prooftrees
Version v0.9.2 (SVN Rev: 11540)

Clea F. Rees*
2026/01/19

Abstract

prooftrees is a IATEX 2¢ package, based on forest, designed to support the typesetting of logical tableaux —
‘proof trees’ or ‘truth trees’ — in styles sometimes used in teaching introductory logic courses, especially
those aimed at students without a strong background in mathematics. One textbook which uses proofs of
this kind is Hodges (1991). Like forest, prooftrees supports memoize out-of-the-box. prooftrees uses forest-ext
to support tagged PDFs out-of-the-box.

Note that this package requires version 2.1 (2016/12/04) of forest (Zivanovié 2016). It will not
work with versions prior to 2.1.

Versions 0.9.2 and later require forest-ext (Rees 2026).

I would like to thank Zivanovié both for developing forest and for considerable patience in answering my questions,
addressing my confusions and correcting my mistakes. The many remaining errors are, of course, entirely my
own. This package’s deficiencies would be considerably greater and more numerous were it not for his assistance.

*Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42/
prooftrees

S -T. T+ -RizF S+ R (F2)((Vy)(Py = (x = y)) - Px) |z~ (32)(Vy)(Py & (v = y))
1. S+ -T Vv pr. 1. (32)((Vy)(Py = (x=y)) - Px) vd pr.
2. T+ RV pr. 2. ~(3z)(Vy)(Py < (x = y)) \d - conc.
3. (S R) Vv — conc. 3. (Vy)(Py = (d=vy))- Pd v 13E
T 4. (Vy)(Py = (d=1y)) \c 3-E
4. s -9 1oE - Pd 3B
5. T v 1 &E 6. ~(Vy)(Py < (d=y)) v 2 ~3E
/\ /\ 7. ~(Pece (d=c)) v 6 ~VE
6. 2+ E T
7. ﬂR ﬂﬂR v ﬁR ﬂﬂR Vv 2%E S df;(f dNPC ; ~ @g
& . c =c ~ &
5,6 ,/\V A ‘) .) 10. | Pc 5,9 =
8. =S S =S T 3 E b5 -—E 11. Pec = () v ® AVE
9. R -R R -R & 3+ E 8,10
10. ® R ® ® 68 7--E N
48 @ 7,9 4,8 12. ~Pe d=c 11 =E
9,10 13. ® d#d 9,12 =
8,12 ®
13

— 10f 66 —

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

1 Raison d’étre CONTENTS
Contents
1 Raison d’étre 2
2 Assumptions & Limitations 6
3 Typesetting a Tableau 6
4 Loading the Package 15
5 Invocation 15
6 Tableau Anatomy 15
7 Options 16
7.1 Global Options 16
7.1.1 Dimensions Lo e e e 18
7.1.2 Line Numbers. o 18
7.1.3 Proof Statement 19
7.1.4 Format e e 19
7.2 Local Options e 21
7.21 Annotations L e e 22
7.2.2 Moving e e 23
7.2.3 Format: wff, justification & line numbero oL 24
8 Macros 25
9 Extras 25
9.1 Steps 25
9.2 Fit . . . e 25
10 Advanced Configuration 26
11 Memoization 27
12 Tagging 28
12.1 Global Tagging Options oot e e 28
12.2 Local Tagging Options 0 o e 29
13 Typesetting Process 29
14 Compatibility 31
15 Implementation 32
1 Raison d’étre

Suppose that we wish to typeset a typical tableau demonstrating the following entailment

{PV(QV-R),P—-R,Q—-R}}--R

We start by typesetting the tree using forest’s default settings (box 1) and find our solution has several
advantages: the proof is specified concisely and the code reflects the structure of the tree. It is relatively
straightforward to specify a proof using forest’s bracket notation, and the spacing of nodes and branches is
automatically calculated.

Despite this, the results are not quite what we might have hoped for in a tableau. The assumptions should
certainly be grouped more closely together and no edges (lines) should be drawn between them because these

— 2 of 66 —

1 Raison d’étre

are not steps in the proof — they do not represent inferences. Preferably, edges should start from a common
point in the case of branching inferences, rather than there being a gap.

Moreover, tableaux are often compacted so that non-branching inferences are grouped together, like assumptions,
without explicitly drawn edges. Although explicit edges to represent non-branching inferences are useful when
introducing students to tableaux, more complex proofs grow unwieldy and the more compact presentation
becomes essential.

Furthermore, it is useful to have the option of annotating tableaux by numbering the lines of the proof on the
left and entering the justification for each line on the right.

forest is a powerful and flexible package capable of all this and, indeed, a good deal more. It is not enormously
difficult to customise particular trees to meet most of our desiderata. However, it is difficult to get things
perfectly aligned even in simple cases, requires the insertion of ‘phantom’ nodes and management of several
sub-trees in parallel (one for line numbers, one for the proof and one for the justifications). The process
requires a good deal of manual intervention, trial-and-error and hard-coding of things it would be better to
have IATEX 2 manage for us, such as keeping count of lines and line references.

prooftrees aims to make it as easy to specify tableaux as it was to specify our initial tree using forest’s default
settings. The package supports a small number of options which can be configured to customise the output.
The code for a prooftrees tableau is shown in box 2, together with the output obtained using the default settings.

More extensive configuration can be achieved by utilising forest (Zivanovié¢ 2016) and/or TikZ (Tantau 2015)
directly. A sample of supported tableau styles are shown in box 3. The package is not intended for the
typesetting of tableaux which differ significantly in structure.

forest: default settings

\begin{forest}
[$P \vee (Q \vee \1not R)$
[$P \1if \1not R$
[$Q \1if \lnot R$ PV(QV~-R)
[$\lnot\lnot R$ \
[P P—-R
[$\1not P$] ‘
] [$\1not R$] QR
[$Q \vee \1lnot R$ ‘
[$\1not Q$]
[$\1not R$] / \
] P QV-R

/N /N

-P -R Q@ -R

/\

[$\1not R$]
]
]
]
]
]
\end{forest}

[Q | -—R

1 Raison d’étre

prooftrees: default settings

\begin{tableau}
{

R}
}

[P \1if \1not R, just=Ass, checked
[Q \1if \1not R, just=Ass, checked,
name=last premise

name=not conc
[P, just={\vee Elim: 'uuuu}
[\1not P, close={:'u,'c}]

to prove={\{P \vee (Q \vee \lnot R), P \1lif
\lnot R, Q \1if \1not R\} \sststile{}{} \1lnot

