the help
 of the BIOS.
Note:
FreeBSD provides for booting from both the older
	MBR standard, and the newer GUID Partition
	Table (GPT). GPT
	partitioning is often found on computers with the Unified
	Extensible Firmware Interface (UEFI).
	However, FreeBSD can boot from GPT partitions
	even on machines with only a legacy BIOS
	with gptboot(8). Work is under way to provide direct
	UEFI booting.

The code within the MBR is typically
 referred to as a boot manager, especially
 when it interacts with the user. The boot manager usually has
 more code in the first track of the disk or within the file
 system. Examples of boot managers include the standard FreeBSD
 boot manager boot0, also called
 Boot Easy, and
 Grub, which is used by many Linux®
 distributions.
If only one operating system is installed, the
 MBR searches for the first bootable (active)
 slice on the disk, and then runs the code on that slice to load
 the remainder of the operating system. When multiple operating
 systems are present, a different boot manager can be installed
 to display a list of operating systems so the user
 can select one to boot.
The remainder of the FreeBSD bootstrap system is divided into
 three stages. The first stage knows just enough to get the
 computer into a specific state and run the second stage. The
 second stage can do a little bit more, before running the third
 stage. The third stage finishes the task of loading the
 operating system. The work is split into three stages because
 the MBR puts limits on the size of the
 programs that can be run at stages one and two. Chaining the
 tasks together allows FreeBSD to provide a more flexible
 loader.
The kernel is then started and begins to probe for devices
 and initialize them for use. Once the kernel boot process is
 finished, the kernel passes control to the user process
 init(8), which makes sure the disks are in a usable state,
 starts the user-level resource configuration which mounts file
 systems, sets up network cards to communicate on the network,
 and starts the processes which have been configured to run at
 startup.
This section describes these stages in more detail and
 demonstrates how to interact with the FreeBSD boot process.
13.2.1. The Boot Manager
The boot manager code in the MBR is
	sometimes referred to as stage zero of
	the boot process. By default, FreeBSD uses the
	boot0 boot manager.
The MBR installed by the FreeBSD installer
	is based on /boot/boot0. The size and
	capability of boot0 is restricted
	to 446 bytes due to the slice table and
	0x55AA identifier at the end of the
	MBR. If boot0
	and multiple operating systems are installed, a message
	similar to this example will be displayed at boot time:
Example 13.1. boot0 Screenshot
F1 Win
F2 FreeBSD

Default: F2

Other operating systems will overwrite an existing
	MBR if they are installed after FreeBSD. If
	this happens, or to replace the existing
	MBR with the FreeBSD MBR,
	use the following command:
fdisk -B -b /boot/boot0 device
where device is the boot disk,
	such as ad0 for the first
	IDE disk, ad2 for the
	first IDE disk on a second
	IDE controller, or da0
	for the first SCSI disk. To create a
	custom configuration of the MBR, refer to
	boot0cfg(8).
13.2.2. Stage One and Stage Two
Conceptually, the first and second stages are part of the
	same program on the same area of the disk. Due to space
	constraints, they have been split into two, but are always
	installed together. They are copied from the combined
	/boot/boot by the FreeBSD installer or
	bsdlabel.
These two stages are located outside file systems, in the
	first track of the boot slice, starting with the first sector.
	This is where boot0, or any other
	boot manager, expects to find a program to run which will
	continue the boot process.
The first stage, boot1, is very
	simple, since it can only be 512 bytes in size. It knows just
	enough about the FreeBSD bsdlabel, which
	stores information about the slice, to find and execute
	boot2.
Stage two, boot2, is slightly more
	sophisticated, and understands the FreeBSD file system enough to
	find files. It can provide a simple interface to choose the
	kernel or loader to run. It runs
	loader, which is much more
	sophisticated and provides a boot configuration file. If the
	boot process is interrupted at stage two, the following
	interactive screen is displayed:
Example 13.2. boot2 Screenshot
>> FreeBSD/i386 BOOT
Default: 0:ad(0,a)/boot/loader
boot:

To replace the installed boot1 and
	boot2, use bsdlabel,
	where diskslice is the disk and
	slice to boot from, such as ad0s1 for the
	first slice on the first IDE disk:
bsdlabel -B diskslice
Warning:
If just the disk name is used, such as
	 ad0, bsdlabel will
	 create the disk in “dangerously dedicated
	 mode”, without slices. This is probably not the
	 desired action, so double check the
	 diskslice before pressing
	 Return.

13.2.3. Stage Three
The loader is the final stage
	of the three-stage bootstrap process. It is located on the
	file system, usually as
	/boot/loader.
The loader is intended as an
	interactive method for configuration, using a built-in command
	set, backed up by a more powerful interpreter which has a more
	complex command set.
During initialization, loader
	will probe for a console and for disks, and figure out which
	disk it is booting from. It will set variables accordingly,
	and an interpreter is started where user commands can be
	passed from a script or interactively.
The loader will then read
	/boot/loader.rc, which by default reads
	in /boot/defaults/loader.conf which sets
	reasonable defaults for variables and reads
	/boot/loader.conf for local changes to
	those variables. loader.rc then acts on
	these variables, loading whichever modules and kernel are
	selected.
Finally, by default, loader
	issues a 10 second wait for key presses, and boots the kernel
	if it is not interrupted. If interrupted, the user is
	presented with a prompt which understands the command set,
	where the user may adjust variables, unload all modules, load
	modules, and then finally boot or reboot. Table 13.1, “Loader Built-In Commands” lists the most commonly
	used loader commands. For a
	complete discussion of all available commands, refer to
	loader(8).
Table 13.1. Loader Built-In Commands
	Variable	Description
	autoboot
		seconds	Proceeds to boot the kernel if not interrupted
		within the time span given, in seconds. It displays a
		countdown, and the default time span is 10
		seconds.
	boot
		[-options]
		[kernelname]	Immediately proceeds to boot the kernel, with
		any specified options or kernel name. Providing a
		kernel name on the command-line is only applicable
		after an unload has been issued.
		Otherwise, the previously-loaded kernel will be
		used. If kernelname is not
		qualified, it will be searched under
		/boot/kernel and
		/boot/modules.
	boot-conf	Goes through the same automatic configuration of
		modules based on specified variables, most commonly
		kernel. This only makes sense if
		unload is used first, before
		changing some variables.
	help
		[topic]	Shows help messages read from
		/boot/loader.help. If the topic
		given is index, the list of
		available topics is displayed.
	include filename
		…	Reads the specified file and interprets it line
		by line. An error immediately stops the
		include.
	load [-t
		 type]
		filename	Loads the kernel, kernel module, or file of the
		type given, with the specified filename. Any
		arguments after filename
		are passed to the file. If
		filename is not qualified, it
		will be searched under
		/boot/kernel
		and /boot/modules.
	ls [-l]
		[path]	Displays a listing of files in the given path, or
		the root directory, if the path is not specified. If
		-l is specified, file sizes will
		also be shown.
	lsdev [-v]	Lists all of the devices from which it may be
		possible to load modules. If -v is
		specified, more details are printed.
	lsmod [-v]	Displays loaded modules. If -v
		is specified, more details are shown.
	more filename	Displays the files specified, with a pause at
		each LINES displayed.
	reboot	Immediately reboots the system.
	set variable, set
		variable=value	Sets the specified environment variables.
	unload	Removes all loaded modules.

Here are some practical examples of loader usage. To boot
	the usual kernel in single-user mode
	:
boot -s
To unload the usual kernel and modules and then load the
	previous or another, specified kernel:
unload
load /path/to/kernelfile
Use the qualified
	/boot/GENERIC/kernel to refer to
	the default kernel that comes with an installation, or
	/boot/kernel.old/kernel, to refer to the
	previously installed kernel before a system upgrade or before
	configuring a custom kernel.
Use the following to load the usual modules with another
	kernel. Note that in this case it is not necessary the
	qualified name:
unload
set kernel="mykernel"
boot-conf
To load an automated kernel configuration script:
load -t userconfig_script /boot/kernel.conf
13.2.4. Last Stage
Once the kernel is loaded by either
	loader or by
	boot2, which bypasses
	loader, it examines any boot flags
	and adjusts its behavior as necessary. Table 13.2, “Kernel Interaction During Boot” lists the commonly used boot flags.
	Refer to boot(8) for more information on the other boot
	flags.
Table 13.2. Kernel Interaction During Boot
	Option	Description
	-a	During kernel initialization, ask for the device
		to mount as the root file system.
	-C	Boot the root file system from a
		CDROM.
	-s	Boot into single-user mode.
	-v	Be more verbose during kernel startup.

Once the kernel has finished booting, it passes control to
	the user process init(8), which is located at
	/sbin/init, or the program path specified
	in the init_path variable in
	loader. This is the last stage of the boot
	process.
The boot sequence makes sure that the file systems
	available on the system are consistent. If a
	UFS file system is not, and
	fsck cannot fix the inconsistencies,
	init drops the system into
	single-user mode so that the system administrator can resolve
	the problem directly. Otherwise, the system boots into
	multi-user mode.
13.2.4.1. Single-User Mode
A user can specify this mode by booting with
	 -s or by setting the
	 boot_single variable in
	 loader. It can also be reached
	 by running shutdown now from multi-user
	 mode. Single-user mode begins with this message:
Enter full pathname of shell or RETURN for /bin/sh:
If the user presses Enter, the system
	 will enter the default Bourne shell. To specify a different
	 shell, input the full path to the shell.
Single-user mode is usually used to repair a system that
	 will not boot due to an inconsistent file system or an error
	 in a boot configuration file. It can also be used to reset
	 the root password
	 when it is unknown. These actions are possible as the
	 single-user mode prompt gives full, local access to the
	 system and its configuration files. There is no networking
	 in this mode.
While single-user mode is useful for repairing a system,
	 it poses a security risk unless the system is in a
	 physically secure location. By default, any user who can
	 gain physical access to a system will have full control of
	 that system after booting into single-user mode.
If the system console is changed to
	 insecure in
	 /etc/ttys, the system will first prompt
	 for the root
	 password before initiating single-user mode. This adds a
	 measure of security while removing the ability to reset the
	 root password when
	 it is unknown.
Example 13.3. Configuring an Insecure Console in
	 /etc/ttys
name getty type status comments
#
If console is marked "insecure", then init will ask for the root password
when going to single-user mode.
console none unknown off insecure

An insecure console means that
	 physical security to the console is considered to be
	 insecure, so only someone who knows the root password may use
	 single-user mode.
13.2.4.2. Multi-User Mode
If init finds the file
	 systems to be in order, or once the user has finished their
	 commands in single-user mode and has typed
	 exit to leave single-user mode, the
	 system enters multi-user mode, in which it starts the
	 resource configuration of the system.
The resource configuration system reads in configuration
	 defaults from /etc/defaults/rc.conf and
	 system-specific details from
	 /etc/rc.conf. It then proceeds to
	 mount the system file systems listed in
	 /etc/fstab. It starts up networking
	 services, miscellaneous system daemons, then the startup
	 scripts of locally installed packages.
To learn more about the resource configuration system,
	 refer to rc(8) and examine the scripts located in
	 /etc/rc.d.
13.4. Device Hints
Contributed by Tom Rhodes. During initial system startup, the boot loader(8) reads
 device.hints(5). This file stores kernel boot information
 known as variables, sometimes referred to as
 “device hints”. These “device hints”
 are used by device drivers for device configuration.
Device hints may also be specified at the Stage 3 boot
 loader prompt, as demonstrated in Section 13.2.3, “Stage Three”.
 Variables can be added using set, removed
 with unset, and viewed
 show. Variables set in
 /boot/device.hints can also be overridden.
 Device hints entered at the boot loader are not permanent and
 will not be applied on the next reboot.
Once the system is booted, kenv(1) can be used to dump
 all of the variables.
The syntax for /boot/device.hints
 is one variable per line, using the hash
 “#” as comment markers. Lines are constructed as
 follows:
hint.driver.unit.keyword="value"
The syntax for the Stage 3 boot loader is:
set hint.driver.unit.keyword=value
where driver is the device driver name,
 unit is the device driver unit number, and
 keyword is the hint keyword. The keyword may
 consist of the following options:
	at: specifies the bus which the
	 device is attached to.

	port: specifies the start address of
	 the I/O to be used.

	irq: specifies the interrupt request
	 number to be used.

	drq: specifies the DMA channel
	 number.

	maddr: specifies the physical memory
	 address occupied by the device.

	flags: sets various flag bits for the
	 device.

	disabled: if set to
	 1 the device is disabled.

Since device drivers may accept or require more hints not
 listed here, viewing a driver's manual page is recommended.
 For more information, refer to device.hints(5),
 kenv(1), loader.conf(5), and loader(8).
Chapter 14. Security
Rewritten by Tom Rhodes. 14.1. Synopsis
Security, whether physical or virtual, is a topic so broad
 that an entire industry has evolved around it. Hundreds of
 standard practices have been authored about how to secure
 systems and networks, and as a user of FreeBSD, understanding how
 to protect against attacks and intruders is a must.
In this chapter, several fundamentals and techniques will be
 discussed. The FreeBSD system comes with multiple layers of
 security, and many more third party utilities may be added to
 enhance security.
After reading this chapter, you will know:
	Basic FreeBSD system security concepts.

	The various crypt mechanisms available in FreeBSD.

	How to set up one-time password authentication.

	How to configure TCP Wrapper
	 for use with inetd(8).

	How to set up Kerberos on
	 FreeBSD.

	How to configure IPsec and create a
	 VPN.

	How to configure and use
	 OpenSSH on FreeBSD.

	How to use file system ACLs.

	How to use pkg to audit
	 third party software packages installed from the Ports
	 Collection.

	How to utilize FreeBSD security advisories.

	What Process Accounting is and how to enable it on
	 FreeBSD.

	How to control user resources using login classes or the
	 resource limits database.

Before reading this chapter, you should:
	Understand basic FreeBSD and Internet concepts.

Additional security topics are covered elsewhere in this
 Handbook. For example, Mandatory Access Control is discussed in
 Chapter 16, Mandatory Access Control and Internet firewalls are discussed in
 Chapter 31, Firewalls.
14.2. Introduction
Security is everyone's responsibility. A weak entry point
 in any system could allow intruders to gain access to critical
 information and cause havoc on an entire network. One of the
 core principles of information security is the
 CIA triad, which stands for the
 Confidentiality, Integrity, and Availability of information
 systems.
The CIA triad is a bedrock concept of
 computer security as customers and users expect their data to be
 protected. For example, a customer expects that their credit
 card information is securely stored (confidentiality), that
 their orders are not changed behind the scenes (integrity), and
 that they have access to their order information at all times
 (availablility).
To provide CIA, security professionals
 apply a defense in depth strategy. The idea of defense in depth
 is to add several layers of security to prevent one single layer
 failing and the entire security system collapsing. For example,
 a system administrator cannot simply turn on a firewall and
 consider the network or system secure. One must also audit
 accounts, check the integrity of binaries, and ensure malicious
 tools are not installed. To implement an effective security
 strategy, one must understand threats and how to defend against
 them.
What is a threat as it pertains to computer security?
 Threats are not limited to remote attackers who attempt to
 access a system without permission from a remote location.
 Threats also include employees, malicious software, unauthorized
 network devices, natural disasters, security vulnerabilities,
 and even competing corporations.
Systems and networks can be accessed without permission,
 sometimes by accident, or by remote attackers, and in some
 cases, via corporate espionage or former employees. As a user,
 it is important to prepare for and admit when a mistake has led
 to a security breach and report possible issues to the security
 team. As an administrator, it is important to know of the
 threats and be prepared to mitigate them.
When applying security to systems, it is recommended to
 start by securing the basic accounts and system configuration,
 and then to secure the network layer so that it adheres to the
 system policy and the organization's security procedures. Many
 organizations already have a security policy that covers the
 configuration of technology devices. The policy should include
 the security configuration of workstations, desktops, mobile
 devices, phones, production servers, and development servers.
 In many cases, standard operating procedures
 (SOPs) already exist. When in doubt, ask the
 security team.
The rest of this introduction describes how some of these
 basic security configurations are performed on a FreeBSD system.
 The rest of this chapter describes some specific tools which can
 be used when implementing a security policy on a FreeBSD
 system.
14.2.1. Preventing Logins
In securing a system, a good starting point is an audit of
	accounts. Ensure that root has a strong password and
	that this password is not shared. Disable any accounts that
	do not need login access.
To deny login access to accounts, two methods exist. The
	first is to lock the account. This example locks the
	toor account:
pw lock toor
The second method is to prevent login access by changing
	the shell to /usr/sbin/nologin. Only the
	superuser can change the shell for other users:
chsh -s /usr/sbin/nologin toor
The /usr/sbin/nologin shell prevents
	the system from assigning a shell to the user when they
	attempt to login.
14.2.2. Permitted Account Escalation
In some cases, system administration needs to be shared
	with other users. FreeBSD has two methods to handle this. The
	first one, which is not recommended, is a shared root password
	used by members of the wheel group. With this
	method, a user types su and enters the
	password for wheel
	whenever superuser access is needed. The user should then
	type exit to leave privileged access after
	finishing the commands that required administrative access.
	To add a user to this group, edit
	/etc/group and add the user to the end of
	the wheel entry. The user must be
	separated by a comma character with no space.
The second, and recommended, method to permit privilege
	escalation is to install the security/sudo
	package or port. This software provides additional auditing,
	more fine-grained user control, and can be configured to lock
	users into running only the specified privileged
	commands.
After installation, use visudo to edit
	/usr/local/etc/sudoers. This example
	creates a new webadmin group, adds the
	trhodes account to
	that group, and configures that group access to restart
	apache24:
pw groupadd webadmin -M trhodes -g 6000
visudo
%webadmin ALL=(ALL) /usr/sbin/service apache24 *
14.2.3. Password Hashes
Passwords are a necessary evil of technology. When they
	must be used, they should be complex and a powerful hash
	mechanism should be used to encrypt the version that is stored
	in the password database. FreeBSD supports the
	DES, MD5,
	SHA256, SHA512, and
	Blowfish hash algorithms in its crypt()
	library. The default of SHA512 should not
	be changed to a less secure hashing algorithm, but can be
	changed to the more secure Blowfish algorithm.
Note:
Blowfish is not part of AES and is
	 not considered compliant with any Federal Information
	 Processing Standards (FIPS). Its use may
	 not be permitted in some environments.

To determine which hash algorithm is used to encrypt a
	user's password, the superuser can view the hash for the user
	in the FreeBSD password database. Each hash starts with a symbol
	which indicates the type of hash mechanism used to encrypt the
	password. If DES is used, there is no
	beginning symbol. For MD5, the symbol is
	$. For SHA256 and
	SHA512, the symbol is
	6. For Blowfish, the symbol is
	$2a$. In this example, the password for
	dru is hashed using
	the default SHA512 algorithm as the hash
	starts with 6. Note that the encrypted
	hash, not the password itself, is stored in the password
	database:
grep dru /etc/master.passwd
dru:6pzIjSvCAn.PBYQBA$PXpSeWPx3g5kscj3IMiM7tUEUSPmGexxta.8Lt9TGSi2lNQqYGKszsBPuGME0:1001:1001::0:0:dru:/usr/home/dru:/bin/csh
The hash mechanism is set in the user's login class. For
	this example, the user is in the default
	login class and the hash algorithm is set with this line in
	/etc/login.conf:
 :passwd_format=sha512:\
To change the algorithm to Blowfish, modify that line to
	look like this:
 :passwd_format=blf:\
Then run cap_mkdb /etc/login.conf as
	described in Section 14.13.1, “Configuring Login Classes”. Note that this
	change will not affect any existing password hashes. This
	means that all passwords should be re-hashed by asking users
	to run passwd in order to change their
	password.
For remote logins, two-factor authentication should be
	used. An example of two-factor authentication is
	“something you have”, such as a key, and
	“something you know”, such as the passphrase for
	that key. Since OpenSSH is part of
	the FreeBSD base system, all network logins should be over an
	encrypted connection and use key-based authentication instead
	of passwords. For more information, refer to Section 14.8, “OpenSSH”. Kerberos users may need to make
	additional changes to implement
	OpenSSH in their network. These
	changes are described in Section 14.5, “Kerberos”.
14.2.4. Password Policy Enforcement
Enforcing a strong password policy for local accounts is a
	fundamental aspect of system security. In FreeBSD, password
	length, password strength, and password complexity can be
	implemented using built-in Pluggable Authentication Modules
	(PAM).
This section demonstrates how to configure the minimum and
	maximum password length and the enforcement of mixed
	characters using the pam_passwdqc.so
	module. This module is enforced when a user changes their
	password.
To configure this module, become the superuser and
	uncomment the line containing
	pam_passwdqc.so in
	/etc/pam.d/passwd. Then, edit that line
	to match the password policy:
password requisite pam_passwdqc.so min=disabled,disabled,disabled,12,10 similar=deny retry=3 enforce=users
This example sets several requirements for new passwords.
	The min setting controls the minimum
	password length. It has five values because this module
	defines five different types of passwords based on their
	complexity. Complexity is defined by the type of characters
	that must exist in a password, such as letters, numbers,
	symbols, and case. The types of passwords are described in
	pam_passwdqc(8). In this example, the first three types
	of passwords are disabled, meaning that passwords that meet
	those complexity requirements will not be accepted, regardless
	of their length. The 12 sets a minimum
	password policy of at least twelve characters, if the password
	also contains characters with three types of complexity. The
	10 sets the password policy to also allow
	passwords of at least ten characters, if the password contains
	characters with four types of complexity.
The similar setting denies passwords
	that are similar to the user's previous password. The
	retry setting provides a user with three
	opportunities to enter a new password.
Once this file is saved, a user changing their password
	will see a message similar to the following:
% passwd
Changing local password for trhodes
Old Password:

You can now choose the new password.
A valid password should be a mix of upper and lower case letters,
digits and other characters. You can use a 12 character long
password with characters from at least 3 of these 4 classes, or
a 10 character long password containing characters from all the
classes. Characters that form a common pattern are discarded by
the check.
Alternatively, if no one else can see your terminal now, you can
pick this as your password: "trait-useful&knob".
Enter new password:
If a password that does not match the policy is entered,
	it will be rejected with a warning and the user will have an
	opportunity to try again, up to the configured number of
	retries.
Most password policies require passwords to expire after
	so many days. To set a password age time in FreeBSD, set
	passwordtime for the user's login class in
	/etc/login.conf. The
	default login class contains an
	example:
:passwordtime=90d:\
So, to set an expiry of 90 days for this login class,
	remove the comment symbol (#), save the
	edit, and run cap_mkdb
	 /etc/login.conf.
To set the expiration on individual users, pass an
	expiration date or the number of days to expiry and a username
	to pw:
pw usermod -p 30-apr-2015 -n trhodes
As seen here, an expiration date is set in the form of
	day, month, and year. For more information, see
	pw(8).
14.2.5. Detecting Rootkits
A rootkit is any unauthorized
	software that attempts to gain root access to a system. Once
	installed, this malicious software will normally open up
	another avenue of entry for an attacker. Realistically, once
	a system has been compromised by a rootkit and an
	investigation has been performed, the system should be
	reinstalled from scratch. There is tremendous risk that even
	the most prudent security or systems engineer will miss
	something an attacker left behind.
A rootkit does do one thing useful for administrators:
	once detected, it is a sign that a compromise happened at some
	point. But, these types of applications tend to be very well
	hidden. This section demonstrates a tool that can be used to
	detect rootkits, security/rkhunter.
After installation of this package or port, the system may
	be checked using the following command. It will produce a lot
	of information and will require some manual pressing of
	ENTER:
rkhunter -c
After the process completes, a status message will be
	printed to the screen. This message will include the amount
	of files checked, suspect files, possible rootkits, and more.
	During the check, some generic security warnings may
	be produced about hidden files, the
	OpenSSH protocol selection, and
	known vulnerable versions of installed software. These can be
	handled now or after a more detailed analysis has been
	performed.
Every administrator should know what is running on the
	systems they are responsible for. Third-party tools like
	rkhunter and
	14.3. One-time Passwords

14.3. One-time Passwords
By default, FreeBSD includes support for One-time Passwords In
 Everything (OPIE). OPIE
 is designed to prevent replay attacks, in which an attacker
 discovers a user's password and uses it to access a system.
 Since a password is only used once in OPIE, a
 discovered password is of little use to an attacker.
 OPIE uses a secure hash and a
 challenge/response system to manage passwords. The FreeBSD
 implementation uses the MD5 hash by
 default.
OPIE uses three different types of
 passwords. The first is the usual UNIX® or Kerberos password.
 The second is the one-time password which is generated by
 opiekey. The third type of password is the
 “secret password” which is used to generate
 one-time passwords. The secret password has nothing to do with,
 and should be different from, the UNIX® password.
There are two other pieces of data that are important to
 OPIE. One is the “seed” or
 “key”, consisting of two letters and five digits.
 The other is the “iteration count”, a number
 between 1 and 100. OPIE creates the one-time
 password by concatenating the seed and the secret password,
 applying the MD5 hash as many times as
 specified by the iteration count, and turning the result into
 six short English words which represent the one-time password.
 The authentication system keeps track of the last one-time
 password used, and the user is authenticated if the hash of the
 user-provided password is equal to the previous password.
 Since a one-way hash is used, it is impossible to generate
 future one-time passwords if a successfully used password is
 captured. The iteration count is decremented after each
 successful login to keep the user and the login program in sync.
 When the iteration count gets down to 1,
 OPIE must be reinitialized.
There are a few programs involved in this process. A
 one-time password, or a consecutive list of one-time passwords,
 is generated by passing an iteration count, a seed, and a secret
 password to opiekey(1). In addition to initializing
 OPIE, opiepasswd(1) is used to change
 passwords, iteration counts, or seeds. The relevant credential
 files in /etc/opiekeys are examined by
 opieinfo(1) which prints out the invoking user's current
 iteration count and seed.
This section describes four different sorts of operations.
 The first is how to set up one-time-passwords for the first time
 over a secure connection. The second is how to use
 opiepasswd over an insecure connection. The
 third is how to log in over an insecure connection. The fourth
 is how to generate a number of keys which can be written down or
 printed out to use at insecure locations.
14.3.1. Initializing OPIE
To initialize OPIE for the first time,
	run this command from a secure location:
% opiepasswd -c
Adding unfurl:
Only use this method from the console; NEVER from remote. If you are using
telnet, xterm, or a dial-in, type ^C now or exit with no password.
Then run opiepasswd without the -c parameter.
Using MD5 to compute responses.
Enter new secret pass phrase:
Again new secret pass phrase:

ID unfurl OTP key is 499 to4268
MOS MALL GOAT ARM AVID COED
The -c sets console mode which assumes
	that the command is being run from a secure location, such as
	a computer under the user's control or an
	SSH session to a computer under the user's
	control.
When prompted, enter the secret password which will be
	used to generate the one-time login keys. This password
	should be difficult to guess and should be different than the
	password which is associated with the user's login account.
	It must be between 10 and 127 characters long. Remember this
	password.
The ID line lists the login name
	(unfurl), default iteration count
	(499), and default seed
	(to4268). When logging in, the system will
	remember these parameters and display them, meaning that they
	do not have to be memorized. The last line lists the
	generated one-time password which corresponds to those
	parameters and the secret password. At the next login, use
	this one-time password.
14.3.2. Insecure Connection Initialization
To initialize or change the secret password on an
	insecure system, a secure connection is needed to some place
	where opiekey can be run. This might be a
	shell prompt on a trusted machine. An iteration count is
	needed, where 100 is probably a good value, and the seed can
	either be specified or the randomly-generated one used. On
	the insecure connection, the machine being initialized, use
	opiepasswd(1):
% opiepasswd

Updating unfurl:
You need the response from an OTP generator.
Old secret pass phrase:
	otp-md5 498 to4268 ext
	Response: GAME GAG WELT OUT DOWN CHAT
New secret pass phrase:
	otp-md5 499 to4269
	Response: LINE PAP MILK NELL BUOY TROY

ID mark OTP key is 499 gr4269
LINE PAP MILK NELL BUOY TROY
To accept the default seed, press Return.
	Before entering an access password, move over to the secure
	connection and give it the same parameters:
% opiekey 498 to4268
Using the MD5 algorithm to compute response.
Reminder: Do not use opiekey from telnet or dial-in sessions.
Enter secret pass phrase:
GAME GAG WELT OUT DOWN CHAT
Switch back over to the insecure connection, and copy the
	generated one-time password over to the relevant
	program.
14.3.3. Generating a Single One-time Password
After initializing OPIE and logging in,
	a prompt like this will be displayed:
% telnet example.com
Trying 10.0.0.1...
Connected to example.com
Escape character is '^]'.

FreeBSD/i386 (example.com) (ttypa)

login: <username>
otp-md5 498 gr4269 ext
Password:
The OPIE prompts provides a useful
	feature. If Return is pressed at the
	password prompt, the prompt will turn echo on and display
	what is typed. This can be useful when attempting to type in
	a password by hand from a printout.
At this point, generate the one-time password to answer
	this login prompt. This must be done on a trusted system
	where it is safe to run opiekey(1). There are versions
	of this command for Windows®, Mac OS® and FreeBSD. This command
	needs the iteration count and the seed as command line
	options. Use cut-and-paste from the login prompt on the
	machine being logged in to.
On the trusted system:
% opiekey 498 to4268
Using the MD5 algorithm to compute response.
Reminder: Do not use opiekey from telnet or dial-in sessions.
Enter secret pass phrase:
GAME GAG WELT OUT DOWN CHAT
Once the one-time password is generated, continue to log
	in.
14.3.4. Generating Multiple One-time Passwords
Sometimes there is no access to a trusted machine or
	secure connection. In this case, it is possible to use
	opiekey(1) to generate a number of one-time passwords
	beforehand. For example:
% opiekey -n 5 30 zz99999
Using the MD5 algorithm to compute response.
Reminder: Do not use opiekey from telnet or dial-in sessions.
Enter secret pass phrase: <secret password>
26: JOAN BORE FOSS DES NAY QUIT
27: LATE BIAS SLAY FOLK MUCH TRIG
28: SALT TIN ANTI LOON NEAL USE
29: RIO ODIN GO BYE FURY TIC
30: GREW JIVE SAN GIRD BOIL PHI
The -n 5 requests five keys in sequence,
	and 30 specifies what the last iteration
	number should be. Note that these are printed out in
	reverse order of use. The really
	paranoid might want to write the results down by hand;
	otherwise, print the list. Each line shows both the iteration
	count and the one-time password. Scratch off the passwords as
	they are used.
14.3.5. Restricting Use of UNIX® Passwords
OPIE can restrict the use of UNIX®
	passwords based on the IP address of a login session. The
	relevant file is /etc/opieaccess, which
	is present by default. Refer to opieaccess(5) for more
	information on this file and which security considerations to
	be aware of when using it.
Here is a sample opieaccess:
permit 192.168.0.0 255.255.0.0
This line allows users whose IP source address (which is
	vulnerable to spoofing) matches the specified value and mask,
	to use UNIX® passwords at any time.
If no rules in opieaccess are
	matched, the default is to deny non-OPIE
	logins.
14.4. TCP Wrapper

14.4. TCP Wrapper
Written
	 by Tom Rhodes. TCP Wrapper is a host-based
 access control system which extends the abilities of Section 30.2, “The inetd
 Super-Server”. It can be configured to provide
 logging support, return messages, and connection restrictions
 for the server daemons under the control of
 inetd. Refer to tcpd(8) for
 more information about
 TCP Wrapper and its features.
TCP Wrapper should not be
 considered a replacement for a properly configured firewall.
 Instead, TCP Wrapper should be used
 in conjunction with a firewall and other security enhancements
 in order to provide another layer of protection in the
 implementation of a security policy.
14.4.1. Initial Configuration
To enable TCP Wrapper in FreeBSD,
	add the following lines to
	/etc/rc.conf:
inetd_enable="YES"
inetd_flags="-Ww"
Then, properly configure
	/etc/hosts.allow.
Note:
Unlike other implementations of
	 TCP Wrapper, the use of
	 hosts.deny is deprecated in FreeBSD. All
	 configuration options should be placed in
	 /etc/hosts.allow.

In the simplest configuration, daemon connection policies
	are set to either permit or block, depending on the options in
	/etc/hosts.allow. The default
	configuration in FreeBSD is to allow all connections to the
	daemons started with inetd.
Basic configuration usually takes the form of
	daemon : address : action, where
	daemon is the daemon which
	inetd started,
	address is a valid hostname,
	IP address, or an IPv6 address enclosed in
	brackets ([]), and action is either
	allow or deny.
	TCP Wrapper uses a first rule match
	semantic, meaning that the configuration file is scanned from
	the beginning for a matching rule. When a match is found, the
	rule is applied and the search process stops.
For example, to allow POP3 connections
	via the mail/qpopper daemon, the following
	lines should be appended to
	hosts.allow:
This line is required for POP3 connections:
qpopper : ALL : allow
Whenever this file is edited, restart
	inetd:
service inetd restart
14.4.2. Advanced Configuration
TCP Wrapper provides advanced
	options to allow more control over the way connections are
	handled. In some cases, it may be appropriate to return a
	comment to certain hosts or daemon connections. In other
	cases, a log entry should be recorded or an email sent to the
	administrator. Other situations may require the use of a
	service for local connections only. This is all possible
	through the use of configuration options known as wildcards,
	expansion characters, and external command execution.
Suppose that a situation occurs where a connection should
	be denied yet a reason should be sent to the host who
	attempted to establish that connection. That action is
	possible with twist. When a connection
	attempt is made, twist executes a shell
	command or script. An example exists in
	hosts.allow:
The rest of the daemons are protected.
ALL : ALL \
	: severity auth.info \
	: twist /bin/echo "You are not welcome to use %d from %h."
In this example, the message “You are not allowed to
	 use daemon name from
	 hostname.” will be
	returned for any daemon not configured in
	hosts.allow. This is useful for sending
	a reply back to the connection initiator right after the
	established connection is dropped. Any message returned
	must be wrapped in quote
	(") characters.
Warning:
It may be possible to launch a denial of service attack
	 on the server if an attacker floods these daemons with
	 connection requests.

Another possibility is to use spawn.
	Like twist, spawn implicitly
	denies the connection and may be used to run external shell
	commands or scripts. Unlike twist,
	spawn will not send a reply back to the host
	who established the connection. For example, consider the
	following configuration:
We do not allow connections from example.com:
ALL : .example.com \
	: spawn (/bin/echo %a from %h attempted to access %d >> \
	 /var/log/connections.log) \
	: deny
This will deny all connection attempts from *.example.com and log the
	hostname, IP address, and the daemon to
	which access was attempted to
	/var/log/connections.log. This example
	uses the substitution characters %a and
	%h. Refer to hosts_access(5) for the
	complete list.
To match every instance of a daemon, domain, or
	IP address, use ALL.
	Another wildcard is PARANOID which may be
	used to match any host which provides an IP
	address that may be forged because the IP
	address differs from its resolved hostname. In this example,
	all connection requests to Sendmail
	which have an IP address that varies from
	its hostname will be denied:
Block possibly spoofed requests to sendmail:
sendmail : PARANOID : deny
Caution:
Using the PARANOID wildcard will
	 result in denied connections if the client or server has a
	 broken DNS setup.

To learn more about wildcards and their associated
	functionality, refer to hosts_access(5).
Note:
When adding new configuration lines, make sure that any
	 unneeded entries for that daemon are commented out in
	 hosts.allow.

14.5. Kerberos

14.5. Kerberos
Contributed by Tillman Hodgson. Based on a contribution by Mark Murray. Kerberos is a network
 authentication protocol which was originally created by the
 Massachusetts Institute of Technology (MIT)
 as a way to securely provide authentication across a potentially
 hostile network. The Kerberos
 protocol uses strong cryptography so that both a client and
 server can prove their identity without sending any unencrypted
 secrets over the network. Kerberos
 can be described as an identity-verifying proxy system and as a
 trusted third-party authentication system. After a user
 authenticates with Kerberos, their
 communications can be encrypted to assure privacy and data
 integrity.
The only function of Kerberos is
 to provide the secure authentication of users and servers on the
 network. It does not provide authorization or auditing
 functions. It is recommended that
 Kerberos be used with other security
 methods which provide authorization and audit services.
The current version of the protocol is version 5, described
 in RFC 4120. Several free
 implementations of this protocol are available, covering a wide
 range of operating systems. MIT continues to
 develop their Kerberos package. It
 is commonly used in the US as a cryptography
 product, and has historically been subject to
 US export regulations. In FreeBSD,
 MIT Kerberos is
 available as the security/krb5 package or
 port. The Heimdal Kerberos
 implementation was explicitly developed outside of the
 US to avoid export regulations. The Heimdal
 Kerberos distribution is included in
 the base FreeBSD installation, and another distribution with more
 configurable options is available as
 security/heimdal in the Ports
 Collection.
In Kerberos users and services
 are identified as “principals” which are contained
 within an administrative grouping, called a
 “realm”. A typical user principal would be of the
 form
 user@REALM
 (realms are traditionally uppercase).
This section provides a guide on how to set up
 Kerberos using the Heimdal
 distribution included in FreeBSD.
For purposes of demonstrating a
 Kerberos installation, the name
 spaces will be as follows:
	The DNS domain (zone) will be
	 example.org.

	The Kerberos realm will be
	 EXAMPLE.ORG.

Note:
Use real domain names when setting up
	Kerberos, even if it will run
	internally. This avoids DNS problems and
	assures inter-operation with other
	Kerberos realms.

14.5.1. Setting up a Heimdal KDC
The Key Distribution Center (KDC) is
	the centralized authentication service that
	Kerberos provides, the
	“trusted third party” of the system. It is the
	computer that issues Kerberos
	tickets, which are used for clients to authenticate to
	servers. As the KDC is considered
	trusted by all other computers in the
	Kerberos realm, it has heightened
	security concerns. Direct access to the KDC should be
	limited.
While running a KDC requires few
	computing resources, a dedicated machine acting only as a
	KDC is recommended for security
	reasons.
To begin, install the security/heimdal
	package as follows:
pkg install heimdal
Next, update /etc/rc.conf using
	sysrc as follows:
sysrc kdc_enable=yes
sysrc kadmind_enable=yes
Next, edit /etc/krb5.conf as
	follows:
[libdefaults]
 default_realm = EXAMPLE.ORG
[realms]
 EXAMPLE.ORG = {
	kdc = kerberos.example.org
	admin_server = kerberos.example.org
 }
[domain_realm]
 .example.org = EXAMPLE.ORG
In this example, the KDC will use the
	fully-qualified hostname kerberos.example.org. The
	hostname of the KDC must be resolvable in the
	DNS.
Kerberos can also use the
	DNS to locate KDCs, instead of a
	[realms] section in
	/etc/krb5.conf. For large organizations
	that have their own DNS servers, the above
	example could be trimmed to:
[libdefaults]
 default_realm = EXAMPLE.ORG
[domain_realm]
 .example.org = EXAMPLE.ORG
With the following lines being included in the
	example.org zone
	file:
_kerberos._udp IN SRV 01 00 88 kerberos.example.org.
_kerberos._tcp IN SRV 01 00 88 kerberos.example.org.
_kpasswd._udp IN SRV 01 00 464 kerberos.example.org.
_kerberos-adm._tcp IN SRV 01 00 749 kerberos.example.org.
_kerberos IN TXT EXAMPLE.ORG
Note:
In order for clients to be able to find the
	 Kerberos services, they
	 must have either
	 a fully configured /etc/krb5.conf or a
	 minimally configured /etc/krb5.conf
	 and a properly configured
	 DNS server.

Next, create the Kerberos
	database which contains the keys of all principals (users and
	hosts) encrypted with a master password. It is not required
	to remember this password as it will be stored in
	/var/heimdal/m-key; it would be
	reasonable to use a 45-character random password for this
	purpose. To create the master key, run
	kstash and enter a password:
kstash
Master key: xxxxxxxxxxxxxxxxxxxxxxx
Verifying password - Master key: xxxxxxxxxxxxxxxxxxxxxxx
Once the master key has been created, the database should
	be initialized. The Kerberos
	administrative tool kadmin(8) can be used on the KDC in a
	mode that operates directly on the database, without using the
	kadmind(8) network service, as
	kadmin -l. This resolves the
	chicken-and-egg problem of trying to connect to the database
	before it is created. At the kadmin
	prompt, use init to create the realm's
	initial database:
kadmin -l
kadmin> init EXAMPLE.ORG
Realm max ticket life [unlimited]:
Lastly, while still in kadmin, create
	the first principal using add. Stick to
	the default options for the principal for now, as these can be
	changed later with modify.
	Type ? at the prompt to see the available
	options.
kadmin> add tillman
Max ticket life [unlimited]:
Max renewable life [unlimited]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:
Password: xxxxxxxx
Verifying password - Password: xxxxxxxx
Next, start the KDC services by
	running:
service kdc start
service kadmind start
While there will not be any kerberized daemons running at
	this point, it is possible to confirm that the
	KDC is functioning by obtaining a ticket
	for the principal that was just created:
% kinit tillman
tillman@EXAMPLE.ORG's Password:
Confirm that a ticket was successfully obtained using
	klist:
% klist
Credentials cache: FILE:/tmp/krb5cc_1001
	Principal: tillman@EXAMPLE.ORG

 Issued Expires Principal
Aug 27 15:37:58 2013 Aug 28 01:37:58 2013 krbtgt/EXAMPLE.ORG@EXAMPLE.ORG
The temporary ticket can be destroyed when the test is
	finished:
% kdestroy
14.5.2. Configuring a Server to Use
	Kerberos
The first step in configuring a server to use
	Kerberos authentication is to
	ensure that it has the correct configuration in
	/etc/krb5.conf. The version from the
	KDC can be used as-is, or it can be
	regenerated on the new system.
Next, create /etc/krb5.keytab on the
	server. This is the main part of “Kerberizing” a
	service — it corresponds to generating a secret shared
	between the service and the KDC. The
	secret is a cryptographic key, stored in a
	“keytab”. The keytab contains the server's host
	key, which allows it and the KDC to verify
	each others' identity. It must be transmitted to the server
	in a secure fashion, as the security of the server can be
	broken if the key is made public. Typically, the
	keytab is generated on an administrator's
	trusted machine using kadmin, then securely
	transferred to the server, e.g., with scp(1); it can also
	be created directly on the server if that is consistent with
	the desired security policy. It is very important that the
	keytab is transmitted to the server in a secure fashion: if
	the key is known by some other party, that party can
	impersonate any user to the server! Using
	kadmin on the server directly is
	convenient, because the entry for the host principal in the
	KDC database is also created using
	kadmin.
Of course, kadmin is a kerberized
	service; a Kerberos ticket is
	needed to authenticate to the network service, but to ensure
	that the user running kadmin is actually
	present (and their session has not been hijacked),
	kadmin will prompt for the password to get
	a fresh ticket. The principal authenticating to the kadmin
	service must be permitted to use the kadmin
	interface, as specified in
	/var/heimdal/kadmind.acl. See the
	section titled “Remote administration” in
	info heimdal for details on designing
	access control lists. Instead of enabling remote
	kadmin access, the administrator could
	securely connect to the KDC via the local
	console or ssh(1), and perform administration locally
	using kadmin -l.
After installing /etc/krb5.conf,
	use add --random-key in
	kadmin. This adds the server's host
	principal to the database, but does not extract a copy of the
	host principal key to a keytab. To generate the keytab, use
	ext to extract the server's host principal
	key to its own keytab:
kadmin
kadmin> add --random-key host/myserver.example.org
Max ticket life [unlimited]:
Max renewable life [unlimited]:
Principal expiration time [never]:
Password expiration time [never]:
Attributes []:
kadmin> ext_keytab host/myserver.example.org
kadmin> exit
Note that ext_keytab stores the
	extracted key in /etc/krb5.keytab by
	default. This is good when being run on the server being
	kerberized, but the --keytab
	 path/to/file argument
	should be used when the keytab is being extracted
	elsewhere:
kadmin
kadmin> ext_keytab --keytab=/tmp/example.keytab host/myserver.example.org
kadmin> exit
The keytab can then be securely copied to the server
	using scp(1) or a removable media. Be sure to specify a
	non-default keytab name to avoid inserting unneeded keys into
	the system's keytab.
At this point, the server can read encrypted messages from
	the KDC using its shared key, stored in
	krb5.keytab. It is now ready for the
	Kerberos-using services to be
	enabled. One of the most common such services is
	sshd(8), which supports
	Kerberos via the
	GSS-API. In
	/etc/ssh/sshd_config, add the
	line:
GSSAPIAuthentication yes
After making this change, sshd(8) must be restarted
	for the new configuration to take effect:
	service sshd restart.
14.5.3. Configuring a Client to Use
	Kerberos
As it was for the server, the client requires
	configuration in /etc/krb5.conf. Copy
	the file in place (securely) or re-enter it as needed.
Test the client by using kinit,
	klist, and kdestroy from
	the client to obtain, show, and then delete a ticket for an
	existing principal. Kerberos
	applications should also be able to connect to
	Kerberos enabled servers. If that
	does not work but obtaining a ticket does, the problem is
	likely with the server and not with the client or the
	KDC. In the case of kerberized
	ssh(1), GSS-API is disabled by
	default, so test using ssh -o
	 GSSAPIAuthentication=yes
	 hostname.
When testing a Kerberized application, try using a packet
	sniffer such as tcpdump to confirm that no
	sensitive information is sent in the clear.
Various Kerberos client
	applications are available. With the advent of a bridge so
	that applications using SASL for
	authentication can use GSS-API mechanisms
	as well, large classes of client applications can use
	Kerberos for authentication, from
	Jabber clients to IMAP clients.
Users within a realm typically have their
	Kerberos principal mapped to a
	local user account. Occasionally, one needs to grant access
	to a local user account to someone who does not have a
	matching Kerberos principal. For
	example, tillman@EXAMPLE.ORG may need
	access to the local user account webdevelopers. Other
	principals may also need access to that local account.
The .k5login and
	.k5users files, placed in a user's home
	directory, can be used to solve this problem. For example, if
	the following .k5login is placed in the
	home directory of webdevelopers, both principals
	listed will have access to that account without requiring a
	shared password:
tillman@example.org
jdoe@example.org
Refer to ksu(1) for more information about
	.k5users.
14.5.4. MIT Differences
The major difference between the MIT
	and Heimdal implementations is that kadmin
	has a different, but equivalent, set of commands and uses a
	different protocol. If the KDC is
	MIT, the Heimdal version of
	kadmin cannot be used to administer the
	KDC remotely, and vice versa.
Client applications may also use slightly different
	command line options to accomplish the same tasks. Following
	the instructions at http://web.mit.edu/Kerberos/www/
	is recommended. Be careful of path issues: the
	MIT port installs into
	/usr/local/ by default, and the FreeBSD
	system applications run instead of the
	MIT versions if PATH lists
	the system directories first.
When using MIT Kerberos as a KDC on
	FreeBSD, the following edits should also be made to
	rc.conf:
kdc_program="/usr/local/sbin/kdc"
kadmind_program="/usr/local/sbin/kadmind"
kdc_flags=""
kdc_enable="YES"
kadmind_enable="YES"
14.5.5. Kerberos Tips, Tricks, and
	Troubleshooting
When configuring and troubleshooting
	Kerberos, keep the following points
	in mind:
	When using either Heimdal or MIT
	 Kerberos from ports, ensure
	 that the PATH lists the port's versions of
	 the client applications before the system versions.

	If all the computers in the realm do not have
	 synchronized time settings, authentication may fail.
	 Section 30.11, “Clock Synchronization with NTP” describes how to synchronize
	 clocks using NTP.

	If the hostname is changed, the host/ principal must be
	 changed and the keytab updated. This also applies to
	 special keytab entries like the HTTP/ principal used for
	 Apache's www/mod_auth_kerb.

	All hosts in the realm must be both forward and
	 reverse resolvable in DNS or, at a
	 minimum, exist in /etc/hosts. CNAMEs
	 will work, but the A and PTR records must be correct and
	 in place. The error message for unresolvable hosts is not
	 intuitive: Kerberos5 refuses authentication
	 because Read req failed: Key table entry not
	 found.

	Some operating systems that act as clients to the
	 KDC do not set the permissions for
	 ksu to be setuid root. This means that
	 ksu does not work. This is a
	 permissions problem, not a KDC
	 error.

	With MIT
	 Kerberos, to allow a principal
	 to have a ticket life longer than the default lifetime of
	 ten hours, use modify_principal at the
	 kadmin(8) prompt to change the
	 maxlife of both the principal in
	 question and the
	 krbtgt
	 principal. The principal can then use
	 kinit -l to request a ticket with a
	 longer lifetime.

	When running a packet sniffer on the
	 KDC to aid in troubleshooting while
	 running kinit from a workstation, the
	 Ticket Granting Ticket (TGT) is sent
	 immediately, even before the password is typed. This is
	 because the Kerberos server
	 freely transmits a TGT to any
	 unauthorized request. However, every
	 TGT is encrypted in a key derived from
	 the user's password. When a user types their password, it
	 is not sent to the KDC, it is instead
	 used to decrypt the TGT that
	 kinit already obtained. If the
	 decryption process results in a valid ticket with a valid
	 time stamp, the user has valid
	 Kerberos credentials. These
	 credentials include a session key for establishing secure
	 communications with the
	 Kerberos server in the future,
	 as well as the actual TGT, which is
	 encrypted with the Kerberos
	 server's own key. This second layer of encryption allows
	 the Kerberos server to verify
	 the authenticity of each TGT.

	Host principals can have a longer ticket lifetime. If
	 the user principal has a lifetime of a week but the host
	 being connected to has a lifetime of nine hours, the user
	 cache will have an expired host principal and the ticket
	 cache will not work as expected.

	When setting up krb5.dict to
	 prevent specific bad passwords from being used as
	 described in kadmind(8), remember that it only
	 applies to principals that have a password policy assigned
	 to them. The format used in
	 krb5.dict is one string per line.
	 Creating a symbolic link to
	 /usr/share/dict/words might be
	 useful.

14.5.6. Mitigating Kerberos
	Limitations
Since Kerberos is an all or
	nothing approach, every service enabled on the network must
	either be modified to work with
	Kerberos or be otherwise secured
	against network attacks. This is to prevent user credentials
	from being stolen and re-used. An example is when
	Kerberos is enabled on all remote
	shells but the non-Kerberized POP3 mail
	server sends passwords in plain text.
The KDC is a single point of failure.
	By design, the KDC must be as secure as its
	master password database. The KDC should
	have absolutely no other services running on it and should be
	physically secure. The danger is high because
	Kerberos stores all passwords
	encrypted with the same master key which is stored as a file
	on the KDC.
A compromised master key is not quite as bad as one might
	fear. The master key is only used to encrypt the
	Kerberos database and as a seed for
	the random number generator. As long as access to the
	KDC is secure, an attacker cannot do much
	with the master key.
If the KDC is unavailable, network
	services are unusable as authentication cannot be performed.
	This can be alleviated with a single master
	KDC and one or more slaves, and with
	careful implementation of secondary or fall-back
	authentication using PAM.
Kerberos allows users, hosts
	and services to authenticate between themselves. It does not
	have a mechanism to authenticate the
	KDC to the users, hosts, or services. This
	means that a trojaned kinit could record
	all user names and passwords. File system integrity checking
	tools like security/tripwire can
	alleviate this.
14.5.7. Resources and Further Information
	
	 The Kerberos
	 FAQ

	Designing
	 an Authentication System: a Dialog in Four
	 Scenes

	RFC
	 4120, The Kerberos Network
	 Authentication Service (V5)

	MIT
	 Kerberos home
	 page

	Heimdal
	 Kerberos project wiki
	 page

14.7. VPN over IPsec

14.7. VPN over
	IPsec
Written by Nik Clayton. Written by Hiten M. Pandya. Internet Protocol Security (IPsec) is a
 set of protocols which sit on top of the Internet Protocol
 (IP) layer. It allows two or more hosts to
 communicate in a secure manner by authenticating and encrypting
 each IP packet of a communication session.
 The FreeBSD IPsec network stack is based on the
 http://www.kame.net/
 implementation and supports both IPv4 and
 IPv6 sessions.
IPsec is comprised of the following
 sub-protocols:
	Encapsulated Security Payload
	 (ESP): this protocol
	 protects the IP packet data from third
	 party interference by encrypting the contents using
	 symmetric cryptography algorithms such as Blowfish and
	 3DES.

	Authentication Header
	 (AH): this protocol
	 protects the IP packet header from third
	 party interference and spoofing by computing a cryptographic
	 checksum and hashing the IP packet
	 header fields with a secure hashing function. This is then
	 followed by an additional header that contains the hash, to
	 allow the information in the packet to be
	 authenticated.

	IP Payload Compression Protocol
	 (IPComp): this protocol
	 tries to increase communication performance by compressing
	 the IP payload in order to reduce the
	 amount of data sent.

These protocols can either be used together or separately,
 depending on the environment.
IPsec supports two modes of operation.
 The first mode, Transport Mode, protects
 communications between two hosts. The second mode,
 Tunnel Mode, is used to build virtual
 tunnels, commonly known as Virtual Private Networks
 (VPNs). Consult ipsec(4) for detailed
 information on the IPsec subsystem in
 FreeBSD.
IPsec support is enabled by default on
 FreeBSD 11 and later. For previous versions of FreeBSD, add
 these options to a custom kernel configuration file and rebuild
 the kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel:
options IPSEC #IP security
device crypto
If IPsec debugging support is desired,
 the following kernel option should also be added:
options IPSEC_DEBUG #debug for IP security
This rest of this chapter demonstrates the process of
 setting up an IPsec VPN
 between a home network and a corporate network. In the example
 scenario:
	Both sites are connected to the Internet through a
	 gateway that is running FreeBSD.

	The gateway on each network has at least one external
	 IP address. In this example, the
	 corporate LAN's external
	 IP address is 172.16.5.4 and the home
	 LAN's external IP
	 address is 192.168.1.12.

	The internal addresses of the two networks can be either
	 public or private IP addresses. However,
	 the address space must not collide. For example, both
	 networks cannot use 192.168.1.x. In this
	 example, the corporate LAN's internal
	 IP address is 10.246.38.1 and the home
	 LAN's internal IP
	 address is 10.0.0.5.

14.7.1. Configuring a VPN on FreeBSD
Written by Tom Rhodes. To begin, security/ipsec-tools must be
	installed from the Ports Collection. This software provides a
	number of applications which support the configuration.
The next requirement is to create two gif(4)
	pseudo-devices which will be used to tunnel packets and allow
	both networks to communicate properly. As root, run the following
	commands, replacing internal and
	external with the real IP
	addresses of the internal and external interfaces of the two
	gateways:
ifconfig gif0 create
ifconfig gif0 internal1 internal2
ifconfig gif0 tunnel external1 external2
Verify the setup on each gateway, using
	ifconfig. Here is the output from Gateway
	1:
gif0: flags=8051 mtu 1280
tunnel inet 172.16.5.4 --> 192.168.1.12
inet6 fe80::2e0:81ff:fe02:5881%gif0 prefixlen 64 scopeid 0x6
inet 10.246.38.1 --> 10.0.0.5 netmask 0xffffff00
Here is the output from Gateway 2:
gif0: flags=8051 mtu 1280
tunnel inet 192.168.1.12 --> 172.16.5.4
inet 10.0.0.5 --> 10.246.38.1 netmask 0xffffff00
inet6 fe80::250:bfff:fe3a:c1f%gif0 prefixlen 64 scopeid 0x4
Once complete, both internal IP
	addresses should be reachable using ping(8):
priv-net# ping 10.0.0.5
PING 10.0.0.5 (10.0.0.5): 56 data bytes
64 bytes from 10.0.0.5: icmp_seq=0 ttl=64 time=42.786 ms
64 bytes from 10.0.0.5: icmp_seq=1 ttl=64 time=19.255 ms
64 bytes from 10.0.0.5: icmp_seq=2 ttl=64 time=20.440 ms
64 bytes from 10.0.0.5: icmp_seq=3 ttl=64 time=21.036 ms
--- 10.0.0.5 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 19.255/25.879/42.786/9.782 ms
corp-net# ping 10.246.38.1
PING 10.246.38.1 (10.246.38.1): 56 data bytes
64 bytes from 10.246.38.1: icmp_seq=0 ttl=64 time=28.106 ms
64 bytes from 10.246.38.1: icmp_seq=1 ttl=64 time=42.917 ms
64 bytes from 10.246.38.1: icmp_seq=2 ttl=64 time=127.525 ms
64 bytes from 10.246.38.1: icmp_seq=3 ttl=64 time=119.896 ms
64 bytes from 10.246.38.1: icmp_seq=4 ttl=64 time=154.524 ms
--- 10.246.38.1 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 28.106/94.594/154.524/49.814 ms
As expected, both sides have the ability to send and
	receive ICMP packets from the privately
	configured addresses. Next, both gateways must be told how to
	route packets in order to correctly send traffic from either
	network. The following commands will achieve this
	goal:
corp-net# route add 10.0.0.0 10.0.0.5 255.255.255.0
corp-net# route add net 10.0.0.0: gateway 10.0.0.5
priv-net# route add 10.246.38.0 10.246.38.1 255.255.255.0
priv-net# route add host 10.246.38.0: gateway 10.246.38.1
At this point, internal machines should be reachable from
	each gateway as well as from machines behind the gateways.
	Again, use ping(8) to confirm:
corp-net# ping 10.0.0.8
PING 10.0.0.8 (10.0.0.8): 56 data bytes
64 bytes from 10.0.0.8: icmp_seq=0 ttl=63 time=92.391 ms
64 bytes from 10.0.0.8: icmp_seq=1 ttl=63 time=21.870 ms
64 bytes from 10.0.0.8: icmp_seq=2 ttl=63 time=198.022 ms
64 bytes from 10.0.0.8: icmp_seq=3 ttl=63 time=22.241 ms
64 bytes from 10.0.0.8: icmp_seq=4 ttl=63 time=174.705 ms
--- 10.0.0.8 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 21.870/101.846/198.022/74.001 ms
priv-net# ping 10.246.38.107
PING 10.246.38.1 (10.246.38.107): 56 data bytes
64 bytes from 10.246.38.107: icmp_seq=0 ttl=64 time=53.491 ms
64 bytes from 10.246.38.107: icmp_seq=1 ttl=64 time=23.395 ms
64 bytes from 10.246.38.107: icmp_seq=2 ttl=64 time=23.865 ms
64 bytes from 10.246.38.107: icmp_seq=3 ttl=64 time=21.145 ms
64 bytes from 10.246.38.107: icmp_seq=4 ttl=64 time=36.708 ms
--- 10.246.38.107 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/stddev = 21.145/31.721/53.491/12.179 ms
Setting up the tunnels is the easy part. Configuring a
	secure link is a more in depth process. The following
	configuration uses pre-shared (PSK)
	RSA keys. Other than the
	IP addresses, the
	/usr/local/etc/racoon/racoon.conf on both
	gateways will be identical and look similar to:
path pre_shared_key "/usr/local/etc/racoon/psk.txt"; #location of pre-shared key file
log debug;	#log verbosity setting: set to 'notify' when testing and debugging is complete

padding	# options are not to be changed
{
 maximum_length 20;
 randomize off;
 strict_check off;
 exclusive_tail off;
}

timer	# timing options. change as needed
{
 counter 5;
 interval 20 sec;
 persend 1;
natt_keepalive 15 sec;
 phase1 30 sec;
 phase2 15 sec;
}

listen	# address [port] that racoon will listen on
{
 isakmp 172.16.5.4 [500];
 isakmp_natt 172.16.5.4 [4500];
}

remote 192.168.1.12 [500]
{
 exchange_mode main,aggressive;
 doi ipsec_doi;
 situation identity_only;
 my_identifier address 172.16.5.4;
 peers_identifier address 192.168.1.12;
 lifetime time 8 hour;
 passive off;
 proposal_check obey;
nat_traversal off;
 generate_policy off;

 proposal {
 encryption_algorithm blowfish;
 hash_algorithm md5;
 authentication_method pre_shared_key;
 lifetime time 30 sec;
 dh_group 1;
 }
}

sainfo (address 10.246.38.0/24 any address 10.0.0.0/24 any)	# address $network/$netmask $type address $network/$netmask $type ($type being any or esp)
{								# $network must be the two internal networks you are joining.
 pfs_group 1;
 lifetime time 36000 sec;
 encryption_algorithm blowfish,3des;
 authentication_algorithm hmac_md5,hmac_sha1;
 compression_algorithm deflate;
}
For descriptions of each available option, refer to the
	manual page for racoon.conf.
The Security Policy Database (SPD)
	needs to be configured so that FreeBSD and
	racoon are able to encrypt and
	decrypt network traffic between the hosts.
This can be achieved with a shell script, similar to the
	following, on the corporate gateway. This file will be used
	during system initialization and should be saved as
	/usr/local/etc/racoon/setkey.conf.
flush;
spdflush;
To the home network
spdadd 10.246.38.0/24 10.0.0.0/24 any -P out ipsec esp/tunnel/172.16.5.4-192.168.1.12/use;
spdadd 10.0.0.0/24 10.246.38.0/24 any -P in ipsec esp/tunnel/192.168.1.12-172.16.5.4/use;
Once in place, racoon may be
	started on both gateways using the following command:
/usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf -l /var/log/racoon.log
The output should be similar to the following:
corp-net# /usr/local/sbin/racoon -F -f /usr/local/etc/racoon/racoon.conf
Foreground mode.
2006-01-30 01:35:47: INFO: begin Identity Protection mode.
2006-01-30 01:35:48: INFO: received Vendor ID: KAME/racoon
2006-01-30 01:35:55: INFO: received Vendor ID: KAME/racoon
2006-01-30 01:36:04: INFO: ISAKMP-SA established 172.16.5.4[500]-192.168.1.12[500] spi:623b9b3bd2492452:7deab82d54ff704a
2006-01-30 01:36:05: INFO: initiate new phase 2 negotiation: 172.16.5.4[0]192.168.1.12[0]
2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]->172.16.5.4[0] spi=28496098(0x1b2d0e2)
2006-01-30 01:36:09: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]->192.168.1.12[0] spi=47784998(0x2d92426)
2006-01-30 01:36:13: INFO: respond new phase 2 negotiation: 172.16.5.4[0]192.168.1.12[0]
2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 192.168.1.12[0]->172.16.5.4[0] spi=124397467(0x76a279b)
2006-01-30 01:36:18: INFO: IPsec-SA established: ESP/Tunnel 172.16.5.4[0]->192.168.1.12[0] spi=175852902(0xa7b4d66)
To ensure the tunnel is working properly, switch to
	another console and use tcpdump(1) to view network
	traffic using the following command. Replace
	em0 with the network interface card as
	required:
tcpdump -i em0 host 172.16.5.4 and dst 192.168.1.12
Data similar to the following should appear on the
	console. If not, there is an issue and debugging the
	returned data will be required.
01:47:32.021683 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xa)
01:47:33.022442 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xb)
01:47:34.024218 IP corporatenetwork.com > 192.168.1.12.privatenetwork.com: ESP(spi=0x02acbf9f,seq=0xc)
At this point, both networks should be available and seem
	to be part of the same network. Most likely both networks are
	protected by a firewall. To allow traffic to flow between
	them, rules need to be added to pass packets. For the
	ipfw(8) firewall, add the following lines to the firewall
	configuration file:
ipfw add 00201 allow log esp from any to any
ipfw add 00202 allow log ah from any to any
ipfw add 00203 allow log ipencap from any to any
ipfw add 00204 allow log udp from any 500 to any
Note:
The rule numbers may need to be altered depending on the
	 current host configuration.

For users of pf(4) or ipf(8), the following
	rules should do the trick:
pass in quick proto esp from any to any
pass in quick proto ah from any to any
pass in quick proto ipencap from any to any
pass in quick proto udp from any port = 500 to any port = 500
pass in quick on gif0 from any to any
pass out quick proto esp from any to any
pass out quick proto ah from any to any
pass out quick proto ipencap from any to any
pass out quick proto udp from any port = 500 to any port = 500
pass out quick on gif0 from any to any
Finally, to allow the machine to start support for the
	VPN during system initialization, add the
	following lines to /etc/rc.conf:
ipsec_enable="YES"
ipsec_program="/usr/local/sbin/setkey"
ipsec_file="/usr/local/etc/racoon/setkey.conf" # allows setting up spd policies on boot
racoon_enable="yes"
14.8. OpenSSH

14.8. OpenSSH
Contributed
	 by Chern Lee. OpenSSH is a set of network
 connectivity tools used to provide secure access to remote
 machines. Additionally, TCP/IP connections
 can be tunneled or forwarded securely through
 SSH connections.
 OpenSSH encrypts all traffic to
 effectively eliminate eavesdropping, connection hijacking, and
 other network-level attacks.
OpenSSH is maintained by the
 OpenBSD project and is installed by default in FreeBSD. It is
 compatible with both SSH version 1 and 2
 protocols.
When data is sent over the network in an unencrypted form,
 network sniffers anywhere in between the client and server can
 steal user/password information or data transferred during the
 session. OpenSSH offers a variety of
 authentication and encryption methods to prevent this from
 happening. More information about
 OpenSSH is available from http://www.openssh.com/.
This section provides an overview of the built-in client
 utilities to securely access other systems and securely transfer
 files from a FreeBSD system. It then describes how to configure a
 SSH server on a FreeBSD system. More
 information is available in the man pages mentioned in this
 chapter.
14.8.1. Using the SSH Client Utilities
To log into a SSH server, use
	ssh and specify a username that exists on
	that server and the IP address or hostname
	of the server. If this is the first time a connection has
	been made to the specified server, the user will be prompted
	to first verify the server's fingerprint:
ssh user@example.com
The authenticity of host 'example.com (10.0.0.1)' can't be established.
ECDSA key fingerprint is 25:cc:73:b5:b3:96:75:3d:56:19:49:d2:5c:1f:91:3b.
Are you sure you want to continue connecting (yes/no)? yes
Permanently added 'example.com' (ECDSA) to the list of known hosts.
Password for user@example.com: user_password
SSH utilizes a key fingerprint system
	to verify the authenticity of the server when the client
	connects. When the user accepts the key's fingerprint by
	typing yes when connecting for the first
	time, a copy of the key is saved to
	.ssh/known_hosts in the user's home
	directory. Future attempts to login are verified against the
	saved key and ssh will display an alert if
	the server's key does not match the saved key. If this
	occurs, the user should first verify why the key has changed
	before continuing with the connection.
By default, recent versions of
	OpenSSH only accept
	SSHv2 connections. By default, the client
	will use version 2 if possible and will fall back to version 1
	if the server does not support version 2. To force
	ssh to only use the specified protocol,
	include -1 or -2.
	Additional options are described in ssh(1).
Use scp(1) to securely copy a file to or from a
	remote machine. This example copies
	COPYRIGHT on the remote system to a file
	of the same name in the current directory of the local
	system:
scp user@example.com:/COPYRIGHT COPYRIGHT
Password for user@example.com: *******
COPYRIGHT 100% |*****************************| 4735
00:00
#
Since the fingerprint was already verified for this host,
	the server's key is automatically checked before prompting for
	the user's password.
The arguments passed to scp are similar
	to cp. The file or files to copy is the
	first argument and the destination to copy to is the second.
	Since the file is fetched over the network, one or more of the
	file arguments takes the form
	user@host:<path_to_remote_file>. Be
	aware when copying directories recursively that
	scp uses -r, whereas
	cp uses -R.
To open an interactive session for copying files, use
	sftp. Refer to sftp(1) for a list of
	available commands while in an sftp
	session.
14.8.1.1. Key-based Authentication
Instead of using passwords, a client can be configured
	 to connect to the remote machine using keys. To generate
	 RSA
	 authentication keys, use ssh-keygen. To
	 generate a public and private key pair, specify the type of
	 key and follow the prompts. It is recommended to protect
	 the keys with a memorable, but hard to guess
	 passphrase.
% ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase): [image: 1]
Enter same passphrase again: [image: 2]
Your identification has been saved in /home/user/.ssh/id_rsa.
Your public key has been saved in /home/user/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:54Xm9Uvtv6H4NOo6yjP/YCfODryvUU7yWHzMqeXwhq8 user@host.example.com
The key's randomart image is:
+---[RSA 2048]----+
| |
| |
| |
| . o.. |
| .S*+*o |
| . O=Oo . . |
| = Oo= oo..|
| .oB.* +.oo.|
| =OE**.o..=|
+----[SHA256]-----+
	[image: 1]
	Type a passphrase here. It can contain spaces and
	 symbols.

	[image: 2]
	Retype the passphrase to verify it.

The private key
	 is stored in ~/.ssh/id_rsa
	 and the public key
	 is stored in ~/.ssh/id_rsa.pub.
	 The
	 public key must be copied to
	 ~/.ssh/authorized_keys on the remote
	 machine for key-based authentication to
	 work.
Warning:
Many users believe that keys are secure by design and
	 will use a key without a passphrase. This is
	 dangerous behavior. An
	 administrator can verify that a key pair is protected by a
	 passphrase by viewing the private key manually. If the
	 private key file contains the word
	 ENCRYPTED, the key owner is using a
	 passphrase. In addition, to better secure end users,
	 from may be placed in the public key
	 file. For example, adding
	 from="192.168.10.5" in front of the
	 ssh-rsa
	 prefix will only allow that specific user to log in from
	 that IP address.

The options and files vary with different versions of
	 OpenSSH.
	 To avoid problems, consult ssh-keygen(1).
If a passphrase is used, the user is prompted for
	 the passphrase each time a connection is made to the server.
	 To load SSH keys into memory and remove
	 the need to type the passphrase each time, use
	 ssh-agent(1) and ssh-add(1).
Authentication is handled by
	 ssh-agent, using the private keys that
	 are loaded into it. ssh-agent
	 can be used to launch another application like a
	 shell or a window manager.
To use ssh-agent in a shell, start it
	 with a shell as an argument. Add the identity by
	 running ssh-add and entering the
	 passphrase for the private key.
	 The user will then be able to ssh
	 to any host that has the corresponding public key installed.
	 For example:
% ssh-agent csh
% ssh-add
Enter passphrase for key '/usr/home/user/.ssh/id_rsa': [image: 1]
Identity added: /usr/home/user/.ssh/id_rsa (/usr/home/user/.ssh/id_rsa)
%
	[image: 1]
	Enter the passphrase for the key.

To use ssh-agent in
	 Xorg, add an entry for it in
	 ~/.xinitrc. This provides the
	 ssh-agent services to all programs
	 launched in Xorg. An example
	 ~/.xinitrc might look like this:
exec ssh-agent startxfce4
This launches ssh-agent, which in
	 turn launches XFCE, every time
	 Xorg starts. Once
	 Xorg has been restarted so that
	 the changes can take effect, run ssh-add
	 to load all of the SSH keys.
14.8.1.2. SSH Tunneling
OpenSSH has the ability to
	 create a tunnel to encapsulate another protocol in an
	 encrypted session.
The following command tells ssh to
	 create a tunnel for
	 telnet:
% ssh -2 -N -f -L 5023:localhost:23 user@foo.example.com
%
This example uses the following options:
	-2
	Forces ssh to use version 2 to
		connect to the server.

	-N
	Indicates no command, or tunnel only. If omitted,
		ssh initiates a normal
		session.

	-f
	Forces ssh to run in the
		background.

	-L
	Indicates a local tunnel in
		localport:remotehost:remoteport
		format.

	user@foo.example.com
	The login name to use on the specified remote
		SSH server.

An SSH tunnel works by creating a
	 listen socket on localhost on the
	 specified localport. It then forwards
	 any connections received on localport via
	 the SSH connection to the specified
	 remotehost:remoteport. In the example,
	 port 5023 on the client is forwarded to
	 port 23 on the remote machine. Since
	 port 23 is used by telnet, this
	 creates an encrypted telnet
	 session through an SSH tunnel.
This method can be used to wrap any number of insecure
	 TCP protocols such as
	 SMTP, POP3, and
	 FTP, as seen in the following
	 examples.
Example 14.1. Create a Secure Tunnel for
	 SMTP
% ssh -2 -N -f -L 5025:localhost:25 user@mailserver.example.com
user@mailserver.example.com's password: *****
% telnet localhost 5025
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
220 mailserver.example.com ESMTP
This can be used in conjunction with
	 ssh-keygen and additional user accounts
	 to create a more seamless SSH tunneling
	 environment. Keys can be used in place of typing a
	 password, and the tunnels can be run as a separate
	 user.

Example 14.2. Secure Access of a POP3
	 Server
In this example, there is an SSH
	 server that accepts connections from the outside. On the
	 same network resides a mail server running a
	 POP3 server. To check email in a
	 secure manner, create an SSH connection
	 to the SSH server and tunnel through to
	 the mail server:
% ssh -2 -N -f -L 2110:mail.example.com:110 user@ssh-server.example.com
user@ssh-server.example.com's password: ******
Once the tunnel is up and running, point the email
	 client to send POP3 requests to
	 localhost on port 2110. This
	 connection will be forwarded securely across the tunnel to
	 mail.example.com.

Example 14.3. Bypassing a Firewall
Some firewalls
	 filter both incoming and outgoing connections. For
	 example, a firewall might limit access from remote
	 machines to ports 22 and 80 to only allow
	 SSH and web surfing. This prevents
	 access to any other service which uses a port other than
	 22 or 80.
The solution is to create an SSH
	 connection to a machine outside of the network's firewall
	 and use it to tunnel to the desired service:
% ssh -2 -N -f -L 8888:music.example.com:8000 user@unfirewalled-system.example.org
user@unfirewalled-system.example.org's password: *******
In this example, a streaming Ogg Vorbis client can now
	 be pointed to localhost port
	 8888, which will be forwarded over to
	 music.example.com on port 8000,
	 successfully bypassing the firewall.

14.8.2. Enabling the SSH Server
In addition to providing built-in SSH
	client utilities, a FreeBSD system can be configured as an
	SSH server, accepting connections from
	other SSH clients.
To see if sshd is operating,
	use the service(8) command:
service sshd status
If the service is not running, add the following line to
	/etc/rc.conf.
sshd_enable="YES"
This will start sshd, the
	daemon program for OpenSSH, the
	next time the system boots. To start it now:
service sshd start
The first time sshd starts on a
	FreeBSD system, the system's host keys will be automatically
	created and the fingerprint will be displayed on the console.
	Provide users with the fingerprint so that they can verify it
	the first time they connect to the server.
Refer to sshd(8) for the list of available options
	when starting sshd and a more
	complete discussion about authentication, the login process,
	and the various configuration files.
At this point, the sshd should
	be available to all users with a username and password on
	the system.
14.8.3. SSH Server Security
While sshd is the most widely
	used remote administration facility for FreeBSD, brute force
	and drive by attacks are common to any system exposed to
	public networks. Several additional parameters are available
	to prevent the success of these attacks and will be described
	in this section.
It is a good idea to limit which users can log into the
	SSH server and from where using the
	AllowUsers keyword in the
	OpenSSH server configuration file.
	For example, to only allow root to log in from
	192.168.1.32, add
	this line to /etc/ssh/sshd_config:
AllowUsers root@192.168.1.32
To allow admin
	to log in from anywhere, list that user without specifying an
	IP address:
AllowUsers admin
Multiple users should be listed on the same line, like
	so:
AllowUsers root@192.168.1.32 admin
After making changes to
	/etc/ssh/sshd_config,
	tell sshd to reload its
	configuration file by running:
service sshd reload
Note:
When this keyword is used, it is important to list each
	 user that needs to log into this machine. Any user that is
	 not specified in that line will be locked out. Also, the
	 keywords used in the OpenSSH
	 server configuration file are case-sensitive. If the
	 keyword is not spelled correctly, including its case, it
	 will be ignored. Always test changes to this file to make
	 sure that the edits are working as expected. Refer to
	 sshd_config(5) to verify the spelling and use of the
	 available keywords.

In addition, users may be forced to use two factor
	authentication via the use of a public and private key. When
	required, the user may generate a key pair through the use
	of ssh-keygen(1) and send the administrator the public
	key. This key file will be placed in the
	authorized_keys as described above in
	the client section. To force the users to use keys only,
	the following option may be configured:
AuthenticationMethods publickey
Tip:
Do not confuse /etc/ssh/sshd_config
	 with /etc/ssh/ssh_config (note the
	 extra d in the first filename). The
	 first file configures the server and the second file
	 configures the client. Refer to ssh_config(5) for a
	 listing of the available client settings.

14.9. Access Control Lists

14.9. Access Control Lists
Contributed
	 by Tom Rhodes. Access Control Lists (ACLs) extend the
 standard UNIX® permission model in a POSIX®.1e compatible way.
 This permits an administrator to take advantage of a more
 fine-grained permissions model.
The FreeBSD GENERIC kernel provides
 ACL support for UFS file
 systems. Users who prefer to compile a custom kernel must
 include the following option in their custom kernel
 configuration file:
options UFS_ACL
If this option is not compiled in, a warning message will be
 displayed when attempting to mount a file system with
 ACL support. ACLs rely on
 extended attributes which are natively supported in
 UFS2.
This chapter describes how to enable
 ACL support and provides some usage
 examples.
14.9.1. Enabling ACL Support
ACLs are enabled by the mount-time
	administrative flag, acls, which may be added
	to /etc/fstab. The mount-time flag can
	also be automatically set in a persistent manner using
	tunefs(8) to modify a superblock ACLs
	flag in the file system header. In general, it is preferred
	to use the superblock flag for several reasons:
	The superblock flag cannot be changed by a remount
	 using mount -u as it requires a complete
	 umount and fresh
	 mount. This means that
	 ACLs cannot be enabled on the root file
	 system after boot. It also means that
	 ACL support on a file system cannot be
	 changed while the system is in use.

	Setting the superblock flag causes the file system to
	 always be mounted with ACLs enabled,
	 even if there is not an fstab entry
	 or if the devices re-order. This prevents accidental
	 mounting of the file system without ACL
	 support.

Note:
It is desirable to discourage accidental mounting
	 without ACLs enabled because nasty things
	 can happen if ACLs are enabled, then
	 disabled, then re-enabled without flushing the extended
	 attributes. In general, once ACLs are
	 enabled on a file system, they should not be disabled, as
	 the resulting file protections may not be compatible with
	 those intended by the users of the system, and re-enabling
	 ACLs may re-attach the previous
	 ACLs to files that have since had their
	 permissions changed, resulting in unpredictable
	 behavior.

File systems with ACLs enabled will
	show a plus (+) sign in their permission
	settings:
drwx------ 2 robert robert 512 Dec 27 11:54 private
drwxrwx---+ 2 robert robert 512 Dec 23 10:57 directory1
drwxrwx---+ 2 robert robert 512 Dec 22 10:20 directory2
drwxrwx---+ 2 robert robert 512 Dec 27 11:57 directory3
drwxr-xr-x 2 robert robert 512 Nov 10 11:54 public_html
In this example, directory1,
	directory2, and
	directory3 are all taking advantage of
	ACLs, whereas private
	and public_html are not.
14.9.2. Using ACLs
File system ACLs can be viewed using
	getfacl. For instance, to view the
	ACL settings on
	test:
% getfacl test
	#file:test
	#owner:1001
	#group:1001
	user::rw-
	group::r--
	other::r--
To change the ACL settings on this
	file, use setfacl. To remove all of the
	currently defined ACLs from a file or file
	system, include -k. However, the preferred
	method is to use -b as it leaves the basic
	fields required for ACLs to work.
% setfacl -k test
To modify the default ACL entries, use
	-m:
% setfacl -m u:trhodes:rwx,group:web:r--,o::--- test
In this example, there were no pre-defined entries, as
	they were removed by the previous command. This command
	restores the default options and assigns the options listed.
	If a user or group is added which does not exist on the
	system, an Invalid argument error will
	be displayed.
Refer to getfacl(1) and setfacl(1) for more
	information about the options available for these
	commands.
14.10. Monitoring Third Party Security Issues

14.10. Monitoring Third Party Security Issues
Contributed
	 by Tom Rhodes. In recent years, the security world has made many
 improvements to how vulnerability assessment is handled. The
 threat of system intrusion increases as third party utilities
 are installed and configured for virtually any operating
 system available today.
Vulnerability assessment is a key factor in security.
 While FreeBSD releases advisories for the base system, doing so
 for every third party utility is beyond the FreeBSD Project's
 capability. There is a way to mitigate third party
 vulnerabilities and warn administrators of known security
 issues. A FreeBSD add on utility known as
 pkg includes options explicitly for
 this purpose.
pkg polls a database for security
 issues. The database is updated and maintained by the FreeBSD
 Security Team and ports developers.
Please refer to instructions
 for installing
 pkg.
Installation provides periodic(8) configuration files
 for maintaining the pkg audit
 database, and provides a programmatic method of keeping it
 updated. This functionality is enabled if
 daily_status_security_pkgaudit_enable
 is set to YES in periodic.conf(5).
 Ensure that daily security run emails, which are sent to
 root's email account,
 are being read.
After installation, and to audit third party utilities as
 part of the Ports Collection at any time, an administrator may
 choose to update the database and view known vulnerabilities
 of installed packages by invoking:
pkg audit -F
pkg displays messages
 any published vulnerabilities in installed packages:
Affected package: cups-base-1.1.22.0_1
Type of problem: cups-base -- HPGL buffer overflow vulnerability.
Reference: <https://www.FreeBSD.org/ports/portaudit/40a3bca2-6809-11d9-a9e7-0001020eed82.html>

1 problem(s) in your installed packages found.

You are advised to update or deinstall the affected package(s) immediately.
By pointing a web browser to the displayed
 URL, an administrator may obtain more
 information about the vulnerability. This will include the
 versions affected, by FreeBSD port version, along with other web
 sites which may contain security advisories.
pkg is a powerful utility
 and is extremely useful when coupled with
 ports-mgmt/portmaster.
14.13. Resource Limits

14.13. Resource Limits
Contributed
	 by Tom Rhodes. FreeBSD provides several methods for an administrator to
	limit the amount of system resources an individual may use.
	Disk quotas limit the amount of disk space available to users.
	Quotas are discussed in Section 18.11, “Disk Quotas”.
Limits to other resources, such as CPU
 and memory, can be set using either a flat file or a command to
 configure a resource limits database. The traditional method
 defines login classes by editing
 /etc/login.conf. While this method is
 still supported, any changes require a multi-step process of
 editing this file, rebuilding the resource database, making
 necessary changes to /etc/master.passwd,
 and rebuilding the password database. This can become time
 consuming, depending upon the number of users to
 configure.
rctl can be used to provide a more
 fine-grained method for controlling resource limits. This
 command supports more than user limits as it can also be used to
 set resource constraints on processes and jails.
This section demonstrates both methods for controlling
 resources, beginning with the traditional method.
14.13.1. Configuring Login Classes
In the traditional method, login classes and the resource
	limits to apply to a login class are defined in
	/etc/login.conf. Each user account can
	be assigned to a login class, where default
	is the default login class. Each login class has a set of
	login capabilities associated with it. A login capability is
	a
	name=value
	pair, where name is a well-known
	identifier and value is an
	arbitrary string which is processed accordingly depending on
	the name.
Note:
Whenever /etc/login.conf is edited,
	 the /etc/login.conf.db must be updated
	 by executing the following command:
cap_mkdb /etc/login.conf

Resource limits differ from the default login capabilities
	in two ways. First, for every limit, there is a
	soft and hard
	limit. A soft limit may be adjusted by the user or
	application, but may not be set higher than the hard limit.
	The hard limit may be lowered by the user, but can only be
	raised by the superuser. Second, most resource limits apply
	per process to a specific user.
Table 14.1, “Login Class Resource Limits” lists the most commonly
	used resource limits. All of the available resource limits
	and capabilities are described in detail in
	login.conf(5).
Table 14.1. Login Class Resource Limits
	Resource Limit	Description
	coredumpsize	The limit on the size of a core file generated by
		a program is subordinate to other limits on disk
		usage, such as filesize or disk
		quotas. This limit is often used as a less severe
		method of controlling disk space consumption. Since
		users do not generate core files and often do not
		delete them, this setting may save them from running
		out of disk space should a large program
		crash.
	cputime	The maximum amount of CPU time
		a user's process may consume. Offending processes
		will be killed by the kernel. This is a limit on
		CPU time
		consumed, not the percentage of the
		CPU as displayed in some of the
		fields generated by top and
		ps.
	filesize	The maximum size of a file the user may own.
		Unlike disk quotas (Section 18.11, “Disk Quotas”), this
		limit is enforced on individual files, not the set of
		all files a user owns.
	maxproc	The maximum number of foreground and background
		processes a user can run. This limit may not be
		larger than the system limit specified by
		kern.maxproc. Setting this limit
		too small may hinder a user's productivity as some
		tasks, such as compiling a large program, start lots
		of processes.
	memorylocked	The maximum amount of memory a process may
		request to be locked into main memory using
		mlock(2). Some system-critical programs, such as
		amd(8), lock into main memory so that if the
		system begins to swap, they do not contribute to disk
		thrashing.
	memoryuse	The maximum amount of memory a process may
		consume at any given time. It includes both core
		memory and swap usage. This is not a catch-all limit
		for restricting memory consumption, but is a good
		start.
	openfiles	The maximum number of files a process may have
		open. In FreeBSD, files are used to represent sockets
		and IPC channels, so be careful not
		to set this too low. The system-wide limit for this
		is defined by
		kern.maxfiles.
	sbsize	The limit on the amount of network memory a user
		may consume. This can be generally used to limit
		network communications.
	stacksize	The maximum size of a process stack. This alone
		is not sufficient to limit the amount of memory a
		program may use, so it should be used in conjunction
		with other limits.

There are a few other things to remember when setting
	resource limits:
	Processes started at system startup by
	 /etc/rc are assigned to the
	 daemon login class.

	Although the default
	 /etc/login.conf is a good source of
	 reasonable values for most limits, they may not be
	 appropriate for every system. Setting a limit too high
	 may open the system up to abuse, while setting it too low
	 may put a strain on productivity.

	Xorg takes a lot of
	 resources and encourages users to run more programs
	 simultaneously.

	Many limits apply to individual processes, not the
	 user as a whole. For example, setting
	 openfiles to 50
	 means that each process the user runs may open up to
	 50 files. The total amount of files a
	 user may open is the value of openfiles
	 multiplied by the value of maxproc.
	 This also applies to memory consumption.

For further information on resource limits and login
	classes and capabilities in general, refer to
	cap_mkdb(1), getrlimit(2), and
	login.conf(5).
14.13.2. Enabling and Configuring Resource Limits
The kern.racct.enable tunable must be
	set to a non-zero value. Custom kernels require specific
	configuration:
options RACCT
options RCTL
Once the system has rebooted into the new kernel,
	rctl may be used to set rules for the
	system.
Rule syntax is controlled through the use of a subject,
	subject-id, resource, and action, as seen in this example
	rule:
user:trhodes:maxproc:deny=10/user
In this rule, the subject is user, the
	subject-id is trhodes, the resource,
	maxproc, is the maximum number of
	processes, and the action is deny, which
	blocks any new processes from being created. This means that
	the user, trhodes, will be constrained to
	no greater than 10 processes. Other
	possible actions include logging to the console, passing a
	notification to devd(8), or sending a sigterm to the
	process.
Some care must be taken when adding rules. Since this
	user is constrained to 10 processes, this
	example will prevent the user from performing other tasks
	after logging in and executing a
	screen session. Once a resource limit has
	been hit, an error will be printed, as in this example:
% man test
 /usr/bin/man: Cannot fork: Resource temporarily unavailable
eval: Cannot fork: Resource temporarily unavailable
As another example, a jail can be prevented from exceeding
	a memory limit. This rule could be written as:
rctl -a jail:httpd:memoryuse:deny=2G/jail
Rules will persist across reboots if they have been added
	to /etc/rctl.conf. The format is a rule,
	without the preceding command. For example, the previous rule
	could be added as:
Block jail from using more than 2G memory:
jail:httpd:memoryuse:deny=2G/jail
To remove a rule, use rctl to remove it
	from the list:
rctl -r user:trhodes:maxproc:deny=10/user
A method for removing all rules is documented in
	rctl(8). However, if removing all rules for a single
	user is required, this command may be issued:
rctl -r user:trhodes
Many other resources exist which can be used to exert
	additional control over various subjects.
	See rctl(8) to learn about them.
14.14. Shared Administration with Sudo

14.14. Shared Administration with Sudo
Contributed
	 by Tom Rhodes. System administrators often need the ability to grant
 enhanced permissions to users so they may perform privileged
 tasks. The idea that team members are provided access
 to a FreeBSD system to perform their specific tasks opens up unique
 challenges to every administrator. These team members only
 need a subset of access beyond normal end user levels; however,
 they almost always tell management they are unable to
 perform their tasks without superuser access. Thankfully, there
 is no reason to provide such access to end users because tools
 exist to manage this exact requirement.
Up to this point, the security chapter has covered
 permitting access to authorized users and attempting to prevent
 unauthorized access. Another problem arises once authorized
 users have access to the system resources. In many cases, some
 users may need access to application startup scripts, or a team
 of administrators need to maintain the system. Traditionally,
 the standard users and groups, file permissions, and even the
 su(1) command would manage this access. And as
 applications required more access, as more users needed to use
 system resources, a better solution was required. The most used
 application is currently Sudo.
Sudo allows administrators
 to configure more rigid access to system commands
 and provide for some advanced logging features.
 As a tool, it is available from the Ports Collection as
 security/sudo or by use of
 the pkg(8) utility. To use the pkg(8) tool:
pkg install sudo
After the installation is complete, the installed
 visudo will open the configuration file with
 a text editor. Using visudo is highly
 recommended as it comes with a built in syntax checker to verify
 there are no errors before the file is saved.
The configuration file is made up of several small sections
 which allow for extensive configuration. In the following
 example, web application maintainer, user1, needs to start,
 stop, and restart the web application known as
 webservice. To
 grant this user permission to perform these tasks, add
 this line to the end of
 /usr/local/etc/sudoers:
user1 ALL=(ALL) /usr/sbin/service webservice *
The user may now start webservice
 using this command:
% sudo /usr/sbin/service webservice start
While this configuration allows a single user access to the
 webservice service; however, in most
 organizations, there is an entire web team in charge of managing
 the service. A single line can also give access to an entire
 group. These steps will create a web group, add a user to this
 group, and allow all members of the group to manage the
 service:
pw groupadd -g 6001 -n webteam
Using the same pw(8) command, the user is added to
 the webteam group:
pw groupmod -m user1 -n webteam
Finally, this line in
 /usr/local/etc/sudoers allows any
 member of the webteam group to manage
 webservice:
%webteam ALL=(ALL) /usr/sbin/service webservice *
Unlike su(1), Sudo only
 requires the end user password. This adds an advantage where
 users will not need shared passwords, a finding in most security
 audits and just bad all the way around.
Users permitted to run applications with
 Sudo only enter their own passwords.
 This is more secure and gives better control than su(1),
 where the root
 password is entered and the user acquires all
 root
 permissions.
Tip:
Most organizations are moving or have moved toward a two
	factor authentication model. In these cases, the user may not
	have a password to enter. Sudo
	provides for these cases with the NOPASSWD
	variable. Adding it to the configuration above will allow all
	members of the webteam group to
	manage the service without the password requirement:
%webteam ALL=(ALL) NOPASSWD: /usr/sbin/service webservice *

14.14.1. Logging Output
An advantage to implementing
	Sudo is the ability to enable
	session logging. Using the built in log mechanisms
	and the included sudoreplay
	command, all commands initiated through
	Sudo are logged for later
	verification. To enable this feature, add a default log
	directory entry, this example uses a user variable.
	Several other log filename conventions exist, consult the
	manual page for sudoreplay for
	additional information.
Defaults iolog_dir=/var/log/sudo-io/%{user}
Tip:
This directory will be created automatically after the
	 logging is configured. It is best to let the system create
	 directory with default permissions just to be safe. In
	 addition, this entry will also log administrators who use
	 the sudoreplay command. To
	 change this behavior, read and uncomment the logging options
	 inside sudoers.

Once this directive has been added to the
	sudoers file, any user configuration can
	be updated with the request to log access. In the example
	shown, the updated webteam entry
	would have the following additional changes:
%webteam ALL=(ALL) NOPASSWD: LOG_INPUT: LOG_OUTPUT: /usr/sbin/service webservice *
From this point on, all webteam
	members altering the status of the
	webservice application
	will be logged. The list of previous and current sessions
	can be displayed with:
sudoreplay -l
In the output, to replay a specific session, search for
	the TSID= entry, and pass that to
	sudoreplay with no other options to
	replay the session at normal speed. For example:
sudoreplay user1/00/00/02
Warning:
While sessions are logged, any administrator is able to
	 remove sessions and leave only a question of why they had
	 done so. It is worthwhile to add a daily check through an
	 intrusion detection system (IDS) or
	 similar software so that other administrators are alerted to
	 manual alterations.

The sudoreplay is extremely extendable.
	Consult the documentation for more information.
Chapter 15. Jails

Chapter 15. Jails
Contributed
	by Matteo Riondato. 15.1. Synopsis
Since system administration is a difficult task, many tools
 have been developed to make life easier for the administrator.
 These tools often enhance the way systems are installed,
 configured, and maintained. One of the tools which can be used
 to enhance the security of a FreeBSD system is
 jails. Jails have been available since
 FreeBSD 4.X and continue to be enhanced in their usefulness,
 performance, reliability, and security.
Jails build upon the chroot(2) concept, which is used
 to change the root directory of a set of processes. This
 creates a safe environment, separate from the rest of the
 system. Processes created in the chrooted environment can not
 access files or resources outside of it. For that reason,
 compromising a service running in a chrooted environment should
 not allow the attacker to compromise the entire system.
 However, a chroot has several limitations. It is suited to easy
 tasks which do not require much flexibility or complex, advanced
 features. Over time, many ways have been found to escape from a
 chrooted environment, making it a less than ideal solution for
 securing services.
Jails improve on the concept of the traditional chroot
 environment in several ways. In a traditional chroot
 environment, processes are only limited in the part of the file
 system they can access. The rest of the system resources,
 system users, running processes, and the networking subsystem
 are shared by the chrooted processes and the processes of the
 host system. Jails expand this model by virtualizing access to
 the file system, the set of users, and the networking subsystem.
 More fine-grained controls are available for tuning the access
 of a jailed environment. Jails can be considered as a type of
 operating system-level virtualization.
A jail is characterized by four elements:
	A directory subtree: the starting point from which a
	 jail is entered. Once inside the jail, a process is not
	 permitted to escape outside of this subtree.

	A hostname: which will be used by the jail.

	An IP address: which is assigned to
	 the jail. The IP address of a jail is
	 often an alias address for an existing network
	 interface.

	A command: the path name of an executable to run inside
	 the jail. The path is relative to the root directory of the
	 jail environment.

Jails have their own set of users and their own root account which are limited
 to the jail environment. The root account of a jail is not
 allowed to perform operations to the system outside of the
 associated jail environment.
This chapter provides an overview of the terminology and
 commands for managing FreeBSD jails. Jails are a powerful tool for
 both system administrators, and advanced users.
After reading this chapter, you will know:
	What a jail is and what purpose it may serve in FreeBSD
	 installations.

	How to build, start, and stop a jail.

	The basics of jail administration, both from inside and
	 outside the jail.

Important:
Jails are a powerful tool, but they are not a security
	panacea. While it is not possible for a jailed process to
	break out on its own, there are several ways in which an
	unprivileged user outside the jail can cooperate with a
	privileged user inside the jail to obtain elevated privileges
	in the host environment.
Most of these attacks can be mitigated by ensuring that
	the jail root is not accessible to unprivileged users in the
	host environment. As a general rule, untrusted users with
	privileged access to a jail should not be given access to the
	host environment.

15.2. Terms Related to Jails

15.2. Terms Related to Jails
To facilitate better understanding of parts of the FreeBSD
 system related to jails, their internals and the way they
 interact with the rest of FreeBSD, the following terms are used
 further in this chapter:
	chroot(8) (command)
	Utility, which uses chroot(2) FreeBSD system call to
	 change the root directory of a process and all its
	 descendants.

	chroot(2) (environment)
	The environment of processes running in a
	 “chroot”. This includes resources such as
	 the part of the file system which is visible, user and
	 group IDs which are available, network interfaces and
	 other IPC mechanisms, etc.

	jail(8) (command)
	The system administration utility which allows
	 launching of processes within a jail environment.

	host (system, process, user, etc.)
	The controlling system of a jail environment. The
	 host system has access to all the hardware resources
	 available, and can control processes both outside of and
	 inside a jail environment. One of the important
	 differences of the host system from a jail is that the
	 limitations which apply to superuser processes inside a
	 jail are not enforced for processes of the host
	 system.

	hosted (system, process, user, etc.)
	A process, user or other entity, whose access to
	 resources is restricted by a FreeBSD jail.

15.3. Creating and Controlling Jails

15.3. Creating and Controlling Jails
Some administrators divide jails into the following two
 types: “complete” jails, which resemble a real FreeBSD
 system, and “service” jails, dedicated to one
 application or service, possibly running with privileges. This
 is only a conceptual division and the process of building a jail
 is not affected by it. When creating a “complete”
 jail there are two options for the source of the userland: use
 prebuilt binaries (such as those supplied on an install media)
 or build from source.
15.3.1. Installing a Jail
15.3.1.1. To install a Jail from the Internet
The bsdinstall(8) tool can be used to fetch and
 install the binaries needed for a jail. This will walk through
 the picking of a mirror, which distributions will be installed
 into the destination directory, and some basic configuration
 of the jail:
bsdinstall jail /here/is/the/jail
Once the command is complete, the next step is configuring
 the host to run the jail.
15.3.1.2. To install a Jail from an ISO
To install the userland from installation media, first
 create the root directory for the jail. This can be done by
 setting the DESTDIR variable to the proper
 location.
Start a shell and define DESTDIR:
sh
export DESTDIR=/here/is/the/jail
Mount the install media as covered in mdconfig(8)
 when using the install ISO:
mount -t cd9660 /dev/`mdconfig -f cdimage.iso` /mnt
cd /mnt/usr/freebsd-dist/
Extract the binaries from the tarballs on the install media
 into the declared destination. Minimally, only the base set
 needs to be extracted, but a complete install can be performed
 when preferred.
To install just the base system:
tar -xf base.txz -C $DESTDIR
To install everything except the kernel:
for set in base ports; do tar -xf $set.txz -C $DESTDIR ; done
15.3.1.3. To build and install a Jail from source
The jail(8) manual page explains the procedure for
 building a jail:
setenv D /here/is/the/jail
mkdir -p $D [image: 1]
cd /usr/src
make buildworld [image: 2]
make installworld DESTDIR=$D [image: 3]
make distribution DESTDIR=$D [image: 4]
mount -t devfs devfs $D/dev [image: 5]
	[image: 1]
	Selecting a location for a jail is the best starting
	 point. This is where the jail will physically reside within
	 the file system of the jail's host. A good choice can be
	 /usr/jail/jailname,
	 where jailname is the hostname
	 identifying the jail. Usually, /usr/
	 has enough space for the jail file system, which for
	 “complete” jails is, essentially, a replication
	 of every file present in a default installation of the FreeBSD
	 base system.

	[image: 2]
	If you have already rebuilt your userland using
	 make world or
	 make buildworld, you can skip this step
	 and install your existing userland into the new jail.

	[image: 3]
	This command will populate the directory subtree chosen
	 as jail's physical location on the file system with the
	 necessary binaries, libraries, manual pages and so
	 on.

	[image: 4]
	The distribution target for
	 make installs every needed
	 configuration file. In simple words, it installs every
	 installable file of
	 /usr/src/etc/ to the
	 /etc directory of the
	 jail environment:
	 $D/etc/.

	[image: 5]
	Mounting the devfs(8) file system inside a jail is
	 not required. On the other hand, any, or almost any
	 application requires access to at least one device,
	 depending on the purpose of the given application. It is
	 very important to control access to devices from inside a
	 jail, as improper settings could permit an attacker to do
	 nasty things in the jail. Control over devfs(8) is
	 managed through rulesets which are described in the
	 devfs(8) and devfs.conf(5) manual pages.

15.3.2. Configuring the Host
Once a jail is installed, it can be started by using the
 jail(8) utility. The jail(8) utility takes four
 mandatory arguments which are described in the Section 15.1, “Synopsis”. Other arguments may be specified
 too, e.g., to run the jailed process with the credentials of a
 specific user. The
 command argument
 depends on the type of the jail; for a
 virtual system,
 /etc/rc is a good choice, since it will
 replicate the startup sequence of a real FreeBSD system. For a
 service jail, it depends on the service or
 application that will run within the jail.
Jails are often started at boot time and the FreeBSD
 rc mechanism provides an easy way to do
 this.
	Configure jail parameters in
	 jail.conf:
www {
 host.hostname = www.example.org; # Hostname
 ip4.addr = 192.168.0.10; # IP address of the jail
 path = "/usr/jail/www"; # Path to the jail
 devfs_ruleset = "www_ruleset"; # devfs ruleset
 mount.devfs; # Mount devfs inside the jail
 exec.start = "/bin/sh /etc/rc"; # Start command
 exec.stop = "/bin/sh /etc/rc.shutdown"; # Stop command
}
Configure jails to start at boot time in
	 rc.conf:
jail_enable="YES" # Set to NO to disable starting of any jails
The default startup of jails configured in
	 jail.conf(5), will run the /etc/rc
	 script of the jail, which assumes the jail is a complete
	 virtual system. For service jails, the default startup
	 command of the jail should be changed, by setting the
	 exec.start
	 option appropriately.
Note:
For a full list of available options, please see the
	 jail.conf(5) manual page.

service(8) can be used to start or stop a jail by hand,
 if an entry for it exists in
 jail.conf:
service jail start www
service jail stop www
Jails can be shut down with jexec(8). Use jls(8)
 to identify the jail's JID, then use
 jexec(8) to run the shutdown script in that jail.
jls
 JID IP Address Hostname Path
 3 192.168.0.10 www /usr/jail/www
jexec 3 /etc/rc.shutdown
More information about this can be found in the jail(8)
 manual page.
15.4. Fine Tuning and Administration

15.4. Fine Tuning and Administration
There are several options which can be set for any jail, and
 various ways of combining a host FreeBSD system with jails, to
 produce higher level applications. This section
 presents:
	Some of the options available for tuning the behavior
	 and security restrictions implemented by a jail
	 installation.

	Some of the high-level applications for jail management,
	 which are available through the FreeBSD Ports Collection, and
	 can be used to implement overall jail-based
	 solutions.

15.4.1. System Tools for Jail Tuning in FreeBSD
Fine tuning of a jail's configuration is mostly done by
	setting sysctl(8) variables. A special subtree of sysctl
	exists as a basis for organizing all the relevant options: the
	security.jail.* hierarchy of FreeBSD kernel
	options. Here is a list of the main jail-related sysctls,
	complete with their default value. Names should be
	self-explanatory, but for more information about them, please
	refer to the jail(8) and sysctl(8) manual
	pages.
	security.jail.set_hostname_allowed:
	 1

	security.jail.socket_unixiproute_only:
	 1

	security.jail.sysvipc_allowed:
	 0

	security.jail.enforce_statfs:
	 2

	security.jail.allow_raw_sockets:
	 0

	security.jail.chflags_allowed:
	 0

	security.jail.jailed: 0

These variables can be used by the system administrator of
	the host system to add or remove some of
	the limitations imposed by default on the root user. Note that there
	are some limitations which cannot be removed. The
	root user is not
	allowed to mount or unmount file systems from within a
	jail(8). The root inside a jail may not
	load or unload devfs(8) rulesets, set firewall rules, or
	do many other administrative tasks which require modifications
	of in-kernel data, such as setting the
	securelevel of the kernel.
The base system of FreeBSD contains a basic set of tools for
	viewing information about the active jails, and attaching to a
	jail to run administrative commands. The jls(8) and
	jexec(8) commands are part of the base FreeBSD system, and
	can be used to perform the following simple tasks:
	Print a list of active jails and their corresponding
	 jail identifier (JID),
	 IP address, hostname and path.

	Attach to a running jail, from its host system, and
	 run a command inside the jail or perform administrative
	 tasks inside the jail itself. This is especially useful
	 when the root
	 user wants to cleanly shut down a jail. The jexec(8)
	 utility can also be used to start a shell in a jail to do
	 administration in it; for example:
jexec 1 tcsh

15.4.2. High-Level Administrative Tools in the FreeBSD Ports
	Collection
Among the many third-party utilities for jail
	administration, one of the most complete and useful is
	sysutils/ezjail. It is a set of scripts
	that contribute to jail(8) management. Please refer to
	the
	 handbook section on ezjail
	for more information.
15.4.3. Keeping Jails Patched and up to Date
Jails should be kept up to date from the host operating
	system as attempting to patch userland from within the jail
	may likely fail as the default behavior in FreeBSD is to
	disallow the use of chflags(1) in a jail which prevents
	the replacement of some files. It is possible to change this
	behavior but it is recommended to use freebsd-update(8)
	to maintain jails instead. Use -b to specify
	the path of the jail to be updated.
To update the jail to the latest patch release of the
	version of FreeBSD it is already running, then execute the
	following commands on the host:
freebsd-update -b /here/is/the/jail fetch
freebsd-update -b /here/is/the/jail install
To upgrade the jail to a new major or minor version,
	first upgrade the host system as described in
	Section 24.2.3, “Performing Major and Minor Version Upgrades”. Once the host has been
	upgraded and rebooted, the jail can then be upgraded.
	For example to upgrade from 12.0-RELEASE to 12.1-RELEASE,
	on the host run:
freebsd-update -b /here/is/the/jail --currently-running 12.0-RELEASE -r 12.1-RELEASE upgrade
freebsd-update -b /here/is/the/jail install
service jail restart myjail
freebsd-update -b /here/is/the/jail install
Then, if it was a major version upgrade, reinstall all
	installed packages and restart the jail again. This is
	required because the ABI version changes when upgrading
	between major versions of FreeBSD. From the host:
pkg -j myjail upgrade -f
service jail restart myjail
15.6. Managing Jails with ezjail

15.6. Managing Jails with
	ezjail
Originally contributed by Warren Block. Creating and managing multiple jails can quickly become
 tedious and error-prone. Dirk Engling's
 ezjail automates and greatly
 simplifies many jail tasks. A basejail is
 created as a template. Additional jails use
 mount_nullfs(8) to share many of the basejail directories
 without using additional disk space. Each additional jail takes
 only a few megabytes of disk space before applications are
 installed. Upgrading the copy of the userland in the basejail
 automatically upgrades all of the other jails.
Additional benefits and features are described in detail on
 the ezjail web site, https://erdgeist.org/arts/software/ezjail/.
15.6.1. Installing ezjail
Installing ezjail consists of
	adding a loopback interface for use in jails, installing the
	port or package, and enabling the service.
	To keep jail loopback traffic off the host's loopback
	 network interface lo0, a second
	 loopback interface is created by adding an entry to
	 /etc/rc.conf:
cloned_interfaces="lo1"
The second loopback interface lo1
	 will be created when the system starts. It can also be
	 created manually without a restart:
service netif cloneup
Created clone interfaces: lo1.
Jails can be allowed to use aliases of this secondary
	 loopback interface without interfering with the
	 host.
Inside a jail, access to the loopback address
	 127.0.0.1 is
	 redirected to the first IP address
	 assigned to the jail. To make the jail loopback
	 correspond with the new lo1 interface,
	 that interface must be specified first in the list of
	 interfaces and IP addresses given when
	 creating a new jail.
Give each jail a unique loopback address in the
	 127.0.0.0/8 netblock.

	Install
	 sysutils/ezjail:
cd /usr/ports/sysutils/ezjail
make install clean

	Enable ezjail by adding
	 this line to /etc/rc.conf:
ezjail_enable="YES"

	The service will automatically start on system boot.
	 It can be started immediately for the current
	 session:
service ezjail start

15.6.2. Initial Setup
With ezjail installed, the
	basejail directory structure can be created and populated.
	This step is only needed once on the jail host
	computer.
In both of these examples, -p causes the
	ports tree to be retrieved with portsnap(8) into the
	basejail. That single copy of the ports directory will be
	shared by all the jails. Using a separate copy of the ports
	directory for jails isolates them from the host. The
	ezjail FAQ
	explains in more detail: http://erdgeist.org/arts/software/ezjail/#FAQ.
	
	 	To Populate the Jail with FreeBSD-RELEASE
For a basejail based on the FreeBSD RELEASE matching
		that of the host computer, use
		install. For example, on a host
		computer running FreeBSD 10-STABLE, the latest
		RELEASE version of FreeBSD -10 will be installed in
		the jail):
ezjail-admin install -p

	 	To Populate the Jail with
		installworld
The basejail can be installed from binaries
		created by buildworld on
		the host with
		ezjail-admin update.
In this example, FreeBSD 10-STABLE has been
		built from source. The jail directories are created.
		Then installworld is
		executed, installing the host's
		/usr/obj into the
		basejail.
ezjail-admin update -i -p
The host's /usr/src is used
		by default. A different source directory on the host
		can be specified with -s and a path,
		or set with ezjail_sourcetree in
		/usr/local/etc/ezjail.conf.

	

Tip:
The basejail's ports tree is shared by other jails.
	 However, downloaded distfiles are stored in the jail that
	 downloaded them. By default, these files are stored in
	 /var/ports/distfiles within each
	 jail. /var/ports inside each jail is
	 also used as a work directory when building ports.

Tip:
The FTP protocol is used by default
	 to download packages for the installation of the basejail.
	 Firewall or proxy configurations can prevent or interfere
	 with FTP transfers. The
	 HTTP protocol works differently and
	 avoids these problems. It can be chosen by specifying a
	 full URL for a particular download mirror
	 in /usr/local/etc/ezjail.conf:
ezjail_ftphost=http://ftp.FreeBSD.org
See Section A.2, “FTP Sites” for a list of
	 sites.

15.6.3. Creating and Starting a New Jail
New jails are created with
	ezjail-admin create. In these examples,
	the lo1 loopback interface is used as
	described above.
Procedure 15.1. Create and Start a New Jail
	Create the jail, specifying a name and the loopback
	 and network interfaces to use, along with their
	 IP addresses. In this example, the
	 jail is named dnsjail.
ezjail-admin create dnsjail 'lo1|127.0.1.1,em0|192.168.1.50'
Tip:
Most network services run in jails without
	 problems. A few network services, most notably
	 ping(8), use
	 raw network sockets. In jails, raw
	 network sockets are disabled by default for security.
	 Services that require them will not work.
Occasionally, a jail genuinely needs raw sockets.
	 For example, network monitoring applications often use
	 ping(8) to check the availability of other
	 computers. When raw network sockets are actually needed
	 in a jail, they can be enabled by editing the
	 ezjail
	 configuration file for the individual jail,
	 /usr/local/etc/ezjail/jailname.
	 Modify the parameters
	 entry:
export jail_jailname_parameters="allow.raw_sockets=1"
Do not enable raw network sockets unless services in
	 the jail actually require them.

	Start the jail:
ezjail-admin start dnsjail

	Use a console on the jail:
ezjail-admin console dnsjail

The jail is operating and additional configuration can be
	completed. Typical settings added at this point
	include:
	Set the
	 root
	 Password
Connect to the jail and set the
	 root user's
	 password:
ezjail-admin console dnsjail
passwd
Changing local password for root
New Password:
Retype New Password:

	Time Zone Configuration
The jail's time zone can be set with tzsetup(8).
	 To avoid spurious error messages, the adjkerntz(8)
	 entry in /etc/crontab can be
	 commented or removed. This job attempts to update the
	 computer's hardware clock with time zone changes, but
	 jails are not allowed to access that hardware.

	DNS Servers
Enter domain name server lines in
	 /etc/resolv.conf so
	 DNS works in the jail.

	Edit /etc/hosts
Change the address and add the jail name to the
	 localhost entries in
	 /etc/hosts.

	Configure /etc/rc.conf
Enter configuration settings in
	 /etc/rc.conf. This is much like
	 configuring a full computer. The host name and
	 IP address are not set here. Those
	 values are already provided by the jail
	 configuration.

With the jail configured, the applications for which the
	jail was created can be installed.
Tip:
Some ports must be built with special options to be used
	 in a jail. For example, both of the network monitoring
	 plugin packages
	 net-mgmt/nagios-plugins and
	 net-mgmt/monitoring-plugins
	 have a JAIL option which must be enabled
	 for them to work correctly inside a jail.

15.6.4. Updating Jails
15.6.4.1. Updating the Operating System
Because the basejail's copy of the userland is shared by
	 the other jails, updating the basejail automatically updates
	 all of the other jails. Either source or binary updates can
	 be used.
To build the world from source on the host, then
	 install it in the basejail, use:
ezjail-admin update -b
If the world has already been compiled on the host,
	 install it in the basejail with:
ezjail-admin update -i
Binary updates use freebsd-update(8). These
	 updates have the same limitations as if
	 freebsd-update(8) were being run directly. The most
	 important one is that only -RELEASE versions of FreeBSD are
	 available with this method.
Update the basejail to the latest patched release of
	 the version of FreeBSD on the host. For example, updating from
	 RELEASE-p1 to RELEASE-p2.
ezjail-admin update -u
To upgrade the basejail to a new version, first
	 upgrade the host system as described in Section 24.2.3, “Performing Major and Minor Version Upgrades”. Once the host has
	 been upgraded and rebooted, the basejail can then be
	 upgraded. freebsd-update(8) has no way of determining
	 which version is currently installed in the basejail, so the
	 original version must be specified. Use file(1) to
	 determine the original version in the basejail:
file /usr/jails/basejail/bin/sh
/usr/jails/basejail/bin/sh: ELF 64-bit LSB executable, x86-64, version 1 (FreeBSD), dynamically linked (uses shared libs), for FreeBSD 9.3, stripped
Now use this information to perform the upgrade from
	 9.3-RELEASE to the current version of
	 the host system:
ezjail-admin update -U -s 9.3-RELEASE
After updating the basejail, mergemaster(8) must
	 be run to update each jail's configuration files.
How to use mergemaster(8) depends on the purpose
	 and trustworthiness of a jail. If a jail's services or
	 users are not trusted, then mergemaster(8) should only
	 be run from within that jail:
Example 15.1. mergemaster(8) on Untrusted Jail
Delete the link from the jail's
	 /usr/src into the basejail and
	 create a new /usr/src in the jail
	 as a mountpoint. Mount the host computer's
	 /usr/src read-only on the jail's
	 new /usr/src mountpoint:
rm /usr/jails/jailname/usr/src
mkdir /usr/jails/jailname/usr/src
mount -t nullfs -o ro /usr/src /usr/jails/jailname/usr/src
Get a console in the jail:
ezjail-admin console jailname
Inside the jail, run mergemaster.
	 Then exit the jail console:
cd /usr/src
mergemaster -U
exit
Finally, unmount the jail's
	 /usr/src:
umount /usr/jails/jailname/usr/src

Example 15.2. mergemaster(8) on Trusted Jail
If the users and services in a jail are trusted,
	 mergemaster(8) can be run from the host:
mergemaster -U -D /usr/jails/jailname

Tip:
After a major version update it is recommended by
	 sysutils/ezjail to make sure your
	 pkg is of the correct version.
	 Therefore enter:
pkg-static upgrade -f pkg
to upgrade or downgrade to the appropriate
	 version.

15.6.4.2. Updating Ports
The ports tree in the basejail is shared by the other
	 jails. Updating that copy of the ports tree gives the other
	 jails the updated version also.
The basejail ports tree is updated with
	 portsnap(8):
ezjail-admin update -P
15.6.5. Controlling Jails
15.6.5.1. Stopping and Starting Jails
ezjail automatically starts
	 jails when the computer is started. Jails can be manually
	 stopped and restarted with stop and
	 start:
ezjail-admin stop sambajail
Stopping jails: sambajail.
By default, jails are started automatically when the
	 host computer starts. Autostarting can be disabled
	 with config:
ezjail-admin config -r norun seldomjail
This takes effect the next time the host computer is
	 started. A jail that is already running will not be
	 stopped.
Enabling autostart is very similar:
ezjail-admin config -r run oftenjail
15.6.5.2. Archiving and Restoring Jails
Use archive to create a
	 .tar.gz archive of a jail. The file
	 name is composed from the name of the jail and the current
	 date. Archive files are written to the archive directory,
	 /usr/jails/ezjail_archives. A
	 different archive directory can be chosen by setting
	 ezjail_archivedir in the configuration
	 file.
The archive file can be copied elsewhere as a backup, or
	 an existing jail can be restored from it with
	 restore. A new jail can be created from
	 the archive, providing a convenient way to clone existing
	 jails.
Stop and archive a jail named
	 wwwserver:
ezjail-admin stop wwwserver
Stopping jails: wwwserver.
ezjail-admin archive wwwserver
ls /usr/jails/ezjail-archives/
wwwserver-201407271153.13.tar.gz
Create a new jail named
	 wwwserver-clone from the archive created
	 in the previous step. Use the em1
	 interface and assign a new IP address to
	 avoid conflict with the original:
ezjail-admin create -a /usr/jails/ezjail_archives/wwwserver-201407271153.13.tar.gz wwwserver-clone 'lo1|127.0.3.1,em1|192.168.1.51'
15.6.6. Full Example: BIND in a
	Jail
Putting the BIND
	DNS server in a jail improves security by
	isolating it. This example creates a simple caching-only name
	server.
	The jail will be called
	 dns1.

	The jail will use IP address
	 192.168.1.240 on the host's
	 re0 interface.

	The upstream ISP's DNS servers are
	 at 10.0.0.62 and
	 10.0.0.61.

	The basejail has already been created and a ports tree
	 installed as shown in
	 Section 15.6.2, “Initial Setup”.

Example 15.3. Running BIND in a Jail
Create a cloned loopback interface by adding a line to
	 /etc/rc.conf:
cloned_interfaces="lo1"
Immediately create the new loopback interface:
service netif cloneup
Created clone interfaces: lo1.
Create the jail:
ezjail-admin create dns1 'lo1|127.0.2.1,re0|192.168.1.240'
Start the jail, connect to a console running on it, and
	 perform some basic configuration:
ezjail-admin start dns1
ezjail-admin console dns1
passwd
Changing local password for root
New Password:
Retype New Password:
tzsetup
sed -i .bak -e '/adjkerntz/ s/^/#/' /etc/crontab
sed -i .bak -e 's/127.0.0.1/127.0.2.1/g; s/localhost.my.domain/dns1.my.domain dns1/' /etc/hosts
Temporarily set the upstream DNS
	 servers in /etc/resolv.conf so ports
	 can be downloaded:
nameserver 10.0.0.62
nameserver 10.0.0.61
Still using the jail console, install
	 dns/bind99.
make -C /usr/ports/dns/bind99 install clean
Configure the name server by editing
	 /usr/local/etc/namedb/named.conf.
Create an Access Control List (ACL)
	 of addresses and networks that are permitted to send
	 DNS queries to this name server. This
	 section is added just before the options
	 section already in the file:
...
// or cause huge amounts of useless Internet traffic.

acl "trusted" {
	192.168.1.0/24;
	localhost;
	localnets;
};

options {
...
Use the jail IP address in the
	 listen-on setting to accept
	 DNS queries from other computers on the
	 network:
	listen-on	{ 192.168.1.240; };
A simple caching-only DNS name server
	 is created by changing the forwarders
	 section. The original file contains:
/*
	forwarders {
		127.0.0.1;
	};
*/
Uncomment the section by removing the
	 /* and */ lines.
	 Enter the IP addresses of the upstream
	 DNS servers. Immediately after the
	 forwarders section, add references to the
	 trusted ACL defined
	 earlier:
	forwarders {
		10.0.0.62;
		10.0.0.61;
	};

	allow-query { any; };
	allow-recursion { trusted; };
	allow-query-cache { trusted; };
Enable the service in
	 /etc/rc.conf:
named_enable="YES"
Start and test the name server:
service named start
wrote key file "/usr/local/etc/namedb/rndc.key"
Starting named.
/usr/local/bin/dig @192.168.1.240 freebsd.org
A response that includes
;; Got answer;
shows that the new DNS server is
	 working. A long delay followed by a response
	 including
;; connection timed out; no servers could be reached
shows a problem. Check the configuration settings and
	 make sure any local firewalls allow the new
	 DNS access to the upstream
	 DNS servers.
The new DNS server can use itself for
	 local name resolution, just like other local computers. Set
	 the address of the DNS server in the
	 client computer's
	 /etc/resolv.conf:
nameserver 192.168.1.240
A local DHCP server can be configured
	 to provide this address for a local DNS
	 server, providing automatic configuration on
	 DHCP clients.

Chapter 16. Mandatory Access Control

Chapter 16. Mandatory Access Control
Written
	by Tom Rhodes. 16.1. Synopsis
FreeBSD supports security extensions based on the
 POSIX®.1e draft. These security mechanisms include file system
 Access Control Lists (Section 14.9, “Access Control Lists”) and Mandatory
 Access Control (MAC). MAC
 allows access control modules to be loaded in order to implement
 security policies. Some modules provide protections for a
 narrow subset of the system, hardening a particular service.
 Others provide comprehensive labeled security across all
 subjects and objects. The mandatory part of the definition
 indicates that enforcement of controls is performed by
 administrators and the operating system. This is in contrast to
 the default security mechanism of Discretionary Access Control
 (DAC) where enforcement is left to the
 discretion of users.
This chapter focuses on the MAC framework
 and the set of pluggable security policy modules FreeBSD provides
 for enabling various security mechanisms.
After reading this chapter, you will know:
	The terminology associated with the
	 MAC framework.

	The capabilities of MAC security
	 policy modules as well as the difference between a labeled
	 and non-labeled policy.

	The considerations to take into account before
	 configuring a system to use the
	 MAC framework.

	Which MAC security policy modules
	 are included in FreeBSD and how to configure them.

	How to implement a more secure environment using the
	 MAC framework.

	How to test the MAC configuration
	 to ensure the framework has been properly
	 implemented.

Before reading this chapter, you should:
	Understand UNIX® and FreeBSD basics (Chapter 3, FreeBSD Basics).

	Have some familiarity with security and how it pertains
	 to FreeBSD (Chapter 14, Security).

Warning:
Improper MAC configuration may cause
	loss of system access, aggravation of users, or inability to
	access the features provided by
	Xorg. More importantly,
	MAC should not be relied upon to completely
	secure a system. The MAC framework only
	augments an existing security policy. Without sound security
	practices and regular security checks, the system will never
	be completely secure.
The examples contained within this chapter are for
	demonstration purposes and the example settings should
	not be implemented on a production
	system. Implementing any security policy takes a good deal of
	understanding, proper design, and thorough testing.

While this chapter covers a broad range of security issues
 relating to the MAC framework, the
 development of new MAC security policy
 modules will not be covered. A number of security policy
 modules included with the MAC framework have
 specific characteristics which are provided for both testing and
 new module development. Refer to mac_test(4),
 mac_stub(4) and mac_none(4) for more information on
 these security policy modules and the various mechanisms they
 provide.
16.2. Key Terms

16.2. Key Terms
The following key terms are used when referring to the
 MAC framework:
	compartment: a set of programs and
	 data to be partitioned or separated, where users are given
	 explicit access to specific component of a system. A
	 compartment represents a grouping, such as a work group,
	 department, project, or topic. Compartments make it
	 possible to implement a need-to-know-basis security
	 policy.

	integrity: the level of trust which
	 can be placed on data. As the integrity of the data is
	 elevated, so does the ability to trust that data.

	level: the increased or decreased
	 setting of a security attribute. As the level increases,
	 its security is considered to elevate as well.

	label: a security attribute which
	 can be applied to files, directories, or other items in the
	 system. It could be considered a confidentiality stamp.
	 When a label is placed on a file, it describes the security
	 properties of that file and will only permit access by
	 files, users, and resources with a similar security setting.
	 The meaning and interpretation of label values depends on
	 the policy configuration. Some policies treat a label as
	 representing the integrity or secrecy of an object while
	 other policies might use labels to hold rules for
	 access.

	multilabel: this property is a file
	 system option which can be set in single-user mode using
	 tunefs(8), during boot using fstab(5), or during
	 the creation of a new file system. This option permits
	 an administrator to apply different MAC
	 labels on different objects. This option only applies to
	 security policy modules which support labeling.

	single label: a policy where the
	 entire file system uses one label to enforce access control
	 over the flow of data. Whenever multilabel
	 is not set, all files will conform to the same label
	 setting.

	object: an entity through which
	 information flows under the direction of a
	 subject. This includes directories,
	 files, fields, screens, keyboards, memory, magnetic storage,
	 printers or any other data storage or moving device. An
	 object is a data container or a system resource. Access to
	 an object effectively means access to its data.

	subject: any active entity that
	 causes information to flow between
	 objects such as a user, user process,
	 or system process. On FreeBSD, this is almost always a
	 thread acting in a process on behalf of a user.

	policy: a collection of rules
	 which defines how objectives are to be achieved. A policy
	 usually documents how certain items are to be handled. This
	 chapter considers a policy to be a collection of rules which
	 controls the flow of data and information and defines who
	 has access to that data and information.

	high-watermark: this type of
	 policy permits the raising of security levels for the
	 purpose of accessing higher level information. In most
	 cases, the original level is restored after the process is
	 complete. Currently, the FreeBSD MAC
	 framework does not include this type of policy.

	low-watermark: this type of policy
	 permits lowering security levels for the purpose of
	 accessing information which is less secure. In most cases,
	 the original security level of the user is restored after
	 the process is complete. The only security policy module in
	 FreeBSD to use this is mac_lomac(4).

	sensitivity: usually used when
	 discussing Multilevel Security (MLS). A
	 sensitivity level describes how important or secret the data
	 should be. As the sensitivity level increases, so does the
	 importance of the secrecy, or confidentiality, of the
	 data.

16.3. Understanding MAC Labels

16.3. Understanding MAC Labels
A MAC label is a security attribute
 which may be applied to subjects and objects throughout the
 system. When setting a label, the administrator must
 understand its implications in order to prevent unexpected or
 undesired behavior of the system. The attributes available on
 an object depend on the loaded policy module, as policy modules
 interpret their attributes in different ways.
The security label on an object is used as a part of a
 security access control decision by a policy. With some
 policies, the label contains all of the information necessary
 to make a decision. In other policies, the labels may be
 processed as part of a larger rule set.
There are two types of label policies: single label and
 multi label. By default, the system will use single label. The
 administrator should be aware of the pros and cons of each in
 order to implement policies which meet the requirements of the
 system's security model.
A single label security policy only permits one label to be
 used for every subject or object. Since a single label policy
 enforces one set of access permissions across the entire system,
 it provides lower administration overhead, but decreases the
 flexibility of policies which support labeling. However, in
 many environments, a single label policy may be all that is
 required.
A single label policy is somewhat similar to
 DAC as root configures the policies so
 that users are placed in the appropriate categories and access
 levels. A notable difference is that many policy modules can
 also restrict root.
 Basic control over objects will then be released to the group,
 but root may revoke or
 modify the settings at any time.
When appropriate, a multi label policy can be set on a
 UFS file system by passing
 multilabel to tunefs(8). A multi label
 policy permits each subject or object to have its own
 independent MAC label. The decision to use a
 multi label or single label policy is only required for policies
 which implement the labeling feature, such as
 biba, lomac, and
 mls. Some policies, such as
 seeotheruids, portacl and
 partition, do not use labels at all.
Using a multi label policy on a partition and establishing a
 multi label security model can increase administrative overhead
 as everything in that file system has a label. This includes
 directories, files, and even device nodes.
The following command will set multilabel
 on the specified UFS file system. This may
 only be done in single-user mode and is not a requirement for
 the swap file system:
tunefs -l enable /
Note:
Some users have experienced problems with setting the
	multilabel flag on the root partition. If
	this is the case, please review Section 16.8, “Troubleshooting the MAC Framework”.

Since the multi label policy is set on a per-file system
 basis, a multi label policy may not be needed if the file system
 layout is well designed. Consider an example security
 MAC model for a FreeBSD web server. This
 machine uses the single label, biba/high, for
 everything in the default file systems. If the web server needs
 to run at biba/low to prevent write up
 capabilities, it could be installed to a separate
 UFS /usr/local file
 system set at biba/low.
16.3.1. Label Configuration
Virtually all aspects of label policy module configuration
	will be performed using the base system utilities. These
	commands provide a simple interface for object or subject
	configuration or the manipulation and verification of
	the configuration.
All configuration may be done using
	setfmac, which is used to set
	MAC labels on system objects, and
	setpmac, which is used to set the labels on
	system subjects. For example, to set the
	biba MAC label to
	high on test:
setfmac biba/high test
If the configuration is successful, the prompt will be
	returned without error. A common error is
	Permission denied which usually occurs
	when the label is being set or modified on a restricted
	object. Other conditions may produce different failures. For
	instance, the file may not be owned by the user attempting to
	relabel the object, the object may not exist, or the object
	may be read-only. A mandatory policy will not allow the
	process to relabel the file, maybe because of a property of
	the file, a property of the process, or a property of the
	proposed new label value. For example, if a user running at
	low integrity tries to change the label of a high integrity
	file, or a user running at low integrity tries to change the
	label of a low integrity file to a high integrity label, these
	operations will fail.
The system administrator may use
	setpmac to override the policy module's
	settings by assigning a different label to the invoked
	process:
setfmac biba/high test
Permission denied
setpmac biba/low setfmac biba/high test
getfmac test
test: biba/high
For currently running processes, such as
	sendmail,
	getpmac is usually used instead. This
	command takes a process ID (PID) in place
	of a command name. If users attempt to manipulate a file not
	in their access, subject to the rules of the loaded policy
	modules, the Operation not permitted
	error will be displayed.
16.3.2. Predefined Labels
A few FreeBSD policy modules which support the labeling
	feature offer three predefined labels: low,
	equal, and high,
	where:
	low is considered the lowest label
	 setting an object or subject may have. Setting this on
	 objects or subjects blocks their access to objects or
	 subjects marked high.

	equal sets the subject or object to
	 be disabled or unaffected and should only be placed on
	 objects considered to be exempt from the policy.

	high grants an object or subject
	 the highest setting available in the Biba and
	 MLS policy modules.

Such policy modules include mac_biba(4),
	mac_mls(4) and mac_lomac(4). Each of the predefined
	labels establishes a different information flow directive.
	Refer to the manual page of the module to determine the traits
	of the generic label configurations.
16.3.3. Numeric Labels
The Biba and MLS policy modules support
	a numeric label which may be set to indicate the precise level
	of hierarchical control. This numeric level is used to
	partition or sort information into different groups of
	classification, only permitting access to that group or a
	higher group level. For example:
biba/10:2+3+6(5:2+3-20:2+3+4+5+6)
may be interpreted as “Biba Policy Label/Grade
	 10:Compartments 2, 3 and 6: (grade 5 ...”)
In this example, the first grade would be considered the
	effective grade with effective compartments, the second grade
	is the low grade, and the last one is the high grade. In most
	configurations, such fine-grained settings are not needed as
	they are considered to be advanced configurations.
System objects only have a current grade and compartment.
	System subjects reflect the range of available rights in the
	system, and network interfaces, where they are used for access
	control.
The grade and compartments in a subject and object pair
	are used to construct a relationship known as
	dominance, in which a subject dominates
	an object, the object dominates the subject, neither dominates
	the other, or both dominate each other. The “both
	 dominate” case occurs when the two labels are equal.
	Due to the information flow nature of Biba, a user has rights
	to a set of compartments that might correspond to projects,
	but objects also have a set of compartments. Users may have
	to subset their rights using su or
	setpmac in order to access objects in a
	compartment from which they are not restricted.
16.3.4. User Labels
Users are required to have labels so that their files and
	processes properly interact with the security policy defined
	on the system. This is configured in
	/etc/login.conf using login classes.
	Every policy module that uses labels will implement the user
	class setting.
To set the user class default label which will be enforced
	by MAC, add a label entry.
	An example label entry containing every
	policy module is displayed below. Note that in a real
	configuration, the administrator would never enable every
	policy module. It is recommended that the rest of this
	chapter be reviewed before any configuration is
	implemented.
default:\
	:copyright=/etc/COPYRIGHT:\
	:welcome=/etc/motd:\
	:setenv=MAIL=/var/mail/$,BLOCKSIZE=K:\
	:path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin:\
	:manpath=/usr/share/man /usr/local/man:\
	:nologin=/usr/sbin/nologin:\
	:cputime=1h30m:\
	:datasize=8M:\
	:vmemoryuse=100M:\
	:stacksize=2M:\
	:memorylocked=4M:\
	:memoryuse=8M:\
	:filesize=8M:\
	:coredumpsize=8M:\
	:openfiles=24:\
	:maxproc=32:\
	:priority=0:\
	:requirehome:\
	:passwordtime=91d:\
	:umask=022:\
	:ignoretime@:\
	:label=partition/13,mls/5,biba/10(5-15),lomac/10[2]:
While users can not modify the default value, they may
	change their label after they login, subject to the
	constraints of the policy. The example above tells the Biba
	policy that a process's minimum integrity is
	5, its maximum is 15,
	and the default effective label is 10. The
	process will run at 10 until it chooses to
	change label, perhaps due to the user using
	setpmac, which will be constrained by Biba
	to the configured range.
After any change to login.conf, the
	login class capability database must be rebuilt using
	cap_mkdb.
Many sites have a large number of users requiring
	several different user classes. In depth planning is
	required as this can become difficult to manage.
16.3.5. Network Interface Labels
Labels may be set on network interfaces to help control
	the flow of data across the network. Policies using network
	interface labels function in the same way that policies
	function with respect to objects. Users at high settings in
	Biba, for example, will not be permitted to access network
	interfaces with a label of low.
When setting the MAC label on network
	interfaces, maclabel may be passed to
	ifconfig:
ifconfig bge0 maclabel biba/equal
This example will set the MAC label of
	biba/equal on the bge0
	interface. When using a setting similar to
	biba/high(low-high), the entire label
	should be quoted to prevent an error from being
	returned.
Each policy module which supports labeling has a tunable
	which may be used to disable the MAC label
	on network interfaces. Setting the label to
	equal will have a similar effect. Review
	the output of sysctl, the policy manual
	pages, and the information in the rest of this chapter for
	more information on those tunables.
16.4. Planning the Security Configuration

16.4. Planning the Security Configuration
Before implementing any MAC policies, a
 planning phase is recommended. During the planning stages, an
 administrator should consider the implementation requirements
 and goals, such as:
	How to classify information and resources available on
	 the target systems.

	Which information or resources to restrict access to
	 along with the type of restrictions that should be
	 applied.

	Which MAC modules will be required to
	 achieve this goal.

A trial run of the trusted system and its configuration
 should occur before a
 MAC implementation is used on production
 systems. Since different environments have different needs and
 requirements, establishing a complete security profile will
 decrease the need of changes once the system goes live.
Consider how the MAC framework augments
 the security of the system as a whole. The various security
 policy modules provided by the MAC framework
 could be used to protect the network and file systems or to
 block users from accessing certain ports and sockets. Perhaps
 the best use of the policy modules is to load several security
 policy modules at a time in order to provide a
 MLS environment. This approach differs from
 a hardening policy, which typically hardens elements of a system
 which are used only for specific purposes. The downside to
 MLS is increased administrative
 overhead.
The overhead is minimal when compared to the lasting effect
 of a framework which provides the ability to pick and choose
 which policies are required for a specific configuration and
 which keeps performance overhead down. The reduction of support
 for unneeded policies can increase the overall performance of
 the system as well as offer flexibility of choice. A good
 implementation would consider the overall security requirements
 and effectively implement the various security policy modules
 offered by the framework.
A system utilizing MAC guarantees that a
 user will not be permitted to change security attributes at
 will. All user utilities, programs, and scripts must work
 within the constraints of the access rules provided by the
 selected security policy modules and control of the
 MAC access rules is in the hands of the
 system administrator.
It is the duty of the system administrator to carefully
 select the correct security policy modules. For an environment
 that needs to limit access control over the network, the
 mac_portacl(4), mac_ifoff(4), and mac_biba(4)
 policy modules make good starting points. For an environment
 where strict confidentiality of file system objects is required,
 consider the mac_bsdextended(4) and mac_mls(4) policy
 modules.
Policy decisions could be made based on network
 configuration. If only certain users should be permitted
 access to ssh(1), the mac_portacl(4) policy module is
 a good choice. In the case of file systems, access to objects
 might be considered confidential to some users, but not to
 others. As an example, a large development team might be
 broken off into smaller projects where developers in project A
 might not be permitted to access objects written by developers
 in project B. Yet both projects might need to access objects
 created by developers in project C. Using the different
 security policy modules provided by the MAC
 framework, users could be divided into these groups and then
 given access to the appropriate objects.
Each security policy module has a unique way of dealing with
 the overall security of a system. Module selection should be
 based on a well thought out security policy which may require
 revision and reimplementation. Understanding the different
 security policy modules offered by the MAC
 framework will help administrators choose the best policies
 for their situations.
 The rest of this chapter covers the available modules,
 describes their use and configuration, and in some cases,
 provides insight on applicable situations.
Caution:
Implementing MAC is much like
	implementing a firewall since care must be taken to prevent
	being completely locked out of the system. The ability to
	revert back to a previous configuration should be considered
	and the implementation of MAC over a remote
	connection should be done with extreme caution.

16.7. Nagios in a MAC Jail

16.7. Nagios in a MAC Jail
This section demonstrates the steps that are needed to
 implement the Nagios network
 monitoring system in a MAC environment. This
 is meant as an example which still requires the administrator to
 test that the implemented policy meets the security requirements
 of the network before using in a production environment.
This example requires multilabel to be set
 on each file system. It also assumes that
 net-mgmt/nagios-plugins,
 net-mgmt/nagios, and
 www/apache22 are all installed, configured,
 and working correctly before attempting the integration into the
 MAC framework.
16.7.1. Create an Insecure User Class
Begin the procedure by adding the following user class
	to /etc/login.conf:
insecure:\
:copyright=/etc/COPYRIGHT:\
:welcome=/etc/motd:\
:setenv=MAIL=/var/mail/$,BLOCKSIZE=K:\
:path=~/bin:/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin
:manpath=/usr/share/man /usr/local/man:\
:nologin=/usr/sbin/nologin:\
:cputime=1h30m:\
:datasize=8M:\
:vmemoryuse=100M:\
:stacksize=2M:\
:memorylocked=4M:\
:memoryuse=8M:\
:filesize=8M:\
:coredumpsize=8M:\
:openfiles=24:\
:maxproc=32:\
:priority=0:\
:requirehome:\
:passwordtime=91d:\
:umask=022:\
:ignoretime@:\
:label=biba/10(10-10):
Then, add the following line to the default user class
	section:
:label=biba/high:
Save the edits and issue the following command to rebuild
	the database:
cap_mkdb /etc/login.conf
16.7.2. Configure Users
Set the root
	user to the default class using:
pw usermod root -L default
All user accounts that are not root will now require a login
	class. The login class is required, otherwise users will be
	refused access to common commands. The following
	sh script should do the trick:
for x in `awk -F: '($3 >= 1001) && ($3 != 65534) { print $1 }' \
	/etc/passwd`; do pw usermod $x -L default; done;
Next, drop the nagios and www accounts into the insecure
	class:
pw usermod nagios -L insecure
pw usermod www -L insecure
16.7.3. Create the Contexts File
A contexts file should now be created as
	 /etc/policy.contexts:
This is the default BIBA policy for this system.

System:
/var/run(/.*)?			biba/equal

/dev/(/.*)?			biba/equal

/var				biba/equal
/var/spool(/.*)?		biba/equal

/var/log(/.*)?			biba/equal

/tmp(/.*)?			biba/equal
/var/tmp(/.*)?			biba/equal

/var/spool/mqueue		biba/equal
/var/spool/clientmqueue		biba/equal

For Nagios:
/usr/local/etc/nagios(/.*)?	biba/10

/var/spool/nagios(/.*)?		biba/10

For apache
/usr/local/etc/apache(/.*)?	biba/10
This policy enforces security by setting restrictions on
	the flow of information. In this specific configuration,
	users, including root, should never be
	allowed to access Nagios.
	Configuration files and processes that are a part of
	Nagios will be completely self
	contained or jailed.
This file will be read after running
	setfsmac on every file system. This
	example sets the policy on the root file system:
setfsmac -ef /etc/policy.contexts /
Next, add these edits to the main section of
	/etc/mac.conf:
default_labels file ?biba
default_labels ifnet ?biba
default_labels process ?biba
default_labels socket ?biba
16.7.4. Loader Configuration
To finish the configuration, add the following lines to
	/boot/loader.conf:
mac_biba_load="YES"
mac_seeotheruids_load="YES"
security.mac.biba.trust_all_interfaces=1
And the following line to the network card configuration
	stored in /etc/rc.conf. If the primary
	network configuration is done via DHCP,
	this may need to be configured manually after every system
	boot:
maclabel biba/equal
16.7.5. Testing the Configuration
First, ensure that the web server and
	Nagios will not be started on
	system initialization and reboot. Ensure that root cannot access any of the
	files in the Nagios configuration
	directory. If root
	can list the contents of
	/var/spool/nagios, something is wrong.
	Instead, a “permission denied” error should be
	returned.
If all seems well, Nagios,
	Apache, and
	Sendmail can now be started:
cd /etc/mail && make stop && \
setpmac biba/equal make start && setpmac biba/10\(10-10\) apachectl start && \
setpmac biba/10\(10-10\) /usr/local/etc/rc.d/nagios.sh forcestart
Double check to ensure that everything is working
	properly. If not, check the log files for error messages. If
	needed, use sysctl(8) to disable the mac_biba(4)
	security policy module and try starting everything again as
	usual.
Note:
The root user
	 can still change the security enforcement and edit its
	 configuration files. The following command will permit the
	 degradation of the security policy to a lower grade for a
	 newly spawned shell:
setpmac biba/10 csh
To block this from happening, force the user into a
	 range using login.conf(5). If setpmac(8) attempts
	 to run a command outside of the compartment's range, an
	 error will be returned and the command will not be executed.
	 In this case, set root to
	 biba/high(high-high).

17.3. Audit Configuration

17.3. Audit Configuration
User space support for event auditing is installed as part
 of the base FreeBSD operating system. Kernel support is available
 in the GENERIC kernel by default,
 and auditd(8) can be enabled
 by adding the following line to
 /etc/rc.conf:
auditd_enable="YES"
Then, start the audit daemon:
service auditd start
Users who prefer to compile a custom kernel must include the
 following line in their custom kernel configuration file:
options	AUDIT
17.3.1. Event Selection Expressions
Selection expressions are used in a number of places in
	the audit configuration to determine which events should be
	audited. Expressions contain a list of event classes to
	match. Selection expressions are evaluated from left to
	right, and two expressions are combined by appending one onto
	the other.
Table 17.1, “Default Audit Event Classes” summarizes the default
	audit event classes:
Table 17.1. Default Audit Event Classes
	Class Name	Description	Action
	all	all	Match all event classes.
	aa	authentication and authorization	
	ad	administrative	Administrative actions performed on the system as
		a whole.
	ap	application	Application defined action.
	cl	file close	Audit calls to the
		close system call.
	ex	exec	Audit program execution. Auditing of command
		line arguments and environmental variables is
		controlled via audit_control(5) using the
		argv and envv
		parameters to the policy
		setting.
	fa	file attribute access	Audit the access of object attributes such as
		stat(1) and pathconf(2).
	fc	file create	Audit events where a file is created as a
		result.
	fd	file delete	Audit events where file deletion occurs.
	fm	file attribute modify	Audit events where file attribute modification
		occurs, such as by chown(8), chflags(1), and
		flock(2).
	fr	file read	Audit events in which data is read or files are
		opened for reading.
	fw	file write	Audit events in which data is written or files
		are written or modified.
	io	ioctl	Audit use of the ioctl
		system call.
	ip	ipc	Audit various forms of Inter-Process
		Communication, including POSIX pipes and System V
		IPC operations.
	lo	login_logout	Audit login(1) and logout(1)
		events.
	na	non attributable	Audit non-attributable events.
	no	invalid class	Match no audit events.
	nt	network	Audit events related to network actions such as
		connect(2) and accept(2).
	ot	other	Audit miscellaneous events.
	pc	process	Audit process operations such as exec(3) and
		exit(3).

These audit event classes may be customized by modifying
	the audit_class and
	audit_event configuration files.
Each audit event class may be combined with a prefix
	indicating whether successful/failed operations are matched,
	and whether the entry is adding or removing matching for the
	class and type. Table 17.2, “Prefixes for Audit Event Classes” summarizes
	the available prefixes:
Table 17.2. Prefixes for Audit Event Classes
	Prefix	Action
	+	Audit successful events in this class.
	-	Audit failed events in this class.
	^	Audit neither successful nor failed events in
		this class.
	^+	Do not audit successful events in this
		class.
	^-	Do not audit failed events in this class.

If no prefix is present, both successful and failed
	instances of the event will be audited.
The following example selection string selects both
	successful and failed login/logout events, but only successful
	execution events:
lo,+ex
17.3.2. Configuration Files
The following configuration files for security event
	auditing are found in
	/etc/security:
	audit_class: contains the
	 definitions of the audit classes.

	audit_control: controls aspects
	 of the audit subsystem, such as default audit classes,
	 minimum disk space to leave on the audit log volume, and
	 maximum audit trail size.

	audit_event: textual names and
	 descriptions of system audit events and a list of which
	 classes each event is in.

	audit_user: user-specific audit
	 requirements to be combined with the global defaults at
	 login.

	audit_warn: a customizable shell
	 script used by auditd(8) to generate warning messages
	 in exceptional situations, such as when space for audit
	 records is running low or when the audit trail file has
	 been rotated.

Warning:
Audit configuration files should be edited and
	 maintained carefully, as errors in configuration may result
	 in improper logging of events.

In most cases, administrators will only need to modify
	audit_control and
	audit_user. The first file controls
	system-wide audit properties and policies and the second file
	may be used to fine-tune auditing by user.
17.3.2.1. The audit_control File
A number of defaults for the audit subsystem are
	 specified in audit_control:
dir:/var/audit
dist:off
flags:lo,aa
minfree:5
naflags:lo,aa
policy:cnt,argv
filesz:2M
expire-after:10M
The dir entry is used to set one or
	 more directories where audit logs will be stored. If more
	 than one directory entry appears, they will be used in order
	 as they fill. It is common to configure audit so that audit
	 logs are stored on a dedicated file system, in order to
	 prevent interference between the audit subsystem and other
	 subsystems if the file system fills.
If the dist field is set to
	 on or yes, hard links
	 will be created to all trail files in
	 /var/audit/dist.
The flags field sets the system-wide
	 default preselection mask for attributable events. In the
	 example above, successful and failed login/logout events as
	 well as authentication and authorization are audited for all
	 users.
The minfree entry defines the minimum
	 percentage of free space for the file system where the audit
	 trail is stored.
The naflags entry specifies audit
	 classes to be audited for non-attributed events, such as the
	 login/logout process and authentication and
	 authorization.
The policy entry specifies a
	 comma-separated list of policy flags controlling various
	 aspects of audit behavior. The cnt
	 indicates that the system should continue running despite an
	 auditing failure (this flag is highly recommended). The
	 other flag, argv, causes command line
	 arguments to the execve(2) system call to be audited as
	 part of command execution.
The filesz entry specifies the maximum
	 size for an audit trail before automatically terminating and
	 rotating the trail file. A value of 0
	 disables automatic log rotation. If the requested file size
	 is below the minimum of 512k, it will be ignored and a log
	 message will be generated.
The expire-after field specifies when
	 audit log files will expire and be removed.
17.3.2.2. The audit_user File
The administrator can specify further audit requirements
	 for specific users in audit_user.
	 Each line configures auditing for a user via two fields:
	 the alwaysaudit field specifies a set of
	 events that should always be audited for the user, and the
	 neveraudit field specifies a set of
	 events that should never be audited for the user.
The following example entries audit login/logout events
	 and successful command execution for root and file creation and
	 successful command execution for www. If used with the
	 default audit_control, the
	 lo entry for root is redundant, and
	 login/logout events will also be audited for www.
root:lo,+ex:no
www:fc,+ex:no
Chapter 18. Storage

Chapter 18. Storage
18.1. Synopsis
This chapter covers the use of disks and storage media in
 FreeBSD. This includes SCSI and
 IDE disks, CD and
 DVD media, memory-backed disks, and
 USB storage devices.
After reading this chapter, you will know:
	How to add additional hard disks to a FreeBSD
	 system.

	How to grow the size of a disk's partition on
	 FreeBSD.

	How to configure FreeBSD to use USB
	 storage devices.

	How to use CD and
	 DVD media on a FreeBSD system.

	How to use the backup programs available under
	 FreeBSD.

	How to set up memory disks.

	What file system snapshots are and how to use them
	 efficiently.

	How to use quotas to limit disk space usage.

	How to encrypt disks and swap to secure them against
	 attackers.

	How to configure a highly available storage
	 network.

Before reading this chapter, you should:
	Know how to configure and
	 install a new FreeBSD kernel.

18.3. Resizing and Growing Disks

18.3. Resizing and Growing Disks
Originally contributed by Allan Jude. A disk's capacity can increase without any changes to the
 data already present. This happens commonly with virtual
 machines, when the virtual disk turns out to be too small and is
 enlarged. Sometimes a disk image is written to a
 USB memory stick, but does not use the full
 capacity. Here we describe how to resize or
 grow disk contents to take advantage of
 increased capacity.
Determine the device name of the disk to be resized by
 inspecting /var/run/dmesg.boot. In this
 example, there is only one SATA disk in the
 system, so the drive will appear as
 ada0.
List the partitions on the disk to see the current
 configuration:
gpart show ada0
=> 34 83886013 ada0 GPT (48G) [CORRUPT]
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 4194236 3 freebsd-swap (2G)
 83886046 1 - free - (512B)
Note:
If the disk was formatted with the
	GPT partitioning scheme, it may show
	as “corrupted” because the GPT
	backup partition table is no longer at the end of the
	drive. Fix the backup
	partition table with
	gpart:
gpart recover ada0
ada0 recovered

Now the additional space on the disk is available for
 use by a new partition, or an existing partition can be
 expanded:
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 4194236 3 freebsd-swap (2G)
 83886046 18513921 - free - (8.8G)
Partitions can only be resized into contiguous free space.
 Here, the last partition on the disk is the swap partition, but
 the second partition is the one that needs to be resized. Swap
 partitions only contain temporary data, so it can safely be
 unmounted, deleted, and then recreate the third partition after
 resizing the second partition.
Disable the swap partition:
swapoff /dev/ada0p3
Delete the third partition, specified by the
 -i flag, from the disk
 ada0.

gpart delete -i 3 ada0
ada0p3 deleted
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 79691648 2 freebsd-ufs (38G)
 79691810 22708157 - free - (10G)
Warning:
There is risk of data loss when modifying the partition
	table of a mounted file system. It is best to perform the
	following steps on an unmounted file system while running from
	a live CD-ROM or USB
	device. However, if absolutely necessary, a mounted file
	system can be resized after disabling GEOM safety
	features:
sysctl kern.geom.debugflags=16

Resize the partition, leaving room to recreate a swap
 partition of the desired size. The partition to resize is
 specified with -i, and the new desired size
 with -s. Optionally, alignment of the
 partition is controlled with -a. This only
 modifies the size of the partition. The file system in the
 partition will be expanded in a separate step.
gpart resize -i 2 -s 47G -a 4k ada0
ada0p2 resized
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 98566144 2 freebsd-ufs (47G)
 98566306 3833661 - free - (1.8G)
Recreate the swap partition and activate it. If no size
 is specified with -s, all remaining space is
 used:
gpart add -t freebsd-swap -a 4k ada0
ada0p3 added
gpart show ada0
=> 34 102399933 ada0 GPT (48G)
 34 128 1 freebsd-boot (64k)
 162 98566144 2 freebsd-ufs (47G)
 98566306 3833661 3 freebsd-swap (1.8G)
swapon /dev/ada0p3
Grow the UFS file system to use the new
 capacity of the resized partition:
growfs /dev/ada0p2
Device is mounted read-write; resizing will result in temporary write suspension for /.
It's strongly recommended to make a backup before growing the file system.
OK to grow file system on /dev/ada0p2, mounted on /, from 38GB to 47GB? [Yes/No] Yes
super-block backups (for fsck -b #) at:
 80781312, 82063552, 83345792, 84628032, 85910272, 87192512, 88474752,
 89756992, 91039232, 92321472, 93603712, 94885952, 96168192, 97450432
If the file system is ZFS, the resize is
 triggered by running the online subcommand with
 -e:
zpool online -e zroot /dev/ada0p2
Both the partition and the file system on it have now been
 resized to use the newly-available disk space.
18.8. Backup Basics

18.8. Backup Basics
Implementing a backup plan is essential in order to have the
 ability to recover from disk failure, accidental file deletion,
 random file corruption, or complete machine destruction,
 including destruction of on-site backups.
The backup type and schedule will vary, depending upon the
 importance of the data, the granularity needed for file
 restores, and the amount of acceptable downtime. Some possible
 backup techniques include:
	Archives of the whole system, backed up onto permanent,
	 off-site media. This provides protection against all of the
	 problems listed above, but is slow and inconvenient to
	 restore from, especially for non-privileged users.

	File system snapshots, which are useful for restoring
	 deleted files or previous versions of files.

	Copies of whole file systems or disks which are
	 synchronized with another system on the network using a
	 scheduled net/rsync.

	Hardware or software RAID, which
	 minimizes or avoids downtime when a disk fails.

Typically, a mix of backup techniques is used. For
 example, one could create a schedule to automate a weekly, full
 system backup that is stored off-site and to supplement this
 backup with hourly ZFS snapshots. In addition, one could make a
 manual backup of individual directories or files before making
 file edits or deletions.
This section describes some of the utilities which can be
 used to create and manage backups on a FreeBSD system.
18.8.1. File System Backups
The traditional UNIX® programs for backing up a file
	system are dump(8), which creates the backup, and
	restore(8), which restores the backup. These utilities
	work at the disk block level, below the abstractions of the
	files, links, and directories that are created by file
	systems. Unlike other backup software,
	dump backs up an entire file system and is
	unable to backup only part of a file system or a directory
	tree that spans multiple file systems. Instead of writing
	files and directories, dump writes the raw
	data blocks that comprise files and directories.
Note:
If dump is used on the root
	 directory, it will not back up /home,
	 /usr or many other directories since
	 these are typically mount points for other file systems or
	 symbolic links into those file systems.

When used to restore data, restore
	stores temporary files in /tmp/ by
	default. When using a recovery disk with a small
	/tmp, set TMPDIR to a
	directory with more free space in order for the restore to
	succeed.
When using dump, be aware that some
	quirks remain from its early days in Version 6 of
	AT&T UNIX®,circa 1975. The default parameters assume a
	backup to a 9-track tape, rather than to another type of media
	or to the high-density tapes available today. These defaults
	must be overridden on the command line.
It is possible to backup a file system across the network
	to a another system or to a tape drive attached to another
	computer. While the rdump(8) and rrestore(8)
	utilities can be used for this purpose, they are not
	considered to be secure.
Instead, one can use dump and
	restore in a more secure fashion over an
	SSH connection. This example creates a
	full, compressed backup of /usr and sends
	the backup file to the specified host over a
	SSH connection.
Example 18.1. Using dump over
	 ssh
/sbin/dump -0uan -f - /usr | gzip -2 | ssh -c blowfish \
 targetuser@targetmachine.example.com dd of=/mybigfiles/dump-usr-l0.gz

This example sets RSH in order to write the
	backup to a tape drive on a remote system over a
	SSH connection:
Example 18.2. Using dump over
	 ssh with RSH
	 Set
env RSH=/usr/bin/ssh /sbin/dump -0uan -f targetuser@targetmachine.example.com:/dev/sa0 /usr

18.8.2. Directory Backups
Several built-in utilities are available for backing up
	and restoring specified files and directories as
	needed.
A good choice for making a backup of all of the files in a
	directory is tar(1). This utility dates back to Version
	6 of AT&T UNIX® and by default assumes a recursive backup
	to a local tape device. Switches can be used to instead
	specify the name of a backup file.
This example creates a compressed backup of the current
	directory and saves it to
	/tmp/mybackup.tgz. When creating a
	backup file, make sure that the backup is not saved to the
	same directory that is being backed up.
Example 18.3. Backing Up the Current Directory with
	 tar
tar czvf /tmp/mybackup.tgz .

To restore the entire backup, cd into
	the directory to restore into and specify the name of the
	backup. Note that this will overwrite any newer versions of
	files in the restore directory. When in doubt, restore to a
	temporary directory or specify the name of the file within the
	backup to restore.
Example 18.4. Restoring Up the Current Directory with
	 tar
tar xzvf /tmp/mybackup.tgz

There are dozens of available switches which are described
	in tar(1). This utility also supports the use of exclude
	patterns to specify which files should not be included when
	backing up the specified directory or restoring files from a
	backup.
To create a backup using a specified list of files and
	directories, cpio(1) is a good choice. Unlike
	tar, cpio does not know
	how to walk the directory tree and it must be provided the
	list of files to backup.
For example, a list of files can be created using
	ls or find. This
	example creates a recursive listing of the current directory
	which is then piped to cpio in order to
	create an output backup file named
	/tmp/mybackup.cpio.
Example 18.5. Using ls and cpio
	 to Make a Recursive Backup of the Current Directory
ls -R | cpio -ovF /tmp/mybackup.cpio

A backup utility which tries to bridge the features
	provided by tar and cpio
	is pax(1). Over the years, the various versions of
	tar and cpio became
	slightly incompatible. POSIX® created pax
	which attempts to read and write many of the various
	cpio and tar formats,
	plus new formats of its own.
The pax equivalent to the previous
	examples would be:
Example 18.6. Backing Up the Current Directory with
	 pax
pax -wf /tmp/mybackup.pax .

18.8.3. Using Data Tapes for Backups
While tape technology has continued to evolve, modern
	backup systems tend to combine off-site backups with local
	removable media. FreeBSD supports any tape drive that uses
	SCSI, such as LTO or
	DAT. There is limited support for
	SATA and USB tape
	drives.
For SCSI tape devices, FreeBSD uses the
	sa(4) driver and the /dev/sa0,
	/dev/nsa0, and
	/dev/esa0 devices. The physical device
	name is /dev/sa0. When
	/dev/nsa0 is used, the backup application
	will not rewind the tape after writing a file, which allows
	writing more than one file to a tape. Using
	/dev/esa0 ejects the tape after the
	device is closed.
In FreeBSD, mt is used to control
	operations of the tape drive, such as seeking through files on
	a tape or writing tape control marks to the tape. For
	example, the first three files on a tape can be preserved by
	skipping past them before writing a new file:
mt -f /dev/nsa0 fsf 3
This utility supports many operations. Refer to
	mt(1) for details.
To write a single file to tape using
	tar, specify the name of the tape device
	and the file to backup:
tar cvf /dev/sa0 file
To recover files from a tar archive
	on tape into the current directory:
tar xvf /dev/sa0
To backup a UFS file system, use
	dump. This examples backs up
	/usr without rewinding the tape when
	finished:
dump -0aL -b64 -f /dev/nsa0 /usr
To interactively restore files from a
	dump file on tape into the current
	directory:
restore -i -f /dev/nsa0
18.8.4. Third-Party Backup Utilities
The FreeBSD Ports Collection provides many third-party
	utilities which can be used to schedule the creation of
	backups, simplify tape backup, and make backups easier and
	more convenient. Many of these applications are client/server
	based and can be used to automate the backups of a single
	system or all of the computers in a network.
Popular utilities include
	Amanda,
	Bacula,
	rsync, and
	duplicity.
18.8.5. Emergency Recovery
In addition to regular backups, it is recommended to
	perform the following steps as part of an emergency
	preparedness plan.
Create a print copy of the output of the following
	commands:
	gpart show

	more /etc/fstab

	dmesg

Store this printout and a copy of the installation media
	in a secure location. Should an emergency restore be
	needed, boot into the installation media and select
	Live CD to access a rescue shell. This
	rescue mode can be used to view the current state of the
	system, and if needed, to reformat disks and restore data
	from backups.
Note:
The installation media for
	 FreeBSD/i386 11.2-RELEASE does not
	 include a rescue shell. For this version, instead
	 download and burn a Livefs CD image from
	 ftp://ftp.FreeBSD.org/pub/FreeBSD/releases/i386/ISO-IMAGES/11.2/FreeBSD-11.2-RELEASE-i386-livefs.iso.

Next, test the rescue shell and the backups. Make notes
	of the procedure. Store these notes with the media, the
	printouts, and the backups. These notes may prevent the
	inadvertent destruction of the backups while under the stress
	of performing an emergency recovery.
For an added measure of security, store the latest backup
	at a remote location which is physically separated from the
	computers and disk drives by a significant distance.
18.9. Memory Disks

18.9. Memory Disks
Reorganized and enhanced by Marc Fonvieille. In addition to physical disks, FreeBSD also supports the
 creation and use of memory disks. One possible use for a
 memory disk is to access the contents of an
 ISO file system without the overhead of first
 burning it to a CD or DVD,
 then mounting the CD/DVD media.
In FreeBSD, the md(4) driver is used to provide support
 for memory disks. The GENERIC kernel
 includes this driver. When using a custom kernel configuration
 file, ensure it includes this line:
device md
18.9.1. Attaching and Detaching Existing Images
To mount an existing file system image, use
	mdconfig to specify the name of the
	ISO file and a free unit number. Then,
	refer to that unit number to mount it on an existing mount
	point. Once mounted, the files in the ISO
	will appear in the mount point. This example attaches
	diskimage.iso to the memory device
	/dev/md0 then mounts that memory device
	on /mnt:
mdconfig -f diskimage.iso -u 0
mount -t cd9660 /dev/md0 /mnt
Notice that -t cd9660 was used to mount
	an ISO format. If a unit number is not specified with
	-u, mdconfig will
	automatically allocate an unused memory device and output
	the name of the allocated unit, such as
	md4. Refer to mdconfig(8) for more
	details about this command and its options.
When a memory disk is no longer in use, its resources
	should be released back to the system. First, unmount the
	file system, then use mdconfig to detach
	the disk from the system and release its resources. To
	continue this example:
umount /mnt
mdconfig -d -u 0
To determine if any memory disks are still attached to the
	system, type mdconfig -l.
18.9.2. Creating a File- or Memory-Backed Memory Disk
FreeBSD also supports memory disks where the storage to use
	is allocated from either a hard disk or an area of memory.
	The first method is commonly referred to as a file-backed file
	system and the second method as a memory-backed file system.
	Both types can be created using
	mdconfig.
To create a new memory-backed file system, specify a type
	of swap and the size of the memory disk to
	create. Then, format the memory disk with a file system and
	mount as usual. This example creates a 5M memory disk on unit
	1. That memory disk is then formatted with
	the UFS file system before it is
	mounted:
mdconfig -a -t swap -s 5m -u 1
newfs -U md1
/dev/md1: 5.0MB (10240 sectors) block size 16384, fragment size 2048
 using 4 cylinder groups of 1.27MB, 81 blks, 192 inodes.
 with soft updates
super-block backups (for fsck -b #) at:
 160, 2752, 5344, 7936
mount /dev/md1 /mnt
df /mnt
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/md1 4718 4 4338 0% /mnt
To create a new file-backed memory disk, first allocate an
	area of disk to use. This example creates an empty 5MB file
	named newimage:
dd if=/dev/zero of=newimage bs=1k count=5k
5120+0 records in
5120+0 records out
Next, attach that file to a memory disk, label the memory
	disk and format it with the UFS file
	system, mount the memory disk, and verify the size of the
	file-backed disk:
mdconfig -f newimage -u 0
bsdlabel -w md0 auto
newfs -U md0a
/dev/md0a: 5.0MB (10224 sectors) block size 16384, fragment size 2048
 using 4 cylinder groups of 1.25MB, 80 blks, 192 inodes.
super-block backups (for fsck -b #) at:
 160, 2720, 5280, 7840
mount /dev/md0a /mnt
df /mnt
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/md0a 4710 4 4330 0% /mnt
It takes several commands to create a file- or
	memory-backed file system using mdconfig.
	FreeBSD also comes with mdmfs which
	automatically configures a memory disk, formats it with the
	UFS file system, and mounts it. For
	example, after creating newimage
	with dd, this one command is equivalent to
	running the bsdlabel,
	newfs, and mount
	commands shown above:
mdmfs -F newimage -s 5m md0 /mnt
To instead create a new memory-based memory disk with
	mdmfs, use this one command:
mdmfs -s 5m md1 /mnt
If the unit number is not specified,
	mdmfs will automatically select an unused
	memory device. For more details about
	mdmfs, refer to mdmfs(8).
18.14. Highly Available Storage (HAST)

18.14. Highly Available Storage
	(HAST)
Contributed by Daniel Gerzo. With inputs from Freddie Cash, Pawel Jakub Dawidek, Michael W. Lucas and Viktor Petersson. High availability is one of the main requirements in
 serious business applications and highly-available storage is a
 key component in such environments. In FreeBSD, the Highly
 Available STorage (HAST) framework allows
 transparent storage of the same data across several physically
 separated machines connected by a TCP/IP
 network. HAST can be understood as a
 network-based RAID1 (mirror), and is similar to the DRBD®
 storage system used in the GNU/Linux® platform. In combination
 with other high-availability features of FreeBSD like
 CARP, HAST makes it
 possible to build a highly-available storage cluster that is
 resistant to hardware failures.
The following are the main features of
 HAST:
	Can be used to mask I/O errors on
	 local hard drives.

	File system agnostic as it works with any file system
	 supported by FreeBSD.

	Efficient and quick resynchronization as only the blocks
	 that were modified during the downtime of a node are
	 synchronized.

	Can be used in an already deployed environment to add
	 additional redundancy.

	Together with CARP,
	 Heartbeat, or other tools, it can
	 be used to build a robust and durable storage system.

After reading this section, you will know:
	What HAST is, how it works, and
	 which features it provides.

	How to set up and use HAST on
	 FreeBSD.

	How to integrate CARP and
	 devd(8) to build a robust storage system.

Before reading this section, you should:
	Understand UNIX® and FreeBSD basics (Chapter 3, FreeBSD Basics).

	Know how to configure network
	 interfaces and other core FreeBSD subsystems (Chapter 12, Configuration and Tuning).

	Have a good understanding of FreeBSD
	 networking (Part IV, “Network Communication”).

The HAST project was sponsored by The
 FreeBSD Foundation with support from http://www.omc.net/
 and http://www.transip.nl/.
18.14.1. HAST Operation
HAST provides synchronous block-level
	replication between two physical machines: the
	primary, also known as the
	master node, and the
	secondary, or slave
	node. These two machines together are referred to as a
	cluster.
Since HAST works in a primary-secondary
	configuration, it allows only one of the cluster nodes to be
	active at any given time. The primary node, also called
	active, is the one which will handle all
	the I/O requests to
	HAST-managed devices. The secondary node
	is automatically synchronized from the primary node.
The physical components of the HAST
	system are the local disk on primary node, and the disk on the
	remote, secondary node.
HAST operates synchronously on a block
	level, making it transparent to file systems and applications.
	HAST provides regular GEOM providers in
	/dev/hast/ for use by other tools or
	applications. There is no difference between using
	HAST-provided devices and raw disks or
	partitions.
Each write, delete, or flush operation is sent to both the
	local disk and to the remote disk over
	TCP/IP. Each read operation is served from
	the local disk, unless the local disk is not up-to-date or an
	I/O error occurs. In such cases, the read
	operation is sent to the secondary node.
HAST tries to provide fast failure
	recovery. For this reason, it is important to reduce
	synchronization time after a node's outage. To provide fast
	synchronization, HAST manages an on-disk
	bitmap of dirty extents and only synchronizes those during a
	regular synchronization, with an exception of the initial
	sync.
There are many ways to handle synchronization.
	HAST implements several replication modes
	to handle different synchronization methods:
	memsync: This mode reports a
	 write operation as completed when the local write
	 operation is finished and when the remote node
	 acknowledges data arrival, but before actually storing the
	 data. The data on the remote node will be stored directly
	 after sending the acknowledgement. This mode is intended
	 to reduce latency, but still provides good reliability.
	 This mode is the default.

	fullsync: This mode reports a
	 write operation as completed when both the local write and
	 the remote write complete. This is the safest and the
	 slowest replication mode.

	async: This mode reports a write
	 operation as completed when the local write completes.
	 This is the fastest and the most dangerous replication
	 mode. It should only be used when replicating to a
	 distant node where latency is too high for other
	 modes.

18.14.2. HAST Configuration
The HAST framework consists of several
	components:
	The hastd(8) daemon which provides data
	 synchronization. When this daemon is started, it will
	 automatically load geom_gate.ko.

	The userland management utility,
	 hastctl(8).

	The hast.conf(5) configuration file. This file
	 must exist before starting
	 hastd.

Users who prefer to statically build
	GEOM_GATE support into the kernel should
	add this line to the custom kernel configuration file, then
	rebuild the kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel:
options	GEOM_GATE
The following example describes how to configure two nodes
	in master-slave/primary-secondary operation using
	HAST to replicate the data between the two.
	The nodes will be called hasta, with an
	IP address of
	172.16.0.1, and hastb,
	with an IP address of
	172.16.0.2. Both nodes will have a
	dedicated hard drive /dev/ad6 of the same
	size for HAST operation. The
	HAST pool, sometimes referred to as a
	resource or the GEOM provider in /dev/hast/, will be called
	test.
Configuration of HAST is done using
	/etc/hast.conf. This file should be
	identical on both nodes. The simplest configuration
	is:
resource test {
	on hasta {
		local /dev/ad6
		remote 172.16.0.2
	}
	on hastb {
		local /dev/ad6
		remote 172.16.0.1
	}
}
For more advanced configuration, refer to
	hast.conf(5).
Tip:
It is also possible to use host names in the
	 remote statements if the hosts are
	 resolvable and defined either in
	 /etc/hosts or in the local
	 DNS.

Once the configuration exists on both nodes, the
	HAST pool can be created. Run these
	commands on both nodes to place the initial metadata onto the
	local disk and to start hastd(8):
hastctl create test
service hastd onestart
Note:
It is not possible to use
	 GEOM
	 providers with an existing file system or to convert an
	 existing storage to a HAST-managed pool.
	 This procedure needs to store some metadata on the provider
	 and there will not be enough required space available on an
	 existing provider.

A HAST node's primary or
	secondary role is selected by an
	administrator, or software like
	Heartbeat, using hastctl(8).
	On the primary node, hasta, issue this
	command:
hastctl role primary test
Run this command on the secondary node,
	hastb:
hastctl role secondary test
Verify the result by running hastctl on
	each node:
hastctl status test
Check the status line in the output.
	If it says degraded, something is wrong
	with the configuration file. It should say
	complete on each node, meaning that the
	synchronization between the nodes has started. The
	synchronization completes when hastctl
	 status reports 0 bytes of dirty
	extents.
The next step is to create a file system on the
	GEOM provider and mount it. This must be
	done on the primary node. Creating the
	file system can take a few minutes, depending on the size of
	the hard drive. This example creates a UFS
	file system on /dev/hast/test:
newfs -U /dev/hast/test
mkdir /hast/test
mount /dev/hast/test /hast/test
Once the HAST framework is configured
	properly, the final step is to make sure that
	HAST is started automatically during
	system boot. Add this line to
	/etc/rc.conf:
hastd_enable="YES"
18.14.2.1. Failover Configuration
The goal of this example is to build a robust storage
	 system which is resistant to the failure of any given node.
	 If the primary node fails, the secondary node is there to
	 take over seamlessly, check and mount the file system, and
	 continue to work without missing a single bit of
	 data.
To accomplish this task, the Common Address Redundancy
	 Protocol (CARP) is used to provide for
	 automatic failover at the IP layer.
	 CARP allows multiple hosts on the same
	 network segment to share an IP address.
	 Set up CARP on both nodes of the cluster
	 according to the documentation available in Section 32.10, “Common Address Redundancy Protocol
	(CARP)”. In this example, each node will have
	 its own management IP address and a
	 shared IP address of
	 172.16.0.254. The primary
	 HAST node of the cluster must be the
	 master CARP node.
The HAST pool created in the previous
	 section is now ready to be exported to the other hosts on
	 the network. This can be accomplished by exporting it
	 through NFS or
	 Samba, using the shared
	 IP address
	 172.16.0.254. The only problem
	 which remains unresolved is an automatic failover should the
	 primary node fail.
In the event of CARP interfaces going
	 up or down, the FreeBSD operating system generates a
	 devd(8) event, making it possible to watch for state
	 changes on the CARP interfaces. A state
	 change on the CARP interface is an
	 indication that one of the nodes failed or came back online.
	 These state change events make it possible to run a script
	 which will automatically handle the HAST failover.
To catch state changes on the
	 CARP interfaces, add this configuration
	 to /etc/devd.conf on each node:
notify 30 {
	match "system" "IFNET";
	match "subsystem" "carp0";
	match "type" "LINK_UP";
	action "/usr/local/sbin/carp-hast-switch master";
};

notify 30 {
	match "system" "IFNET";
	match "subsystem" "carp0";
	match "type" "LINK_DOWN";
	action "/usr/local/sbin/carp-hast-switch slave";
};
Note:
If the systems are running FreeBSD 10 or higher,
	 replace carp0 with the name of the
	 CARP-configured interface.

Restart devd(8) on both nodes to put the new
	 configuration into effect:
service devd restart
When the specified interface state changes by going up
	 or down , the system generates a notification, allowing the
	 devd(8) subsystem to run the specified automatic
	 failover script,
	 /usr/local/sbin/carp-hast-switch.
	 For further clarification about this configuration, refer to
	 devd.conf(5).
Here is an example of an automated failover
	 script:
#!/bin/sh

Original script by Freddie Cash <fjwcash@gmail.com>
Modified by Michael W. Lucas <mwlucas@BlackHelicopters.org>
and Viktor Petersson <vpetersson@wireload.net>

The names of the HAST resources, as listed in /etc/hast.conf
resources="test"

delay in mounting HAST resource after becoming master
make your best guess
delay=3

logging
log="local0.debug"
name="carp-hast"

end of user configurable stuff

case "$1" in
	master)
		logger -p $log -t $name "Switching to primary provider for ${resources}."
		sleep ${delay}

		# Wait for any "hastd secondary" processes to stop
		for disk in ${resources}; do
			while $(pgrep -lf "hastd: ${disk} \(secondary\)" > /dev/null 2>&1); do
				sleep 1
			done

			# Switch role for each disk
			hastctl role primary ${disk}
			if [$? -ne 0]; then
				logger -p $log -t $name "Unable to change role to primary for resource ${disk}."
				exit 1
			fi
		done

		# Wait for the /dev/hast/* devices to appear
		for disk in ${resources}; do
			for I in $(jot 60); do
				[-c "/dev/hast/${disk}"] && break
				sleep 0.5
			done

			if [! -c "/dev/hast/${disk}"]; then
				logger -p $log -t $name "GEOM provider /dev/hast/${disk} did not appear."
				exit 1
			fi
		done

		logger -p $log -t $name "Role for HAST resources ${resources} switched to primary."

		logger -p $log -t $name "Mounting disks."
		for disk in ${resources}; do
			mkdir -p /hast/${disk}
			fsck -p -y -t ufs /dev/hast/${disk}
			mount /dev/hast/${disk} /hast/${disk}
		done

	;;

	slave)
		logger -p $log -t $name "Switching to secondary provider for ${resources}."