[P \vee (Q \vee \lnot R), just=Ass, checked

[\1not\lnot R, just={\lnot Conc},

{PV(QV-R),P—-R,Q——-R}--R

1. PVv(QV-R)V Ass

2. P—-RV Ass

3. Q— RV Ass

4 -—R - Conc
5. P QV-R 1 Vv Elim

-P -R /\ 2 — Elim
(¢

[\1not R, close={:not conc,!c}, 6.
just={$\1if$ Elim: 'uuuul}]] 7. ® Q -R 5 V Elim
[Q \vee \1not R 5,6 4,6 ®
[Q, move by=1 8 ﬂQ/\—'R 4,7 3 s Elim
[\1not Q, close={:'u,!'c}] ’
[\lnot R, close={:not conc,!c}, 7®8 4®8
just={$\1if$ Elim:last premise}]] ’ ’
[\1not R, close={:not conc,!c},
move by=1, just={\vee Elim:!u}1]1]11]]
\end{tableau}
— 4 of 66 —

prooftrees: sample output

{PV(QV-R),P—-R,Q——-R}--R

1. Pv(QV-R)V Ass
2. P—-RV Ass
3. Q—-RV Ass
4. R Neg conc
5. P QV-Rv 1V Elim
6. =P -R A 2 — Elim
7. 0® ® Q -R 5V Elim
5,6 4,6 ®
/\ 2 .
8. -Q -R 3 — Elim
® ®
7,8 4,8
v PV(QV-R) Ass
v P—-R Ass
v Q——-R Ass
-—R Neg conc
P v QV-R V Elm
-P -R — Elim
X X
Q -R V Elim
/\ b 4
-@Q R — Elim
b 4 b 4

(3z)(Lx vV Mx) l— (3z)Lx v (Fx)Mz

1 (Fz)(Lx vV Mz) va Ass
2. =((3z)Lx Vv (3z)Mz) v Neg Conc
3. LaV Ma v 13E
4. —(3z)Lx \a 2 -VE
5 —(Fz)Mzx \a
6 -La 4 -3E
7 -Ma 5 -3JE
N
8. La Ma 3VE
02y &
68 7,8

1) Pv(QV~R)V Ass
2) PO>~RV Ass
3) QDO~RV Ass
4) ~~R Neg conc
5) P QV~RY 1V Elim
6) ~P ~R 2 D Elim
7)) % * Q ~R 5V Elim
56 4,6 *
4,7 .

8) ~@Q ~R 3 D Elim

* *

7,8 4,8

{PV(QV-R),P—-R,Q—-R} - —-R

1. PVv(QV-R)V Ass
2. P—-RV Ass
3. Q—-RV Ass
4. R Neg conc
5. P QV-Rv 1V Elm
6. Q —-R 5V Elim
/\ X
7. -Q -r “° 3 Flim
8. =P —-R X X 2 — Elim
% « 6,7 47
5,8 4,8

Either Alice saw nobody
or she didn’t see nobody.

Alice saw nobody. \Jones VE

Alice didn’t see Jones. VE

Alice didn’t see nobody. VE
Alice saw somebody. v’ Jones ——E
Alice saw Jones. JE

— 5 of 66 —

3 Typesetting a Tableau

2 Assumptions & Limitations

prooftrees makes certain assumptions about the nature of the proof system, £, on which proofs are based.

o All derivation rules yield equal numbers of wff's on all branches.

wff wff wff wff
N N /N N
wff wff wff wff wff wff wff wff
v owff wff v wff X wff X

If £ fails to satisfy this condition, prooftrees is likely to violate the requirements of affected derivation
rules by splitting branches ‘mid-inference’.

e No derivation rule yields wff's on more than two branches.

e All derivation rules proceed in a downwards direction at an angle of -90° i.e. from north to south.
o Any justifications are set on the far right of the tableau.

e Any line numbers are set on the far left of the tableau.

« Justifications can refer only to earlier lines in the proof. prooftrees can typeset proofs if £ violates
this condition, but the cross-referencing system explained in section 7.2 cannot be used for affected
justifications.

prooftrees does not support the automatic breaking of tableaux across pages'. Tableaux can be manually broken
by using line no shift with an appropriate value for parts after the first (section 7.1). However, horizontal
alignment across page breaks will not be consistent in this case.

In addition, prooftrees almost certainly relies on additional assumptions not articulated above and certainly
depends on a feature of forest which its author classifies as experimental (do dynamics).

3 Typesetting a Tableau

After loading prooftrees in the document preamble:

% in document's preamble
\usepackage{prooftrees}

the prooftree environment is available for typesetting tableaux. This takes an argument used to specify a
(tree preamble), with the body of the environment consisting of a (tree specification) in forest’s notation. The
(tree preamble) can be as simple as an empty argument — {} — or much more complex.

Customisation options and further details concerning loading and invocation are explained in section 4, section 5,
section 6, section 7 and section 8. In this section, we begin by looking at a simple example using the default
settings.

Suppose that we wish to typeset the tableau for

(F2)((Vy)(Py — z = y) A Pz) = (32)(Vy) (Py > = = y)

and we would like to typeset the entailment established by our proof at the top of the tree. Then we should
begin like this:

\begin{tableau}
{
to prove={(\exists x)((\forall y) (Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
\end{tableau}

11t is possible to persuade prooftrees to do this automatically or semi-automatically. However, the code is not in a state I would
wish to inflict on an unsuspecting public. The perilously inquisitive may search TeX Stack Exchange at their own risk.

— 6 of 66 —

3 Typesetting a Tableau

E Nested structure of tableau

(Fz)((Vy)(Py = x =y) A Px) (Fz)(Vy)(Py > x =y)

1. (3)(Yy)(Py—x =y) A Px) Va Pr.

2. —(Fx)(Vy)(Py+ 2z =y) \a Conc. neg.
3. (Vu)(Py—a=y) AN Pa v 13E

4. ‘v’y)(Py—>a— y) \b 3 AE

5. 3ANE

6. —|V1/)(Pu<—>afu) v'b 2 -3E
7. ~(Pbsa=1b) v 6 —VE
8. 7T+ E

9. 8§ <+ E
10. 59=FE
11. 4VE

12. 1 —-E
13. 9,12 =E

That is all the preamble we want, so we move onto consider the (tree specification). forest uses square brackets
to specify trees’ structures. To typeset a proof, think of it as consisting of nested trees, trunks upwards, and
work from the outside in and the trunks down (box 4).