		# Switch roles for the HAST resources
		for disk in ${resources}; do
			if ! mount | grep -q "^/dev/hast/${disk} on "
			then
			else
				umount -f /hast/${disk}
			fi
			sleep $delay
			hastctl role secondary ${disk} 2>&1
			if [$? -ne 0]; then
				logger -p $log -t $name "Unable to switch role to secondary for resource ${disk}."
				exit 1
			fi
			logger -p $log -t $name "Role switched to secondary for resource ${disk}."
		done
	;;
esac
In a nutshell, the script takes these actions when a
	 node becomes master:
	Promotes the HAST pool to
	 primary on the other node.

	Checks the file system under the
	 HAST pool.

	Mounts the pool.

When a node becomes secondary:
	Unmounts the HAST pool.

	Degrades the HAST pool to
	 secondary.

Caution:
This is just an example script which serves as a proof
	 of concept. It does not handle all the possible scenarios
	 and can be extended or altered in any way, for example, to
	 start or stop required services.

Tip:
For this example, a standard UFS
	 file system was used. To reduce the time needed for
	 recovery, a journal-enabled UFS or
	 ZFS file system can be used
	 instead.

More detailed information with additional examples can
	 be found at http://wiki.FreeBSD.org/HAST.
18.14.3. Troubleshooting
HAST should generally work without
	issues. However, as with any other software product, there
	may be times when it does not work as supposed. The sources
	of the problems may be different, but the rule of thumb is to
	ensure that the time is synchronized between the nodes of the
	cluster.
When troubleshooting HAST, the
	debugging level of hastd(8) should be increased by
	starting hastd with -d.
	This argument may be specified multiple times to further
	increase the debugging level. Consider also using
	-F, which starts hastd
	in the foreground.
18.14.3.1. Recovering from the Split-brain Condition
Split-brain occurs when the nodes
	 of the cluster are unable to communicate with each other,
	 and both are configured as primary. This is a dangerous
	 condition because it allows both nodes to make incompatible
	 changes to the data. This problem must be corrected
	 manually by the system administrator.
The administrator must either decide which node has more
	 important changes, or perform the merge manually. Then, let
	 HAST perform full synchronization of the
	 node which has the broken data. To do this, issue these
	 commands on the node which needs to be
	 resynchronized:
hastctl role init test
hastctl create test
hastctl role secondary test
Chapter 19. GEOM: Modular Disk Transformation Framework

Chapter 19. GEOM: Modular Disk Transformation Framework
Written by Tom Rhodes. 19.1. Synopsis
In FreeBSD, the GEOM framework permits
 access and control to classes, such as Master Boot Records and
 BSD labels, through the use of providers, or
 the disk devices in /dev. By supporting
 various software RAID configurations,
 GEOM transparently provides access to the
 operating system and operating system utilities.
This chapter covers the use of disks under the
 GEOM framework in FreeBSD. This includes the
 major RAID control utilities which use the
 framework for configuration. This chapter is not a definitive
 guide to RAID configurations and only
 GEOM-supported RAID
 classifications are discussed.
After reading this chapter, you will know:
	What type of RAID support is
	 available through GEOM.

	How to use the base utilities to configure, maintain,
	 and manipulate the various RAID
	 levels.

	How to mirror, stripe, encrypt, and remotely connect
	 disk devices through GEOM.

	How to troubleshoot disks attached to the
	 GEOM framework.

Before reading this chapter, you should:
	Understand how FreeBSD treats disk devices (Chapter 18, Storage).

	Know how to configure and install a new kernel (Chapter 8, Configuring the FreeBSD Kernel).

19.2. RAID0 - Striping

19.2. RAID0 - Striping
Written by Tom Rhodes and Murray Stokely. Striping combines several disk drives into a single volume.
 Striping can be performed through the use of hardware
 RAID controllers. The
 GEOM disk subsystem provides software support
 for disk striping, also known as RAID0,
 without the need for a RAID disk
 controller.
In RAID0, data is split into blocks that
 are written across all the drives in the array. As seen in the
 following illustration, instead of having to wait on the system
 to write 256k to one disk, RAID0 can
 simultaneously write 64k to each of the four disks in the array,
 offering superior I/O performance. This
 performance can be enhanced further by using multiple disk
 controllers.
[image: Disk Striping Illustration]
Each disk in a RAID0 stripe must be of
 the same size, since I/O requests are
 interleaved to read or write to multiple disks in
 parallel.
Note:
RAID0 does not
	provide any redundancy. This means that if one disk in the
	array fails, all of the data on the disks is lost. If the
	data is important, implement a backup strategy that regularly
	saves backups to a remote system or device.

The process for creating a software,
 GEOM-based RAID0 on a FreeBSD
 system using commodity disks is as follows. Once the stripe is
 created, refer to gstripe(8) for more information on how
 to control an existing stripe.
Procedure 19.1. Creating a Stripe of Unformatted ATA
	Disks
	Load the geom_stripe.ko
	 module:
kldload geom_stripe

	Ensure that a suitable mount point exists. If this
	 volume will become a root partition, then temporarily use
	 another mount point such as
	 /mnt.

	Determine the device names for the disks which will
	 be striped, and create the new stripe device. For example,
	 to stripe two unused and unpartitioned
	 ATA disks with device names of
	 /dev/ad2 and
	 /dev/ad3:
gstripe label -v st0 /dev/ad2 /dev/ad3
Metadata value stored on /dev/ad2.
Metadata value stored on /dev/ad3.
Done.

	Write a standard label, also known as a partition table,
	 on the new volume and install the default bootstrap
	 code:
bsdlabel -wB /dev/stripe/st0

	This process should create two other devices in
	 /dev/stripe in addition to
	 st0. Those include
	 st0a and st0c. At
	 this point, a UFS file system can be
	 created on st0a using
	 newfs:
newfs -U /dev/stripe/st0a
Many numbers will glide across the screen, and after a
	 few seconds, the process will be complete. The volume has
	 been created and is ready to be mounted.

	To manually mount the created disk stripe:
mount /dev/stripe/st0a /mnt

	To mount this striped file system automatically during
	 the boot process, place the volume information in
	 /etc/fstab. In this example, a
	 permanent mount point, named stripe, is
	 created:
mkdir /stripe
echo "/dev/stripe/st0a /stripe ufs rw 2 2" \
>> /etc/fstab

	The geom_stripe.ko module must also
	 be automatically loaded during system initialization, by
	 adding a line to
	 /boot/loader.conf:
echo 'geom_stripe_load="YES"' >> /boot/loader.conf

19.4. RAID3 - Byte-level Striping with Dedicated Parity

19.4. RAID3 - Byte-level Striping with
	Dedicated Parity
Written by Mark Gladman and Daniel Gerzo. Based on documentation by Tom Rhodes and Murray Stokely. RAID3 is a method used to combine several
 disk drives into a single volume with a dedicated parity disk.
 In a RAID3 system, data is split up into a
 number of bytes that are written across all the drives in the
 array except for one disk which acts as a dedicated parity disk.
 This means that disk reads from a RAID3
 implementation access all disks in the array. Performance can
 be enhanced by using multiple disk controllers. The
 RAID3 array provides a fault tolerance of 1
 drive, while providing a capacity of 1 - 1/n times the total
 capacity of all drives in the array, where n is the number of
 hard drives in the array. Such a configuration is mostly
 suitable for storing data of larger sizes such as multimedia
 files.
At least 3 physical hard drives are required to build a
 RAID3 array. Each disk must be of the same
 size, since I/O requests are interleaved to
 read or write to multiple disks in parallel. Also, due to the
 nature of RAID3, the number of drives must be
 equal to 3, 5, 9, 17, and so on, or 2^n + 1.
This section demonstrates how to create a software
 RAID3 on a FreeBSD system.
Note:
While it is theoretically possible to boot from a
	RAID3 array on FreeBSD, that configuration is
	uncommon and is not advised.

19.4.1. Creating a Dedicated RAID3
	Array
In FreeBSD, support for RAID3 is
	implemented by the graid3(8) GEOM
	class. Creating a dedicated RAID3 array on
	FreeBSD requires the following steps.
	First, load the geom_raid3.ko
	 kernel module by issuing one of the following
	 commands:
graid3 load
or:
kldload geom_raid3

	Ensure that a suitable mount point exists. This
	 command creates a new directory to use as the mount
	 point:
mkdir /multimedia

	Determine the device names for the disks which will be
	 added to the array, and create the new
	 RAID3 device. The final device listed
	 will act as the dedicated parity disk. This example uses
	 three unpartitioned ATA drives:
	 ada1 and
	 ada2 for
	 data, and
	 ada3 for
	 parity.
graid3 label -v gr0 /dev/ada1 /dev/ada2 /dev/ada3
Metadata value stored on /dev/ada1.
Metadata value stored on /dev/ada2.
Metadata value stored on /dev/ada3.
Done.

	Partition the newly created gr0
	 device and put a UFS file system on
	 it:
gpart create -s GPT /dev/raid3/gr0
gpart add -t freebsd-ufs /dev/raid3/gr0
newfs -j /dev/raid3/gr0p1
Many numbers will glide across the screen, and after a
	 bit of time, the process will be complete. The volume has
	 been created and is ready to be mounted:
mount /dev/raid3/gr0p1 /multimedia/
The RAID3 array is now ready to
	 use.

Additional configuration is needed to retain this setup
	across system reboots.
	The geom_raid3.ko module must be
	 loaded before the array can be mounted. To automatically
	 load the kernel module during system initialization, add
	 the following line to
	 /boot/loader.conf:
geom_raid3_load="YES"

	The following volume information must be added to
	 /etc/fstab in order to
	 automatically mount the array's file system during the
	 system boot process:
/dev/raid3/gr0p1	/multimedia	ufs	rw	2	2

19.5. Software RAID Devices

19.5. Software RAID Devices
Originally contributed by Warren Block. Some motherboards and expansion cards add some simple
 hardware, usually just a ROM, that allows the
 computer to boot from a RAID array. After
 booting, access to the RAID array is handled
 by software running on the computer's main processor. This
 “hardware-assisted software
	RAID” gives RAID
 arrays that are not dependent on any particular operating
 system, and which are functional even before an operating system
 is loaded.
Several levels of RAID are supported,
 depending on the hardware in use. See graid(8) for a
 complete list.
graid(8) requires the geom_raid.ko
 kernel module, which is included in the
 GENERIC kernel starting with FreeBSD 9.1.
 If needed, it can be loaded manually with
 graid load.
19.5.1. Creating an Array
Software RAID devices often have a menu
	that can be entered by pressing special keys when the computer
	is booting. The menu can be used to create and delete
	RAID arrays. graid(8) can also create
	arrays directly from the command line.
graid label is used to create a new
	array. The motherboard used for this example has an Intel
	software RAID chipset, so the Intel
	metadata format is specified. The new array is given a label
	of gm0, it is a mirror
	(RAID1), and uses drives
	ada0 and
	ada1.
Caution:
Some space on the drives will be overwritten when they
	 are made into a new array. Back up existing data
	 first!

graid label Intel gm0 RAID1 ada0 ada1
GEOM_RAID: Intel-a29ea104: Array Intel-a29ea104 created.
GEOM_RAID: Intel-a29ea104: Disk ada0 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:0-ada0 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Array started.
GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from STARTING to OPTIMAL.
Intel-a29ea104 created
GEOM_RAID: Intel-a29ea104: Provider raid/r0 for volume gm0 created.
A status check shows the new mirror is ready for
	use:
graid status
 Name Status Components
raid/r0 OPTIMAL ada0 (ACTIVE (ACTIVE))
 ada1 (ACTIVE (ACTIVE))
The array device appears in
	/dev/raid/. The first array is called
	r0. Additional arrays, if present, will
	be r1, r2, and so
	on.
The BIOS menu on some of these devices
	can create arrays with special characters in their names. To
	avoid problems with those special characters, arrays are given
	simple numbered names like r0. To show
	the actual labels, like gm0 in the
	example above, use sysctl(8):
sysctl kern.geom.raid.name_format=1
19.5.2. Multiple Volumes
Some software RAID devices support
	more than one volume on an array.
	Volumes work like partitions, allowing space on the physical
	drives to be split and used in different ways. For example,
	Intel software RAID devices support two
	volumes. This example creates a 40 G mirror for safely
	storing the operating system, followed by a 20 G
	RAID0 (stripe) volume for fast temporary
	storage:
graid label -S 40G Intel gm0 RAID1 ada0 ada1
graid add -S 20G gm0 RAID0
Volumes appear as additional
	rX entries
	in /dev/raid/. An array with two volumes
	will show r0 and
	r1.
See graid(8) for the number of volumes supported by
	different software RAID devices.
19.5.3. Converting a Single Drive to a Mirror
Under certain specific conditions, it is possible to
	convert an existing single drive to a graid(8) array
	without reformatting. To avoid data loss during the
	conversion, the existing drive must meet these minimum
	requirements:
	The drive must be partitioned with the
	 MBR partitioning scheme.
	 GPT or other partitioning schemes with
	 metadata at the end of the drive will be overwritten and
	 corrupted by the graid(8) metadata.

	There must be enough unpartitioned and unused space at
	 the end of the drive to hold the graid(8) metadata.
	 This metadata varies in size, but the largest occupies
	 64 M, so at least that much free space is
	 recommended.

If the drive meets these requirements, start by making a
	full backup. Then create a single-drive mirror with that
	drive:
graid label Intel gm0 RAID1 ada0 NONE
graid(8) metadata was written to the end of the drive
	in the unused space. A second drive can now be inserted into
	the mirror:
graid insert raid/r0 ada1
Data from the original drive will immediately begin to be
	copied to the second drive. The mirror will operate in
	degraded status until the copy is complete.
19.5.4. Inserting New Drives into the Array
Drives can be inserted into an array as replacements for
	drives that have failed or are missing. If there are no
	failed or missing drives, the new drive becomes a spare. For
	example, inserting a new drive into a working two-drive mirror
	results in a two-drive mirror with one spare drive, not a
	three-drive mirror.
In the example mirror array, data immediately begins to be
	copied to the newly-inserted drive. Any existing information
	on the new drive will be overwritten.
graid insert raid/r0 ada1
GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from NONE to ACTIVE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NONE to NEW.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 state changed from NEW to REBUILD.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-ada1 rebuild start at 0.
19.5.5. Removing Drives from the Array
Individual drives can be permanently removed from a
	from an array and their metadata erased:
graid remove raid/r0 ada1
GEOM_RAID: Intel-a29ea104: Disk ada1 state changed from ACTIVE to OFFLINE.
GEOM_RAID: Intel-a29ea104: Subdisk gm0:1-[unknown] state changed from ACTIVE to NONE.
GEOM_RAID: Intel-a29ea104: Volume gm0 state changed from OPTIMAL to DEGRADED.
19.5.6. Stopping the Array
An array can be stopped without removing metadata from the
	drives. The array will be restarted when the system is
	booted.
graid stop raid/r0
19.5.7. Checking Array Status
Array status can be checked at any time. After a drive
	was added to the mirror in the example above, data is being
	copied from the original drive to the new drive:
graid status
 Name Status Components
raid/r0 DEGRADED ada0 (ACTIVE (ACTIVE))
 ada1 (ACTIVE (REBUILD 28%))
Some types of arrays, like RAID0 or
	CONCAT, may not be shown in the status
	report if disks have failed. To see these partially-failed
	arrays, add -ga:
graid status -ga
 Name Status Components
Intel-e2d07d9a BROKEN ada6 (ACTIVE (ACTIVE))
19.5.8. Deleting Arrays
Arrays are destroyed by deleting all of the volumes from
	them. When the last volume present is deleted, the array is
	stopped and metadata is removed from the drives:
graid delete raid/r0
19.5.9. Deleting Unexpected Arrays
Drives may unexpectedly contain graid(8) metadata,
	either from previous use or manufacturer testing.
	graid(8) will detect these drives and create an array,
	interfering with access to the individual drive. To remove
	the unwanted metadata:
	Boot the system. At the boot menu, select
	 2 for the loader prompt. Enter:
OK set kern.geom.raid.enable=0
OK boot
The system will boot with graid(8)
	 disabled.

	Back up all data on the affected drive.

	As a workaround, graid(8) array detection
	 can be disabled by adding
kern.geom.raid.enable=0
to /boot/loader.conf.
To permanently remove the graid(8) metadata
	 from the affected drive, boot a FreeBSD installation
	 CD-ROM or memory stick, and select
	 Shell. Use status
	 to find the name of the array, typically
	 raid/r0:
graid status
 Name Status Components
raid/r0 OPTIMAL ada0 (ACTIVE (ACTIVE))
 ada1 (ACTIVE (ACTIVE))
Delete the volume by name:
graid delete raid/r0
If there is more than one volume shown, repeat the
	 process for each volume. After the last array has been
	 deleted, the volume will be destroyed.
Reboot and verify data, restoring from backup if
	 necessary. After the metadata has been removed, the
	 kern.geom.raid.enable=0 entry in
	 /boot/loader.conf can also be
	 removed.

19.8. UFS Journaling Through GEOM

19.8. UFS Journaling Through GEOM
Support for journals on
 UFS file systems is available on FreeBSD. The
 implementation is provided through the GEOM
 subsystem and is configured using gjournal.
 Unlike other file system journaling implementations, the
 gjournal method is block based and not
 implemented as part of the file system. It is a
 GEOM extension.
Journaling stores a log of file system transactions, such as
 changes that make up a complete disk write operation, before
 meta-data and file writes are committed to the disk. This
 transaction log can later be replayed to redo file system
 transactions, preventing file system inconsistencies.
This method provides another mechanism to protect against
 data loss and inconsistencies of the file system. Unlike Soft
 Updates, which tracks and enforces meta-data updates, and
 snapshots, which create an image of the file system, a log is
 stored in disk space specifically for this task. For better
 performance, the journal may be stored on another disk. In this
 configuration, the journal provider or storage device should be
 listed after the device to enable journaling on.
The GENERIC kernel provides support for
 gjournal. To automatically load the
 geom_journal.ko kernel module at boot time,
 add the following line to
 /boot/loader.conf:
geom_journal_load="YES"
If a custom kernel is used, ensure the following line is in
 the kernel configuration file:
options	GEOM_JOURNAL
Once the module is loaded, a journal can be created on a new
 file system using the following steps. In this example,
 da4 is a new SCSI
 disk:
gjournal load
gjournal label /dev/da4
This will load the module and create a
 /dev/da4.journal device node on
 /dev/da4.
A UFS file system may now be created on
 the journaled device, then mounted on an existing mount
 point:
newfs -O 2 -J /dev/da4.journal
mount /dev/da4.journal /mnt
Note:
In the case of several slices, a journal will be created
	for each individual slice. For instance, if
	ad4s1 and ad4s2 are
	both slices, then gjournal will create
	ad4s1.journal and
	ad4s2.journal.

Journaling may also be enabled on current file systems by
 using tunefs. However,
 always make a backup before attempting to
 alter an existing file system. In most cases,
 gjournal will fail if it is unable to create
 the journal, but this does not protect against data loss
 incurred as a result of misusing tunefs.
 Refer to gjournal(8) and tunefs(8) for more
 information about these commands.
It is possible to journal the boot disk of a FreeBSD system.
 Refer to the article Implementing UFS
	Journaling on a Desktop PC for detailed
 instructions.
Chapter 20. The Z File System (ZFS)

Chapter 20. The Z File System (ZFS)
Written by Tom Rhodes, Allan Jude, Benedict Reuschling and Warren Block. The Z File System, or
 ZFS, is an advanced file system designed to
 overcome many of the major problems found in previous
 designs.
Originally developed at Sun™, ongoing open source
 ZFS development has moved to the OpenZFS Project.
ZFS has three major design goals:
	Data integrity: All data includes a
	checksum of the data.
	When data is written, the checksum is calculated and written
	along with it. When that data is later read back, the
	checksum is calculated again. If the checksums do not match,
	a data error has been detected. ZFS will
	attempt to automatically correct errors when data redundancy
	is available.

	Pooled storage: physical storage devices are added to a
	pool, and storage space is allocated from that shared pool.
	Space is available to all file systems, and can be increased
	by adding new storage devices to the pool.

	Performance: multiple caching mechanisms provide increased
	performance. ARC is an
	advanced memory-based read cache. A second level of
	disk-based read cache can be added with
	L2ARC, and disk-based
	synchronous write cache is available with
	ZIL.

A complete list of features and terminology is shown in
 Section 20.8, “ZFS Features and Terminology”.
20.1. What Makes ZFS Different
ZFS is significantly different from any
 previous file system because it is more than just a file system.
 Combining the traditionally separate roles of volume manager and
 file system provides ZFS with unique
 advantages. The file system is now aware of the underlying
 structure of the disks. Traditional file systems could only be
 created on a single disk at a time. If there were two disks
 then two separate file systems would have to be created. In a
 traditional hardware RAID configuration, this
 problem was avoided by presenting the operating system with a
 single logical disk made up of the space provided by a number of
 physical disks, on top of which the operating system placed a
 file system. Even in the case of software
 RAID solutions like those provided by
 GEOM, the UFS file system
 living on top of the RAID transform believed
 that it was dealing with a single device.
 ZFS's combination of the volume manager and
 the file system solves this and allows the creation of many file
 systems all sharing a pool of available storage. One of the
 biggest advantages to ZFS's awareness of the
 physical layout of the disks is that existing file systems can
 be grown automatically when additional disks are added to the
 pool. This new space is then made available to all of the file
 systems. ZFS also has a number of different
 properties that can be applied to each file system, giving many
 advantages to creating a number of different file systems and
 datasets rather than a single monolithic file system.
20.2. Quick Start Guide

20.2. Quick Start Guide
There is a startup mechanism that allows FreeBSD to mount
 ZFS pools during system initialization. To
 enable it, add this line to
 /etc/rc.conf:
zfs_enable="YES"
Then start the service:
service zfs start
The examples in this section assume three
 SCSI disks with the device names
 da0,
 da1, and
 da2. Users
 of SATA hardware should instead use
 ada device
 names.
20.2.1. Single Disk Pool
To create a simple, non-redundant pool using a single
	disk device:
zpool create example /dev/da0
To view the new pool, review the output of
	df:
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235230 1628718 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032846 48737598 2% /usr
example 17547136 0 17547136 0% /example
This output shows that the example pool
	has been created and mounted. It is now accessible as a file
	system. Files can be created on it and users can browse
	it:
cd /example
ls
touch testfile
ls -al
total 4
drwxr-xr-x 2 root wheel 3 Aug 29 23:15 .
drwxr-xr-x 21 root wheel 512 Aug 29 23:12 ..
-rw-r--r-- 1 root wheel 0 Aug 29 23:15 testfile
However, this pool is not taking advantage of any
	ZFS features. To create a dataset on this
	pool with compression enabled:
zfs create example/compressed
zfs set compression=gzip example/compressed
The example/compressed dataset is now a
	ZFS compressed file system. Try copying
	some large files to
	/example/compressed.
Compression can be disabled with:
zfs set compression=off example/compressed
To unmount a file system, use
	zfs umount and then verify with
	df:
zfs umount example/compressed
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235232 1628716 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
To re-mount the file system to make it accessible again,
	use zfs mount and verify with
	df:
zfs mount example/compressed
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235234 1628714 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
example/compressed 17547008 0 17547008 0% /example/compressed
The pool and file system may also be observed by viewing
	the output from mount:
mount
/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1d on /usr (ufs, local, soft-updates)
example on /example (zfs, local)
example/compressed on /example/compressed (zfs, local)
After creation, ZFS datasets can be
	used like any file systems. However, many other features are
	available which can be set on a per-dataset basis. In the
	example below, a new file system called
	data is created. Important files will be
	stored here, so it is configured to keep two copies of each
	data block:
zfs create example/data
zfs set copies=2 example/data
It is now possible to see the data and space utilization
	by issuing df:
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235234 1628714 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032864 48737580 2% /usr
example 17547008 0 17547008 0% /example
example/compressed 17547008 0 17547008 0% /example/compressed
example/data 17547008 0 17547008 0% /example/data
Notice that each file system on the pool has the same
	amount of available space. This is the reason for using
	df in these examples, to show that the file
	systems use only the amount of space they need and all draw
	from the same pool. ZFS eliminates
	concepts such as volumes and partitions, and allows multiple
	file systems to occupy the same pool.
To destroy the file systems and then destroy the pool as
	it is no longer needed:
zfs destroy example/compressed
zfs destroy example/data
zpool destroy example
20.2.2. RAID-Z
Disks fail. One method of avoiding data loss from disk
	failure is to implement RAID.
	ZFS supports this feature in its pool
	design. RAID-Z pools require three or more
	disks but provide more usable space than mirrored
	pools.
This example creates a RAID-Z pool,
	specifying the disks to add to the pool:
zpool create storage raidz da0 da1 da2
Note:
Sun™ recommends that the number of devices used in a
	 RAID-Z configuration be between three and
	 nine. For environments requiring a single pool consisting
	 of 10 disks or more, consider breaking it up into smaller
	 RAID-Z groups. If only two disks are
	 available and redundancy is a requirement, consider using a
	 ZFS mirror. Refer to zpool(8) for
	 more details.

The previous example created the
	storage zpool. This example makes a new
	file system called home in that
	pool:
zfs create storage/home
Compression and keeping extra copies of directories
	and files can be enabled:
zfs set copies=2 storage/home
zfs set compression=gzip storage/home
To make this the new home directory for users, copy the
	user data to this directory and create the appropriate
	symbolic links:
cp -rp /home/* /storage/home
rm -rf /home /usr/home
ln -s /storage/home /home
ln -s /storage/home /usr/home
Users data is now stored on the freshly-created
	/storage/home. Test by adding a new user
	and logging in as that user.
Try creating a file system snapshot which can be rolled
	back later:
zfs snapshot storage/home@08-30-08
Snapshots can only be made of a full file system, not a
	single directory or file.
The @ character is a delimiter between
	the file system name or the volume name. If an important
	directory has been accidentally deleted, the file system can
	be backed up, then rolled back to an earlier snapshot when the
	directory still existed:
zfs rollback storage/home@08-30-08
To list all available snapshots, run
	ls in the file system's
	.zfs/snapshot directory. For example, to
	see the previously taken snapshot:
ls /storage/home/.zfs/snapshot
It is possible to write a script to perform regular
	snapshots on user data. However, over time, snapshots can
	consume a great deal of disk space. The previous snapshot can
	be removed using the command:
zfs destroy storage/home@08-30-08
After testing, /storage/home can be
	made the real /home using this
	command:
zfs set mountpoint=/home storage/home
Run df and mount to
	confirm that the system now treats the file system as the real
	/home:
mount
/dev/ad0s1a on / (ufs, local)
devfs on /dev (devfs, local)
/dev/ad0s1d on /usr (ufs, local, soft-updates)
storage on /storage (zfs, local)
storage/home on /home (zfs, local)
df
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/ad0s1a 2026030 235240 1628708 13% /
devfs 1 1 0 100% /dev
/dev/ad0s1d 54098308 1032826 48737618 2% /usr
storage 26320512 0 26320512 0% /storage
storage/home 26320512 0 26320512 0% /home
This completes the RAID-Z
	configuration. Daily status updates about the file systems
	created can be generated as part of the nightly
	periodic(8) runs. Add this line to
	/etc/periodic.conf:
daily_status_zfs_enable="YES"
20.2.3. Recovering RAID-Z
Every software RAID has a method of
	monitoring its state. The status of
	RAID-Z devices may be viewed with this
	command:
zpool status -x
If all pools are
	Online and everything
	is normal, the message shows:
all pools are healthy
If there is an issue, perhaps a disk is in the
	Offline state, the
	pool state will look similar to:
 pool: storage
 state: DEGRADED
status: One or more devices has been taken offline by the administrator.
	Sufficient replicas exist for the pool to continue functioning in a
	degraded state.
action: Online the device using 'zpool online' or replace the device with
	'zpool replace'.
 scrub: none requested
config:

	NAME STATE READ WRITE CKSUM
	storage DEGRADED 0 0 0
	 raidz1 DEGRADED 0 0 0
	 da0 ONLINE 0 0 0
	 da1 OFFLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
This indicates that the device was previously taken
	offline by the administrator with this command:
zpool offline storage da1
Now the system can be powered down to replace
	da1. When the system is back online,
	the failed disk can replaced in the pool:
zpool replace storage da1
From here, the status may be checked again, this time
	without -x so that all pools are
	shown:
zpool status storage
 pool: storage
 state: ONLINE
 scrub: resilver completed with 0 errors on Sat Aug 30 19:44:11 2008
config:

	NAME STATE READ WRITE CKSUM
	storage ONLINE 0 0 0
	 raidz1 ONLINE 0 0 0
	 da0 ONLINE 0 0 0
	 da1 ONLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
In this example, everything is normal.
20.2.4. Data Verification
ZFS uses checksums to verify the
	integrity of stored data. These are enabled automatically
	upon creation of file systems.
Warning:
Checksums can be disabled, but it is
	 not recommended! Checksums take very
	 little storage space and provide data integrity. Many
	 ZFS features will not work properly with
	 checksums disabled. There is no noticeable performance gain
	 from disabling these checksums.

Checksum verification is known as
	scrubbing. Verify the data integrity of
	the storage pool with this command:
zpool scrub storage
The duration of a scrub depends on the amount of data
	stored. Larger amounts of data will take proportionally
	longer to verify. Scrubs are very I/O
	intensive, and only one scrub is allowed to run at a time.
	After the scrub completes, the status can be viewed with
	status:
zpool status storage
 pool: storage
 state: ONLINE
 scrub: scrub completed with 0 errors on Sat Jan 26 19:57:37 2013
config:

	NAME STATE READ WRITE CKSUM
	storage ONLINE 0 0 0
	 raidz1 ONLINE 0 0 0
	 da0 ONLINE 0 0 0
	 da1 ONLINE 0 0 0
	 da2 ONLINE 0 0 0

errors: No known data errors
The completion date of the last scrub operation is
	displayed to help track when another scrub is required.
	Routine scrubs help protect data from silent corruption and
	ensure the integrity of the pool.
Refer to zfs(8) and zpool(8) for other
	ZFS options.
20.3. zpool Administration

20.3. zpool Administration
ZFS administration is divided between two
 main utilities. The zpool utility controls
 the operation of the pool and deals with adding, removing,
 replacing, and managing disks. The
 zfs utility
 deals with creating, destroying, and managing datasets,
 both file systems and
 volumes.
20.3.1. Creating and Destroying Storage Pools
Creating a ZFS storage pool
	(zpool) involves making a number of
	decisions that are relatively permanent because the structure
	of the pool cannot be changed after the pool has been created.
	The most important decision is what types of vdevs into which
	to group the physical disks. See the list of
	vdev types for details
	about the possible options. After the pool has been created,
	most vdev types do not allow additional disks to be added to
	the vdev. The exceptions are mirrors, which allow additional
	disks to be added to the vdev, and stripes, which can be
	upgraded to mirrors by attaching an additional disk to the
	vdev. Although additional vdevs can be added to expand a
	pool, the layout of the pool cannot be changed after pool
	creation. Instead, the data must be backed up and the
	pool destroyed and recreated.
Create a simple mirror pool:
zpool create mypool mirror /dev/ada1 /dev/ada2
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0
 ada2 ONLINE 0 0 0

errors: No known data errors
Multiple vdevs can be created at once. Specify multiple
	groups of disks separated by the vdev type keyword,
	mirror in this example:
zpool create mypool mirror /dev/ada1 /dev/ada2 mirror /dev/ada3 /dev/ada4
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0
 ada2 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 ada3 ONLINE 0 0 0
 ada4 ONLINE 0 0 0

errors: No known data errors
Pools can also be constructed using partitions rather than
	whole disks. Putting ZFS in a separate
	partition allows the same disk to have other partitions for
	other purposes. In particular, partitions with bootcode and
	file systems needed for booting can be added. This allows
	booting from disks that are also members of a pool. There is
	no performance penalty on FreeBSD when using a partition rather
	than a whole disk. Using partitions also allows the
	administrator to under-provision the
	disks, using less than the full capacity. If a future
	replacement disk of the same nominal size as the original
	actually has a slightly smaller capacity, the smaller
	partition will still fit, and the replacement disk can still
	be used.
Create a
	RAID-Z2 pool using
	partitions:
zpool create mypool raidz2 /dev/ada0p3 /dev/ada1p3 /dev/ada2p3 /dev/ada3p3 /dev/ada4p3 /dev/ada5p3
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
A pool that is no longer needed can be destroyed so that
	the disks can be reused. Destroying a pool involves first
	unmounting all of the datasets in that pool. If the datasets
	are in use, the unmount operation will fail and the pool will
	not be destroyed. The destruction of the pool can be forced
	with -f, but this can cause undefined
	behavior in applications which had open files on those
	datasets.
20.3.2. Adding and Removing Devices
There are two cases for adding disks to a zpool: attaching
	a disk to an existing vdev with
	zpool attach, or adding vdevs to the pool
	with zpool add. Only some
	vdev types allow disks to
	be added to the vdev after creation.
A pool created with a single disk lacks redundancy.
	Corruption can be detected but
	not repaired, because there is no other copy of the data.

	The copies property may
	be able to recover from a small failure such as a bad sector,
	but does not provide the same level of protection as mirroring
	or RAID-Z. Starting with a pool consisting
	of a single disk vdev, zpool attach can be
	used to add an additional disk to the vdev, creating a mirror.
	zpool attach can also be used to add
	additional disks to a mirror group, increasing redundancy and
	read performance. If the disks being used for the pool are
	partitioned, replicate the layout of the first disk on to the
	second, gpart backup and
	gpart restore can be used to make this
	process easier.
Upgrade the single disk (stripe) vdev
	ada0p3 to a mirror by attaching
	ada1p3:
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0

errors: No known data errors
zpool attach mypool ada0p3 ada1p3
Make sure to wait until resilver is done before rebooting.

If you boot from pool 'mypool', you may need to update
boot code on newly attached disk 'ada1p3'.

Assuming you use GPT partitioning and 'da0' is your new boot disk
you may use the following command:

 gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1
bootcode written to ada1
zpool status
 pool: mypool
 state: ONLINE
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Fri May 30 08:19:19 2014
 527M scanned out of 781M at 47.9M/s, 0h0m to go
 527M resilvered, 67.53% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:15:58 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
When adding disks to the existing vdev is not an option,
	as for RAID-Z, an alternative method is to
	add another vdev to the pool. Additional vdevs provide higher
	performance, distributing writes across the vdevs. Each vdev
	is responsible for providing its own redundancy. It is
	possible, but discouraged, to mix vdev types, like
	mirror and RAID-Z.
	Adding a non-redundant vdev to a pool containing mirror or
	RAID-Z vdevs risks the data on the entire
	pool. Writes are distributed, so the failure of the
	non-redundant disk will result in the loss of a fraction of
	every block that has been written to the pool.
Data is striped across each of the vdevs. For example,
	with two mirror vdevs, this is effectively a
	RAID 10 that stripes writes across two sets
	of mirrors. Space is allocated so that each vdev reaches 100%
	full at the same time. There is a performance penalty if the
	vdevs have different amounts of free space, as a
	disproportionate amount of the data is written to the less
	full vdev.
When attaching additional devices to a boot pool, remember
	to update the bootcode.
Attach a second mirror group (ada2p3
	and ada3p3) to the existing
	mirror:
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Fri May 30 08:19:35 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
zpool add mypool mirror ada2p3 ada3p3
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2
bootcode written to ada2
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada3
bootcode written to ada3
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 mirror-1 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0

errors: No known data errors
Currently, vdevs cannot be removed from a pool, and disks
	can only be removed from a mirror if there is enough remaining
	redundancy. If only one disk in a mirror group remains, it
	ceases to be a mirror and reverts to being a stripe, risking
	the entire pool if that remaining disk fails.
Remove a disk from a three-way mirror group:
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
zpool detach mypool ada2p3
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 0h0m with 0 errors on Fri May 30 08:29:51 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
20.3.3. Checking the Status of a Pool
Pool status is important. If a drive goes offline or a
	read, write, or checksum error is detected, the corresponding
	error count increases. The status output
	shows the configuration and status of each device in the pool
	and the status of the entire pool. Actions that need to be
	taken and details about the last scrub
	are also shown.
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub repaired 0 in 2h25m with 0 errors on Sat Sep 14 04:25:50 2013
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
20.3.4. Clearing Errors
When an error is detected, the read, write, or checksum
	counts are incremented. The error message can be cleared and
	the counts reset with zpool clear
	 mypool. Clearing the
	error state can be important for automated scripts that alert
	the administrator when the pool encounters an error. Further
	errors may not be reported if the old errors are not
	cleared.
20.3.5. Replacing a Functioning Device
There are a number of situations where it may be
	desirable to replace one disk with a different disk. When
	replacing a working disk, the process keeps the old disk
	online during the replacement. The pool never enters a
	degraded state,
	reducing the risk of data loss.
	zpool replace copies all of the data from
	the old disk to the new one. After the operation completes,
	the old disk is disconnected from the vdev. If the new disk
	is larger than the old disk, it may be possible to grow the
	zpool, using the new space. See Growing a Pool.
Replace a functioning device in the pool:
zpool status
 pool: mypool
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0

errors: No known data errors
zpool replace mypool ada1p3 ada2p3
Make sure to wait until resilver is done before rebooting.

If you boot from pool 'zroot', you may need to update
boot code on newly attached disk 'ada2p3'.

Assuming you use GPT partitioning and 'da0' is your new boot disk
you may use the following command:

 gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada2
zpool status
 pool: mypool
 state: ONLINE
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Mon Jun 2 14:21:35 2014
 604M scanned out of 781M at 46.5M/s, 0h0m to go
 604M resilvered, 77.39% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 replacing-1 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Mon Jun 2 14:21:52 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
20.3.6. Dealing with Failed Devices
When a disk in a pool fails, the vdev to which the disk
	belongs enters the
	degraded state. All
	of the data is still available, but performance may be reduced
	because missing data must be calculated from the available
	redundancy. To restore the vdev to a fully functional state,
	the failed physical device must be replaced.
	ZFS is then instructed to begin the
	resilver operation.
	Data that was on the failed device is recalculated from
	available redundancy and written to the replacement device.
	After completion, the vdev returns to
	online status.
If the vdev does not have any redundancy, or if multiple
	devices have failed and there is not enough redundancy to
	compensate, the pool enters the
	faulted state. If a
	sufficient number of devices cannot be reconnected to the
	pool, the pool becomes inoperative and data must be restored
	from backups.
When replacing a failed disk, the name of the failed disk
	is replaced with the GUID of the device.
	A new device name parameter for
	zpool replace is not required if the
	replacement device has the same device name.
Replace a failed disk using
	zpool replace:
zpool status
 pool: mypool
 state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas exist for
 the pool to continue functioning in a degraded state.
action: Attach the missing device and online it using 'zpool online'.
 see: http://illumos.org/msg/ZFS-8000-2Q
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool DEGRADED 0 0 0
 mirror-0 DEGRADED 0 0 0
 ada0p3 ONLINE 0 0 0
 316502962686821739 UNAVAIL 0 0 0 was /dev/ada1p3

errors: No known data errors
zpool replace mypool 316502962686821739 ada2p3
zpool status
 pool: mypool
 state: DEGRADED
status: One or more devices is currently being resilvered. The pool will
 continue to function, possibly in a degraded state.
action: Wait for the resilver to complete.
 scan: resilver in progress since Mon Jun 2 14:52:21 2014
 641M scanned out of 781M at 49.3M/s, 0h0m to go
 640M resilvered, 82.04% done
config:

 NAME STATE READ WRITE CKSUM
 mypool DEGRADED 0 0 0
 mirror-0 DEGRADED 0 0 0
 ada0p3 ONLINE 0 0 0
 replacing-1 UNAVAIL 0 0 0
 15732067398082357289 UNAVAIL 0 0 0 was /dev/ada1p3/old
 ada2p3 ONLINE 0 0 0 (resilvering)

errors: No known data errors
zpool status
 pool: mypool
 state: ONLINE
 scan: resilvered 781M in 0h0m with 0 errors on Mon Jun 2 14:52:38 2014
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0

errors: No known data errors
20.3.7. Scrubbing a Pool
It is recommended that pools be
	scrubbed regularly,
	ideally at least once every month. The
	scrub operation is very disk-intensive and
	will reduce performance while running. Avoid high-demand
	periods when scheduling scrub or use vfs.zfs.scrub_delay
	to adjust the relative priority of the
	scrub to prevent it interfering with other
	workloads.
zpool scrub mypool
zpool status
 pool: mypool
 state: ONLINE
 scan: scrub in progress since Wed Feb 19 20:52:54 2014
 116G scanned out of 8.60T at 649M/s, 3h48m to go
 0 repaired, 1.32% done
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 raidz2-0 ONLINE 0 0 0
 ada0p3 ONLINE 0 0 0
 ada1p3 ONLINE 0 0 0
 ada2p3 ONLINE 0 0 0
 ada3p3 ONLINE 0 0 0
 ada4p3 ONLINE 0 0 0
 ada5p3 ONLINE 0 0 0

errors: No known data errors
In the event that a scrub operation needs to be cancelled,
	issue zpool scrub -s
	 mypool.
20.3.8. Self-Healing
The checksums stored with data blocks enable the file
	system to self-heal. This feature will
	automatically repair data whose checksum does not match the
	one recorded on another device that is part of the storage
	pool. For example, a mirror with two disks where one drive is
	starting to malfunction and cannot properly store the data any
	more. This is even worse when the data has not been accessed
	for a long time, as with long term archive storage.
	Traditional file systems need to run algorithms that check and
	repair the data like fsck(8). These commands take time,
	and in severe cases, an administrator has to manually decide
	which repair operation must be performed. When
	ZFS detects a data block with a checksum
	that does not match, it tries to read the data from the mirror
	disk. If that disk can provide the correct data, it will not
	only give that data to the application requesting it, but also
	correct the wrong data on the disk that had the bad checksum.
	This happens without any interaction from a system
	administrator during normal pool operation.
The next example demonstrates this self-healing behavior.
	A mirrored pool of disks /dev/ada0 and
	/dev/ada1 is created.
zpool create healer mirror /dev/ada0 /dev/ada1
zpool status healer
 pool: healer
 state: ONLINE
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0

errors: No known data errors
zpool list
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
healer 960M 92.5K 960M - - 0% 0% 1.00x ONLINE -
Some important data that to be protected from data errors
	using the self-healing feature is copied to the pool. A
	checksum of the pool is created for later comparison.
cp /some/important/data /healer
zfs list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
healer 960M 67.7M 892M 7% 1.00x ONLINE -
sha1 /healer > checksum.txt
cat checksum.txt
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
Data corruption is simulated by writing random data to the
	beginning of one of the disks in the mirror. To prevent
	ZFS from healing the data as soon as it is
	detected, the pool is exported before the corruption and
	imported again afterwards.
Warning:
This is a dangerous operation that can destroy vital
	 data. It is shown here for demonstrational purposes only
	 and should not be attempted during normal operation of a
	 storage pool. Nor should this intentional corruption
	 example be run on any disk with a different file system on
	 it. Do not use any other disk device names other than the
	 ones that are part of the pool. Make certain that proper
	 backups of the pool are created before running the
	 command!

zpool export healer
dd if=/dev/random of=/dev/ada1 bs=1m count=200
200+0 records in
200+0 records out
209715200 bytes transferred in 62.992162 secs (3329227 bytes/sec)
zpool import healer
The pool status shows that one device has experienced an
	error. Note that applications reading data from the pool did
	not receive any incorrect data. ZFS
	provided data from the ada0 device with
	the correct checksums. The device with the wrong checksum can
	be found easily as the CKSUM column
	contains a nonzero value.
zpool status healer
 pool: healer
 state: ONLINE
 status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
 action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: none requested
 config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 1

errors: No known data errors
The error was detected and handled by using the redundancy
	present in the unaffected ada0 mirror
	disk. A checksum comparison with the original one will reveal
	whether the pool is consistent again.
sha1 /healer >> checksum.txt
cat checksum.txt
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
SHA1 (/healer) = 2753eff56d77d9a536ece6694bf0a82740344d1f
The two checksums that were generated before and after the
	intentional tampering with the pool data still match. This
	shows how ZFS is capable of detecting and
	correcting any errors automatically when the checksums differ.
	Note that this is only possible when there is enough
	redundancy present in the pool. A pool consisting of a single
	device has no self-healing capabilities. That is also the
	reason why checksums are so important in
	ZFS and should not be disabled for any
	reason. No fsck(8) or similar file system consistency
	check program is required to detect and correct this and the
	pool was still available during the time there was a problem.
	A scrub operation is now required to overwrite the corrupted
	data on ada1.
zpool scrub healer
zpool status healer
 pool: healer
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: scrub in progress since Mon Dec 10 12:23:30 2012
 10.4M scanned out of 67.0M at 267K/s, 0h3m to go
 9.63M repaired, 15.56% done
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 627 (repairing)

errors: No known data errors
The scrub operation reads data from
	ada0 and rewrites any data with an
	incorrect checksum on ada1. This is
	indicated by the (repairing) output from
	zpool status. After the operation is
	complete, the pool status changes to:
zpool status healer
 pool: healer
 state: ONLINE
status: One or more devices has experienced an unrecoverable error. An
 attempt was made to correct the error. Applications are unaffected.
action: Determine if the device needs to be replaced, and clear the errors
 using 'zpool clear' or replace the device with 'zpool replace'.
 see: http://illumos.org/msg/ZFS-8000-4J
 scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 2.72K

errors: No known data errors
After the scrub operation completes and all the data
	has been synchronized from ada0 to
	ada1, the error messages can be
	cleared from the pool
	status by running zpool clear.
zpool clear healer
zpool status healer
 pool: healer
 state: ONLINE
 scan: scrub repaired 66.5M in 0h2m with 0 errors on Mon Dec 10 12:26:25 2012
config:

 NAME STATE READ WRITE CKSUM
 healer ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
 ada0 ONLINE 0 0 0
 ada1 ONLINE 0 0 0

errors: No known data errors
The pool is now back to a fully working state and all the
	errors have been cleared.
20.3.9. Growing a Pool
The usable size of a redundant pool is limited by the
	capacity of the smallest device in each vdev. The smallest
	device can be replaced with a larger device. After completing
	a replace or
	resilver operation,
	the pool can grow to use the capacity of the new device. For
	example, consider a mirror of a 1 TB drive and a
	2 TB drive. The usable space is 1 TB. When the
	1 TB drive is replaced with another 2 TB drive, the
	resilvering process copies the existing data onto the new
	drive. As
	both of the devices now have 2 TB capacity, the mirror's
	available space can be grown to 2 TB.
Expansion is triggered by using
	zpool online -e on each device. After
	expansion of all devices, the additional space becomes
	available to the pool.
20.3.10. Importing and Exporting Pools
Pools are exported before moving them
	to another system. All datasets are unmounted, and each
	device is marked as exported but still locked so it cannot be
	used by other disk subsystems. This allows pools to be
	imported on other machines, other
	operating systems that support ZFS, and
	even different hardware architectures (with some caveats, see
	zpool(8)). When a dataset has open files,
	zpool export -f can be used to force the
	export of a pool. Use this with caution. The datasets are
	forcibly unmounted, potentially resulting in unexpected
	behavior by the applications which had open files on those
	datasets.
Export a pool that is not in use:
zpool export mypool
Importing a pool automatically mounts the datasets. This
	may not be the desired behavior, and can be prevented with
	zpool import -N.
	zpool import -o sets temporary properties
	for this import only.
	zpool import altroot= allows importing a
	pool with a base mount point instead of the root of the file
	system. If the pool was last used on a different system and
	was not properly exported, an import might have to be forced
	with zpool import -f.
	zpool import -a imports all pools that do
	not appear to be in use by another system.
List all available pools for import:
zpool import
 pool: mypool
 id: 9930174748043525076
 state: ONLINE
 action: The pool can be imported using its name or numeric identifier.
 config:

 mypool ONLINE
 ada2p3 ONLINE
Import the pool with an alternative root directory:
zpool import -o altroot=/mnt mypool
zfs list
zfs list
NAME USED AVAIL REFER MOUNTPOINT
mypool 110K 47.0G 31K /mnt/mypool
20.3.11. Upgrading a Storage Pool
After upgrading FreeBSD, or if a pool has been imported from
	a system using an older version of ZFS, the
	pool can be manually upgraded to the latest version of
	ZFS to support newer features. Consider
	whether the pool may ever need to be imported on an older
	system before upgrading. Upgrading is a one-way process.
	Older pools can be upgraded, but pools with newer features
	cannot be downgraded.
Upgrade a v28 pool to support
	Feature Flags:
zpool status
 pool: mypool
 state: ONLINE
status: The pool is formatted using a legacy on-disk format. The pool can
 still be used, but some features are unavailable.
action: Upgrade the pool using 'zpool upgrade'. Once this is done, the
 pool will no longer be accessible on software that does not support feat
 flags.
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
	 ada0 ONLINE 0 0 0
	 ada1 ONLINE 0 0 0

errors: No known data errors
zpool upgrade
This system supports ZFS pool feature flags.

The following pools are formatted with legacy version numbers and can
be upgraded to use feature flags. After being upgraded, these pools
will no longer be accessible by software that does not support feature
flags.

VER POOL
--- ------------
28 mypool

Use 'zpool upgrade -v' for a list of available legacy versions.
Every feature flags pool has all supported features enabled.
zpool upgrade mypool
This system supports ZFS pool feature flags.

Successfully upgraded 'mypool' from version 28 to feature flags.
Enabled the following features on 'mypool':
 async_destroy
 empty_bpobj
 lz4_compress
 multi_vdev_crash_dump
The newer features of ZFS will not be
	available until zpool upgrade has
	completed. zpool upgrade -v can be used to
	see what new features will be provided by upgrading, as well
	as which features are already supported.
Upgrade a pool to support additional feature flags:
zpool status
 pool: mypool
 state: ONLINE
status: Some supported features are not enabled on the pool. The pool can
 still be used, but some features are unavailable.
action: Enable all features using 'zpool upgrade'. Once this is done,
 the pool may no longer be accessible by software that does not support
 the features. See zpool-features(7) for details.
 scan: none requested
config:

 NAME STATE READ WRITE CKSUM
 mypool ONLINE 0 0 0
 mirror-0 ONLINE 0 0 0
	 ada0 ONLINE 0 0 0
	 ada1 ONLINE 0 0 0

errors: No known data errors
zpool upgrade
This system supports ZFS pool feature flags.

All pools are formatted using feature flags.

Some supported features are not enabled on the following pools. Once a
feature is enabled the pool may become incompatible with software
that does not support the feature. See zpool-features(7) for details.

POOL FEATURE

zstore
 multi_vdev_crash_dump
 spacemap_histogram
 enabled_txg
 hole_birth
 extensible_dataset
 bookmarks
 filesystem_limits
zpool upgrade mypool
This system supports ZFS pool feature flags.

Enabled the following features on 'mypool':
 spacemap_histogram
 enabled_txg
 hole_birth
 extensible_dataset
 bookmarks
 filesystem_limits
Warning:
The boot code on systems that boot from a pool must be
	 updated to support the new pool version. Use
	 gpart bootcode on the partition that
	 contains the boot code. There are two types of bootcode
	 available, depending on way the system boots:
	 GPT (the most common option) and
	 EFI (for more modern systems).
For legacy boot using GPT, use the following
	 command:
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 ada1
For systems using EFI to boot, execute the following
	 command:
gpart bootcode -p /boot/boot1.efifat -i 1 ada1
Apply the bootcode to all bootable disks in the pool.
	 See gpart(8) for more information.

20.3.12. Displaying Recorded Pool History
Commands that modify the pool are recorded. Recorded
	actions include the creation of datasets, changing properties,
	or replacement of a disk. This history is useful for
	reviewing how a pool was created and which user performed a
	specific action and when. History is not kept in a log file,
	but is part of the pool itself. The command to review this
	history is aptly named
	zpool history:
zpool history
History for 'tank':
2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1
2013-02-27.18:50:58 zfs set atime=off tank
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank
2013-02-27.18:51:18 zfs create tank/backup
The output shows zpool and
	zfs commands that were executed on the pool
	along with a timestamp. Only commands that alter the pool in
	some way are recorded. Commands like
	zfs list are not included. When no pool
	name is specified, the history of all pools is
	displayed.
zpool history can show even more
	information when the options -i or
	-l are provided. -i
	displays user-initiated events as well as internally logged
	ZFS events.
zpool history -i
History for 'tank':
2013-02-26.23:02:35 [internal pool create txg:5] pool spa 28; zfs spa 28; zpl 5;uts 9.1-RELEASE 901000 amd64
2013-02-27.18:50:53 [internal property set txg:50] atime=0 dataset = 21
2013-02-27.18:50:58 zfs set atime=off tank
2013-02-27.18:51:04 [internal property set txg:53] checksum=7 dataset = 21
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank
2013-02-27.18:51:13 [internal create txg:55] dataset = 39
2013-02-27.18:51:18 zfs create tank/backup
More details can be shown by adding -l.
	History records are shown in a long format, including
	information like the name of the user who issued the command
	and the hostname on which the change was made.
zpool history -l
History for 'tank':
2013-02-26.23:02:35 zpool create tank mirror /dev/ada0 /dev/ada1 [user 0 (root) on :global]
2013-02-27.18:50:58 zfs set atime=off tank [user 0 (root) on myzfsbox:global]
2013-02-27.18:51:09 zfs set checksum=fletcher4 tank [user 0 (root) on myzfsbox:global]
2013-02-27.18:51:18 zfs create tank/backup [user 0 (root) on myzfsbox:global]
The output shows that the
	root user created
	the mirrored pool with disks
	/dev/ada0 and
	/dev/ada1. The hostname
	myzfsbox is also
	shown in the commands after the pool's creation. The hostname
	display becomes important when the pool is exported from one
	system and imported on another. The commands that are issued
	on the other system can clearly be distinguished by the
	hostname that is recorded for each command.
Both options to zpool history can be
	combined to give the most detailed information possible for
	any given pool. Pool history provides valuable information
	when tracking down the actions that were performed or when
	more detailed output is needed for debugging.
20.3.13. Performance Monitoring
A built-in monitoring system can display pool
	I/O statistics in real time. It shows the
	amount of free and used space on the pool, how many read and
	write operations are being performed per second, and how much
	I/O bandwidth is currently being utilized.
	By default, all pools in the system are monitored and
	displayed. A pool name can be provided to limit monitoring to
	just that pool. A basic example:
zpool iostat
 capacity operations bandwidth
pool alloc free read write read write
---------- ----- ----- ----- ----- ----- -----
data 288G 1.53T 2 11 11.3K 57.1K
To continuously monitor I/O activity, a
	number can be specified as the last parameter, indicating a
	interval in seconds to wait between updates. The next
	statistic line is printed after each interval. Press
	Ctrl+C to stop this continuous monitoring.
	Alternatively, give a second number on the command line after
	the interval to specify the total number of statistics to
	display.
Even more detailed I/O statistics can
	be displayed with -v. Each device in the
	pool is shown with a statistics line. This is useful in
	seeing how many read and write operations are being performed
	on each device, and can help determine if any individual
	device is slowing down the pool. This example shows a
	mirrored pool with two devices:
zpool iostat -v
 capacity operations bandwidth
pool alloc free read write read write
----------------------- ----- ----- ----- ----- ----- -----
data 288G 1.53T 2 12 9.23K 61.5K
 mirror 288G 1.53T 2 12 9.23K 61.5K
 ada1 - - 0 4 5.61K 61.7K
 ada2 - - 1 4 5.04K 61.7K
----------------------- ----- ----- ----- ----- ----- -----
20.3.14. Splitting a Storage Pool
A pool consisting of one or more mirror vdevs can be split
	into two pools. Unless otherwise specified, the last member
	of each mirror is detached and used to create a new pool
	containing the same data. The operation should first be
	attempted with -n. The details of the
	proposed operation are displayed without it actually being
	performed. This helps confirm that the operation will do what
	the user intends.
20.5. Delegated Administration

20.5. Delegated Administration
A comprehensive permission delegation system allows
 unprivileged users to perform ZFS
 administration functions. For example, if each user's home
 directory is a dataset, users can be given permission to create
 and destroy snapshots of their home directories. A backup user
 can be given permission to use replication features. A usage
 statistics script can be allowed to run with access only to the
 space utilization data for all users. It is even possible to
 delegate the ability to delegate permissions. Permission
 delegation is possible for each subcommand and most
 properties.
20.5.1. Delegating Dataset Creation
zfs allow
	 someuser create
	 mydataset gives the
	specified user permission to create child datasets under the
	selected parent dataset. There is a caveat: creating a new
	dataset involves mounting it. That requires setting the
	FreeBSD vfs.usermount sysctl(8) to
	1 to allow non-root users to mount a
	file system. There is another restriction aimed at preventing
	abuse: non-root
	users must own the mountpoint where the file system is to be
	mounted.
20.5.2. Delegating Permission Delegation
zfs allow
	 someuser allow
	 mydataset gives the
	specified user the ability to assign any permission they have
	on the target dataset, or its children, to other users. If a
	user has the snapshot permission and the
	allow permission, that user can then grant
	the snapshot permission to other
	users.
20.6. Advanced Topics

20.6. Advanced Topics
20.6.1. Tuning
There are a number of tunables that can be adjusted to
	make ZFS perform best for different
	workloads.
	vfs.zfs.arc_max
	 - Maximum size of the ARC.
	 The default is all RAM but 1 GB,
	 or 5/8 of all RAM, whichever is more.
	 However, a lower value should be used if the system will
	 be running any other daemons or processes that may require
	 memory. This value can be adjusted at runtime with
	 sysctl(8) and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.arc_meta_limit
	 - Limit the portion of the
	 ARC
	 that can be used to store metadata. The default is one
	 fourth of vfs.zfs.arc_max. Increasing
	 this value will improve performance if the workload
	 involves operations on a large number of files and
	 directories, or frequent metadata operations, at the cost
	 of less file data fitting in the ARC.
	 This value can be adjusted at runtime with sysctl(8)
	 and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.arc_min
	 - Minimum size of the ARC.
	 The default is one half of
	 vfs.zfs.arc_meta_limit. Adjust this
	 value to prevent other applications from pressuring out
	 the entire ARC.
	 This value can be adjusted at runtime with sysctl(8)
	 and can be set in
	 /boot/loader.conf or
	 /etc/sysctl.conf.

	vfs.zfs.vdev.cache.size
	 - A preallocated amount of memory reserved as a cache for
	 each device in the pool. The total amount of memory used
	 will be this value multiplied by the number of devices.
	 This value can only be adjusted at boot time, and is set
	 in /boot/loader.conf.

	vfs.zfs.min_auto_ashift
	 - Minimum ashift (sector size) that
	 will be used automatically at pool creation time. The
	 value is a power of two. The default value of
	 9 represents
	 2^9 = 512, a sector size of 512 bytes.
	 To avoid write amplification and get
	 the best performance, set this value to the largest sector
	 size used by a device in the pool.
Many drives have 4 KB sectors. Using the default
	 ashift of 9 with
	 these drives results in write amplification on these
	 devices. Data that could be contained in a single
	 4 KB write must instead be written in eight 512-byte
	 writes. ZFS tries to read the native
	 sector size from all devices when creating a pool, but
	 many drives with 4 KB sectors report that their
	 sectors are 512 bytes for compatibility. Setting
	 vfs.zfs.min_auto_ashift to
	 12 (2^12 = 4096)
	 before creating a pool forces ZFS to
	 use 4 KB blocks for best performance on these
	 drives.
Forcing 4 KB blocks is also useful on pools where
	 disk upgrades are planned. Future disks are likely to use
	 4 KB sectors, and ashift values
	 cannot be changed after a pool is created.
In some specific cases, the smaller 512-byte block
	 size might be preferable. When used with 512-byte disks
	 for databases, or as storage for virtual machines, less
	 data is transferred during small random reads. This can
	 provide better performance, especially when using a
	 smaller ZFS record size.

	vfs.zfs.prefetch_disable
	 - Disable prefetch. A value of 0 is
	 enabled and 1 is disabled. The default
	 is 0, unless the system has less than
	 4 GB of RAM. Prefetch works by
	 reading larger blocks than were requested into the
	 ARC
	 in hopes that the data will be needed soon. If the
	 workload has a large number of random reads, disabling
	 prefetch may actually improve performance by reducing
	 unnecessary reads. This value can be adjusted at any time
	 with sysctl(8).

	vfs.zfs.vdev.trim_on_init
	 - Control whether new devices added to the pool have the
	 TRIM command run on them. This ensures
	 the best performance and longevity for
	 SSDs, but takes extra time. If the
	 device has already been secure erased, disabling this
	 setting will make the addition of the new device faster.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.vdev.max_pending
	 - Limit the number of pending I/O requests per device.
	 A higher value will keep the device command queue full
	 and may give higher throughput. A lower value will reduce
	 latency. This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.top_maxinflight
	 - Maxmimum number of outstanding I/Os per top-level
	 vdev. Limits the
	 depth of the command queue to prevent high latency. The
	 limit is per top-level vdev, meaning the limit applies to
	 each mirror,
	 RAID-Z, or
	 other vdev independently. This value can be adjusted at
	 any time with sysctl(8).

	vfs.zfs.l2arc_write_max
	 - Limit the amount of data written to the L2ARC
	 per second. This tunable is designed to extend the
	 longevity of SSDs by limiting the
	 amount of data written to the device. This value can be
	 adjusted at any time with sysctl(8).

	vfs.zfs.l2arc_write_boost
	 - The value of this tunable is added to vfs.zfs.l2arc_write_max
	 and increases the write speed to the
	 SSD until the first block is evicted
	 from the L2ARC.
	 This “Turbo Warmup Phase” is designed to
	 reduce the performance loss from an empty L2ARC
	 after a reboot. This value can be adjusted at any time
	 with sysctl(8).

	vfs.zfs.scrub_delay
	 - Number of ticks to delay between each I/O during a
	 scrub.
	 To ensure that a scrub does not
	 interfere with the normal operation of the pool, if any
	 other I/O is happening the
	 scrub will delay between each command.
	 This value controls the limit on the total
	 IOPS (I/Os Per Second) generated by the
	 scrub. The granularity of the setting
	 is determined by the value of kern.hz
	 which defaults to 1000 ticks per second. This setting may
	 be changed, resulting in a different effective
	 IOPS limit. The default value is
	 4, resulting in a limit of:
	 1000 ticks/sec / 4 =
	 250 IOPS. Using a value of
	 20 would give a limit of:
	 1000 ticks/sec / 20 =
	 50 IOPS. The speed of
	 scrub is only limited when there has
	 been recent activity on the pool, as determined by vfs.zfs.scan_idle.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.resilver_delay
	 - Number of milliseconds of delay inserted between
	 each I/O during a
	 resilver. To
	 ensure that a resilver does not interfere with the normal
	 operation of the pool, if any other I/O is happening the
	 resilver will delay between each command. This value
	 controls the limit of total IOPS (I/Os
	 Per Second) generated by the resilver. The granularity of
	 the setting is determined by the value of
	 kern.hz which defaults to 1000 ticks
	 per second. This setting may be changed, resulting in a
	 different effective IOPS limit. The
	 default value is 2, resulting in a limit of:
	 1000 ticks/sec / 2 =
	 500 IOPS. Returning the pool to
	 an Online state may
	 be more important if another device failing could
	 Fault the pool,
	 causing data loss. A value of 0 will give the resilver
	 operation the same priority as other operations, speeding
	 the healing process. The speed of resilver is only
	 limited when there has been other recent activity on the
	 pool, as determined by vfs.zfs.scan_idle.
	 This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.scan_idle
	 - Number of milliseconds since the last operation before
	 the pool is considered idle. When the pool is idle the
	 rate limiting for scrub
	 and
	 resilver are
	 disabled. This value can be adjusted at any time with
	 sysctl(8).

	vfs.zfs.txg.timeout
	 - Maximum number of seconds between
	 transaction groups.
	 The current transaction group will be written to the pool
	 and a fresh transaction group started if this amount of
	 time has elapsed since the previous transaction group. A
	 transaction group my be triggered earlier if enough data
	 is written. The default value is 5 seconds. A larger
	 value may improve read performance by delaying
	 asynchronous writes, but this may cause uneven performance
	 when the transaction group is written. This value can be
	 adjusted at any time with sysctl(8).

20.6.2. ZFS on i386
Some of the features provided by ZFS
	are memory intensive, and may require tuning for maximum
	efficiency on systems with limited
	RAM.
20.6.2.1. Memory
As a bare minimum, the total system memory should be at
	 least one gigabyte. The amount of recommended
	 RAM depends upon the size of the pool and
	 which ZFS features are used. A general
	 rule of thumb is 1 GB of RAM for every 1 TB of
	 storage. If the deduplication feature is used, a general
	 rule of thumb is 5 GB of RAM per TB of storage to be
	 deduplicated. While some users successfully use
	 ZFS with less RAM,
	 systems under heavy load may panic due to memory exhaustion.
	 Further tuning may be required for systems with less than
	 the recommended RAM requirements.
20.6.2.2. Kernel Configuration
Due to the address space limitations of the
	 i386™ platform, ZFS users on the
	 i386™ architecture must add this option to a
	 custom kernel configuration file, rebuild the kernel, and
	 reboot:
options KVA_PAGES=512
This expands the kernel address space, allowing
	 the vm.kvm_size tunable to be pushed
	 beyond the currently imposed limit of 1 GB, or the
	 limit of 2 GB for PAE. To find the
	 most suitable value for this option, divide the desired
	 address space in megabytes by four. In this example, it
	 is 512 for 2 GB.
20.6.2.3. Loader Tunables
The kmem address space can be
	 increased on all FreeBSD architectures. On a test system with
	 1 GB of physical memory, success was achieved with
	 these options added to
	 /boot/loader.conf, and the system
	 restarted:
vm.kmem_size="330M"
vm.kmem_size_max="330M"
vfs.zfs.arc_max="40M"
vfs.zfs.vdev.cache.size="5M"
For a more detailed list of recommendations for
	 ZFS-related tuning, see https://wiki.freebsd.org/ZFSTuningGuide.
20.7. Additional Resources

20.7. Additional Resources
	OpenZFS

	FreeBSD
	 Wiki - ZFS Tuning

	Oracle
	 Solaris ZFS Administration
	 Guide

	Calomel
	 Blog - ZFS Raidz Performance, Capacity
	 and Integrity

20.8. ZFS Features and Terminology

20.8. ZFS Features and Terminology
ZFS is a fundamentally different file
 system because it is more than just a file system.
 ZFS combines the roles of file system and
 volume manager, enabling additional storage devices to be added
 to a live system and having the new space available on all of
 the existing file systems in that pool immediately. By
 combining the traditionally separate roles,
 ZFS is able to overcome previous limitations
 that prevented RAID groups being able to
 grow. Each top level device in a pool is called a
 vdev, which can be a simple disk or a
 RAID transformation such as a mirror or
 RAID-Z array. ZFS file
 systems (called datasets) each have access
 to the combined free space of the entire pool. As blocks are
 allocated from the pool, the space available to each file system
 decreases. This approach avoids the common pitfall with
 extensive partitioning where free space becomes fragmented
 across the partitions.
	pool	A storage pool is the most
	 basic building block of ZFS. A pool
	 is made up of one or more vdevs, the underlying devices
	 that store the data. A pool is then used to create one
	 or more file systems (datasets) or block devices
	 (volumes). These datasets and volumes share the pool of
	 remaining free space. Each pool is uniquely identified
	 by a name and a GUID. The features
	 available are determined by the ZFS
	 version number on the pool.
	vdev Types	A pool is made up of one or more vdevs, which
	 themselves can be a single disk or a group of disks, in
	 the case of a RAID transform. When
	 multiple vdevs are used, ZFS spreads
	 data across the vdevs to increase performance and
	 maximize usable space.

	 	Disk
		 - The most basic type of vdev is a standard block
		 device. This can be an entire disk (such as
		 /dev/ada0
		 or
		 /dev/da0)
		 or a partition
		 (/dev/ada0p3).
		 On FreeBSD, there is no performance penalty for using
		 a partition rather than the entire disk. This
		 differs from recommendations made by the Solaris
		 documentation.
Caution:
Using an entire disk as part of a bootable
		 pool is strongly discouraged, as this may render
		 the pool unbootable. Likewise, you should not
		 use an entire disk as part of a mirror or
		 RAID-Z vdev. These are
		 because it is impossible to reliably determine
		 the size of an unpartitioned disk at boot time
		 and because there's no place to put in boot
		 code.

	File
		 - In addition to disks, ZFS
		 pools can be backed by regular files, this is
		 especially useful for testing and experimentation.
		 Use the full path to the file as the device path
		 in zpool create. All vdevs
		 must be at least 128 MB in size.

	Mirror
		 - When creating a mirror, specify the
		 mirror keyword followed by the
		 list of member devices for the mirror. A mirror
		 consists of two or more devices, all data will be
		 written to all member devices. A mirror vdev will
		 only hold as much data as its smallest member. A
		 mirror vdev can withstand the failure of all but
		 one of its members without losing any data.
Note:
A regular single disk vdev can be upgraded
		 to a mirror vdev at any time with
		 zpool
			attach.

	RAID-Z
		 - ZFS implements
		 RAID-Z, a variation on standard
		 RAID-5 that offers better
		 distribution of parity and eliminates the
		 “RAID-5 write
		 hole” in which the data and parity
		 information become inconsistent after an
		 unexpected restart. ZFS
		 supports three levels of RAID-Z
		 which provide varying levels of redundancy in
		 exchange for decreasing levels of usable storage.
		 The types are named RAID-Z1
		 through RAID-Z3 based on the
		 number of parity devices in the array and the
		 number of disks which can fail while the pool
		 remains operational.
In a RAID-Z1 configuration
		 with four disks, each 1 TB, usable storage is
		 3 TB and the pool will still be able to
		 operate in degraded mode with one faulted disk.
		 If an additional disk goes offline before the
		 faulted disk is replaced and resilvered, all data
		 in the pool can be lost.
In a RAID-Z3 configuration
		 with eight disks of 1 TB, the volume will
		 provide 5 TB of usable space and still be
		 able to operate with three faulted disks. Sun™
		 recommends no more than nine disks in a single
		 vdev. If the configuration has more disks, it is
		 recommended to divide them into separate vdevs and
		 the pool data will be striped across them.
A configuration of two
		 RAID-Z2 vdevs consisting of 8
		 disks each would create something similar to a
		 RAID-60 array. A
		 RAID-Z group's storage capacity
		 is approximately the size of the smallest disk
		 multiplied by the number of non-parity disks.
		 Four 1 TB disks in RAID-Z1
		 has an effective size of approximately 3 TB,
		 and an array of eight 1 TB disks in
		 RAID-Z3 will yield 5 TB of
		 usable space.

	Spare
		 - ZFS has a special pseudo-vdev
		 type for keeping track of available hot spares.
		 Note that installed hot spares are not deployed
		 automatically; they must manually be configured to
		 replace the failed device using
		 zfs replace.

	Log
		 - ZFS Log Devices, also known
		 as ZFS Intent Log (ZIL)
		 move the intent log from the regular pool devices
		 to a dedicated device, typically an
		 SSD. Having a dedicated log
		 device can significantly improve the performance
		 of applications with a high volume of synchronous
		 writes, especially databases. Log devices can be
		 mirrored, but RAID-Z is not
		 supported. If multiple log devices are used,
		 writes will be load balanced across them.

	Cache
		 - Adding a cache vdev to a pool will add the
		 storage of the cache to the L2ARC.
		 Cache devices cannot be mirrored. Since a cache
		 device only stores additional copies of existing
		 data, there is no risk of data loss.

	Transaction Group
	 (TXG)	Transaction Groups are the way changed blocks are
	 grouped together and eventually written to the pool.
	 Transaction groups are the atomic unit that
	 ZFS uses to assert consistency. Each
	 transaction group is assigned a unique 64-bit
	 consecutive identifier. There can be up to three active
	 transaction groups at a time, one in each of these three
	 states:

	 	Open - When a new
		 transaction group is created, it is in the open
		 state, and accepts new writes. There is always
		 a transaction group in the open state, however the
		 transaction group may refuse new writes if it has
		 reached a limit. Once the open transaction group
		 has reached a limit, or the vfs.zfs.txg.timeout
		 has been reached, the transaction group advances
		 to the next state.

	Quiescing - A short state
		 that allows any pending operations to finish while
		 not blocking the creation of a new open
		 transaction group. Once all of the transactions
		 in the group have completed, the transaction group
		 advances to the final state.

	Syncing - All of the data
		 in the transaction group is written to stable
		 storage. This process will in turn modify other
		 data, such as metadata and space maps, that will
		 also need to be written to stable storage. The
		 process of syncing involves multiple passes. The
		 first, all of the changed data blocks, is the
		 biggest, followed by the metadata, which may take
		 multiple passes to complete. Since allocating
		 space for the data blocks generates new metadata,
		 the syncing state cannot finish until a pass
		 completes that does not allocate any additional
		 space. The syncing state is also where
		 synctasks are completed.
		 Synctasks are administrative operations, such as
		 creating or destroying snapshots and datasets,
		 that modify the uberblock are completed. Once the
		 sync state is complete, the transaction group in
		 the quiescing state is advanced to the syncing
		 state.

	 All administrative functions, such as snapshot
	 are written as part of the transaction group. When a
	 synctask is created, it is added to the currently open
	 transaction group, and that group is advanced as quickly
	 as possible to the syncing state to reduce the
	 latency of administrative commands.
	Adaptive Replacement
	 Cache (ARC)	ZFS uses an Adaptive Replacement
	 Cache (ARC), rather than a more
	 traditional Least Recently Used (LRU)
	 cache. An LRU cache is a simple list
	 of items in the cache, sorted by when each object was
	 most recently used. New items are added to the top of
	 the list. When the cache is full, items from the
	 bottom of the list are evicted to make room for more
	 active objects. An ARC consists of
	 four lists; the Most Recently Used
	 (MRU) and Most Frequently Used
	 (MFU) objects, plus a ghost list for
	 each. These ghost lists track recently evicted objects
	 to prevent them from being added back to the cache.
	 This increases the cache hit ratio by avoiding objects
	 that have a history of only being used occasionally.
	 Another advantage of using both an
	 MRU and MFU is
	 that scanning an entire file system would normally evict
	 all data from an MRU or
	 LRU cache in favor of this freshly
	 accessed content. With ZFS, there is
	 also an MFU that only tracks the most
	 frequently used objects, and the cache of the most
	 commonly accessed blocks remains.
	L2ARC	L2ARC is the second level
	 of the ZFS caching system. The
	 primary ARC is stored in
	 RAM. Since the amount of
	 available RAM is often limited,
	 ZFS can also use
	 cache vdevs.
	 Solid State Disks (SSDs) are often
	 used as these cache devices due to their higher speed
	 and lower latency compared to traditional spinning
	 disks. L2ARC is entirely optional,
	 but having one will significantly increase read speeds
	 for files that are cached on the SSD
	 instead of having to be read from the regular disks.
	 L2ARC can also speed up deduplication
	 because a DDT that does not fit in
	 RAM but does fit in the
	 L2ARC will be much faster than a
	 DDT that must be read from disk. The
	 rate at which data is added to the cache devices is
	 limited to prevent prematurely wearing out
	 SSDs with too many writes. Until the
	 cache is full (the first block has been evicted to make
	 room), writing to the L2ARC is
	 limited to the sum of the write limit and the boost
	 limit, and afterwards limited to the write limit. A
	 pair of sysctl(8) values control these rate limits.
	 vfs.zfs.l2arc_write_max
	 controls how many bytes are written to the cache per
	 second, while vfs.zfs.l2arc_write_boost
	 adds to this limit during the
	 “Turbo Warmup Phase” (Write Boost).
	ZIL	ZIL accelerates synchronous
	 transactions by using storage devices like
	 SSDs that are faster than those used
	 in the main storage pool. When an application requests
	 a synchronous write (a guarantee that the data has been
	 safely stored to disk rather than merely cached to be
	 written later), the data is written to the faster
	 ZIL storage, then later flushed out
	 to the regular disks. This greatly reduces latency and
	 improves performance. Only synchronous workloads like
	 databases will benefit from a ZIL.
	 Regular asynchronous writes such as copying files will
	 not use the ZIL at all.
	Copy-On-Write	Unlike a traditional file system, when data is
	 overwritten on ZFS, the new data is
	 written to a different block rather than overwriting the
	 old data in place. Only when this write is complete is
	 the metadata then updated to point to the new location.
	 In the event of a shorn write (a system crash or power
	 loss in the middle of writing a file), the entire
	 original contents of the file are still available and
	 the incomplete write is discarded. This also means that
	 ZFS does not require a fsck(8)
	 after an unexpected shutdown.
	Dataset	Dataset is the generic term
	 for a ZFS file system, volume,
	 snapshot or clone. Each dataset has a unique name in
	 the format
	 poolname/path@snapshot.
	 The root of the pool is technically a dataset as well.
	 Child datasets are named hierarchically like
	 directories. For example,
	 mypool/home, the home
	 dataset, is a child of mypool
	 and inherits properties from it. This can be expanded
	 further by creating
	 mypool/home/user. This
	 grandchild dataset will inherit properties from the
	 parent and grandparent. Properties on a child can be
	 set to override the defaults inherited from the parents
	 and grandparents. Administration of datasets and their
	 children can be
	 delegated.
	File system	A ZFS dataset is most often used
	 as a file system. Like most other file systems, a
	 ZFS file system is mounted somewhere
	 in the systems directory hierarchy and contains files
	 and directories of its own with permissions, flags, and
	 other metadata.
	Volume	In additional to regular file system datasets,
	 ZFS can also create volumes, which
	 are block devices. Volumes have many of the same
	 features, including copy-on-write, snapshots, clones,
	 and checksumming. Volumes can be useful for running
	 other file system formats on top of
	 ZFS, such as UFS
	 virtualization, or exporting iSCSI
	 extents.
	Snapshot	The
	 copy-on-write
	 (COW) design of
	 ZFS allows for nearly instantaneous,
	 consistent snapshots with arbitrary names. After taking
	 a snapshot of a dataset, or a recursive snapshot of a
	 parent dataset that will include all child datasets, new
	 data is written to new blocks, but the old blocks are
	 not reclaimed as free space. The snapshot contains
	 the original version of the file system, and the live
	 file system contains any changes made since the snapshot
	 was taken. No additional space is used. As new data is
	 written to the live file system, new blocks are
	 allocated to store this data. The apparent size of the
	 snapshot will grow as the blocks are no longer used in
	 the live file system, but only in the snapshot. These
	 snapshots can be mounted read only to allow for the
	 recovery of previous versions of files. It is also
	 possible to
	 rollback a live
	 file system to a specific snapshot, undoing any changes
	 that took place after the snapshot was taken. Each
	 block in the pool has a reference counter which keeps
	 track of how many snapshots, clones, datasets, or
	 volumes make use of that block. As files and snapshots
	 are deleted, the reference count is decremented. When a
	 block is no longer referenced, it is reclaimed as free
	 space. Snapshots can also be marked with a
	 hold. When a
	 snapshot is held, any attempt to destroy it will return
	 an EBUSY error. Each snapshot can
	 have multiple holds, each with a unique name. The
	 release command
	 removes the hold so the snapshot can deleted. Snapshots
	 can be taken on volumes, but they can only be cloned or
	 rolled back, not mounted independently.
	Clone	Snapshots can also be cloned. A clone is a
	 writable version of a snapshot, allowing the file system
	 to be forked as a new dataset. As with a snapshot, a
	 clone initially consumes no additional space. As
	 new data is written to a clone and new blocks are
	 allocated, the apparent size of the clone grows. When
	 blocks are overwritten in the cloned file system or
	 volume, the reference count on the previous block is
	 decremented. The snapshot upon which a clone is based
	 cannot be deleted because the clone depends on it. The
	 snapshot is the parent, and the clone is the child.
	 Clones can be promoted, reversing
	 this dependency and making the clone the parent and the
	 previous parent the child. This operation requires no
	 additional space. Since the amount of space used by
	 the parent and child is reversed, existing quotas and
	 reservations might be affected.
	Checksum	Every block that is allocated is also checksummed.
	 The checksum algorithm used is a per-dataset property,
	 see set.
	 The checksum of each block is transparently validated as
	 it is read, allowing ZFS to detect
	 silent corruption. If the data that is read does not
	 match the expected checksum, ZFS will
	 attempt to recover the data from any available
	 redundancy, like mirrors or RAID-Z).
	 Validation of all checksums can be triggered with scrub.
	 Checksum algorithms include:

	 	fletcher2

	fletcher4

	sha256

	 The fletcher algorithms are faster,
	 but sha256 is a strong cryptographic
	 hash and has a much lower chance of collisions at the
	 cost of some performance. Checksums can be disabled,
	 but it is not recommended.
	Compression	Each dataset has a compression property, which
	 defaults to off. This property can be set to one of a
	 number of compression algorithms. This will cause all
	 new data that is written to the dataset to be
	 compressed. Beyond a reduction in space used, read and
	 write throughput often increases because fewer blocks
	 are read or written.

	 	LZ4 -
		 Added in ZFS pool version
		 5000 (feature flags), LZ4 is
		 now the recommended compression algorithm.
		 LZ4 compresses approximately
		 50% faster than LZJB when
		 operating on compressible data, and is over three
		 times faster when operating on uncompressible
		 data. LZ4 also decompresses
		 approximately 80% faster than
		 LZJB. On modern
		 CPUs, LZ4
		 can often compress at over 500 MB/s, and
		 decompress at over 1.5 GB/s (per single CPU
		 core).

	LZJB -
		 The default compression algorithm. Created by
		 Jeff Bonwick (one of the original creators of
		 ZFS). LZJB
		 offers good compression with less
		 CPU overhead compared to
		 GZIP. In the future, the
		 default compression algorithm will likely change
		 to LZ4.

	GZIP -
		 A popular stream compression algorithm available
		 in ZFS. One of the main
		 advantages of using GZIP is its
		 configurable level of compression. When setting
		 the compress property, the
		 administrator can choose the level of compression,
		 ranging from gzip1, the lowest
		 level of compression, to gzip9,
		 the highest level of compression. This gives the
		 administrator control over how much
		 CPU time to trade for saved
		 disk space.

	ZLE -
		 Zero Length Encoding is a special compression
		 algorithm that only compresses continuous runs of
		 zeros. This compression algorithm is only useful
		 when the dataset contains large blocks of
		 zeros.

	Copies	When set to a value greater than 1, the
	 copies property instructs
	 ZFS to maintain multiple copies of
	 each block in the
	 File System
	 or
	 Volume. Setting
	 this property on important datasets provides additional
	 redundancy from which to recover a block that does not
	 match its checksum. In pools without redundancy, the
	 copies feature is the only form of redundancy. The
	 copies feature can recover from a single bad sector or
	 other forms of minor corruption, but it does not protect
	 the pool from the loss of an entire disk.
	Deduplication	Checksums make it possible to detect duplicate
	 blocks of data as they are written. With deduplication,
	 the reference count of an existing, identical block is
	 increased, saving storage space. To detect duplicate
	 blocks, a deduplication table (DDT)
	 is kept in memory. The table contains a list of unique
	 checksums, the location of those blocks, and a reference
	 count. When new data is written, the checksum is
	 calculated and compared to the list. If a match is
	 found, the existing block is used. The
	 SHA256 checksum algorithm is used
	 with deduplication to provide a secure cryptographic
	 hash. Deduplication is tunable. If
	 dedup is on, then
	 a matching checksum is assumed to mean that the data is
	 identical. If dedup is set to
	 verify, then the data in the two
	 blocks will be checked byte-for-byte to ensure it is
	 actually identical. If the data is not identical, the
	 hash collision will be noted and the two blocks will be
	 stored separately. As DDT must
	 store the hash of each unique block, it consumes a very
	 large amount of memory. A general rule of thumb is
	 5-6 GB of ram per 1 TB of deduplicated data).
	 In situations where it is not practical to have enough
	 RAM to keep the entire
	 DDT in memory, performance will
	 suffer greatly as the DDT must be
	 read from disk before each new block is written.
	 Deduplication can use L2ARC to store
	 the DDT, providing a middle ground
	 between fast system memory and slower disks. Consider
	 using compression instead, which often provides nearly
	 as much space savings without the additional memory
	 requirement.
	Scrub	Instead of a consistency check like fsck(8),
	 ZFS has scrub.
	 scrub reads all data blocks stored on
	 the pool and verifies their checksums against the known
	 good checksums stored in the metadata. A periodic check
	 of all the data stored on the pool ensures the recovery
	 of any corrupted blocks before they are needed. A scrub
	 is not required after an unclean shutdown, but is
	 recommended at least once every three months. The
	 checksum of each block is verified as blocks are read
	 during normal use, but a scrub makes certain that even
	 infrequently used blocks are checked for silent
	 corruption. Data security is improved, especially in
	 archival storage situations. The relative priority of
	 scrub can be adjusted with vfs.zfs.scrub_delay
	 to prevent the scrub from degrading the performance of
	 other workloads on the pool.
	Dataset Quota	ZFS provides very fast and
	 accurate dataset, user, and group space accounting in
	 addition to quotas and space reservations. This gives
	 the administrator fine grained control over how space is
	 allocated and allows space to be reserved for critical
	 file systems.

	 ZFS supports different types of
		quotas: the dataset quota, the reference
		 quota (refquota), the
		user
		 quota, and the
		group
		 quota.

	 Quotas limit the amount of space that a dataset
		and all of its descendants, including snapshots of the
		dataset, child datasets, and the snapshots of those
		datasets, can consume.

	 Note:
Quotas cannot be set on volumes, as the
		 volsize property acts as an
		 implicit quota.

	Reference
	 Quota	A reference quota limits the amount of space a
	 dataset can consume by enforcing a hard limit. However,
	 this hard limit includes only space that the dataset
	 references and does not include space used by
	 descendants, such as file systems or snapshots.
	User
	 Quota	User quotas are useful to limit the amount of space
	 that can be used by the specified user.
	Group
	 Quota	The group quota limits the amount of space that a
	 specified group can consume.
	Dataset
	 Reservation	The reservation property makes
	 it possible to guarantee a minimum amount of space for a
	 specific dataset and its descendants. If a 10 GB
	 reservation is set on
	 storage/home/bob, and another
	 dataset tries to use all of the free space, at least
	 10 GB of space is reserved for this dataset. If a
	 snapshot is taken of
	 storage/home/bob, the space used by
	 that snapshot is counted against the reservation. The
	 refreservation
	 property works in a similar way, but it
	 excludes descendants like
	 snapshots.

	 Reservations of any sort are useful in many
		situations, such as planning and testing the
		suitability of disk space allocation in a new system,
		or ensuring that enough space is available on file
		systems for audio logs or system recovery procedures
		and files.

	
	Reference
	 Reservation	The refreservation property
	 makes it possible to guarantee a minimum amount of
	 space for the use of a specific dataset
	 excluding its descendants. This
	 means that if a 10 GB reservation is set on
	 storage/home/bob, and another
	 dataset tries to use all of the free space, at least
	 10 GB of space is reserved for this dataset. In
	 contrast to a regular
	 reservation,
	 space used by snapshots and descendant datasets is not
	 counted against the reservation. For example, if a
	 snapshot is taken of
	 storage/home/bob, enough disk space
	 must exist outside of the
	 refreservation amount for the
	 operation to succeed. Descendants of the main data set
	 are not counted in the refreservation
	 amount and so do not encroach on the space set.
	Resilver	When a disk fails and is replaced, the new disk
	 must be filled with the data that was lost. The process
	 of using the parity information distributed across the
	 remaining drives to calculate and write the missing data
	 to the new drive is called
	 resilvering.
	Online	A pool or vdev in the Online
	 state has all of its member devices connected and fully
	 operational. Individual devices in the
	 Online state are functioning
	 normally.
	Offline	Individual devices can be put in an
	 Offline state by the administrator if
	 there is sufficient redundancy to avoid putting the pool
	 or vdev into a
	 Faulted state.
	 An administrator may choose to offline a disk in
	 preparation for replacing it, or to make it easier to
	 identify.
	Degraded	A pool or vdev in the Degraded
	 state has one or more disks that have been disconnected
	 or have failed. The pool is still usable, but if
	 additional devices fail, the pool could become
	 unrecoverable. Reconnecting the missing devices or
	 replacing the failed disks will return the pool to an
	 Online state
	 after the reconnected or new device has completed the
	 Resilver
	 process.
	Faulted	A pool or vdev in the Faulted
	 state is no longer operational. The data on it can no
	 longer be accessed. A pool or vdev enters the
	 Faulted state when the number of
	 missing or failed devices exceeds the level of
	 redundancy in the vdev. If missing devices can be
	 reconnected, the pool will return to a
	 Online state. If
	 there is insufficient redundancy to compensate for the
	 number of failed disks, then the contents of the pool
	 are lost and must be restored from backups.