Starting with the outermost tree o and the topmost trunk, we replace the () with square brackets and
enter the first wff inside, adding just=Pr. for the justification on the right and checked=a so that the line
will be marked as discharged with a substituted for z. We also use forest’s name to label the line for ease of
reference later. (Technically, it is the node rather than the line which is named, but, for our purposes, this
doesn’t matter. forest will create a name if we don’t specify one, but it will not necessarily be one we would
have chosen for ease of use!)

\begin{tableau}

¢ to prove={(\exists x) ((\forall y) (Py \1if x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}

}[{(\exists x) ((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr
\eid{tableau}

We can refer to this line later as pr.

We then consider the next tree 9 CTts (O goes inside that for G , so the square brackets containing

the next wff go inside those we used for o . Again, we add the justification with just, but we use subs=a
rather than checked=a as we want to mark substitution of a for x without discharging the line. Again, we use

— 7 of 66 —

3 Typesetting a Tableau

name so that we can refer to the line later as neg conc.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
]
]
\end{tableau}

Turning to tree e , we again note that its () is nested within the previous two, so the square brackets for
its wff need to be nested within those for the previous wffs. This time, we want to mark the line as discharged
without substitution, so we simply use checked without a value. Since the justification for this line includes
mathematics, we need to ensure that the relevant part of the justification is surrounded by $...$ or \(...\).
This justification also refers to an earlier line in the proof. We could write this as just=1 $\exists\elim$,
but instead we use the name we assigned earlier with the referencing feature provided by prooftrees. To
do this, we put the reference, pr after the rest of the justification, separating the two parts by a colon
i.e. $\exists\elim$:pr and allow prooftrees to figure out the correct number.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \1liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
]
]
]
\end{tableau}

Continuing in the same way, we surround each of the wffs for e , e , 6 and o within square
brackets nested within those surrounding the previous wff since each of the trees is nested within the previous
one. Where necessary, we use name to label lines we wish to refer to later, but we also use forest’s relative
naming system when this seems easier. For example, in the next line we add, we specify the justification as
just=$\land\elim$: !u. ! tells forest that the reference specifies a relationship between the current line and
the referenced one, rather than referring to the other line by name. !'u refers to the current line’s parent line
— in this case, {(\forall y) (Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr. 'uu refers
to the current line’s parent line’s parent line and so on.

\begin{tableau}
{
to prove={(\exists x)((\forall y) (Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1lif a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!'uu, name=simple
[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\foralllelim$:!'u
]
]
]
]

— 8 of 66—

3 Typesetting a Tableau

]
]
]
\end{tableau}

Reaching g , things get a little more complex since we now have not one, but two () nested within 0 .
This means that we need two sets of square brackets for e — one for each of its two trees. Again, both
of these should be nested within the square brackets for e but neither should be nested within the other

because the trees for the two branches at e are distinct.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1if a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb

]
[\lnot Pb
]
]
1
]
]
]
]
]
\end{tableau}

At this point, we need to work separately or in parallel on each of our two branches since each constitutes its
own tree. Turning to trees o , each needs to be nested within the relevant tree e , since each) is

nested within the applicable branch’s tree. Hence, we nest square brackets for each of the wffs at 9 within
the previous set.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pal}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1lif a = y)}, subs=b, just=$\land\elim$:'!'u, name=mark
[Pa, just=$\land\elim$:'!uu, name=simple
[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!'!u

]

]

[\1not Pb
[{a = b}
]

— 9 of 66 —

3 Typesetting a Tableau

\end{tableau}

We only have one tree @ as there is no corresponding tree in the left-hand branch. This isn’t a problem: we

just need to ensure that we nest it within the appropriate tree 9 . There are two additional complications
here. The first is that the justification contains a comma, so we need to surround the argument we give just
with curly brackets. That is, we must write just={5,9 $=\elim$} or just={$=\elim$:{simple, !ul}. The
second is that we wish to close this branch with an indication of the line numbers containing inconsistent wffs.
We can use close={8,10} for this or we can use the same referencing system we used to reference lines when
specifying justifications and write close={:to Pb or not to Pb,!c}. In either case, we again surrounding
the argument with curly brackets to protect the comma. !c refers to the current line — something useful in
many close annotations, but not helpful in specifying non-circular justifications.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \1liff x = y)}, subs=a, just=Conc.-~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u

1
]
[\lnot Pb
[{a = b}
[Pb, just={$=\elim$:{simple,'u}t}, close={:to Pb or not to Pb,!c}
]
1
]
]
1
]
]
]
]
1
\end{tableau}

This completes the main right-hand branch of the tree and we can focus solely on the remaining left-hand one.
Tree @ is straightforward — we just need to nest it within the left-hand tree g .

i\begin{tableau}
Ao

}

|
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y) (‘
|
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr

|
Py \liff x = y)}
|
|

— 10 of 66 —

3 Typesetting a Tableau

[{\1not (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.-~neg., name=neg conc

[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \1lif a = y)}, subs=b, just=$\land\elim$:!'u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple

[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!'!u
[{Pb \1if a = b}, checked, just=\foralllelim:mark’,, move by=1

1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}t}, close={:to Pb or not to Pb,!c}
1
]
]
1
1
]
]
]
]
1
\end{tableau}

At this point, the main left-hand branch itself branches, so we have two trees @ . Treating this in the

same way as the earlier branch at @ , we use two sets of square brackets nested within those for tree @ ,
but with neither nested within the other. Since we also want to mark the leftmost branch as closed, we add
close={:to Pb or not to Pb,!c} in the same way as before.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=4 \foralllelim
[\lnot Pb, close={:to Pb or not to Pb,!c}, just=\liflelim:!u

]
[{a = b}
]
1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
1
]

— 11 of 66 —

3 Typesetting a Tableau

\end{tableau}

We complete our initial specification by nesting @ within the appropriate tree @ , again marking closure
appropriately.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pal}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1if a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!'uu, name=simple
[{\Inot (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=4 \foralllelim
[\1not Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!'u

]
[{a = b}
[a \neq a, close={:!c}, just={$=\elim$:{'uuu, 'u}l}
]
]
1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}t}, close={:to Pb or not to Pb,!c}
1
1
]
]
]
1
]
]
1
1
\end{tableau}

Compiling our code, we find that the line numbering is not quite right:

— 12 of 66 —

3 Typesetting a Tableau

(32)((v9)(Py = & = y) A Px) |= (32)(vy)(Py > 7 = y)
1. (3z)(Yy)(Py =z =y) APz) va Pr.
2. =(3z)(Vy)(Py <z =y) \a Conc. neg.
3. (Vy)(Py - a=y) AN Pa v 13E
4. (Vy)(Py —a=1y) \b 3NE
d. Pa 3ANE
6. (Vy)(Py<ra=y) Vb 2 -3E
7. —(Pb<>a=1b) v 6 -VE
TN
8. Pb -Pb 7+ E
9. a#b a=1b 8 < E
10. Pb—a=bv Pb 4VE;5,9=E
N8
1. ~Pb a=b 10 - E
12. ® aa 9,11=E
8,11 ®
12

prooftrees warns us about this:

Package prooftrees Warning: Merging conflicting justifications for line 10! Please examine the output
carefully and use "move by" to move lines later in the proof if required. Details of how to do this
are included in the documentation.

We would like line 10 in the left-hand branch to be moved down by one line, so we add move by=1 to the
relevant line of our proof. That is, we replace the line

[{Pb \1if a = b}, checked, just=4 \foralllelim

[{Pb \1if a = b}, checked, just=$\foralll\elim$:mark, move by=1

giving us the following code:

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple
[{\1not (\forall y)(Py \1liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=\foralllelim:mark, move by=1
[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\1lif\elim$:'u

]
[{a = b}
[a \neq a, close={:!c}, just={$=\elim$:{!uuu, 'u}t}
]
]
]
]
]

— 13 of 66 —

3 Typesetting a Tableau

[\lnot Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}t}, close={:to Pb or not to Pb,!c}

\end{tableau}

which produces our desired result:

(F2)((Vy)(Py — = = y) A Pz) |- (32)(Vy) (Py > z = y)

1 (3z)(Yy)(Py =z =y) APz) va Pr.
2 =(3z)(Vy)(Py <z =y) \a Conc. neg.
3 (Vy)(Py - a=y) AN Pa v 13E
4. (Vy)(Py —a=1y) \b 3NE
5 Pa 3ANE
6 -(Yy)(Py<a=y) Vb 2 -3E
7 “(Pb<ra=0b) v 6 -VE
TN
8. Pb -Pb 7+ E
9. a#b a=1b 8 < E
10. | Pb 5,9=F
11. Pb—a=bv 4VE
A 8,10
12. -Pb a=b 11 —-E
13. ® a#a 9,12 = E
8,12 ®

13

— 1/ of 66 —

6 Tableau Anatomy

prooftree
environment

tableau
environment

4 Loading the Package

To load the package simply add the following to your document’s preamble.

[
‘ \usepackage{prooftrees}
L

prooftrees will load forest automatically.

The only option currently supported is tableaux. If this option is specified, the prooftree
environment will be called tableau instead.

Example: \usepackage[tableaux]prooftrees

would cause the tableau environment to be defined rather than prooftree.
Any other options given will be passed to forest.

Example: \usepackage [debug] prooftrees

would enable forest’s debugging.

If one or more of forest’s libraries are to be loaded, it is recommended that these be loaded
separately and their defaults applied, if applicable, within a local TEX group so that they do not
interfere with prooftrees’s environment.

5 Invocation

\begin{prooftree}{(tree preamble)}(tree specification)\end{prooftree}

The (tree preamble) is used to specify any non-default options which should be applied to the
tree. It may contain any code valid in the preamble of a regular forest tree, in addition to
setting prooftree options. The preamble may be empty, but the argument is required®>. The (tree
specification) specifies the tree in the bracket notation parsed by forest.

Users of forest should note that the environments prooftree and forest differ in
important ways.

e prooftree’s argument is mandatory.

o The tree’s preamble cannot be given in the body of the environment.

o \end{prooftree} must follow the (tree specification) immediately.
\begin{tableau}{(tree preamble)}(tree specification)\end{tableau}

A substitute for prooftree, defined instead of prooftree if the package option tableaux is
specified or a \prooftree macro is already defined when prooftrees is loaded. See section 4 for
details and section 14 for this option’s raison d’étre.

6 Tableau Anatomy

The following diagram provides an overview of the configuration and anatomy of a prooftrees
proof tree. Detailed documentation is provided in section 7 and section 8.

2Failure to specify a required argument does not always yield a compilation error in the case of environments.
However, failure to specify required arguments to environments often fails to achieve the best consequences, even
when it does not result in compilation failures, and will, therefore, be avoided by the prudent.

— 15 of 66 —

7 Options

—e THEOREM /ENTAILMENT

« specified with to prove

o named proof statement

specification)

e check right

proof statement

o format controlled by proof statement format

= DISCHARGE & SUBSTITUTION
o location & annotation content controlled by checked and subs within the (tree

o discharge & substitution symbols controlled by check with & subs with

& subs right control relative location

— JUSTIFICATIONS
o location automatic
o existence controlled implicitly or with

e 0

wff
wif
wff\a.b
/\
wff wff
wff wff

oo_wt—‘]

& =

wff
NN

7. wff wff wﬁ wﬁ
8.
i’p wif

WFFS
o from (tree specification)
o global format controlled by
wff format
o local format controlled by
highlight wff & wff options
e highlight line and line
options control the format of
the current wff’s proof line

—e LINE NUMBERS
content & location automatic
existence controlled by line numbering

named line no n for proof line n

7 Options

- c o justifications
JUStlﬁca’tlon « content specified with just

justiﬁcation « cross-references supported

. . . o global format controlled by just format &
JHStlﬁca’tlon just refs left

o local format controlled by highlight just &
just options

justiﬁcation o named just n for proof line n
justification
ANATOMY & ONTOLOGY

o forest trees consist of (TikZ) nodes
justification o prooftrees places wffs, line numbers, justi-
fications & proof statements into nodes

o the content & location of each node de-
justiﬁcatjon pends on its type: line number, wff, justific-
justiﬁcation ation or proof statement

. . . e the proof’s structure & appearance is
justification determined by the (tree preamble) & (tree

justification | specification)

- « node content, existence & location is con-
trolled by one or both of these, depending
on the node type

MEANING & REFERENCE

¢ nodes for the proof statement, justifications & line num-
bers are given standard names for ease of reference

¢ the proof statement node is the root

¢ wff nodes may be named as required

e a cross-referencing system supports annotations in justific-
ations and closures

CLOSURE
¢ closure symbol & optional annotation
o location & annotation content controlled by close
within the (tree specification)
« annotations support cross-references
e closure symbol controlled by close with and close
with format
o global annotation format controlled by close format
& close sep

global format controlled by line no format & \linenumberstyle
local format controlled by highlight line no & line no options

Most configuration uses the standard key/value interface provided by TikZ and extended by
forest. These are divided into those which determine the overall appearance of the proof as a

whole and those with more local effects.

7.1 Global Options

See section 10 for advanced customisation.

The following options affect the global style of the tree and should typically be set in the tree’s
preamble if non-default values are desired. The default values for the document can be set outside
the prooftree environment using \forestset{(settings)}. If only tableaux will be typeset, a
default style can be configured using forest’s default preamble.

— 16 of 66 —

7 Options

7.1 Global Options

auto move
not auto move
Forest boolean register

true|false

Default: true

Determines whether prooftrees will move lines automatically, where possible, to avoid combining
different justifications when different branches are treated differently. The default is to avoid
conflicts automatically where possible. Turning this off permits finer-grained control of what gets
moved using move by. The following are equivalent to the default setting:

auto move
auto move=true

Either of the following will turn auto move off:

not auto move
auto move=false

line numbering

not line numbering
Forest boolean register

true|false

Default: true

This determines whether lines should be numbered. The default is to number lines. The following
are equivalent to the default setting:

line numbering
line numbering=true

Either of the following will turn line numbering off:

not line numbering
line numbering=false

justifications
not justifications
Forest boolean register

true|false

This determines whether justifications for lines of the proof should be typeset to the right of
the tree. It is rarely necessary to set this option explicitly as it will be automatically enabled
if required. The only exception concerns a proof for which a line should be moved but no
justifications are specified. In this case either of the following should be used to activate the
option:

justifications
justifications=true

single branches
not single branches
Forest boolean register

This is not necessary if just is used for any line of the proof.

= true|false

Default: false

This determines whether inference steps which do not result in at least two branches should draw
and explicit branch. The default is to not draw single branches explicitly. The following are
equivalent to the default setting:

not single branches
single branches=false

Either of the following will turn line numbering off:

single branches
single branches=true

— 17 of 66 —

7 Options

7.1 Global Options

line no width
Forest dimension register

just sep
Forest dimension register

line no sep
Forest dimension register

close sep
Forest dimension register

proof tree inner proof
width
Forest dimension register

proof tree inner proof
midpoint
Forest dimension register

line no shift
Forest count register

7.1.1 Dimensions
= (dimension)

The maximum width of line numbers. By default, this is set to the width of the formatted line
number 99.

Example: 1line no width=20pt

= (dimension)

Default: 1.5em

Amount by which to shift justifications away from the tree. A larger value will shift the
justifications further to the right, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the justifications further, please set just sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: just sep=.5em

= (dimension)

Default: 1.5em

Amount by which to shift line numbers away from the tree. A larger value will shift the line
numbers further to the left, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the line numbers further, please set 1ine no sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: 1line no sep=5pt

= (dimension)

Default: .75\baselineskip

Distance between the symbol marking branch closure and any following annotation. If the format
of such annotations is changed with close format, this dimension may require adjustment.

Example: close sep=\baselineskip

= (dimension)
Default: Opt
= (dimension)

Default: Opt

7.1.2 Line Numbers
= (integer)

Default: 0

This value increments or decrements the number used for the first line of the proof. By default,
line numbering starts at 1.

Example: 1ine no shift=3

would begin numbering the lines at 4.

— 18 of 66 —

7 Options

7.1 Global Options

zero start
Forest style

to prove
Forest style

check with
Forest toks register

check right

not check right
Forest boolean register

check left
Forest style

close with
Forest toks register

close with format
Forest keylist register

Start line numbering from 0 rather than 1. The following are equivalent:

zero start
line no shift=-1

7.1.3 Proof Statement
= (wff)

Statement of theorem or entailment to be typeset above the proof. In many cases, it will be
necessary to enclose the statement in curly brackets.

Example: to prove={\sststile{}{} P \1lif P}

By default, the content is expected to be suitable for typesetting in maths mode and should not,
therefore, be enclosed by dollar signs or equivalent.

7.1.4 Format

= (symbol)

Default: \ensuremath{\checkmark} (v')

Symbol with which to mark discharged lines.

Example: check with={\text{\ding{52}}}

Within the tree, checked is used to identify discharged lines.

= true|false

Default: true

Determines whether the symbol indicating that a line is discharged should be placed to the right
of the wff. The alternative is, unsurprisingly, to place it to the left of the wff. The following are
equivalent to the default setting:

[

‘ check right

‘ check right=true
L

Set check right=false. The following are equivalent ways to place the markers to the left:

check right=false
not check right
check left

= (symbol)

Default: \ensuremath{\otimes} (®)

Symbol with which to close branches.

Example: close with={\ensuremath{\ast}}

Within the tree, close is used to identify closed branches.

= (key-value list)

Additional TikZ keys to apply to the closure symbol. Empty by default.
Example: close with format={red, font=}

To replace a previously set value, rather than adding to it, use close with format' rather than
close with format.

— 19 of 66 —

7 Options

7.1 Global Options

close format
Forest keylist register

subs with
Forest toks register

subs right

not subs right
Forest boolean register

subs left
Forest style

just refs left
not just refs left
Forest boolean register

just refs right
Forest style

= (key-value list)

Default: font=\scriptsize
Additional TikZ keys to apply to any annotation following closure of a branch.
Example: close format={font=\footnotesize\sffamily, text=gray!75}

To replace the default value of close format, rather than adding to it, use close format'
rather than close format.

Example: close format'={text=red}

will produce red annotations in the default font size, whereas
Example: close format={text=red}

will produce red annotations in \scriptsize.

= (symbol)

Default: \ensuremath{\backslash} (\)

Symbol to indicate variable substitution.

Example: \text{:}

Within the tree, subs is used to indicate variable substitution.