Chapter 21. Other File Systems

Chapter 21. Other File Systems
Written
	by Tom Rhodes. 21.1. Synopsis
File systems are an integral part of any operating system.
 They allow users to upload and store files, provide access to
 data, and make hard drives useful. Different operating systems
 differ in their native file system. Traditionally, the native
 FreeBSD file system has been the Unix File System
 UFS which has been modernized as
 UFS2. Since FreeBSD 7.0, the Z File System
 (ZFS) is also available as a native file
 system. See Chapter 20, The Z File System (ZFS) for more information.
In addition to its native file systems, FreeBSD supports a
 multitude of other file systems so that data from other
 operating systems can be accessed locally, such as data stored
 on locally attached USB storage devices,
 flash drives, and hard disks. This includes support for the
 Linux® Extended File System (EXT).
There are different levels of FreeBSD support for the various
 file systems. Some require a kernel module to be loaded and
 others may require a toolset to be installed. Some non-native
 file system support is full read-write while others are
 read-only.
After reading this chapter, you will know:
	The difference between native and supported file
	 systems.

	Which file systems are supported by FreeBSD.

	How to enable, configure, access, and make use of
	 non-native file systems.

Before reading this chapter, you should:
	Understand UNIX® and
	 FreeBSD basics.

	Be familiar with the basics of kernel configuration and
	 compilation.

	Feel comfortable installing
	 software in FreeBSD.

	Have some familiarity with disks, storage, and device names in
	 FreeBSD.

Chapter 22. Virtualization

Chapter 22. Virtualization
Contributed by Murray Stokely. bhyve section by Allan Jude. Xen section by Benedict Reuschling. 22.1. Synopsis
Virtualization software allows multiple operating systems to
 run simultaneously on the same computer. Such software systems
 for PCs often involve a host operating system
 which runs the virtualization software and supports any number
 of guest operating systems.
After reading this chapter, you will know:
	The difference between a host operating system and a
	 guest operating system.

	How to install FreeBSD on an Intel®-based Apple®
	 Mac® computer.

	How to install FreeBSD on Microsoft® Windows® with
	 Virtual PC.

	How to install FreeBSD as a guest in
	 bhyve.

	How to tune a FreeBSD system for best performance under
	 virtualization.

Before reading this chapter, you should:
	Understand the basics of UNIX®
	 and FreeBSD.

	Know how to install
	 FreeBSD.

	Know how to set up a
	 network connection.

	Know how to install additional
	 third-party software.

22.2. FreeBSD as a Guest on Parallels for Mac OS® X

22.2. FreeBSD as a Guest on Parallels for
 Mac OS® X
Parallels Desktop for Mac® is
 a commercial software product available for Intel® based
 Apple® Mac® computers running Mac OS® 10.4.6 or higher. FreeBSD
 is a fully supported guest operating system. Once
 Parallels has been installed on
 Mac OS® X, the user must configure a virtual machine and then
 install the desired guest operating system.
22.2.1. Installing FreeBSD on Parallels/Mac OS® X
The first step in installing FreeBSD on
	Parallels is to create a new
	virtual machine for installing FreeBSD. Select
	FreeBSD as the
	Guest OS Type when prompted:

Choose a reasonable amount of disk and memory
	depending on the plans for this virtual FreeBSD instance.
	4GB of disk space and 512MB of RAM work well for most uses
	of FreeBSD under Parallels:

Select the type of networking and a network
	interface:

Save and finish the configuration:

After the FreeBSD virtual machine has been created, FreeBSD
	can be installed on it. This is best done with an official
	FreeBSD CD/DVD or with an
	ISO image downloaded from an official
	FTP site. Copy the appropriate
	ISO image to the local Mac® filesystem or
	insert a CD/DVD in the
	Mac®'s CD-ROM drive. Click on the disc
	icon in the bottom right corner of the FreeBSD
	Parallels window. This will bring
	up a window that can be used to associate the
	CD-ROM drive in the virtual machine with
	the ISO file on disk or with the real
	CD-ROM drive.

Once this association with the CD-ROM
	source has been made, reboot the FreeBSD virtual machine by
	clicking the reboot icon.
	Parallels will reboot with a
	special BIOS that first checks if there is
	a CD-ROM.

In this case it will find the FreeBSD installation media and
	begin a normal FreeBSD installation. Perform the installation,
	but do not attempt to configure
	Xorg at this time.

When the installation is finished, reboot into the newly
	installed FreeBSD virtual machine.

22.2.2. Configuring FreeBSD on
	Parallels
After FreeBSD has been successfully installed on Mac OS® X
	with Parallels, there are a number
	of configuration steps that can be taken to optimize the
	system for virtualized operation.
	Set Boot Loader Variables
The most important step is to reduce the
	 kern.hz tunable to reduce the CPU
	 utilization of FreeBSD under the
	 Parallels environment. This is
	 accomplished by adding the following line to
	 /boot/loader.conf:
kern.hz=100
Without this setting, an idle FreeBSD
	 Parallels guest will use
	 roughly 15% of the CPU of a single processor iMac®.
	 After this change the usage will be closer to 5%.

	Create a New Kernel Configuration File
All of the SCSI, FireWire, and USB device drivers
	 can be removed from a custom kernel configuration file.
	 Parallels provides a virtual
	 network adapter used by the ed(4) driver, so all
	 network devices except for ed(4) and miibus(4)
	 can be removed from the kernel.

	Configure Networking
The most basic networking setup uses DHCP to connect
	 the virtual machine to the same local area network as the
	 host Mac®. This can be accomplished by adding
	 ifconfig_ed0="DHCP" to
	 /etc/rc.conf. More advanced
	 networking setups are described in
	 Chapter 32, Advanced Networking.

22.4. FreeBSD as a Guest on VMware Fusion for Mac OS®

22.4. FreeBSD as a Guest on VMware Fusion
 for Mac OS®
VMware Fusion for Mac® is a
 commercial software product available for Intel® based Apple®
 Mac® computers running Mac OS® 10.4.9 or higher. FreeBSD is a
 fully supported guest operating system. Once
 VMware Fusion has been installed on
 Mac OS® X, the user can configure a virtual machine and then
 install the desired guest operating system.
22.4.1. Installing FreeBSD on
	VMware Fusion
The first step is to start
	VMware Fusion which will load the
	Virtual Machine Library. Click New
	to create the virtual machine:

This will load the New Virtual Machine Assistant. Click
	Continue to proceed:

Select Other as the
	Operating System and either
	FreeBSD or
	FreeBSD 64-bit, as the
	Version when prompted:

Choose the name of the virtual machine and the directory
	where it should be saved:

Choose the size of the Virtual Hard Disk for the virtual
	machine:

Choose the method to install the virtual machine, either
	from an ISO image or from a
	CD/DVD:

Click Finish and the virtual
	machine will boot:

Install FreeBSD as usual:

Once the install is complete, the settings of the virtual
	machine can be modified, such as memory usage:
Note:
The System Hardware settings of the virtual machine
	 cannot be modified while the virtual machine is
	 running.

The number of CPUs the virtual machine will have access
	to:

The status of the CD-ROM device.
	Normally the
	CD/DVD/ISO
	is disconnected from the virtual machine when it is no longer
	needed.

The last thing to change is how the virtual machine will
	connect to the network. To allow connections to the virtual
	machine from other machines besides the host, choose
	Connect directly to the physical network
	 (Bridged). Otherwise,
	Share the host's internet connection
	 (NAT) is preferred so that the virtual machine
	can have access to the Internet, but the network cannot access
	the virtual machine.

After modifying the settings, boot the newly installed
	FreeBSD virtual machine.
22.4.2. Configuring FreeBSD on VMware
	 Fusion
After FreeBSD has been successfully installed on Mac OS® X
	with VMware Fusion, there are a
	number of configuration steps that can be taken to optimize
	the system for virtualized operation.
	Set Boot Loader Variables
The most important step is to reduce the
	 kern.hz tunable to reduce the CPU
	 utilization of FreeBSD under the
	 VMware Fusion environment.
	 This is accomplished by adding the following line to
	 /boot/loader.conf:
kern.hz=100
Without this setting, an idle FreeBSD
	 VMware Fusion guest will use
	 roughly 15% of the CPU of a single processor iMac®.
	 After this change, the usage will be closer to 5%.

	Create a New Kernel Configuration File
All of the FireWire, and USB device drivers can be
	 removed from a custom kernel configuration file.
	 VMware Fusion provides a
	 virtual network adapter used by the em(4) driver, so
	 all network devices except for em(4) can be removed
	 from the kernel.

	Configure Networking
The most basic networking setup uses DHCP to connect
	 the virtual machine to the same local area network as the
	 host Mac®. This can be accomplished by adding
	 ifconfig_em0="DHCP" to
	 /etc/rc.conf. More advanced
	 networking setups are described in
	 Chapter 32, Advanced Networking.

22.6. FreeBSD as a Host with VirtualBox™

22.6. FreeBSD as a Host with VirtualBox™
VirtualBox™ is an actively
 developed, complete virtualization package, that is available
 for most operating systems including Windows®, Mac OS®, Linux®
 and FreeBSD. It is equally capable of running Windows® or
 UNIX®-like guests. It is released as open source software, but
 with closed-source components available in a separate extension
 pack. These components include support for USB 2.0 devices.
 More information may be found on the “Downloads”
	page of the VirtualBox™
	wiki. Currently, these extensions are not available
 for FreeBSD.
22.6.1. Installing VirtualBox™
VirtualBox™ is available as a
	FreeBSD package or port in
	emulators/virtualbox-ose. The port can be
	installed using these commands:
cd /usr/ports/emulators/virtualbox-ose
make install clean
One useful option in the port's configuration menu is the
	GuestAdditions suite of programs. These
	provide a number of useful features in guest operating
	systems, like mouse pointer integration (allowing the mouse to
	be shared between host and guest without the need to press a
	special keyboard shortcut to switch) and faster video
	rendering, especially in Windows® guests. The guest
	additions are available in the Devices
	menu, after the installation of the guest is finished.
A few configuration changes are needed before
	VirtualBox™ is started for the
	first time. The port installs a kernel module in
	/boot/modules which
	must be loaded into the running kernel:
kldload vboxdrv
To ensure the module is always loaded after a reboot,
	add this line to
	/boot/loader.conf:
vboxdrv_load="YES"
To use the kernel modules that allow bridged or host-only
	networking, add this line to
	/etc/rc.conf and reboot the
	computer:
vboxnet_enable="YES"
The vboxusers
	group is created during installation of
	VirtualBox™. All users that need
	access to VirtualBox™ will have to
	be added as members of this group. pw can
	be used to add new members:
pw groupmod vboxusers -m yourusername
The default permissions for
	/dev/vboxnetctl are restrictive and need
	to be changed for bridged networking:
chown root:vboxusers /dev/vboxnetctl
chmod 0660 /dev/vboxnetctl
To make this permissions change permanent, add these
	lines to /etc/devfs.conf:
own vboxnetctl root:vboxusers
perm vboxnetctl 0660
To launch VirtualBox™,
	type from a Xorg session:
% VirtualBox
For more information on configuring and using
	VirtualBox™, refer to the
	official
	 website. For FreeBSD-specific information and
	troubleshooting instructions, refer to the relevant
	 page in the FreeBSD wiki.
22.6.2. VirtualBox™ USB Support
VirtualBox™ can be configured
	to pass USB devices through to the guest
	operating system. The host controller of the OSE version is
	limited to emulating USB 1.1 devices until
	the extension pack supporting USB 2.0 and
	3.0 devices becomes available on FreeBSD.
For VirtualBox™ to be aware of
	USB devices attached to the machine, the
	user needs to be a member of the operator group.
pw groupmod operator -m yourusername
Then, add the following to
 /etc/devfs.rules, or create this file if
 it does not exist yet:
[system=10]
add path 'usb/*' mode 0660 group operator
To load these new rules, add the following to
 /etc/rc.conf:
devfs_system_ruleset="system"
Then, restart devfs:
service devfs restart
Restart the login session and
	VirtualBox™ for these changes to
	take effect, and create USB filters as
	necessary.
22.6.3. VirtualBox™ Host
	DVD/CD Access
Access to the host
	DVD/CD drives from
	guests is achieved through the sharing of the physical drives.
	Within VirtualBox™, this is set up from the Storage window in
	the Settings of the virtual machine. If needed, create an
	empty IDE
	CD/DVD device first.
	Then choose the Host Drive from the popup menu for the virtual
	CD/DVD drive selection.
	A checkbox labeled Passthrough will appear.
	This allows the virtual machine to use the hardware directly.
	For example, audio CDs or the burner will
	only function if this option is selected.
HAL needs to run for
	VirtualBox™
	DVD/CD functions to
	work, so enable it in /etc/rc.conf and
	start it if it is not already running:
hald_enable="YES"
service hald start
In order for users to be able to use
	VirtualBox™
	DVD/CD functions, they
	need access to /dev/xpt0,
	/dev/cdN, and
	/dev/passN.
	This is usually achieved by making the user a member of
	operator.
	Permissions to these devices have to be corrected by adding
	these lines to /etc/devfs.conf:
perm cd* 0660
perm xpt0 0660
perm pass* 0660
service devfs restart
22.8. FreeBSD as a Xen™-Host

22.8. FreeBSD as a Xen™-Host
Xen is a GPLv2-licensed type
	1 hypervisor for Intel® and ARM® architectures. FreeBSD
 has included i386™ and AMD® 64-Bit DomU
 and Amazon
	EC2 unprivileged domain (virtual machine) support since
 FreeBSD 8.0 and includes Dom0 control domain (host) support in
 FreeBSD 11.0. Support for para-virtualized (PV) domains has
 been removed from FreeBSD 11 in favor of hardware virtualized
 (HVM) domains, which provides better performance.
Xen™ is a bare-metal hypervisor, which means that it is the
 first program loaded after the BIOS. A special privileged guest
 called the Domain-0 (Dom0 for short) is then
 started. The Dom0 uses its special privileges to directly
 access the underlying physical hardware, making it a
 high-performance solution. It is able to access the disk
 controllers and network adapters directly. The Xen™ management
 tools to manage and control the Xen™ hypervisor are also used
 by the Dom0 to create, list, and destroy VMs. Dom0 provides
 virtual disks and networking for unprivileged domains, often
 called DomU. Xen™ Dom0 can be compared to
 the service console of other hypervisor solutions, while the
 DomU is where individual guest VMs are run.
Xen™ can migrate VMs between different Xen™ servers. When
 the two xen hosts share the same underlying storage, the
 migration can be done without having to shut the VM down first.
 Instead, the migration is performed live while the DomU is
 running and there is no need to restart it or plan a downtime.
 This is useful in maintenance scenarios or upgrade windows to
 ensure that the services provided by the DomU are still
 provided. Many more features of Xen™ are listed on the Xen
	Wiki Overview page. Note that not all features are
 supported on FreeBSD yet.
22.8.1. Hardware Requirements for Xen™ Dom0
To run the Xen™ hypervisor on a host, certain hardware
	functionality is required. Hardware virtualized domains
	require Extended Page Table (EPT)
	and Input/Output Memory Management Unit (IOMMU)
	support in the host processor.
Note:
In order to run a FreeBSD Xen™ Dom0 the box must be
	 booted using legacy boot (BIOS).

22.8.2. Xen™ Dom0 Control Domain Setup
Users of FreeBSD 11 should install the
	emulators/xen-kernel47 and
	sysutils/xen-tools47 packages that are
	based on Xen version 4.7. Systems running on FreeBSD-12.0 or
	newer can use Xen 4.11 provided by
	emulators/xen-kernel411 and
	sysutils/xen-tools411, respectively.
Configuration files must be edited to prepare the host
	for the Dom0 integration after the Xen packages are installed.
	An entry to /etc/sysctl.conf disables the
	limit on how many pages of memory are allowed to be wired.
	Otherwise, DomU VMs with higher memory requirements will not
	run.
echo 'vm.max_wired=-1' >> /etc/sysctl.conf
Another memory-related setting involves changing
	/etc/login.conf, setting the
	memorylocked option to
	unlimited. Otherwise, creating DomU
	domains may fail with Cannot allocate
	 memory errors. After making the change to
	/etc/login.conf, run
	cap_mkdb to update the capability database.
	See Section 14.13, “Resource Limits” for
	details.
sed -i '' -e 's/memorylocked=64K/memorylocked=unlimited/' /etc/login.conf
cap_mkdb /etc/login.conf
Add an entry for the Xen™ console to
	/etc/ttys:
echo 'xc0 "/usr/libexec/getty Pc" xterm onifconsole secure' >> /etc/ttys
Selecting a Xen™ kernel in
	/boot/loader.conf activates the Dom0.
	Xen™ also requires resources like CPU and memory from the
	host machine for itself and other DomU domains. How much CPU
	and memory depends on the individual requirements and hardware
	capabilities. In this example, 8 GB of memory and 4
	virtual CPUs are made available for the Dom0. The serial
	console is also activated and logging options are
	defined.
The following command is used for Xen 4.7 packages:
sysrc -f /boot/loader.conf hw.pci.mcfg=0
sysrc -f /boot/loader.conf if_tap_load="YES"
sysrc -f /boot/loader.conf xen_kernel="/boot/xen"
sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0pvh=1 console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"
For Xen versions 4.11 and higher, the following command
	should be used instead:
sysrc -f /boot/loader.conf if_tap_load="YES"
sysrc -f /boot/loader.conf xen_kernel="/boot/xen"
sysrc -f /boot/loader.conf xen_cmdline="dom0_mem=8192M dom0_max_vcpus=4 dom0=pvh console=com1,vga com1=115200,8n1 guest_loglvl=all loglvl=all"
Tip:
Log files that Xen™ creates for the DomU VMs
	 are stored in /var/log/xen. Please
	 be sure to check the contents of that directory if
	 experiencing issues.

Activate the xencommons service during system
	 startup:
sysrc xencommons_enable=yes
These settings are enough to start a Dom0-enabled
	 system. However, it lacks network functionality for the
	 DomU machines. To fix that, define a bridged interface with
	 the main NIC of the system which the DomU VMs can use to
	 connect to the network. Replace
	 em0 with the host network
	 interface name.
sysrc cloned_interfaces="bridge0"
sysrc ifconfig_bridge0="addm em0 SYNCDHCP"
sysrc ifconfig_em0="up"
Restart the host to load the Xen™ kernel and start the
	 Dom0.
reboot
After successfully booting the Xen™ kernel and logging
	 into the system again, the Xen™ management tool
	 xl is used to show information about the
	 domains.
xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 4 r----- 962.0
The output confirms that the Dom0 (called
	 Domain-0) has the ID 0
	 and is running. It also has the memory and virtual CPUs
	 that were defined in /boot/loader.conf
	 earlier. More information can be found in the Xen™
	 Documentation. DomU guest VMs can now be
	 created.
22.8.3. Xen™ DomU Guest VM Configuration
Unprivileged domains consist of a configuration file and
	 virtual or physical hard disks. Virtual disk storage for
	 the DomU can be files created by truncate(1) or ZFS
	 volumes as described in Section 20.4.2, “Creating and Destroying Volumes”.
	 In this example, a 20 GB volume is used. A VM is
	 created with the ZFS volume, a FreeBSD ISO image, 1 GB of
	 RAM and two virtual CPUs. The ISO installation file is
	 retrieved with fetch(1) and saved locally in a file
	 called freebsd.iso.
fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/ISO-IMAGES/12.0/FreeBSD-12.0-RELEASE-amd64-bootonly.iso -o freebsd.iso
A ZFS volume of 20 GB called
	xendisk0 is created to serve as the disk
	space for the VM.
zfs create -V20G -o volmode=dev zroot/xendisk0
The new DomU guest VM is defined in a file. Some specific
	definitions like name, keymap, and VNC connection details are
	also defined. The following freebsd.cfg
	contains a minimum DomU configuration for this example:
cat freebsd.cfg
builder = "hvm" [image: 1]
name = "freebsd" [image: 2]
memory = 1024 [image: 3]
vcpus = 2 [image: 4]
vif = ['mac=00:16:3E:74:34:32,bridge=bridge0'] [image: 5]
disk = [
'/dev/zvol/tank/xendisk0,raw,hda,rw', [image: 6]
'/root/freebsd.iso,raw,hdc:cdrom,r' [image: 7]
]
vnc = 1 [image: 8]
vnclisten = "0.0.0.0"
serial = "pty"
usbdevice = "tablet"
These lines are explained in more detail:
	[image: 1]
	This defines what kind of virtualization to use.
	 hvm refers to hardware-assisted
	 virtualization or hardware virtual machine. Guest
	 operating systems can run unmodified on CPUs with
	 virtualization extensions, providing nearly the same
	 performance as running on physical hardware.
	 generic is the default value and
	 creates a PV domain.

	[image: 2]
	Name of this virtual machine to distinguish it from
	 others running on the same Dom0. Required.

	[image: 3]
	Quantity of RAM in megabytes to make available to the
	 VM. This amount is subtracted from the hypervisor's total
	 available memory, not the memory of the Dom0.

	[image: 4]
	Number of virtual CPUs available to the guest VM. For
	 best performance, do not create guests with more virtual
	 CPUs than the number of physical CPUs on the host.

	[image: 5]
	Virtual network adapter. This is the bridge connected
	 to the network interface of the host. The
	 mac parameter is the MAC address set on
	 the virtual network interface. This parameter is
	 optional, if no MAC is provided Xen™ will generate a
	 random one.

	[image: 6]
	Full path to the disk, file, or ZFS volume of the disk
	 storage for this VM. Options and multiple disk
	 definitions are separated by commas.

	[image: 7]
	Defines the Boot medium from which the initial
	 operating system is installed. In this example, it is the
	 ISO imaged downloaded earlier. Consult the Xen™
	 documentation for other kinds of devices and options to
	 set.

	[image: 8]
	Options controlling VNC connectivity to the serial
	 console of the DomU. In order, these are: active VNC
	 support, define IP address on which to listen, device node
	 for the serial console, and the input method for precise
	 positioning of the mouse and other input methods.
	 keymap defines which keymap to use, and
	 is english by default.

After the file has been created with all the necessary
	options, the DomU is created by passing it to xl
	 create as a parameter.
xl create freebsd.cfg
Note:
Each time the Dom0 is restarted, the configuration file
	 must be passed to xl create again to
	 re-create the DomU. By default, only the Dom0 is created
	 after a reboot, not the individual VMs. The VMs can
	 continue where they left off as they stored the operating
	 system on the virtual disk. The virtual machine
	 configuration can change over time (for example, when adding
	 more memory). The virtual machine configuration files must
	 be properly backed up and kept available to be able to
	 re-create the guest VM when needed.

The output of xl list confirms that the
	DomU has been created.
xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 8192 4 r----- 1653.4
freebsd 1 1024 1 -b---- 663.9
To begin the installation of the base operating system,
	start the VNC client, directing it to the main network address
	of the host or to the IP address defined on the
	vnclisten line of
	freebsd.cfg. After the operating system
	has been installed, shut down the DomU and disconnect the VNC
	viewer. Edit freebsd.cfg, removing the
	line with the cdrom definition or
	commenting it out by inserting a #
	character at the beginning of the line. To load this new
	configuration, it is necessary to remove the old DomU with
	xl destroy, passing either the name or the
	id as the parameter. Afterwards, recreate it using the
	modified freebsd.cfg.
xl destroy freebsd
xl create freebsd.cfg
The machine can then be accessed again using the VNC
	viewer. This time, it will boot from the virtual disk where
	the operating system has been installed and can be used as a
	virtual machine.
22.8.4. Troubleshooting
This section contains basic information in order to help
	troubleshoot issues found when using FreeBSD as a Xen™ host or
	guest.
22.8.4.1. Host Boot Troubleshooting
Please note that the following troubleshooting tips
	 are intended for Xen™ 4.11 or newer. If you are still
	 using Xen™ 4.7 and having issues consider migrating to
	 a newer version of Xen™.
In order to troubleshoot host boot issues you will
	 likely need a serial cable, or a debug USB cable. Verbose
	 Xen™ boot output can be obtained by adding options to the
	 xen_cmdline option found in
	 loader.conf. A couple of relevant
	 debug options are:
	iommu=debug: can be used to print
	 additional diagnostic information about the
	 iommu.

	dom0=verbose: can be used to
	 print additional diagnostic information about the
	 dom0 build process.

	sync_console: flag to force
	 synchronous console output. Useful for debugging to
	 avoid losing messages due to rate limiting.
	 Never use this option in production environments since
	 it can allow malicious guests to perform DoS attacks
	 against Xen™ using the console.

FreeBSD should also be booted in verbose mode in order
	 to identify any issues. To activate verbose booting, run
	 this command:
sysrc -f /boot/loader.conf boot_verbose="YES"
If none of these options help solving the problem,
	 please send the serial boot log to
	 <freebsd-xen@FreeBSD.org> and
	 <xen-devel@lists.xenproject.org>
	 for further analysis.
22.8.4.2. Guest Creation Troubleshooting
Issues can also arise when creating guests, the
	 following attempts to provide some help for those trying
	 to diagnose guest creation issues.
The most common cause of guest creation failures is the
	 xl command spitting some error and
	 exiting with a return code different than 0. If the error
	 provided is not enough to help identify the issue, more
	 verbose output can also be obtained from
	 xl by using the v
	 option repeatedly.
xl -vvv create freebsd.cfg
Parsing config from freebsd.cfg
libxl: debug: libxl_create.c:1693:do_domain_create: Domain 0:ao 0x800d750a0: create: how=0x0 callback=0x0 poller=0x800d6f0f0
libxl: debug: libxl_device.c:397:libxl__device_disk_set_backend: Disk vdev=xvda spec.backend=unknown
libxl: debug: libxl_device.c:432:libxl__device_disk_set_backend: Disk vdev=xvda, using backend phy
libxl: debug: libxl_create.c:1018:initiate_domain_create: Domain 1:running bootloader
libxl: debug: libxl_bootloader.c:328:libxl__bootloader_run: Domain 1:not a PV/PVH domain, skipping bootloader
libxl: debug: libxl_event.c:689:libxl__ev_xswatch_deregister: watch w=0x800d96b98: deregister unregistered
domainbuilder: detail: xc_dom_allocate: cmdline="", features=""
domainbuilder: detail: xc_dom_kernel_file: filename="/usr/local/lib/xen/boot/hvmloader"
domainbuilder: detail: xc_dom_malloc_filemap : 326 kB
libxl: debug: libxl_dom.c:988:libxl__load_hvm_firmware_module: Loading BIOS: /usr/local/share/seabios/bios.bin
...
If the verbose output does not help diagnose the issue
	 there are also QEMU and Xen™ toolstack logs in
	 /var/log/xen. Note that the name of
	 the domain is appended to the log name, so if the domain
	 is named freebsd you should find a
	 /var/log/xen/xl-freebsd.log and likely
	 a /var/log/xen/qemu-dm-freebsd.log.
	 Both log files can contain useful information for debugging.
	 If none of this helps solve the issue, please send the
	 description of the issue you are facing and as much
	 information as possible to
	 <freebsd-xen@FreeBSD.org> and
	 <xen-devel@lists.xenproject.org> in order to
	 get help.
Chapter 23. Localization - i18n/L10n Usage and Setup

Chapter 23. Localization -
 i18n/L10n Usage and
 Setup
Contributed
	by Andrey Chernov. Rewritten
	by Michael
	C. Wu. 23.1. Synopsis
FreeBSD is a distributed project with users and contributors
 located all over the world. As such, FreeBSD supports localization
 into many languages, allowing users to view, input, or process
 data in non-English languages. One can choose from most of the
 major languages, including, but not limited to: Chinese,
 German, Japanese, Korean, French, Russian, and
 Vietnamese.
The term internationalization has been shortened to
 i18n, which represents the number of letters
 between the first and the last letters of
 internationalization.
 L10n uses the same naming scheme, but from
 localization. The
 i18n/L10n methods,
 protocols, and applications allow users to use languages of
 their choice.
This chapter discusses the internationalization and
 localization features of FreeBSD. After reading this chapter, you
 will know:
	How locale names are constructed.

	How to set the locale for a login shell.

	How to configure the console for non-English
	 languages.

	How to configure Xorg for
	 different languages.

	How to find i18n-compliant
	 applications.

	Where to find more information for configuring specific
	 languages.

Before reading this chapter, you should:
	Know how to install
	 additional third-party
	 applications.

23.2. Using Localization

23.2. Using Localization
Localization settings are based on three components:
 the language code, country code, and encoding. Locale names are
 constructed from these parts as follows:
LanguageCode_CountryCode.Encoding
The LanguageCode and
	CountryCode are used to determine
	the country and the specific language variation. Table 23.1, “Common Language and Country Codes” provides some examples of
	LanguageCode_CountryCode:
Table 23.1. Common Language and Country Codes
	LanguageCode_Country Code	Description
	en_US	English, United States
	ru_RU	Russian, Russia
	zh_TW	Traditional Chinese, Taiwan

A complete listing of available locales can be found by
	typing:
% locale -a | more
To determine the current locale setting:
% locale
Language specific character sets, such as ISO8859-1,
	ISO8859-15, KOI8-R, and CP437, are described in
	multibyte(3). The active list of character sets can be
	found at the IANA
	 Registry.
Some languages, such as Chinese or Japanese, cannot be
	represented using ASCII characters and
	require an extended language encoding using either wide or
	multibyte characters. Examples of wide or multibyte encodings
	include EUC and Big5. Older applications may mistake these
	encodings for control characters while newer applications
	usually recognize these characters. Depending on the
	implementation, users may be required to compile an
	application with wide or multibyte character support, or to
	configure it correctly.
Note:
FreeBSD uses Xorg-compatible locale encodings.

The rest of this section describes the various methods for
	configuring the locale on a FreeBSD system. The next section
	will discuss the considerations for finding and compiling
	applications with i18n support.
23.2.1. Setting Locale for Login Shell
Locale settings are configured either in a user's
	~/.login_conf
	or in the startup file of the user's shell:
	~/.profile,
	~/.bashrc, or
	~/.cshrc.
Two environment
	variables should be set:
	LANG, which sets the locale

	MM_CHARSET, which sets the
	 MIME character set used by
	 applications

In addition to the user's shell configuration, these
	variables should also be set for specific application
	configuration and Xorg
	configuration.
Two methods are available for making the needed variable
	assignments: the login
	 class method, which is the recommended method, and
	the startup file method.
	The next two sections demonstrate how to use both
	methods.
23.2.1.1. Login Classes Method
This first method is the recommended method as it
	 assigns the required environment variables for locale name
	 and MIME character sets for every
	 possible shell. This setup can either be performed by each
	 user or it can be configured for all users by the
	 superuser.
This minimal example sets both variables for Latin-1
	 encoding in the .login_conf of an
	 individual user's home directory:
me:\
	:charset=ISO-8859-1:\
	:lang=de_DE.ISO8859-1:
Here is an example of a user's
	 ~/.login_conf that sets the variables
	 for Traditional Chinese in BIG-5 encoding. More variables
	 are needed because some applications do not correctly
	 respect locale variables for Chinese, Japanese, and
	 Korean:
#Users who do not wish to use monetary units or time formats
#of Taiwan can manually change each variable
me:\
	:lang=zh_TW.Big5:\
	:setenv=LC_ALL=zh_TW.Big5,LC_COLLATE=zh_TW.Big5,LC_CTYPE=zh_TW.Big5,LC_MESSAGES=zh_TW.Big5,LC_MONETARY=zh_TW.Big5,LC_NUMERIC=zh_TW.Big5,LC_TIME=zh_TW.Big5:\
	:charset=big5:\
	:xmodifiers="@im=gcin": #Set gcin as the XIM Input Server
Alternately, the superuser can configure all users of
	 the system for localization. The following variables in
	 /etc/login.conf are used to set the
	 locale and MIME character set:
language_name|Account Type Description:\
	:charset=MIME_charset:\
	:lang=locale_name:\
	:tc=default:
So, the previous Latin-1 example would look like
	 this:
german|German Users Accounts:\
	:charset=ISO-8859-1:\
	:lang=de_DE.ISO8859-1:\
	:tc=default:
See login.conf(5) for more details about these
	 variables. Note that it already contains pre-defined
	 russian class.
Whenever /etc/login.conf is edited,
	 remember to execute the following command to update the
	 capability database:
cap_mkdb /etc/login.conf
Note:
For an end user, the cap_mkdb command will
	 need to be run on their ~/.login_conf for
	 any changes to take effect.

23.2.1.1.1. Utilities Which Change Login Classes
In addition to manually editing
	 /etc/login.conf, several utilities
	 are available for setting the locale for newly created
	 users.
When using vipw to add new users,
	 specify the language to set the
	 locale:
user:password:1111:11:language:0:0:User Name:/home/user:/bin/sh
When using adduser to add new
	 users, the default language can be pre-configured for all
	 new users or specified for an individual user.
If all new users use the same language, set
	 defaultclass=language in
	 /etc/adduser.conf.
To override this setting when creating a user, either
	 input the required locale at this prompt:
Enter login class: default []:
or specify the locale to set when invoking
	 adduser:
adduser -class language
If pw is used to add new users,
	 specify the locale as follows:
pw useradd user_name -L language
To change the login class of an existing user,
	 chpass can be used. Invoke it as
	 superuser and provide the username to edit as the
	 argument.
chpass user_name
23.2.1.2. Shell Startup File Method
This second method is not recommended as each shell
	 that is used requires manual configuration, where each
	 shell has a different configuration file and differing
	 syntax. As an example, to set the German language for the
	 sh shell, these lines could be added to
	 ~/.profile to set the shell for that
	 user only. These lines could also be added to
	 /etc/profile or
	 /usr/share/skel/dot.profile to set
	 that shell for all users:
LANG=de_DE.ISO8859-1; export LANG
MM_CHARSET=ISO-8859-1; export MM_CHARSET
However, the name of the configuration file and the
	 syntax used differs for the csh shell.
	 These are the equivalent settings for
	 ~/.csh.login,
	 /etc/csh.login, or
	 /usr/share/skel/dot.login:
setenv LANG de_DE.ISO8859-1
setenv MM_CHARSET ISO-8859-1
To complicate matters, the syntax needed to configure
	 Xorg in
	 ~/.xinitrc also depends upon the
	 shell. The first example is for the sh
	 shell and the second is for the csh
	 shell:
LANG=de_DE.ISO8859-1; export LANG
setenv LANG de_DE.ISO8859-1
23.2.2. Console Setup
Several localized fonts are available for the console. To
	see a listing of available fonts, type
	ls /usr/share/syscons/fonts. To configure
	the console font, specify the
	font_name,
	without the .fnt suffix, in
	/etc/rc.conf:
font8x16=font_name
font8x14=font_name
font8x8=font_name
The keymap and screenmap can be set by adding the
	following to /etc/rc.conf:
scrnmap=screenmap_name
keymap=keymap_name
keychange="fkey_number sequence"
To see the list of available screenmaps, type
	ls /usr/share/syscons/scrnmaps. Do not
	include the .scm suffix when specifying
	screenmap_name. A screenmap with a
	corresponding mapped font is usually needed as a workaround
	for expanding bit 8 to bit 9 on a VGA adapter's font character
	matrix so that letters are moved out of the pseudographics
	area if the screen font uses a bit 8 column.
To see the list of available keymaps, type
	ls /usr/share/syscons/keymaps. When
	specifying the keymap_name, do not
	include the .kbd suffix. To test
	keymaps without rebooting,
	use kbdmap(1).
The keychange entry is usually needed
	to program function keys to match the selected terminal type
	because function key sequences cannot be defined in the
	keymap.
Next, set the correct console terminal type in
	/etc/ttys for all virtual terminal
	entries. Table 23.2, “Defined Terminal Types for Character Sets” summarizes the
	available terminal types.:
Table 23.2. Defined Terminal Types for Character Sets
	Character Set	Terminal Type
	ISO8859-1 or ISO8859-15	cons25l1
	ISO8859-2	cons25l2
	ISO8859-7	cons25l7
	KOI8-R	cons25r
	KOI8-U	cons25u
	CP437 (VGA default)	cons25
	US-ASCII	cons25w

For languages with wide or multibyte characters, install a
	console for that language from the FreeBSD Ports Collection. The
	available ports are summarized in Table 23.3, “Available Console from Ports Collection”. Once installed, refer to the
	port's pkg-message or man pages for
	configuration and usage instructions.
Table 23.3. Available Console from Ports Collection
	Language	Port Location
	Traditional Chinese (BIG-5)	chinese/big5con
	Chinese/Japanese/Korean	chinese/cce
	Chinese/Japanese/Korean	chinese/zhcon
	Japanese	chinese/kon2
	Japanese	japanese/kon2-14dot
	Japanese	japanese/kon2-16dot

If moused is enabled in
	/etc/rc.conf, additional configuration
	may be required. By default, the mouse cursor of the
	syscons(4) driver occupies the
	0xd0-0xd3 range in the
	character set. If the language uses this range, move the
	cursor's range by adding the
	following line to /etc/rc.conf:
mousechar_start=3
23.2.3. Xorg Setup
Chapter 5, The X Window System describes how to install and
	configure Xorg. When configuring
	Xorg for localization, additional
	fonts and input methods are available from the FreeBSD Ports
	Collection. Application specific i18n
	settings such as fonts and menus can be tuned in
	~/.Xresources and should allow users to
	view their selected language in graphical application
	menus.
The X Input Method (XIM) protocol is an
	Xorg standard for inputting
	non-English characters. Table 23.4, “Available Input Methods”
	summarizes the input method applications which are available
	in the FreeBSD Ports Collection. Additional Fcitx and Uim
	applications are also available.
Table 23.4. Available Input Methods
	Language	Input Method
	Chinese	chinese/gcin
	Chinese	chinese/ibus-chewing
	Chinese	chinese/ibus-pinyin
	Chinese	chinese/oxim
	Chinese	chinese/scim-fcitx
	Chinese	chinese/scim-pinyin
	Chinese	chinese/scim-tables
	Japanese	japanese/ibus-anthy
	Japanese	japanese/ibus-mozc
	Japanese	japanese/ibus-skk
	Japanese	japanese/im-ja
	Japanese	japanese/kinput2
	Japanese	japanese/scim-anthy
	Japanese	japanese/scim-canna
	Japanese	japanese/scim-honoka
	Japanese	japanese/scim-honoka-plugin-romkan
	Japanese	japanese/scim-honoka-plugin-wnn
	Japanese	japanese/scim-prime
	Japanese	japanese/scim-skk
	Japanese	japanese/scim-tables
	Japanese	japanese/scim-tomoe
	Japanese	japanese/scim-uim
	Japanese	japanese/skkinput
	Japanese	japanese/skkinput3
	Japanese	japanese/uim-anthy
	Korean	korean/ibus-hangul
	Korean	korean/imhangul
	Korean	korean/nabi
	Korean	korean/scim-hangul
	Korean	korean/scim-tables
	Vietnamese	vietnamese/xvnkb
	Vietnamese	vietnamese/x-unikey

23.3. Finding i18n Applications

23.3. Finding i18n Applications
i18n applications are programmed using
 i18n kits under libraries. These allow
 developers to write a simple file and translate displayed menus
 and texts to each language.
The FreeBSD
	Ports Collection contains many applications with
 built-in support for wide or multibyte characters for several
 languages. Such applications include i18n in
 their names for easy identification. However, they do not
 always support the language needed.
Some applications can be compiled with the specific
 charset. This is usually done in the port's
 Makefile or by passing a value to
 configure. Refer to the
 i18n documentation in the respective FreeBSD
 port's source for more information on how to determine the
 needed configure value or the port's
 Makefile to determine which compile options
 to use when building the port.
23.4. Locale Configuration for Specific Languages

23.4. Locale Configuration for Specific Languages
This section provides configuration examples for localizing
 a FreeBSD system for the Russian language. It then provides some
 additional resources for localizing other languages.
23.4.1. Russian Language (KOI8-R Encoding)
Originally
	 contributed by Andrey Chernov. This section shows the specific settings needed to
	localize a FreeBSD system for the Russian language. Refer to
	Using Localization
	for a more complete description of each type of
	setting.
To set this locale for the login shell, add the following
	lines to each user's
	~/.login_conf:
me:My Account:\
	:charset=KOI8-R:\
	:lang=ru_RU.KOI8-R:
To configure the console, add the following lines to
	/etc/rc.conf:
keymap="ru.koi8-r"
scrnmap="koi8-r2cp866"
font8x16="cp866b-8x16"
font8x14="cp866-8x14"
font8x8="cp866-8x8"
mousechar_start=3
For each ttyv entry in
	/etc/ttys, use
	cons25r as the terminal type.
To configure printing, a special output filter is needed
	to convert from KOI8-R to CP866 since most printers with
	Russian characters come with hardware code page CP866. FreeBSD
	includes a default filter for this purpose,
	/usr/libexec/lpr/ru/koi2alt. To use this
	filter, add this entry to
	/etc/printcap:
lp|Russian local line printer:\
	:sh:of=/usr/libexec/lpr/ru/koi2alt:\
	:lp=/dev/lpt0:sd=/var/spool/output/lpd:lf=/var/log/lpd-errs:
Refer to printcap(5) for a more detailed
	explanation.
To configure support for Russian filenames in mounted
	MS-DOS® file systems, include -L and the
	locale name when adding an entry to
	/etc/fstab:
/dev/ad0s2 /dos/c msdos rw,-Lru_RU.KOI8-R 0 0
Refer to mount_msdosfs(8) for more details.
To configure Russian fonts for
	Xorg, install the
	x11-fonts/xorg-fonts-cyrillic package.
	Then, check the "Files" section in
	/etc/X11/xorg.conf. The following line
	must be added before any other
	FontPath entries:
FontPath "/usr/local/lib/X11/fonts/cyrillic"
Additional Cyrillic fonts are available in the Ports
	Collection.
To activate a Russian keyboard, add the following to the
	"Keyboard" section of
	/etc/xorg.conf:
Option "XkbLayout" "us,ru"
Option "XkbOptions" "grp:toggle"
Make sure that XkbDisable is
	commented out in that file.
For grp:toggle use
	Right Alt, for
	grp:ctrl_shift_toggle use Ctrl+Shift.
	For grp:caps_toggle use
	CapsLock. The old
	CapsLock function is still available in LAT
	mode only using Shift+CapsLock.
	grp:caps_toggle does not work in
	Xorg for some unknown
	reason.
If the keyboard has “Windows®” keys, and
	some non-alphabetical keys are mapped incorrectly, add the
	following line to /etc/xorg.conf:
Option "XkbVariant" ",winkeys"
Note:
The Russian XKB keyboard may not work with
	 non-localized applications. Minimally localized
	 applications should call a XtSetLanguageProc
	 (NULL, NULL, NULL); function early in the
	 program.

See http://koi8.pp.ru/xwin.html
	for more instructions on localizing
	Xorg applications. For more
	general information about KOI8-R encoding, refer to http://koi8.pp.ru/.
23.4.2. Additional Language-Specific Resources
This section lists some additional resources for
	configuring other locales.
	Traditional Chinese for Taiwan
	The FreeBSD-Taiwan Project has a Chinese HOWTO for FreeBSD
	 at http://netlab.cse.yzu.edu.tw/~statue/freebsd/zh-tut/.

	Greek Language Localization
	A complete article on Greek support in FreeBSD
	 is available here,
	 in Greek only, as part of the official FreeBSD Greek
	 documentation.

	Japanese and Korean Language Localization
	For Japanese, refer to http://www.jp.FreeBSD.org/,
	 and for Korean, refer to http://www.kr.FreeBSD.org/.

	Non-English FreeBSD Documentation
	Some FreeBSD contributors have translated parts of the
	 FreeBSD documentation to other languages. They are
	 available through links on the FreeBSD web
		site or in
	 /usr/share/doc.

24.2. FreeBSD Update

24.2. FreeBSD Update
Written by Tom Rhodes. Based on notes provided by Colin Percival. Applying security patches in a timely manner and upgrading
 to a newer release of an operating system are important aspects
 of ongoing system administration. FreeBSD includes a utility
 called freebsd-update which can be used to
 perform both these tasks.
This utility supports binary security and errata updates to
 FreeBSD, without the need to manually compile and install the patch
 or a new kernel. Binary updates are available for all
 architectures and releases currently supported by the security
 team. The list of supported releases and their estimated
 end-of-life dates are listed at https://www.FreeBSD.org/security/.
This utility also supports operating system upgrades to
 minor point releases as well as upgrades to another release
 branch. Before upgrading to a new release, review its release
 announcement as it contains important information pertinent to
 the release. Release announcements are available from https://www.FreeBSD.org/releases/.
Note:
If a crontab utilizing the features of
	freebsd-update(8) exists, it must be disabled before
	upgrading the operating system.

This section describes the configuration file used by
 freebsd-update, demonstrates how to apply a
 security patch and how to upgrade to a minor or major operating
 system release, and discusses some of the considerations when
 upgrading the operating system.
24.2.1. The Configuration File
The default configuration file for
	freebsd-update works as-is. Some users may
	wish to tweak the default configuration in
	/etc/freebsd-update.conf, allowing
	better control of the process. The comments in this file
	explain the available options, but the following may require a
	bit more explanation:
Components of the base system which should be kept updated.
Components world kernel
This parameter controls which parts of FreeBSD will be kept
	up-to-date. The default is to update the entire base system
	and the kernel. Individual components can instead be
	specified, such as src/base or
	src/sys. However, the best option is to
	leave this at the default as changing it to include specific
	items requires every needed item to be listed. Over time,
	this could have disastrous consequences as source code and
	binaries may become out of sync.
Paths which start with anything matching an entry in an IgnorePaths
statement will be ignored.
IgnorePaths /boot/kernel/linker.hints
To leave specified directories, such as
	/bin or /sbin,
	untouched during the update process, add their paths to this
	statement. This option may be used to prevent
	freebsd-update from overwriting local
	modifications.
Paths which start with anything matching an entry in an UpdateIfUnmodified
statement will only be updated if the contents of the file have not been
modified by the user (unless changes are merged; see below).
UpdateIfUnmodified /etc/ /var/ /root/ /.cshrc /.profile
This option will only update unmodified configuration
	files in the specified directories. Any changes made by the
	user will prevent the automatic updating of these files.
	There is another option,
	KeepModifiedMetadata, which will instruct
	freebsd-update to save the changes during
	the merge.
When upgrading to a new FreeBSD release, files which match MergeChanges
will have any local changes merged into the version from the new release.
MergeChanges /etc/ /var/named/etc/ /boot/device.hints
List of directories with configuration files that
	freebsd-update should attempt to merge.
	The file merge process is a series of diff(1) patches
	similar to mergemaster(8), but with fewer options.
	Merges are either accepted, open an editor, or cause
	freebsd-update to abort. When in doubt,
	backup /etc and just accept the merges.
	See mergemaster(8) for more information about
	mergemaster.
Directory in which to store downloaded updates and temporary
files used by FreeBSD Update.
WorkDir /var/db/freebsd-update
This directory is where all patches and temporary files
	are placed. In cases where the user is doing a version
	upgrade, this location should have at least a gigabyte of disk
	space available.
When upgrading between releases, should the list of Components be
read strictly (StrictComponents yes) or merely as a list of components
which *might* be installed of which FreeBSD Update should figure out
which actually are installed and upgrade those (StrictComponents no)?
StrictComponents no
When this option is set to yes,
	freebsd-update will assume that the
	Components list is complete and will not
	attempt to make changes outside of the list. Effectively,
	freebsd-update will attempt to update
	every file which belongs to the Components
	list.
24.2.2. Applying Security Patches
The process of applying FreeBSD security patches has been
	simplified, allowing an administrator to keep a system fully
	patched using freebsd-update. More
	information about FreeBSD security advisories can be found in
	Section 14.11, “FreeBSD Security Advisories”.
FreeBSD security patches may be downloaded and installed
	using the following commands. The first command will
	determine if any outstanding patches are available, and if so,
	will list the files that will be modifed if the patches are
	applied. The second command will apply the patches.
freebsd-update fetch
freebsd-update install
If the update applies any kernel patches, the system will
	need a reboot in order to boot into the patched kernel. If
	the patch was applied to any running binaries, the affected
	applications should be restarted so that the patched version
	of the binary is used.
Note:
Usually, the user needs to be prepared to reboot the
	 system. To know if a reboot is required by a kernel update,
	 execute the commands freebsd-version -k
	 and uname -r and if it differs a reboot
	 is required.

The system can be configured to automatically check for
	updates once every day by adding this entry to
	/etc/crontab:
@daily root freebsd-update cron
If patches exist, they will automatically be downloaded
	but will not be applied. The root user will be sent an
	email so that the patches may be reviewed and manually
	installed with
	freebsd-update install.
If anything goes wrong, freebsd-update
	has the ability to roll back the last set of changes with the
	following command:
freebsd-update rollback
Uninstalling updates... done.
Again, the system should be restarted if the kernel or any
	kernel modules were modified and any affected binaries should
	be restarted.
Only the GENERIC kernel can be
	automatically updated by freebsd-update.
	If a custom kernel is installed, it will have to be rebuilt
	and reinstalled after freebsd-update
	finishes installing the updates. The default kernel name
	is GENERIC. The uname(1) command
	may be used to verify its installation.
Note:
Always keep a copy of the GENERIC
	 kernel in /boot/GENERIC. It will be
	 helpful in diagnosing a variety of problems and in
	 performing version upgrades. Refer to Section 24.2.3.1, “Custom Kernels with FreeBSD 9.X and Later” for
	 instructions on how to get a copy of the
	 GENERIC kernel.

Unless the default configuration in
	/etc/freebsd-update.conf has been
	changed, freebsd-update will install the
	updated kernel sources along with the rest of the updates.
	Rebuilding and reinstalling a new custom kernel can then be
	performed in the usual way.
The updates distributed by
	freebsd-update do not always involve the
	kernel. It is not necessary to rebuild a custom kernel if the
	kernel sources have not been modified by
	freebsd-update install. However,
	freebsd-update will always update
	/usr/src/sys/conf/newvers.sh. The
	current patch level, as indicated by the -p
	number reported by uname -r, is obtained
	from this file. Rebuilding a custom kernel, even if nothing
	else changed, allows uname to accurately
	report the current patch level of the system. This is
	particularly helpful when maintaining multiple systems, as it
	allows for a quick assessment of the updates installed in each
	one.
24.2.3. Performing Major and Minor Version Upgrades
Upgrades from one minor version of FreeBSD to another, like
	from FreeBSD 9.0 to FreeBSD 9.1, are called
	minor version upgrades.
	Major version upgrades occur when FreeBSD
	is upgraded from one major version to another, like from
	FreeBSD 9.X to FreeBSD 10.X. Both types of upgrades can
	be performed by providing freebsd-update
	with a release version target.
Note:
If the system is running a custom kernel, make sure that
	 a copy of the GENERIC kernel exists in
	 /boot/GENERIC before starting the
	 upgrade. Refer to Section 24.2.3.1, “Custom Kernels with FreeBSD 9.X and Later” for
	 instructions on how to get a copy of the
	 GENERIC kernel.

The following command, when run on a FreeBSD 9.0 system,
	will upgrade it to FreeBSD 9.1:
freebsd-update -r 9.1-RELEASE upgrade
After the command has been received,
	freebsd-update will evaluate the
	configuration file and current system in an attempt to gather
	the information necessary to perform the upgrade. A screen
	listing will display which components have and have not been
	detected. For example:
Looking up update.FreeBSD.org mirrors... 1 mirrors found.
Fetching metadata signature for 9.0-RELEASE from update1.FreeBSD.org... done.
Fetching metadata index... done.
Inspecting system... done.

The following components of FreeBSD seem to be installed:
kernel/smp src/base src/bin src/contrib src/crypto src/etc src/games
src/gnu src/include src/krb5 src/lib src/libexec src/release src/rescue
src/sbin src/secure src/share src/sys src/tools src/ubin src/usbin
world/base world/info world/lib32 world/manpages

The following components of FreeBSD do not seem to be installed:
kernel/generic world/catpages world/dict world/doc world/games
world/proflibs

Does this look reasonable (y/n)? y
At this point, freebsd-update will
	attempt to download all files required for the upgrade. In
	some cases, the user may be prompted with questions regarding
	what to install or how to proceed.
When using a custom kernel, the above step will produce a
	warning similar to the following:
WARNING: This system is running a "MYKERNEL" kernel, which is not a
kernel configuration distributed as part of FreeBSD 9.0-RELEASE.
This kernel will not be updated: you MUST update the kernel manually
before running "/usr/sbin/freebsd-update install"
This warning may be safely ignored at this point. The
	updated GENERIC kernel will be used as an
	intermediate step in the upgrade process.
Once all the patches have been downloaded to the local
	system, they will be applied. This process may take a while,
	depending on the speed and workload of the machine.
	Configuration files will then be merged. The merging process
	requires some user intervention as a file may be merged or an
	editor may appear on screen for a manual merge. The results
	of every successful merge will be shown to the user as the
	process continues. A failed or ignored merge will cause the
	process to abort. Users may wish to make a backup of
	/etc and manually merge important files,
	such as master.passwd or
	group at a later time.
Note:
The system is not being altered yet as all patching and
	 merging is happening in another directory. Once all patches
	 have been applied successfully, all configuration files have
	 been merged and it seems the process will go smoothly, the
	 changes can be committed to disk by the user using the
	 following command:
freebsd-update install

The kernel and kernel modules will be patched first. If
	the system is running with a custom kernel, use
	nextboot(8) to set the kernel for the next boot to the
	updated /boot/GENERIC:
nextboot -k GENERIC
Warning:
Before rebooting with the GENERIC
	 kernel, make sure it contains all the drivers required for
	 the system to boot properly and connect to the network, if
	 the machine being updated is accessed remotely. In
	 particular, if the running custom kernel contains built-in
	 functionality usually provided by kernel modules, make sure
	 to temporarily load these modules into the
	 GENERIC kernel using the
	 /boot/loader.conf facility. It is
	 recommended to disable non-essential services as well as any
	 disk and network mounts until the upgrade process is
	 complete.

The machine should now be restarted with the updated
	kernel:
shutdown -r now
Once the system has come back online, restart
	freebsd-update using the following command.
	Since the state of the process has been saved,
	freebsd-update will not start from the
	beginning, but will instead move on to the next phase and
	remove all old shared libraries and object files.
freebsd-update install
Note:
Depending upon whether any library version numbers were
	 bumped, there may only be two install phases instead of
	 three.

The upgrade is now complete. If this was a major version
	upgrade, reinstall all ports and packages as described in
	Section 24.2.3.2, “Upgrading Packages After a Major Version
	 Upgrade”.
24.2.3.1. Custom Kernels with FreeBSD 9.X and Later
Before using freebsd-update, ensure
	 that a copy of the GENERIC kernel
	 exists in /boot/GENERIC. If a custom
	 kernel has only been built once, the kernel in
	 /boot/kernel.old is the
	 GENERIC kernel. Simply rename this
	 directory to /boot/GENERIC.
If a custom kernel has been built more than once or if
	 it is unknown how many times the custom kernel has been
	 built, obtain a copy of the GENERIC
	 kernel that matches the current version of the operating
	 system. If physical access to the system is available, a
	 copy of the GENERIC kernel can be
	 installed from the installation media:
mount /cdrom
cd /cdrom/usr/freebsd-dist
tar -C/ -xvf kernel.txz boot/kernel/kernel
Alternately, the GENERIC kernel may
	 be rebuilt and installed from source:
cd /usr/src
make kernel __MAKE_CONF=/dev/null SRCCONF=/dev/null
For this kernel to be identified as the
	 GENERIC kernel by
	 freebsd-update, the
	 GENERIC configuration file must not
	 have been modified in any way. It is also suggested that
	 the kernel is built without any other special
	 options.
Rebooting into the GENERIC kernel
	 is not required as freebsd-update only
	 needs /boot/GENERIC to exist.
24.2.3.2. Upgrading Packages After a Major Version
	 Upgrade
Generally, installed applications will continue to work
	 without problems after minor version upgrades. Major
	 versions use different Application Binary Interfaces
	 (ABIs), which will break most
	 third-party applications. After a major version upgrade,
	 all installed packages and ports need to be upgraded.
	 Packages can be upgraded using pkg
	 upgrade. To upgrade installed ports, use a
	 utility such as
	 ports-mgmt/portmaster.
A forced upgrade of all installed packages will replace
	 the packages with fresh versions from the repository even if
	 the version number has not increased. This is required
	 because of the ABI version change when upgrading between
	 major versions of FreeBSD. The forced upgrade can be
	 accomplished by performing:
pkg-static upgrade -f
A rebuild of all installed applications can be
	 accomplished with this command:
portmaster -af
This command will display the configuration screens for
	 each application that has configurable options and wait for
	 the user to interact with those screens. To prevent this
	 behavior, and use only the default options, include
	 -G in the above command.
Once the software upgrades are complete, finish the
	 upgrade process with a final call to
	 freebsd-update in order to tie up all the
	 loose ends in the upgrade process:
freebsd-update install
If the GENERIC kernel was
	 temporarily used, this is the time to build and install a
	 new custom kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel.
Reboot the machine into the new FreeBSD version. The
	 upgrade process is now complete.
24.2.4. System State Comparison
The state of the installed FreeBSD version against a known
	good copy can be tested using
	freebsd-update IDS. This command evaluates
	the current version of system utilities, libraries, and
	configuration files and can be used as a built-in Intrusion
	Detection System (IDS).
Warning:
This command is not a replacement for a real
	 IDS such as
	 security/snort. As
	 freebsd-update stores data on disk, the
	 possibility of tampering is evident. While this possibility
	 may be reduced using kern.securelevel and
	 by storing the freebsd-update data on a
	 read-only file system when not in use, a better solution
	 would be to compare the system against a secure disk, such
	 as a DVD or securely stored external
	 USB disk device. An alternative method
	 for providing IDS functionality using a
	 built-in utility is described in Section 14.2.6, “Binary Verification”

To begin the comparison, specify the output file to save
	the results to:
freebsd-update IDS >> outfile.ids
The system will now be inspected and a lengthy listing of
	files, along with the SHA256 hash values
	for both the known value in the release and the current
	installation, will be sent to the specified output
	file.
The entries in the listing are extremely long, but the
	output format may be easily parsed. For instance, to obtain a
	list of all files which differ from those in the release,
	issue the following command:
cat outfile.ids | awk '{ print $1 }' | more
/etc/master.passwd
/etc/motd
/etc/passwd
/etc/pf.conf
This sample output has been truncated as many more files
	exist. Some files have natural modifications. For example,
	/etc/passwd will be modified if users
	have been added to the system. Kernel modules may differ as
	freebsd-update may have updated them. To
	exclude specific files or directories, add them to the
	IDSIgnorePaths option in
	/etc/freebsd-update.conf.
24.4. Tracking a Development Branch

24.4. Tracking a Development Branch
FreeBSD has two development branches: FreeBSD-CURRENT and
 FreeBSD-STABLE.
This section provides an explanation of each branch and its
 intended audience, as well as how to keep a system up-to-date
 with each respective branch.
24.4.1. Using FreeBSD-CURRENT
FreeBSD-CURRENT is the “bleeding edge” of FreeBSD
	development and FreeBSD-CURRENT users are expected to have a
	high degree of technical skill. Less technical users who wish
	to track a development branch should track FreeBSD-STABLE
	instead.
FreeBSD-CURRENT is the very latest source code for FreeBSD and
	includes works in progress, experimental changes, and
	transitional mechanisms that might or might not be present in
	the next official release. While many FreeBSD developers compile
	the FreeBSD-CURRENT source code daily, there are short periods of
	time when the source may not be buildable. These problems are
	resolved as quickly as possible, but whether or not
	FreeBSD-CURRENT brings disaster or new functionality can be a
	matter of when the source code was synced.
FreeBSD-CURRENT is made available for three primary interest
	groups:
	Members of the FreeBSD community who are actively
	 working on some part of the source tree.

	Members of the FreeBSD community who are active testers.
	 They are willing to spend time solving problems, making
	 topical suggestions on changes and the general direction
	 of FreeBSD, and submitting patches.

	Users who wish to keep an eye on things, use the
	 current source for reference purposes, or make the
	 occasional comment or code contribution.

FreeBSD-CURRENT should not be
	considered a fast-track to getting new features before the
	next release as pre-release features are not yet fully tested
	and most likely contain bugs. It is not a quick way of
	getting bug fixes as any given commit is just as likely to
	introduce new bugs as to fix existing ones. FreeBSD-CURRENT is
	not in any way “officially supported”.
To track FreeBSD-CURRENT:
	Join the freebsd-current and the
	 svn-src-head lists. This is
	 essential in order to see the
	 comments that people are making about the current state
	 of the system and to receive important bulletins about
	 the current state of FreeBSD-CURRENT.
The svn-src-head list records the commit log
	 entry for each change as it is made, along with any
	 pertinent information on possible side effects.
To join these lists, go to http://lists.FreeBSD.org/mailman/listinfo,
	 click on the list to subscribe to, and follow the
	 instructions. In order to track changes to the whole
	 source tree, not just the changes to FreeBSD-CURRENT,
	 subscribe to the svn-src-all list.

	Synchronize with the FreeBSD-CURRENT sources. Typically,
	 svnlite is used to check out the
	 -CURRENT code from the head branch of
	 one of the Subversion mirror sites listed in
	 Section A.3.6, “Subversion Mirror
	Sites”.

	Due to the size of the repository, some users choose
	 to only synchronize the sections of source that interest
	 them or which they are contributing patches to. However,
	 users that plan to compile the operating system from
	 source must download all of
	 FreeBSD-CURRENT, not just selected portions.
Before compiling FreeBSD-CURRENT
	 , read /usr/src/Makefile
	 very carefully and follow the instructions in
	 Section 24.5, “Updating FreeBSD from Source”.
	 Read the FreeBSD-CURRENT mailing list and
	 /usr/src/UPDATING to stay
	 up-to-date on other bootstrapping procedures that
	 sometimes become necessary on the road to the next
	 release.

	Be active! FreeBSD-CURRENT users are encouraged to
	 submit their suggestions for enhancements or bug fixes.
	 Suggestions with accompanying code are always
	 welcome.

24.4.2. Using FreeBSD-STABLE
FreeBSD-STABLE is the development branch from which major
	releases are made. Changes go into this branch at a slower
	pace and with the general assumption that they have first been
	tested in FreeBSD-CURRENT. This is still a
	development branch and, at any given time, the sources for
	FreeBSD-STABLE may or may not be suitable for general use. It is
	simply another engineering development track, not a resource
	for end-users. Users who do not have the resources to perform
	testing should instead run the most recent release of
	FreeBSD.
Those interested in tracking or contributing to the FreeBSD
	development process, especially as it relates to the next
	release of FreeBSD, should consider following FreeBSD-STABLE.
While the FreeBSD-STABLE branch should compile and run at all
	times, this cannot be guaranteed. Since more people run
	FreeBSD-STABLE than FreeBSD-CURRENT, it is inevitable that bugs and
	corner cases will sometimes be found in FreeBSD-STABLE that were
	not apparent in FreeBSD-CURRENT. For this reason, one should not
	blindly track FreeBSD-STABLE. It is particularly important
	not to update any production servers to
	FreeBSD-STABLE without thoroughly testing the code in a
	development or testing environment.
To track FreeBSD-STABLE:
	Join the freebsd-stable list in order to stay
	 informed of build dependencies that may appear in
	 FreeBSD-STABLE or any other issues requiring special
	 attention. Developers will also make announcements in
	 this mailing list when they are contemplating some
	 controversial fix or update, giving the users a chance to
	 respond if they have any issues to raise concerning the
	 proposed change.
Join the relevant svn list
	 for the branch being tracked. For example, users
	 tracking the 9-STABLE branch should join the
	 svn-src-stable-9 list. This list records the
	 commit log entry for each change as it is made, along
	 with any pertinent information on possible
	 side effects.
To join these lists, go to http://lists.FreeBSD.org/mailman/listinfo,
	 click on the list to subscribe to, and follow the
	 instructions. In order to track changes for the whole
	 source tree, subscribe to svn-src-all.

	To install a new FreeBSD-STABLE system, install the most
	 recent FreeBSD-STABLE release from the FreeBSD mirror sites or use a
	 monthly snapshot built from FreeBSD-STABLE. Refer to www.freebsd.org/snapshots
	 for more information about snapshots.
To compile or upgrade to an existing FreeBSD system to
	 FreeBSD-STABLE, use svn
	 to check out the source for the desired
	 branch. Branch names, such as
	 stable/9, are listed at www.freebsd.org/releng.

	Before compiling or upgrading to FreeBSD-STABLE
	 , read /usr/src/Makefile
	 carefully and follow the instructions in Section 24.5, “Updating FreeBSD from Source”. Read the FreeBSD-STABLE mailing list and
	 /usr/src/UPDATING to keep up-to-date
	 on other bootstrapping procedures that sometimes become
	 necessary on the road to the next release.

25.2. Implementation Differences

25.2. Implementation Differences
While the DTrace in FreeBSD is similar to that found in
 Solaris™, differences do exist. The primary difference is that
 in FreeBSD, DTrace is implemented as a set of kernel modules and
 DTrace can not be used until the modules are loaded. To load
 all of the necessary modules:
kldload dtraceall
Beginning with FreeBSD 10.0-RELEASE, the modules are
 automatically loaded when dtrace is
 run.
FreeBSD uses the DDB_CTF kernel option to
 enable support for loading CTF data from
 kernel modules and the kernel itself. CTF is
 the Solaris™ Compact C Type Format which encapsulates a reduced
 form of debugging information similar to
 DWARF and the venerable stabs.
 CTF data is added to binaries by the
 ctfconvert and ctfmerge
 build tools. The ctfconvert utility parses
 DWARF ELF debug sections
 created by the compiler and ctfmerge merges
 CTF ELF sections from
 objects into either executables or shared libraries.
Some different providers exist for FreeBSD than for Solaris™.
 Most notable is the dtmalloc provider, which
 allows tracing malloc() by type in the FreeBSD
 kernel. Some of the providers found in Solaris™, such as
 cpc and mib, are not
 present in FreeBSD. These may appear in future versions of FreeBSD.
 Moreover, some of the providers available in both operating
 systems are not compatible, in the sense that their probes have
 different argument types. Thus, D scripts
 written on Solaris™ may or may not work unmodified on FreeBSD, and
 vice versa.
Due to security differences, only root may use DTrace on FreeBSD.
 Solaris™ has a few low level security checks which do not yet
 exist in FreeBSD. As such, the
 /dev/dtrace/dtrace is strictly limited to
 root.
DTrace falls under the Common Development and Distribution
 License (CDDL) license. To view this license
 on FreeBSD, see
 /usr/src/cddl/contrib/opensolaris/OPENSOLARIS.LICENSE
 or view it online at http://opensource.org/licenses/CDDL-1.0.
 While a FreeBSD kernel with DTrace support is
 BSD licensed, the CDDL is
 used when the modules are distributed in binary form or the
 binaries are loaded.
25.3. Enabling DTrace Support

25.3. Enabling DTrace Support
In FreeBSD 9.2 and 10.0, DTrace support is built into the
 GENERIC kernel. Users of earlier versions
 of FreeBSD or who prefer to statically compile in DTrace support
 should add the following lines to a custom kernel configuration
 file and recompile the kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel:
options KDTRACE_HOOKS
options DDB_CTF
makeoptions	DEBUG=-g
makeoptions	WITH_CTF=1
Users of the AMD64 architecture should also add this
 line:
options KDTRACE_FRAME
This option provides support for FBT.
 While DTrace will work without this option, there will be
 limited support for function boundary tracing.
Once the FreeBSD system has rebooted into the new kernel, or
 the DTrace kernel modules have been loaded using
 kldload dtraceall, the system will need
 support for the Korn shell as the DTrace
 Toolkit has several utilities written in ksh.
 Make sure that the shells/ksh93 package or
 port is installed. It is also possible to run these tools under
 shells/pdksh or
 shells/mksh.
Finally, install the current DTrace Toolkit,
 a collection of ready-made scripts
 for collecting system information. There are scripts to check
 open files, memory, CPU usage, and a lot
 more. FreeBSD 10
 installs a few of these scripts into
 /usr/share/dtrace. On other FreeBSD versions,
 or to install the full
 DTrace Toolkit, use the
 sysutils/DTraceToolkit package or
 port.
Note:
The scripts found in
	/usr/share/dtrace have been specifically
	ported to FreeBSD. Not all of the scripts found in the DTrace
	Toolkit will work as-is on FreeBSD and some scripts may require
	some effort in order for them to work on FreeBSD.

The DTrace Toolkit includes many scripts in the special
 language of DTrace. This language is called the D language
 and it is very similar to C++. An in depth discussion of the
 language is beyond the scope of this document. It is
 covered extensively in the Illumos Dynamic
	Tracing Guide.
25.4. Using DTrace

25.4. Using DTrace
DTrace scripts consist of a list of one or more
 probes, or instrumentation points, where
 each probe is associated with an action. Whenever the condition
 for a probe is met, the associated action is executed. For
 example, an action may occur when a file is opened, a process is
 started, or a line of code is executed. The action might be to
 log some information or to modify context variables. The
 reading and writing of context variables allows probes to share
 information and to cooperatively analyze the correlation of
 different events.
To view all probes, the administrator can execute the
 following command:
dtrace -l | more
Each probe has an ID, a
 PROVIDER (dtrace or fbt), a
 MODULE, and a
 FUNCTION NAME. Refer to dtrace(1) for
 more information about this command.
The examples in this section provide an overview of how to
 use two of the fully supported scripts from the
 DTrace Toolkit: the
 hotkernel and
 procsystime scripts.
The hotkernel script is designed to
 identify which function is using the most kernel time. It will
 produce output similar to the following:
cd /usr/local/share/dtrace-toolkit
./hotkernel
Sampling... Hit Ctrl-C to end.
As instructed, use the
 Ctrl+C key combination to stop the process. Upon
 termination, the script will display a list of kernel functions
 and timing information, sorting the output in increasing order
 of time:
kernel`_thread_lock_flags 2 0.0%
0xc1097063 2 0.0%
kernel`sched_userret 2 0.0%
kernel`kern_select 2 0.0%
kernel`generic_copyin 3 0.0%
kernel`_mtx_assert 3 0.0%
kernel`vm_fault 3 0.0%
kernel`sopoll_generic 3 0.0%
kernel`fixup_filename 4 0.0%
kernel`_isitmyx 4 0.0%
kernel`find_instance 4 0.0%
kernel`_mtx_unlock_flags 5 0.0%
kernel`syscall 5 0.0%
kernel`DELAY 5 0.0%
0xc108a253 6 0.0%
kernel`witness_lock 7 0.0%
kernel`read_aux_data_no_wait 7 0.0%
kernel`Xint0x80_syscall 7 0.0%
kernel`witness_checkorder 7 0.0%
kernel`sse2_pagezero 8 0.0%
kernel`strncmp 9 0.0%
kernel`spinlock_exit 10 0.0%
kernel`_mtx_lock_flags 11 0.0%
kernel`witness_unlock 15 0.0%
kernel`sched_idletd 137 0.3%
0xc10981a5 42139 99.3%
This script will also work with kernel modules. To use this
 feature, run the script with -m:
./hotkernel -m
Sampling... Hit Ctrl-C to end.
^C
MODULE COUNT PCNT
0xc107882e 1 0.0%
0xc10e6aa4 1 0.0%
0xc1076983 1 0.0%
0xc109708a 1 0.0%
0xc1075a5d 1 0.0%
0xc1077325 1 0.0%
0xc108a245 1 0.0%
0xc107730d 1 0.0%
0xc1097063 2 0.0%
0xc108a253 73 0.0%
kernel 874 0.4%
0xc10981a5 213781 99.6%
The procsystime script captures and
 prints the system call time usage for a given process
 ID (PID) or process name.
 In the following example, a new instance of
 /bin/csh was spawned. Then,
 procsystime was executed and remained
 waiting while a few commands were typed on the other incarnation
 of csh. These are the results of this
 test:
./procsystime -n csh
Tracing... Hit Ctrl-C to end...
^C

Elapsed Times for processes csh,

 SYSCALL TIME (ns)
 getpid 6131
 sigreturn 8121
 close 19127
 fcntl 19959
 dup 26955
 setpgid 28070
 stat 31899
 setitimer 40938
 wait4 62717
 sigaction 67372
 sigprocmask 119091
 gettimeofday 183710
 write 263242
 execve 492547
 ioctl 770073
 vfork 3258923
 sigsuspend 6985124
 read 3988049784
As shown, the read() system call used
 the most time in nanoseconds while the
 getpid() system call used the least amount
 of time.
26.2. USB Virtual Serial Ports

26.2. USB Virtual Serial Ports
26.2.1. Configuring USB Device Mode Serial Ports
Virtual serial port support is provided by templates
	number 3, 8, and 10. Note that template 3 works with
	Microsoft Windows 10 without the need for special drivers
	and INF files. Other host operating systems work with all
	three templates. Both usb_template(4) and umodem(4)
	kernel modules must be loaded.
To enable USB device mode serial ports, add those lines
	to /etc/ttys:
ttyU0	"/usr/libexec/getty 3wire"	vt100	onifconsole secure
ttyU1	"/usr/libexec/getty 3wire"	vt100	onifconsole secure
Then add these lines to
	/etc/devd.conf:
notify 100 {
	match "system"		"DEVFS";
	match "subsystem"	"CDEV";
	match "type"		"CREATE";
	match "cdev"		"ttyU[0-9]+";
	action "/sbin/init q";
};
Reload the configuration if
	devd(8) is already running:
service devd restart
Make sure the necessary modules are loaded and the
	correct template is set at boot by adding
	those lines to /boot/loader.conf,
	creating it if it does not already exist:
umodem_load="YES"
hw.usb.template=3
To load the module and set the template without rebooting
	use:
kldload umodem
sysctl hw.usb.template=3
26.2.2. Connecting to USB Device Mode Serial Ports from
	FreeBSD
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop, to
	the boards USB OTG or USB client port. Use
	pstat -t on the host to list the terminal
	lines. Near the end of the list you should see a USB serial
	port, eg "ttyU0". To open the connection, use:
cu -l /dev/ttyU0
After pressing the Enter key a few times you will see
	a login prompt.
26.2.3. Connecting to USB Device Mode Serial Ports from
	Mac OS®
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open the
	connection, use:
cu -l /dev/cu.usbmodemFreeBSD1
26.2.4. Connecting to USB Device Mode Serial Ports from
	Linux
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open the
	connection, use:
minicom -D /dev/ttyACM0
26.2.5. Connecting to USB Device Mode Serial Ports from
	Microsoft Windows 10
To connect to a board configured to provide USB device
	mode serial ports, connect the USB host, such as a laptop,
	to the boards USB OTG or USB client port. To open a
	connection you will need a serial terminal program, such as
	PuTTY. To check the COM port name
	used by Windows, run Device Manager, expand "Ports (COM &
	LPT)". You will see a name similar to "USB Serial Device
	(COM4)". Run serial terminal program of your choice, for
	example PuTTY. In the
	PuTTY dialog set "Connection type"
	to "Serial", type the COMx obtained from Device Manager in the
	"Serial line" dialog box and click Open.
26.3. USB Device Mode Network Interfaces

26.3. USB Device Mode Network
 Interfaces
Virtual network interfaces support is provided by templates
 number 1, 8, and 10. Note that none of them works with
 Microsoft Windows. Other host operating systems work with all
 three templates. Both usb_template(4) and if_cdce(4)
 kernel modules must be loaded.
Make sure the necessary modules are loaded and the correct
 template is set at boot by adding
 those lines to /boot/loader.conf, creating
 it if it does not already exist:
if_cdce_load="YES"
hw.usb.template=1
To load the module and set the template without rebooting
 use:
kldload if_cdce
sysctl hw.usb.template=1
26.4. USB Virtual Storage Device

26.4. USB Virtual Storage Device
Note:
The cfumass(4) driver is a USB
	device mode driver first available in FreeBSD 12.0.

Mass Storage target is provided by templates 0 and 10.
 Both usb_template(4) and cfumass(4) kernel modules
 must be loaded. cfumass(4) interfaces to the CTL
 subsystem, the same one that is used for
 iSCSI or Fibre Channel targets.
 On the host side, USB Mass Storage
 initiators can only access a single LUN,
 LUN 0.
26.4.1. Configuring USB Mass Storage Target Using the cfumass
	Startup Script
The simplest way to set up a read-only USB storage target
	is to use the cfumass rc script. To
	configure it this way, copy the files to be presented to the
	USB host machine into the /var/cfumass
	directory, and add this line to
	/etc/rc.conf:
cfumass_enable="YES"
To configure the target without restarting,
	run this command:
service cfumass start
Differently from serial and network functionality, the
	template should not be set to 0 or 10 in
	/boot/loader.conf. This is because the
	LUN must be set up before setting the template. The cfumass
	startup script sets the correct template number automatically
	when started.
26.4.2. Configuring USB Mass Storage Using Other Means
The rest of this chapter provides detailed description of
	setting the target without using the cfumass rc file. This is
	necessary if eg one wants to provide a writeable LUN.
USB Mass Storage does not require the
	ctld(8) daemon to be running, although it can be used if
	desired. This is different from iSCSI.
	Thus, there are two ways to configure the target:
	ctladm(8), or ctld(8). Both require the
	cfumass.ko kernel module to be loaded.
	The module can be loaded manually:
kldload cfumass
If cfumass.ko has not been built into
	the kernel, /boot/loader.conf can be set
	to load the module at boot:
cfumass_load="YES"
A LUN can be created without the
	ctld(8) daemon:
ctladm create -b block -o file=/data/target0
This presents the contents of the image file
	/data/target0 as a LUN
	to the USB host. The file must exist
	before executing the command. To configure the
	LUN at system startup, add the command to
	/etc/rc.local.
ctld(8) can also be used to manage
	LUNs. Create
	/etc/ctl.conf, add a line to
	/etc/rc.conf to make sure ctld(8) is
	automatically started at boot, and then start the
	daemon.
This is an example of a simple
	/etc/ctl.conf configuration file. Refer
	to ctl.conf(5) for a more complete description of the
	options.
target naa.50015178f369f092 {
	lun 0 {
		path /data/target0
		size 4G
	}
}
The example creates a single target with a single
	LUN. The
	naa.50015178f369f092 is a device identifier
	composed of 32 random hexadecimal digits. The
	path line defines the full path to a file
	or zvol backing the LUN. That file must
	exist before starting ctld(8). The second line is
	optional and specifies the size of the
	LUN.
To make sure the ctld(8) daemon is started at
	boot, add this line to
	/etc/rc.conf:
ctld_enable="YES"
To start ctld(8) now, run this command:
service ctld start
As the ctld(8) daemon is started, it reads
	/etc/ctl.conf. If this file is edited
	after the daemon starts, reload the changes so they take
	effect immediately:
service ctld reload
27.2. Serial Terminology and Hardware

27.2. Serial Terminology and Hardware
The following terms are often used in serial
 communications:
	bps
	Bits per
	 Second
	 (bps) is the rate at which data is
	 transmitted.

	DTE
	Data Terminal
	 Equipment
	 (DTE) is one of two endpoints in a
	 serial communication. An example would be a
	 computer.

	DCE
	Data Communications
	 Equipment
	 (DTE) is the other endpoint in a
	 serial communication. Typically, it is a modem or serial
	 terminal.

	RS-232
	The original standard which defined hardware serial
	 communications. It has since been renamed to
	 TIA-232.

When referring to communication data rates, this section
 does not use the term baud. Baud refers
 to the number of electrical state transitions made in a period
 of time, while bps is the correct term to
 use.
To connect a serial terminal to a FreeBSD system, a serial port
 on the computer and the proper cable to connect to the serial
 device are needed. Users who are already familiar with serial
 hardware and cabling can safely skip this section.
27.2.1. Serial Cables and Ports
There are several different kinds of serial cables. The
	two most common types are null-modem cables and standard
	RS-232 cables. The documentation for the
	hardware should describe the type of cable required.
These two types of cables differ in how the wires are
	connected to the connector. Each wire represents a signal,
	with the defined signals summarized in Table 27.1, “RS-232C Signal Names”. A standard serial
	cable passes all of the RS-232C signals
	straight through. For example, the “Transmitted
	 Data” pin on one end of the cable goes to the
	“Transmitted Data” pin on the other end. This is
	the type of cable used to connect a modem to the FreeBSD system,
	and is also appropriate for some terminals.
A null-modem cable switches the “Transmitted
	 Data” pin of the connector on one end with the
	“Received Data” pin on the other end. The
	connector can be either a DB-25 or a
	DB-9.
A null-modem cable can be constructed using the pin
	connections summarized in Table 27.2, “DB-25 to DB-25 Null-Modem Cable”,
	Table 27.3, “DB-9 to DB-9 Null-Modem Cable”, and Table 27.4, “DB-9 to DB-25 Null-Modem Cable”. While the standard calls for
	a straight-through pin 1 to pin 1 “Protective
	 Ground” line, it is often omitted. Some terminals
	work using only pins 2, 3, and 7, while others require
	different configurations. When in doubt, refer to the
	documentation for the hardware.
Table 27.1. RS-232C Signal Names
	Acronyms	Names
	RD	Received Data
	TD	Transmitted Data
	DTR	Data Terminal Ready
	DSR	Data Set Ready
	DCD	Data Carrier Detect
	SG	Signal Ground
	RTS	Request to Send
	CTS	Clear to Send

Table 27.2. DB-25 to DB-25 Null-Modem Cable
	Signal	Pin #	 	Pin #	Signal
	SG	7	connects to	7	SG
	TD	2	connects to	3	RD
	RD	3	connects to	2	TD
	RTS	4	connects to	5	CTS
	CTS	5	connects to	4	RTS
	DTR	20	connects to	6	DSR
	DTR	20	connects to	8	DCD
	DSR	6	connects to	20	DTR
	DCD	8	connects to	20	DTR

Table 27.3. DB-9 to DB-9 Null-Modem Cable
	Signal	Pin #	 	Pin #	Signal
	RD	2	connects to	3	TD
	TD	3	connects to	2	RD
	DTR	4	connects to	6	DSR
	DTR	4	connects to	1	DCD
	SG	5	connects to	5	SG
	DSR	6	connects to	4	DTR
	DCD	1	connects to	4	DTR
	RTS	7	connects to	8	CTS
	CTS	8	connects to	7	RTS

Table 27.4. DB-9 to DB-25 Null-Modem Cable
	Signal	Pin #	 	Pin #	Signal
	RD	2	connects to	2	TD
	TD	3	connects to	3	RD
	DTR	4	connects to	6	DSR
	DTR	4	connects to	8	DCD
	SG	5	connects to	7	SG
	DSR	6	connects to	20	DTR
	DCD	1	connects to	20	DTR
	RTS	7	connects to	5	CTS
	CTS	8	connects to	4	RTS

Note:
When one pin at one end connects to a pair of pins at
	 the other end, it is usually implemented with one short wire
	 between the pair of pins in their connector and a long wire
	 to the other single pin.

Serial ports are the devices through which data is
	transferred between the FreeBSD host computer and the terminal.
	Several kinds of serial ports exist. Before purchasing or
	constructing a cable, make sure it will fit the ports on the
	terminal and on the FreeBSD system.
Most terminals have DB-25 ports.
	Personal computers may have DB-25 or
	DB-9 ports. A multiport serial card may
	have RJ-12 or RJ-45/
	ports. See the documentation that accompanied the hardware
	for specifications on the kind of port or visually verify the
	type of port.
In FreeBSD, each serial port is accessed through an entry in
	/dev. There are two different kinds of
	entries:
	Call-in ports are named
	 /dev/ttyuN
	 where N is the port number,
	 starting from zero. If a terminal is connected to the
	 first serial port (COM1), use
	 /dev/ttyu0 to refer to the terminal.
	 If the terminal is on the second serial port
	 (COM2), use
	 /dev/ttyu1, and so forth. Generally,
	 the call-in port is used for terminals. Call-in ports
	 require that the serial line assert the “Data
	 Carrier Detect” signal to work correctly.

	Call-out ports are named
	 /dev/cuauN
	 on FreeBSD versions 8.X and higher and
	 /dev/cuadN
	 on FreeBSD versions 7.X and lower. Call-out ports are
	 usually not used for terminals, but are used for modems.
	 The call-out port can be used if the serial cable or the
	 terminal does not support the “Data Carrier
	 Detect” signal.

FreeBSD also provides initialization devices
	(/dev/ttyuN.init
	and
	/dev/cuauN.init
	or
	/dev/cuadN.init)
	and locking devices
	(/dev/ttyuN.lock
	and
	/dev/cuauN.lock
	or
	/dev/cuadN.lock).
	The initialization devices are used to initialize
	communications port parameters each time a port is opened,
	such as crtscts for modems which use
	RTS/CTS signaling for flow control. The
	locking devices are used to lock flags on ports to prevent
	users or programs changing certain parameters. Refer to
	termios(4), sio(4), and stty(1) for information
	on terminal settings, locking and initializing devices, and
	setting terminal options, respectively.
27.2.2. Serial Port Configuration
By default, FreeBSD supports four serial ports which are
	commonly known as COM1,
	COM2, COM3, and
	COM4. FreeBSD also supports dumb multi-port
	serial interface cards, such as the BocaBoard 1008 and 2016,
	as well as more intelligent multi-port cards such as those
	made by Digiboard. However, the default kernel only looks for
	the standard COM ports.
To see if the system recognizes the serial ports, look for
	system boot messages that start with
	uart:
grep uart /var/run/dmesg.boot
If the system does not recognize all of the needed serial
	ports, additional entries can be added to
	/boot/device.hints. This file already
	contains hint.uart.0.* entries for
	COM1 and hint.uart.1.*
	entries for COM2. When adding a port
	entry for COM3 use
	0x3E8, and for COM4
	use 0x2E8. Common IRQ
	addresses are 5 for
	COM3 and 9 for
	COM4.
To determine the default set of terminal
	I/O settings used by the port, specify its
	device name. This example determines the settings for the
	call-in port on COM2:
stty -a -f /dev/ttyu1
System-wide initialization of serial devices is controlled
	by /etc/rc.d/serial. This file affects
	the default settings of serial devices. To change the
	settings for a device, use stty. By
	default, the changed settings are in effect until the device
	is closed and when the device is reopened, it goes back to the
	default set. To permanently change the default set, open and
	adjust the settings of the initialization device. For
	example, to turn on CLOCAL mode, 8 bit
	communication, and XON/XOFF flow control for
	ttyu5, type:
stty -f /dev/ttyu5.init clocal cs8 ixon ixoff
To prevent certain settings from being changed by an
	application, make adjustments to the locking device. For
	example, to lock the speed of ttyu5 to
	57600 bps, type:
stty -f /dev/ttyu5.lock 57600
Now, any application that opens ttyu5
	and tries to change the speed of the port will be stuck with
	57600 bps.
27.3. Terminals

27.3. Terminals
Contributed by Sean Kelly. Terminals provide a convenient and low-cost way to access
 a FreeBSD system when not at the computer's console or on a
 connected network. This section describes how to use terminals
 with FreeBSD.
The original UNIX® systems did not have consoles. Instead,
 users logged in and ran programs through terminals that were
 connected to the computer's serial ports.
The ability to establish a login session on a serial port
 still exists in nearly every UNIX®-like operating system
 today, including FreeBSD. By using a terminal attached to an
 unused serial port, a user can log in and run any text program
 that can normally be run on the console or in an
 xterm window.
Many terminals can be attached to a FreeBSD system. An older
 spare computer can be used as a terminal wired into a more
 powerful computer running FreeBSD. This can turn what might
 otherwise be a single-user computer into a powerful
 multiple-user system.
FreeBSD supports three types of terminals:
	Dumb terminals
	Dumb terminals are specialized hardware that connect
	 to computers over serial lines. They are called
	 “dumb” because they have only enough
	 computational power to display, send, and receive text.
	 No programs can be run on these devices. Instead, dumb
	 terminals connect to a computer that runs the needed
	 programs.
There are hundreds of kinds of dumb terminals made by
	 many manufacturers, and just about any kind will work with
	 FreeBSD. Some high-end terminals can even display graphics,
	 but only certain software packages can take advantage of
	 these advanced features.
Dumb terminals are popular in work environments where
	 workers do not need access to graphical
	 applications.