= true|false

Default: true

Determines whether variable substitution should be indicated to the right of the wff. The
alternative is, again, to place it to the left of the wff. The following are equivalent to the default
setting:

subs right
subs right=true

Set subs right=false. The following are equivalent ways to place the annotations to the left:

subs right=false
not subs right
subs left

= true|false

Default: true

Determines whether line number references should be placed to the left of justifications. The
alternative is to place them to the right of justifications. The following are equivalent to the
default setting:

just refs left
just refs left=true

Set just refs left=false. The following are equivalent ways to place the references to the
right:

just refs left=false
not just refs left
just refs right

— 20 of 66 —

7 Options

7.2 Local Options

just format
Forest keylist register

line no format
Forest keylist register

wiff format
Forest keylist register

proof statement format
Forest keylist register

highlight format
Forest autowrapped toks register

merge delimiter
Forest toks register

grouped
not grouped
Forest boolean option

Note that this setting only affects the placement of line numbers specified using the cross-referencing
system explained in section 7.2. Hard-coded line numbers in justifications will be typeset as is.

= (key-value list)
Additional TikZ keys to apply to line justifications. Empty by default.
Example: just format={red, font=}

To replace a previously set value, rather than adding to it, use just format' rather than just
format.

= (key-value list)
Additional TikZ keys to apply to line numbers. Empty by default.
Example: 1line no format={align=right, text=gray}

To replace a previously set value, rather than adding to it, use line no format' rather than
line no format. To change the way the number itself is formatted — to eliminate the dot, for
example, or to put the number in brackets — redefine \linenumberstyle (see section 8).

= (key-value list)
Additional TikZ keys to apply to wffs. Empty by default.
Example: wff format={draw=orange}

To replace a previously set value, rather than adding to it, use wff format' rather than wff
format.

= (key-value list)
Additional TikZ keys to apply to the proof statement. Empty by default.
Example: proof statement format={text=gray, draw=gray}

To replace a previously set value, rather than adding to it, use proof statement format' rather
than proof statement format.

= (key-value list)

Default: draw=gray, rounded cormners
Additional TikZ keys to apply to highlighted wffs.
Example: highlight format={text=red}

To apply highlighting, use the highlight wff, highlight just, highlight line no and/or
highlight line keys (see section 7.2).

= (punctuation)

Default: \text{; } (;)

Punctuation to separate distinct justifications for a single proof line. Note that prooftrees will
issue a warning if it detects different justifications for a single proof line and will suggest using
move by to avoid the need for merging justifications. In general, justifications ought not be
merged because it is then less clear to which wff(s) each justification applies. Moreover, later
references to the proof line will be similarly ambiguous. That is, merge delimiter ought almost
never be necessary because it is almost always better to restructure the proof to avoid ambiguity.

7.2 Local Options

The following options affect the local structure or appearance of the tree and should typically be
passed as options to the relevant node(s) within the tree.

Indicate that a line is not an inference. When single branches is false, as it is with the default

— 21 of 66 —

7 Options

7.2 Local Options

checked
Forest style

checked
Forest style

close

Forest style

close
Forest style

subs
Forest style

just
Forest autowrapped toks option

settings, this key is applied automatically and need not be given in the specification of the tree.
When single branches is true, however, this key must be specified for any line which ought not
be treated as an inference.

Example: grouped

7.2.1 Annotations

Mark a complex wff as resolved, discharging the line.
Example: checked

= (name)

Existential elimination, discharge by substituting (name).
Example: checked=a

Close branch.

Example: close

(annotation)

(annotation prefix) : (references)

Close branch with annotation. In the simplest case, (annotation) contains no colon and is typeset
simply as it is. Any required references to other lines of the proof are assumed to be given
explicitly.

Example: close={12,14}

If (annotation) includes a colon, prooftrees assumes that it is of the form (annotation
prefix) : (references). In this case, the material prior to the colon should include material to be
typeset before the line numbers and the material following the colon should consist of one or
more references to other lines in the proof. In typical cases, no prefix will be required so that the
colon will be the first character. In case there is a prefix, prooftrees will insert a space prior to the
line numbers. (references) may consist of either forest names (e.g. given by name= (name label)
and then used as (name label)) or forest relative node names (e.g. (nodewalk)) or a mixture.

Example: close={:negated conclusion}

where name=negated conclusion was used to label an earlier proof line negated conclusion.
If multiple references are given, they should be separated by commas and either (references) or
the entire (annotation) must be enclosed in curly brackets, as is usual for TikZ and forest values
containing commas.

Example: close={:!c, 'uuu}
= (name)/(names)
Universal instantiation, instantiate with (name) or (names).

Example: subs={a,b}

(justification)

(justification prefix/suffix) : (references)

Justification for inference. This is typeset in text mode. Hence, mathematical expressions must
be enclosed suitably in dollar signs or equivalent. In the simplest case, (justification) contains
no colon and is typeset simply as it is. Any required references to other lines of the proof are
assumed to be given explicitly.

Example: just=3 \lorD

— 22 of 66 —

7 Options

7.2 Local Options

move by
Forest style

If (justification) includes a colon, prooftrees assumes that it is of the form (justification
prefix/suffix) : (references). In this case, the material prior to the colon should include ma-
terial to be typeset before or after the line numbers and the material following the colon should
consist of one or more references to other lines in the proof. Whether the material prior to the
colon is interpreted as a (justification prefix) or a (justification suffix) depends on the value of
just refs left. (references) may consist of either forest names (e.g. given by name= (name
label) and then used as (name label)) or forest relative node names (e.g. (nodewalk)) or a mixture.
If multiple references are given, they should be separated by commas and (references) must be
enclosed in curly brackets. If just refs left is true, as it is by default, then the appropriate
line number(s) will be typeset before the (justification suffix).

Example: just=$\lnot\exists$\elim:{!uu, 'u}

If just refs left is false, then the appropriate line number(s) will be typeset after the
(justification prefix).

Example: just=From:bertha

7.2.2 Moving
= (positive integer)

Move the content of the current line (positive integer) lines later in the proof. If the current line
has a justification and the content is moved, the justification will be moved with the line. Later
lines in the same branch will be moved appropriately, along with their justifications.

Example: move by=3

Note that, in many cases, prooftrees will automatically move lines later in the proof. It does this
when it detects a condition in which it expects conflicting justifications may be required for a
line while initially parsing the tree. Essentially, prooftrees tries to detect cases in which a branch
is followed closely by asymmetry in the structure of the branches. This happens, for example,
when the first branch’s first wff is followed by a single wff, while the second branch’s first wff is
followed by another branch. Diagrammatically:

wff wff wff wff
wif o NC Wl N

In this case, prooftrees tries to adjust the tree by moving lines appropriately if required.