	Computers Acting as Terminals
	Since a dumb terminal has just enough ability to
	 display, send, and receive text, any spare computer can
	 be a dumb terminal. All that is needed is the proper
	 cable and some terminal emulation
	 software to run on the computer.
This configuration can be useful. For example, if one
	 user is busy working at the FreeBSD system's console, another
	 user can do some text-only work at the same time from a
	 less powerful personal computer hooked up as a terminal to
	 the FreeBSD system.
There are at least two utilities in the base-system of
	 FreeBSD that can be used to work through a serial connection:
	 cu(1) and tip(1).
For example, to connect from a client system that runs
	 FreeBSD to the serial connection of another system:
cu -l /dev/cuauN
Ports are numbered starting from zero. This means that
	 COM1 is
	 /dev/cuau0.
Additional programs are available through the Ports
	 Collection, such as
	 comms/minicom.

	X Terminals
	X terminals are the most sophisticated kind of
	 terminal available. Instead of connecting to a serial
	 port, they usually connect to a network like Ethernet.
	 Instead of being relegated to text-only applications, they
	 can display any Xorg
	 application.
This chapter does not cover the setup, configuration,
	 or use of X terminals.

27.3.1. Terminal Configuration
This section describes how to configure a FreeBSD system to
	enable a login session on a serial terminal. It assumes that
	the system recognizes the serial port to which the terminal is
	connected and that the terminal is connected with the correct
	cable.
In FreeBSD, init reads
	/etc/ttys and starts a
	getty process on the available terminals.
	The getty process is responsible for
	reading a login name and starting the login
	program. The ports on the FreeBSD system which allow logins are
	listed in /etc/ttys. For example, the
	first virtual console, ttyv0, has an
	entry in this file, allowing logins on the console. This file
	also contains entries for the other virtual consoles, serial
	ports, and pseudo-ttys. For a hardwired terminal, the serial
	port's /dev entry is listed without the
	/dev part. For example,
	/dev/ttyv0 is listed as
	ttyv0.
The default /etc/ttys configures
	support for the first four serial ports,
	ttyu0 through
	ttyu3:
ttyu0 "/usr/libexec/getty std.9600" dialup off secure
ttyu1 "/usr/libexec/getty std.9600" dialup off secure
ttyu2 "/usr/libexec/getty std.9600" dialup off secure
ttyu3 "/usr/libexec/getty std.9600" dialup off secure
When attaching a terminal to one of those ports, modify
	the default entry to set the required speed and terminal type,
	to turn the device on and, if needed, to
	change the port's secure setting. If the
	terminal is connected to another port, add an entry for the
	port.
Example 27.1, “Configuring Terminal Entries” configures two terminals in
	/etc/ttys. The first entry configures a
	Wyse-50 connected to COM2. The second
	entry configures an old computer running
	Procomm terminal software emulating
	a VT-100 terminal. The computer is connected to the sixth
	serial port on a multi-port serial card.
Example 27.1. Configuring Terminal Entries
ttyu1[image: 1] "/usr/libexec/getty std.38400"[image: 2] wy50[image: 3] on[image: 4] insecure[image: 5]
ttyu5 "/usr/libexec/getty std.19200" vt100 on insecure
	[image: 1]
	The first field specifies the device name of the
	 serial terminal.

	[image: 2]
	The second field tells getty to
	 initialize and open the line, set the line speed, prompt
	 for a user name, and then execute the
	 login program. The optional
	 getty type configures
	 characteristics on the terminal line, like
	 bps rate and parity. The available
	 getty types are listed in
	 /etc/gettytab. In almost all
	 cases, the getty types that start with
	 std will work for hardwired terminals
	 as these entries ignore parity. There is a
	 std entry for each
	 bps rate from 110 to 115200. Refer
	 to gettytab(5) for more information.
When setting the getty type, make sure to match the
	 communications settings used by the terminal. For this
	 example, the Wyse-50 uses no parity and connects at
	 38400 bps. The computer uses no parity and
	 connects at 19200 bps.

	[image: 3]
	The third field is the type of terminal. For
	 dial-up ports, unknown or
	 dialup is typically used since users
	 may dial up with practically any type of terminal or
	 software. Since the terminal type does not change for
	 hardwired terminals, a real terminal type from
	 /etc/termcap can be specified. For
	 this example, the Wyse-50 uses the real terminal type
	 while the computer running
	 Procomm is set to emulate a
	 VT-100.

	[image: 4]
	The fourth field specifies if the port should be
	 enabled. To enable logins on this port, this field must
	 be set to on.

	[image: 5]
	The final field is used to specify whether the port
	 is secure. Marking a port as secure
	 means that it is trusted enough to allow root to login from that
	 port. Insecure ports do not allow root logins. On an
	 insecure port, users must login from unprivileged
	 accounts and then use su or a similar
	 mechanism to gain superuser privileges, as described in
	 Section 3.3.1.3, “The Superuser Account”. For security
	 reasons, it is recommended to change this setting to
	 insecure.

After making any changes to
	/etc/ttys, send a SIGHUP (hangup) signal
	to the init process to force it to re-read
	its configuration file:
kill -HUP 1
Since init is always the first process
	run on a system, it always has a process ID
	of 1.
If everything is set up correctly, all cables are in
	place, and the terminals are powered up, a
	getty process should now be running on each
	terminal and login prompts should be available on each
	terminal.
27.3.2. Troubleshooting the Connection
Even with the most meticulous attention to detail,
	something could still go wrong while setting up a terminal.
	Here is a list of common symptoms and some suggested
	fixes.
If no login prompt appears, make sure the terminal is
	plugged in and powered up. If it is a personal computer
	acting as a terminal, make sure it is running terminal
	emulation software on the correct serial port.
Make sure the cable is connected firmly to both the
	terminal and the FreeBSD computer. Make sure it is the right
	kind of cable.
Make sure the terminal and FreeBSD agree on the
	bps rate and parity settings. For a video
	display terminal, make sure the contrast and brightness
	controls are turned up. If it is a printing terminal, make
	sure paper and ink are in good supply.
Use ps to make sure that a
	getty process is running and serving the
	terminal. For example, the following listing shows that a
	getty is running on the second serial port,
	ttyu1, and is using the
	std.38400 entry in
	/etc/gettytab:
ps -axww|grep ttyu
22189 d1 Is+ 0:00.03 /usr/libexec/getty std.38400 ttyu1
If no getty process is running, make
	sure the port is enabled in /etc/ttys.
	Remember to run kill -HUP 1 after modifying
	/etc/ttys.
If the getty process is running but the
	terminal still does not display a login prompt, or if it
	displays a prompt but will not accept typed input, the
	terminal or cable may not support hardware handshaking. Try
	changing the entry in /etc/ttys from
	std.38400 to
	3wire.38400, then run kill -HUP
	 1 after modifying /etc/ttys.
	The 3wire entry is similar to
	std, but ignores hardware handshaking. The
	baud rate may need to be reduced or software flow control
	enabled when using 3wire to prevent buffer
	overflows.
If garbage appears instead of a login prompt, make sure
	the terminal and FreeBSD agree on the bps rate
	and parity settings. Check the getty
	processes to make sure the correct
	getty type is in use. If not, edit
	/etc/ttys and run kill
	 -HUP 1.
If characters appear doubled and the password appears when
	typed, switch the terminal, or the terminal emulation
	software, from “half duplex” or “local
	 echo” to “full duplex.”
27.4. Dial-in Service

27.4. Dial-in Service
Contributed by Guy Helmer. Additions by Sean Kelly. Configuring a FreeBSD system for dial-in service is similar to
 configuring terminals, except that modems are used instead of
 terminal devices. FreeBSD supports both external and internal
 modems.
External modems are more convenient because they often can
 be configured via parameters stored in non-volatile
 RAM and they usually provide lighted
 indicators that display the state of important
 RS-232 signals, indicating whether the modem
 is operating properly.
Internal modems usually lack non-volatile
 RAM, so their configuration may be limited to
 setting DIP switches. If the internal modem
 has any signal indicator lights, they are difficult to view when
 the system's cover is in place.
When using an external modem, a proper cable is needed. A
 standard RS-232C serial cable should
 suffice.
FreeBSD needs the RTS and
 CTS signals for flow control at speeds above
 2400 bps, the CD signal to detect when a
 call has been answered or the line has been hung up, and the
 DTR signal to reset the modem after a session
 is complete. Some cables are wired without all of the needed
 signals, so if a login session does not go away when the line
 hangs up, there may be a problem with the cable. Refer to Section 27.2.1, “Serial Cables and Ports” for more information about these
 signals.
Like other UNIX®-like operating systems, FreeBSD uses the
 hardware signals to find out when a call has been answered or a
 line has been hung up and to hangup and reset the modem after a
 call. FreeBSD avoids sending commands to the modem or watching for
 status reports from the modem.
FreeBSD supports the NS8250,
 NS16450, NS16550, and
 NS16550A-based RS-232C
 (CCITT V.24) communications interfaces. The
 8250 and 16450 devices have single-character buffers. The 16550
 device provides a 16-character buffer, which allows for better
 system performance. Bugs in plain 16550 devices prevent the use
 of the 16-character buffer, so use 16550A devices if possible.
 As single-character-buffer devices require more work by the
 operating system than the 16-character-buffer devices,
 16550A-based serial interface cards are preferred. If the
 system has many active serial ports or will have a heavy load,
 16550A-based cards are better for low-error-rate
 communications.
The rest of this section demonstrates how to configure a
 modem to receive incoming connections, how to communicate with
 the modem, and offers some troubleshooting tips.
27.4.1. Modem Configuration
As with terminals, init spawns a
	getty process for each configured serial
	port used for dial-in connections. When a user dials the
	modem's line and the modems connect, the “Carrier
	 Detect” signal is reported by the modem. The kernel
	notices that the carrier has been detected and instructs
	getty to open the port and display a
	login: prompt at the specified initial line
	speed. In a typical configuration, if garbage characters are
	received, usually due to the modem's connection speed being
	different than the configured speed, getty
	tries adjusting the line speeds until it receives reasonable
	characters. After the user enters their login name,
	getty executes login,
	which completes the login process by asking for the user's
	password and then starting the user's shell.
There are two schools of thought regarding dial-up modems.
	One configuration method is to set the modems and systems so
	that no matter at what speed a remote user dials in, the
	dial-in RS-232 interface runs at a locked
	speed. The benefit of this configuration is that the remote
	user always sees a system login prompt immediately. The
	downside is that the system does not know what a user's true
	data rate is, so full-screen programs like
	Emacs will not adjust their
	screen-painting methods to make their response better for
	slower connections.
The second method is to configure the
	RS-232 interface to vary its speed based on
	the remote user's connection speed. As
	getty does not understand any particular
	modem's connection speed reporting, it gives a
	login: message at an initial speed and
	watches the characters that come back in response. If the
	user sees junk, they should press Enter until
	they see a recognizable prompt. If the data rates do not
	match, getty sees anything the user types
	as junk, tries the next speed, and gives the
	login: prompt again. This procedure normally
	only takes a keystroke or two before the user sees a good
	prompt. This login sequence does not look as clean as the
	locked-speed method, but a user on a low-speed connection
	should receive better interactive response from full-screen
	programs.
When locking a modem's data communications rate at a
	particular speed, no changes to
	/etc/gettytab should be needed. However,
	for a matching-speed configuration, additional entries may be
	required in order to define the speeds to use for the modem.
	This example configures a 14.4 Kbps modem with a top
	interface speed of 19.2 Kbps using 8-bit, no parity
	connections. It configures getty to start
	the communications rate for a V.32bis connection at
	19.2 Kbps, then cycles through 9600 bps,
	2400 bps, 1200 bps, 300 bps, and back to
	19.2 Kbps. Communications rate cycling is implemented
	with the nx= (next table) capability. Each
	line uses a tc= (table continuation) entry
	to pick up the rest of the settings for a particular data
	rate.
#
Additions for a V.32bis Modem
#
um|V300|High Speed Modem at 300,8-bit:\
 :nx=V19200:tc=std.300:
un|V1200|High Speed Modem at 1200,8-bit:\
 :nx=V300:tc=std.1200:
uo|V2400|High Speed Modem at 2400,8-bit:\
 :nx=V1200:tc=std.2400:
up|V9600|High Speed Modem at 9600,8-bit:\
 :nx=V2400:tc=std.9600:
uq|V19200|High Speed Modem at 19200,8-bit:\
 :nx=V9600:tc=std.19200:
For a 28.8 Kbps modem, or to take advantage of
	compression on a 14.4 Kbps modem, use a higher
	communications rate, as seen in this example:
#
Additions for a V.32bis or V.34 Modem
Starting at 57.6 Kbps
#
vm|VH300|Very High Speed Modem at 300,8-bit:\
 :nx=VH57600:tc=std.300:
vn|VH1200|Very High Speed Modem at 1200,8-bit:\
 :nx=VH300:tc=std.1200:
vo|VH2400|Very High Speed Modem at 2400,8-bit:\
 :nx=VH1200:tc=std.2400:
vp|VH9600|Very High Speed Modem at 9600,8-bit:\
 :nx=VH2400:tc=std.9600:
vq|VH57600|Very High Speed Modem at 57600,8-bit:\
 :nx=VH9600:tc=std.57600:
For a slow CPU or a heavily loaded
	system without 16550A-based serial ports, this configuration
	may produce sio
	“silo” errors at 57.6 Kbps.
The configuration of /etc/ttys is
	similar to Example 27.1, “Configuring Terminal Entries”, but a different
	argument is passed to getty and
	dialup is used for the terminal type.
	Replace xxx with the process
	init will run on the device:
ttyu0 "/usr/libexec/getty xxx" dialup on
The dialup terminal type can be
	changed. For example, setting vt102 as the
	default terminal type allows users to use
	VT102 emulation on their remote
	systems.
For a locked-speed configuration, specify the speed with
	a valid type listed in /etc/gettytab.
	This example is for a modem whose port speed is locked at
	19.2 Kbps:
ttyu0 "/usr/libexec/getty std.19200" dialup on
In a matching-speed configuration, the entry needs to
	reference the appropriate beginning “auto-baud”
	entry in /etc/gettytab. To continue the
	example for a matching-speed modem that starts at
	19.2 Kbps, use this entry:
ttyu0 "/usr/libexec/getty V19200" dialup on
After editing /etc/ttys, wait until
	the modem is properly configured and connected before
	signaling init:
kill -HUP 1
High-speed modems, like V.32,
	V.32bis, and V.34
	modems, use hardware (RTS/CTS) flow
	control. Use stty to set the hardware flow
	control flag for the modem port. This example sets the
	crtscts flag on COM2's
	dial-in and dial-out initialization devices:
stty -f /dev/ttyu1.init crtscts
stty -f /dev/cuau1.init crtscts
27.4.2. Troubleshooting
This section provides a few tips for troubleshooting a
	dial-up modem that will not connect to a FreeBSD system.
Hook up the modem to the FreeBSD system and boot the system.
	If the modem has status indication lights, watch to see
	whether the modem's DTR indicator lights
	when the login: prompt appears on the
	system's console. If it lights up, that should mean that FreeBSD
	has started a getty process on the
	appropriate communications port and is waiting for the modem
	to accept a call.
If the DTR indicator does not light,
	login to the FreeBSD system through the console and type
	ps ax to see if FreeBSD is running a
	getty process on the correct port:
 114 ?? I 0:00.10 /usr/libexec/getty V19200 ttyu0
If the second column contains a d0
	instead of a ?? and the modem has not
	accepted a call yet, this means that getty
	has completed its open on the communications port. This could
	indicate a problem with the cabling or a misconfigured modem
	because getty should not be able to open
	the communications port until the carrier detect signal has
	been asserted by the modem.
If no getty processes are waiting to
	open the port, double-check that the entry for the port is
	correct in /etc/ttys. Also, check
	/var/log/messages to see if there are
	any log messages from init or
	getty.
Next, try dialing into the system. Be sure to use 8 bits,
	no parity, and 1 stop bit on the remote system. If a prompt
	does not appear right away, or the prompt shows garbage, try
	pressing Enter about once per second. If
	there is still no login: prompt,
	try sending a BREAK. When using a
	high-speed modem, try dialing again after locking the
	dialing modem's interface speed.
If there is still no login: prompt, check
	/etc/gettytab again and double-check
	that:
	The initial capability name specified in the entry in
	 /etc/ttys matches the name of a
	 capability in /etc/gettytab.

	Each nx= entry matches another
	 gettytab capability name.

	Each tc= entry matches another
	 gettytab capability name.

If the modem on the FreeBSD system will not answer, make
	sure that the modem is configured to answer the phone when
	DTR is asserted. If the modem seems to be
	configured correctly, verify that the
	DTR line is asserted by checking the
	modem's indicator lights.
If it still does not work, try sending an email
	to the FreeBSD general questions mailing list describing the modem and the
	problem.
28.2. Configuring PPP

28.2. Configuring PPP
FreeBSD provides built-in support for managing dial-up
 PPP connections using ppp(8). The
 default FreeBSD kernel provides support for
 tun which is used to interact with a
 modem hardware. Configuration is performed by editing at least
 one configuration file, and configuration files containing
 examples are provided. Finally, ppp is
 used to start and manage connections.
In order to use a PPP connection, the
 following items are needed:
	A dial-up account with an Internet Service Provider
	 (ISP).

	A dial-up modem.

	The dial-up number for the
	 ISP.

	The login name and password assigned by the
	 ISP.

	The IP address of one or more
	 DNS servers. Normally, the
	 ISP provides these addresses. If it did
	 not, FreeBSD can be configured to use
	 DNS negotiation.

If any of the required information is missing, contact
 the ISP.
The following information may be supplied by the
 ISP, but is not necessary:
	The IP address of the default
	 gateway. If this information is unknown, the
	 ISP will automatically provide the
	 correct value during connection setup. When configuring
	 PPP on FreeBSD, this address is referred to
	 as HISADDR.

	The subnet mask. If the ISP has not
	 provided one, 255.255.255.255 will be used
	 in the ppp(8) configuration file.

	If the ISP has assigned a static
	 IP address and hostname, it should be
	 input into the configuration file. Otherwise, this
	 information will be automatically provided during
	 connection setup.

The rest of this section demonstrates how to configure FreeBSD
 for common PPP connection scenarios. The
 required configuration file is
 /etc/ppp/ppp.conf and additional files and
 examples are available in
 /usr/share/examples/ppp/.
Note:
Throughout this section, many of the file examples
	display line numbers. These line numbers have been added to
	make it easier to follow the discussion and are not meant to
	be placed in the actual file.
When editing a configuration file, proper indentation is
	important. Lines that end in a : start in
	the first column (beginning of the line) while all other lines
	should be indented as shown using spaces or tabs.

28.2.1. Basic Configuration
In order to configure a PPP connection,
	first edit /etc/ppp/ppp.conf with the
	dial-in information for the ISP. This file
	is described as follows:
1 default:
2 set log Phase Chat LCP IPCP CCP tun command
3 ident user-ppp VERSION
4 set device /dev/cuau0
5 set speed 115200
6 set dial "ABORT BUSY ABORT NO\\sCARRIER TIMEOUT 5 \
7 \"\" AT OK-AT-OK ATE1Q0 OK \\dATDT\\T TIMEOUT 40 CONNECT"
8 set timeout 180
9 enable dns
10
11 provider:
12 set phone "(123) 456 7890"
13 set authname foo
14 set authkey bar
15 set timeout 300
16 set ifaddr x.x.x.x/0 y.y.y.y/0 255.255.255.255 0.0.0.0
17 add default HISADDR
	Line 1:
	Identifies the default entry.
		 Commands in this entry (lines 2 through 9) are
		 executed automatically when ppp
		 is run.

	Line 2:
	Enables verbose logging parameters for testing
		 the connection. Once the configuration is working
		 satisfactorily, this line should be reduced
		 to:
set log phase tun

	Line 3:
	Displays the version of ppp(8) to the
		 PPP software running on the other
		 side of the connection.

	Line 4:
	Identifies the device to which the modem is
		 connected, where COM1 is
		 /dev/cuau0 and
		 COM2 is
		 /dev/cuau1.

	Line 5:
	Sets the connection speed. If
		 115200 does not work on an older
		 modem, try 38400 instead.

	Lines 6 & 7:
	The dial string written as an expect-send
		 syntax. Refer to chat(8) for more
		 information.
Note that this command continues onto the next
		 line for readability. Any command in
		 ppp.conf may do this if the
		 last character on the line is
		 \.

	Line 8:
	Sets the idle timeout for the link in
		 seconds.

	Line 9:
	Instructs the peer to confirm the
		 DNS settings. If the local
		 network is running its own DNS
		 server, this line should be commented out, by adding
		 a # at the beginning of the line,
		 or removed.

	Line 10:
	A blank line for readability. Blank lines are
		 ignored by ppp(8).

	Line 11:
	Identifies an entry called
		 provider. This could be changed
		 to the name of the ISP so that
		 load
		 ISP can be
		 used to start the connection.

	Line 12:
	Use the phone number for the
		 ISP. Multiple phone numbers may
		 be specified using the colon (:)
		 or pipe character (|) as a
		 separator. To rotate through the numbers, use a
		 colon. To always attempt to dial the first number
		 first and only use the other numbers if the first
		 number fails, use the pipe character. Always
		 enclose the entire set of phone numbers between
		 quotation marks (") to prevent
		 dialing failures.

	Lines 13 & 14:
	Use the user name and password for the
		 ISP.

	Line 15:
	Sets the default idle timeout in seconds for the
		 connection. In this example, the connection will be
		 closed automatically after 300 seconds of
		 inactivity. To prevent a timeout, set this value to
		 zero.

	Line 16:
	Sets the interface addresses. The values used
		 depend upon whether a static IP
		 address has been obtained from the
		 ISP or if it instead negotiates
		 a dynamic IP address during
		 connection.
If the ISP has allocated a
		 static IP address and default
		 gateway, replace x.x.x.x
		 with the static IP address and
		 replace y.y.y.y with the
		 IP address of the default
		 gateway. If the ISP has only
		 provided a static IP address
		 without a gateway address, replace
		 y.y.y.y with 10.0.0.2/0.
If the IP address changes
		 whenever a connection is made, change this line to
		 the following value. This tells ppp(8) to use
		 the IP Configuration Protocol
		 (IPCP) to negotiate a dynamic
		 IP address:
set ifaddr 10.0.0.1/0 10.0.0.2/0 255.255.255.255 0.0.0.0

	Line 17:
	Keep this line as-is as it adds a default route
		 to the gateway. The HISADDR will
		 automatically be replaced with the gateway address
		 specified on line 16. It is important that this
		 line appears after line 16.

Depending upon whether ppp(8) is started
	 manually or automatically, a
	 /etc/ppp/ppp.linkup may also need to
	 be created which contains the following lines. This file
	 is required when running ppp in
	 -auto mode. This file is used after the
	 connection has been established. At this point, the
	 IP address will have been assigned and
	 it is now be possible to add the routing table entries.
	 When creating this file, make sure that
	 provider matches the value
	 demonstrated in line 11 of
	 ppp.conf.
provider:
 add default HISADDR
This file is also needed when the default gateway
	 address is “guessed” in a static
	 IP address configuration. In this case,
	 remove line 17 from ppp.conf and
	 create /etc/ppp/ppp.linkup with the
	 above two lines. More examples for this file can be found
	 in /usr/share/examples/ppp/.
By default, ppp must be
	 run as root.
	 To change this default, add the account of the user
	 who should run ppp to the network group in
	 /etc/group.
Then, give the user access to one or more entries in
	 /etc/ppp/ppp.conf with
	 allow. For example, to give
	 fred and
	 mary
	 permission to only the provider: entry,
	 add this line to the provider:
	 section:
allow users fred mary
To give the specified users access to all entries, put
	 that line in the default section
	 instead.
28.2.2. Advanced Configuration
It is possible to configure PPP to supply DNS and
	 NetBIOS nameserver addresses on demand.
To enable these extensions with
	 PPP version 1.x, the following lines
	 might be added to the relevant section of
	 /etc/ppp/ppp.conf.
enable msext
set ns 203.14.100.1 203.14.100.2
set nbns 203.14.100.5
And for PPP version 2 and
	 above:
accept dns
set dns 203.14.100.1 203.14.100.2
set nbns 203.14.100.5
This will tell the clients the primary and secondary
	 name server addresses, and a NetBIOS nameserver
	 host.
In version 2 and above, if the set
	 dns line is omitted,
	 PPP will use the values found in
	 /etc/resolv.conf.
28.2.2.1. PAP and CHAP Authentication
Some ISPs set their system up so
	 that the authentication part of the connection is done
	 using either of the PAP or CHAP authentication mechanisms.
	 If this is the case, the ISP will not
	 give a login: prompt at connection, but
	 will start talking PPP
	 immediately.
PAP is less secure than CHAP, but security is not
	 normally an issue here as passwords, although being sent
	 as plain text with PAP, are being transmitted down a
	 serial line only. There is not much room for crackers
	 to “eavesdrop”.
The following
	 alterations must be made:
13 set authname MyUserName
14 set authkey MyPassword
15 set login
	Line 13:
	This line specifies the PAP/CHAP user name.
		 Insert the correct value for
		 MyUserName.

	Line 14:
	This line specifies the PAP/CHAP
		 password.
		 Insert the correct value for
		 MyPassword. You may
		 want to add an additional line, such as:
16 accept PAP
or
16 accept CHAP
to make it obvious that this is the intention,
		 but PAP and CHAP are both accepted by
		 default.

	Line 15:
	The ISP will not normally
		 require a login to the server when using PAP or
		 CHAP. Therefore, disable the “set
		 login” string.

28.2.2.2. Using PPP Network Address
	 Translation Capability
PPP has ability to use internal NAT without kernel
	 diverting capabilities. This functionality may be enabled
	 by the following line in
	 /etc/ppp/ppp.conf:
nat enable yes
Alternatively, NAT may be enabled by command-line
	 option -nat. There is also
	 /etc/rc.conf knob named
	 ppp_nat, which is enabled by
	 default.
When using this feature, it may be useful to include
	 the following /etc/ppp/ppp.conf options
	 to enable incoming connections forwarding:
nat port tcp 10.0.0.2:ftp ftp
nat port tcp 10.0.0.2:http http
or do not trust the outside at all
nat deny_incoming yes
28.2.3. Final System Configuration
While ppp is now configured,
	 some edits still need to be made to
	 /etc/rc.conf.
Working from the top down in this file, make sure the
	 hostname= line is set:
hostname="foo.example.com"
If the ISP has supplied a static
	 IP address and name, use this name as the
	 host name.
Look for the network_interfaces
	 variable. To configure the system to dial the
	 ISP on demand, make sure the
	 tun0 device is added to the list,
	 otherwise remove it.
network_interfaces="lo0 tun0"
ifconfig_tun0=
Note:
The ifconfig_tun0 variable should
	 be empty, and a file called
	 /etc/start_if.tun0 should be created.
	 This file should contain the line:
ppp -auto mysystem
This script is executed at network configuration time,
	 starting the ppp daemon in automatic mode. If this
	 machine acts as a gateway, consider including
	 -alias. Refer to the manual page for
	 further details.

Make sure that the router program is set to
	 NO with the following line in
	 /etc/rc.conf:
router_enable="NO"
It is important that the routed
	 daemon is not started, as routed tends
	 to delete the default routing table entries created by
	 ppp.
It is probably a good idea to ensure that the
	 sendmail_flags line does not include the
	 -q option, otherwise
	 sendmail will attempt to do a network
	 lookup every now and then, possibly causing your machine
	 to dial out. You may try:
sendmail_flags="-bd"
The downside is that sendmail is
	 forced to re-examine the mail queue whenever the ppp link.
	 To automate this, include !bg in
	 ppp.linkup:
1 provider:
2 delete ALL
3 add 0 0 HISADDR
4 !bg sendmail -bd -q30m
An alternative is to set up a
	 “dfilter” to block SMTP traffic. Refer to the
	 sample files for further details.
28.2.4. Using ppp
All that is left is to reboot the machine. After
	 rebooting, either type:
ppp
and then dial provider to start the
	 PPP session, or, to configure
	 ppp to establish sessions automatically
	 when there is outbound traffic and
	 start_if.tun0 does not exist,
	 type:
ppp -auto provider
It is possible to talk to the ppp
	 program while it is running in the background, but only
	 if a suitable diagnostic port has been set up. To do
	 this, add the following line to the configuration:
set server /var/run/ppp-tun%d DiagnosticPassword 0177
This will tell PPP to listen to the specified
	 UNIX® domain socket, asking clients for the specified
	 password before allowing access. The
	 %d in the name is replaced with the
	 tun device number that is in
	 use.
Once a socket has been set up, the pppctl(8)
	 program may be used in scripts that wish to manipulate
	 the running program.
28.2.5. Configuring Dial-in Services
Section 27.4, “Dial-in Service” provides a good description
	 on enabling dial-up services using getty(8).
An alternative to getty is
	 comms/mgetty+sendfax
	 port), a smarter version of getty
	 designed with dial-up lines in mind.
The advantages of using mgetty is
	 that it actively talks to modems,
	 meaning if port is turned off in
	 /etc/ttys then the modem will not
	 answer the phone.
Later versions of mgetty (from
	 0.99beta onwards) also support the automatic detection of
	 PPP streams, allowing clients
	 scriptless access to the server.
Refer to http://mgetty.greenie.net/doc/mgetty_toc.html
	 for more information on mgetty.
By default the comms/mgetty+sendfax
	 port comes with the AUTO_PPP option
	 enabled allowing mgetty to detect the
	 LCP phase of PPP connections and
	 automatically spawn off a ppp shell. However, since the
	 default login/password sequence does not occur it is
	 necessary to authenticate users using either PAP or
	 CHAP.
This section assumes the user has successfully
	 compiled, and installed the
	 comms/mgetty+sendfax port on his
	 system.
Ensure that
	 /usr/local/etc/mgetty+sendfax/login.config
	 has the following:
/AutoPPP/ - - /etc/ppp/ppp-pap-dialup
This tells mgetty to run
	 ppp-pap-dialup for detected
	 PPP connections.
Create an executable file called
	 /etc/ppp/ppp-pap-dialup containing
	 the following:
#!/bin/sh
exec /usr/sbin/ppp -direct pap$IDENT
For each dial-up line enabled in
	 /etc/ttys, create a corresponding
	 entry in /etc/ppp/ppp.conf. This
	 will happily co-exist with the definitions we created
	 above.
pap:
 enable pap
 set ifaddr 203.14.100.1 203.14.100.20-203.14.100.40
 enable proxy
Each user logging in with this method will need to
	 have a username/password in
	 /etc/ppp/ppp.secret, or
	 alternatively add the following option to authenticate
	 users via PAP from
	 /etc/passwd.
enable passwdauth
To assign some users a static IP
	 number, specify the number as the third argument in
	 /etc/ppp/ppp.secret. See
	 /usr/share/examples/ppp/ppp.secret.sample
	 for examples.
28.4. Using PPP over Ethernet (PPPoE)

28.4. Using PPP over Ethernet (PPPoE)
This section describes how to set up PPP
 over Ethernet (PPPoE).
Here is an example of a working
 ppp.conf:
default:
 set log Phase tun command # you can add more detailed logging if you wish
 set ifaddr 10.0.0.1/0 10.0.0.2/0

name_of_service_provider:
 set device PPPoE:xl1 # replace xl1 with your Ethernet device
 set authname YOURLOGINNAME
 set authkey YOURPASSWORD
 set dial
 set login
 add default HISADDR
As root,
	run:
ppp -ddial name_of_service_provider
Add the following to
	/etc/rc.conf:
ppp_enable="YES"
ppp_mode="ddial"
ppp_nat="YES"	# if you want to enable nat for your local network, otherwise NO
ppp_profile="name_of_service_provider"
28.4.1. Using a PPPoE Service Tag
Sometimes it will be necessary to use a service tag to
	establish the connection. Service tags are used to
	distinguish between different PPPoE servers attached to a
	given network.
Any required service tag information should be in the
	documentation provided by the ISP.
As a last resort, one could try installing the
	net/rr-pppoe package or port. Bear in mind
	however, this may de-program your modem and render it useless,
	so think twice before doing it. Simply install the program
	shipped with the modem. Then, access the
	System menu from the program. The name of
	the profile should be listed there. It is usually
	ISP.
The profile name (service tag) will be used in the PPPoE
	configuration entry in ppp.conf as the
	provider part for set device. Refer to
	ppp(8) for full details. It should look like
	this:
set device PPPoE:xl1:ISP
Do not forget to change xl1 to
	the proper device for the Ethernet card.
Do not forget to change ISP to
	the profile.
For additional information, refer to Cheaper
	 Broadband with FreeBSD on DSL by Renaud Waldura.
28.4.2. PPPoE with a 3Com®
	HomeConnect® ADSL
	Modem Dual Link
This modem does not follow the PPPoE specification defined
	in RFC
	 2516.
In order to make FreeBSD capable of communicating with this
	device, a sysctl must be set. This can be done automatically
	at boot time by updating
	/etc/sysctl.conf:
net.graph.nonstandard_pppoe=1
or can be done immediately with the command:
sysctl net.graph.nonstandard_pppoe=1
Unfortunately, because this is a system-wide setting, it
	is not possible to talk to a normal PPPoE client or server and
	a 3Com® HomeConnect® ADSL Modem at the
	same time.
28.5. Using PPP over ATM (PPPoA)

28.5. Using PPP over
 ATM (PPPoA)
The following describes how to set up PPP over
 ATM (PPPoA). PPPoA is a popular choice among
 European DSL providers.
28.5.1. Using mpd
The mpd application can be used
	to connect to a variety of services, in particular PPTP
	services. It can be installed using the
	net/mpd5 package or port. Many ADSL modems
	require that a PPTP tunnel is created between the modem and
	computer.
Once installed, configure mpd
	to suit the provider's settings. The port places a set of
	sample configuration files which are well documented in
	/usr/local/etc/mpd/. A complete guide to
	configure mpd is available in HTML
	format in /usr/ports/share/doc/mpd/.
	Here is a sample configuration for connecting to an ADSL
	service with mpd. The
	configuration is spread over two files, first the
	mpd.conf:
Note:
This example mpd.conf only works
	 with mpd 4.x.

default:
 load adsl

adsl:
 new -i ng0 adsl adsl
 set bundle authname username [image: 1]
 set bundle password password [image: 2]
 set bundle disable multilink

 set link no pap acfcomp protocomp
 set link disable chap
 set link accept chap
 set link keep-alive 30 10

 set ipcp no vjcomp
 set ipcp ranges 0.0.0.0/0 0.0.0.0/0

 set iface route default
 set iface disable on-demand
 set iface enable proxy-arp
 set iface idle 0

 open
	[image: 1]
	The username used to authenticate with your
	 ISP.

	[image: 2]
	The password used to authenticate with your
	 ISP.

Information about the link, or links, to establish is found
 in mpd.links. An example
 mpd.links to accompany the above example
 is given beneath:
adsl:
 set link type pptp
 set pptp mode active
 set pptp enable originate outcall
 set pptp self 10.0.0.1 [image: 1]
 set pptp peer 10.0.0.138 [image: 2]
	[image: 1]
	The IP address of FreeBSD computer
	 running mpd.

	[image: 2]
	The IP address of the ADSL modem.
	 The Alcatel SpeedTouch™ Home defaults to 10.0.0.138.

It is possible to initialize the connection easily by
 issuing the following command as
 root:
mpd -b adsl
To view the status of the connection:
% ifconfig ng0
ng0: flags=88d1<UP,POINTOPOINT,RUNNING,NOARP,SIMPLEX,MULTICAST> mtu 1500
 inet 216.136.204.117 --> 204.152.186.171 netmask 0xffffffff
Using mpd is the recommended
 way to connect to an ADSL service with FreeBSD.
28.5.2. Using pptpclient
It is also possible to use FreeBSD to connect to other
 PPPoA services using net/pptpclient.
To use net/pptpclient
 to connect to a DSL service, install the port or package, then
 edit /etc/ppp/ppp.conf. An example section
 of ppp.conf is given below. For further
 information on ppp.conf options consult
 ppp(8).
adsl:
 set log phase chat lcp ipcp ccp tun command
 set timeout 0
 enable dns
 set authname username [image: 1]
 set authkey password [image: 2]
 set ifaddr 0 0
 add default HISADDR
	[image: 1]
	The username for the DSL provider.

	[image: 2]
	The password for your account.

Warning:
Since the account's password is added to
	ppp.confin plain text form, make sure
	nobody can read the contents of this file:
chown root:wheel /etc/ppp/ppp.conf
chmod 600 /etc/ppp/ppp.conf

This will open a tunnel for a PPP
	session to the DSL router. Ethernet DSL modems have a
	preconfigured LAN IP address to connect to.
	In the case of the Alcatel SpeedTouch™ Home, this address is
	10.0.0.138. The
	router's documentation should list the address the device
	uses. To open the tunnel and start a PPP
	session:
pptp address adsl
Tip:
If an ampersand (“&”) is added
	 to the end of this command,
	 pptp will return the
	 prompt.

A tun virtual tunnel device
	will be created for interaction between the
	pptp and
	ppp processes. Once the
	prompt is returned, or the
	pptp process has confirmed a
	connection, examine the tunnel:
% ifconfig tun0
tun0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500
 inet 216.136.204.21 --> 204.152.186.171 netmask 0xffffff00
	Opened by PID 918
If the connection fails, check the configuration of
	the router, which is usually accessible using
	a web browser. Also, examine the output of
	pptp and the contents of the
	log file,
	/var/log/ppp.log for clues.
29.2. Mail Components

29.2. Mail Components
There are five major parts involved in an email exchange:
 the Mail User Agent (MUA), the Mail Transfer
 Agent (MTA), a mail host, a remote or local
 mailbox, and DNS. This section provides an
 overview of these components.
	Mail User Agent (MUA)
	The Mail User Agent (MUA) is an
	 application which is used to compose, send, and receive
	 emails. This application can be a command line program,
	 such as the built-in mail utility or a
	 third-party application from the Ports Collection, such as
	 mutt,
	 alpine, or
	 elm. Dozens of graphical
	 programs are also available in the Ports Collection,
	 including Claws Mail,
	 Evolution, and
	 Thunderbird. Some
	 organizations provide a web mail program which can be
	 accessed through a web browser. More information about
	 installing and using a MUA on FreeBSD can
	 be found in Section 29.10, “Mail User Agents”.

	Mail Transfer Agent (MTA)
	The Mail Transfer Agent (MTA) is
	 responsible for receiving incoming mail and delivering
	 outgoing mail. FreeBSD ships with
	 Sendmail as the default
	 MTA, but it also supports numerous
	 other mail server daemons, including
	 Exim,
	 Postfix, and
	 qmail.
	 Sendmail configuration is
	 described in Section 29.3, “Sendmail Configuration
	Files”. If another
	 MTA is installed using the Ports
	 Collection, refer to its post-installation message for
	 FreeBSD-specific configuration details and the application's
	 website for more general configuration
	 instructions.

	Mail Host and Mailboxes
	The mail host is a server that is responsible for
	 delivering and receiving mail for a host or a network.
	 The mail host collects all mail sent to the domain and
	 stores it either in the default mbox
	 or the alternative Maildir format, depending on the
	 configuration. Once mail has been stored, it may either
	 be read locally using a MUA or remotely
	 accessed and collected using protocols such as
	 POP or IMAP. If
	 mail is read locally, a POP or
	 IMAP server does not need to be
	 installed.
To access mailboxes remotely, a POP
	 or IMAP server is required as these
	 protocols allow users to connect to their mailboxes from
	 remote locations. IMAP offers several
	 advantages over POP. These include the
	 ability to store a copy of messages on a remote server
	 after they are downloaded and concurrent updates.
	 IMAP can be useful over low-speed links
	 as it allows users to fetch the structure of messages
	 without downloading them. It can also perform tasks such
	 as searching on the server in order to minimize data
	 transfer between clients and servers.
Several POP and
	 IMAP servers are available in the Ports
	 Collection. These include
	 mail/qpopper,
	 mail/imap-uw,
	 mail/courier-imap, and
	 mail/dovecot2.
Warning:
It should be noted that both POP
	 and IMAP transmit information,
	 including username and password credentials, in
	 clear-text. To secure the transmission of information
	 across these protocols, consider tunneling sessions over
	 ssh(1) (Section 14.8.1.2, “SSH Tunneling”)
	 or using SSL (Section 14.6, “OpenSSL”).

	Domain Name System (DNS)
	The Domain Name System (DNS) and
	 its daemon named play a large role in
	 the delivery of email. In order to deliver mail from one
	 site to another, the MTA will look up
	 the remote site in DNS to determine
	 which host will receive mail for the destination. This
	 process also occurs when mail is sent from a remote host
	 to the MTA.
In addition to mapping hostnames to
	 IP addresses, DNS is
	 responsible for storing information specific to mail
	 delivery, known as Mail eXchanger
	 MX records. The MX
	 record specifies which hosts will receive mail for a
	 particular domain.
To view the MX records for a
	 domain, specify the type of record. Refer to
	 host(1), for more details about this command:
% host -t mx FreeBSD.org
FreeBSD.org mail is handled by 10 mx1.FreeBSD.org
Refer to Section 30.7, “Domain Name System (DNS)” for more
	 information about DNS and its
	 configuration.

29.4. Changing the Mail Transfer Agent

29.4. Changing the Mail Transfer Agent
Written by Andrew Boothman. Information taken from emails written by Gregory Neil Shapiro. FreeBSD comes with Sendmail already
 installed as the MTA which is in charge of
 outgoing and incoming mail. However, the system administrator
 can change the system's MTA. A wide choice
 of alternative MTAs is available from the
 mail category of the FreeBSD Ports
 Collection.
Once a new MTA is installed, configure
 and test the new software before replacing
 Sendmail. Refer to the documentation
 of the new MTA for information on how to
 configure the software.
Once the new MTA is working, use the
 instructions in this section to disable
 Sendmail and configure FreeBSD to use
 the replacement MTA.
29.4.1. Disable Sendmail
Warning:
If Sendmail's outgoing mail
	 service is disabled, it is important that it is replaced
	 with an alternative mail delivery system. Otherwise, system
	 functions such as periodic(8) will be unable to deliver
	 their results by email. Many parts of the system expect a
	 functional MTA. If applications continue
	 to use Sendmail's binaries to try
	 to send email after they are disabled, mail could go into an
	 inactive Sendmail queue and
	 never be delivered.

In order to completely disable
	Sendmail, add or edit the following
	lines in /etc/rc.conf:
sendmail_enable="NO"
sendmail_submit_enable="NO"
sendmail_outbound_enable="NO"
sendmail_msp_queue_enable="NO"
To only disable Sendmail's
	incoming mail service, use only this entry in
	/etc/rc.conf:
sendmail_enable="NO"
More information on Sendmail's
	startup options is available in rc.sendmail(8).
29.4.2. Replace the Default MTA
When a new MTA is installed using the
	Ports Collection, its startup script is also installed and
	startup instructions are mentioned in its package message.
	Before starting the new MTA, stop the
	running Sendmail processes. This
	example stops all of these services, then starts the
	Postfix service:
service sendmail stop
service postfix start
To start the replacement MTA at system
	boot, add its configuration line to
	/etc/rc.conf. This entry enables the
	Postfix MTA:
postfix_enable="YES"
Some extra configuration is needed as
	Sendmail is so ubiquitous that some
	software assumes it is already installed and configured.
	Check /etc/periodic.conf and make sure
	that these values are set to NO. If this
	file does not exist, create it with these entries:
daily_clean_hoststat_enable="NO"
daily_status_mail_rejects_enable="NO"
daily_status_include_submit_mailq="NO"
daily_submit_queuerun="NO"
Some alternative MTAs provide their own
	compatible implementations of the
	Sendmail command-line interface in
	order to facilitate using them as drop-in replacements for
	Sendmail. However, some
	MUAs may try to execute standard
	Sendmail binaries instead of the
	new MTA's binaries. FreeBSD uses
	/etc/mail/mailer.conf to map the expected
	Sendmail binaries to the location
	of the new binaries. More information about this mapping can
	be found in mailwrapper(8).
The default /etc/mail/mailer.conf
	looks like this:
$FreeBSD$
#
Execute the "real" sendmail program, named /usr/libexec/sendmail/sendmail
#
sendmail /usr/libexec/sendmail/sendmail
send-mail /usr/libexec/sendmail/sendmail
mailq /usr/libexec/sendmail/sendmail
newaliases /usr/libexec/sendmail/sendmail
hoststat /usr/libexec/sendmail/sendmail
purgestat /usr/libexec/sendmail/sendmail
When any of the commands listed on the left are run, the
	system actually executes the associated command shown on the
	right. This system makes it easy to change what binaries are
	executed when these default binaries are invoked.
Some MTAs, when installed using the
	Ports Collection, will prompt to update this file for the new
	binaries. For example, Postfix
	will update the file like this:
#
Execute the Postfix sendmail program, named /usr/local/sbin/sendmail
#
sendmail /usr/local/sbin/sendmail
send-mail /usr/local/sbin/sendmail
mailq /usr/local/sbin/sendmail
newaliases /usr/local/sbin/sendmail
If the installation of the MTA does
	not automatically update
	/etc/mail/mailer.conf, edit this file in
	a text editor so that it points to the new binaries. This
	example points to the binaries installed by
	mail/ssmtp:
sendmail /usr/local/sbin/ssmtp
send-mail /usr/local/sbin/ssmtp
mailq /usr/local/sbin/ssmtp
newaliases /usr/local/sbin/ssmtp
hoststat /usr/bin/true
purgestat /usr/bin/true
Once everything is configured, it is recommended to reboot
	the system. Rebooting provides the opportunity to ensure that
	the system is correctly configured to start the new
	MTA automatically on boot.
29.5. Troubleshooting

29.5. Troubleshooting
	29.5.1.
	Why do I have to use the FQDN for hosts on my
	 site?

		The host may actually be in a different domain. For
	 example, in order for a host in foo.bar.edu to reach a
	 host called mumble in the
	 bar.edu
	 domain, refer to it by the Fully-Qualified Domain Name
	 FQDN, mumble.bar.edu,
	 instead of just mumble.
This is because the version of
	 BIND which ships with FreeBSD
	 no longer provides default abbreviations for non-FQDNs
	 other than the local domain. An unqualified host such as
	 mumble must either be found as
	 mumble.foo.bar.edu, or
	 it will be searched for in the root domain.
In older versions of BIND,
	 the search continued across mumble.bar.edu, and
	 mumble.edu.
	 RFC 1535 details why this is considered bad practice or
	 even a security hole.
As a good workaround, place the line:
search foo.bar.edu bar.edu
instead of the previous:
domain foo.bar.edu
into /etc/resolv.conf. However,
	 make sure that the search order does not go beyond the
	 “boundary between local and public
	 administration”, as RFC 1535 calls it.

	29.5.2.
	How can I run a mail server on a dial-up PPP
	 host?

		Connect to a FreeBSD mail gateway on the LAN. The PPP
	 connection is non-dedicated.
One way to do this is to get a full-time Internet
	 server to provide secondary
	 MX
	
	 services for the domain. In this example, the domain is
	 example.com
	 and the ISP has configured
	 example.net
	 to provide secondary MX services to the
	 domain:
example.com. MX 10 example.com.
 MX 20 example.net.
Only one host should be specified as the final
	 recipient. For Sendmail, add
	 Cw example.com in
	 /etc/mail/sendmail.cf on example.com.
When the sending MTA attempts
	 to deliver mail, it will try to connect to the system,
	 example.com,
	 over the PPP link. This will time out if the destination
	 is offline. The MTA will automatically
	 deliver it to the secondary MX site at
	 the Internet Service Provider (ISP),
	 example.net.
	 The secondary MX site will periodically
	 try to connect to the primary MX host,
	 example.com.
Use something like this as a login script:
#!/bin/sh
Put me in /usr/local/bin/pppmyisp
(sleep 60 ; /usr/sbin/sendmail -q) &
/usr/sbin/ppp -direct pppmyisp
When creating a separate login script for users,
	 instead use sendmail -qRexample.com in
	 the script above. This will force all mail in the queue
	 for
	 example.com
	 to be processed immediately.
A further refinement of the situation can be seen from
	 this example from the FreeBSD Internet service provider's mailing list:
> we provide the secondary MX for a customer. The customer connects to
> our services several times a day automatically to get the mails to
> his primary MX (We do not call his site when a mail for his domains
> arrived). Our sendmail sends the mailqueue every 30 minutes. At the
> moment he has to stay 30 minutes online to be sure that all mail is
> gone to the primary MX.
>
> Is there a command that would initiate sendmail to send all the mails
> now? The user has not root-privileges on our machine of course.

In the “privacy flags” section of sendmail.cf, there is a
definition Opgoaway,restrictqrun

Remove restrictqrun to allow non-root users to start the queue processing.
You might also like to rearrange the MXs. We are the 1st MX for our
customers like this, and we have defined:

If we are the best MX for a host, try directly instead of generating
local config error.
OwTrue

That way a remote site will deliver straight to you, without trying
the customer connection. You then send to your customer. Only works for
“hosts”, so you need to get your customer to name their mail
machine “customer.com” as well as
“hostname.customer.com” in the DNS. Just put an A record in
the DNS for “customer.com”.

29.6. Advanced Topics

29.6. Advanced Topics
This section covers more involved topics such as mail
 configuration and setting up mail for an entire domain.
29.6.1. Basic Configuration
Out of the box, one can send email to external hosts as
	long as /etc/resolv.conf is configured or
	the network has access to a configured DNS
	server. To have email delivered to the MTA
	on the FreeBSD host, do one of the following:
	Run a DNS server for the
	 domain.

	Get mail delivered directly to the
	 FQDN for the machine.

In order to have mail delivered directly to a host, it
	must have a permanent static IP address, not a dynamic IP
	address. If the system is behind a firewall, it must be
	configured to allow SMTP traffic. To receive mail directly at
	a host, one of these two must be configured:
	Make sure that the lowest-numbered
	 MX record in
	 DNS points to the host's static IP
	 address.

	Make sure there is no MX entry in
	 the DNS for the host.

Either of the above will allow mail to be received
	directly at the host.
Try this:
hostname
example.FreeBSD.org
host example.FreeBSD.org
example.FreeBSD.org has address 204.216.27.XX
In this example, mail sent directly to
	<yourlogin@example.FreeBSD.org>
	should work without problems, assuming
	Sendmail is running correctly on
	example.FreeBSD.org.
For this example:
host example.FreeBSD.org
example.FreeBSD.org has address 204.216.27.XX
example.FreeBSD.org mail is handled (pri=10) by nevdull.FreeBSD.org
All mail sent to example.FreeBSD.org will
	be collected on hub under the same
	username instead of being sent directly to your host.
The above information is handled by the
	DNS server. The DNS
	record that carries mail routing information is the
	MX entry. If no MX
	record exists, mail will be delivered directly to the host by
	way of its IP address.
The MX entry for freefall.FreeBSD.org at
	one time looked like this:
freefall		MX	30	mail.crl.net
freefall		MX	40	agora.rdrop.com
freefall		MX	10	freefall.FreeBSD.org
freefall		MX	20	who.cdrom.com
freefall had many
	MX entries. The lowest
	MX number is the host that receives mail
	directly, if available. If it is not accessible for some
	reason, the next lower-numbered host will accept messages
	temporarily, and pass it along when a lower-numbered host
	becomes available.
Alternate MX sites should have separate
	Internet connections in order to be most useful. Your
	ISP can provide this service.
29.6.2. Mail for a Domain
When configuring a MTA for a network,
	any mail sent to hosts in its domain should be diverted to the
	MTA so that users can receive their mail on
	the master mail server.
To make life easiest, a user account with the same
	username should exist on both the
	MTA and the system with the
	MUA. Use adduser(8) to create the
	user accounts.
The MTA must be the designated mail
	exchanger for each workstation on the network. This is done
	in theDNS configuration with an
	MX record:
example.FreeBSD.org	A	204.216.27.XX		; Workstation
			MX	10 nevdull.FreeBSD.org	; Mailhost
This will redirect mail for the workstation to the
	MTA no matter where the A record points.
	The mail is sent to the MX host.
This must be configured on a DNS
	server. If the network does not run its own
	DNS server, talk to the
	ISP or DNS
	provider.
The following is an example of virtual email hosting.
	Consider a customer with the domain customer1.org, where all
	the mail for customer1.org should be
	sent to mail.myhost.com. The
	DNS entry should look like this:
customer1.org		MX	10	mail.myhost.com
An A record is
	not needed for customer1.org in order to
	only handle email for that domain. However, running
	ping against customer1.org will not
	work unless an A record exists for
	it.
Tell the MTA which domains and/or
	hostnames it should accept mail for. Either of the following
	will work for Sendmail:
	Add the hosts to
	 /etc/mail/local-host-names when
	 using the FEATURE(use_cw_file).

	Add a Cwyour.host.com line to
	 /etc/sendmail.cf.

29.7. Setting Up to Send Only

29.7. Setting Up to Send Only
Contributed by Bill Moran. There are many instances where one may only want to send
 mail through a relay. Some examples are:
	The computer is a desktop machine that needs to use
	 programs such as mail(1), using the
	 ISP's mail relay.

	The computer is a server that does not handle mail
	 locally, but needs to pass off all mail to a relay for
	 processing.

While any MTA is capable of filling
 this particular niche, it can be difficult to properly configure
 a full-featured MTA just to handle offloading
 mail. Programs such as Sendmail and
 Postfix are overkill for this
 use.
Additionally, a typical Internet access service agreement
 may forbid one from running a “mail server”.
The easiest way to fulfill those needs is to install the
 mail/ssmtp port:
cd /usr/ports/mail/ssmtp
make install replace clean
Once installed, mail/ssmtp can be
 configured with
 /usr/local/etc/ssmtp/ssmtp.conf:
root=yourrealemail@example.com
mailhub=mail.example.com
rewriteDomain=example.com
hostname=_HOSTNAME_
Use the real email address for root. Enter the
 ISP's outgoing mail relay in place of
 mail.example.com.
 Some ISPs call this the “outgoing mail
	server” or “SMTP server”.
Make sure to disable Sendmail,
 including the outgoing mail service. See Section 29.4.1, “Disable Sendmail” for details.
mail/ssmtp has some other options
 available. Refer to the examples in
 /usr/local/etc/ssmtp or the manual page
 of ssmtp for more information.
Setting up ssmtp in this manner
 allows any software on the computer that needs to send mail to
 function properly, while not violating the
 ISP's usage policy or allowing the computer
 to be hijacked for spamming.
29.8. Using Mail with a Dialup Connection

29.8. Using Mail with a Dialup Connection
When using a static IP address, one should not need to
 adjust the default configuration. Set the hostname to the
 assigned Internet name and Sendmail
 will do the rest.
When using a dynamically assigned IP address and a dialup
 PPP connection to the Internet, one usually has a mailbox on the
 ISP's mail server. In this example, the
 ISP's domain is example.net, the user name
 is user, the hostname
 is bsd.home, and
 the ISP has allowed relay.example.net as a mail
 relay.
In order to retrieve mail from the ISP's
 mailbox, install a retrieval agent from the Ports Collection.
 mail/fetchmail is a good choice as it
 supports many different protocols. Usually, the
 ISP will provide POP.
 When using user PPP, email can be
 automatically fetched when an Internet connection is established
 with the following entry in
 /etc/ppp/ppp.linkup:
MYADDR:
!bg su user -c fetchmail
When using Sendmail to deliver
 mail to non-local accounts, configure
 Sendmail to process the mail queue as
 soon as the Internet connection is established. To do this, add
 this line after the above fetchmail entry in
 /etc/ppp/ppp.linkup:
 !bg su user -c "sendmail -q"
In this example, there is an account for
 user on bsd.home. In the home
 directory of user on
 bsd.home, create a
 .fetchmailrc which contains this
 line:
poll example.net protocol pop3 fetchall pass MySecret
This file should not be readable by anyone except
 user as it contains
 the password MySecret.
In order to send mail with the correct
 from: header, configure
 Sendmail to use
 <user@example.net> rather than <user@bsd.home> and to send all mail via
 relay.example.net,
 allowing quicker mail transmission.
The following .mc should
 suffice:
VERSIONID(`bsd.home.mc version 1.0')
OSTYPE(bsd4.4)dnl
FEATURE(nouucp)dnl
MAILER(local)dnl
MAILER(smtp)dnl
Cwlocalhost
Cwbsd.home
MASQUERADE_AS(`example.net')dnl
FEATURE(allmasquerade)dnl
FEATURE(masquerade_envelope)dnl
FEATURE(nocanonify)dnl
FEATURE(nodns)dnl
define(`SMART_HOST', `relay.example.net')
Dmbsd.home
define(`confDOMAIN_NAME',`bsd.home')dnl
define(`confDELIVERY_MODE',`deferred')dnl
Refer to the previous section for details of how to convert
 this file into the sendmail.cf format. Do
 not forget to restart Sendmail after
 updating sendmail.cf.
29.9. SMTP Authentication

29.9. SMTP Authentication
Written by James Gorham. Configuring SMTP authentication on the
 MTA provides a number of benefits.
 SMTP authentication adds a layer
 of security to Sendmail, and provides
 mobile users who switch hosts the ability to use the same
 MTA without the need to reconfigure their
 mail client's settings each time.
	Install security/cyrus-sasl2
	 from the Ports Collection. This port supports a number of
	 compile-time options. For the SMTP authentication method
	 demonstrated in this example, make sure that
	 LOGIN is not disabled.

	After installing
	 security/cyrus-sasl2, edit
	 /usr/local/lib/sasl2/Sendmail.conf,
	 or create it if it does not exist, and add the following
	 line:
pwcheck_method: saslauthd

	Next, install
	 security/cyrus-sasl2-saslauthd and add
	 the following line to
	 /etc/rc.conf:
saslauthd_enable="YES"
Finally, start the saslauthd daemon:
service saslauthd start
This daemon serves as a broker for
	 Sendmail to authenticate against
	 the FreeBSD passwd(5) database. This saves the trouble of
	 creating a new set of usernames and passwords for each user
	 that needs to use SMTP authentication,
	 and keeps the login and mail password the same.

	Next, edit /etc/make.conf and add
	 the following lines:
SENDMAIL_CFLAGS=-I/usr/local/include/sasl -DSASL
SENDMAIL_LDADD=/usr/local/lib/libsasl2.so
These lines provide Sendmail
	 the proper configuration options for linking to
	 cyrus-sasl2 at compile time. Make sure
	 that cyrus-sasl2 has been installed
	 before recompiling
	 Sendmail.

	Recompile Sendmail by
	 executing the following commands:
cd /usr/src/lib/libsmutil
make cleandir && make obj && make
cd /usr/src/lib/libsm
make cleandir && make obj && make
cd /usr/src/usr.sbin/sendmail
make cleandir && make obj && make && make install
This compile should not have any problems if
	 /usr/src has not changed extensively
	 and the shared libraries it needs are available.

	After Sendmail has been
	 compiled and reinstalled, edit
	 /etc/mail/freebsd.mc or the local
	 .mc. Many administrators choose
	 to use the output from hostname(1) as the name of
	 .mc for uniqueness. Add these
	 lines:
dnl set SASL options
TRUST_AUTH_MECH(`GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl
define(`confAUTH_MECHANISMS', `GSSAPI DIGEST-MD5 CRAM-MD5 LOGIN')dnl
These options configure the different methods available
	 to Sendmail for authenticating
	 users. To use a method other than
	 pwcheck, refer to the
	 Sendmail documentation.

	Finally, run make(1) while in
	 /etc/mail. That will run the new
	 .mc and create a
	 .cf named either
	 freebsd.cf or the name used for the
	 local .mc. Then, run make
	 install restart, which will copy the file to
	 sendmail.cf, and properly restart
	 Sendmail. For more information
	 about this process, refer to
	 /etc/mail/Makefile.

To test the configuration, use a MUA to
 send a test message. For further investigation, set the
 LogLevel of Sendmail
 to 13 and watch
 /var/log/maillog for any errors.
For more information, refer to
	SMTP authentication.
30.3. Network File System (NFS)

30.3. Network File System (NFS)
Reorganized and enhanced by Tom Rhodes. Written by Bill Swingle. FreeBSD supports the Network File System
 (NFS), which allows a server to share
 directories and files with clients over a network. With
 NFS, users and programs can access files on
 remote systems as if they were stored locally.
NFS has many practical uses. Some of
 the more common uses include:
	Data that would otherwise be duplicated on each client
	 can be kept in a single location and accessed by clients
	 on the network.

	Several clients may need access to the
	 /usr/ports/distfiles directory.
	 Sharing that directory allows for quick access to the
	 source files without having to download them to each
	 client.

	On large networks, it is often more convenient to
	 configure a central NFS server on which
	 all user home directories are stored. Users can log into
	 a client anywhere on the network and have access to their
	 home directories.

	Administration of NFS exports is
	 simplified. For example, there is only one file system
	 where security or backup policies must be set.

	Removable media storage devices can be used by other
	 machines on the network. This reduces the number of devices
	 throughout the network and provides a centralized location
	 to manage their security. It is often more convenient to
	 install software on multiple machines from a centralized
	 installation media.

NFS consists of a server and one or more
 clients. The client remotely accesses the data that is stored
 on the server machine. In order for this to function properly,
 a few processes have to be configured and running.
These daemons must be running on the server:
	Daemon	Description
	nfsd	The NFS daemon which services
		requests from NFS clients.
	mountd	The NFS mount daemon which
		carries out requests received from
		nfsd.
	rpcbind	 This daemon allows NFS
		clients to discover which port the
		NFS server is using.

Running nfsiod(8) on the client can improve
	performance, but is not required.
30.3.1. Configuring the Server
The file systems which the NFS server
	will share are specified in /etc/exports.
	Each line in this file specifies a file system to be exported,
	which clients have access to that file system, and any access
	options. When adding entries to this file, each exported file
	system, its properties, and allowed hosts must occur on a
	single line. If no clients are listed in the entry, then any
	client on the network can mount that file system.
The following /etc/exports entries
	demonstrate how to export file systems. The examples can be
	modified to match the file systems and client names on the
	reader's network. There are many options that can be used in
	this file, but only a few will be mentioned here. See
	exports(5) for the full list of options.
This example shows how to export
	/cdrom to three hosts named
	alpha,
	bravo, and
	charlie:
/cdrom -ro alpha bravo charlie
The -ro flag makes the file system
	read-only, preventing clients from making any changes to the
	exported file system. This example assumes that the host
	names are either in DNS or in
	/etc/hosts. Refer to hosts(5) if
	the network does not have a DNS
	server.
The next example exports /home to
	three clients by IP address. This can be
	useful for networks without DNS or
	/etc/hosts entries. The
	-alldirs flag allows subdirectories to be
	mount points. In other words, it will not automatically mount
	the subdirectories, but will permit the client to mount the
	directories that are required as needed.
/usr/home -alldirs 10.0.0.2 10.0.0.3 10.0.0.4
This next example exports /a so that
	two clients from different domains may access that file
	system. The -maproot=root allows root on the remote system to
	write data on the exported file system as root. If
	-maproot=root is not specified, the
	client's root user
	will be mapped to the server's nobody account and will be
	subject to the access limitations defined for nobody.
/a -maproot=root host.example.com box.example.org
A client can only be specified once per file system. For
	example, if /usr is a single file system,
	these entries would be invalid as both entries specify the
	same host:
Invalid when /usr is one file system
/usr/src client
/usr/ports client
The correct format for this situation is to use one
	entry:
/usr/src /usr/ports client
The following is an example of a valid export list, where
	/usr and /exports
	are local file systems:
Export src and ports to client01 and client02, but only
client01 has root privileges on it
/usr/src /usr/ports -maproot=root client01
/usr/src /usr/ports client02
The client machines have root and can mount anywhere
on /exports. Anyone in the world can mount /exports/obj read-only
/exports -alldirs -maproot=root client01 client02
/exports/obj -ro
To enable the processes required by the
	NFS server at boot time, add these options
	to /etc/rc.conf:
rpcbind_enable="YES"
nfs_server_enable="YES"
mountd_enable="YES"
The server can be started now by running this
	command:
service nfsd start
Whenever the NFS server is started,
	mountd also starts automatically.
	However, mountd only reads
	/etc/exports when it is started. To make
	subsequent /etc/exports edits take effect
	immediately, force mountd to reread
	it:
service mountd reload
30.3.2. Configuring the Client
To enable NFS clients, set this option
	in each client's /etc/rc.conf:
nfs_client_enable="YES"
Then, run this command on each NFS
	client:
service nfsclient start
The client now has everything it needs to mount a remote
	file system. In these examples, the server's name is
	server and the client's name is
	client. To mount
	/home on
	server to the
	/mnt mount point on
	client:
mount server:/home /mnt
The files and directories in
	/home will now be available on
	client, in the
	/mnt directory.
To mount a remote file system each time the client boots,
	add it to /etc/fstab:
server:/home	/mnt	nfs	rw	0	0
Refer to fstab(5) for a description of all available
	options.
30.3.3. Locking
Some applications require file locking to operate
	correctly. To enable locking, add these lines to
	/etc/rc.conf on both the client and
	server:
rpc_lockd_enable="YES"
rpc_statd_enable="YES"
Then start the applications:
service lockd start
service statd start
If locking is not required on the server, the
	NFS client can be configured to lock
	locally by including -L when running
	mount. Refer to mount_nfs(8)
	for further details.
30.3.4. Automating Mounts with autofs(5)
Note:
The autofs(5) automount facility is supported
	 starting with FreeBSD 10.1-RELEASE. To use the
	 automounter functionality in older versions of FreeBSD, use
	 amd(8) instead. This chapter only describes the
	 autofs(5) automounter.

The autofs(5) facility is a common name for several
	components that, together, allow for automatic mounting of
	remote and local filesystems whenever a file or directory
	within that file system is accessed. It consists of the
	kernel component, autofs(5), and several userspace
	applications: automount(8), automountd(8) and
	autounmountd(8). It serves as an alternative for
	amd(8) from previous FreeBSD releases. Amd is still
	provided for backward compatibility purposes, as the two use
	different map format; the one used by autofs is the same as
	with other SVR4 automounters, such as the ones in Solaris,
	MacOS X, and Linux.
The autofs(5) virtual filesystem is mounted on
	specified mountpoints by automount(8), usually invoked
	during boot.
Whenever a process attempts to access file within the
	autofs(5) mountpoint, the kernel will notify
	automountd(8) daemon and pause the triggering process.
	The automountd(8) daemon will handle kernel requests by
	finding the proper map and mounting the filesystem according
	to it, then signal the kernel to release blocked process. The
	autounmountd(8) daemon automatically unmounts automounted
	filesystems after some time, unless they are still being
	used.
The primary autofs configuration file is
	/etc/auto_master. It assigns individual
	maps to top-level mounts. For an explanation of
	auto_master and the map syntax, refer to
	auto_master(5).
There is a special automounter map mounted on
	/net. When a file is accessed within
	this directory, autofs(5) looks up the corresponding
	remote mount and automatically mounts it. For instance, an
	attempt to access a file within
	/net/foobar/usr would tell
	automountd(8) to mount the /usr export from the host
	foobar.
Example 30.2. Mounting an Export with autofs(5)
In this example, showmount -e shows
	 the exported file systems that can be mounted from the
	 NFS server,
	 foobar:
% showmount -e foobar
Exports list on foobar:
/usr 10.10.10.0
/a 10.10.10.0
% cd /net/foobar/usr

The output from showmount shows
	/usr as an export.
	When changing directories to /host/foobar/usr,
	automountd(8) intercepts the request and attempts to
	resolve the hostname foobar. If successful,
	automountd(8) automatically mounts the source
	export.
To enable autofs(5) at boot time, add this line to
	/etc/rc.conf:
autofs_enable="YES"
Then autofs(5) can be started by running:
service automount start
service automountd start
service autounmountd start
The autofs(5) map format is the same as in other
	operating systems. Information about this format from other
	sources can be useful, like the Mac
	 OS X document.
Consult the automount(8), automountd(8),
	autounmountd(8), and auto_master(5) manual pages for
	more information.
30.4. Network Information System (NIS)

30.4. Network Information System
 (NIS)
Network Information System (NIS) is
 designed to centralize administration of UNIX®-like systems
 such as Solaris™, HP-UX, AIX®, Linux, NetBSD, OpenBSD, and
 FreeBSD. NIS was originally known as Yellow
 Pages but the name was changed due to trademark issues. This
 is the reason why NIS commands begin with
 yp.
NIS is a Remote Procedure Call
 (RPC)-based client/server system that allows
 a group of machines within an NIS domain to
 share a common set of configuration files. This permits a
 system administrator to set up NIS client
 systems with only minimal configuration data and to add, remove,
 or modify configuration data from a single location.
FreeBSD uses version 2 of the NIS
 protocol.
30.4.1. NIS Terms and Processes
Table 28.1 summarizes the terms and important processes
	used by NIS:
Table 30.1. NIS Terminology
	Term	Description
	NIS domain name	NIS servers and clients share
		an NIS domain name. Typically,
		this name does not have anything to do with
		DNS.
	rpcbind(8)	This service enables RPC and
		must be running in order to run an
		NIS server or act as an
		NIS client.
	ypbind(8)	This service binds an NIS
		client to its NIS server. It will
		take the NIS domain name and use
		RPC to connect to the server. It
		is the core of client/server communication in an
		NIS environment. If this service
		is not running on a client machine, it will not be
		able to access the NIS
		server.
	ypserv(8)	This is the process for the
		NIS server. If this service stops
		running, the server will no longer be able to respond
		to NIS requests so hopefully, there
		is a slave server to take over. Some non-FreeBSD clients
		will not try to reconnect using a slave server and the
		ypbind process may need to
		be restarted on these
		clients.
	rpc.yppasswdd(8)	This process only runs on
		NIS master servers. This daemon
		allows NIS clients to change their
		NIS passwords. If this daemon is
		not running, users will have to login to the
		NIS master server and change their
		passwords there.

30.4.2. Machine Types
There are three types of hosts in an
	NIS environment:
	NIS master server
This server acts as a central repository for host
	 configuration information and maintains the
	 authoritative copy of the files used by all of the
	 NIS clients. The
	 passwd, group,
	 and other various files used by NIS
	 clients are stored on the master server. While it is
	 possible for one machine to be an NIS
	 master server for more than one NIS
	 domain, this type of configuration will not be covered in
	 this chapter as it assumes a relatively small-scale
	 NIS environment.

	NIS slave servers
NIS slave servers maintain copies
	 of the NIS master's data files in
	 order to provide redundancy. Slave servers also help to
	 balance the load of the master server as
	 NIS clients always attach to the
	 NIS server which responds
	 first.

	NIS clients
NIS clients authenticate
	 against the NIS server during log
	 on.

Information in many files can be shared using
	NIS. The
	master.passwd,
	group, and hosts
	files are commonly shared via NIS.
	Whenever a process on a client needs information that would
	normally be found in these files locally, it makes a query to
	the NIS server that it is bound to
	instead.
30.4.3. Planning Considerations
This section describes a sample NIS
	environment which consists of 15 FreeBSD machines with no
	centralized point of administration. Each machine has its own
	/etc/passwd and
	/etc/master.passwd. These files are kept
	in sync with each other only through manual intervention.
	Currently, when a user is added to the lab, the process must
	be repeated on all 15 machines.
The configuration of the lab will be as follows:
	Machine name	IP address	Machine role
	ellington	10.0.0.2	NIS master
	coltrane	10.0.0.3	NIS slave
	basie	10.0.0.4	Faculty workstation
	bird	10.0.0.5	Client machine
	cli[1-11]	
		10.0.0.[6-17]	Other client machines

If this is the first time an NIS
	scheme is being developed, it should be thoroughly planned
	ahead of time. Regardless of network size, several decisions
	need to be made as part of the planning process.
30.4.3.1. Choosing a NIS Domain Name
When a client broadcasts its requests for info, it
	 includes the name of the NIS domain that
	 it is part of. This is how multiple servers on one network
	 can tell which server should answer which request. Think of
	 the NIS domain name as the name for a
	 group of hosts.
Some organizations choose to use their Internet domain
	 name for their NIS domain name. This is
	 not recommended as it can cause confusion when trying to
	 debug network problems. The NIS domain
	 name should be unique within the network and it is helpful
	 if it describes the group of machines it represents. For
	 example, the Art department at Acme Inc. might be in the
	 “acme-art” NIS domain. This
	 example will use the domain name
	 test-domain.
However, some non-FreeBSD operating systems require the
	 NIS domain name to be the same as the
	 Internet domain name. If one or more machines on the
	 network have this restriction, the Internet domain name
	 must be used as the
	 NIS domain name.
30.4.3.2. Physical Server Requirements
There are several things to keep in mind when choosing a
	 machine to use as a NIS server. Since
	 NIS clients depend upon the availability
	 of the server, choose a machine that is not rebooted
	 frequently. The NIS server should
	 ideally be a stand alone machine whose sole purpose is to be
	 an NIS server. If the network is not
	 heavily used, it is acceptable to put the
	 NIS server on a machine running other
	 services. However, if the NIS server
	 becomes unavailable, it will adversely affect all
	 NIS clients.
30.4.4. Configuring the NIS Master
	Server
The canonical copies of all NIS files
	are stored on the master server. The databases used to store
	the information are called NIS maps. In
	FreeBSD, these maps are stored in
	/var/yp/[domainname] where
	[domainname] is the name of the
	NIS domain. Since multiple domains are
	supported, it is possible to have several directories, one for
	each domain. Each domain will have its own independent set of
	maps.
NIS master and slave servers handle all
	NIS requests through ypserv(8). This
	daemon is responsible for receiving incoming requests from
	NIS clients, translating the requested
	domain and map name to a path to the corresponding database
	file, and transmitting data from the database back to the
	client.
Setting up a master NIS server can be
	relatively straight forward, depending on environmental needs.
	Since FreeBSD provides built-in NIS support,
	it only needs to be enabled by adding the following lines to
	/etc/rc.conf:
nisdomainname="test-domain"	[image: 1]
nis_server_enable="YES"		[image: 2]
nis_yppasswdd_enable="YES"	[image: 3]
	[image: 1]
	This line sets the NIS domain name
	 to test-domain.

	[image: 2]
	This automates the start up of the
	 NIS server processes when the system
	 boots.

	[image: 3]
	This enables the rpc.yppasswdd(8) daemon so that
	 users can change their NIS password
	 from a client machine.

Care must be taken in a multi-server domain where the
	server machines are also NIS clients. It
	is generally a good idea to force the servers to bind to
	themselves rather than allowing them to broadcast bind
	requests and possibly become bound to each other. Strange
	failure modes can result if one server goes down and others
	are dependent upon it. Eventually, all the clients will time
	out and attempt to bind to other servers, but the delay
	involved can be considerable and the failure mode is still
	present since the servers might bind to each other all over
	again.
A server that is also a client can be forced to bind to a
	particular server by adding these additional lines to
	/etc/rc.conf:
nis_client_enable="YES"				[image: 1]
nis_client_flags="-S test-domain,server"	[image: 2]
	[image: 1]
	This enables running client stuff as well.

	[image: 2]
	This line sets the NIS domain name
	 to test-domain and bind to itself.

After saving the edits, type
	/etc/netstart to restart the network and
	apply the values defined in /etc/rc.conf.
	Before initializing the NIS maps, start
	ypserv(8):
service ypserv start
30.4.4.1. Initializing the NIS Maps
NIS maps are generated from the
	 configuration files in /etc on the
	 NIS master, with one exception:
	 /etc/master.passwd. This is to prevent
	 the propagation of passwords to all the servers in the
	 NIS domain. Therefore, before the
	 NIS maps are initialized, configure the
	 primary password files:
cp /etc/master.passwd /var/yp/master.passwd
cd /var/yp
vi master.passwd
It is advisable to remove all entries for system
	 accounts as well as any user accounts that do not need to be
	 propagated to the NIS clients, such as
	 the root and any
	 other administrative accounts.
Note:
Ensure that the
	 /var/yp/master.passwd is neither
	 group or world readable by setting its permissions to
	 600.

After completing this task, initialize the
	 NIS maps. FreeBSD includes the
	 ypinit(8) script to do this. When generating maps
	 for the master server, include -m and
	 specify the NIS domain name:
ellington# ypinit -m test-domain
Server Type: MASTER Domain: test-domain
Creating an YP server will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.
Do you want this procedure to quit on non-fatal errors? [y/n: n] n
Ok, please remember to go back and redo manually whatever fails.
If not, something might not work.
At this point, we have to construct a list of this domains YP servers.
rod.darktech.org is already known as master server.
Please continue to add any slave servers, one per line. When you are
done with the list, type a <control D>.
master server : ellington
next host to add: coltrane
next host to add: ^D
The current list of NIS servers looks like this:
ellington
coltrane
Is this correct? [y/n: y] y

[..output from map generation..]

NIS Map update completed.
ellington has been setup as an YP master server without any errors.
This will create /var/yp/Makefile
	 from /var/yp/Makefile.dist. By
	 default, this file assumes that the environment has a
	 single NIS server with only FreeBSD clients.
	 Since test-domain has a slave server,
	 edit this line in /var/yp/Makefile so
	 that it begins with a comment
	 (#):
NOPUSH = "True"
30.4.4.2. Adding New Users
Every time a new user is created, the user account must
	 be added to the master NIS server and the
	 NIS maps rebuilt. Until this occurs, the
	 new user will not be able to login anywhere except on the
	 NIS master. For example, to add the new
	 user jsmith to the
	 test-domain domain, run these commands on
	 the master server:
pw useradd jsmith
cd /var/yp
make test-domain
The user could also be added using adduser
	 jsmith instead of pw useradd
	 smith.
30.4.5. Setting up a NIS Slave Server
To set up an NIS slave server, log on
	to the slave server and edit /etc/rc.conf
	as for the master server. Do not generate any
	NIS maps, as these already exist on the
	master server. When running ypinit on the
	slave server, use -s (for slave) instead of
	-m (for master). This option requires the
	name of the NIS master in addition to the
	domain name, as seen in this example:
coltrane# ypinit -s ellington test-domain

Server Type: SLAVE Domain: test-domain Master: ellington

Creating an YP server will require that you answer a few questions.
Questions will all be asked at the beginning of the procedure.

Do you want this procedure to quit on non-fatal errors? [y/n: n] n

Ok, please remember to go back and redo manually whatever fails.
If not, something might not work.
There will be no further questions. The remainder of the procedure
should take a few minutes, to copy the databases from ellington.
Transferring netgroup...
ypxfr: Exiting: Map successfully transferred
Transferring netgroup.byuser...
ypxfr: Exiting: Map successfully transferred
Transferring netgroup.byhost...
ypxfr: Exiting: Map successfully transferred
Transferring master.passwd.byuid...
ypxfr: Exiting: Map successfully transferred
Transferring passwd.byuid...
ypxfr: Exiting: Map successfully transferred
Transferring passwd.byname...
ypxfr: Exiting: Map successfully transferred
Transferring group.bygid...
ypxfr: Exiting: Map successfully transferred
Transferring group.byname...
ypxfr: Exiting: Map successfully transferred
Transferring services.byname...
ypxfr: Exiting: Map successfully transferred
Transferring rpc.bynumber...
ypxfr: Exiting: Map successfully transferred
Transferring rpc.byname...
ypxfr: Exiting: Map successfully transferred
Transferring protocols.byname...
ypxfr: Exiting: Map successfully transferred
Transferring master.passwd.byname...
ypxfr: Exiting: Map successfully transferred
Transferring networks.byname...
ypxfr: Exiting: Map successfully transferred
Transferring networks.byaddr...
ypxfr: Exiting: Map successfully transferred
Transferring netid.byname...
ypxfr: Exiting: Map successfully transferred
Transferring hosts.byaddr...
ypxfr: Exiting: Map successfully transferred
Transferring protocols.bynumber...
ypxfr: Exiting: Map successfully transferred
Transferring ypservers...
ypxfr: Exiting: Map successfully transferred
Transferring hosts.byname...
ypxfr: Exiting: Map successfully transferred

coltrane has been setup as an YP slave server without any errors.
Remember to update map ypservers on ellington.
This will generate a directory on the slave server called
	/var/yp/test-domain which contains copies
	of the NIS master server's maps. Adding
	these /etc/crontab entries on each slave
	server will force the slaves to sync their maps with the maps
	on the master server:
20 * * * * root /usr/libexec/ypxfr passwd.byname
21 * * * * root /usr/libexec/ypxfr passwd.byuid
These entries are not mandatory because the master server
	automatically attempts to push any map changes to its slaves.
	However, since clients may depend upon the slave server to
	provide correct password information, it is recommended to
	force frequent password map updates. This is especially
	important on busy networks where map updates might not always
	complete.
To finish the configuration, run
	/etc/netstart on the slave server in order
	to start the NIS services.
30.4.6. Setting Up an NIS Client
An NIS client binds to an
	NIS server using ypbind(8). This
	daemon broadcasts RPC requests on the local network. These
	requests specify the domain name configured on the client. If
	an NIS server in the same domain receives
	one of the broadcasts, it will respond to
	ypbind, which will record the
	server's address. If there are several servers available,
	the client will use the address of the first server to respond
	and will direct all of its NIS requests to
	that server. The client will automatically
	ping the server on a regular basis
	to make sure it is still available. If it fails to receive a
	reply within a reasonable amount of time,
	ypbind will mark the domain as
	unbound and begin broadcasting again in the hopes of locating
	another server.
To configure a FreeBSD machine to be an
	NIS client:
	Edit /etc/rc.conf and add the
	 following lines in order to set the
	 NIS domain name and start
	 ypbind(8) during network startup:
nisdomainname="test-domain"
nis_client_enable="YES"

	To import all possible password entries from the
	 NIS server, use
	 vipw to remove all user accounts
	 except one from /etc/master.passwd.
	 When removing the accounts, keep in mind that at least one
	 local account should remain and this account should be a
	 member of wheel. If there is a
	 problem with NIS, this local account
	 can be used to log in remotely, become the superuser, and
	 fix the problem. Before saving the edits, add the
	 following line to the end of the file:
+:::::::::
This line configures the client to provide anyone with
	 a valid account in the NIS server's
	 password maps an account on the client. There are many
	 ways to configure the NIS client by
	 modifying this line. One method is described in Section 30.4.8, “Using Netgroups”. For more detailed
	 reading, refer to the book
	 Managing NFS and NIS, published by
	 O'Reilly Media.

	To import all possible group entries from the
	 NIS server, add this line to
	 /etc/group:
+:*::

To start the NIS client immediately,
	execute the following commands as the superuser:
/etc/netstart
service ypbind start
After completing these steps, running
	ypcat passwd on the client should show
	the server's passwd map.
30.4.7. NIS Security
Since RPC is a broadcast-based service,
	any system running ypbind within
	the same domain can retrieve the contents of the
	NIS maps. To prevent unauthorized
	transactions, ypserv(8) supports a feature called
	“securenets” which can be used to restrict access
	to a given set of hosts. By default, this information is
	stored in /var/yp/securenets, unless
	ypserv(8) is started with -p and an
	alternate path. This file contains entries that consist of a
	network specification and a network mask separated by white
	space. Lines starting with # are
	considered to be comments. A sample
	securenets might look like this:
allow connections from local host -- mandatory
127.0.0.1 255.255.255.255
allow connections from any host
on the 192.168.128.0 network
192.168.128.0 255.255.255.0
allow connections from any host
between 10.0.0.0 to 10.0.15.255
this includes the machines in the testlab
10.0.0.0 255.255.240.0
If ypserv(8) receives a request from an address that
	matches one of these rules, it will process the request
	normally. If the address fails to match a rule, the request
	will be ignored and a warning message will be logged. If the
	securenets does not exist,
	ypserv will allow connections from any
	host.
Section 14.4, “TCP Wrapper” is an alternate mechanism
	for providing access control instead of
	securenets. While either access control
	mechanism adds some security, they are both vulnerable to
	“IP spoofing” attacks. All
	NIS-related traffic should be blocked at
	the firewall.
Servers using securenets
	may fail to serve legitimate NIS clients
	with archaic TCP/IP implementations. Some of these
	implementations set all host bits to zero when doing
	broadcasts or fail to observe the subnet mask when
	calculating the broadcast address. While some of these
	problems can be fixed by changing the client configuration,
	other problems may force the retirement of these client
	systems or the abandonment of
	securenets.
The use of TCP Wrapper
	increases the latency of the NIS server.
	The additional delay may be long enough to cause timeouts in
	client programs, especially in busy networks with slow
	NIS servers. If one or more clients suffer
	from latency, convert those clients into
	NIS slave servers and force them to bind to
	themselves.
30.4.7.1. Barring Some Users
In this example, the basie
	 system is a faculty workstation within the
	 NIS domain. The
	 passwd map on the master
	 NIS server contains accounts for both
	 faculty and students. This section demonstrates how to
	 allow faculty logins on this system while refusing student
	 logins.
To prevent specified users from logging on to a system,
	 even if they are present in the NIS
	 database, use vipw to add
	 -username with
	 the correct number of colons towards the end of
	 /etc/master.passwd on the client,
	 where username is the username of
	 a user to bar from logging in. The line with the blocked
	 user must be before the + line that
	 allows NIS users. In this example,
	 bill is barred
	 from logging on to basie:
basie# cat /etc/master.passwd
root:[password]:0:0::0:0:The super-user:/root:/bin/csh
toor:[password]:0:0::0:0:The other super-user:/root:/bin/sh
daemon:*:1:1::0:0:Owner of many system processes:/root:/usr/sbin/nologin
operator:*:2:5::0:0:System &:/:/usr/sbin/nologin
bin:*:3:7::0:0:Binaries Commands and Source,,,:/:/usr/sbin/nologin
tty:*:4:65533::0:0:Tty Sandbox:/:/usr/sbin/nologin
kmem:*:5:65533::0:0:KMem Sandbox:/:/usr/sbin/nologin
games:*:7:13::0:0:Games pseudo-user:/usr/games:/usr/sbin/nologin
news:*:8:8::0:0:News Subsystem:/:/usr/sbin/nologin
man:*:9:9::0:0:Mister Man Pages:/usr/share/man:/usr/sbin/nologin
bind:*:53:53::0:0:Bind Sandbox:/:/usr/sbin/nologin
uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic:/usr/libexec/uucp/uucico
xten:*:67:67::0:0:X-10 daemon:/usr/local/xten:/usr/sbin/nologin
pop:*:68:6::0:0:Post Office Owner:/nonexistent:/usr/sbin/nologin
nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/usr/sbin/nologin
-bill:::::::::
+:::::::::

basie#
30.4.8. Using Netgroups
Barring specified users from logging on to individual
	systems becomes unscaleable on larger networks and quickly
	loses the main benefit of NIS:
	centralized administration.
Netgroups were developed to handle large, complex networks
	with hundreds of users and machines. Their use is comparable
	to UNIX® groups, where the main difference is the lack of a
	numeric ID and the ability to define a netgroup by including
	both user accounts and other netgroups.
To expand on the example used in this chapter, the
	NIS domain will be extended to add the
	users and systems shown in Tables 28.2 and 28.3:
Table 30.2. Additional Users
	User Name(s)	Description
	alpha,
		beta	IT department employees
	charlie, delta	IT department apprentices
	echo,
		foxtrott,
		golf,
		...	employees
	able,
		baker,
		...	interns

Table 30.3. Additional Systems
	Machine Name(s)	Description
	war,
		death,
		famine,
		pollution	Only IT employees are allowed to log onto these
		servers.
	pride,
		greed,
		envy,
		wrath,
		lust,
		sloth	All members of the IT department are allowed to
		login onto these servers.
	one,
		two,
		three,
		four,
		...	Ordinary workstations used by
		employees.
	trashcan	A very old machine without any critical data.
		Even interns are allowed to use this system.

When using netgroups to configure this scenario, each user
	is assigned to one or more netgroups and logins are then
	allowed or forbidden for all members of the netgroup. When
	adding a new machine, login restrictions must be defined for
	all netgroups. When a new user is added, the account must be
	added to one or more netgroups. If the
	NIS setup is planned carefully, only one
	central configuration file needs modification to grant or deny
	access to machines.
The first step is the initialization of the
	NIS netgroup map. In
	FreeBSD, this map is not created by default. On the
	NIS master server, use an editor to create
	a map named /var/yp/netgroup.
This example creates four netgroups to represent IT
	employees, IT apprentices, employees, and interns:
IT_EMP (,alpha,test-domain) (,beta,test-domain)
IT_APP (,charlie,test-domain) (,delta,test-domain)
USERS (,echo,test-domain) (,foxtrott,test-domain) \
 (,golf,test-domain)
INTERNS (,able,test-domain) (,baker,test-domain)
Each entry configures a netgroup. The first column in an
	entry is the name of the netgroup. Each set of brackets
	represents either a group of one or more users or the name of
	another netgroup. When specifying a user, the three
	comma-delimited fields inside each group represent:
	The name of the host(s) where the other fields
	 representing the user are valid. If a hostname is not
	 specified, the entry is valid on all hosts.

	The name of the account that belongs to this
	 netgroup.

	The NIS domain for the account.
	 Accounts may be imported from other NIS
	 domains into a netgroup.

If a group contains multiple users, separate each user
	with whitespace. Additionally, each field may contain
	wildcards. See netgroup(5) for details.
Netgroup names longer than 8 characters should not be
	used. The names are case sensitive and using capital letters
	for netgroup names is an easy way to distinguish between user,
	machine and netgroup names.
Some non-FreeBSD NIS clients cannot
	handle netgroups containing more than 15 entries. This
	limit may be circumvented by creating several sub-netgroups
	with 15 users or fewer and a real netgroup consisting of the
	sub-netgroups, as seen in this example:
BIGGRP1 (,joe1,domain) (,joe2,domain) (,joe3,domain) [...]
BIGGRP2 (,joe16,domain) (,joe17,domain) [...]
BIGGRP3 (,joe31,domain) (,joe32,domain)
BIGGROUP BIGGRP1 BIGGRP2 BIGGRP3
Repeat this process if more than 225 (15 times 15) users
	exist within a single netgroup.
To activate and distribute the new
	NIS map:
ellington# cd /var/yp
ellington# make
This will generate the three NIS maps
	netgroup,
	netgroup.byhost and
	netgroup.byuser. Use the map key option
	of ypcat(1) to check if the new NIS
	maps are available:
ellington% ypcat -k netgroup
ellington% ypcat -k netgroup.byhost
ellington% ypcat -k netgroup.byuser
The output of the first command should resemble the
	contents of /var/yp/netgroup. The second
	command only produces output if host-specific netgroups were
	created. The third command is used to get the list of
	netgroups for a user.
To configure a client, use vipw(8) to specify the
	name of the netgroup. For example, on the server named
	war, replace this line:
+:::::::::
with
+@IT_EMP:::::::::
This specifies that only the users defined in the netgroup
	IT_EMP will be imported into this system's
	password database and only those users are allowed to login to
	this system.
This configuration also applies to the
	~ function of the shell and all routines
	which convert between user names and numerical user IDs. In
	other words,
	cd ~user will
	not work, ls -l will show the numerical ID
	instead of the username, and find . -user joe
	 -print will fail with the message
	No such user. To fix this, import all
	user entries without allowing them to login into the servers.
	This can be achieved by adding an extra line:
+:::::::::/usr/sbin/nologin
This line configures the client to import all entries but
	to replace the shell in those entries with
	/usr/sbin/nologin.
Make sure that extra line is placed
	after
	+@IT_EMP:::::::::. Otherwise, all user
	accounts imported from NIS will have
	/usr/sbin/nologin as their login
	shell and no one will be able to login to the system.
To configure the less important servers, replace the old
	+::::::::: on the servers with these
	lines:
+@IT_EMP:::::::::
+@IT_APP:::::::::
+:::::::::/usr/sbin/nologin
The corresponding lines for the workstations
	would be:
+@IT_EMP:::::::::
+@USERS:::::::::
+:::::::::/usr/sbin/nologin
NIS supports the creation of netgroups from other
	netgroups which can be useful if the policy regarding user
	access changes. One possibility is the creation of role-based
	netgroups. For example, one might create a netgroup called
	BIGSRV to define the login restrictions for
	the important servers, another netgroup called
	SMALLSRV for the less important servers,
	and a third netgroup called USERBOX for the
	workstations. Each of these netgroups contains the netgroups
	that are allowed to login onto these machines. The new
	entries for the NIS
	netgroup map would look like this:
BIGSRV IT_EMP IT_APP
SMALLSRV IT_EMP IT_APP ITINTERN
USERBOX IT_EMP ITINTERN USERS
This method of defining login restrictions works
	reasonably well when it is possible to define groups of
	machines with identical restrictions. Unfortunately, this is
	the exception and not the rule. Most of the time, the ability
	to define login restrictions on a per-machine basis is
	required.
Machine-specific netgroup definitions are another
	possibility to deal with the policy changes. In this
	scenario, the /etc/master.passwd of each
	system contains two lines starting with “+”.
	The first line adds a netgroup with the accounts allowed to
	login onto this machine and the second line adds all other
	accounts with /usr/sbin/nologin as shell.
	It is recommended to use the “ALL-CAPS” version
	of the hostname as the name of the netgroup:
+@BOXNAME:::::::::
+:::::::::/usr/sbin/nologin
Once this task is completed on all the machines, there is
	no longer a need to modify the local versions of
	/etc/master.passwd ever again. All
	further changes can be handled by modifying the
	NIS map. Here is an example of a possible
	netgroup map for this scenario:
Define groups of users first
IT_EMP (,alpha,test-domain) (,beta,test-domain)
IT_APP (,charlie,test-domain) (,delta,test-domain)
DEPT1 (,echo,test-domain) (,foxtrott,test-domain)
DEPT2 (,golf,test-domain) (,hotel,test-domain)
DEPT3 (,india,test-domain) (,juliet,test-domain)
ITINTERN (,kilo,test-domain) (,lima,test-domain)
D_INTERNS (,able,test-domain) (,baker,test-domain)
#
Now, define some groups based on roles
USERS DEPT1 DEPT2 DEPT3
BIGSRV IT_EMP IT_APP
SMALLSRV IT_EMP IT_APP ITINTERN
USERBOX IT_EMP ITINTERN USERS
#
And a groups for a special tasks
Allow echo and golf to access our anti-virus-machine
SECURITY IT_EMP (,echo,test-domain) (,golf,test-domain)
#
machine-based netgroups
Our main servers
WAR BIGSRV
FAMINE BIGSRV
User india needs access to this server
POLLUTION BIGSRV (,india,test-domain)
#
This one is really important and needs more access restrictions
DEATH IT_EMP
#
The anti-virus-machine mentioned above
ONE SECURITY
#
Restrict a machine to a single user
TWO (,hotel,test-domain)
[...more groups to follow]
It may not always be advisable
	to use machine-based netgroups. When deploying a couple of
	dozen or hundreds of systems,
	role-based netgroups instead of machine-based netgroups may be
	used to keep the size of the NIS map within
	reasonable limits.
30.4.9. Password Formats
NIS requires that all hosts within an
	NIS domain use the same format for
	encrypting passwords. If users have trouble authenticating on
	an NIS client, it may be due to a differing
	password format. In a heterogeneous network, the format must
	be supported by all operating systems, where
	DES is the lowest common standard.
To check which format a server or client is using, look
	at this section of
	/etc/login.conf:
default:\
	:passwd_format=des:\
	:copyright=/etc/COPYRIGHT:\
	[Further entries elided]
In this example, the system is using the
	DES format. Other possible values are
	blf for Blowfish and md5
	for MD5 encrypted passwords.
If the format on a host needs to be edited to match the
	one being used in the NIS domain, the
	login capability database must be rebuilt after saving the
	change:
cap_mkdb /etc/login.conf
Note:
The format of passwords for existing user accounts will
	 not be updated until each user changes their password
	 after the login capability database is
	 rebuilt.

30.5. Lightweight Directory Access Protocol (LDAP)

30.5. Lightweight Directory Access Protocol
	(LDAP)
Originally contributed by Tom Rhodes. Updates by Rocky Hotas. The Lightweight Directory Access Protocol
 (LDAP) is an application layer protocol used
 to access, modify, and authenticate objects using a distributed
 directory information service. Think of it as a phone or record
 book which stores several levels of hierarchical, homogeneous
 information. It is used in Active Directory and
 OpenLDAP networks and allows users to
 access to several levels of internal information utilizing a
 single account. For example, email authentication, pulling
 employee contact information, and internal website
 authentication might all make use of a single user account in
 the LDAP server's record base.
This section provides a quick start guide for configuring an
 LDAP server on a FreeBSD system. It assumes
 that the administrator already has a design plan which includes
 the type of information to store, what that information will be
 used for, which users should have access to that information,
 and how to secure this information from unauthorized
 access.
30.5.1. LDAP Terminology and Structure
LDAP uses several terms which should be
	understood before starting the configuration. All directory
	entries consist of a group of
	attributes. Each of these attribute
	sets contains a unique identifier known as a
	Distinguished Name
	(DN) which is normally built from several
	other attributes such as the common or
	Relative Distinguished Name
	(RDN). Similar to how directories have
	absolute and relative paths, consider a DN
	as an absolute path and the RDN as the
	relative path.
An example LDAP entry looks like the
	following. This example searches for the entry for the
	specified user account (uid),
	organizational unit (ou), and organization
	(o):
% ldapsearch -xb "uid=trhodes,ou=users,o=example.com"
extended LDIF
#
LDAPv3
base <uid=trhodes,ou=users,o=example.com> with scope subtree
filter: (objectclass=*)
requesting: ALL
#

trhodes, users, example.com
dn: uid=trhodes,ou=users,o=example.com
mail: trhodes@example.com
cn: Tom Rhodes
uid: trhodes
telephoneNumber: (123) 456-7890

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1
This example entry shows the values for the
	dn, mail,
	cn, uid, and
	telephoneNumber attributes. The
	cn attribute is the
	RDN.
More information about LDAP and its
	terminology can be found at http://www.openldap.org/doc/admin24/intro.html.
30.5.2. Configuring an LDAP Server
FreeBSD does not provide a built-in LDAP
	server. Begin the configuration by installing net/openldap-server package or
	port:
pkg install openldap-server
There is a large set of default options enabled in the
	
	 package. Review them by running
	pkg info openldap-server. If they are not
	sufficient (for example if SQL support is needed), please
	consider recompiling the port using the appropriate framework.
The installation creates the directory
	/var/db/openldap-data to hold the data.
	The directory to store the certificates must be
	created:
mkdir /usr/local/etc/openldap/private
The next phase is to configure the Certificate Authority.
	The following commands must be executed from
	/usr/local/etc/openldap/private. This is
	important as the file permissions need to be restrictive and
	users should not have access to these files. More detailed
	information about certificates and their parameters can be
	found in Section 14.6, “OpenSSL”. To create the
	Certificate Authority, start with this command and follow the
	prompts:
openssl req -days 365 -nodes -new -x509 -keyout ca.key -out ../ca.crt
The entries for the prompts may be generic
	except for the
	Common Name. This entry must be
	different than the system hostname. If
	this will be a self signed certificate, prefix the hostname
	with CA for Certificate Authority.
The next task is to create a certificate signing request
	and a private key. Input this command and follow the
	prompts:
openssl req -days 365 -nodes -new -keyout server.key -out server.csr
During the certificate generation process, be sure to
	correctly set the Common Name attribute.
	The Certificate Signing Request must be signed with the
	Certificate Authority in order to be used as a valid
	certificate:
openssl x509 -req -days 365 -in server.csr -out ../server.crt -CA ../ca.crt -CAkey ca.key -CAcreateserial
The final part of the certificate generation process is to
	generate and sign the client certificates:
openssl req -days 365 -nodes -new -keyout client.key -out client.csr
openssl x509 -req -days 3650 -in client.csr -out ../client.crt -CA ../ca.crt -CAkey ca.key
Remember to use the same Common Name
	attribute when prompted. When finished, ensure that a total
	of eight (8) new files have been generated through the
	proceeding commands.
The daemon running the OpenLDAP server is
	slapd. Its configuration is performed
	through slapd.ldif: the old
	slapd.conf has been deprecated by
	OpenLDAP.
Configuration
	 examples for slapd.ldif are
	available and can also be found in
	/usr/local/etc/openldap/slapd.ldif.sample.
	Options are documented in slapd-config(5). Each section
	of slapd.ldif, like all the other LDAP
	attribute sets, is uniquely identified through a DN. Be sure
	that no blank lines are left between the
	dn: statement and the desired end of the
	section. In the following example, TLS will be used to
	implement a secure channel. The first section represents the
	global configuration:
#
See slapd-config(5) for details on configuration options.
This file should NOT be world readable.
#
dn: cn=config
objectClass: olcGlobal
cn: config
#
#
Define global ACLs to disable default read access.
#
olcArgsFile: /var/run/openldap/slapd.args
olcPidFile: /var/run/openldap/slapd.pid
olcTLSCertificateFile: /usr/local/etc/openldap/server.crt
olcTLSCertificateKeyFile: /usr/local/etc/openldap/private/server.key
olcTLSCACertificateFile: /usr/local/etc/openldap/ca.crt
#olcTLSCipherSuite: HIGH
olcTLSProtocolMin: 3.1
olcTLSVerifyClient: never
The Certificate Authority, server certificate and server
	private key files must be specified here. It is recommended
	to let the clients choose the security cipher and omit option
	olcTLSCipherSuite (incompatible with TLS
	clients other than openssl). Option
	olcTLSProtocolMin lets the server require a
	minimum security level: it is recommended. While
	verification is mandatory for the server, it is not for the
	client: olcTLSVerifyClient: never.
The second section is about the backend modules and can be
	configured as follows:
#
Load dynamic backend modules:
#
dn: cn=module,cn=config
objectClass: olcModuleList
cn: module
olcModulepath:	/usr/local/libexec/openldap
olcModuleload:	back_mdb.la
#olcModuleload:	back_bdb.la
#olcModuleload:	back_hdb.la
#olcModuleload:	back_ldap.la
#olcModuleload:	back_passwd.la
#olcModuleload:	back_shell.la
The third section is devoted to load the needed
	ldif schemas to be used by the databases:
	they are essential.
dn: cn=schema,cn=config
objectClass: olcSchemaConfig
cn: schema

include: file:///usr/local/etc/openldap/schema/core.ldif
include: file:///usr/local/etc/openldap/schema/cosine.ldif
include: file:///usr/local/etc/openldap/schema/inetorgperson.ldif
include: file:///usr/local/etc/openldap/schema/nis.ldif
Next, the frontend configuration section:
Frontend settings
#
dn: olcDatabase={-1}frontend,cn=config
objectClass: olcDatabaseConfig
objectClass: olcFrontendConfig
olcDatabase: {-1}frontend
olcAccess: to * by * read
#
Sample global access control policy:
#	Root DSE: allow anyone to read it
#	Subschema (sub)entry DSE: allow anyone to read it
#	Other DSEs:
#		Allow self write access
#		Allow authenticated users read access
#		Allow anonymous users to authenticate
#
#olcAccess: to dn.base="" by * read
#olcAccess: to dn.base="cn=Subschema" by * read
#olcAccess: to *
#	by self write
#	by users read
#	by anonymous auth
#
if no access controls are present, the default policy
allows anyone and everyone to read anything but restricts
updates to rootdn. (e.g., "access to * by * read")
#
rootdn can always read and write EVERYTHING!
#
olcPasswordHash: {SSHA}
{SSHA} is already the default for olcPasswordHash
Another section is devoted to the configuration
	 backend, the only way to later access the
	OpenLDAP server configuration is as a global
	super-user.
dn: olcDatabase={0}config,cn=config
objectClass: olcDatabaseConfig
olcDatabase: {0}config
olcAccess: to * by * none
olcRootPW: {SSHA}iae+lrQZILpiUdf16Z9KmDmSwT77Dj4U
The default administrator username is
	cn=config. Type
	slappasswd in a shell, choose a password
	and use its hash in olcRootPW. If this
	option is not specified now, before
	slapd.ldif is imported, no one will be
	later able to modify the
	global configuration section.
The last section is about the database backend:
###
LMDB database definitions
###
#
dn: olcDatabase=mdb,cn=config
objectClass: olcDatabaseConfig
objectClass: olcMdbConfig
olcDatabase: mdb
olcDbMaxSize: 1073741824
olcSuffix: dc=domain,dc=example
olcRootDN: cn=mdbadmin,dc=domain,dc=example
Cleartext passwords, especially for the rootdn, should
be avoided. See slappasswd(8) and slapd-config(5) for details.
Use of strong authentication encouraged.
olcRootPW: {SSHA}X2wHvIWDk6G76CQyCMS1vDCvtICWgn0+
The database directory MUST exist prior to running slapd AND
should only be accessible by the slapd and slap tools.
Mode 700 recommended.
olcDbDirectory:	/var/db/openldap-data
Indices to maintain
olcDbIndex: objectClass eq
This database hosts the actual
	 contents of the LDAP
	directory. Types other than mdb are
	available. Its super-user, not to be confused with the global
	one, is configured here: a (possibly custom) username in
	olcRootDN and the password hash in
	olcRootPW; slappasswd
	can be used as before.
This repository
	contains four examples of slapd.ldif. To
	convert an existing slapd.conf into
	slapd.ldif, refer to this
	 page (please note that this may introduce some
	unuseful options).
When the configuration is completed,
	slapd.ldif must be placed in an empty
	directory. It is recommended to create it as:
mkdir /usr/local/etc/openldap/slapd.d/
Import the configuration database:
/usr/local/sbin/slapadd -n0 -F /usr/local/etc/openldap/slapd.d/ -l /usr/local/etc/openldap/slapd.ldif
Start the slapd daemon:
/usr/local/libexec/slapd -F /usr/local/etc/openldap/slapd.d/
Option -d can be used for debugging,
	as specified in slapd(8). To verify that the server is
	running and working:
ldapsearch -x -b '' -s base '(objectclass=*)' namingContexts
extended LDIF
#
LDAPv3
base <> with scope baseObject
filter: (objectclass=*)
requesting: namingContexts
#

#
dn:
namingContexts: dc=domain,dc=example

search result
search: 2
result: 0 Success

numResponses: 2
numEntries: 1
The server must still be trusted. If that has never been
	done before, follow these instructions. Install the OpenSSL
	package or port:
pkg install openssl
From the directory where ca.crt is
	stored (in this example,
	/usr/local/etc/openldap), run:
c_rehash .
Both the CA and the server certificate are now correctly
	recognized in their respective roles. To verify this, run
	this command from the server.crt
	directory:
openssl verify -verbose -CApath . server.crt
If slapd was running, restart it. As
	stated in /usr/local/etc/rc.d/slapd, to
	properly run slapd at boot the
	following lines must be added to
	/etc/rc.conf:
lapd_enable="YES"
slapd_flags='-h "ldapi://%2fvar%2frun%2fopenldap%2fldapi/
ldap://0.0.0.0/"'
slapd_sockets="/var/run/openldap/ldapi"
slapd_cn_config="YES"
slapd does not provide debugging at
	boot. Check /var/log/debug.log,
	dmesg -a and
	/var/log/messages for this
	purpose.
The following example adds the group
	team and the user john
	to the domain.example
	LDAP database, which is still empty.
	First, create the file
	domain.ldif:
cat domain.ldif
dn: dc=domain,dc=example
objectClass: dcObject
objectClass: organization
o: domain.example
dc: domain

dn: ou=groups,dc=domain,dc=example
objectClass: top
objectClass: organizationalunit
ou: groups

dn: ou=users,dc=domain,dc=example
objectClass: top
objectClass: organizationalunit
ou: users

dn: cn=team,ou=groups,dc=domain,dc=example
objectClass: top
objectClass: posixGroup
cn: team
gidNumber: 10001

dn: uid=john,ou=users,dc=domain,dc=example
objectClass: top
objectClass: account
objectClass: posixAccount
objectClass: shadowAccount
cn: John McUser
uid: john
uidNumber: 10001
gidNumber: 10001
homeDirectory: /home/john/
loginShell: /usr/bin/bash
userPassword: secret
See the OpenLDAP documentation for more details. Use
	slappasswd to replace the plain text
	password secret with a hash in
	userPassword. The path specified as
	loginShell must exist in all the systems
	where john is allowed to login. Finally,
	use the mdb administrator to modify the
	database:
ldapadd -W -D "cn=mdbadmin,dc=domain,dc=example" -f domain.ldif
Modifications to the global
	 configuration section can only be performed by
	the global super-user. For example, assume that the option
	olcTLSCipherSuite: HIGH:MEDIUM:SSLv3 was
	initially specified and must now be deleted. First, create a
	file that contains the following:
cat global_mod
dn: cn=config
changetype: modify
delete: olcTLSCipherSuite
Then, apply the modifications:
ldapmodify -f global_mod -x -D "cn=config" -W
When asked, provide the password chosen in the
	configuration backend section. The
	username is not required: here, cn=config
	represents the DN of the database section to be modified.
	Alternatively, use ldapmodify to delete a
	single line of the database, ldapdelete to
	delete a whole entry.
If something goes wrong, or if the global super-user
	cannot access the configuration backend, it is possible to
	delete and re-write the whole configuration:
rm -rf /usr/local/etc/openldap/slapd.d/
slapd.ldif can then be edited and
	imported again. Please, follow this procedure only when no
	other solution is available.
This is the configuration of the server only. The same
	machine can also host an LDAP client, with its own separate
	configuration.
30.6. Dynamic Host Configuration Protocol (DHCP)

30.6. Dynamic Host Configuration Protocol
 (DHCP)
The Dynamic Host Configuration Protocol
 (DHCP) allows a system to connect to a
 network in order to be assigned the necessary addressing
 information for communication on that network. FreeBSD includes
 the OpenBSD version of dhclient which is used
 by the client to obtain the addressing information. FreeBSD does
 not install a DHCP server, but several
 servers are available in the FreeBSD Ports Collection. The
 DHCP protocol is fully described in RFC
	2131.
 Informational resources are also available at isc.org/downloads/dhcp/.
This section describes how to use the built-in
 DHCP client. It then describes how to
 install and configure a DHCP server.
Note:
In FreeBSD, the bpf(4) device is needed by both the
	DHCP server and DHCP
	client. This device is included in the
	GENERIC kernel that is installed with
	FreeBSD. Users who prefer to create a custom kernel need to keep
	this device if DHCP is used.
It should be noted that bpf also
	allows privileged users to run network packet sniffers on
	that system.

30.6.1. Configuring a DHCP Client
DHCP client support is included in the
	FreeBSD installer, making it easy to configure a newly installed
	system to automatically receive its networking addressing
	information from an existing DHCP server.
	Refer to Section 2.8, “Accounts, Time Zone, Services and Hardening” for examples of
	network configuration.
When dhclient is executed on the client
	machine, it begins broadcasting requests for configuration
	information. By default, these requests use
	UDP port 68. The server replies on
	UDP port 67, giving the client an
	IP address and other relevant network
	information such as a subnet mask, default gateway, and
	DNS server addresses. This information is
	in the form of a DHCP
	“lease” and is valid for a configurable time.
	This allows stale IP addresses for clients
	no longer connected to the network to automatically be reused.
	DHCP clients can obtain a great deal of
	information from the server. An exhaustive list may be found
	in dhcp-options(5).
By default, when a FreeBSD system boots, its
	DHCP client runs in the background, or
	asynchronously. Other startup scripts
	continue to run while the DHCP process
	completes, which speeds up system startup.
Background DHCP works well when the
	DHCP server responds quickly to the
	client's requests. However, DHCP may take
	a long time to complete on some systems. If network services
	attempt to run before DHCP has assigned the
	network addressing information, they will fail. Using
	DHCP in synchronous
	mode prevents this problem as it pauses startup until the
	DHCP configuration has completed.
This line in /etc/rc.conf is used to
	configure background or asynchronous mode:
ifconfig_fxp0="DHCP"
This line may already exist if the system was configured
	to use DHCP during installation. Replace
	the fxp0 shown in these examples
	with the name of the interface to be dynamically configured,
	as described in Section 12.5, “Setting Up Network Interface Cards”.
To instead configure the system to use synchronous mode,
	and to pause during startup while DHCP
	completes, use
	“SYNCDHCP”:
ifconfig_fxp0="SYNCDHCP"
Additional client options are available. Search for
	dhclient in rc.conf(5) for
	details.
The DHCP client uses the following
	files:
	/etc/dhclient.conf
The configuration file used by
	 dhclient. Typically, this file
	 contains only comments as the defaults are suitable for
	 most clients. This configuration file is described in
	 dhclient.conf(5).

	/sbin/dhclient
More information about the command itself can
	 be found in dhclient(8).

	/sbin/dhclient-script
The
	 FreeBSD-specific DHCP client configuration
	 script. It is described in dhclient-script(8), but
	 should not need any user modification to function
	 properly.

	/var/db/dhclient.leases.interface
The DHCP client keeps a database of
	 valid leases in this file, which is written as a log and
	 is described in dhclient.leases(5).

30.6.2. Installing and Configuring a DHCP
	Server
This section demonstrates how to configure a FreeBSD system
	to act as a DHCP server using the Internet
	Systems Consortium (ISC) implementation of
	the DHCP server. This implementation and
	its documentation can be installed using the
	net/isc-dhcp43-server package or
	port.
The installation of
	net/isc-dhcp43-server installs a sample
	configuration file. Copy
	/usr/local/etc/dhcpd.conf.example to
	/usr/local/etc/dhcpd.conf and make any
	edits to this new file.
The configuration file is comprised of declarations for
	subnets and hosts which define the information that is
	provided to DHCP clients. For example,
	these lines configure the following:
option domain-name "example.org";[image: 1]
option domain-name-servers ns1.example.org;[image: 2]
option subnet-mask 255.255.255.0;[image: 3]

default-lease-time 600;[image: 4]
max-lease-time 72400;[image: 5]
ddns-update-style none;[image: 6]

subnet 10.254.239.0 netmask 255.255.255.224 {
 range 10.254.239.10 10.254.239.20;[image: 7]
 option routers rtr-239-0-1.example.org, rtr-239-0-2.example.org;[image: 8]
}

host fantasia {
 hardware ethernet 08:00:07:26:c0:a5;[image: 9]
 fixed-address fantasia.fugue.com;[image: 10]
}
	[image: 1]
	This option specifies the default search domain that
	 will be provided to clients. Refer to
	 resolv.conf(5) for more information.

	[image: 2]
	This option specifies a comma separated list of
	 DNS servers that the client should use.
	 They can be listed by their Fully Qualified Domain Names
	 (FQDN), as seen in the example, or by
	 their IP addresses.

	[image: 3]
	The subnet mask that will be provided to
	 clients.

	[image: 4]
	The default lease expiry time in seconds. A client
	 can be configured to override this value.

	[image: 5]
	The maximum allowed length of time, in seconds, for a
	 lease. Should a client request a longer lease, a lease
	 will still be issued, but it will only be valid for
	 max-lease-time.

	[image: 6]
	The default of none disables dynamic
	 DNS updates. Changing this to interim
	 configures the DHCP server to update a
	 DNS server whenever it hands out a
	 lease so that the DNS server knows
	 which IP addresses are associated with
	 which computers in the network. Do not change the default
	 setting unless the DNS server has been
	 configured to support dynamic
	 DNS.

	[image: 7]
	This line creates a pool of available
	 IP addresses which are reserved for
	 allocation to DHCP clients. The range
	 of addresses must be valid for the network or subnet
	 specified in the previous line.

	[image: 8]
	Declares the default gateway that is valid for the
	 network or subnet specified before the opening
	 { bracket.

	[image: 9]
	Specifies the hardware MAC address
	 of a client so that the DHCP server can
	 recognize the client when it makes a request.

	[image: 10]
	Specifies that this host should always be given the
	 same IP address. Using the hostname is
	 correct, since the DHCP server will
	 resolve the hostname before returning the lease
	 information.

This configuration file supports many more options. Refer
	to dhcpd.conf(5), installed with the server, for details and
	examples.
Once the configuration of dhcpd.conf
	is complete, enable the DHCP server in
	/etc/rc.conf:
dhcpd_enable="YES"
dhcpd_ifaces="dc0"
Replace the dc0 with the interface (or
	interfaces, separated by whitespace) that the
	DHCP server should listen on for
	DHCP client requests.
Start the server by issuing the following command:
service isc-dhcpd start
Any future changes to the configuration of the server will
	require the dhcpd service to be
	stopped and then started using service(8).
The DHCP server uses the following
	files. Note that the manual pages are installed with the
	server software.
	/usr/local/sbin/dhcpd
More information about the
	 dhcpd server can be found in
	 dhcpd(8).

	/usr/local/etc/dhcpd.conf
The server configuration file needs to contain all the
	 information that should be provided to clients, along with
	 information regarding the operation of the server. This
	 configuration file is described in dhcpd.conf(5).

	/var/db/dhcpd.leases
The DHCP server keeps a database of
	 leases it has issued in this file, which is written as a
	 log. Refer to dhcpd.leases(5), which gives a slightly
	 longer description.

	/usr/local/sbin/dhcrelay
This daemon is used in advanced environments where one
	 DHCP server forwards a request from a
	 client to another DHCP server on a
	 separate network. If this functionality is required,
	 install the net/isc-dhcp43-relay
	 package or port. The installation includes dhcrelay(8)
	 which provides more detail.

30.7. Domain Name System (DNS)

30.7. Domain Name System (DNS)
Domain Name System (DNS) is the protocol
 through which domain names are mapped to IP
 addresses, and vice versa. DNS is
 coordinated across the Internet through a somewhat complex
 system of authoritative root, Top Level Domain
 (TLD), and other smaller-scale name servers,
 which host and cache individual domain information. It is not
 necessary to run a name server to perform
 DNS lookups on a system.
The following table describes some of the terms associated
 with DNS:
Table 30.4. DNS Terminology
	Term	Definition
	Forward DNS	Mapping of hostnames to IP
	 addresses.
	Origin	Refers to the domain covered in a particular zone
	 file.
	Resolver	A system process through which a machine queries
	 a name server for zone information.
	Reverse DNS	Mapping of IP addresses to
	 hostnames.
	Root zone	The beginning of the Internet zone hierarchy. All
	 zones fall under the root zone, similar to how all files
	 in a file system fall under the root directory.
	Zone	An individual domain, subdomain, or portion of the
	 DNS administered by the same
	 authority.

Examples of zones:
	. is how the root zone is
	 usually referred to in documentation.

	org. is a Top Level Domain
	 (TLD) under the root zone.

	example.org. is a zone
	 under the org.
	 TLD.

	1.168.192.in-addr.arpa is a
	 zone referencing all IP addresses which
	 fall under the 192.168.1.*
	 IP address space.

As one can see, the more specific part of a hostname
 appears to its left. For example, example.org. is more
 specific than org., as
 org. is more specific than the root
 zone. The layout of each part of a hostname is much like a file
 system: the /dev directory falls within the
 root, and so on.
30.7.1. Reasons to Run a Name Server
Name servers generally come in two forms: authoritative
	name servers, and caching (also known as resolving) name
	servers.
An authoritative name server is needed when:
	One wants to serve DNS information
	 to the world, replying authoritatively to queries.

	A domain, such as example.org, is
	 registered and IP addresses need to be
	 assigned to hostnames under it.

	An IP address block requires
	 reverse DNS entries
	 (IP to hostname).

	A backup or second name server, called a slave, will
	 reply to queries.

A caching name server is needed when:
	A local DNS server may cache and
	 respond more quickly than querying an outside name
	 server.

When one queries for www.FreeBSD.org, the
	resolver usually queries the uplink ISP's
	name server, and retrieves the reply. With a local, caching
	DNS server, the query only has to be made
	once to the outside world by the caching
	DNS server. Additional queries will not
	have to go outside the local network, since the information is
	cached locally.
30.7.2. DNS Server Configuration
Unbound is provided in the FreeBSD
	base system. By default, it will provide
	DNS resolution to the local machine only.
	While the base system package can be configured to provide
	resolution services beyond the local machine, it is
	recommended that such requirements be addressed by installing
	Unbound from the FreeBSD Ports
	Collection.
To enable Unbound, add the
	following to /etc/rc.conf:
local_unbound_enable="YES"
Any existing nameservers in
	/etc/resolv.conf will be configured as
	forwarders in the new Unbound
	configuration.
Note:
If any of the listed nameservers do not support
	 DNSSEC, local DNS
	 resolution will fail. Be sure to test each nameserver and
	 remove any that fail the test. The following command will
	 show the trust tree or a failure for a nameserver running on
	 192.168.1.1:

% drill -S FreeBSD.org @192.168.1.1
Once each nameserver is confirmed to support
	DNSSEC, start
	Unbound:
service local_unbound onestart
This will take care of updating
	/etc/resolv.conf so that queries for
	DNSSEC secured domains will now work. For
	example, run the following to validate the FreeBSD.org
	DNSSEC trust tree:
% drill -S FreeBSD.org
;; Number of trusted keys: 1
;; Chasing: freebsd.org. A

DNSSEC Trust tree:
freebsd.org. (A)
|---freebsd.org. (DNSKEY keytag: 36786 alg: 8 flags: 256)
 |---freebsd.org. (DNSKEY keytag: 32659 alg: 8 flags: 257)
 |---freebsd.org. (DS keytag: 32659 digest type: 2)
 |---org. (DNSKEY keytag: 49587 alg: 7 flags: 256)
 |---org. (DNSKEY keytag: 9795 alg: 7 flags: 257)
 |---org. (DNSKEY keytag: 21366 alg: 7 flags: 257)
 |---org. (DS keytag: 21366 digest type: 1)
 | |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)
 | |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)
 |---org. (DS keytag: 21366 digest type: 2)
 |---. (DNSKEY keytag: 40926 alg: 8 flags: 256)
 |---. (DNSKEY keytag: 19036 alg: 8 flags: 257)
;; Chase successful
30.8. Apache HTTP Server

30.8. Apache HTTP Server
Contributed by Murray Stokely. The open source
 Apache HTTP Server is the most widely
 used web server. FreeBSD does not install this web server by
 default, but it can be installed from the
 www/apache24 package or port.
This section summarizes how to configure and start version
 2.x of the Apache HTTP
	Server on FreeBSD. For more detailed information
 about Apache 2.X and its
 configuration directives, refer to httpd.apache.org.
30.8.1. Configuring and Starting Apache
In FreeBSD, the main Apache HTTP
	 Server configuration file is installed as
	/usr/local/etc/apache2x/httpd.conf,
	where x represents the version
	number. This ASCII text file begins
	comment lines with a #. The most
	frequently modified directives are:
	ServerRoot "/usr/local"
	Specifies the default directory hierarchy for the
	 Apache installation.
	 Binaries are stored in the bin and
	 sbin subdirectories of the server
	 root and configuration files are stored in the etc/apache2x
	 subdirectory.

	ServerAdmin you@example.com
	Change this to the email address to receive problems
	 with the server. This address also appears on some
	 server-generated pages, such as error documents.

	ServerName
	 www.example.com:80
	Allows an administrator to set a hostname which is
	 sent back to clients for the server. For example,
	 www can be used instead of the
	 actual hostname. If the system does not have a
	 registered DNS name, enter its
	 IP address instead. If the server
	 will listen on an alternate report, change
	 80 to the alternate port
	 number.

	DocumentRoot
	 "/usr/local/www/apache2x/data"
	The directory where documents will be served from.
	 By default, all requests are taken from this directory,
	 but symbolic links and aliases may be used to point to
	 other locations.

It is always a good idea to make a backup copy of the
	default Apache configuration file
	before making changes. When the configuration of
	Apache is complete, save the file
	and verify the configuration using
	apachectl. Running apachectl
	 configtest should return Syntax
	 OK.
To launch Apache at system
	startup, add the following line to
	/etc/rc.conf:
apache24_enable="YES"
If Apache should be started
	with non-default options, the following line may be added to
	/etc/rc.conf to specify the needed
	flags:
apache24_flags=""
If apachectl does not report
	configuration errors, start httpd
	now:
service apache24 start
The httpd service can be tested by
	entering
	http://localhost
	in a web browser, replacing
	localhost with the fully-qualified
	domain name of the machine running httpd.
	The default web page that is displayed is
	/usr/local/www/apache24/data/index.html.
The Apache configuration can be
	tested for errors after making subsequent configuration
	changes while httpd is running using the
	following command:
service apache24 configtest
Note:
It is important to note that
	 configtest is not an rc(8) standard,
	 and should not be expected to work for all startup
	 scripts.

30.8.2. Virtual Hosting
Virtual hosting allows multiple websites to run on one
	Apache server. The virtual hosts
	can be IP-based or
	name-based.
	IP-based virtual hosting uses a different
	IP address for each website. Name-based
	virtual hosting uses the clients HTTP/1.1 headers to figure
	out the hostname, which allows the websites to share the same
	IP address.
To setup Apache to use
	name-based virtual hosting, add a
	VirtualHost block for each website. For
	example, for the webserver named www.domain.tld with a
	virtual domain of www.someotherdomain.tld,
	add the following entries to
	httpd.conf:
<VirtualHost *>
 ServerName www.domain.tld
 DocumentRoot /www/domain.tld
</VirtualHost>

<VirtualHost *>
 ServerName www.someotherdomain.tld
 DocumentRoot /www/someotherdomain.tld
</VirtualHost>
For each virtual host, replace the values for
	ServerName and
	DocumentRoot with the values to be
	used.
For more information about setting up virtual hosts,
	consult the official Apache
	documentation at: http://httpd.apache.org/docs/vhosts/.
30.8.3. Apache Modules
Apache uses modules to augment
	the functionality provided by the basic server. Refer to http://httpd.apache.org/docs/current/mod/
	for a complete listing of and the configuration details for
	the available modules.
In FreeBSD, some modules can be compiled with the
	www/apache24 port. Type make
	 config within
	/usr/ports/www/apache24 to see which
	modules are available and which are enabled by default. If
	the module is not compiled with the port, the FreeBSD Ports
	Collection provides an easy way to install many modules. This
	section describes three of the most commonly used
	modules.
30.8.3.1. SSL support
At one in point in time, support for SSL
	 inside of Apache required a secondary module called
	 mod_ssl. This is no longer the case and
	 the default install of Apache comes with SSL
	 built into the web server. An example of how to enable
	 support for SSL websites is available
	 in the installed file, httpd-ssl.conf
	 inside of the
	 /usr/local/etc/apache24/extra
	 directory. Inside this directory is also a sample file called
	 named ssl.conf-sample. It is recommended
	 that both files be evaluated to properly set up secure websites
	 in the Apache web server.
After the configuration of SSL is
	 complete, the following line must be uncommented in the main
	 http.conf to activate the changes on the
	 next restart or reload of Apache:
#Include etc/apache24/extra/httpd-ssl.conf
Warning:
SSL version two and version three have
	 known vulnerability issues. It is highly recommended TLS version
	 1.2 and 1.3 be enabled in place of the older SSL options.
	 This can be accomplished by setting the following options in the
	 ssl.conf:

SSLProtocol all -SSLv3 -SSLv2 +TLSv1.2 +TLSv1.3
SSLProxyProtocol all -SSLv2 -SSLv3 -TLSv1 -TLSv1.1
To complete the configuration of SSL
	 in the web server, uncomment the following line to ensure that
	 the configuration will be pulled into Apache during restart or
	 reload:
Secure (SSL/TLS) connections
Include etc/apache24/extra/httpd-ssl.conf
The following lines must also be uncommented in the
	 httpd.conf to fully support
	 SSL in Apache:
LoadModule authn_socache_module libexec/apache24/mod_authn_socache.so
LoadModule socache_shmcb_module libexec/apache24/mod_socache_shmcb.so
LoadModule ssl_module libexec/apache24/mod_ssl.so
The next step is to work with a certificate authority
	 to have the appropriate certificates installed on the
	 system. This will set up a chain of trust for the site
	 and prevent any warnings of self-signed certificates.
30.8.3.2. mod_perl
The
	 mod_perl module makes it possible to
	 write Apache modules in
	 Perl. In addition, the
	 persistent interpreter embedded in the server avoids the
	 overhead of starting an external interpreter and the penalty
	 of Perl start-up time.
The mod_perl can be installed using
	 the www/mod_perl2 package or port.
	 Documentation for using this module can be found at http://perl.apache.org/docs/2.0/index.html.
30.8.3.3. mod_php
Written by Tom Rhodes. PHP: Hypertext Preprocessor
	 (PHP) is a general-purpose scripting
	 language that is especially suited for web development.
	 Capable of being embedded into HTML, its
	 syntax draws upon C, Java™, and
	 Perl with the intention of
	 allowing web developers to write dynamically generated
	 webpages quickly.
Support for PHP for
	 Apache and any other feature
	 written in the language, can be added
	 by installing the appropriate port.
For all supported versions, search the package database
	 using pkg:
pkg search php
A list will be displayed including the versions and
	 additional features they provide. The components are
	 completely modular, meaning features are enabled by
	 installing the appropriate port. To install
	 PHP version 7.4 for Apache, issue
	 the following command:
pkg install mod_php74
If any dependency packages need to be installed, they will
	 be installed as well.
By default, PHP will not be
	 enabled. The following lines will need to be added to
	 the Apache configuration file located in
	 /usr/local/etc/apache24
	 to make it active:
<FilesMatch "\.php$">
 SetHandler application/x-httpd-php
</FilesMatch>
<FilesMatch "\.phps$">
 SetHandler application/x-httpd-php-source
</FilesMatch>
In addition, the DirectoryIndex in
	 the configuration file will also need to be updated
	 and Apache will either need to be restarted or reloaded
	 for the changes to take effect.
Support for many of the PHP
	 features may also be installed by using
	 pkg. For example, to install
	 support for XML or
	 SSL, install their respective
	 ports:
pkg install php74-xml php74-openssl
As before, the Apache configuration will need to be
	 reloaded for the changes to take effect, even in cases
	 where it was just a module install.
To perform a graceful restart to reload the
	 configuration, issue the following command:
apachectl graceful
Once the install is complete, there are two methods of
	 obtaining the installed PHP support modules
	 and the environmental information of the build. The first is
	 to install the full PHP binary and running
	 the command to gain the information:
pkg install php74
php -i |less
It is necessary to pass the output to a pager, such as
	 the more or less to
	 easier digest the amount of output.
Finally, to make any changes to the global configuration
	 of PHP there is a well documented file
	 installed into
	 /usr/local/etc/php.ini.
	 At the time of install, this file will not exist because there
	 are two versions to choose from, one is
	 php.ini-development and the other is
	 php.ini-production. These are starting
	 points to assist administrators in their deployment.
30.8.3.4. HTTP2 Support
Apache support for
	 the HTTP2 protocol is included by default
	 when installing the port with pkg. The new
	 version of HTTP includes many improvements
	 over the previous version, including utilizing a single
	 connection to a website, reducing overall roundtrips of
	 TCP connections. Also, packet header data
	 is compressed and HTTP2 requires
	 encryption by default.
When Apache is configured to
	 only use HTTP2, web browsers will
	 require secure, encrypted HTTPS
	 connections. When Apache is
	 configured to use both versions, HTTP1.1
	 will be considered a fall back option if any issues
	 arise during the connection.
While this change does require administrators to make
	 changes, they are positive and equate to a more secure
	 Internet for everyone. The changes are only required for
	 sites not currently implementing SSL
	 and TLS.
Note:
This configuration depends on the previous sections,
	 including TLS support. It is
	 recommended those instructions be followed before
	 continuing with this configuration.

Start the process by enabling the
	 http2 module by uncommenting the line in
	 /usr/local/etc/apache24/httpd.conf and
	 replace the mpm_prefork module with mpm_event as the former
	 does not support HTTP2.
LoadModule http2_module libexec/apache24/mod_http2.so
LoadModule mpm_event_module libexec/apache24/mod_mpm_event.so
Note:
There is a separate
	 mod_http2 port that is
	 available. It exists to deliver security and bug fixes
	 quicker than the module installed with the bundled
	 apache24 port. It is
	 not required for HTTP2 support but
	 is available. When installed, the
	 mod_h2.so should be used in place
	 of mod_http2.so in the
	 Apache configuration.

There are two methods to implement HTTP2
	 in Apache; one way is globally for
	 all sites and each VirtualHost running on the system. To enable
	 HTTP2 globally, add the following line
	 under the ServerName directive:
Protocols h2 http/1.1
Note:
To enable HTTP2 over plaintext,
	 use h2 h2c
	 http/1.1 in the
	 httpd.conf.

Having the h2c here will allow
	 plaintext HTTP2 data to pass on the
	 system but is not recommended. In addition, using the
	 http/1.1 here will allow fallback
	 to the HTTP1.1 version of the protocol
	 should it be needed by the system.
To enable HTTP2 for individual
	 VirtualHosts, add the same line within the VirtualHost
	 directive in either httpd.conf or
	 httpd-ssl.conf.
Reload the configuration using the
	 apachectl reload command
	 and test the configuration either by using either of the
	 following methods after visiting one of the hosted pages:
grep "HTTP/2.0" /var/log/httpd-access.log
This should return something similar to the following:
192.168.1.205 - - [18/Oct/2020:18:34:36 -0400] "GET / HTTP/2.0" 304 -
192.0.2.205 - - [18/Oct/2020:19:19:57 -0400] "GET / HTTP/2.0" 304 -
192.0.0.205 - - [18/Oct/2020:19:20:52 -0400] "GET / HTTP/2.0" 304 -
192.0.2.205 - - [18/Oct/2020:19:23:10 -0400] "GET / HTTP/2.0" 304 -
The other method is using the web browser's built
	 in site debugger or tcpdump; however,
	 using either method is beyond the scope of this
	 document.
Support for HTTP2 reverse
	 proxy connections by using the
	 mod_proxy_http2.so module. When
	 configuring the ProxyPass or RewriteRules [P] statements,
	 they should use h2:// for the connection.
30.8.4. Dynamic Websites
In addition to mod_perl and
	mod_php, other languages are
	available for creating dynamic web content. These include
	Django and
	Ruby on Rails.
30.8.4.1. Django
Django is a BSD-licensed
	 framework designed to allow developers to write high
	 performance, elegant web applications quickly. It provides
	 an object-relational mapper so that data types are developed
	 as Python objects. A rich
	 dynamic database-access API is provided
	 for those objects without the developer ever having to write
	 SQL. It also provides an extensible
	 template system so that the logic of the application is
	 separated from the HTML
	 presentation.
Django depends on mod_python, and
	 an SQL database engine. In FreeBSD, the
	 www/py-django port automatically installs
	 mod_python and supports the
	 PostgreSQL,
	 MySQL, or
	 SQLite databases, with the
	 default being SQLite. To change
	 the database engine, type make config
	 within /usr/ports/www/py-django, then
	 install the port.
Once Django is installed, the
	 application will need a project directory along with the
	 Apache configuration in order to
	 use the embedded Python
	 interpreter. This interpreter is used to call the
	 application for specific URLs on the
	 site.
To configure Apache to pass
	 requests for certain URLs to the web
	 application, add the following to
	 httpd.conf, specifying the full path to
	 the project directory:
<Location "/">
 SetHandler python-program
 PythonPath "['/dir/to/the/django/packages/'] + sys.path"
 PythonHandler django.core.handlers.modpython
 SetEnv DJANGO_SETTINGS_MODULE mysite.settings
 PythonAutoReload On
 PythonDebug On
</Location>
Refer to https://docs.djangoproject.com
	 for more information on how to use
	 Django.
30.8.4.2. Ruby on Rails
Ruby on Rails is another open
	 source web framework that provides a full development stack.
	 It is optimized to make web developers more productive and
	 capable of writing powerful applications quickly. On FreeBSD,
	 it can be installed using the
	 www/rubygem-rails package or port.
Refer to http://guides.rubyonrails.org
	 for more information on how to use Ruby on
	 Rails.
30.10. File and Print Services for Microsoft® Windows® Clients (Samba)

30.10. File and Print Services for Microsoft® Windows® Clients
 (Samba)
Samba is a popular open source
 software package that provides file and print services using the
 SMB/CIFS protocol. This protocol is built
 into Microsoft® Windows® systems. It can be added to
 non-Microsoft® Windows® systems by installing the
 Samba client libraries. The protocol
 allows clients to access shared data and printers. These shares
 can be mapped as a local disk drive and shared printers can be
 used as if they were local printers.
On FreeBSD, the Samba client
 libraries can be installed using the
 net/samba413 port or package. The
 client provides the ability for a FreeBSD system to access
 SMB/CIFS shares in a Microsoft® Windows®
 network.
A FreeBSD system can also be configured to act as a
 Samba server by installing the same
 net/samba413 port or package. This allows the
 administrator to create SMB/CIFS
 shares on
 the FreeBSD system which can be accessed by clients running
 Microsoft® Windows® or the Samba
 client libraries.
30.10.1. Server Configuration
Samba is configured in
	/usr/local/etc/smb4.conf. This file must
	be created before Samba
	can be used.
A simple smb4.conf to share
	directories and printers with Windows® clients in a
	workgroup is shown here. For more complex setups
	involving LDAP or Active Directory, it is easier to use
	samba-tool(8) to create the initial
	smb4.conf.
[global]
workgroup = WORKGROUP
server string = Samba Server Version %v
netbios name = ExampleMachine
wins support = Yes
security = user
passdb backend = tdbsam

Example: share /usr/src accessible only to 'developer' user
[src]
path = /usr/src
valid users = developer
writable = yes
browsable = yes
read only = no
guest ok = no
public = no
create mask = 0666
directory mask = 0755
30.10.1.1. Global Settings
Settings that describe the network are added in
	 /usr/local/etc/smb4.conf:
	workgroup
	The name of the workgroup to be served.

	netbios name
	The NetBIOS name by which a
		Samba server is known. By
		default, it is the same as the first component of the
		host's DNS name.

	server string
	The string that will be displayed in the output of
		net view and some other
		networking tools that seek to display descriptive text
		about the server.

	wins support
	Whether Samba will
		act as a WINS server. Do not
		enable support for WINS on more than
		one server on the network.

30.10.1.2. Security Settings
The most important settings in
	 /usr/local/etc/smb4.conf are the
	 security model and the backend password format. These
	 directives control the options:
	security
	The most common settings are
		security = share and
		security = user. If the clients
		use usernames that are the same as their usernames on
		the FreeBSD machine, user level security should be
		used. This is the default security policy and it
		requires clients to first log on before they can
		access shared resources.
In share level security, clients do not need to
		log onto the server with a valid username and password
		before attempting to connect to a shared resource.
		This was the default security model for older versions
		of Samba.

	passdb backend
	Samba has several
		different backend authentication models. Clients may
		be authenticated with LDAP, NIS+, an SQL database,
		or a modified password file. The recommended
		authentication method, tdbsam,
		is ideal for simple networks and is covered here.
		For larger or more complex networks,
		ldapsam is recommended.
		smbpasswd
		was the former default and is now obsolete.

30.10.1.3. Samba Users
FreeBSD user accounts must be mapped to the
	 SambaSAMAccount database for
	 Windows® clients to access the share.
	 Map existing FreeBSD user accounts using
	 pdbedit(8):
pdbedit -a username
This section has only mentioned the most commonly used
	 settings. Refer to the Official
	 Samba Wiki for additional information about the
	 available configuration options.
30.10.2. Starting Samba
To enable Samba at boot time,
	add the following line to
	/etc/rc.conf:
samba_server_enable="YES"
To start Samba now:
service samba_server start
Performing sanity check on Samba configuration: OK
Starting nmbd.
Starting smbd.
Samba consists of three
	separate daemons. Both the nmbd
	and smbd daemons are started by
	samba_enable. If winbind name resolution
	is also required, set:
winbindd_enable="YES"
Samba can be stopped at any
	time by typing:
service samba_server stop
Samba is a complex software
	suite with functionality that allows broad integration with
	Microsoft® Windows® networks. For more information about
	functionality beyond the basic configuration described here,
	refer to https://www.samba.org.
30.12. iSCSI Initiator and Target Configuration

30.12. iSCSI Initiator and Target
 Configuration
iSCSI is a way to share storage over a
 network. Unlike NFS, which works at the file
 system level, iSCSI works at the block device
 level.
In iSCSI terminology, the system that
 shares the storage is known as the target.
 The storage can be a physical disk, or an area representing
 multiple disks or a portion of a physical disk. For example, if
 the disk(s) are formatted with ZFS, a zvol
 can be created to use as the iSCSI
 storage.
The clients which access the iSCSI
 storage are called initiators. To
 initiators, the storage available through
 iSCSI appears as a raw, unformatted disk
 known as a LUN. Device nodes for the disk
 appear in /dev/ and the device must be
 separately formatted and mounted.
FreeBSD provides a native,
 kernel-based iSCSI target and initiator.
 This section describes how to configure a FreeBSD system as a
 target or an initiator.
30.12.1. Configuring an iSCSI Target
To configure an iSCSI target, create
	the /etc/ctl.conf configuration file, add
	a line to /etc/rc.conf to make sure the
	ctld(8) daemon is automatically started at boot, and then
	start the daemon.
The following is an example of a simple
	/etc/ctl.conf configuration file. Refer
	to ctl.conf(5) for a more complete description of this
	file's available options.
portal-group pg0 {
	discovery-auth-group no-authentication
	listen 0.0.0.0
	listen [::]
}

target iqn.2012-06.com.example:target0 {
	auth-group no-authentication
	portal-group pg0

	lun 0 {
		path /data/target0-0
		size 4G
	}
}
The first entry defines the pg0 portal
	group. Portal groups define which network addresses the
	ctld(8) daemon will listen on. The
	discovery-auth-group no-authentication
	entry indicates that any initiator is allowed to perform
	iSCSI target discovery without
	authentication. Lines three and four configure ctld(8)
	to listen on all IPv4
	(listen 0.0.0.0) and
	IPv6 (listen [::])
	addresses on the default port of 3260.
It is not necessary to define a portal group as there is a
	built-in portal group called default. In
	this case, the difference between default
	and pg0 is that with
	default, target discovery is always denied,
	while with pg0, it is always
	allowed.
The second entry defines a single target. Target has two
	possible meanings: a machine serving iSCSI
	or a named group of LUNs. This example
	uses the latter meaning, where
	iqn.2012-06.com.example:target0 is the
	target name. This target name is suitable for testing
	purposes. For actual use, change
	com.example to the real domain name,
	reversed. The 2012-06 represents the year
	and month of acquiring control of that domain name, and
	target0 can be any value. Any number of
	targets can be defined in this configuration file.
The auth-group no-authentication line
	allows all initiators to connect to the specified target and
	portal-group pg0 makes the target reachable
	through the pg0 portal group.
The next section defines the LUN. To
	the initiator, each LUN will be visible as
	a separate disk device. Multiple LUNs can
	be defined for each target. Each LUN is
	identified by a number, where LUN 0 is
	mandatory. The path /data/target0-0 line
	defines the full path to a file or zvol backing the
	LUN. That path must exist before starting
	ctld(8). The second line is optional and specifies the
	size of the LUN.
Next, to make sure the ctld(8) daemon is started at
	boot, add this line to
	/etc/rc.conf:
ctld_enable="YES"
To start ctld(8) now, run this command:
service ctld start
As the ctld(8) daemon is started, it reads
	/etc/ctl.conf. If this file is edited
	after the daemon starts, use this command so that the changes
	take effect immediately:
service ctld reload
30.12.1.1. Authentication
The previous example is inherently insecure as it uses
	 no authentication, granting anyone full access to all
	 targets. To require a username and password to access
	 targets, modify the configuration as follows:
auth-group ag0 {
	chap username1 secretsecret
	chap username2 anothersecret
}

portal-group pg0 {
	discovery-auth-group no-authentication
	listen 0.0.0.0
	listen [::]
}

target iqn.2012-06.com.example:target0 {
	auth-group ag0
	portal-group pg0
	lun 0 {
		path /data/target0-0
		size 4G
	}
}
The auth-group section defines
	 username and password pairs. An initiator trying to connect
	 to iqn.2012-06.com.example:target0 must
	 first specify a defined username and secret. However,
	 target discovery is still permitted without authentication.
	 To require target discovery authentication, set
	 discovery-auth-group to a defined
	 auth-group name instead of
	 no-authentication.
It is common to define a single exported target for
	 every initiator. As a shorthand for the syntax above, the
	 username and password can be specified directly in the
	 target entry:
target iqn.2012-06.com.example:target0 {
	portal-group pg0
	chap username1 secretsecret

	lun 0 {
		path /data/target0-0
		size 4G
	}
}
30.12.2. Configuring an iSCSI Initiator
Note:
The iSCSI initiator described in this
	 section is supported starting with FreeBSD 10.0-RELEASE. To
	 use the iSCSI initiator available in
	 older versions, refer to iscontrol(8).

The iSCSI initiator requires that the
	iscsid(8) daemon is running. This daemon does not use a
	configuration file. To start it automatically at boot, add
	this line to /etc/rc.conf:
iscsid_enable="YES"
To start iscsid(8) now, run this command:
service iscsid start
Connecting to a target can be done with or without an
	/etc/iscsi.conf configuration file. This
	section demonstrates both types of connections.
30.12.2.1. Connecting to a Target Without a Configuration
	 File
To connect an initiator to a single target, specify the
	 IP address of the portal and the name of
	 the target:
iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0
To verify if the connection succeeded, run
	 iscsictl without any arguments. The
	 output should look similar to this:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Connected: da0
In this example, the iSCSI session
	 was successfully established, with
	 /dev/da0 representing the attached
	 LUN. If the
	 iqn.2012-06.com.example:target0 target
	 exports more than one LUN, multiple
	 device nodes will be shown in that section of the
	 output:
Connected: da0 da1 da2.
Any errors will be reported in the output, as well as
	 the system logs. For example, this message usually means
	 that the iscsid(8) daemon is not running:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Waiting for iscsid(8)
The following message suggests a networking problem,
	 such as a wrong IP address or
	 port:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.11 Connection refused
This message means that the specified target name is
	 wrong:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Not found
This message means that the target requires
	 authentication:
Target name Target portal State
iqn.2012-06.com.example:target0 10.10.10.10 Authentication failed
To specify a CHAP username and
	 secret, use this syntax:
iscsictl -A -p 10.10.10.10 -t iqn.2012-06.com.example:target0 -u user -s secretsecret
30.12.2.2. Connecting to a Target with a Configuration
	 File
To connect using a configuration file, create
	 /etc/iscsi.conf with contents like
	 this:
t0 {
	TargetAddress = 10.10.10.10
	TargetName = iqn.2012-06.com.example:target0
	AuthMethod = CHAP
	chapIName = user
	chapSecret = secretsecret
}
The t0 specifies a nickname for the
	 configuration file section. It will be used by the
	 initiator to specify which configuration to use. The other
	 lines specify the parameters to use during connection. The
	 TargetAddress and
	 TargetName are mandatory, whereas the
	 other options are optional. In this example, the
	 CHAP username and secret are
	 shown.
To connect to the defined target, specify the
	 nickname:
iscsictl -An t0
Alternately, to connect to all targets defined in the
	 configuration file, use:
iscsictl -Aa
To make the initiator automatically connect to all
	 targets in /etc/iscsi.conf, add the
	 following to /etc/rc.conf:
iscsictl_enable="YES"
iscsictl_flags="-Aa"
Chapter 31. Firewalls

Chapter 31. Firewalls
Contributed by Joseph J. Barbish. Converted to SGML and updated by Brad Davis. 31.1. Synopsis
Firewalls make it possible to filter the incoming and
 outgoing traffic that flows through a system. A firewall can
 use one or more sets of “rules” to inspect network
 packets as they come in or go out of network connections and
 either allows the traffic through or blocks it. The rules of
 a firewall can inspect one or more characteristics of the
 packets such as the protocol type, source or destination host
 address, and source or destination port.
Firewalls can enhance the security of a host or a network.
 They can be used to do one or more of the following:
	Protect and insulate the applications, services, and
	 machines of an internal network from unwanted traffic from
	 the public Internet.

	Limit or disable access from hosts of the internal
	 network to services of the public Internet.

	Support network address translation
	 (NAT), which allows an internal network
	 to use private IP addresses and share a
	 single connection to the public Internet using either a
	 single IP address or a shared pool of
	 automatically assigned public addresses.

FreeBSD has three firewalls built into the base system:
 PF, IPFW,
 and IPFILTER, also known as
 IPF. FreeBSD also provides two traffic
 shapers for controlling bandwidth usage: altq(4) and
 dummynet(4). ALTQ has
 traditionally been closely tied with
 PF and
 dummynet with
 IPFW. Each firewall uses rules to
 control the access of packets to and from a FreeBSD system,
 although they go about it in different ways and each has a
 different rule syntax.
FreeBSD provides multiple firewalls in order to meet the
 different requirements and preferences for a wide variety of
 users. Each user should evaluate which firewall best meets
 their needs.
After reading this chapter, you will know:
	How to define packet filtering rules.

	The differences between the firewalls built into
	 FreeBSD.

	How to use and configure the
	 PF firewall.

	How to use and configure the
	 IPFW firewall.

	How to use and configure the
	 IPFILTER firewall.

Before reading this chapter, you should:
	Understand basic FreeBSD and Internet concepts.

Note:
Since all firewalls are based on inspecting the values of
	selected packet control fields, the creator of the firewall
	ruleset must have an understanding of how
	TCP/IP works, what the different values in
	the packet control fields are, and how these values are used
	in a normal session conversation. For a good introduction,
	refer to Daryl's
	 TCP/IP Primer.

31.2. Firewall Concepts

31.2. Firewall Concepts
A ruleset contains a group of rules which pass or block
 packets based on the values contained in the packet. The
 bi-directional exchange of packets between hosts comprises a
 session conversation. The firewall ruleset processes both the
 packets arriving from the public Internet, as well as the
 packets produced by the system as a response to them. Each
 TCP/IP service is predefined by its protocol
 and listening port. Packets destined for a specific service
 originate from the source address using an unprivileged port and
 target the specific service port on the destination address.
 All the above parameters can be used as selection criteria to
 create rules which will pass or block services.
To lookup unknown port numbers, refer to
 /etc/services. Alternatively, visit http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
 and do a port number lookup to find the purpose of a particular
 port number.
Check out this link for port numbers used by Trojans.
FTP has two modes: active mode and passive mode. The
 difference is in how the data channel is acquired. Passive
 mode is more secure as the data channel is acquired by the
 ordinal ftp session requester. For a good explanation of FTP
 and the different modes, see http://www.slacksite.com/other/ftp.html.
A firewall ruleset can be either
 “exclusive” or “inclusive”. An
 exclusive firewall allows all traffic through except for the
 traffic matching the ruleset. An inclusive firewall does the
 reverse as it only allows traffic matching the rules through and
 blocks everything else.
An inclusive firewall offers better control of the outgoing
 traffic, making it a better choice for systems that offer
 services to the public Internet. It also controls the type of
 traffic originating from the public Internet that can gain
 access to a private network. All traffic that does not match
 the rules is blocked and logged. Inclusive firewalls are
 generally safer than exclusive firewalls because they
 significantly reduce the risk of allowing unwanted
 traffic.
Note:
Unless noted otherwise, all configuration and example
	rulesets in this chapter create inclusive firewall
	rulesets.

Security can be tightened further using a “stateful
	firewall”. This type of firewall keeps track of open
 connections and only allows traffic which either matches an
 existing connection or opens a new, allowed connection.
Stateful filtering treats traffic as a bi-directional
 exchange of packets comprising a session. When state is
 specified on a matching rule the firewall dynamically generates
 internal rules for each anticipated packet being exchanged
 during the session. It has sufficient matching capabilities to
 determine if a packet is valid for a session. Any packets that
 do not properly fit the session template are automatically
 rejected.
When the session completes, it is removed from the dynamic
 state table.
Stateful filtering allows one to focus on blocking/passing
 new sessions. If the new session is passed, all its subsequent
 packets are allowed automatically and any impostor packets are
 automatically rejected. If a new session is blocked, none of
 its subsequent packets are allowed. Stateful filtering provides
 advanced matching abilities capable of defending against the
 flood of different attack methods employed by attackers.
NAT stands for Network
	Address Translation. NAT
 function enables the private LAN behind the firewall to share a
 single ISP-assigned IP address, even if that address is
 dynamically assigned. NAT allows each computer in the LAN to
 have Internet access, without having to pay the ISP for multiple
 Internet accounts or IP addresses.
NAT will automatically translate the
 private LAN IP address for each system on the LAN to the
 single public IP address as packets exit the firewall bound for
 the public Internet. It also performs the reverse translation
 for returning packets.
According to RFC 1918, the following IP address ranges are
 reserved for private networks which will never be routed
 directly to the public Internet, and therefore are available
 for use with NAT:
	10.0.0.0/8.

	172.16.0.0/12.

	192.168.0.0/16.

Warning:
When working with the firewall rules, be very
	 careful. Some configurations can
	 lock the administrator out of the server. To be
	on the safe side, consider performing the initial firewall
	configuration from the local console rather than doing it
	remotely over ssh.

31.4. IPFW

31.4. IPFW
IPFW is a stateful firewall
 written for FreeBSD which supports both IPv4 and
 IPv6. It is comprised of several components:
 the kernel firewall filter rule processor and its integrated
 packet accounting facility, the logging facility,
 NAT, the dummynet(4) traffic shaper, a
 forward facility, a bridge facility, and an ipstealth
 facility.
FreeBSD provides a sample ruleset in
 /etc/rc.firewall which defines several
 firewall types for common scenarios to assist novice users in
 generating an appropriate ruleset.
 IPFW provides a powerful syntax which
 advanced users can use to craft customized rulesets that meet
 the security requirements of a given environment.
This section describes how to enable
 IPFW, provides an overview of its
 rule syntax, and demonstrates several rulesets for common
 configuration scenarios.
31.4.1. Enabling IPFW
IPFW is included in the basic
	FreeBSD install as a kernel loadable module, meaning that a
	custom kernel is not needed in order to enable
	IPFW.
For those users who wish to statically compile
	IPFW support into a custom kernel,
	see Section 31.4.6, “IPFW Kernel Options”.
To configure the system to enable
	IPFW at boot time, add
	firewall_enable="YES" to
	/etc/rc.conf:
sysrc firewall_enable="YES"
To use one of the default firewall types provided by FreeBSD,
	add another line which specifies the type:
sysrc firewall_type="open"
The available types are:
	open: passes all traffic.

	client: protects only this
	 machine.

	simple: protects the whole
	 network.

	closed: entirely disables IP
	 traffic except for the loopback interface.

	workstation: protects only this
	 machine using stateful rules.

	UNKNOWN: disables the loading of
	 firewall rules.

	filename:
	 full path of the file containing the firewall
	 ruleset.

If firewall_type is set to either
	client or simple,
	modify the default rules found in
	/etc/rc.firewall to fit the
	configuration of the system.
Note that the filename type is used to
	load a custom ruleset.
An alternate way to load a custom ruleset is to set the
	firewall_script variable to the absolute
	path of an executable script that
	includes IPFW commands. The
	examples used in this section assume that the
	firewall_script is set to
	/etc/ipfw.rules:
sysrc firewall_script="/etc/ipfw.rules"
To enable logging through syslogd(8), include this
	line:
sysrc firewall_logging="YES"
Warning:
Only firewall rules with the log option will
	 be logged. The default rules do not include this option and it
	 must be manually added. Therefore it is advisable that the default
	 ruleset is edited for logging. In addition, log rotation may be
	 desired if the logs are stored in a separate file.

There is no /etc/rc.conf variable to
	set logging limits. To limit the number of times a rule is
	logged per connection attempt, specify the number using this
	line in /etc/sysctl.conf:
echo "net.inet.ip.fw.verbose_limit=5" >> /etc/sysctl.conf
To enable logging through a dedicated interface named
	ipfw0, add this line to
	/etc/rc.conf instead:
sysrc firewall_logif="YES"
Then use tcpdump to see what is
	being logged:
tcpdump -t -n -i ipfw0
Tip:
There is no overhead due to logging unless
	 tcpdump is attached.

After saving the needed edits, start the firewall. To
	enable logging limits now, also set the
	sysctl value specified above:
service ipfw start
sysctl net.inet.ip.fw.verbose_limit=5
31.4.2. IPFW Rule Syntax
When a packet enters the IPFW
	firewall, it is compared against the first rule in the ruleset
	and progresses one rule at a time, moving from top to bottom
	in sequence. When the packet matches the selection parameters
	of a rule, the rule's action is executed and the search of the
	ruleset terminates for that packet. This is referred to as
	“first match wins”. If the packet does not match
	any of the rules, it gets caught by the mandatory
	IPFW default rule number 65535,
	which denies all packets and silently discards them. However,
	if the packet matches a rule that contains the
	count, skipto, or
	tee keywords, the search continues. Refer
	to ipfw(8) for details on how these keywords affect rule
	processing.
When creating an
	IPFW rule, keywords must be
	written in the following order. Some keywords are mandatory
	while other keywords are optional. The words shown in
	uppercase represent a variable and the words shown in
	lowercase must precede the variable that follows it. The
	# symbol is used to mark the start of a
	comment and may appear at the end of a rule or on its own
	line. Blank lines are ignored.
CMD RULE_NUMBER set SET_NUMBER ACTION log
	 LOG_AMOUNT PROTO from SRC SRC_PORT to DST DST_PORT
	 OPTIONS
This section provides an overview of these keywords and
	their options. It is not an exhaustive list of every possible
	option. Refer to ipfw(8) for a complete description of
	the rule syntax that can be used when creating
	IPFW rules.
	CMD
	Every rule must start with
	 ipfw add.

	RULE_NUMBER
	Each rule is associated with a number from
	 1 to
	 65534. The number is used to
	 indicate the order of rule processing. Multiple rules
	 can have the same number, in which case they are applied
	 according to the order in which they have been
	 added.

	SET_NUMBER
	Each rule is associated with a set number from
	 0 to 31.
	 Sets can be individually disabled or enabled, making it
	 possible to quickly add or delete a set of rules. If a
	 SET_NUMBER is not specified, the rule will be added to
	 set 0.

	ACTION
	A rule can be associated with one of the following
	 actions. The specified action will be executed when the
	 packet matches the selection criterion of the
	 rule.
allow | accept | pass |
		permit: these keywords are equivalent and
	 allow packets that match the rule.
check-state: checks the
	 packet against the dynamic state table. If a match is
	 found, execute the action associated with the rule which
	 generated this dynamic rule, otherwise move to the next
	 rule. A check-state rule does not
	 have selection criterion. If no
	 check-state rule is present in the
	 ruleset, the dynamic rules table is checked at the first
	 keep-state or
	 limit rule.
count: updates counters for
	 all packets that match the rule. The search continues
	 with the next rule.
deny | drop: either word
	 silently discards packets that match this rule.
Additional actions are available. Refer to
	 ipfw(8) for details.

	LOG_AMOUNT
	When a packet matches a rule with the
	 log keyword, a message will be logged
	 to syslogd(8) with a facility name of
	 SECURITY. Logging only occurs if the
	 number of packets logged for that particular rule does
	 not exceed a specified LOG_AMOUNT. If no
	 LOG_AMOUNT is specified, the limit is taken from the
	 value of
	 net.inet.ip.fw.verbose_limit. A
	 value of zero removes the logging limit. Once the limit
	 is reached, logging can be re-enabled by clearing the
	 logging counter or the packet counter for that rule,
	 using ipfw resetlog.
Note:
Logging is done after all other packet matching
		conditions have been met, and before performing the
		final action on the packet. The administrator decides
		which rules to enable logging on.

	PROTO
	This optional value can be used to specify any
	 protocol name or number found in
	 /etc/protocols.

	SRC
	The from keyword must be followed
	 by the source address or a keyword that represents the
	 source address. An address can be represented by
	 any, me (any
	 address configured on an interface on this system),
	 me6, (any IPv6
	 address configured on an interface on this system), or
	 table followed by the number of a
	 lookup table which contains a list of addresses. When
	 specifying an IP address, it can be
	 optionally followed by its CIDR mask
	 or subnet mask. For example,
	 1.2.3.4/25 or
	 1.2.3.4:255.255.255.128.

	SRC_PORT
	An optional source port can be specified using the
	 port number or name from
	 /etc/services.

	DST
	The to keyword must be followed
	 by the destination address or a keyword that represents
	 the destination address. The same keywords and
	 addresses described in the SRC section can be used to
	 describe the destination.

	DST_PORT
	An optional destination port can be specified using
	 the port number or name from
	 /etc/services.

	OPTIONS
	Several keywords can follow the source and
	 destination. As the name suggests, OPTIONS are
	 optional. Commonly used options include
	 in or out, which
	 specify the direction of packet flow,
	 icmptypes followed by the type of
	 ICMP message, and
	 keep-state.
When a keep-state rule is
	 matched, the firewall will create a dynamic rule which
	 matches bidirectional traffic between the source and
	 destination addresses and ports using the same
	 protocol.
The dynamic rules facility is vulnerable to resource
	 depletion from a SYN-flood attack which would open a
	 huge number of dynamic rules. To counter this type of
	 attack with IPFW, use
	 limit. This option limits the number
	 of simultaneous sessions by checking the open dynamic
	 rules, counting the number of times this rule and
	 IP address combination occurred. If
	 this count is greater than the value specified by
	 limit, the packet is
	 discarded.
Dozens of OPTIONS are available. Refer to
	 ipfw(8) for a description of each available
	 option.

31.4.3. Example Ruleset
This section demonstrates how to create an example
	stateful firewall ruleset script named
	/etc/ipfw.rules. In this example, all
	connection rules use in or
	out to clarify the direction. They also
	use via
	interface-name to specify
	the interface the packet is traveling over.
Note:
When first creating or testing a firewall ruleset,
	 consider temporarily setting this tunable:
net.inet.ip.fw.default_to_accept="1"
This sets the default policy of ipfw(8) to be more
	 permissive than the default deny ip from any to
	 any, making it slightly more difficult to get
	 locked out of the system right after a reboot.

The firewall script begins by indicating that it is a
	Bourne shell script and flushes any existing rules. It then
	creates the cmd variable so that
	ipfw add does not have to be typed at the
	beginning of every rule. It also defines the
	pif variable which represents the name of
	the interface that is attached to the Internet.
#!/bin/sh
Flush out the list before we begin.
ipfw -q -f flush

Set rules command prefix
cmd="ipfw -q add"
pif="dc0" # interface name of NIC attached to Internet
The first two rules allow all traffic on the trusted
	internal interface and on the loopback interface:
Change xl0 to LAN NIC interface name
$cmd 00005 allow all from any to any via xl0

No restrictions on Loopback Interface
$cmd 00010 allow all from any to any via lo0
The next rule allows the packet through if it matches an
	existing entry in the dynamic rules table:
$cmd 00101 check-state
The next set of rules defines which stateful connections
	internal systems can create to hosts on the Internet:
Allow access to public DNS
Replace x.x.x.x with the IP address of a public DNS server
and repeat for each DNS server in /etc/resolv.conf
$cmd 00110 allow tcp from any to x.x.x.x 53 out via $pif setup keep-state
$cmd 00111 allow udp from any to x.x.x.x 53 out via $pif keep-state

Allow access to ISP's DHCP server for cable/DSL configurations.
Use the first rule and check log for IP address.
Then, uncomment the second rule, input the IP address, and delete the first rule
$cmd 00120 allow log udp from any to any 67 out via $pif keep-state
#$cmd 00120 allow udp from any to x.x.x.x 67 out via $pif keep-state

Allow outbound HTTP and HTTPS connections
$cmd 00200 allow tcp from any to any 80 out via $pif setup keep-state
$cmd 00220 allow tcp from any to any 443 out via $pif setup keep-state

Allow outbound email connections
$cmd 00230 allow tcp from any to any 25 out via $pif setup keep-state
$cmd 00231 allow tcp from any to any 110 out via $pif setup keep-state

Allow outbound ping
$cmd 00250 allow icmp from any to any out via $pif keep-state

Allow outbound NTP
$cmd 00260 allow udp from any to any 123 out via $pif keep-state

Allow outbound SSH
$cmd 00280 allow tcp from any to any 22 out via $pif setup keep-state

deny and log all other outbound connections
$cmd 00299 deny log all from any to any out via $pif
The next set of rules controls connections from Internet
	hosts to the internal network. It starts by denying packets
	typically associated with attacks and then explicitly allows
	specific types of connections. All the authorized services
	that originate from the Internet use limit
	to prevent flooding.
Deny all inbound traffic from non-routable reserved address spaces
$cmd 00300 deny all from 192.168.0.0/16 to any in via $pif #RFC 1918 private IP
$cmd 00301 deny all from 172.16.0.0/12 to any in via $pif #RFC 1918 private IP
$cmd 00302 deny all from 10.0.0.0/8 to any in via $pif #RFC 1918 private IP
$cmd 00303 deny all from 127.0.0.0/8 to any in via $pif #loopback
$cmd 00304 deny all from 0.0.0.0/8 to any in via $pif #loopback
$cmd 00305 deny all from 169.254.0.0/16 to any in via $pif #DHCP auto-config
$cmd 00306 deny all from 192.0.2.0/24 to any in via $pif #reserved for docs
$cmd 00307 deny all from 204.152.64.0/23 to any in via $pif #Sun cluster interconnect
$cmd 00308 deny all from 224.0.0.0/3 to any in via $pif #Class D & E multicast

Deny public pings
$cmd 00310 deny icmp from any to any in via $pif

Deny ident
$cmd 00315 deny tcp from any to any 113 in via $pif

Deny all Netbios services.
$cmd 00320 deny tcp from any to any 137 in via $pif
$cmd 00321 deny tcp from any to any 138 in via $pif
$cmd 00322 deny tcp from any to any 139 in via $pif
$cmd 00323 deny tcp from any to any 81 in via $pif

Deny fragments
$cmd 00330 deny all from any to any frag in via $pif

Deny ACK packets that did not match the dynamic rule table
$cmd 00332 deny tcp from any to any established in via $pif

Allow traffic from ISP's DHCP server.
Replace x.x.x.x with the same IP address used in rule 00120.
#$cmd 00360 allow udp from any to x.x.x.x 67 in via $pif keep-state

Allow HTTP connections to internal web server
$cmd 00400 allow tcp from any to me 80 in via $pif setup limit src-addr 2

Allow inbound SSH connections
$cmd 00410 allow tcp from any to me 22 in via $pif setup limit src-addr 2

Reject and log all other incoming connections
$cmd 00499 deny log all from any to any in via $pif
The last rule logs all packets that do not match any of
	the rules in the ruleset:
Everything else is denied and logged
$cmd 00999 deny log all from any to any
31.4.4. In-kernel NAT
Contributed by Chern Lee. Rewritten and updated by Dries Michiels. FreeBSD's IPFW firewall has two
	implementations of NAT: the userland
	implementation natd(8), and the more recent in-kernel
	NAT implementation. Both work in
	conjunction with IPFW to provide
	network address translation. This can be used to provide an
	Internet Connection Sharing solution so that several internal
	computers can connect to the Internet using a single public
	IP address.
To do this, the FreeBSD machine connected to the Internet
	must act as a gateway. This system must have two
	NICs, where one is connected to the
	Internet and the other is connected to the internal
	LAN. Each machine connected to the
	LAN should be assigned an
	IP address in the private network space, as
	defined by RFC
	1918.
Some additional configuration is needed in order to enable
	the in-kernel NAT facility of
	IPFW. To enable in-kernel
	NAT support at boot time, the following
	must be set in /etc/rc.conf:
gateway_enable="YES"
firewall_enable="YES"
firewall_nat_enable="YES"
Note:
When firewall_nat_enable is set but
	 firewall_enable is not, it will have no
	 effect and do nothing. This is because the in-kernel
	 NAT implementation is only compatible
	 with IPFW.

When the ruleset contains stateful rules, the positioning
	of the NAT rule is critical and the
	skipto action is used. The
	skipto action requires a rule number so
	that it knows which rule to jump to. The example below builds
	upon the firewall ruleset shown in the previous section. It
	adds some additional entries and modifies some existing rules
	in order to configure the firewall for in-kernel
	NAT. It starts by adding some additional
	variables which represent the rule number to skip to, the
	keep-state option, and a list of
	TCP ports which will be used to reduce the
	number of rules.
#!/bin/sh
ipfw -q -f flush
cmd="ipfw -q add"
skip="skipto 1000"
pif=dc0
ks="keep-state"
good_tcpo="22,25,37,53,80,443,110"
With in-kernel NAT it is
	necessary to disable TCP segmentation offloading
	(TSO) due to the architecture of
	libalias(3), a library implemented as a kernel module to
	provide the in-kernel NAT facility of
	IPFW. TSO can
	be disabled on a per network interface basis using
	ifconfig(8) or on a system wide basis using
	sysctl(8). To disable TSO system
	wide, the following must be set it
	/etc/sysctl.conf:
net.inet.tcp.tso="0"
A NAT instance will also be configured.
	It is possible to have multiple NAT
	instances each with their own configuration. For this example
	only one NAT instance is needed,
	NAT instance number 1. The configuration
	can take a few options such as: if which
	indicates the public interface, same_ports
	which takes care that alliased ports and local port numbers
	are mapped the same, unreg_only will result
	in only unregistered (private) address spaces to be processed
	by the NAT instance, and
	reset which will help to keep a functioning
	NAT instance even when the public
	IP address of the
	IPFW machine changes. For all
	possible options that can be passed to a single
	NAT instance configuration consult
	ipfw(8). When configuring a stateful
	NATing firewall, it is neseccary to allow
	translated packets to be reinjected in the firewall for
	further processing. This can be achieved by disabling
	one_pass behavior at the start of the
	firewall script.
ipfw disable one_pass
ipfw -q nat 1 config if $pif same_ports unreg_only reset
The inbound NAT rule is inserted
	after the two rules which allow all
	traffic on the trusted and loopback interfaces and after the
	reassemble rule but before the
	check-state rule. It is important that the
	rule number selected for this NAT rule, in
	this example 100, is higher than the first
	three rules and lower than the check-state
	rule. Furthermore, because of the behavior of in-kernel
	NAT it is advised to place a reassemble
	rule just before the first NAT rule and
	after the rules that allow traffic on trusted interface.
	Normally, IP fragmentation should not
	happen, but when dealing with IPSEC/ESP/GRE
	tunneling traffic it might and the reassembling of fragments
	is necessary before handing the complete packet over to the
	in-kernel NAT facility.
Note:
The reassemble rule was not needed with userland
	 natd(8) because the internal workings of the
	 IPFW divert
	 action already takes care of reassembling packets before
	 delivery to the socket as also stated in ipfw(8).
The NAT instance and rule number used
	 in this example does not match with the default
	 NAT instance and rule number created by
	 rc.firewall.
	 rc.firewall is a script that sets up
	 the default firewall rules present in FreeBSD.

$cmd 005 allow all from any to any via xl0 # exclude LAN traffic
$cmd 010 allow all from any to any via lo0 # exclude loopback traffic
$cmd 099 reass all from any to any in # reassemble inbound packets
$cmd 100 nat 1 ip from any to any in via $pif # NAT any inbound packets
Allow the packet through if it has an existing entry in the dynamic rules table
$cmd 101 check-state
The outbound rules are modified to replace the
	allow action with the
	$skip variable, indicating that rule
	processing will continue at rule 1000. The
	seven tcp rules have been replaced by rule
	125 as the
	$good_tcpo variable contains the
	seven allowed outbound ports.
Note:
Remember that IPFW's
	 performance is largely determined by the number of rules
	 present in the ruleset.

Authorized outbound packets
$cmd 120 $skip udp from any to x.x.x.x 53 out via $pif $ks
$cmd 121 $skip udp from any to x.x.x.x 67 out via $pif $ks
$cmd 125 $skip tcp from any to any $good_tcpo out via $pif setup $ks
$cmd 130 $skip icmp from any to any out via $pif $ks
The inbound rules remain the same, except for the very
	last rule which removes the via $pif in
	order to catch both inbound and outbound rules. The
	NAT rule must follow this last outbound
	rule, must have a higher number than that last rule, and the
	rule number must be referenced by the
	skipto action. In this ruleset, rule
	number 1000 handles passing all packets to
	our configured instance for NAT processing.
	The next rule allows any packet which has undergone
	NAT processing to pass.
$cmd 999 deny log all from any to any
$cmd 1000 nat 1 ip from any to any out via $pif # skipto location for outbound stateful rules
$cmd 1001 allow ip from any to any
In this example, rules 100,
	101, 125,
	1000, and 1001 control
	the address translation of the outbound and inbound packets so
	that the entries in the dynamic state table always register
	the private LAN IP
	address.
Consider an internal web browser which initializes a new
	outbound HTTP session over port 80. When
	the first outbound packet enters the firewall, it does not
	match rule 100 because it is headed out
	rather than in. It passes rule 101 because
	this is the first packet and it has not been posted to the
	dynamic state table yet. The packet finally matches rule
	125 as it is outbound on an allowed port
	and has a source IP address from the
	internal LAN. On matching this rule, two
	actions take place. First, the keep-state
	action adds an entry to the dynamic state table and the
	specified action, skipto rule 1000, is
	executed. Next, the packet undergoes NAT
	and is sent out to the Internet. This packet makes its way to
	the destination web server, where a response packet is
	generated and sent back. This new packet enters the top of
	the ruleset. It matches rule 100 and has
	its destination IP address mapped back to
	the original internal address. It then is processed by the
	check-state rule, is found in the table as
	an existing session, and is released to the
	LAN.
On the inbound side, the ruleset has to deny bad packets
	and allow only authorized services. A packet which matches an
	inbound rule is posted to the dynamic state table and the
	packet is released to the LAN. The packet
	generated as a response is recognized by the
	check-state rule as belonging to an
	existing session. It is then sent to rule
	1000 to undergo
	NAT before being released to the outbound
	interface.
Note:
Transitioning from userland natd(8) to in-kernel
	 NAT might seem seamless at first but
	 there is small catch. When using the GENERIC kernel,
	 IPFW will load the
	 libalias.ko kernel module, when
	 firewall_nat_enable is enabled in
	 rc.conf. The
	 libalias.ko kernel module only provides
	 basic NAT functionality, whereas the
	 userland implementation natd(8) has all
	 NAT functionality available in its
	 userland library without any extra configuration. All
	 functionality refers to the following kernel modules that
	 can additionally be loaded when needed besides the standard
	 libalias.ko kernel module:
	 alias_cuseeme.ko,
	 alias_ftp.ko,
	 alias_bbt.ko,
	 skinny.ko, irc.ko,
	 alias_pptp.ko and
	 alias_smedia.ko using the
	 kld_list directive in
	 rc.conf. If a custom kernel is used,
	 the full functionality of the userland library can be
	 compiled in, in the kernel, using the options
	 LIBALIAS.