However, this detection is merely structural — prooftrees does not examine the content of
the wffs or justifications for this purpose. Nor does it look for slightly more distant structural
asymmetries, conflicting justifications in the absence of structural asymmetry or potential conflicts
with justifications for lines in other, more distant parallel branches. Although it is not that
difficult to detect the need to move lines in a greater proportion of cases, the problem lies in
providing general rules for deciding how to resolve such conflicts. (Indeed, some such conflicts
might be better left unresolved e.g. to fit a proof on a single Beamer slide.) In these cases, a
human must tell prooftrees if something should be moved, what should be moved and how far it
should be moved.

— 23 of 66 —

7 Options

7.2 Local Options

highlight wff

not hightlight wff
Forest boolean option

highlight just
not hightlight just
Forest boolean option

highlight line no

not highlight line no
Forest boolean option

highlight line
not highlight line

Forest boolean option

line no options
Forest autowrapped toks option

just options
Forest autowrapped toks option

wif options
Forest autowrapped toks option

line options
Forest autowrapped toks option

line no override
Forest style

no line no
Forest style

Because simple cases are automatically detected, it is best to typeset the proof before deciding
whether or where to use this option since prooftrees will assume that this option specifies movements
which are required in addition to those it automatically detects. Attempting to move a line ‘too
far’ is not advisable. prooftrees tries to simply ignore such instructions, but the results are likely
to be unpredictable.

Not moving a line far enough — or failing to move a line at all — may result in the content of
one justification being combined with that of another. This happens if just is specified more
than once for the same proof line with differing content. prooftrees does examine the content of
justifications for this purpose. When conflicting justifications are detected for the same proof line,
the justifications are merged and a warning issued suggesting the use of move by.

7.2.3 Format: wff, justification & line number
Highlight wff.

Example: highlight wff

Highlight justification.

Example: highlight just

Highlight line number.

Example: highlight line no

Highlight proof line.

Example: highlight line

= (key-value list)

Additional TikZ keys to apply to the line number for this line.
Example: 1line no options={blue}

= (key-value list)

Additional TikZ keys to apply to the justification for this line.
Example: just options={draw, font=\bfseries}

= (key-value list)

Additional TikZ keys to apply to the wff for this line.
Example: wff options={magenta, draw}

Note that this key is provided primarily for symmetry as it is faster to simply give the options
directly to forest to pass on to TikZ. Unless wff format is set to a non-default value, the following
are equivalent:

wff options={magenta, draw}
magenta, draw

= (key-value list)

Additional TikZ keys to apply to this proof line.
Example: 1ine options={draw, rounded corners}
= (text)

Substitute (text) for the programmatically-assigned line number. (text) will be wrapped by
\linenumberstyle, so should not be anything which would not make sense in that context.

Example: 1ine no override={n}

Do not typeset a line number for this line. Intended for use in trees where 1ine numbering is

— 2/ of 66 —

9 FExtras

activated, but some particular line should not have its number typeset. Note that the number for
the line is still assigned and the node which would otherwise contain that number is still typeset.
If the next line is automatically numbered, the line numbering will, therefore, ‘jump’, skipping
the omitted number.

Example: no line no

8 Macros

\linenumberstyle {(number)}
macro
This macro is responsible for formatting the line numbers. The default definition is

[
‘ \newcommand*\linenumberstyle[1]{#1.}

It may be redefined with \renewcommand* in the usual way. For example, if for some reason you
would like bold line numbers, try

[
‘ \renewcommand*\linenumberstyle [1]{\textbf{#1.}}

9 Extras
9.1 Steps

every wff A nodewalk long step which visits the proof statement and every wff exactly once in proof line
Forest long step number order. This is the default order used for tagging the tableau, but may be used for other
purposes. As with the next step, this one should be used in before annotating or similar.

wff from proof line no to {(start)}{(end)}

Forest long step
A long step which visits all wffs between proof lines numbered (start) and {(end)} inclusive.

(start) and {end) must be proof line numbers in the tableau.

This step cannot be used until quite late in the tableau’s processing, as it is valid only
once line numbers have been assigned. Hence use of this step must always be delayed. For
example, to colour the wffs in lines 3, 4 and 5 blue, you could add the following to the preamble:

[
‘before annotating={for nodewalk={wffs from proof line no to={3}{5}}{blue,typeset node}},
L

Note the use of typeset node to re-typeset the content. Without this option, the colour would
have no effect.

9.2 Fit

nodewalk to node = (name){(nodewa]k}}

Forest style
A simple wrapper around forest’s fit to, which is a TikZ key used to create a node fitted around

a nodewalk using the TikZ fit library. This does not depend on the code used for tableaux and
may be used in an ordinary forest environment. (But do not load prooftrees just for this!)

For example, adding the following to a tableau’s preamble would create a node named a around all
the wffs in lines 4 to 7 inclusive. Note that this does not include the line number or justification,
if used, but only the wffs in the ‘main’ part of the proof.

‘ nodewalk to node={a}{wffs from proof line no to={4}{71}},

nodewalk node = (key-value list)
nodewalk node+
+nodewalk node Default: inner sep=0pt

nodewalk node'
Forest wrapped style

— 25 of 66 —

10 Advanced Configuration

before making annotations
Forest keylist option

before annotating
Forest keylist option

before copying content
Forest keylist option

before tagging nodes
Forest keylist option

before collating tags
Forest keylist option

Style applied to any TikZ nodes created using nodewalk to node. The versions with + pre-
pend/append to the existing style, while the ' version replaces it. nodewalk node is aliased to
nodewalk node+.

Example: nodewalk node={draw=magenta,rounded corners},

This would cause the options inner sep=0pt,draw=magenta,rounded corners to be applied to
any nodes created by nodewalk to node.

Note that, despite any similarity in syntax, these are not forest options or registers, but just code
wrappers around a simple TikZ style.

10 Advanced Configuration

forest’s default Forest keylist option options may be used to customise tableaux if the provided
options prove insufficient. In versions 0.9 and earlier, great care must be taken to avoid conflicts
with prooftrees’s use of these lists. In later versions, internal versions are reserved for prooftrees’s
use, enabling forest’s to be used more freely by the user. Note that you should still avoid changing
the basic structure of the proof. For example, deleting extant justifications or line numbers (as
opposed to modifying their content or options), would end badly.

See section 13 for details of the typesetting process.
= (key-value list)

This Forest keylist option allows customisation after node positions are first computed by forest
but before annotations are created. This is sometimes useful.