31.4.4.1. Port Redirection
The drawback with NAT in general is
	 that the LAN clients are not accessible
	 from the Internet. Clients on the LAN
	 can make outgoing connections to the world but cannot
	 receive incoming ones. This presents a problem if trying to
	 run Internet services on one of the LAN
	 client machines. A simple way around this is to redirect
	 selected Internet ports on the NAT
	 providing machine to a LAN client.
For example, an IRC server runs on
	 client A and a web server runs on
	 client B. For this to work
	 properly, connections received on ports 6667
	 (IRC) and 80 (HTTP)
	 must be redirected to the respective machines.
With in-kernel NAT all configuration
	 is done in the NAT instance
	 configuration. For a full list of options that an in-kernel
	 NAT instance can use, consult
	 ipfw(8). The IPFW syntax
	 follows the syntax of natd. The
	 syntax for redirect_port is as
	 follows:
redirect_port proto targetIP:targetPORT[-targetPORT]
 [aliasIP:]aliasPORT[-aliasPORT]
 [remoteIP[:remotePORT[-remotePORT]]]
To configure the above example setup, the arguments
	should be:
redirect_port tcp 192.168.0.2:6667 6667
redirect_port tcp 192.168.0.3:80 80
After adding these arguments to the configuration of
	 NAT instance 1 in the above ruleset, the
	 TCP ports will be port forwarded to the
	 LAN client machines running the
	 IRC and HTTP
	 services.
ipfw -q nat 1 config if $pif same_ports unreg_only reset \
 redirect_port tcp 192.168.0.2:6667 6667 \
 redirect_port tcp 192.168.0.3:80 80
Port ranges over individual ports can be indicated with
	 redirect_port. For example,
	 tcp 192.168.0.2:2000-3000
	 2000-3000 would redirect all connections
	 received on ports 2000 to 3000 to ports 2000 to 3000 on
	 client A.
31.4.4.2. Address Redirection
Address redirection is useful if more than one
	 IP address is available. Each
	 LAN client can be assigned its own
	 external IP address by ipfw(8),
	 which will then rewrite outgoing packets from the
	 LAN clients with the proper external
	 IP address and redirects all traffic
	 incoming on that particular IP address
	 back to the specific LAN client. This is
	 also known as static NAT. For example,
	 if IP addresses 128.1.1.1, 128.1.1.2, and 128.1.1.3 are available,
	 128.1.1.1 can be
	 used as the ipfw(8) machine's external
	 IP address, while 128.1.1.2 and 128.1.1.3 are forwarded
	 back to LAN clients
	 A and
	 B.
The redirect_address syntax is as
	 below, where localIP is the internal
	 IP address of the LAN
	 client, and publicIP the external
	 IP address corresponding to the
	 LAN client.
redirect_address localIP publicIP
In the example, the arguments would read:
redirect_address 192.168.0.2 128.1.1.2
redirect_address 192.168.0.3 128.1.1.3
Like redirect_port, these arguments
	 are placed in a NAT instance
	 configuration. With address redirection, there is no
	 need for port redirection, as all data received on a
	 particular IP address is
	 redirected.
The external IP addresses on the
	 ipfw(8) machine must be active and aliased to the
	 external interface. Refer to rc.conf(5) for
	 details.
31.4.4.3. Userspace NAT
Let us start with a statement: the userspace
	 NAT implementation: natd(8), has
	 more overhead than in-kernel NAT. For
	 natd(8) to translate packets, the packets have to be
	 copied from the kernel to userspace and back which brings in
	 extra overhead that is not present with in-kernel
	 NAT.
To enable the userpace NAT daemon
	 natd(8) at boot time, the following is a minimum
	 configuration in /etc/rc.conf. Where
	 natd_interface is set to the name of the
	 NIC attached to the Internet. The
	 rc(8) script of natd(8) will automatically check
	 if a dynamic IP address is used and
	 configure itself to handle that.
gateway_enable="YES"
natd_enable="YES"
natd_interface="rl0"
In general, the above ruleset as explained for in-kernel
	 NAT can also be used together with
	 natd(8). The exceptions are the configuration of the
	 in-kernel NAT instance (ipfw -q
	 nat 1 config ...) which is not needed together
	 with reassemble rule 99 because its functionality is
	 included in the divert action. Rule number
	 100 and 1000 will have to change sligthly as shown
	 below.
$cmd 100 divert natd ip from any to any in via $pif
$cmd 1000 divert natd ip from any to any out via $pif
To configure port or address redirection, a similar
	 syntax as with in-kernel NAT is used.
	 Although, now, instead of specifying the configuration in
	 our ruleset script like with in-kernel
	 NAT, configuration of natd(8) is
	 best done in a configuration file. To do this, an extra
	 flag must be passed via /etc/rc.conf
	 which specifies the path of the configuration file.
natd_flags="-f /etc/natd.conf"
Note:
The specified file must contain a list of
	 configuration options, one per line. For more information
	 about the configuration file and possible variables,
	 consult natd(8). Below are two example
	 entries, one per line:
redirect_port tcp 192.168.0.2:6667 6667
redirect_address 192.168.0.3 128.1.1.3

31.4.5. The IPFW Command
ipfw can be used to make manual,
	single rule additions or deletions to the active firewall
	while it is running. The problem with using this method is
	that all the changes are lost when the system reboots. It is
	recommended to instead write all the rules in a file and to
	use that file to load the rules at boot time and to replace
	the currently running firewall rules whenever that file
	changes.
ipfw is a useful way to display the
	running firewall rules to the console screen. The
	IPFW accounting facility
	dynamically creates a counter for each rule that counts each
	packet that matches the rule. During the process of testing a
	rule, listing the rule with its counter is one way to
	determine if the rule is functioning as expected.
To list all the running rules in sequence:
ipfw list
To list all the running rules with a time stamp of when
	the last time the rule was matched:
ipfw -t list
The next example lists accounting information and the
	packet count for matched rules along with the rules
	themselves. The first column is the rule number, followed by
	the number of matched packets and bytes, followed by the rule
	itself.
ipfw -a list
To list dynamic rules in addition to static rules:
ipfw -d list
To also show the expired dynamic rules:
ipfw -d -e list
To zero the counters:
ipfw zero
To zero the counters for just the rule with number
	NUM:
ipfw zero NUM
31.4.5.1. Logging Firewall Messages
Even with the logging facility enabled,
	 IPFW will not generate any rule
	 logging on its own. The firewall administrator decides
	 which rules in the ruleset will be logged, and adds the
	 log keyword to those rules. Normally
	 only deny rules are logged. It is customary to duplicate
	 the “ipfw default deny everything” rule with
	 the log keyword included as the last rule
	 in the ruleset. This way, it is possible to see all the
	 packets that did not match any of the rules in the
	 ruleset.
Logging is a two edged sword. If one is not careful,
	 an over abundance of log data or a DoS attack can fill the
	 disk with log files. Log messages are not only written to
	 syslogd, but also are displayed
	 on the root console screen and soon become annoying.
The IPFIREWALL_VERBOSE_LIMIT=5
	 kernel option limits the number of consecutive messages
	 sent to syslogd(8), concerning the packet matching of a
	 given rule. When this option is enabled in the kernel, the
	 number of consecutive messages concerning a particular rule
	 is capped at the number specified. There is nothing to be
	 gained from 200 identical log messages. With this option
	 set to five,
	 five consecutive messages concerning a particular rule
	 would be logged to syslogd and
	 the remainder identical consecutive messages would be
	 counted and posted to syslogd
	 with a phrase like the following:
last message repeated 45 times
All logged packets messages are written by default to
	 /var/log/security, which is
	 defined in /etc/syslog.conf.
31.4.5.2. Building a Rule Script
Most experienced IPFW users
	 create a file containing the rules and code them in a manner
	 compatible with running them as a script. The major benefit
	 of doing this is the firewall rules can be refreshed in mass
	 without the need of rebooting the system to activate them.
	 This method is convenient in testing new rules as the
	 procedure can be executed as many times as needed. Being a
	 script, symbolic substitution can be used for frequently
	 used values to be substituted into multiple rules.
This example script is compatible with the syntax used
	 by the sh(1), csh(1), and tcsh(1) shells.
	 Symbolic substitution fields are prefixed with a dollar sign
	 ($). Symbolic fields do not have the $
	 prefix. The value to populate the symbolic field must be
	 enclosed in double quotes ("").
Start the rules file like this:
############### start of example ipfw rules script #############
#
ipfw -q -f flush # Delete all rules
Set defaults
oif="tun0" # out interface
odns="192.0.2.11" # ISP's DNS server IP address
cmd="ipfw -q add " # build rule prefix
ks="keep-state" # just too lazy to key this each time
$cmd 00500 check-state
$cmd 00502 deny all from any to any frag
$cmd 00501 deny tcp from any to any established
$cmd 00600 allow tcp from any to any 80 out via $oif setup $ks
$cmd 00610 allow tcp from any to $odns 53 out via $oif setup $ks
$cmd 00611 allow udp from any to $odns 53 out via $oif $ks
################### End of example ipfw rules script ############
The rules are not important as the focus of this example
	 is how the symbolic substitution fields are
	 populated.
If the above example was in
	 /etc/ipfw.rules, the rules could be
	 reloaded by the following command:
sh /etc/ipfw.rules
/etc/ipfw.rules can be located
	 anywhere and the file can have any name.
The same thing could be accomplished by running these
	 commands by hand:
ipfw -q -f flush
ipfw -q add check-state
ipfw -q add deny all from any to any frag
ipfw -q add deny tcp from any to any established
ipfw -q add allow tcp from any to any 80 out via tun0 setup keep-state
ipfw -q add allow tcp from any to 192.0.2.11 53 out via tun0 setup keep-state
ipfw -q add 00611 allow udp from any to 192.0.2.11 53 out via tun0 keep-state
31.4.6. IPFW Kernel Options
In order to statically compile
	IPFW support into a custom kernel,
	refer to the instructions in Chapter 8, Configuring the FreeBSD Kernel.
	The following options are available for the
	custom kernel configuration file:
options IPFIREWALL			# enables IPFW
options IPFIREWALL_VERBOSE		# enables logging for rules with log keyword to syslogd(8)
options IPFIREWALL_VERBOSE_LIMIT=5	# limits number of logged packets per-entry
options IPFIREWALL_DEFAULT_TO_ACCEPT # sets default policy to pass what is not explicitly denied
options IPFIREWALL_NAT		# enables basic in-kernel NAT support
options LIBALIAS			# enables full in-kernel NAT support
options IPFIREWALL_NAT64		# enables in-kernel NAT64 support
options IPFIREWALL_NPTV6		# enables in-kernel IPv6 NPT support
options IPFIREWALL_PMOD		# enables protocols modification module support
options IPDIVERT			# enables NAT through natd(8)
Note:
IPFW can be loaded as
	 a kernel module: options above are built by default
	 as modules or can be set at runtime using tunables.

31.5. IPFILTER (IPF)

31.5. IPFILTER (IPF)
IPFILTER, also known as
 IPF, is a cross-platform, open source
 firewall which has been ported to several operating systems,
 including FreeBSD, NetBSD, OpenBSD, and Solaris™.
IPFILTER is a kernel-side
 firewall and NAT mechanism that can be
 controlled and monitored by userland programs. Firewall rules
 can be set or deleted using ipf,
 NAT rules can be set or deleted using
 ipnat, run-time statistics for the
 kernel parts of IPFILTER can be
 printed using ipfstat, and
 ipmon can be used to log
 IPFILTER actions to the system log
 files.
IPF was originally written using
 a rule processing logic of “the last matching rule
	wins” and only used stateless rules. Since then,
 IPF has been enhanced to include the
 quick and keep state
 options.
The IPF FAQ is at http://www.phildev.net/ipf/index.html.
 A searchable archive of the IPFilter mailing list is available
 at http://marc.info/?l=ipfilter.
This section of the Handbook focuses on
 IPF as it pertains to FreeBSD. It
 provides examples of rules that contain the
 quick and keep state
 options.
31.5.1. Enabling IPF
IPF is included in the basic
	FreeBSD install as a kernel loadable module, meaning that a
	custom kernel is not needed in order to enable
	IPF.
For users who prefer to statically compile
	IPF support into a custom kernel,
	refer to the instructions in Chapter 8, Configuring the FreeBSD Kernel.
	The following kernel options are available:
options IPFILTER
options IPFILTER_LOG
options IPFILTER_LOOKUP
options IPFILTER_DEFAULT_BLOCK
where options IPFILTER enables support
	for IPFILTER,
	options IPFILTER_LOG enables
	IPF logging using the
	ipl packet logging pseudo-device for
	every rule that has the log keyword,
	IPFILTER_LOOKUP enables
	IP pools in order to speed up
	IP lookups, and options
	 IPFILTER_DEFAULT_BLOCK changes the default
	behavior so that any packet not matching a firewall
	pass rule gets blocked.
To configure the system to enable
	IPF at boot time, add the following
	entries to /etc/rc.conf. These entries
	will also enable logging and default pass
	 all. To change the default policy to
	block all without compiling a custom
	kernel, remember to add a block all rule at
	the end of the ruleset.
ipfilter_enable="YES" # Start ipf firewall
ipfilter_rules="/etc/ipf.rules" # loads rules definition text file
ipv6_ipfilter_rules="/etc/ipf6.rules" # loads rules definition text file for IPv6
ipmon_enable="YES" # Start IP monitor log
ipmon_flags="-Ds" # D = start as daemon
 # s = log to syslog
 # v = log tcp window, ack, seq
 # n = map IP & port to names
If NAT functionality is needed, also
	add these lines:
gateway_enable="YES" # Enable as LAN gateway
ipnat_enable="YES" # Start ipnat function
ipnat_rules="/etc/ipnat.rules" # rules definition file for ipnat
Then, to start IPF now:
service ipfilter start
To load the firewall rules, specify the name of the
	ruleset file using ipf. The following
	command can be used to replace the currently running firewall
	rules:
ipf -Fa -f /etc/ipf.rules
where -Fa flushes all the internal rules
	tables and -f specifies the file containing
	the rules to load.
This provides the ability to make changes to a custom
	ruleset and update the running firewall with a fresh copy of
	the rules without having to reboot the system. This method is
	convenient for testing new rules as the procedure can be
	executed as many times as needed.
Refer to ipf(8) for details on the other flags
	available with this command.
31.5.2. IPF Rule Syntax
This section describes the IPF
	rule syntax used to create stateful rules. When creating
	rules, keep in mind that unless the quick
	keyword appears in a rule, every rule is read in order, with
	the last matching rule being the one
	that is applied. This means that even if the first rule to
	match a packet is a pass, if there is a
	later matching rule that is a block, the
	packet will be dropped. Sample rulesets can be found in
	/usr/share/examples/ipfilter.
When creating rules, a # character is
	used to mark the start of a comment and may appear at the end
	of a rule, to explain that rule's function, or on its own
	line. Any blank lines are ignored.
The keywords which are used in rules must be written in a
	specific order, from left to right. Some keywords are
	mandatory while others are optional. Some keywords have
	sub-options which may be keywords themselves and also include
	more sub-options. The keyword order is as follows, where the
	words shown in uppercase represent a variable and the words
	shown in lowercase must precede the variable that follows
	it:
ACTION DIRECTION OPTIONS proto PROTO_TYPE
	 from SRC_ADDR SRC_PORT to DST_ADDR DST_PORT
	 TCP_FLAG|ICMP_TYPE keep state STATE
This section describes each of these keywords and their
	options. It is not an exhaustive list of every possible
	option. Refer to ipf(5) for a complete description of
	the rule syntax that can be used when creating
	IPF rules and examples for using
	each keyword.
	ACTION
	The action keyword indicates what to do with the
	 packet if it matches that rule. Every rule
	 must have an action. The
	 following actions are recognized:
block: drops the packet.
pass: allows the packet.
log: generates a log
	 record.
count: counts the number of
	 packets and bytes which can provide an indication of
	 how often a rule is used.
auth: queues the packet for
	 further processing by another program.
call: provides access to
	 functions built into IPF that
	 allow more complex actions.
decapsulate: removes any headers
	 in order to process the contents of the packet.

	DIRECTION
	Next, each rule must explicitly state the direction
	 of traffic using one of these keywords:
in: the rule is applied against
	 an inbound packet.
out: the rule is applied against
	 an outbound packet.
all: the rule applies to either
	 direction.
If the system has multiple interfaces, the interface
	 can be specified along with the direction. An example
	 would be in on fxp0.

	OPTIONS
	Options are optional. However, if multiple options
	 are specified, they must be used in the order shown
	 here.
log: when performing the
	 specified ACTION, the contents of the packet's headers
	 will be written to the ipl(4) packet log
	 pseudo-device.
quick: if a packet matches this
	 rule, the ACTION specified by the rule occurs and no
	 further processing of any following rules will occur for
	 this packet.
on: must be followed by the
	 interface name as displayed by ifconfig(8). The
	 rule will only match if the packet is going through the
	 specified interface in the specified direction.
When using the
	 log keyword, the following qualifiers
	 may be used in this order:
body: indicates that the first
	 128 bytes of the packet contents will be logged after
	 the headers.
first: if the
	 log keyword is being used in
	 conjunction with a keep state option,
	 this option is recommended so that only the triggering
	 packet is logged and not every packet which matches the
	 stateful connection.
Additional options are available to specify error
	 return messages. Refer to ipf(5) for more
	 details.

	PROTO_TYPE
	The protocol type is optional. However, it is
	 mandatory if the rule needs to specify a SRC_PORT or
	 a DST_PORT as it defines the type of protocol. When
	 specifying the type of protocol, use the
	 proto keyword followed by either a
	 protocol number or name from
	 /etc/protocols.
	 Example protocol names include tcp,
	 udp, or icmp. If
	 PROTO_TYPE is specified but no SRC_PORT or DST_PORT is
	 specified, all port numbers for that protocol will match
	 that rule.

	SRC_ADDR
	The from keyword is mandatory and
	 is followed by a keyword which represents the source of
	 the packet. The source can be a hostname, an
	 IP address followed by the
	 CIDR mask, an address pool, or the
	 keyword all. Refer to ipf(5)
	 for examples.
There is no way to match ranges of
	 IP addresses which do not express
	 themselves easily using the dotted numeric form /
	 mask-length notation. The
	 net-mgmt/ipcalc package or port may
	 be used to ease the calculation of the
	 CIDR mask. Additional information is
	 available at the utility's web page: http://jodies.de/ipcalc.

	SRC_PORT
	The port number of the source is optional. However,
	 if it is used, it requires PROTO_TYPE to be first
	 defined in the rule. The port number must also be
	 preceded by the proto keyword.
A number of different comparison operators are
	 supported: = (equal to),
	 != (not equal to),
	 < (less than),
	 > (greater than),
	 <= (less than or equal to), and
	 >= (greater than or equal
	 to).
To specify port ranges, place the two port numbers
	 between <> (less than and
	 greater than), >< (greater
	 than and less than), or : (greater
	 than or equal to and less than or equal to).

	DST_ADDR
	The to keyword is mandatory and
	 is followed by a keyword which represents the
	 destination of the packet. Similar to SRC_ADDR, it can
	 be a hostname, an IP address
	 followed by the CIDR mask, an address
	 pool, or the keyword all.

	DST_PORT
	Similar to SRC_PORT, the port number of the
	 destination is optional. However, if it is used, it
	 requires PROTO_TYPE to be first defined in the rule.
	 The port number must also be preceded by the
	 proto keyword.

	TCP_FLAG|ICMP_TYPE
	If tcp is specified as the
	 PROTO_TYPE, flags can be specified as letters, where
	 each letter represents one of the possible
	 TCP flags used to determine the state
	 of a connection. Possible values are:
	 S (SYN),
	 A (ACK),
	 P (PSH),
	 F (FIN),
	 U (URG),
	 R (RST),
	 C (CWN), and
	 E (ECN).
If icmp is specified as the
	 PROTO_TYPE, the ICMP type to match
	 can be specified. Refer to ipf(5) for the
	 allowable types.

	STATE
	If a pass rule contains
	 keep state,
	 IPF will add an entry to its
	 dynamic state table and allow subsequent packets that
	 match the connection.
	 IPF can track state for
	 TCP, UDP, and
	 ICMP sessions. Any packet that
	 IPF can be certain is part of
	 an active session, even if it is a different protocol,
	 will be allowed.
In IPF, packets destined
	 to go out through the interface connected to the public
	 Internet are first checked against the dynamic state
	 table. If the packet matches the next expected packet
	 comprising an active session conversation, it exits the
	 firewall and the state of the session conversation flow
	 is updated in the dynamic state table. Packets that do
	 not belong to an already active session are checked
	 against the outbound ruleset. Packets coming in from
	 the interface connected to the public Internet are first
	 checked against the dynamic state table. If the packet
	 matches the next expected packet comprising an active
	 session, it exits the firewall and the state of the
	 session conversation flow is updated in the dynamic
	 state table. Packets that do not belong to an already
	 active session are checked against the inbound
	 ruleset.
Several keywords can be added after
	 keep state. If used, these keywords
	 set various options that control stateful filtering,
	 such as setting connection limits or connection age.
	 Refer to ipf(5) for the list of available options
	 and their descriptions.

31.5.3. Example Ruleset
This section demonstrates how to create an example ruleset
	which only allows services matching
	pass rules and blocks all others.
FreeBSD uses the loopback interface
	(lo0) and the IP
	address 127.0.0.1
	for internal communication. The firewall ruleset must contain
	rules to allow free movement of these internally used
	packets:
no restrictions on loopback interface
pass in quick on lo0 all
pass out quick on lo0 all
The public interface connected to the Internet is used to
	authorize and control access of all outbound and inbound
	connections. If one or more interfaces are cabled to private
	networks, those internal interfaces may require rules to allow
	packets originating from the LAN to flow
	between the internal networks or to the interface attached to
	the Internet. The ruleset should be organized into three
	major sections: any trusted internal interfaces, outbound
	connections through the public interface, and inbound
	connections through the public interface.
These two rules allow all traffic to pass through a
	trusted LAN interface named
	xl0:
no restrictions on inside LAN interface for private network
pass out quick on xl0 all
pass in quick on xl0 all
The rules for the public interface's outbound and inbound
	sections should have the most frequently matched rules placed
	before less commonly matched rules, with the last rule in the
	section blocking and logging all packets for that interface
	and direction.
This set of rules defines the outbound section of the
	public interface named dc0. These rules
	keep state and identify the specific services that internal
	systems are authorized for public Internet access. All the
	rules use quick and specify the
	appropriate port numbers and, where applicable, destination
	addresses.
interface facing Internet (outbound)
Matches session start requests originating from or behind the
firewall, destined for the Internet.

Allow outbound access to public DNS servers.
Replace x.x.x. with address listed in /etc/resolv.conf.
Repeat for each DNS server.
pass out quick on dc0 proto tcp from any to x.x.x. port = 53 flags S keep state
pass out quick on dc0 proto udp from any to xxx port = 53 keep state

Allow access to ISP's specified DHCP server for cable or DSL networks.
Use the first rule, then check log for the IP address of DHCP server.
Then, uncomment the second rule, replace z.z.z.z with the IP address,
and comment out the first rule
pass out log quick on dc0 proto udp from any to any port = 67 keep state
#pass out quick on dc0 proto udp from any to z.z.z.z port = 67 keep state

Allow HTTP and HTTPS
pass out quick on dc0 proto tcp from any to any port = 80 flags S keep state
pass out quick on dc0 proto tcp from any to any port = 443 flags S keep state

Allow email
pass out quick on dc0 proto tcp from any to any port = 110 flags S keep state
pass out quick on dc0 proto tcp from any to any port = 25 flags S keep state

Allow NTP
pass out quick on dc0 proto tcp from any to any port = 37 flags S keep state

Allow FTP
pass out quick on dc0 proto tcp from any to any port = 21 flags S keep state

Allow SSH
pass out quick on dc0 proto tcp from any to any port = 22 flags S keep state

Allow ping
pass out quick on dc0 proto icmp from any to any icmp-type 8 keep state

Block and log everything else
block out log first quick on dc0 all
This example of the rules in the inbound section of the
	public interface blocks all undesirable packets first. This
	reduces the number of packets that are logged by the last
	rule.
interface facing Internet (inbound)
Block all inbound traffic from non-routable or reserved address spaces
block in quick on dc0 from 192.168.0.0/16 to any #RFC 1918 private IP
block in quick on dc0 from 172.16.0.0/12 to any #RFC 1918 private IP
block in quick on dc0 from 10.0.0.0/8 to any #RFC 1918 private IP
block in quick on dc0 from 127.0.0.0/8 to any #loopback
block in quick on dc0 from 0.0.0.0/8 to any #loopback
block in quick on dc0 from 169.254.0.0/16 to any #DHCP auto-config
block in quick on dc0 from 192.0.2.0/24 to any #reserved for docs
block in quick on dc0 from 204.152.64.0/23 to any #Sun cluster interconnect
block in quick on dc0 from 224.0.0.0/3 to any #Class D & E multicast

Block fragments and too short tcp packets
block in quick on dc0 all with frags
block in quick on dc0 proto tcp all with short

block source routed packets
block in quick on dc0 all with opt lsrr
block in quick on dc0 all with opt ssrr

Block OS fingerprint attempts and log first occurrence
block in log first quick on dc0 proto tcp from any to any flags FUP

Block anything with special options
block in quick on dc0 all with ipopts

Block public pings and ident
block in quick on dc0 proto icmp all icmp-type 8
block in quick on dc0 proto tcp from any to any port = 113

Block incoming Netbios services
block in log first quick on dc0 proto tcp/udp from any to any port = 137
block in log first quick on dc0 proto tcp/udp from any to any port = 138
block in log first quick on dc0 proto tcp/udp from any to any port = 139
block in log first quick on dc0 proto tcp/udp from any to any port = 81
Any time there are logged messages on a rule with
	the log first option, run
	ipfstat -hio to evaluate how many times the
	rule has been matched. A large number of matches may indicate
	that the system is under attack.
The rest of the rules in the inbound section define which
	connections are allowed to be initiated from the Internet.
	The last rule denies all connections which were not explicitly
	allowed by previous rules in this section.
Allow traffic in from ISP's DHCP server. Replace z.z.z.z with
the same IP address used in the outbound section.
pass in quick on dc0 proto udp from z.z.z.z to any port = 68 keep state

Allow public connections to specified internal web server
pass in quick on dc0 proto tcp from any to x.x.x.x port = 80 flags S keep state

Block and log only first occurrence of all remaining traffic.
block in log first quick on dc0 all
31.5.4. Configuring NAT
To enable NAT, add these statements
	to /etc/rc.conf and specify the name of
	the file containing the NAT rules:
gateway_enable="YES"
ipnat_enable="YES"
ipnat_rules="/etc/ipnat.rules"
NAT rules are flexible and can
	accomplish many different things to fit the needs of both
	commercial and home users. The rule syntax presented here has
	been simplified to demonstrate common usage. For a complete
	rule syntax description, refer to ipnat(5).
The basic syntax for a NAT rule is as
	follows, where map starts the rule and
	IF should be replaced with the
	name of the external interface:
map IF LAN_IP_RANGE -> PUBLIC_ADDRESS
The LAN_IP_RANGE is the range
	of IP addresses used by internal clients.
	Usually, it is a private address range such as 192.168.1.0/24. The
	PUBLIC_ADDRESS can either be the
	static external IP address or the keyword
	0/32 which represents the
	IP address assigned to
	IF.
In IPF, when a packet arrives
	at the firewall from the LAN with a public
	destination, it first passes through the outbound rules of the
	firewall ruleset. Then, the packet is passed to the
	NAT ruleset which is read from the top
	down, where the first matching rule wins.
	IPF tests each
	NAT rule against the packet's interface
	name and source IP address. When a
	packet's interface name matches a NAT rule,
	the packet's source IP address in the
	private LAN is checked to see if it falls
	within the IP address range specified in
	LAN_IP_RANGE. On a match, the
	packet has its source IP address rewritten
	with the public IP address specified by
	PUBLIC_ADDRESS.
	IPF posts an entry in its internal
	NAT table so that when the packet returns
	from the Internet, it can be mapped back to its original
	private IP address before being passed to
	the firewall rules for further processing.
For networks that have large numbers of internal systems
	or multiple subnets, the process of funneling every private
	IP address into a single public
	IP address becomes a resource problem.
	Two methods are available to relieve this issue.
The first method is to assign a range of ports to use as
	source ports. By adding the portmap
	keyword, NAT can be directed to only use
	source ports in the specified range:
map dc0 192.168.1.0/24 -> 0/32 portmap tcp/udp 20000:60000
Alternately, use the auto keyword
	which tells NAT to determine the ports
	that are available for use:
map dc0 192.168.1.0/24 -> 0/32 portmap tcp/udp auto
The second method is to use a pool of public addresses.
	This is useful when there are too many
	LAN addresses to fit into a single public
	address and a block of public IP addresses
	is available. These public addresses can be used as a pool
	from which NAT selects an
	IP address as a packet's address is
	mapped on its way out.
The range of public IP addresses can
	be specified using a netmask or CIDR
	notation. These two rules are equivalent:
map dc0 192.168.1.0/24 -> 204.134.75.0/255.255.255.0
map dc0 192.168.1.0/24 -> 204.134.75.0/24
A common practice is to have a publically accessible web
	server or mail server segregated to an internal network
	segment. The traffic from these servers still has to undergo
	NAT, but port redirection is needed to
	direct inbound traffic to the correct server. For example, to
	map a web server using the internal address 10.0.10.25 to its public
	IP address of 20.20.20.5, use this
	rule:
rdr dc0 20.20.20.5/32 port 80 -> 10.0.10.25 port 80
If it is the only web server, this rule would also work as
	it redirects all external HTTP requests to
	10.0.10.25:
rdr dc0 0.0.0.0/0 port 80 -> 10.0.10.25 port 80
IPF has a built in
	FTP proxy which can be used with
	NAT. It monitors all outbound traffic for
	active or passive FTP connection requests
	and dynamically creates temporary filter rules containing the
	port number used by the FTP data channel.
	This eliminates the need to open large ranges of high order
	ports for FTP connections.
In this example, the first rule calls the proxy for
	outbound FTP traffic from the internal
	LAN. The second rule passes the
	FTP traffic from the firewall to the
	Internet, and the third rule handles all
	non-FTP traffic from the internal
	LAN:
map dc0 10.0.10.0/29 -> 0/32 proxy port 21 ftp/tcp
map dc0 0.0.0.0/0 -> 0/32 proxy port 21 ftp/tcp
map dc0 10.0.10.0/29 -> 0/32
The FTP map rules go
	before the NAT rule so that when a packet
	matches an FTP rule, the
	FTP proxy creates temporary filter rules to
	let the FTP session packets pass and
	undergo NAT. All LAN packets that are not
	FTP will not match the
	FTP rules but will undergo
	NAT if they match the third rule.
Without the FTP proxy, the following
	firewall rules would instead be needed. Note that without the
	proxy, all ports above 1024 need to be
	allowed:
Allow out LAN PC client FTP to public Internet
Active and passive modes
pass out quick on rl0 proto tcp from any to any port = 21 flags S keep state

Allow out passive mode data channel high order port numbers
pass out quick on rl0 proto tcp from any to any port > 1024 flags S keep state

Active mode let data channel in from FTP server
pass in quick on rl0 proto tcp from any to any port = 20 flags S keep state
Whenever the file containing the NAT
	rules is edited, run ipnat with
	-CF to delete the current
	NAT rules and flush the contents of the
	dynamic translation table. Include -f and
	specify the name of the NAT ruleset to
	load:
ipnat -CF -f /etc/ipnat.rules
To display the NAT statistics:
ipnat -s
To list the NAT table's current
	mappings:
ipnat -l
To turn verbose mode on and display information relating
	to rule processing and active rules and table entries:
ipnat -v
31.5.5. Viewing IPF Statistics
IPF includes ipfstat(8)
	which can be used to retrieve
	and display statistics which are gathered
	as packets match rules as they go through the
	firewall. Statistics are accumulated since the firewall was
	last started or since the last time they
	were reset to zero using ipf
	 -Z.
The default ipfstat output looks
	like this:
input packets: blocked 99286 passed 1255609 nomatch 14686 counted 0
 output packets: blocked 4200 passed 1284345 nomatch 14687 counted 0
 input packets logged: blocked 99286 passed 0
 output packets logged: blocked 0 passed 0
 packets logged: input 0 output 0
 log failures: input 3898 output 0
 fragment state(in): kept 0 lost 0
 fragment state(out): kept 0 lost 0
 packet state(in): kept 169364 lost 0
 packet state(out): kept 431395 lost 0
 ICMP replies: 0 TCP RSTs sent: 0
 Result cache hits(in): 1215208 (out): 1098963
 IN Pullups succeeded: 2 failed: 0
 OUT Pullups succeeded: 0 failed: 0
 Fastroute successes: 0 failures: 0
 TCP cksum fails(in): 0 (out): 0
 Packet log flags set: (0)
Several options are available. When supplied with either
	-i for inbound or -o for
	outbound, the command will retrieve and display the
	appropriate list of filter rules currently installed and in
	use by the kernel. To also see the rule numbers, include
	-n. For example, ipfstat
	 -on displays the outbound rules table with rule
	numbers:
@1 pass out on xl0 from any to any
@2 block out on dc0 from any to any
@3 pass out quick on dc0 proto tcp/udp from any to any keep state
Include -h to prefix each rule with a
	count of how many times the rule was matched. For example,
	ipfstat -oh displays the outbound internal
	rules table, prefixing each rule with its usage count:
2451423 pass out on xl0 from any to any
354727 block out on dc0 from any to any
430918 pass out quick on dc0 proto tcp/udp from any to any keep state
To display the state table in a format similar to
	top(1), use ipfstat -t. When the
	firewall is under attack, this option provides the ability to
	identify and see the attacking packets. The optional
	sub-flags give the ability to select the destination or source
	IP, port, or protocol to be monitored in
	real time. Refer to ipfstat(8) for details.
31.5.6. IPF Logging
IPF provides
	ipmon, which can be used to write the
	firewall's logging information in a human readable format. It
	requires that options IPFILTER_LOG be first
	added to a custom kernel using the instructions in Chapter 8, Configuring the FreeBSD Kernel.
This command is typically run in daemon mode in order to
	provide a continuous system log file so that logging of past
	events may be reviewed. Since FreeBSD has a built in
	syslogd(8) facility to automatically rotate system logs,
	the default rc.conf
	ipmon_flags statement uses
	-Ds:
ipmon_flags="-Ds" # D = start as daemon
 # s = log to syslog
 # v = log tcp window, ack, seq
 # n = map IP & port to names
Logging provides the ability to review, after the fact,
	information such as which packets were dropped, what addresses
	they came from, and where they were going. This information
	is useful in tracking down attackers.
Once the logging facility is enabled in
	rc.conf and started with service
	 ipmon start, IPF will
	only log the rules which contain the log
	keyword. The firewall administrator decides which rules in
	the ruleset should be logged and normally only deny rules are
	logged. It is customary to include the
	log keyword in the last rule in the
	ruleset. This makes it possible to see all the packets that
	did not match any of the rules in the ruleset.
By default, ipmon -Ds mode uses
	local0 as the logging facility. The
	following logging levels can be used to further segregate the
	logged data:
LOG_INFO - packets logged using the "log" keyword as the action rather than pass or block.
LOG_NOTICE - packets logged which are also passed
LOG_WARNING - packets logged which are also blocked
LOG_ERR - packets which have been logged and which can be considered short due to an incomplete header
In order to setup IPF to
	log all data to /var/log/ipfilter.log,
	first create the empty file:
touch /var/log/ipfilter.log
Then, to write all logged messages to the specified file,
	add the following statement to
	/etc/syslog.conf:
local0.* /var/log/ipfilter.log
To activate the changes and instruct syslogd(8)
	to read the modified /etc/syslog.conf,
	run service syslogd reload.
Do not forget to edit
	/etc/newsyslog.conf to rotate the new
	log file.
Messages generated by ipmon consist
	of data fields separated by white space. Fields common to
	all messages are:
	The date of packet receipt.

	The time of packet receipt. This is in the form
	 HH:MM:SS.F, for hours, minutes, seconds, and fractions
	 of a second.

	The name of the interface that processed the
	 packet.

	The group and rule number of the rule in the format
	 @0:17.

	The action: p for passed,
	 b for blocked, S for
	 a short packet, n did not match any
	 rules, and L for a log rule.

	The addresses written as three fields: the source
	 address and port separated by a comma, the -> symbol,
	 and the destination address and port. For example:
	 209.53.17.22,80 ->
	 198.73.220.17,1722.

	PR followed by the protocol name
	 or number: for example, PR tcp.

	len followed by the header length
	 and total length of the packet: for example,
	 len 20 40.

If the packet is a TCP packet, there
	will be an additional field starting with a hyphen followed by
	letters corresponding to any flags that were set. Refer to
	ipf(5) for a list of letters and their flags.
If the packet is an ICMP packet, there
	will be two fields at the end: the first always being
	“icmp” and the next being the
	ICMP message and sub-message type,
	separated by a slash. For example:
	icmp 3/3 for a port unreachable
	message.
31.6. Blacklistd

31.6. Blacklistd
Blacklistd is a daemon listening to sockets to receive
 notifications from other daemons about connection attempts
 that failed or were successful. It is most widely used in
 blocking too many connection attempts on open ports. A
 prime example is SSH running on
 the internet getting a lot of requests from bots or scripts
 trying to guess passwords and gain access. Using
 blacklistd, the daemon can notify
 the firewall to create a filter rule to block excessive
 connection attempts from a single source after a number of
 tries. Blacklistd was first developed on
 NetBSD and appeared there in version 7. FreeBSD 11
 imported blacklistd from NetBSD.
This chapter describes how to set up blacklistd,
 configure it, and provides examples on how to use it.
 Readers should be familiar with basic firewall concepts like
 rules. For details, refer to the firewall chapter. PF is
 used in the examples, but other firewalls available on
 FreeBSD should be able to work with blacklistd, too.
31.6.1. Enabling Blacklistd
The main configuration for blacklistd is stored in
	blacklistd.conf(5). Various command line options are
	also available to change blacklistd's run-time behavior.
	Persistent configuration across reboots should be stored
	in /etc/blacklistd.conf. To enable
	the daemon during system boot, add a
	blacklistd_enable line to
	/etc/rc.conf like this:
sysrc blacklistd_enable=yes
To start the service manually, run this command:
service blacklistd start
31.6.2. Creating a Blacklistd Ruleset
Rules for blacklistd are configured in
	blacklistd.conf(5) with one entry per line. Each
	rule contains a tuple separated by spaces or tabs. Rules
	either belong to a local or a
	remote, which applies to the machine
	where blacklistd is running or an outside source,
	respectively.
31.6.2.1. Local Rules
An example blacklistd.conf entry for a local rule
	 looks like this:
[local]
ssh stream * * * 3 24h
All rules that follow the [local]
	 section are treated as local rules (which is the
	 default), applying to the local machine. When a
	 [remote] section is encountered, all
	 rules that follow it are handled as remote machine
	 rules.
Seven fields define a rule separated by either tabs
	 or spaces. The first four fields identify the traffic
	 that should be blacklisted. The three fields that
	 follow define backlistd's behavior. Wildcards are
	 denoted as asterisks (*), matching
	 anything in this field. The first field defines the
	 location. In local rules, these are the network ports.
	 The syntax for the location field is as follows:
[address|interface][/mask][:port]
Adressses can be specified as IPv4 in numeric format
	 or IPv6 in square brackets. An interface name like
	 em0 can also
	 be used.
The socket type is defined by the second field. TCP
	 sockets are of type stream, whereas UDP
	 is denoted as dgram. The example above
	 uses TCP, since SSH is using that protocol.
A protocol can be used in the third field of a
	 blacklistd rule. The following protocols can be used:
	 tcp, udp,
	 tcp6, udp6, or
	 numeric. A wildcard, like in the example, is typically
	 used to match all protocols unless there is a reason to
	 distinguish traffic by a certain protocol.
In the fourth field, the effective user or owner of
	 the daemon process that is reporting the event is defined.
	 The username or UID can be used here,
	 as well as a wildcard (see example rule above).
The packet filter rule name is declared by the fifth
	 field, which starts the behavior part of the rule. By
	 default, blacklistd puts all blocks under a pf anchor
	 called blacklistd in
	 pf.conf like this:
anchor "blacklistd/*" in on $ext_if
block in
pass out
For separate blacklists, an anchor name can be used in
	 this field. In other cases, the wildcard will suffice.
	 When a name starts with a hyphen (-) it
	 means that an anchor with the default rule name prepended
	 should be used. A modified example from the above using
	 the hyphen would look like this:
ssh stream * * -ssh 3 24h
With such a rule, any new blacklist rules are added to
	 an anchor called blacklistd-ssh.
To block whole subnets for a single rule violation, a
	 / in the rule name can be used. This
	 causes the remaining portion of the name to be interpreted
	 as the mask to be applied to the address specified in
	 the rule. For example, this rule would block every
	 address adjoining /24.
22 stream tcp * */24 3 24h
Note:
It is important to specify the proper
	 protocol here. IPv4 and IPv6 treat /24 differently,
	 that is the reason why * cannot be
	 used in the third field for this rule.

This rule defines that if any one host in that network
	 is misbehaving, everything else on that network will be
	 blocked, too.
The sixth field, called nfail, sets
	 the number of login failures required to blacklist the
	 remote IP in question. When a wildcard is used at this
	 position, it means that blocks will never happen. In the
	 example rule above, a limit of three is defined meaning
	 that after three attempts to log into
	 SSH on one connection, the IP
	 is blocked.
The last field in a blacklistd rule definition
	 specifies how long a host is blacklisted. The default
	 unit is seconds, but suffixes like m,
	 h, and d can also be
	 specified for minutes, hours, and days,
	 respectively.
The example rule in its entirety means that after
	 three times authenticating to
	 SSH will result in a new PF
	 block rule for that host. Rule matches are performed by
	 first checking local rules one after another, from most
	 specific to least specific. When a match occurs, the
	 remote rules are applied and the name,
	 nfail, and disable fields are changed
	 by the remote rule that matched.
31.6.2.2. Remote Rules
Remote rules are used to specify how blacklistd
	 changes its behavior depending on the remote host
	 currently being evaluated. Each field in a remote rule
	 is the same as in a local rule. The only difference is
	 in the way blacklistd is using them. To explain it,
	 this example rule is used:
[remote]
203.0.113.128/25 * * * =/25 = 48h
The address field can be an IP address (either v4 or
	 v6), a port or both. This allows setting special rules
	 for a specific remote address range like in this example.
	 The fields for type, protocol and owner are identically
	 interpreted as in the local rule.
The name fields is different though: the equal sign
	 (=) in a remote rule tells blacklistd
	 to use the value from the matching local rule. It means
	 that the firewall rule entry is taken and the
	 /25 prefix (a
	 netmask of 255.255.255.128) is added.
	 When a connection from that address range is blacklisted,
	 the entire subnet is affected. A PF anchor name can also
	 be used here, in which case blacklistd will add rules for
	 this address block to the anchor of that name. The
	 default table is used when a wildcard is specified.
A custom number of failures in the
	 nfail column can be defined for an
	 address. This is useful for exceptions to a specific
	 rule, to maybe allow someone a less strict application
	 of rules or a bit more leniency in login tries.
	 Blocking is disabled when an asterisk is used in this
	 sixth field.
Remote rules allow a stricter enforcement of limits
	 on attempts to log in compared to attempts coming from a
	 local network like an office.
31.6.3. Blacklistd Client Configuration
There are a few software packages in FreeBSD that can
	 utilize blacklistd's functionality. The two most
	 prominent ones are ftpd(8) and sshd(8) to block
	 excessive connection attempts. To activate blacklistd in
	 the SSH daemon, add the following line to
	 /etc/ssh/sshd_config:
UseBlacklist yes
Restart sshd afterwards to make these changes take
	 effect.
Blacklisting for ftpd(8) is enabled using
	 -B, either in
	 /etc/inetd.conf or as a
	 flag in /etc/rc.conf like
	 this:
ftpd_flags="-B"
That is all that is needed to make these programs
	 talk to blacklistd.
31.6.4. Blacklistd Management
Blacklistd provides the user with a management utility
	 called blacklistctl(8). It displays blocked
	 addresses and networks that are blacklisted by the rules
	 defined in blacklistd.conf(5). To see the
	 list of currently blocked hosts, use
	 dump combined with -b
	 like this.
blacklistctl dump -b
 address/ma:port id nfail last access
213.0.123.128/25:22 OK 6/3 2019/06/08 14:30:19
This example shows that there were 6 out of three
	 permitted attempts on port 22 coming from the address
	 range 213.0.123.128/25. There
	 are more attempts listed than are allowed because SSH
	 allows a client to try multiple logins on a single TCP
	 connection. A connection that is currently going on is
	 not stopped by blacklistd. The last connection attempt is
	 listed in the last access column of the
	 output.
To see the remaining time that this host will be on
	 the blacklist, add -r to the previous
	 command.
blacklistctl dump -br
 address/ma:port id nfail remaining time
213.0.123.128/25:22 OK 6/3 36s
In this example, there are 36s seconds left until this
	 host will not be blocked any more.
31.6.5. Removing Hosts from the Block List
Sometimes it is necessary to remove a host from the
	 block list before the remaining time expires.
	 Unfortunately, there is no functionality in blacklistd to
	 do that. However, it is possible to remove the address
	 from the PF table using pfctl. For each blocked port,
	 there is a child anchor inside the blacklistd anchor
	 defined in /etc/pf.conf. For
	 example, if there is a child anchor for blocking port 22
	 it is called blacklistd/22. There is a
	 table inside that child anchor that contains the blocked
	 addresses. This table is called port followed by the port
	 number. In this example, it would be called
	 port22. With that information at hand,
	 it is now possible to use pfctl(8) to display all
	 addresses listed like this:
pfctl -a blacklistd/22 -t port22 -T show
...
213.0.123.128/25
...
After identifying the address to be unblocked from the
	 list, the following command removes it from the list:
pfctl -a blacklistd/22 -t port22 -T delete 213.0.123.128/25
The address is now removed from PF, but will still
	 show up in the blacklistctl list, since it does not know
	 about any changes made in PF. The entry in blacklistd's
	 database will eventually expire and be removed from its
	 output eventually. The entry will be added again if the
	 host is matching one of the block rules in blacklistd
	 again.
Chapter 32. Advanced Networking

Chapter 32. Advanced Networking
32.1. Synopsis
This chapter covers a number of advanced networking
 topics.
After reading this chapter, you will know:
	The basics of gateways and routes.

	How to set up USB tethering.

	How to set up IEEE® 802.11 and Bluetooth®
	 devices.

	How to make FreeBSD act as a bridge.

	How to set up network PXE
	 booting.

	How to set up IPv6 on a FreeBSD
	 machine.

	How to enable and utilize the features of the Common
	 Address Redundancy Protocol (CARP) in
	 FreeBSD.

	How to configure multiple VLANs on
	 FreeBSD.

	Configure bluetooth headset.

Before reading this chapter, you should:
	Understand the basics of the
	 /etc/rc scripts.

	Be familiar with basic network terminology.

	Know how to configure and install a new FreeBSD kernel
	 (Chapter 8, Configuring the FreeBSD Kernel).

	Know how to install additional third-party software
	 (Chapter 4, Installing Applications: Packages and Ports).

32.2. Gateways and Routes

32.2. Gateways and Routes
Contributed by Coranth Gryphon. Routing is the mechanism that allows
 a system to find the network path to another system. A
 route is a defined pair of addresses
 which represent the “destination” and a
 “gateway”. The route indicates that when trying
 to get to the specified destination, send the packets through
 the specified gateway. There are three types of destinations:
 individual hosts, subnets, and “default”. The
 “default route” is used if no other routes apply.
 There are also three types of gateways: individual hosts,
 interfaces, also called links, and Ethernet hardware
 (MAC) addresses. Known routes are stored in
 a routing table.
This section provides an overview of routing basics. It
 then demonstrates how to configure a FreeBSD system as a router and
 offers some troubleshooting tips.
32.2.1. Routing Basics
To view the routing table of a FreeBSD system, use
	netstat(1):
% netstat -r
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default outside-gw UGS 37 418 em0
localhost localhost UH 0 181 lo0
test0 0:e0:b5:36:cf:4f UHLW 5 63288 re0 77
10.20.30.255 link#1 UHLW 1 2421
example.com link#1 UC 0 0
host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0
host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 =>
host2.example.com link#1 UC 0 0
224 link#1 UC 0 0
The entries in this example are as follows:
	default
	The first route in this table specifies the
	 default route. When the local system
	 needs to make a connection to a remote host, it checks
	 the routing table to determine if a known path exists.
	 If the remote host matches an entry in the table, the
	 system checks to see if it can connect using the
	 interface specified in that entry.
If the destination does not match an entry, or if
	 all known paths fail, the system uses the entry for the
	 default route. For hosts on a local area network, the
	 Gateway field in the default route is
	 set to the system which has a direct connection to the
	 Internet. When reading this entry, verify that the
	 Flags column indicates that the
	 gateway is usable (UG).
The default route for a machine which itself is
	 functioning as the gateway to the outside world will be
	 the gateway machine at the Internet Service Provider
	 (ISP).

	localhost
	The second route is the localhost
	 route. The interface specified in the
	 Netif column for
	 localhost is
	 lo0, also known as the loopback
	 device. This indicates that all traffic for this
	 destination should be internal, rather than sending it
	 out over the network.

	MAC address
	The addresses beginning with 0:e0: are
	 MAC addresses. FreeBSD will
	 automatically identify any hosts,
	 test0 in the example, on the
	 local Ethernet and add a route for that host over the
	 Ethernet interface, re0. This type
	 of route has a timeout, seen in the
	 Expire column, which is used if the
	 host does not respond in a specific amount of time.
	 When this happens, the route to this host will be
	 automatically deleted. These hosts are identified using
	 the Routing Information Protocol
	 (RIP), which calculates routes to
	 local hosts based upon a shortest path
	 determination.

	subnet
	FreeBSD will automatically add subnet routes for the
	 local subnet. In this example, 10.20.30.255 is the
	 broadcast address for the subnet 10.20.30 and
	 example.com is the
	 domain name associated with that subnet. The
	 designation link#1 refers to the
	 first Ethernet card in the machine.
Local network hosts and local subnets have their
	 routes automatically configured by a daemon called
	 routed(8). If it is not running, only routes which
	 are statically defined by the administrator will
	 exist.

	host
	The host1 line refers to the host
	 by its Ethernet address. Since it is the sending host,
	 FreeBSD knows to use the loopback interface
	 (lo0) rather than the Ethernet
	 interface.
The two host2 lines represent
	 aliases which were created using ifconfig(8). The
	 => symbol after the
	 lo0 interface says that an alias
	 has been set in addition to the loopback address. Such
	 routes only show up on the host that supports the alias
	 and all other hosts on the local network will have a
	 link#1 line for such routes.

	224
	The final line (destination subnet 224) deals with
	 multicasting.

Various attributes of each route can be seen in the
	Flags column. Table 32.1, “Commonly Seen Routing Table Flags”
	summarizes some of these flags and their meanings:
Table 32.1. Commonly Seen Routing Table Flags
	Command	Purpose
	U	The route is active (up).
	H	The route destination is a single host.
	G	Send anything for this destination on to this
		gateway, which will figure out from there where to
		send it.
	S	This route was statically configured.
	C	Clones a new route based upon this route for
		machines to connect to. This type of route is
		normally used for local networks.
	W	The route was auto-configured based upon a local
		area network (clone) route.
	L	Route involves references to Ethernet (link)
		hardware.

On a FreeBSD system, the default route can defined in
	/etc/rc.conf by specifying the
	IP address of the default gateway:
defaultrouter="10.20.30.1"
It is also possible to manually add the route using
	route:
route add default 10.20.30.1
Note that manually added routes will not survive a reboot.
	For more information on manual manipulation of network
	routing tables, refer to route(8).
32.2.2. Configuring a Router with Static Routes
Contributed by Al Hoang. A FreeBSD system can be configured as the default gateway, or
	router, for a network if it is a dual-homed system. A
	dual-homed system is a host which resides on at least two
	different networks. Typically, each network is connected to a
	separate network interface, though IP
	aliasing can be used to bind multiple addresses, each on a
	different subnet, to one physical interface.
In order for the system to forward packets between
	interfaces, FreeBSD must be configured as a router. Internet
	standards and good engineering practice prevent the FreeBSD
	Project from enabling this feature by default, but it can be
	configured to start at boot by adding this line to
	/etc/rc.conf:
gateway_enable="YES" # Set to YES if this host will be a gateway
To enable routing now, set the sysctl(8) variable
	net.inet.ip.forwarding to
	1. To stop routing, reset this variable to
	0.
The routing table of a router needs additional routes so
	it knows how to reach other networks. Routes can be either
	added manually using static routes or routes can be
	automatically learned using a routing protocol. Static routes
	are appropriate for small networks and this section describes
	how to add a static routing entry for a small network.
Note:
For large networks, static routes quickly become
	 unscalable. FreeBSD comes with the standard
	 BSD routing daemon routed(8), which
	 provides the routing protocols RIP,
	 versions 1 and 2, and IRDP. Support for
	 the BGP and OSPF
	 routing protocols can be installed using the
	 net/zebra package or port.

Consider the following network:

In this scenario, RouterA is a
	FreeBSD machine that is acting as a router to the rest of the
	Internet. It has a default route set to 10.0.0.1 which allows it to
	connect with the outside world.
	RouterB is already configured to use
	192.168.1.1 as its
	default gateway.
Before adding any static routes, the routing table on
	RouterA looks like this:
% netstat -nr
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 10.0.0.1 UGS 0 49378 xl0
127.0.0.1 127.0.0.1 UH 0 6 lo0
10.0.0.0/24 link#1 UC 0 0 xl0
192.168.1.0/24 link#2 UC 0 0 xl1
With the current routing table,
	RouterA does not have a route to the
	192.168.2.0/24
	network. The following command adds the Internal Net
	 2 network to RouterA's
	routing table using 192.168.1.2 as the next
	hop:
route add -net 192.168.2.0/24 192.168.1.2
Now, RouterA can reach any host
	on the 192.168.2.0/24 network.
	However, the routing information will not persist if the FreeBSD
	system reboots. If a static route needs to be persistent, add
	it to /etc/rc.conf:
Add Internal Net 2 as a persistent static route
static_routes="internalnet2"
route_internalnet2="-net 192.168.2.0/24 192.168.1.2"
The static_routes configuration
	variable is a list of strings separated by a space, where each
	string references a route name. The variable
	route_internalnet2
	contains the static route for that route name.
Using more than one string in
	static_routes creates multiple static
	routes. The following shows an example of adding static
	routes for the 192.168.0.0/24 and
	192.168.1.0/24
	networks:
static_routes="net1 net2"
route_net1="-net 192.168.0.0/24 192.168.0.1"
route_net2="-net 192.168.1.0/24 192.168.1.1"
32.2.3. Troubleshooting
When an address space is assigned to a network, the
	service provider configures their routing tables so that all
	traffic for the network will be sent to the link for the site.
	But how do external sites know to send their packets to the
	network's ISP?
There is a system that keeps track of all assigned
	address spaces and defines their point of connection to the
	Internet backbone, or the main trunk lines that carry Internet
	traffic across the country and around the world. Each
	backbone machine has a copy of a master set of tables, which
	direct traffic for a particular network to a specific
	backbone carrier, and from there down the chain of service
	providers until it reaches a particular network.
It is the task of the service provider to advertise to
	the backbone sites that they are the point of connection, and
	thus the path inward, for a site. This is known as route
	propagation.
Sometimes, there is a problem with route propagation and
	some sites are unable to connect. Perhaps the most useful
	command for trying to figure out where routing is breaking
	down is traceroute. It is useful when
	ping fails.
When using traceroute, include the
	address of the remote host to connect to. The output will
	show the gateway hosts along the path of the attempt,
	eventually either reaching the target host, or terminating
	because of a lack of connection. For more information, refer
	to traceroute(8).
32.2.4. Multicast Considerations
FreeBSD natively supports both multicast applications and
	multicast routing. Multicast applications do not require any
	special configuration in order to run on FreeBSD. Support for
	multicast routing requires that the following option be
	compiled into a custom kernel:
options MROUTING
The multicast routing daemon,
	mrouted can be installed using the
	net/mrouted package or port. This daemon
	implements the DVMRP multicast routing
	protocol and is configured by editing
	/usr/local/etc/mrouted.conf in order to
	set up the tunnels and DVMRP. The
	installation of mrouted also
	installs map-mbone and
	mrinfo, as well as their associated
	man pages. Refer to these for configuration examples.
Note:
DVMRP has largely been replaced by
	 the PIM protocol in many multicast
	 installations. Refer to pim(4) for more
	 information.

32.4. USB Tethering

32.4. USB Tethering
Many cellphones provide the option to share their data
 connection over USB (often called "tethering"). This feature
 uses one of RNDIS, CDC,
 or a custom Apple® iPhone®/iPad®
 protocol.
	Android™ devices generally use the urndis(4)
	 driver.

	Apple® devices use the ipheth(4) driver.

	Older devices will often use the cdce(4)
	 driver.

Before attaching a device, load the appropriate driver
 into the kernel:
kldload if_urndis
kldload if_cdce
kldload if_ipheth
Once the device is attached
 ue0 will be
 available for use like a normal network device. Be sure that
 the “USB tethering” option is enabled on the
 device.
To make this change permanent and load the driver as a
 module at boot time, place the appropriate line of the following
 in /boot/loader.conf:
if_urndis_load="YES"
if_cdce_load="YES"
if_ipheth_load="YES"
32.5. Bluetooth

32.5. Bluetooth
Written by Pav Lucistnik. Bluetooth is a wireless technology for creating personal
 networks operating in the 2.4 GHz unlicensed band, with a
 range of 10 meters. Networks are usually formed ad-hoc from
 portable devices such as cellular phones, handhelds, and
 laptops. Unlike Wi-Fi wireless technology, Bluetooth offers
 higher level service profiles, such as
 FTP-like file servers, file pushing, voice
 transport, serial line emulation, and more.
This section describes the use of a USB
 Bluetooth dongle on a FreeBSD system. It then describes the
 various Bluetooth protocols and utilities.
32.5.1. Loading Bluetooth Support
The Bluetooth stack in FreeBSD is implemented using the
	netgraph(4) framework. A broad variety of Bluetooth
	USB dongles is supported by ng_ubt(4).
	Broadcom BCM2033 based Bluetooth devices are supported by the
	ubtbcmfw(4) and ng_ubt(4) drivers. The 3Com
	Bluetooth PC Card 3CRWB60-A is supported by the
	ng_bt3c(4) driver. Serial and UART based Bluetooth
	devices are supported by sio(4), ng_h4(4), and
	hcseriald(8).
Before attaching a device, determine which of the above
	drivers it uses, then load the driver. For example, if the
	device uses the ng_ubt(4) driver:
kldload ng_ubt
If the Bluetooth device will be attached to the system
	during system startup, the system can be configured to load
	the module at boot time by adding the driver to
	/boot/loader.conf:
ng_ubt_load="YES"
Once the driver is loaded, plug in the
	USB dongle. If the driver load was
	successful, output similar to the following should appear on
	the console and in
	/var/log/messages:
ubt0: vendor 0x0a12 product 0x0001, rev 1.10/5.25, addr 2
ubt0: Interface 0 endpoints: interrupt=0x81, bulk-in=0x82, bulk-out=0x2
ubt0: Interface 1 (alt.config 5) endpoints: isoc-in=0x83, isoc-out=0x3,
 wMaxPacketSize=49, nframes=6, buffer size=294
To start and stop the Bluetooth stack, use its startup
	script. It is a good idea to stop the stack before unplugging
	the device. Starting the bluetooth stack might require
	hcsecd(8) to be started. When starting the stack, the
	output should be similar to the following:
service bluetooth start ubt0
BD_ADDR: 00:02:72:00:d4:1a
Features: 0xff 0xff 0xf 00 00 00 00 00
<3-Slot> <5-Slot> <Encryption> <Slot offset>
<Timing accuracy> <Switch> <Hold mode> <Sniff mode>
<Park mode> <RSSI> <Channel quality> <SCO link>
<HV2 packets> <HV3 packets> <u-law log> <A-law log> <CVSD>
<Paging scheme> <Power control> <Transparent SCO data>
Max. ACL packet size: 192 bytes
Number of ACL packets: 8
Max. SCO packet size: 64 bytes
Number of SCO packets: 8
32.5.2. Finding Other Bluetooth Devices
The Host Controller Interface (HCI)
	provides a uniform method for accessing Bluetooth baseband
	capabilities. In FreeBSD, a netgraph HCI node
	is created for each Bluetooth device. For more details, refer
	to ng_hci(4).
One of the most common tasks is discovery of Bluetooth
	devices within RF proximity. This
	operation is called inquiry. Inquiry and
	other HCI related operations are done using
	hccontrol(8). The example below shows how to find out
	which Bluetooth devices are in range. The list of devices
	should be displayed in a few seconds. Note that a remote
	device will only answer the inquiry if it is set to
	discoverable mode.
% hccontrol -n ubt0hci inquiry
Inquiry result, num_responses=1
Inquiry result #0
 BD_ADDR: 00:80:37:29:19:a4
 Page Scan Rep. Mode: 0x1
 Page Scan Period Mode: 00
 Page Scan Mode: 00
 Class: 52:02:04
 Clock offset: 0x78ef
Inquiry complete. Status: No error [00]
The BD_ADDR is the unique address of a
	Bluetooth device, similar to the MAC
	address of a network card. This address is needed for further
	communication with a device and it is possible to assign a
	human readable name to a BD_ADDR.
	Information regarding the known Bluetooth hosts is contained
	in /etc/bluetooth/hosts. The following
	example shows how to obtain the human readable name that was
	assigned to the remote device:
% hccontrol -n ubt0hci remote_name_request 00:80:37:29:19:a4
BD_ADDR: 00:80:37:29:19:a4
Name: Pav's T39
If an inquiry is performed on a remote Bluetooth device,
	it will find the computer as
	“your.host.name (ubt0)”. The name assigned to
	the local device can be changed at any time.
Remote devices can be assigned aliases in
	/etc/bluetooth/hosts. More information
	about /etc/bluetooth/hosts file might be
	found in bluetooth.hosts(5).
The Bluetooth system provides a point-to-point connection
	between two Bluetooth units, or a point-to-multipoint
	connection which is shared among several Bluetooth devices.
	The following example shows how to create a connection to a
	remote device:
% hccontrol -n ubt0hci create_connection BT_ADDR
create_connection accepts
	BT_ADDR as well as host aliases in
	/etc/bluetooth/hosts.
The following example shows how to obtain the list of
	active baseband connections for the local device:
% hccontrol -n ubt0hci read_connection_list
Remote BD_ADDR Handle Type Mode Role Encrypt Pending Queue State
00:80:37:29:19:a4 41 ACL 0 MAST NONE 0 0 OPEN
A connection handle is useful when
	termination of the baseband connection is required, though
	it is normally not required to do this by hand. The stack
	will automatically terminate inactive baseband
	connections.
hccontrol -n ubt0hci disconnect 41
Connection handle: 41
Reason: Connection terminated by local host [0x16]
Type hccontrol help for a complete
	listing of available HCI commands. Most
	of the HCI commands do not require
	superuser privileges.
32.5.3. Device Pairing
By default, Bluetooth communication is not authenticated,
	and any device can talk to any other device. A Bluetooth
	device, such as a cellular phone, may choose to require
	authentication to provide a particular service. Bluetooth
	authentication is normally done with a
	PIN code, an ASCII
	string up to 16 characters in length. The user is required
	to enter the same PIN code on both devices.
	Once the user has entered the PIN code,
	both devices will generate a link key.
	After that, the link key can be stored either in the devices
	or in a persistent storage. Next time, both devices will
	use the previously generated link key. This procedure is
	called pairing. Note that if the link
	key is lost by either device, the pairing must be
	repeated.
The hcsecd(8) daemon is responsible for handling
	Bluetooth authentication requests. The default configuration
	file is /etc/bluetooth/hcsecd.conf. An
	example section for a cellular phone with the
	PIN code set to 1234 is
	shown below:
device {
 bdaddr 00:80:37:29:19:a4;
 name "Pav's T39";
 key nokey;
 pin "1234";
 }
The only limitation on PIN codes is
	length. Some devices, such as Bluetooth headsets, may have
	a fixed PIN code built in. The
	-d switch forces hcsecd(8) to stay in
	the foreground, so it is easy to see what is happening. Set
	the remote device to receive pairing and initiate the
	Bluetooth connection to the remote device. The remote device
	should indicate that pairing was accepted and request the
	PIN code. Enter the same
	PIN code listed in
	hcsecd.conf. Now the computer and the
	remote device are paired. Alternatively, pairing can be
	initiated on the remote device.
The following line can be added to
	/etc/rc.conf to configure hcsecd(8)
	to start automatically on system start:
hcsecd_enable="YES"
The following is a sample of the hcsecd(8) daemon
	output:
hcsecd[16484]: Got Link_Key_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', link key doesn't exist
hcsecd[16484]: Sending Link_Key_Negative_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Got PIN_Code_Request event from 'ubt0hci', remote bdaddr 0:80:37:29:19:a4
hcsecd[16484]: Found matching entry, remote bdaddr 0:80:37:29:19:a4, name 'Pav's T39', PIN code exists
hcsecd[16484]: Sending PIN_Code_Reply to 'ubt0hci' for remote bdaddr 0:80:37:29:19:a4
32.5.4. Network Access with
	PPP Profiles
A Dial-Up Networking (DUN) profile can
	be used to configure a cellular phone as a wireless modem for
	connecting to a dial-up Internet access server. It can also
	be used to configure a computer to receive data calls from a
	cellular phone.
Network access with a PPP profile can
	be used to provide LAN access for a single
	Bluetooth device or multiple Bluetooth devices. It can also
	provide PC to PC
	connection using PPP networking over serial
	cable emulation.
In FreeBSD, these profiles are implemented with ppp(8)
	and the rfcomm_pppd(8) wrapper which converts a
	Bluetooth connection into something
	PPP can use. Before a profile can be used,
	a new PPP label must be created in
	/etc/ppp/ppp.conf. Consult
	rfcomm_pppd(8) for examples.
In this example, rfcomm_pppd(8) is used to open a
	connection to a remote device with a
	BD_ADDR of
	00:80:37:29:19:a4 on a
	DUN RFCOMM
	channel:
rfcomm_pppd -a 00:80:37:29:19:a4 -c -C dun -l rfcomm-dialup
The actual channel number will be obtained from the remote
	device using the SDP protocol. It is
	possible to specify the RFCOMM channel by
	hand, and in this case rfcomm_pppd(8) will not perform
	the SDP query. Use sdpcontrol(8) to
	find out the RFCOMM channel on the remote
	device.
In order to provide network access with the
	PPP LAN service,
	sdpd(8) must be running and a new entry for
	LAN clients must be created in
	/etc/ppp/ppp.conf. Consult
	rfcomm_pppd(8) for examples. Finally, start the
	RFCOMM PPP server on a
	valid RFCOMM channel number. The
	RFCOMM PPP server will
	automatically register the Bluetooth LAN
	service with the local SDP daemon. The
	example below shows how to start the RFCOMM
	PPP server.
rfcomm_pppd -s -C 7 -l rfcomm-server
32.5.5. Bluetooth Protocols
This section provides an overview of the various Bluetooth
	protocols, their function, and associated utilities.
32.5.5.1. Logical Link Control and Adaptation Protocol
	 (L2CAP)
The Logical Link Control and Adaptation Protocol
	 (L2CAP) provides connection-oriented and
	 connectionless data services to upper layer protocols.
	 L2CAP permits higher level protocols and
	 applications to transmit and receive
	 L2CAP data packets up to 64 kilobytes in
	 length.
L2CAP is based around the concept of
	 channels. A channel is a logical
	 connection on top of a baseband connection, where each
	 channel is bound to a single protocol in a many-to-one
	 fashion. Multiple channels can be bound to the same
	 protocol, but a channel cannot be bound to multiple
	 protocols. Each L2CAP packet received on
	 a channel is directed to the appropriate higher level
	 protocol. Multiple channels can share the same baseband
	 connection.
In FreeBSD, a netgraph L2CAP node is
	 created for each Bluetooth device. This node is normally
	 connected to the downstream Bluetooth HCI
	 node and upstream Bluetooth socket nodes. The default name
	 for the L2CAP node is
	 “devicel2cap”. For more details refer to
	 ng_l2cap(4).
A useful command is l2ping(8), which can be used to
	 ping other devices. Some Bluetooth implementations might
	 not return all of the data sent to them, so 0
	 bytes in the following example is normal.
l2ping -a 00:80:37:29:19:a4
0 bytes from 0:80:37:29:19:a4 seq_no=0 time=48.633 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=1 time=37.551 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=2 time=28.324 ms result=0
0 bytes from 0:80:37:29:19:a4 seq_no=3 time=46.150 ms result=0
The l2control(8) utility is used to perform various
	 operations on L2CAP nodes. This example
	 shows how to obtain the list of logical connections
	 (channels) and the list of baseband connections for the
	 local device:
% l2control -a 00:02:72:00:d4:1a read_channel_list
L2CAP channels:
Remote BD_ADDR SCID/ DCID PSM IMTU/ OMTU State
00:07:e0:00:0b:ca 66/ 64 3 132/ 672 OPEN
% l2control -a 00:02:72:00:d4:1a read_connection_list
L2CAP connections:
Remote BD_ADDR Handle Flags Pending State
00:07:e0:00:0b:ca 41 O 0 OPEN
Another diagnostic tool is btsockstat(1). It is
	 similar to netstat(1), but for Bluetooth
	 network-related data structures. The example below shows
	 the same logical connection as l2control(8)
	 above.
% btsockstat
Active L2CAP sockets
PCB Recv-Q Send-Q Local address/PSM Foreign address CID State
c2afe900 0 0 00:02:72:00:d4:1a/3 00:07:e0:00:0b:ca 66 OPEN
Active RFCOMM sessions
L2PCB PCB Flag MTU Out-Q DLCs State
c2afe900 c2b53380 1 127 0 Yes OPEN
Active RFCOMM sockets
PCB Recv-Q Send-Q Local address Foreign address Chan DLCI State
c2e8bc80 0 250 00:02:72:00:d4:1a 00:07:e0:00:0b:ca 3 6 OPEN
32.5.5.2. Radio Frequency Communication
	 (RFCOMM)
The RFCOMM protocol provides
	 emulation of serial ports over the L2CAP
	 protocol. RFCOMM is a simple transport
	 protocol, with additional provisions for emulating the 9
	 circuits of RS-232 (EIATIA-232-E) serial ports. It
	 supports up to 60 simultaneous connections
	 (RFCOMM channels) between two Bluetooth
	 devices.
For the purposes of RFCOMM, a
	 complete communication path involves two applications
	 running on the communication endpoints with a communication
	 segment between them. RFCOMM is intended
	 to cover applications that make use of the serial ports of
	 the devices in which they reside. The communication segment
	 is a direct connect Bluetooth link from one device to
	 another.
RFCOMM is only concerned with the
	 connection between the devices in the direct connect case,
	 or between the device and a modem in the network case.
	 RFCOMM can support other configurations,
	 such as modules that communicate via Bluetooth wireless
	 technology on one side and provide a wired interface on the
	 other side.
In FreeBSD, RFCOMM is implemented at the
	 Bluetooth sockets layer.
32.5.5.3. Service Discovery Protocol
	 (SDP)
The Service Discovery Protocol (SDP)
	 provides the means for client applications to discover the
	 existence of services provided by server applications as
	 well as the attributes of those services. The attributes of
	 a service include the type or class of service offered and
	 the mechanism or protocol information needed to utilize the
	 service.
SDP involves communication between a
	 SDP server and a SDP
	 client. The server maintains a list of service records that
	 describe the characteristics of services associated with the
	 server. Each service record contains information about a
	 single service. A client may retrieve information from a
	 service record maintained by the SDP
	 server by issuing a SDP request. If the
	 client, or an application associated with the client,
	 decides to use a service, it must open a separate connection
	 to the service provider in order to utilize the service.
	 SDP provides a mechanism for discovering
	 services and their attributes, but it does not provide a
	 mechanism for utilizing those services.
Normally, a SDP client searches for
	 services based on some desired characteristics of the
	 services. However, there are times when it is desirable to
	 discover which types of services are described by an
	 SDP server's service records without any
	 prior information about the services. This process of
	 looking for any offered services is called
	 browsing.
The Bluetooth SDP server,
	 sdpd(8), and command line client, sdpcontrol(8),
	 are included in the standard FreeBSD installation. The
	 following example shows how to perform a
	 SDP browse query.
% sdpcontrol -a 00:01:03:fc:6e:ec browse
Record Handle: 00000000
Service Class ID List:
 Service Discovery Server (0x1000)
Protocol Descriptor List:
 L2CAP (0x0100)
 Protocol specific parameter #1: u/int/uuid16 1
 Protocol specific parameter #2: u/int/uuid16 1

Record Handle: 0x00000001
Service Class ID List:
 Browse Group Descriptor (0x1001)

Record Handle: 0x00000002
Service Class ID List:
 LAN Access Using PPP (0x1102)
Protocol Descriptor List:
 L2CAP (0x0100)
 RFCOMM (0x0003)
 Protocol specific parameter #1: u/int8/bool 1
Bluetooth Profile Descriptor List:
 LAN Access Using PPP (0x1102) ver. 1.0
Note that each service has a list of attributes, such
	 as the RFCOMM channel. Depending on the
	 service, the user might need to make note of some of the
	 attributes. Some Bluetooth implementations do not support
	 service browsing and may return an empty list. In this
	 case, it is possible to search for the specific service.
	 The example below shows how to search for the
	 OBEX Object Push
	 (OPUSH) service:
% sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH
Offering services on FreeBSD to Bluetooth clients is done
	 with the sdpd(8) server. The following line can be
	 added to /etc/rc.conf:
sdpd_enable="YES"
Then the sdpd(8) daemon can be started with:
service sdpd start
The local server application that wants to provide a
	 Bluetooth service to remote clients will register the
	 service with the local SDP daemon. An
	 example of such an application is rfcomm_pppd(8). Once
	 started, it will register the Bluetooth LAN service with the
	 local SDP daemon.
The list of services registered with the local
	 SDP server can be obtained by issuing a
	 SDP browse query via the local control
	 channel:
sdpcontrol -l browse
32.5.5.4. OBEX Object Push
	 (OPUSH)
Object Exchange (OBEX) is a widely
	 used protocol for simple file transfers between mobile
	 devices. Its main use is in infrared communication, where
	 it is used for generic file transfers between notebooks or
	 PDAs, and for sending business cards or
	 calendar entries between cellular phones and other devices
	 with Personal Information Manager (PIM)
	 applications.
The OBEX server and client are
	 implemented by obexapp, which can
	 be installed using the comms/obexapp
	 package or port.
The OBEX client is used to push
	 and/or pull objects from the OBEX server.
	 An example object is a business card or an appointment.
	 The OBEX client can obtain the
	 RFCOMM channel number from the remote
	 device via SDP. This can be done by
	 specifying the service name instead of the
	 RFCOMM channel number. Supported service
	 names are: IrMC, FTRN,
	 and OPUSH. It is also possible to
	 specify the RFCOMM channel as a number.
	 Below is an example of an OBEX session
	 where the device information object is pulled from the
	 cellular phone, and a new object, the business card, is
	 pushed into the phone's directory.
% obexapp -a 00:80:37:29:19:a4 -C IrMC
obex> get telecom/devinfo.txt devinfo-t39.txt
Success, response: OK, Success (0x20)
obex> put new.vcf
Success, response: OK, Success (0x20)
obex> di
Success, response: OK, Success (0x20)
In order to provide the OPUSH
	 service, sdpd(8) must be running and a root folder,
	 where all incoming objects will be stored, must be created.
	 The default path to the root folder is
	 /var/spool/obex. Finally, start the
	 OBEX server on a valid
	 RFCOMM channel number. The
	 OBEX server will automatically register
	 the OPUSH service with the local
	 SDP daemon. The example below shows how
	 to start the OBEX server.
obexapp -s -C 10
32.5.5.5. Serial Port Profile (SPP)
The Serial Port Profile (SPP) allows
	 Bluetooth devices to perform serial cable emulation. This
	 profile allows legacy applications to use Bluetooth as a
	 cable replacement, through a virtual serial port
	 abstraction.
In FreeBSD, rfcomm_sppd(1) implements
	 SPP and a pseudo tty is used as a virtual
	 serial port abstraction. The example below shows how to
	 connect to a remote device's serial port service. A
	 RFCOMM channel does not have to be
	 specified as rfcomm_sppd(1) can obtain it from the
	 remote device via SDP. To override this,
	 specify a RFCOMM channel on the command
	 line.
rfcomm_sppd -a 00:07:E0:00:0B:CA -t
rfcomm_sppd[94692]: Starting on /dev/pts/6...
/dev/pts/6
Once connected, the pseudo tty can be used as serial
	 port:
cu -l /dev/pts/6
The pseudo tty is printed on stdout and can be read by
	 wrapper scripts:
PTS=`rfcomm_sppd -a 00:07:E0:00:0B:CA -t`
cu -l $PTS
32.5.6. Troubleshooting
By default, when FreeBSD is accepting a new connection, it
	tries to perform a role switch and become master. Some older
	Bluetooth devices which do not support role switching will not
	be able to connect. Since role switching is performed when a
	new connection is being established, it is not possible to ask
	the remote device if it supports role switching. However,
	there is a HCI option to disable role
	switching on the local side:
hccontrol -n ubt0hci write_node_role_switch 0
To display Bluetooth packets, use the third-party package
	hcidump, which can be installed
	using the comms/hcidump package or port.
	This utility is similar to tcpdump(1) and can be used to
	display the contents of Bluetooth packets on the terminal and
	to dump the Bluetooth packets to a file.
32.6. Bridging

32.6. Bridging
Written by Andrew Thompson. It is sometimes useful to divide a network, such as an
 Ethernet segment, into network segments without having to
 create IP subnets and use a router to connect
 the segments together. A device that connects two networks
 together in this fashion is called a
 “bridge”.
A bridge works by learning the MAC
 addresses of the devices on each of its network interfaces. It
 forwards traffic between networks only when the source and
 destination MAC addresses are on different
 networks. In many respects, a bridge is like an Ethernet switch
 with very few ports. A FreeBSD system with multiple network
 interfaces can be configured to act as a bridge.
Bridging can be useful in the following situations:
	Connecting Networks
	The basic operation of a bridge is to join two or more
	 network segments. There are many reasons to use a
	 host-based bridge instead of networking equipment, such as
	 cabling constraints or firewalling. A bridge can also
	 connect a wireless interface running in hostap mode to a
	 wired network and act as an access point.

	Filtering/Traffic Shaping Firewall
	A bridge can be used when firewall functionality is
	 needed without routing or Network Address Translation
	 (NAT).
An example is a small company that is connected via
	 DSL or ISDN to an
	 ISP. There are thirteen public
	 IP addresses from the
	 ISP and ten computers on the network.
	 In this situation, using a router-based firewall is
	 difficult because of subnetting issues. A bridge-based
	 firewall can be configured without any
	 IP addressing issues.

	Network Tap
	A bridge can join two network segments in order to
	 inspect all Ethernet frames that pass between them using
	 bpf(4) and tcpdump(1) on the bridge interface or
	 by sending a copy of all frames out an additional
	 interface known as a span port.

	Layer 2 VPN
	Two Ethernet networks can be joined across an
	 IP link by bridging the networks to an
	 EtherIP tunnel or a tap(4) based solution such as
	 OpenVPN.

	Layer 2 Redundancy
	A network can be connected together with multiple
	 links and use the Spanning Tree Protocol
	 (STP) to block redundant paths.

This section describes how to configure a FreeBSD system as a
 bridge using if_bridge(4). A netgraph bridging driver is
 also available, and is described in ng_bridge(4).
Note:
Packet filtering can be used with any firewall package
	that hooks into the pfil(9) framework. The bridge can be
	used as a traffic shaper with altq(4) or
	dummynet(4).

32.6.1. Enabling the Bridge
In FreeBSD, if_bridge(4) is a kernel module which is
	automatically loaded by ifconfig(8) when creating a
	bridge interface. It is also possible to compile bridge
	support into a custom kernel by adding
	device if_bridge to the custom kernel
	configuration file.
The bridge is created using interface cloning. To create
	the bridge interface:
ifconfig bridge create
bridge0
ifconfig bridge0
bridge0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric 0 mtu 1500
 ether 96:3d:4b:f1:79:7a
 id 00:00:00:00:00:00 priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
 root id 00:00:00:00:00:00 priority 0 ifcost 0 port 0
When a bridge interface is created, it is automatically
	assigned a randomly generated Ethernet address. The
	maxaddr and timeout
	parameters control how many MAC addresses
	the bridge will keep in its forwarding table and how many
	seconds before each entry is removed after it is last seen.
	The other parameters control how STP
	operates.
Next, specify which network interfaces to add as members
	of the bridge. For the bridge to forward packets, all member
	interfaces and the bridge need to be up:
ifconfig bridge0 addm fxp0 addm fxp1 up
ifconfig fxp0 up
ifconfig fxp1 up
The bridge can now forward Ethernet frames between
	fxp0 and fxp1. Add
	the following lines to /etc/rc.conf so
	the bridge is created at startup:
cloned_interfaces="bridge0"
ifconfig_bridge0="addm fxp0 addm fxp1 up"
ifconfig_fxp0="up"
ifconfig_fxp1="up"
If the bridge host needs an IP
	address, set it on the bridge interface, not on the member
	interfaces. The address can be set statically or via
	DHCP. This example sets a static
	IP address:
ifconfig bridge0 inet 192.168.0.1/24
It is also possible to assign an IPv6
	address to a bridge interface. To make the changes permanent,
	add the addressing information to
	/etc/rc.conf.
Note:
When packet filtering is enabled, bridged packets will
	 pass through the filter inbound on the originating interface
	 on the bridge interface, and outbound on the appropriate
	 interfaces. Either stage can be disabled. When direction
	 of the packet flow is important, it is best to firewall on
	 the member interfaces rather than the bridge itself.
The bridge has several configurable settings for passing
	 non-IP and IP packets,
	 and layer2 firewalling with ipfw(8). See
	 if_bridge(4) for more information.

32.6.2. Enabling Spanning Tree
For an Ethernet network to function properly, only one
	active path can exist between two devices. The
	STP protocol detects loops and puts
	redundant links into a blocked state. Should one of the
	active links fail, STP calculates a
	different tree and enables one of the blocked paths to restore
	connectivity to all points in the network.
The Rapid Spanning Tree Protocol (RSTP
	or 802.1w) provides backwards compatibility with legacy
	STP. RSTP provides
	faster convergence and exchanges information with neighboring
	switches to quickly transition to forwarding mode without
	creating loops. FreeBSD supports RSTP and
	STP as operating modes, with
	RSTP being the default mode.
STP can be enabled on member interfaces
	using ifconfig(8). For a bridge with
	fxp0 and fxp1 as the
	current interfaces, enable STP with:
ifconfig bridge0 stp fxp0 stp fxp1
bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 ether d6:cf:d5:a0:94:6d
 id 00:01:02:4b:d4:50 priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
 root id 00:01:02:4b:d4:50 priority 32768 ifcost 0 port 0
 member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
 port 3 priority 128 path cost 200000 proto rstp
 role designated state forwarding
 member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
 port 4 priority 128 path cost 200000 proto rstp
 role designated state forwarding
This bridge has a spanning tree ID of
	00:01:02:4b:d4:50 and a priority of
	32768. As the root id
	is the same, it indicates that this is the root bridge for the
	tree.
Another bridge on the network also has
	STP enabled:
bridge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
 ether 96:3d:4b:f1:79:7a
 id 00:13:d4:9a:06:7a priority 32768 hellotime 2 fwddelay 15
 maxage 20 holdcnt 6 proto rstp maxaddr 100 timeout 1200
 root id 00:01:02:4b:d4:50 priority 32768 ifcost 400000 port 4
 member: fxp0 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
 port 4 priority 128 path cost 200000 proto rstp
 role root state forwarding
 member: fxp1 flags=1c7<LEARNING,DISCOVER,STP,AUTOEDGE,PTP,AUTOPTP>
 port 5 priority 128 path cost 200000 proto rstp
 role designated state forwarding
The line root id 00:01:02:4b:d4:50 priority 32768
	 ifcost 400000 port 4 shows that the root bridge is
	00:01:02:4b:d4:50 and has a path cost of
	400000 from this bridge. The path to the
	root bridge is via port 4 which is
	fxp0.
32.6.3. Bridge Interface Parameters
Several ifconfig parameters are unique
	to bridge interfaces. This section summarizes some common
	uses for these parameters. The complete list of available
	parameters is described in ifconfig(8).
	private
	A private interface does not forward any traffic to
	 any other port that is also designated as a private
	 interface. The traffic is blocked unconditionally so no
	 Ethernet frames will be forwarded, including
	 ARP packets. If traffic needs to be
	 selectively blocked, a firewall should be used
	 instead.

	span
	A span port transmits a copy of every Ethernet frame
	 received by the bridge. The number of span ports
	 configured on a bridge is unlimited, but if an
	 interface is designated as a span port, it cannot also
	 be used as a regular bridge port. This is most useful
	 for snooping a bridged network passively on another host
	 connected to one of the span ports of the bridge. For
	 example, to send a copy of all frames out the interface
	 named fxp4:
ifconfig bridge0 span fxp4

	sticky
	If a bridge member interface is marked as sticky,
	 dynamically learned address entries are treated as
	 static entries in the forwarding cache. Sticky entries
	 are never aged out of the cache or replaced, even if the
	 address is seen on a different interface. This gives
	 the benefit of static address entries without the need
	 to pre-populate the forwarding table. Clients learned
	 on a particular segment of the bridge cannot roam to
	 another segment.
An example of using sticky addresses is to combine
	 the bridge with VLANs in order to
	 isolate customer networks without wasting
	 IP address space. Consider that
	 CustomerA
	 is on vlan100, CustomerB is on
	 vlan101, and the bridge has the
	 address 192.168.0.1:
ifconfig bridge0 addm vlan100 sticky vlan100 addm vlan101 sticky vlan101
ifconfig bridge0 inet 192.168.0.1/24
In this example, both clients see 192.168.0.1 as their
	 default gateway. Since the bridge cache is sticky, one
	 host cannot spoof the MAC address of
	 the other customer in order to intercept their
	 traffic.
Any communication between the
	 VLANs can be blocked using a firewall
	 or, as seen in this example, private interfaces:
ifconfig bridge0 private vlan100 private vlan101
The customers are completely isolated from each
	 other and the full /24 address range can be
	 allocated without subnetting.
The number of unique source MAC
	 addresses behind an interface can be limited. Once the
	 limit is reached, packets with unknown source addresses
	 are dropped until an existing host cache entry expires
	 or is removed.
The following example sets the maximum number of
	 Ethernet devices for CustomerA on
	 vlan100 to 10:
ifconfig bridge0 ifmaxaddr vlan100 10

Bridge interfaces also support monitor mode, where the
	packets are discarded after bpf(4) processing and are not
	processed or forwarded further. This can be used to
	multiplex the input of two or more interfaces into a single
	bpf(4) stream. This is useful for reconstructing the
	traffic for network taps that transmit the RX/TX signals out
	through two separate interfaces. For example, to read the
	input from four network interfaces as one stream:
ifconfig bridge0 addm fxp0 addm fxp1 addm fxp2 addm fxp3 monitor up
tcpdump -i bridge0
32.6.4. SNMP Monitoring
The bridge interface and STP
	parameters can be monitored via bsnmpd(1) which is
	included in the FreeBSD base system. The exported bridge
	MIBs conform to IETF
	standards so any SNMP client or monitoring
	package can be used to retrieve the data.
To enable monitoring on the bridge, uncomment this line in
	/etc/snmpd.config by removing the
	beginning # symbol:
begemotSnmpdModulePath."bridge" = "/usr/lib/snmp_bridge.so"
Other configuration settings, such as community names and
	access lists, may need to be modified in this file. See
	bsnmpd(1) and snmp_bridge(3) for more information.
	Once these edits are saved, add this line to
	/etc/rc.conf:
bsnmpd_enable="YES"
Then, start bsnmpd(1):
service bsnmpd start
The following examples use the
	Net-SNMP software
	(net-mgmt/net-snmp) to query a bridge
	from a client system. The
	net-mgmt/bsnmptools port can also be used.
	From the SNMP client which is running
	Net-SNMP, add the following lines
	to $HOME/.snmp/snmp.conf in order to
	import the bridge MIB definitions:
mibdirs +/usr/share/snmp/mibs
mibs +BRIDGE-MIB:RSTP-MIB:BEGEMOT-MIB:BEGEMOT-BRIDGE-MIB
To monitor a single bridge using the IETF BRIDGE-MIB
	(RFC4188):
% snmpwalk -v 2c -c public bridge1.example.com mib-2.dot1dBridge
BRIDGE-MIB::dot1dBaseBridgeAddress.0 = STRING: 66:fb:9b:6e:5c:44
BRIDGE-MIB::dot1dBaseNumPorts.0 = INTEGER: 1 ports
BRIDGE-MIB::dot1dStpTimeSinceTopologyChange.0 = Timeticks: (189959) 0:31:39.59 centi-seconds
BRIDGE-MIB::dot1dStpTopChanges.0 = Counter32: 2
BRIDGE-MIB::dot1dStpDesignatedRoot.0 = Hex-STRING: 80 00 00 01 02 4B D4 50
...
BRIDGE-MIB::dot1dStpPortState.3 = INTEGER: forwarding(5)
BRIDGE-MIB::dot1dStpPortEnable.3 = INTEGER: enabled(1)
BRIDGE-MIB::dot1dStpPortPathCost.3 = INTEGER: 200000
BRIDGE-MIB::dot1dStpPortDesignatedRoot.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
BRIDGE-MIB::dot1dStpPortDesignatedCost.3 = INTEGER: 0
BRIDGE-MIB::dot1dStpPortDesignatedBridge.3 = Hex-STRING: 80 00 00 01 02 4B D4 50
BRIDGE-MIB::dot1dStpPortDesignatedPort.3 = Hex-STRING: 03 80
BRIDGE-MIB::dot1dStpPortForwardTransitions.3 = Counter32: 1
RSTP-MIB::dot1dStpVersion.0 = INTEGER: rstp(2)
The dot1dStpTopChanges.0 value is two,
	indicating that the STP bridge topology has
	changed twice. A topology change means that one or more links
	in the network have changed or failed and a new tree has been
	calculated. The
	dot1dStpTimeSinceTopologyChange.0 value
	will show when this happened.
To monitor multiple bridge interfaces, the private
	BEGEMOT-BRIDGE-MIB can be used:
% snmpwalk -v 2c -c public bridge1.example.com
enterprises.fokus.begemot.begemotBridge
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge0" = STRING: bridge0
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseName."bridge2" = STRING: bridge2
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge0" = STRING: e:ce:3b:5a:9e:13
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseAddress."bridge2" = STRING: 12:5e:4d:74:d:fc
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge0" = INTEGER: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeBaseNumPorts."bridge2" = INTEGER: 1
...
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge0" = Timeticks: (116927) 0:19:29.27 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTimeSinceTopologyChange."bridge2" = Timeticks: (82773) 0:13:47.73 centi-seconds
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge0" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpTopChanges."bridge2" = Counter32: 1
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge0" = Hex-STRING: 80 00 00 40 95 30 5E 31
BEGEMOT-BRIDGE-MIB::begemotBridgeStpDesignatedRoot."bridge2" = Hex-STRING: 80 00 00 50 8B B8 C6 A9
To change the bridge interface being monitored via the
	mib-2.dot1dBridge subtree:
% snmpset -v 2c -c private bridge1.example.com
BEGEMOT-BRIDGE-MIB::begemotBridgeDefaultBridgeIf.0 s bridge2
32.11. VLANs

32.11. VLANs
VLANs are a way of virtually dividing up
 a network into many different subnetworks, also referred
 to as segmenting. Each segment will have its
 own broadcast domain and be isolated from other
 VLANs.
On FreeBSD, VLANs must be supported by the
 network card driver. To see which drivers support vlans, refer
 to the vlan(4) manual page.
When configuring a VLAN, a couple pieces
 of information must be known. First, which network interface?
 Second, what is the VLAN tag?
To configure VLANs at run time, with a
 NIC of em0 and a
 VLAN tag of 5 the
 command would look like this:
ifconfig em0.5 create vlan 5 vlandev em0 inet 192.168.20.20/24
Note:
See how the interface name includes the
	NIC driver name and the
	VLAN tag, separated by a period? This is a
	best practice to make maintaining the VLAN
	configuration easy when many VLANs are
	present on a machine.

To configure VLANs at boot time,
 /etc/rc.conf must be updated. To duplicate
 the configuration above, the following will need to be
 added:
vlans_em0="5"
ifconfig_em0_5="inet 192.168.20.20/24"
Additional VLANs may be added, by simply
 adding the tag to the
 vlans_em0
 field and adding an additional line configuring the network on
 that VLAN tag's interface.
It is useful to assign a symbolic name to an interface so
 that when the associated hardware is changed, only a few
 configuration variables need to be updated. For example,
 security cameras need to be run over VLAN 1 on
 em0. Later, if the em0
 card is replaced with a card that uses the ixgb(4) driver,
 all references to em0.1 will not have to
 change to ixgb0.1.
To configure VLAN
 5, on the
 NIC em0, assign the
 interface name cameras, and assign the
 interface an IP address of 192.168.20.20
 with a 24-bit prefix,
 use this command:
ifconfig em0.5 create vlan 5 vlandev em0 name cameras inet 192.168.20.20/24
For an interface named video, use the
 following:
ifconfig video.5 create vlan 5 vlandev video name cameras inet 192.168.20.20/24
To apply the changes at boot time, add the following lines to
 /etc/rc.conf:
vlans_video="cameras"
create_args_cameras="vlan 5"
ifconfig_cameras="inet 192.168.20.20/24"
Part V. Appendices

Part V. Appendices

Appendix A. Obtaining FreeBSD

Appendix A. Obtaining FreeBSD
A.1. CD and
 DVD Sets
FreeBSD CD and DVD sets
 are available from several online retailers:
	FreeBSD Mall, Inc.

	 2420 Sand Creek Rd C-1 #347

	 Brentwood, CA

	 94513

	 USA

	 Phone: +1 925 240-6652

	 Fax: +1 925 674-0821

	 Email: <info@freebsdmall.com>

	 WWW: https://www.freebsdmall.com

	

	Getlinux

	 78 Rue de la Croix Rochopt

	 Épinay-sous-Sénart

	 91860

	 France

	 Email: <contact@getlinux.fr>

	 WWW: http://www.getlinux.fr/

	

	Dr. Hinner EDV

	 Kochelseestr. 11

	 D-81371 München

	 Germany

	 Phone: (0177) 428 419 0

	 Email: <infow@hinner.de>

	 WWW: http://www.hinner.de/linux/freebsd.html

	

	Linux Center

	 Galernaya Street, 55

	 Saint-Petersburg

	 190000

	 Russia

	 Phone: +7-812-309-06-86

	 Email: <info@linuxcenter.ru>

	 WWW: http://linuxcenter.ru/shop/freebsd

	

A.3. Using Subversion

A.3. Using Subversion
A.3.1. Introduction
As of July 2012, FreeBSD uses
	Subversion as the only version
	control system for storing all of FreeBSD's source code,
	documentation, and the Ports Collection.
Note:
Subversion is generally a
	 developer tool. Users may prefer to use
	 freebsd-update (Section 24.2, “FreeBSD Update”) to update
	 the FreeBSD base system, and portsnap (Section 4.5, “Using the Ports Collection”) to update the FreeBSD Ports
	 Collection.

This section demonstrates how to install
	Subversion on a FreeBSD system and
	use it to create a local copy of a FreeBSD repository.
	Additional information on the use of
	Subversion is included.
A.3.2. Root SSL Certificates
Installing
	security/ca_root_nss allows
	Subversion to verify the identity
	of HTTPS repository servers. The root
	SSL certificates can be installed from a
	port:
cd /usr/ports/security/ca_root_nss
make install clean
or as a package:
pkg install ca_root_nss
A.3.3. Svnlite
A lightweight version of
	Subversion is already installed
	on FreeBSD as svnlite. The port or package
	version of Subversion is only
	needed if the Python or Perl API is needed,
	or if a later version of Subversion is desired.
The only difference from normal
	Subversion use is that the command
	name is svnlite.
A.3.4. Installation
If svnlite is unavailable or the full
	version of Subversion is needed,
	then it must be installed.
Subversion can be installed
	from the Ports Collection:
cd /usr/ports/devel/subversion
make install clean
Subversion can also be
	installed as a package:
pkg install subversion
A.3.5. Running Subversion
To fetch a clean copy of the sources into a local
	directory, use svn. The files in this
	directory are called a local working
	 copy.
Warning:
Move or delete an existing destination directory before
	 using checkout for the first time.
Checkout over an existing
	 non-svn directory can cause conflicts
	 between the existing files and those brought in from the
	 repository.

Subversion uses
	URLs to designate a repository, taking the
	form of protocol://hostname/path.
	The first component of the path is the FreeBSD repository to
	access. There are three different repositories,
	base for the FreeBSD base system source code,
	ports for the Ports Collection, and
	doc for documentation. For example, the
	URL
	https://svn.FreeBSD.org/ports/head/
	specifies the main branch of the ports repository,
	using the https protocol.
A checkout from a given repository is performed with a
	command like this:
svn checkout https://svn.FreeBSD.org/repository/branch lwcdir
where:
	repository is one of the
	 Project repositories: base,
	 ports, or
	 doc.

	branch depends on the
	 repository used. ports and
	 doc are mostly updated in the
	 head branch, while
	 base maintains the latest version of
	 -CURRENT under head and the respective
	 latest versions of the -STABLE branches under
	 stable/9
	 (9.x) and
	 stable/10
	 (10.x).

	lwcdir is the target
	 directory where the contents of the specified branch
	 should be placed. This is usually
	 /usr/ports for
	 ports,
	 /usr/src for
	 base, and
	 /usr/doc for
	 doc.

This example checks out the Ports Collection from the
	FreeBSD repository using the HTTPS
	protocol, placing the local working copy in
	/usr/ports. If
	/usr/ports is already
	present but was not created by svn,
	remember to rename or delete it before the checkout.
svn checkout https://svn.FreeBSD.org/ports/head /usr/ports
Because the initial checkout must download the full
	branch of the remote repository, it can take a while. Please
	be patient.
After the initial checkout, the local working copy can be
	updated by running:
svn update lwcdir
To update
	/usr/ports created in
	the example above, use:
svn update /usr/ports
The update is much quicker than a checkout, only
	transferring files that have changed.
An alternate way of updating the local working copy after
	checkout is provided by the Makefile in
	the /usr/ports,
	/usr/src, and
	/usr/doc directories.
	Set SVN_UPDATE and use the
	update target. For example, to
	update /usr/src:
cd /usr/src
make update SVN_UPDATE=yes
A.3.6. Subversion Mirror
	Sites
The FreeBSD Subversion
	repository is:
svn.FreeBSD.org
This is
	a publicly accessible mirror network that uses GeoDNS to
	select an appropriate back end server. To view the FreeBSD
	Subversion repositories through a
	browser, use https://svnweb.FreeBSD.org/.
HTTPS is the preferred protocol, but the
	security/ca_root_nss
	package will need to be installed in order to automatically
	validate certificates.
A.3.7. For More Information
For other information about using
	Subversion, please see the
	“Subversion Book”, titled
	Version
	 Control with Subversion, or the Subversion
	 Documentation.
B.3. Administrators' Guides

B.3. Administrators' Guides
	Jpman
	 Project, Japan FreeBSD Users Group. FreeBSD
	 System Administrator's Manual (Japanese translation).
	 Mainichi
	 Communications Inc., 1998. ISBN4-8399-0109-0
	 P3300E.

	Dreyfus, Emmanuel. Cahiers
	 de l'Admin: BSD 2nd Ed. (in French), Eyrolles,
	 2004. ISBN 2-212-11463-X

B.4. Programmers' Guides

B.4. Programmers' Guides
	Computer Systems Research Group, UC Berkeley.
	 4.4BSD Programmer's Reference Manual.
	 O'Reilly & Associates, Inc., 1994. ISBN
	 1-56592-078-3

	Computer Systems Research Group, UC Berkeley.
	 4.4BSD Programmer's Supplementary
	 Documents. O'Reilly & Associates, Inc.,
	 1994. ISBN 1-56592-079-1

	Harbison, Samuel P. and Steele, Guy L. Jr. C:
	 A Reference Manual. 4th Ed. Prentice Hall,
	 1995. ISBN 0-13-326224-3

	Kernighan, Brian and Dennis M. Ritchie. The C
	 Programming Language. 2nd Ed. PTR Prentice
	 Hall, 1988. ISBN 0-13-110362-8

	Lehey, Greg. Porting UNIX
	 Software. O'Reilly & Associates, Inc.,
	 1995. ISBN 1-56592-126-7

	Plauger, P. J. The Standard C
	 Library. Prentice Hall, 1992. ISBN
	 0-13-131509-9

	Spinellis, Diomidis. Code
	 Reading: The Open Source Perspective.
	 Addison-Wesley, 2003. ISBN 0-201-79940-5

	Spinellis, Diomidis. Code
	 Quality: The Open Source Perspective.
	 Addison-Wesley, 2006. ISBN 0-321-16607-8

	Stevens, W. Richard and Stephen A. Rago.
	 Advanced Programming in the UNIX
	 Environment. 2nd Ed. Reading, Mass. :
	 Addison-Wesley, 2005. ISBN 0-201-43307-9

	Stevens, W. Richard. UNIX Network
	 Programming. 2nd Ed, PTR Prentice Hall, 1998.
	 ISBN 0-13-490012-X

B.6. Security Reference

B.6. Security Reference
	Cheswick, William R. and Steven M. Bellovin.
	 Firewalls and Internet Security: Repelling the
	 Wily Hacker. Reading, Mass. : Addison-Wesley,
	 1995. ISBN 0-201-63357-4

	Garfinkel, Simson. PGP Pretty Good
	 Privacy O'Reilly & Associates, Inc., 1995.
	 ISBN 1-56592-098-8

B.7. Hardware Reference

B.7. Hardware Reference
	Anderson, Don and Tom Shanley. Pentium
	 Processor System Architecture. 2nd Ed.
	 Reading, Mass. : Addison-Wesley, 1995. ISBN
	 0-201-40992-5

	Ferraro, Richard F. Programmer's Guide to the
	 EGA, VGA, and Super VGA Cards. 3rd ed.
	 Reading, Mass. : Addison-Wesley, 1995. ISBN
	 0-201-62490-7

	Intel Corporation publishes documentation on their CPUs,
	 chipsets and standards on their
	 developer web
	 site, usually as PDF files.

	Shanley, Tom. 80486 System
	 Architecture. 3rd Ed. Reading, Mass. :
	 Addison-Wesley, 1995. ISBN 0-201-40994-1

	Shanley, Tom. ISA System
	 Architecture. 3rd Ed. Reading, Mass. :
	 Addison-Wesley, 1995. ISBN 0-201-40996-8

	Shanley, Tom. PCI System
	 Architecture. 4th Ed. Reading, Mass. :
	 Addison-Wesley, 1999. ISBN 0-201-30974-2

	Van Gilluwe, Frank. The Undocumented
	 PC, 2nd Ed. Reading, Mass: Addison-Wesley Pub.
	 Co., 1996. ISBN 0-201-47950-8

	Messmer, Hans-Peter. The Indispensable PC
	 Hardware Book, 4th Ed. Reading, Mass :
	 Addison-Wesley Pub. Co., 2002. ISBN 0-201-59616-4

B.8. UNIX® History

B.8. UNIX® History
	Lion, John Lion's Commentary on UNIX, 6th Ed.
	 With Source Code. ITP Media Group, 1996. ISBN
	 1573980137

	Raymond, Eric S. The New Hacker's Dictionary,
	 3rd edition. MIT Press, 1996. ISBN
	 0-262-68092-0. Also known as the Jargon
	 File

	Salus, Peter H. A quarter century of
	 UNIX. Addison-Wesley Publishing Company, Inc.,
	 1994. ISBN 0-201-54777-5

	Simon Garfinkel, Daniel Weise, Steven Strassmann.
	 The UNIX-HATERS Handbook. IDG Books
	 Worldwide, Inc., 1994. ISBN 1-56884-203-1. Out of print,
	 but available online.

	Don Libes, Sandy Ressler Life with
	 UNIX — special edition. Prentice-Hall,
	 Inc., 1989. ISBN 0-13-536657-7

	The BSD family tree.
	 https://svnweb.freebsd.org/base/head/share/misc/bsd-family-tree?view=co
	 or /usr/share/misc/bsd-family-tree
	 on a FreeBSD machine.

	Networked Computer Science Technical Reports
	 Library.

	Old BSD releases from the Computer Systems
	 Research group (CSRG). http://www.mckusick.com/csrg/:
	 The 4CD set covers all BSD versions from 1BSD to 4.4BSD and
	 4.4BSD-Lite2 (but not 2.11BSD, unfortunately). The last
	 disk also holds the final sources plus the SCCS
	 files.

	Kernighan, Brian Unix: A History and a
	 Memoir. Kindle Direct Publishing, 2020. ISBN
	 978-169597855-3

B.9. Periodicals, Journals, and Magazines

B.9. Periodicals, Journals, and Magazines
	Admin
	 Magazin (in German), published by
	 Medialinx AG. ISSN: 2190-1066

	BSD
	 Magazine, published by Software Press Sp. z o.o.
	 SK. ISSN: 1898-9144

	BSD Now
	 — Video Podcast, published by
	 Jupiter Broadcasting LLC

	BSD
	 Talk Podcast, by Will Backman

	FreeBSD
	 Journal, published by S&W
	 Publishing, sponsored by The FreeBSD Foundation.
	 ISBN: 978-0-615-88479-0

Appendix C. Resources on the Internet

Appendix C. Resources on the Internet
The rapid pace of FreeBSD progress makes print media
 impractical as a means of following the latest developments.
 Electronic resources are the best, if not often the only, way to
 stay informed of the latest advances. Since FreeBSD is a volunteer
 effort, the user community itself also generally serves as a
 “technical support department” of sorts, with
 electronic mail, web forums, and USENET news being the most
 effective way of reaching that community.
The most important points of contact with the FreeBSD user
 community are outlined below. Please send other resources not
 mentioned here to the FreeBSD documentation project mailing list so that they may also be
 included.
C.1. Websites
	The
	 FreeBSD Forums provide a web based discussion forum
	 for FreeBSD questions and technical
	 discussion.

	The BSDConferences
	 YouTube Channel provides a collection of high
	 quality videos from BSD conferences around the world.
	 This is a great way to watch key developers give
	 presentations about new work in FreeBSD.

C.4. Official Mirrors

C.4. Official Mirrors
Central Servers, Armenia, Australia, Austria, Czech Republic, Denmark, Finland, France, Germany, Hong Kong, Ireland, Japan, Latvia, Lithuania, Netherlands, Norway, Russia, Slovenia, South Africa, Spain, Sweden, Switzerland, Taiwan, United Kingdom, USA.
(as of UTC)
	Central Servers
	
 https://www.FreeBSD.org/

	Armenia
	http://www1.am.FreeBSD.org/ (IPv6)

	Australia
	
 http://www.au.FreeBSD.org/

	
 http://www2.au.FreeBSD.org/

	Austria
	http://www.at.FreeBSD.org/ (IPv6)

	Czech Republic
	http://www.cz.FreeBSD.org/ (IPv6)

	Denmark
	http://www.dk.FreeBSD.org/ (IPv6)

	Finland
	
 http://www.fi.FreeBSD.org/

	France
	
 http://www1.fr.FreeBSD.org/

	Germany
	
 http://www.de.FreeBSD.org/

	Hong Kong
	
 http://www.hk.FreeBSD.org/

	Ireland
	
 http://www.ie.FreeBSD.org/

	Japan
	http://www.jp.FreeBSD.org/www.FreeBSD.org/ (IPv6)

	Latvia
	
 http://www.lv.FreeBSD.org/

	Lithuania
	
 http://www.lt.FreeBSD.org/

	Netherlands
	
 http://www.nl.FreeBSD.org/

	Norway
	
 http://www.no.FreeBSD.org/

	Russia
	http://www.ru.FreeBSD.org/ (IPv6)

	Slovenia
	
 http://www.si.FreeBSD.org/

	South Africa
	
 http://www.za.FreeBSD.org/

	Spain
	
 http://www.es.FreeBSD.org/

	
 http://www2.es.FreeBSD.org/

	Sweden
	
 http://www.se.FreeBSD.org/

	Switzerland
	http://www.ch.FreeBSD.org/ (IPv6)

	http://www2.ch.FreeBSD.org/ (IPv6)

	Taiwan
	
 http://www.tw.FreeBSD.org/

	
 http://www2.tw.FreeBSD.org/

	
 http://www4.tw.FreeBSD.org/

	http://www5.tw.FreeBSD.org/ (IPv6)

	United Kingdom
	
 http://www1.uk.FreeBSD.org/

	
 http://www3.uk.FreeBSD.org/

	USA
	http://www5.us.FreeBSD.org/ (IPv6)

Appendix D. OpenPGP Keys

Appendix D. OpenPGP Keys
The OpenPGP keys of the
 FreeBSD.org officers
 are shown here. These keys can be used to verify a signature or
 send encrypted email to one of the officers. A full list of FreeBSD
 OpenPGP keys is available in the
 PGP
 Keys article. The complete keyring can be downloaded
 at https://www.FreeBSD.org/doc/pgpkeyring.txt.
D.1. Officers
D.1.1. Security Officer Team <security-officer@FreeBSD.org>

pub rsa4096/D39792F49EA7E5C2 2017-08-16 [SC] [expires: 2023-01-02]
 Key fingerprint = FC0E 878A E5AF E788 028D 6355 D397 92F4 9EA7 E5C2
uid FreeBSD Security Officer <security-officer@FreeBSD.org>
sub rsa4096/6DD0A349F26ADEFD 2017-08-16 [E] [expires: 2023-01-02]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFmT2+ABEACrTVJ7Z/MuDeyKFqoTFnm5FrGG55k66RLeKivzQzq/tT/6RKO9
K8DaEvSIqD9b0/xgK02KgLSdp0Bucq8HLDFYUk3McFa6Z3YwjobNCWkxc72ipvVl
uAOGN4H6fuoYOpeg4cLK1H9pktUIrzONTCixaZzc/Bu6X+aX4ywGeCfsuu8g5v03
fLCPBLLgf3Bm5wsyZ6ZaGmsmILrWzd+d/rbr35Mcc5BekdgywUI4R191qo1bdrw9
mEJP1V7Ik3jpExOsNnuhMTvm5OQMeCTfUvVEOtBU15QtbT+1LXF5FIOgML0LwS5v
RHZN+5w/xvzSnEULpj24UuMKLDs/u9rj8U/zET8QaE+oG7m/mr4jJWZEmdX8HKdO
WrpnVj6UAppk72qdBIEfLsOW2xB/NOjJpppbCQH3+sw7DRYA2UnKE9Mptj/KKiE4
cs4c8Cupo2WSu93lEZDC5rCrULpT2lFeEXnRYlC/5oIgY5w9sFide9VI4CzHkkWX
Z2NPW/i1w3mFhoXjvnNLGOYMfAMKPxsRC2/Bn3bY0IhKvuIZ4rAeu7FTmKDDqFKQ
YEcrUOW74ZVng17AB29xzjWr4zNJVvp/CybFiUb8JoKkwtVWRqAVZIEgenAjU40d
G5+W4e+ccL0mfTQfEBbXRjnL2BL2tnaoBR42cTfbZGRucPHz7MrlKBEeZQARAQAB
tDdGcmVlQlNEIFNlY3VyaXR5IE9mZmljZXIgPHNlY3VyaXR5LW9mZmljZXJARnJl
ZUJTRC5vcmc+iQJUBBMBCgA+FiEE/A6HiuWv54gCjWNV05eS9J6n5cIFAlmT2+AC
GwMFCQoek4AFCwkIBwMFFQoJCAsFFgIDAQACHgECF4AACgkQ05eS9J6n5cKd9A/9
Fz3uGjNy28D0ALT1d/JJGzdQ2R3YwspHk9KHBr1LePkog9wf1WRalwCeNtPmA+g5
cn24psuzOeh1tRElImTZ2eE2ENPZ9XzK/J0ok0nK42MvmIwmMCyz+CaWv9GXW+FK
0oXnFmHi4YaQUVN3p+45TGkD9T+O5biVww7P47n/NnWsTfhLx0bzC7LyjPKXINai
/LgPgtlcOgY65/YhW/qhADCkoU7qMp9is41jMjTu1WB3OBPJkUkNpHfu6r15y8FN
Wqsk7K4W6Obr/WQ6VKGGXgh/a5mTcaEoFGMO16uHijAY4nXeb2HGZlBKxgmPH9Ur
aT4A9Pz/n+rIRMrK+rs+msFPemQHHNBYxy+x99uBpRBNyT2Su6GouZIxu5J16aIM
V0ZyOy/dy7m/uJ4sMhJPqKkd8a+MoQs/2L1M1y1EAzsO/QZqIrKrCluaftNN9k/B
qU0XClSDqB6sRMF7HFzYqb+f+M6cwSL/3Cp1Yx4rZ/onEE/MdWp64+3R87dETTXd
5tWXQw04qOhfPri5cBTI7r3t/qMO1iNXCGSG5RJbGkas6N6t6Mj83L4ItjI8doLf
aSIWZjj1XP3/me2hFJ6h2G5y5A+khO4ZwhC0ATFSq1fYbVGHw5AtfthIgNn8FoWu
+Sb8h7/RqTr7F6LgWagAoAh0GtVj02SVABZjcNZz/AKJAjcEEAEKACEWIQQc9/9v
rfXKn74bjLLtZ+zWXc9q5wUCWZPcTAMFAngACgkQ7Wfs1l3PauflkRAAgYcaBX0Y
ic4btxKoP/eOVpgUciOPPKEhDCiloQDyf4XQnZFDoMfjgcHpbLTBZ6kiAz2UzDGr
fJ4yUqrD+xfixUfCd5YpwzsaSpCGzDzSxOBcP/SpuAFhe40awSOIf5MruQar9Mlf
33JyslDLULXXeewAq2pcGk0/WrrOragI6Cs2vPGy9XP96VvLxyhjrWjlKmnO+//w
UF8oIO5hhKoqbtoxxlcqJgsWVyHch0mnPzvr6GWwoPhFXocnh1oPdbLjX1AwmGm9
ltEYMge4QxONIXlXJR0TvuDuJOaLNvTOC3OI8L97fdBcZS7eNJrG5FAYR5Ft3ISf
KJowIsSLGDt/cYApqpyP2pv7FpCvnwHgXHYar7/q4zhngCFRxQ2DPUx1cIJQ3Bgh
HZolKyK1X7XE5ZVDfZ3s3gcHSVKS89pipgHHZNr4sSmOanA8rXHcyHS4o2zSi1ie
r4iBwnOk6cCd6UNzEIiq0y/XhP/sc7xeL0mn3wDuV7jDBP9sp65sexL1qtIAfnzL
pLQevm0z41ifrUH5nNeL6RdbXpaoXc8M4PJJeQKJDu04KzLcQpZdUdCJsbS6QO9w
srWR8enQXPEhz2CO4L77bM9TgYO29222jTqEPcbXcmxF/klxO1rpssTTHUnHHi1Z
LUGYCbZPjt+laTJ2YPHTjUtN1Jw85vSKCEuJATMEEAEKAB0WIQS7KNQLNg7uk2rt
FW/l97zLo73d+AUCWjSYRwAKCRDl97zLo73d+JKyB/9N5Ytao12nD5QzMLvceGh5
otCLN99TUryYiDVDLoNkBivq3jHQA/hOX2rwEueFq0+LF8/2DnglJuUICNtCxIzL
WXXf/Hr5iWBUQ0JxYNPQzzjdMSXGE0WMwYVpAbCGxHpIsetKLdHUCwneYhaywe3I
KzmRJSDJGV1IJB0sAfoFtgybZXHgIR61jQjtnNmmyYXliYCd0wmIhXQDFN91tzzG
+EZdJ3Fao9JsMC+x55jO6EOLVySZgRF5E8vCeKUWemQciKFC7EhKcljILPYAA21u
NmHCAgRHKWU9JMdFK0w9lQuN2HQaNfkahjarTNM/Q6LwxY0dLG0vVYifE085WFAf
uQINBFmT2+ABEACxi39m5nQZexzY3c9sg/w5mUYCD89ZNSkj427gduQMYYGn7YW6
jSPfVJ/V3+PDK824c0a0XasyDapQFY1CPTZYrReRPoyjb8tJjsSVGXXCTFpJZlFU
br6kS9mgcx58Sypke2PMVk73+W1N1Yco+nahfTECRuM2/T2zHHr0AdKuBPF28U+H
TxyLatKoIgQwHDs4E/f4ZTbAoHvu3PixAl7XHVXCgz0cHaLhRljXizbZDXngOdGm
lqdFlAIpL6/l8E3m1Er0m3IfFo6qSzWRHg/KaBGIL4YKetJ6ACjlkCe5qbatDpmk
gWlg3Ux4RBVjyCK834Xh7eZpEcNf2iwpm28glWh7XMHGUplTHkU3PWQ4vGfNxXB8
HBOd9r02/cHL6MiHwhCAfIzZGVtqR0i9Ira57TMdXTpJWNXUcgsCMsi/Bg2a+hsn
aiYLrZc18uNL5nqOqsqKG3c1TcmeN7nbxVgnrNST4AjteulkhmB9p8tNOXA3u979
OO0T5LPwdqIpobdZ0lfw4URnAGw4Wd4Sm9PtRw0RvuAk2M2e5KXNyxPWAuMVkoRR
a7wG6h/R8pki54Gexyc+JkfB4ZcOrzHNLurw6DhxroyfRs8WEgX0wNIGmJvCXSBG
54jb5w9qudYwzIg4YPfvuX8sfeY8MTNhal3rF0tvVloGj3l709wlaWlBYwARAQAB
iQI8BBgBCgAmFiEE/A6HiuWv54gCjWNV05eS9J6n5cIFAlmT2+ACGwwFCQoek4AA
CgkQ05eS9J6n5cKhWw/+PT0R4r2gPAxI8ESEe380BYOmneNAH24MFOgWXqWCj4zX
Uz992BVnW2aL5nH4O5d822LGeCrYUC7SCpQvlifdHZHjobgtizLTwuu40bc3gSOz
cxWlx2jKfx3Ezn6QQz2mhhK6fZ1AO0ObiQxQq25ldURep95L78E/C8XkCe11YlUR
ng3wQKeHM7awZWRw/QBC92haHuVtU3cx7At+zQL7jTBKSZqd34zzs0uoXIhk2h94
O07MMDZ8z8MeU337vdL+RKYtD2bljLwpf7/kqg1D/q44RJ4ZpZcha9G0GvtLaQg2
+MAPlLg1vOWZ8wOTLaQHm+uzYRpkqxkIV8OuVd4UikCd8t3VNjNG5rG/YRNIAX0A
UEzs6oMF5YOFE8LmykesbUHAbC07Vcb0AsT5u3XKixDiIpPdnYSwGlkvoOVVLdeh
q/aXLK9V8BpViG5+a8xP2fdF1eMqdnrKAsiO4GEiq193PN/FA049VeIs3fd0izAa
x7+ag1MGtoF5Pij5iTVJm6phH5SUd1P3FY3OmclxWj/MbL4ba/G/6FWcy5NXxdw9
L1bRqaM2KEHJ67aF6NZz7UMldwExAWzFbUon1LUpKysAukxVf0EnntydBeVOQ+JO
HdqEpirrVLMpxPttUB2xxbo947nMj7/Bnme2gvb0vxaC9xSGVxrpW9cg5iCwSdc=
=8rds
-----END PGP PUBLIC KEY BLOCK-----

D.1.2. Security Team Secretary <secteam-secretary@FreeBSD.org>

pub 4096R/3CB2EAFCC3D6C666 2013-09-24 [expires: 2018-01-01]
 Key fingerprint = FA97 AA04 4DF9 0969 D5EF 4ADA 3CB2 EAFC C3D6 C666
uid FreeBSD Security Team Secretary <secteam-secretary@FreeBSD.org>
sub 4096R/509B26612335EB65 2013-09-24 [expires: 2018-01-01]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBFJBjIIBEADadvvpXSkdnBOGV2xcsFwBBcSwAdryWuLk6v2VxjwsPcY6Lwqz
NAZr2Ox1BaSgX7106Psa6v9si8nxoOtMc5BCM/ps/fmedFU48YtqOTGF+utxvACg
Ou6SKintEMUa1eoPcww1jzDZ3mxx49bQaNAJLjVxeiAZoYHe9loTe1fxsprCONnx
Era1hrI+YA2KjMWDORcwa0sSXRCI3V+b4PUnbMUOQa3fFVUriM4QjjUBU6hW0Ub0
GDPcZq45nd7PoPPtb3/EauaYfk/zdx8Xt0OmuKTi9/vMkvB09AEUyShbyzoebaKH
dKtXlzyAPCZoH9dihFM67rhUg4umckFLc8vc5P2tNblwYrnhgL8ymUaOIjZB/fOi
Z2OZLVCiDeHNjjK3VZ6jLAiPyiYTG1Hrk9E8NaZDeUgIb9X/K06JXVBQIKNSGfX5
LLp/j2wr+Kbg3QtEBkcStlUGBOzfcbhKpE2nySnuIyspfDb/6JbhD/qYqMJerX0T
d5ekkJ1tXtM6aX2iTXgZ8cqv+5gyouEF5akrkLi1ySgZetQfjm+zhy/1x/NjGd0u
35QbUye7sTbfSimwzCXKIIpy06zIO4iNA0P/vgG4v7ydjMvXsW8FRULSecDT19Gq
xOZGfSPVrSRSAhgNxHzwUivxJbr05NNdwhJSbx9m57naXouLfvVPAMeJYwARAQAB
tD9GcmVlQlNEIFNlY3VyaXR5IFRlYW0gU2VjcmV0YXJ5IDxzZWN0ZWFtLXNlY3Jl
dGFyeUBGcmVlQlNELm9yZz6JAj0EEwEKACcFAlJBjIICGwMFCQgH7b8FCwkIBwMF
FQoJCAsFFgIDAQACHgECF4AACgkQPLLq/MPWxmYt8Q/+IfFhPIbqglh4rwFzgR58
8YonMZcq+5Op3qiUBh6tE6yRz6VEqBqTahyCQGIk4xGzrHSIOIj2e6gEk5a4zYtf
0jNJprk3pxu2Og05USJmd8lPSbyBF20FVm5W0dhWMKHagL5dGS8zInlwRYxr6mMi
UuJjj+2Hm3PoUNGAwL1SH2BVOeAeudtzu80vAlbRlujYVmjIDn/dWVjqnWgEBNHT
SD+WpA3yW4mBJyxWil0sAJQbTlt5EM/XPORVZ2tvETxJIrXea/Sda9mFwvJ02pJn
gHi6TGyOYydmbu0ob9Ma9AvUrRlxv8V9eN7eZUtvNa6n+IT8WEJj2+snJlO4SpHL
D3Z+l7zwfYeM8FOdzGZdVFgxeyBU7t3AnPjYfHmoneqgLcCO0nJDKq/98ohz5T9i
FbNR/vtLaEiYFBeX3C9Ee96pP6BU26BXhw+dRSnFeyIhD+4g+/AZ0XJ1CPF19D+5
z0ojanJkh7lZn4JL+V6+mF1eOExiGrydIiiSXDA/p5FhavMMu8Om4S0sn5iaQ2aX
wRUv2SUKhbHDqhIILLeQKlB3X26obx1Vg0nRhy47qNQn/xc9oSWLAQSVOgsShQeC
6DSzrKIBdKB3V8uWOmuM7lWAoCP53bDRW+XIOu9wfpSaXN2VTyqzU7zpTq5BHX1a
+XRw8KNHZGnCSAOCofZWnKyJAhwEEAEKAAYFAlJBjYgACgkQ7Wfs1l3PaudFcQ//
UiM7EXsIHLwHxez32TzA/0uNMPWFHQN4Ezzg4PKB6Cc4amva5qbgbhoeCPuP+XPI
2ELfRviAHbmyZ/zIgqplDC4nmyisMoKlpK0Yo1w4qbix9EVVZr2ztL8F43qN3Xe/
NUSMTBgt/Jio7l5lYyhuVS3JQCfDlYGbq6NPk0xfYoYOMOZASoPhEquCxM5D4D0Z
3J3CBeAjyVzdF37HUw9rVQe2IRlxGn1YAyMb5EpR2Ij612GFad8c/5ikzDh5q6JD
tB9ApdvLkr0czTBucDljChSpFJ7ENPjAgZuH9N5Dmx2rRUj2mdBmi7HKqxAN9Kdm
+pg/6vZ3vM18rBlXmw1poQdc3srAL+6MHmIfHHrq49oksLyHwyeL8T6BO4d4nTZU
xObP7PLAeWrdrd1Sb3EWlZJ9HB/m2UL9w9Om1c6cb6X2DoCzQAStVypAE6SQCMBK
pxkWRj90L41BS62snja+BlZTELuuLTHULRkWqS3fFkUxlDSMUn96QksWlwZLcxCv
hKxJXOX+pHAiUuMIImaPQ0TBDBWWf5d8zOQlNPsyhSGFR5Skwzlg+m9ErQ+jy7Uz
UmNCNztlYgRKeckXuvr73seoKoNXHrn7vWQ6qB1IRURj2bfphsqlmYuITmcBhfFS
Dw0fdYXSDXrmG9wad98g49g4HwCJhPAl0j55f93gHLGIRgQQEQoABgUCUkGO5gAK
CRAV1ogEymzfsol4AKCI7rOnptuoXgwYx2Z9HkUKuugSRwCgkyW9pxa5EovDijEF
j1jG/cdxTOaJAhwEEAEKAAYFAlJBkdUACgkQkshDRW2mpm6aLxAAzpWNHMZVFt7e
wQnCJnf/FMLTjduGTEhVFnVCkEtI+YKarveE6pclqKJfSRFDxruZ6PHGG2CDfMig
J6mdDdmXCkN//TbIlRGowVgsxpIRg4jQVh4S3D0Nz50h+Zb7CHbjp6WAPVoWZz7b
Myp+pN7qx/miJJwEiw22Eet4Hjj1QymKwjWyY146V928BV/wDBS/xiwfg3xIVPZr
RqtiOGN/AGpMGeGQKKplkeITY7AXiAd+mL4H/eNf8b+o0Ce2Z9oSxSsGPF3DzMTL
kIX7sWD3rjy3Xe2BM20stIDrJS2a1fbnIwFvqszS3Z3sF5bLc6W0iyPJdtbQ0pt6
nekRl9nboAdUs0R+n/6QNYBkj4AcSh3jpZKe82NwnD/6WyzHWtC0SDRTVkcQWXPW
EaWLmv8VqfzdBiw6aLcxlmXQSAr0cUA6zo6/bMQZosKwiCfGl3tR4Pbwgvbyjoii
pF+ZXfz7rWWUqZ2C79hy3YTytwIlVMOnp3MyOV+9ubOsFhLuRDxAksIMaRTsO7ii
5J4z1d+jzWMW4g1B50CoQ8W+FyAfVp/8qGwzvGN7wxN8P1iR+DZjtpCt7J+Xb9Pt
L+lRKSO/aOgOfDksyt2fEKY4yEWdzq9A3VkRo1HCdUQY6SJ/qt7IyQHumxvL90F6
vbB3edrR/fVGeJsz4vE10hzy7kI1QT65Ag0EUkGMggEQAMTsvyKEdUsgEehymKz9
MRn9wiwfHEX5CLmpJAvnX9MITgcsTX8MKiPyrTBnyY/QzA0rh+yyhzkY/y55yxMP
INdpL5xgJCS1SHyJK85HOdN77uKDCkwHfphlWYGlBPuaXyxkiWYXJTVUggSjuO4b
jeKwDqFl/4Xc0XeZNgWVjqHtKF91wwgdXXgAzUL1/nwN3IglxiIR31y10GQdOQEG
4T3ufx6gv73+qbFc0RzgZUQiJykQ3tZK1+Gw6aDirgjQYOc90o2Je0RJHjdObyZQ
aQc4PTZ2DC7CElFEt2EHJCXLyP/taeLq+IdpKe6sLPckwakqtbqwunWVoPTbgkxo
Q1eCMzgrkRu23B2TJaY9zbZAFP3cpL65vQAVJVQISqJvDL8K5hvAWJ3vi92qfBcz
jqydAcbhjkzJUI9t44v63cIXTI0+QyqTQhqkvEJhHZkbb8MYoimebDVxFVtQ3I1p
EynOYPfn4IMvaItLFbkgZpR/zjHYau5snErR9NC4AOIfNFpxM+fFFJQ7W88JP3cG
JLl9dcRGERq28PDU/CTDH9rlk1kZ0xzpRDkJijKDnFIxT2ajijVOZx7l2jPL1njx
s4xa1jK0/39kh6XnrCgK49WQsJM5IflVR2JAi8BLi2q/e0NQG2pgn0QL695Sqbbp
NbrrJGRcRJD9sUkQTpMsLlQTABEBAAGJAiUEGAEKAA8FAlJBjIICGwwFCQgH7b8A
CgkQPLLq/MPWxmZAew//et/LToMVR3q6/qP/pf9ob/QwQ3MgejkC0DY3Md7JBRl/
6GWfySYnO0Vm5IoJofcv1hbhc/y3OeZTvK4s+BOQsNokYe34mCxZG4dypNaepkQi
x0mLujeU/n4Y0p0LTLjhGLVdKina2dM9HmllgYr4KumT58g6eGjxs2oZD6z5ty0L
viU5tx3lz3o0c3I9soH2RN2zNHVjXNW0EvWJwFLxFeLJbk/Y3UY1/kXCtcyMzLua
S5L5012eUOEvaZr5iYDKjy+wOxY4SUCNYf0GPmSej8CBbwHOF2XCwXytSzm6hNb3
5TRgCGbOSFTIy9MxfV5lpddQcdzijmuFSl8LySkL2yuJxjlI7uKNDN+NlfODIPMg
rdH0hBSyKci6Uz7Nz/Up3qdE+aISq68k+Hk1fiKJG1UcBRJidheds29FCzj3hoyZ
VDmf6OL60hL0YI1/4GjIkJyetlPzjMp8J7K3GweOUkfHcFihYZlbiMe7z+oIWEc7
0fNScrAGF/+JN3L6mjXKB6Pv+ER5ztzpfuhBJ/j7AV5BaNMmDXAVO4aTphWl7Dje
iecENuGTpkK8Ugv5cMJc4QJaWDkj/9sACc0EFgigPo68KjegvKg5R8jUPwb8E7T6
lIjBtlclVhaUrE2uLx/yTz2Apbm+GAmD8M0dQ7IYsOFlZNBW9zjgLLCtWDW+p1A=
=5gJ7
-----END PGP PUBLIC KEY BLOCK-----

D.1.3. Core Team Secretary <core-secretary@FreeBSD.org>

pub rsa4096/D8C8C83B49F26F17 2020-06-26 [SC] [expires: 2022-06-30]
 Key fingerprint = 4B64 E9E0 BDE9 B3EC C06B 5C66 D8C8 C83B 49F2 6F17
uid FreeBSD Core Team Secretary <core-secretary@freebsd.org>
sub rsa4096/377C937536E4821B 2020-06-26 [E] [expires: 2022-06-30]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBF72HwABEAC5hl4kfh8DyRpp0WE5rwbnuS+wQ51EVTGs1vLho8OZ2XruzlQT
AezCnKLsqMgD/UEaBcn9kbKoeqp2sIwuEUX+P79KhRc4C8RJ8TMfDH0OtC091QVp
MYWbIsvZYCO04K+rN1Dbk2En3BOJVgTowqbZzR3hPvzeU2/P+Y3zMtpQGea2DB5d
24Q/tIuPMh89evEXOx0K5eM/4P2awSmA3J+h+r09UYjKejJ5OBUJQsMervWAHgCA
TxJQHoPXw+ZKpJB3dzyHKTMukVZhdCjK6Zt2tih/rO/CHDsitMgYRIl3w2X6pDfV
JOpvOBlzg7nooIw94v6Uxr2y/JWgOGh2qy07u4qE//y6uSl55s+Vq5TrFr79VSwB
GhY9As/0Dk1lyFisKp1/yiet2W7Pu4c99Z5dsrQPSTLFvkvonVRX8wgxRZwk6gWA
LEYklwoR0NXiqlrpBT10Tsnsa4aoUvZW6eyOWZrKsdsVn05sgRmvlfpiqBbwqldJ
0EeF/MztPuhmq4Hgn+DmmYnx/P85pZpThcfJx16VxS8nB7ExYljeC9LF8V8/1d7e
tfgAj8ezzNtr2TXSZ5gblQtYLjKdgBiBZqsxHPYHzfG8Zx3eYs2Myklf9p4lt7nv
atTroDt8pUGXfhGfoqSHSLXODfYAO9/7DOPqTy5Pan4i7aWBPP+gfK0kgQARAQAB
tDhGcmVlQlNEIENvcmUgVGVhbSBTZWNyZXRhcnkgPGNvcmUtc2VjcmV0YXJ5QGZy
ZWVic2Qub3JnPokCVAQTAQoAPhYhBEtk6eC96bPswGtcZtjIyDtJ8m8XBQJe9h8A
AhsDBQkDx60ABQsJCAcDBRUKCQgLBRYDAgEAAh4BAheAAAoJENjIyDtJ8m8XQFwP
/RqHPMSsLlTcq5NfK2MAVGmdtpL5wf84bchVWtcXUUEwXW1wI2cdDwu9SoqudDbP
2lrbMpxWeUWAgCpPCF/vCVo4Nzd0zb1cEGKRKFiZe/4EQ8dfvqr03YyupSQvx6+P
oY+8y3kl7iHJKBkwrASraB2p+N9XDAJDgqz+1M2Xbo7rcJx64wBOCyPAxd9JWsge
d8mXyAqZlrLihsTjLbhuYbJxpKM5YjGubVaQZaNIDxUduqc8Pt9VgHvWJBc9VPPA
3B6E9/PUFZYZeZQSROkYniN9NE7keitxj/rvZkpzcaXfAoDMC7CSoLBzlP+CJZ+i
Kk7IWz4JpxiYkE/IY4VvMMYms9tRP8fVv0+R7r7yKEA9SSlH+e9qC++OoWg4b+wV
OrWtVIWvaJCtj5ZAPCutGZxBdvXEbHd/Gv6uCzG86n4huz23U+Y4iLzoAlVelnQs
Hqu1wSAUBNpplyeZ1TvrGg2pufxLh8iXfh0npDP/6J+u0GUfeX4JoAzvxlatXMYI
fBmqmcZI6ShJN8qQtCUa5OMqbnieo7Fmpf8BsLegjAsQ+8w21ATD2boinStntLzF
/yoL/z9WYxmoOdHYcQ8bildjCvtbAKrZie8sI4SgWQz2UX6KX9sc/WOmWUEtjdqB
WfGratZNoxuQLUvEDftt7r9ts1jKVUl3dMPTCfU4wcj5iQIzBBABCgAdFiEEVbCT
pybDiFVxIrrVNqQMg7DW754FAl72J74ACgkQNqQMg7DW756LaA//Z3CCF5fQ08tx
RLeqHNsS5xCYS97TjZxY6xAMBjebkS+ABkgdbedSH+YNGfdaGSD/SMtvMAmnx55t
18DDdA4pqC5x2USaHjXFdbDdxKuKMAoSAtOpipVASVmW0FkZI5C5FDe3MF8+mfGb
EPhVPwKbo7R5tk4jUPyX8wUaOAyUX9fyQnwDxN+zTHvKwnX/+qwpoKaY2N4ZOI0w
rOF1kkczibbfwvjVYcpPovGALmTccnWo1Xvpkhllg93Y21mH+T2Ub/BK3GhvgJQi
WwiDtMwelUnPLp4W1451OU1OyGzeT/XwuMPH9dsKz5Iw4/g1zqQEtZj2Gc0DP5we
HM50doTn+dVIF+WCFLhPYm0RSf8Zj8ngbX/HV2UYLB5k+uNT9YTnBVEdKVydx7Cp
IplC7XApJEfTUk7wl7YCGn5P5YolC7DSJlwcAjxdbffXLowBhgyOq+EJJgnqerZl
r4db58h2epIHRKgnSl5z4KoAGW1O5dFShBz1UYPj4cZdeE+twpcgEg3/7LMzPzF/
xQAQZ89axxXBaCPl+YVsuMJSerbNdPp1SjCs9e8Vev91tLFmt/sY4IpvbPHZavGl
/4ealh8E1zPgf8lVW9TPrUY6mjN/uDI2y39tk2EoFzOcSQhlEM6gRW8uV4q92cWM
V55hu7Vs2RrKA7fve9y+YBi3DdTwwHSJATMEEAEKAB0WIQSfAoNvUNOtWrdaxYgM
tAPk6VuW7AUCXvY98wAKCRAMtAPk6VuW7CDLB/9PSUSMV/pnC+X4ougpjpqfSJf8
5bozjkKSkNqXZmt2vJVImc/oSK13awq46FC4rAhk59lT3kaH6EKvDHQ5G8Twi07u
VotcOdtfMjXgPV6RLmo6Hps0E1nzmbsum6xeemRDf3D3n1kAdUteXNBxHTIdAbeY
p4Wxu46CC/SqD6HbnUF2o+/6dXXyV1lTnViIj6m5eFD2OQ4Jdq7GPsSjSS2XL4f9
jHZUOUJyyA0aFWjJ+SCzMkXSUnyiOCl4uUHdCgivLIRyZ/giWoQpr8sAgHXCh82h
T3BmbHgmcMgMh+wNxH878IPwUU0CKRd2dL5kOSZVCFuMnFsc9eIie5kMEJwPuQIN
BF72HwABEADT9l4GIYiFaYg2QbQ3wsmmFnP/pAZiHDxXI6wL6xCKj6o2sc1/b5j3
ILEiAoqZ5ZenXX6T7Epjal0ASkfsGo/n3vF18grSudIkXJPQXcb61fXU7xfmGAEU
HWABQG+OD/HTvUPAITVckl4LxVFkz3oqRnq13rxDk1XZYvLVWeBn8vfWF4/glz9k
etfLw71Pk9f86BuNb0vCPnWpOpZaOxKlabdGpMKDD+1RYC/L+ZEwKiLBfgXTzK3g
IWAX3kTrQjKBZzsQ0s5TFWkm+z80GVUq8HKlXUOuF8s7cX+KXGU2kYcC8DQrxPdL
jYm6N8axOn4RR8eP5ZFA0W7qMieFSHAjqCs4srdN1bGC3nS0zGsQCvtTRBbu0nen
O6uwzWQgTzWVfV+dqaEH2crnhn5CUI0A8jdbFBGDiBbWJz/QfRray1CEc8q+hZFM
OLBsVXrDVe6hUXTveGc9xAnXC+0o3nnc7WhWr1caTbbhnzlEbME8u2oLif7rkhc7
FanuQEyKa76J1zou08ZeLK/pUFXTbRCoyUEVL+VIxLESCWi1ptkDpiZey3l6fe0Q
WWRMLFMpbu3WTNl21bEwfRL03+fP1q+yGAV5hyJv/EMldd76v577dAolIsTh+aDP
PMJ7mJ5NwOuiC20HIlCjuVT5A2pBIzFfraZY/v4dzoaOpXZjEz9wIwARAQABiQI8
BBgBCgAmFiEES2Tp4L3ps+zAa1xm2MjIO0nybxcFAl72HwACGwwFCQPHrQAACgkQ
2MjIO0nybxcflQ/9FYvM/lBSzy4VFOjNsUkRtjmPtyw2dJmQOCbWoSHmibRCG26a
Upt5lp1n4LG/qEtDlus5mDETL+/TnYhCG+hhnHADc87goLwBwl37yK1NAYvOy2rm
TddjDT5vZW0yzHjHqIJlNxQ4OjMi/XjyHIzb0PGNayFVi3XkLVxWZI+lWON1btWk
gpFfEgqRqQbJxM2cSEQimkfrrE+b2/M4cGX9rThpTtpfpbyHjTsS6juo4/eIdnBA
UXpKce4Q9LB5zxDaakKoDVxxkc9R0HAAoIH4u+Fu8az+CuH2sJcVJWK7Nxct++N8
Xhj+FUS+Ay8siu+ScQjsOHOHRwr6a+6NT58eylwR5hwotmnzJHLZReqknoAjLEGT
d33jzKM/y6OqPe/oPGj2b13RkA2vRnCPm33+T57sLMonNe6hhlXs9VTgXxSAzfMa
cmVOdP+nxUsoc3MtqjE2z2BcI9WMmmJFeEgE2BOj703CQuot+8jcZFXGUW+i6V1a
k7dZEMDsbALNzxaRNGeJC6HiM1+dXFGLNHEIgBLGwdvFAxTfNauvK0p7skDWEx44
giaUjZYpQ21+SHjVKTUnFQiiIDORvs3jdZDaxK/Y/vSoLRUiLBiHZWa6mxQY4uc6
5nAzLZB2BiBRfdL8fEO154nWjAZBLbKhK+ke2DBoPvSWubLPJqZyh+GmZAE=
=3AI7
-----END PGP PUBLIC KEY BLOCK-----

D.1.4. Ports Management Team Secretary <portmgr-secretary@FreeBSD.org>

pub rsa2048/D8294EC3BBC4D7D5 2012-07-24 [SC]
 Key fingerprint = FB37 45C8 6F15 E8ED AC81 32FC D829 4EC3 BBC4 D7D5
uid FreeBSD Ports Management Team Secretary <portmgr-secretary@FreeBSD.org>
sub rsa2048/5CC117965F65CFE7 2012-07-24 [E]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBFAOzqYBCACYd+KGv0/DduIRpSEKWZG2yfDILStzWfdaQMD+8zdWihB0x7dd
JDBUpV0o0Ixzt9mvu5CHybx+9lOHeFRhZshFXc+bIJOPyi+JrSs100o7Lo6jg6+c
Si2vME0ixG4x9YjCi8DisXIGJ1kZiDXhmVWwCvL+vLInpeXrtJnK8yFkmszCOr4Y
Q3GXuvdU0BF2tL/Wo/eCbSf+3U9syopVS2L2wKcP76bbYU0ioO35Y503rJEK6R5G
TchwYvYjSXuhv4ec7N1/j3thrMC9GNpoqjVninTynOk2kn+YZuMpO3c6b/pfoNcq
MxoizGlTu8VT4OO/SF1y52OkKjpAsENbFaNTABEBAAG0R0ZyZWVCU0QgUG9ydHMg
TWFuYWdlbWVudCBUZWFtIFNlY3JldGFyeSA8cG9ydG1nci1zZWNyZXRhcnlARnJl
ZUJTRC5vcmc+iQE4BBMBAgAiBQJQDs6mAhsDBgsJCAcDAgYVCAIJCgsEFgIDAQIe
AQIXgAAKCRDYKU7Du8TX1QW2B/0coHe8utbTfGKpeM4BY9IyC+PFgkE58Hq50o8d
shoB9gfommcUaK9PNwJPxTEJNlwiKPZy+VoKs/+dO8gahovchbRdSyP1ejn3CFy+
H8pol0hDDU4n7Ldc50q54GLuZijdcJZqlgOloZqWOYtXFklKPZjdUvYN8KHAntgf
u361rwM4DZ40HngYY9fdGc4SbXurGA5m+vLAURLzPv+QRQqHfaI1DZF6gzMgY49x
qS1JBF4kPoicpgvs3o6CuX8MD9ewGFSAMM3EdzV6ZdC8pnpXC8+8Q+p6FjNqmtjk
GpW39Zq/p8SJVg1RortCH6qWLe7dW7TaFYov7gF1V/DYwDN5iEYEEBECAAYFAlN2
WksACgkQtzkaJjSHbFtuMwCg0MXdQTcGMMOma7LC3L5b4MEoZ+wAn0WyUHpHwHnn
pn2oYDlfAbwTloWIiQEcBBABAgAGBQJQDuVrAAoJENk3EJekc8mQ3KwIAImNDMXA
F8ajPwCZFpM6KDi3F/jpwyBPISGY1oWuYPEi1zN94k5jS90aZb3W8Y8x4JTh35Ew
b6XODi3uGLSLCmnlqu2a80yPfXf5IuWmIQdFNQxvosj9UHrg+icZGFmm+f0hPJxM
TsZREv3AvivQfnb/N3xIICxW4SjKSYXQcq4hr4ObhUx7GKnjayq+ofU2cRlujr87
uOH0fO3xhOJG4+cX5mI1HGK38k0Csc1zqYa/66Qe5dnIZz+sNXpEPMLAHIt1a45U
B967igJdZSDFN33bPl1QWmf3aUXU3d1VttiSyHkpm4kb9KgsDkUk1IJ5nUe9OXyd
WtoqNW5afDa5N0aIRgQQEQIABgUCUA7lwwAKCRB59uBxdBRinNh2AJ41+zfsaQSR
HWvSkqOXGcP/fgOduwCfUJDT+M1eXe2udmKof/9yzGYMirKJASIEEAECAAwFAlAa
IT8FAwASdQAACgkQlxC4m8pXrXwCHAf+J7l+L7AvRpqlQcezjnjFS/zG1098qkDf
lThHZlpVnrBMJZaXdvL6LzVgiIYVWZC5CSSazW9EWFjp9VjM7FBHdWFZNMV7GAuU
t0jzx6gGXOWwi+/v/hs1P11RyDZN5hICHdPNmyZVupciDxe+sIEP9aEbVxcaiccq
zM/pFzIVIMMP5tCiA42q6Mz3h0hy6hntUKptS8Uon6sje5cDVcVlKAUj1wO2cphC
qkYlwMQfZV5J9f/hcW5ODriD3cBwK8SocA2Cq5JYF8kYDL1+pXnUutGnvAHUYt87
RWvQdKmfXjzBcMFJ2LlPUB1+IFvwQ13V9R8j9B/EdLmSWQYT9qRA2okCHAQTAQoA
BgUCV1XMpwAKCRCtu/hhCjeJt2CyD/9JLe+Ck23CJkeRSF8oC+4SFOUdSAmejSzn
klPwmEClffABYd/kckO1T6um+2FUcXuJZQE1nKKUNvZ8pBWwsm1RDHsyroKi/XB1
0a1Tdx/rvlU88ytbeLfUCLzoCrf6pkMQWoU6/3qS6elV0WwOlDufk+XjD1sja2wu
sshG8y+1WCA5JjP3rZdD9NVdzo5DgkotTRUfuYN1LJIN4zlDgHj7FVP7wW7+R0cZ
FoOiNsLJCA0FN8SiyU98UysjawLiIY9dTJz6XVA0DgB0TZWO3mWiDjITeKrdGcqf
PNiJhmvUKBkn07YpTPNfkoTT/p/q5ChYmu0ubGeyS1ELKjmklJ+DzynfZLzvnXYX
Ngo5ckeuqEqUNxM0J63v8lmfhDRROFveqHWdp0XMxXVmR5bMunSldg5EZsoLyQbN
+ScIPnDTAEPGrCtf0t84RQxNQeET6/WBbZfzeSeAFmpBFCdicsZ6Mjwtwjr4+o15
n1QMTZco1NaTqf8vXwzl9wM4aYtg1OkF4z8HdHuy50CHCet4mT5eJgwZUfFvXdbM
pHXprEI0Y9OOL4aMinC1egF3dXt/0n57i6CE+E2k3UJPNvMrtp0HaDEnKZ8cfkBU
EBzkUYi5wwqntHV2JRisqoRnHdvJT7ImlHMe7WaJsifBK874PnToaKg8P6K1Tph+
FyLxULaYjYkCHAQSAQgABgUCVBg2zwAKCRDqsDxYv9xHj1klEADXYJdHC3zsdx7w
DsJsttWdykcZoOd/VUKUdN0BAU72nLV0tLn4uFjETA6MhHZVxzwIDTeLB8kqyEpc
fZnoVbqJIUJz1sJXMdOty7CwZzlZlAwmUaIfFiazJY1p398JbyYfSrVKNOpw9wCm
Db7WP9dBritwvjaLzu8HQsiztO0S/5ha/EDfTU3qocBUTjbCtGR9LqAmPE4X8+li
F2EfZMEoJd3rJWsYv2y/k6pSgC/MpQewnyr6f+JQ/781UoZB6PpxCxfu4D6xlOyd
ERBUg+FfDAWYR+KX+DGOalRlUyaSz8Nvxl8/b0Im/AQhx9afqyEZxIDpg52zt8jJ
t3wx23YP8EQGUgwF8pIrj3wFSBSG3a/cskiBNUIhChIR9hQrVPUahN/jx7DGAGxk
/Ka9qsRGYTHfSr9jjTUQ+htfeFBRDR0nkZKMo5+Wk/cAcBKVbPlBpwvnzT3fh+wL
cF3ErBbx5jp+BoFee8D6ATeUvQxMcgVbDPUkgMsy3EtKMVO10jhIoXoVV+Sg9GZ8
zMEy1tORKn0zsd2ZgXC2sRJOm5ttCSdYQ4ddbM1A9jg6tiRx4hES16GDywvkL8P2
M9+qyIfjQxjGU33f/r8zp9DyNT1VlrtwhFxtOoMdmrsbYOCTja4Xg14hK1hRac0k
GB7bj6w97p8uMrQT3PlSMtoyrRyo7bkBDQRQDs6mAQgAzNxJYpf5PrqV8pdRXkn3
6Fe45q671YtbZ2WrT7D0CVZ8Z+AZsxnP/tiY1SrM2MepCeA2xBAhKGsWBWo1aRk5
mfZOksKsiXsi2XeBVhdZlCkrOMKBTVian7I1lH59ZnNIMX0Nl0tlj3L1IjeWWNvf
ej43URV81S9EmSwpjaWboatr2A+1oJku5m7nPD9JIOckE1TzBsyhx7zIUN9w6MKr
7gFw8DCzypwUKyYgKYToVm8QlkT/L3B0fuQHWhT6ROGk4o8SC71ia5tc1TzUzGEZ
1AQO8bbnbmJLBDKveWHCoaeAkRzINzoD9wAn9z4pnilze59QtKC1cOqUksTvBSDh
6wARAQABiQEfBBgBAgAJBQJQDs6mAhsMAAoJENgpTsO7xNfVOHoH/i5VyggVdwpq
PX8YBmN5mXQziYZNQoiON8IhOsxpX4W2nXCj5m6MACV6nJDVV6wyUH8/VvDQC9nH
arCe1oaNsHXJz0HamYt5gHJ0G1bYuBcuJp/FEjLa48XFI7nXQjJHn8rlwZMjK/PW
j1lw2WZiekviuzTEDH8c3YStGJSa+gYe8Eyq3XJVAe2VQOhImoWgGDR3tWfgrya/
IdEFb/jmjHSG5XUfbI0vNwqlf832BqSQKPG/Zix4MmBJgvAz4R71PH8WBmbmNFjD
elxVyfz80+iMgEb9aL91MfeBNC2KB1pFmg91mQTsiq7ajwVLVJK8NplHAkdLmkBC
O8MgMjzGhlE=
=iw7d
-----END PGP PUBLIC KEY BLOCK-----

D.1.5. <doceng-secretary@FreeBSD.org>

pub rsa2048/E1C03580AEB45E58 2019-10-31 [SC] [expires: 2022-10-30]
 Key fingerprint = F24D 7B32 B864 625E 5541 A0E4 E1C0 3580 AEB4 5E58
uid FreeBSD Doceng Team Secretary <doceng-secretary@freebsd.org>
sub rsa2048/9EA8D713509472FC 2019-10-31 [E] [expires: 2022-10-30]

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBF27FFcBCADeoSsIgyQUY8vREwkTikwFFlNg31MVy5s/Nq1cNK1PRfRMnprS
yfB62KqbYuz16bmQKaA9zHN4FGfiTvR6tl66LVHm1s/5HPiLv8sP14GsruLro9zN
v72dO7a9i68bMw+jarPOnu9dGiDFEI0dACOkdCGEYKEUapQeNpmWRrQ46BeXyFwF
JcNx76bJJUkwk6fWC0W63D762e6lCEX6ndoaPjjLBnFvtx13heNGUc8RukBwe2mA
U5pSGHj47J05bdWiRSwZaXa8PcW+20zTWaP755w7zWe4h60GANY7OsT9nuOqsioJ
QonxTrJuZweKRV8fNQ1EfDws3HZr7/7iXvO3ABEBAAG0PEZyZWVCU0QgRG9jZW5n
IFRlYW0gU2VjcmV0YXJ5IDxkb2Nlbmctc2VjcmV0YXJ5QGZyZWVic2Qub3JnPokB
VAQTAQoAPhYhBPJNezK4ZGJeVUGg5OHANYCutF5YBQJduxRXAhsDBQkFo5qABQsJ
CAcDBRUKCQgLBRYDAgEAAh4BAheAAAoJEOHANYCutF5YB2IIALw+EPYmOz9qlqIn
oTFmk/5MrcdzC5iLEfxubbF6TopDWsWPiOh5mAuvfEmROSGf6ctvdYe9UtQV3VNY
KeeyskeFrIBOFo2KG/dFqKPAWef6IfhbW3HWDWo5uOBg01jHzQ/pB1n6SMKiXfsM
idL9wN+UQKxF3Y7S/bVrZTV0isRUolO9+8kQeSYT/NMojVM0H2fWrTP/TaNEW4fY
JBDAl5hsktzdl8sdbNqdC0GiX3xb4GvgVzGGQELagsxjfuXk6PfOyn6Wx2d+yRcI
FrKojmhihBp5VGFQkntBIXQkaW0xhW+WBGxwXdaAl0drQlZ3W+edgdOl705x73kf
Uw3Fh2a5AQ0EXbsUVwEIANEPAsltM4vFj2pi5xEuHEcZIrIX/ZJhoaBtZkqvkB+H
4pu3/eQHK5hg0Dw12ugffPMz8mi57iGNI9TXd8ZYMJxAdvEZSDHCKZTX9G+FcxWa
/AzKNiG25uSISzz7rMB/lV1gofCdGtpHFRFTiNxFcoacugTdlYDiscgJZMJSg/hC
GXBdEKXR5WRAgAGandcL8llCToOt1lZEOkd5vJM861w6evgDhAZ2HGhRuG8/NDxG
r4UtlnYGUCFof/Q4oPNbDJzmZXF+8OQyTNcEpVD3leEOWG1Uv5XWS2XKVHcHZZ++
ISo/B5Q6Oi3SJFCVV9f+g09YF+PgfP/mVMBgif2fT20AEQEAAYkBPAQYAQoAJhYh
BPJNezK4ZGJeVUGg5OHANYCutF5YBQJduxRXAhsMBQkFo5qAAAoJEOHANYCutF5Y
kecIAMTh2VHQqjXHTszQMsy3NjiTVVITI3z+pzY0u2EYmLytXQ2pZMzLHMcklmub
5po0X4EvL6bZiJcLMI2mSrOs0Gp8P3hyMI40IkqoLMp7VA2LFlPgIJ7K5W4oVwf8
khY6lw7qg2l69APm/MM3xAyiL4p6MU8tpvWg5AncZ6lxyy27rxVflzEtCrKQuG/a
oVaOlMjH3uxvOK6IIxlhvWD0nKs/e2h2HIAZ+ILE6ytS5ZEg2GXuigoQZdEnv71L
xyvE9JANwGZLkDxnS5pgN2ikfkQYlFpJEkrNTQleCOHIIIp8vgJngEaP51xOIbQM
CiG/y3cmKQ/ZfH7BBvlZVtZKQsI=
=MQKT
-----END PGP PUBLIC KEY BLOCK-----

FreeBSD Glossary

FreeBSD Glossary
This glossary contains terms and acronyms used within the FreeBSD
 community and documentation.
A
	ACL
	See Access Control List.

	ACPI
	See Advanced Configuration and Power Interface.

	AMD
	See Automatic Mount Daemon.

	AML
	See ACPI Machine Language.

	API
	See Application Programming Interface.

	APIC
	See Advanced Programmable Interrupt Controller.

	APM
	See Advanced Power Management.

	APOP
	See Authenticated Post Office Protocol.

	ASL
	See ACPI Source Language.

	ATA
	See Advanced Technology Attachment.

	ATM
	See Asynchronous Transfer Mode.

	ACPI Machine Language
	Pseudocode, interpreted by a virtual machine within an
	 ACPI-compliant operating system, providing a
	 layer between the underlying hardware and the documented
	 interface presented to the OS.

	ACPI Source Language
	The programming language AML is written in.

	Access Control List
	A list of permissions attached to an object, usually either a
	 file or a network device.

	Advanced Configuration and Power Interface
	A specification which provides an abstraction of the
	 interface the hardware presents to the operating system, so
	 that the operating system should need to know nothing about
	 the underlying hardware to make the most of it. ACPI
	 evolves and supersedes the functionality provided previously by
	 APM, PNPBIOS and other technologies, and
	 provides facilities for controlling power consumption, machine
	 suspension, device enabling and disabling, etc.

	Application Programming Interface
	A set of procedures, protocols and tools that specify the
	 canonical interaction of one or more program parts; how, when
	 and why they do work together, and what data they share or
	 operate on.

	Advanced Power Management
	An API enabling the operating system to work
	 in conjunction with the BIOS in order to achieve
	 power management. APM has been superseded by
	 the much more generic and powerful ACPI
	 specification for most applications.

	Advanced Programmable Interrupt Controller
	

	Advanced Technology Attachment
	

	Asynchronous Transfer Mode
	

	Authenticated Post Office Protocol
	

	Automatic Mount Daemon
	A daemon that automatically mounts a filesystem when a file
 or directory within that filesystem is accessed.

B
	BAR
	See Base Address Register.

	BIND
	See Berkeley Internet Name Domain.

	BIOS
	See Basic Input/Output System.

	BSD
	See Berkeley Software Distribution.

	Base Address Register
	The registers that determine which address range a PCI device
	 will respond to.

	Basic Input/Output System
	The definition of BIOS depends a bit on
	 the context. Some people refer to it as the ROM
	 chip with a basic set of routines to provide an interface between
	 software and hardware. Others refer to it as the set of routines
	 contained in the chip that help in bootstrapping the system. Some
	 might also refer to it as the screen used to configure the
	 bootstrapping process. The BIOS is PC-specific
	 but other systems have something similar.

	Berkeley Internet Name Domain
	An implementation of the DNS protocols.

	Berkeley Software Distribution
	This is the name that the Computer Systems Research Group
	 (CSRG) at The University
	 of California at Berkeley
	 gave to their improvements and modifications to
	 AT&T's 32V UNIX®.
	 FreeBSD is a descendant of the CSRG work.

	Bikeshed Building
	A phenomenon whereby many people will give an opinion on
	 an uncomplicated topic, whilst a complex topic receives little
	 or no discussion. See the
	 FAQ for
	 the origin of the term.

C
	CD
	See Carrier Detect.

	CHAP
	See Challenge Handshake Authentication Protocol.

	CLIP
	See Classical IP over ATM.

	COFF
	See Common Object File Format.

	CPU
	See Central Processing Unit.

	CTS
	See Clear To Send.

	Carrier Detect
	An RS232C signal indicating that a carrier
	 has been detected.

	Central Processing Unit
	Also known as the processor. This is the brain of the
	 computer where all calculations take place. There are a number of
	 different architectures with different instruction sets. Among
	 the more well-known are the Intel-x86 and derivatives, Arm, and
	 PowerPC.

	Challenge Handshake Authentication Protocol
	A method of authenticating a user, based on a secret shared
	 between client and server.

	Classical IP over ATM
	

	Clear To Send
	An RS232C signal giving the remote system
 permission to send data.
See Also Request To Send.

	Common Object File Format
	

D
	DAC
	See Discretionary Access Control.

	DDB
	See Debugger.

	DES
	See Data Encryption Standard.

	DHCP
	See Dynamic Host Configuration Protocol.

	DNS
	See Domain Name System.

	DSDT
	See Differentiated System Description Table.

	DSR
	See Data Set Ready.

	DTR
	See Data Terminal Ready.

	DVMRP
	See Distance-Vector Multicast Routing Protocol.

	Discretionary Access Control
	

	Data Encryption Standard
	A method of encrypting information, traditionally used as the
	 method of encryption for UNIX® passwords and the crypt(3)
	 function.

	Data Set Ready
	An RS232C signal sent from the modem to the
	 computer or terminal indicating a readiness to send and receive
	 data.
See Also Data Terminal Ready.

	Data Terminal Ready
	An RS232C signal sent from the computer or
	 terminal to the modem indicating a readiness to send and receive
	 data.

	Debugger
	An interactive in-kernel facility for examining the status of
	 a system, often used after a system has crashed to establish the
	 events surrounding the failure.

	Differentiated System Description Table
	An ACPI table, supplying basic configuration
	 information about the base system.

	Distance-Vector Multicast Routing Protocol
	

	Domain Name System
	The system that converts humanly readable hostnames (i.e.,
	 mail.example.net) to Internet addresses and vice versa.

	Dynamic Host Configuration Protocol
	A protocol that dynamically assigns IP addresses to a computer
	 (host) when it requests one from the server. The address assignment
	 is called a “lease”.

E
	ECOFF
	See Extended COFF.

	ELF
	See Executable and Linking Format.

	ESP
	See Encapsulated Security Payload.

	Encapsulated Security Payload
	

	Executable and Linking Format
	

	Extended COFF
	

F
	FADT
	See Fixed ACPI Description Table.

	FAT
	See File Allocation Table.

	FAT16
	See File Allocation Table (16-bit).

	FTP
	See File Transfer Protocol.

	File Allocation Table
	

	File Allocation Table (16-bit)
	

	File Transfer Protocol
	A member of the family of high-level protocols implemented
	 on top of TCP which can be used to transfer
	 files over a TCP/IP network.

	Fixed ACPI Description Table
	

G
	GUI
	See Graphical User Interface.

	Giant
	The name of a mutual exclusion mechanism
	 (a sleep mutex) that protects a large
	 set of kernel resources. Although a simple locking mechanism
	 was adequate in the days where a machine might have only
	 a few dozen processes, one networking card, and certainly
	 only one processor, in current times it is an unacceptable
	 performance bottleneck. FreeBSD developers are actively working
	 to replace it with locks that protect individual resources,
	 which will allow a much greater degree of parallelism for
	 both single-processor and multi-processor machines.

	Graphical User Interface
	A system where the user and computer interact with
 graphics.

H
	HTML
	See HyperText Markup Language.

	HUP
	See HangUp.

	HangUp
	

	HyperText Markup Language
	The markup language used to create web pages.

I
	I/O
	See Input/Output.

	IASL
	See Intel’s ASL compiler.

	IMAP
	See Internet Message Access Protocol.

	IP
	See Internet Protocol.

	IPFW
	See IP Firewall.

	IPP
	See Internet Printing Protocol.

	IPv4
	See IP Version 4.

	IPv6
	See IP Version 6.

	ISP
	See Internet Service Provider.

	IP Firewall
	

	IP Version 4
	The IP protocol version 4, which uses 32 bits
	 for addressing. This version is still the most widely used, but it
	 is slowly being replaced with IPv6.
See Also IP Version 6.

	IP Version 6
	The new IP protocol. Invented because the
	 address space in IPv4 is running out. Uses 128
	 bits for addressing.

	Input/Output
	

	Intel’s ASL compiler
	Intel’s compiler for converting ASL into
	 AML.

	Internet Message Access Protocol
	A protocol for accessing email messages on a mail server,
	 characterised by the messages usually being kept on the server as
	 opposed to being downloaded to the mail reader client.
See Also Post Office Protocol Version 3.

	Internet Printing Protocol
	

	Internet Protocol
	The packet transmitting protocol that is the basic protocol on
	 the Internet. Originally developed at the U.S. Department of
	 Defense and an extremely important part of the TCP/IP
	 stack. Without the Internet Protocol, the Internet
	 would not have become what it is today. For more information, see
	
	 RFC 791.

	Internet Service Provider
	A company that provides access to the Internet.

K
	KAME
	Japanese for “turtle”, the term KAME is used
	 in computing circles to refer to the KAME Project, who work on
	 an implementation of IPv6.

	KDC
	See Key Distribution Center.

	KLD
	See Kernel ld(1).

	KSE
	See Kernel Scheduler Entities.

	KVA
	See Kernel Virtual Address.

	Kbps
	See Kilo Bits Per Second.

	Kernel ld(1)
	A method of dynamically loading functionality into a FreeBSD kernel
	 without rebooting the system.

	Kernel Scheduler Entities
	A kernel-supported threading system. See the project home page
	 for further details.

	Kernel Virtual Address
	

	Key Distribution Center
	

	Kilo Bits Per Second
	Used to measure bandwidth (how much data can pass a given
	 point at a specified amount of time). Alternates to the Kilo
	 prefix include Mega, Giga, Tera, and so forth.

L
	LAN
	See Local Area Network.

	LOR
	See Lock Order Reversal.

	LPD
	See Line Printer Daemon.

	Line Printer Daemon
	

	Local Area Network
	A network used on a local area, e.g. office, home, or so forth.
	

	Lock Order Reversal
	The FreeBSD kernel uses a number of resource locks to
	 arbitrate contention for those resources. A run-time
	 lock diagnostic system found in FreeBSD-CURRENT kernels
	 (but removed for releases), called witness(4),
	 detects the potential for deadlocks due to locking errors.
	 (witness(4) is actually slightly conservative, so
	 it is possible to get false positives.) A true positive
	 report indicates that “if you were unlucky, a deadlock would
	 have happened here”.
True positive LORs tend to get fixed quickly, so
	 check http://lists.FreeBSD.org/mailman/listinfo/freebsd-current and the
	
	 LORs Seen page before posting to the mailing lists.

M
	MAC
	See Mandatory Access Control.

	MADT
	See Multiple APIC Description Table.

	MFC
	See Merge From Current.

	MFH
	See Merge From Head.

	MFS
	See Merge From Stable.

	MFV
	See Merge From Vendor.

	MIT
	See Massachusetts Institute of Technology.

	MLS
	See Multi-Level Security.

	MOTD
	See Message Of The Day.

	MTA
	See Mail Transfer Agent.

	MUA
	See Mail User Agent.

	Mail Transfer Agent
	An application used to transfer email. An
	 MTA has traditionally been part of the BSD
	 base system. Today Sendmail is included in the base system, but
	 there are many other MTAs, such as postfix,
	 qmail and Exim.

	Mail User Agent
	An application used by users to display and write email.

	Mandatory Access Control
	

	Massachusetts Institute of Technology
	

	Merge From Current
	To merge functionality or a patch from the -CURRENT
	 branch to another, most often -STABLE.

	Merge From Head
	To merge functionality or a patch from a repository HEAD
	 to an earlier branch.

	Merge From Stable
	In the normal course of FreeBSD development, a change will
	 be committed to the -CURRENT branch for testing before being
	 merged to -STABLE. On rare occasions, a change will go into
	 -STABLE first and then be merged to -CURRENT.
This term is also used when a patch is merged from -STABLE
	 to a security branch.
See Also Merge From Current.

	Merge From Vendor
	

	Message Of The Day
	A message, usually shown on login, often used to
	 distribute information to users of the system.

	Multi-Level Security
	

	Multiple APIC Description Table
	

N
	NAT
	See Network Address Translation.

	NDISulator
	See Project Evil.

	NFS
	See Network File System.

	NTFS
	See New Technology File System.

	NTP
	See Network Time Protocol.

	Network Address Translation
	A technique where IP packets are rewritten
	 on the way through a gateway, enabling many machines behind the
	 gateway to effectively share a single IP address.

	Network File System
	

	New Technology File System
	A filesystem developed by Microsoft and available in its
	 “New Technology” operating systems, such as
	 Windows® 2000, Windows NT® and Windows® XP.

	Network Time Protocol
	A means of synchronizing clocks over a network.

O
	OBE
	See Overtaken By Events.

	ODMR
	See On-Demand Mail Relay.

	OS
	See Operating System.

	On-Demand Mail Relay
	

	Operating System
	A set of programs, libraries and tools that provide access to
	 the hardware resources of a computer. Operating systems range
	 today from simplistic designs that support only one program
	 running at a time, accessing only one device to fully
	 multi-user, multi-tasking and multi-process systems that can
	 serve thousands of users simultaneously, each of them running
	 dozens of different applications.

	Overtaken By Events
	Indicates a suggested change (such as a Problem Report
	 or a feature request) which is no longer relevant or
	 applicable due to such things as later changes to FreeBSD,
	 changes in networking standards, the affected hardware
	 having since become obsolete, and so forth.

P
	PAE
	See Physical Address Extensions.

	PAM
	See Pluggable Authentication Modules.

	PAP
	See Password Authentication Protocol.

	PC
	See Personal Computer.

	PCNSFD
	See Personal Computer Network File System Daemon.

	PDF
	See Portable Document Format.

	PID
	See Process ID.

	POLA
	See Principle Of Least Astonishment.

	POP
	See Post Office Protocol.

	POP3
	See Post Office Protocol Version 3.

	PPD
	See PostScript Printer Description.

	PPP
	See Point-to-Point Protocol.

	PPPoA
	See PPP over ATM.

	PPPoE
	See PPP over Ethernet.

	PPP over ATM
	

	PPP over Ethernet
	

	PR
	See Problem Report.

	PXE
	See Preboot eXecution Environment.

	Password Authentication Protocol
	

	Personal Computer
	

	Personal Computer Network File System Daemon
	

	Physical Address Extensions
	A method of enabling access to up to 64 GB of RAM on
	 systems which only physically have a 32-bit wide address space
	 (and would therefore be limited to 4 GB without PAE).

	Pluggable Authentication Modules
	

	Point-to-Point Protocol
	

	Pointy Hat
	A mythical piece of headgear, much like a
	 dunce cap, awarded to any FreeBSD
	 committer who breaks the build, makes revision numbers
	 go backwards, or creates any other kind of havoc in
	 the source base. Any committer worth his or her salt
	 will soon accumulate a large collection. The usage is
	 (almost always?) humorous.

	Portable Document Format
	

	Post Office Protocol
	
See Also Post Office Protocol Version 3.

	Post Office Protocol Version 3
	A protocol for accessing email messages on a mail server,
	 characterised by the messages usually being downloaded from the
	 server to the client, as opposed to remaining on the server.
See Also Internet Message Access Protocol.

	PostScript Printer Description
	

	Preboot eXecution Environment
	

	Principle Of Least Astonishment
	As FreeBSD evolves, changes visible to the user should be
	 kept as unsurprising as possible. For example, arbitrarily
	 rearranging system startup variables in
	 /etc/defaults/rc.conf violates
	 POLA. Developers consider
	 POLA when contemplating user-visible
	 system changes.

	Problem Report
	A description of some kind of problem that has been
	 found in either the FreeBSD source or documentation. See
	
	 Writing FreeBSD Problem Reports.

	Process ID
	A number, unique to a particular process on a system,
	 which identifies it and allows actions to be taken against it.

	Project Evil
	The working title for the NDISulator,
	 written by Bill Paul, who named it referring to how awful
	 it is (from a philosophical standpoint) to need to have
	 something like this in the first place. The
	 NDISulator is a special compatibility
	 module to allow Microsoft Windows™ NDIS miniport
	 network drivers to be used with FreeBSD/i386. This is usually
	 the only way to use cards where the driver is closed-source.
	 See src/sys/compat/ndis/subr_ndis.c.

R
	RA
	See Router Advertisement.

	RAID
	See Redundant Array of Inexpensive Disks.

	RAM
	See Random Access Memory.

	RD
	See Received Data.

	RFC
	See Request For Comments.

	RISC
	See Reduced Instruction Set Computer.

	RPC
	See Remote Procedure Call.

	RS232C
	See Recommended Standard 232C.

	RTS
	See Request To Send.

	Random Access Memory
	

	Revision Control System
	The Revision Control System
 (RCS) is one of the oldest software suites
 that implement “revision control” for plain
 files. It allows the storage, retrieval, archival, logging,
 identification and merging of multiple revisions for each
 file. RCS consists of many small tools that work together.
 It lacks some of the features found in more modern revision
 control systems, like Git, but it is very simple
 to install, configure, and start using for a small set of
 files.
See Also Subversion.

	Received Data
	An RS232C pin or wire that data is
	 received on.
See Also Transmitted Data.

	Recommended Standard 232C
	A standard for communications between serial devices.

	Reduced Instruction Set Computer
	An approach to processor design where the operations the hardware
	 can perform are simplified but made as general purpose as possible.
	 This can lead to lower power consumption, fewer transistors and in
	 some cases, better performance and increased code density. Examples
	 of RISC processors include the Alpha, SPARC®, ARM® and
	 PowerPC®.

	Redundant Array of Inexpensive Disks
	

	Remote Procedure Call
	

	Request For Comments
	A set of documents defining Internet standards, protocols, and
	 so forth. See
	 www.rfc-editor.org.
	
Also used as a general term when someone has a suggested change
	 and wants feedback.

	Request To Send
	An RS232C signal requesting that the remote
	 system commences transmission of data.
See Also Clear To Send.

	Router Advertisement
	

S
	SCI
	See System Control Interrupt.

	SCSI
	See Small Computer System Interface.

	SG
	See Signal Ground.

	SMB
	See Server Message Block.

	SMP
	See Symmetric MultiProcessor.

	SMTP
	See Simple Mail Transfer Protocol.

	SMTP AUTH
	See SMTP Authentication.

	SSH
	See Secure Shell.

	STR
	See Suspend To RAM.

	SVN
	See Subversion.

	SMTP Authentication
	

	Server Message Block
	

	Signal Ground
	An RS232 pin or wire that is the ground
	 reference for the signal.

	Simple Mail Transfer Protocol
	

	Secure Shell
	

	Small Computer System Interface
	

	Subversion
	Subversion is a version control system
 currently used by the FreeBSD project.

	Suspend To RAM
	

	Symmetric MultiProcessor
	

	System Control Interrupt
	

T
	TCP
	See Transmission Control Protocol.

	TCP/IP
	See Transmission Control Protocol/Internet Protocol.

	TD
	See Transmitted Data.

	TFTP
	See Trivial FTP.

	TGT
	See Ticket-Granting Ticket.

	TSC
	See Time Stamp Counter.

	Ticket-Granting Ticket
	

	Time Stamp Counter
	A profiling counter internal to modern Pentium® processors
	 that counts core frequency clock ticks.

	Transmission Control Protocol
	A protocol that sits on top of (e.g.) the IP
	 protocol and guarantees that packets are delivered in a reliable,
	 ordered, fashion.

	Transmission Control Protocol/Internet Protocol
	The term for the combination of the TCP
	 protocol running over the IP protocol. Much of
	 the Internet runs over TCP/IP.

	Transmitted Data
	An RS232C pin or wire that data is transmitted
	 on.
See Also Received Data.

	Trivial FTP
	

U
	UDP
	See User Datagram Protocol.

	UFS1
	See Unix File Syst