= (key-value list)

This Forest keylist option allows customisation after annotations are created, but before they are
attached to their corresponding wffs. I do not know if this option is useful or not.

The remaining options in this section are applicable only if tagging is active.
= (key-value list)

Only really useful if tagging is active. This Forest keylist option allows the content of a node to
be altered before it is copied for tagging. Changes made after proof tree copy content will
affect only the visual representation.

Example: P \supset Q, before copying content={content+={*}}, before typesetting
nodes={blue},

This would include the * into the content of the node used for tagging, but not the colouration.
= (key-value list)

Provided by the ext.tagging library. Only really useful if tagging is active (see section 12). Allow
changes before tagged content for a node is finalised. This Forest keylist option is processed
before annotations are added to a node’s tagged content.

Example: P \supset Q, before tagging nodes={alt text’={P horseshoe Q},},
This would replace P \supset Q with P horseshoe Q in the content used for tagging®.
= (key-value list)

Provided by the ext.tagging library. Only really useful if tagging is active (see section 12). This
Forest keylist option is processed after annotations are added to a node’s tagged content, but
before that content is used for tagging.

3This is not the best way to handle the horseshoe, however. It would be better to define a dedicated macro
to produce the symbol such as \horseshoe and assign an appropriate ‘output intent’, regardless of whether you
choose to override the content in tagging.

— 26 of 66 —

11 Memoization

Example: P \supset Q, just=Ass, before collating tags={alt text’={P horseshoe Q},}

This would prevent Ass from being used in the tagged content. Note that it would also lose any
line number, so this should be added explicitly if required.

11 Memoization

Tableaux created by prooftrees cannot, in general, be externalised with TikZ’s external library.
Since pgf/TikZ, in general, and prooftrees, in particular, can be rather slow to compile, this is
a serious issue. If you only have a two or three small tableaux, the compilation time will be
negligible. But if you have large, complex proofs or many smaller ones, compilation time will
quickly become excessive.

Version 0.9 does not cure the disease, but it does offer an extremely effective remedy for the
condition. While it does not make prooftrees any faster, it supports the memoize package developed
by forest’s author, Saso Zivanovié¢ (2023). Memoization is faster, more secure, more robust and
easier to use than TikZ’s externalisation.

It is faster. It does not require separate compilations for each memoized object, so it is compar-
atively fast even when memoizing.

It is more secure. It requires only restricted shell-escape, which almost all TEX installations
enable by default, so it is considerably more secure and can be utilised even where shell-escape
is disabled.

It is more robust. It can successfully memoize code which defeats all ordinary mortals’ attempts
to externalize with the older TikZ library.

It is easier to use. It requires less configuration and less intervention. For example, it detects
problematic code and aborts memoization automatically in many cases in which TikZ’s
external would either cause a compilation error or silently produce nonsense output, forcing
the user to manually disable the process for relevant code.

It is compatible with tagging. The library used for tagging ensures that tagging data is not
lost when forest trees are externalised with memoize.

There is always a ‘but’, but this is a pretty small ‘but’ as ‘but’s go.

But installation requires slightly more work. To reap the full benefits, you want to use
either the perl or the python ‘extraction’ method?. There is a third method, which does
not require any special installation, but this lacks several of the advantages explained above
and is not recommended.

If you use TEX Live, you have perl already, but you may need to install a couple of libraries.
python is not a prerequisite for TEX Live but, if you happen to have it installed, you will
probably only need an additional library to use this method.

See Memoize (Zivanovié 2023) for further details.

Once you have the prerequisites setup, all you need do is load memoize before prooftrees.

[

‘ \usepackage [extraction method=perl]{memoize}), or python
‘ \usepackage{prooftrees}

L

After a single compilation, your document will have expanded to include extra pages. At this
point, it will look pretty weird. After the next compilation, your document will return to its
normal self, the only difference being the speed with which it does so as all your memoized
tableaux will simply be included, as opposed to recompiled. Only when you alter the code for a
tableau, delete the generated files, disable memoization or explicitly request it will the proof be
recompiled.

4A better lua-based solution is currently under development. Once this is available, no additional software will
be required, at least for users of TEX Live.

— 27 of 66 —

12 Tagging

tag
Forest boolean register

setup plug
Forest toks register

tag plug

Forest toks register

tag check with
Forest toks register

Memoization is compatible with both prooftrees’s cross-referencing system and IXTEX 2¢’s cross-
references, but the latter require an additional compilation. In general, if a document element
takes n compilations to stabilise, it will take n 4+ 1 compilations to complete the memoization
process. See Memoize (Zivanovié 2023) for details.

12 Tagging

The infrastructure for tagging is provided by the ext.tagging and ext.utils forest libraries, which are
part of forest-ext®. These libraries are required regardless of whether tagging is used.

Tagging is highly experimental and the implementation will certainly change, as well, possibly, as
the interface. Changes to the public interface will be avoided where reasonable. If documented
interfaces do change, compatibility options will be provided if possible.

By default, tagging should largely ‘just work’ for straightforward tableaux. If tagging is active,
an ‘alternative text’ (alt text) is automatically generated based on the tableau content®. The
default aim is to tag tableaux syntactically, as opposed to semantically, in accordance with typical
usage in logic”. If your document is not written in English, you will need to configure a few global
options to provide translations. See section 12.1.

See also section 10.

Most of the few options are global and fairly straightforward.

12.1 Global Tagging Options

= true|false

Automatically set according to current status of tagging. Alter at your peril! Whether
tagging is active or not. This register should not be set by the user®! However, it may be
safely read to conditionalise code.

tableaux/alt

alt

Default: setup plug=tableaux/alt,tag plug=alt
Note these keys are provided by ext.tagging.

The only choice with package-specific support is currently the tableaux/alt setup plug, which
uses the library’s default alt option for tag plug. It provides a customised configuration for tag
nodes which constructs an alt text for all wffs and the to prove statement, if present. It also
modifies the order in which tags are collated. Use of latex-lab’s plugs for tikz will yield chaotic
results at best, but more likely invalid structures or compilation errors. If you need something
other than the current tableaux/alt and the options provided by the ext.tagging library do not
suffice, file a feature request.

(text)

Default: discharged

Text replacement for check with for tagging.

5Rees 2026.

6Whether this is a useful way to tag them I do not know. Some input from users of tableaux with screen-reading
software is required. Contributions, suggestions or feedback seem exceedingly unlikely, but would be appreciated.

"This might seem at odds with the JATEX Project’s efforts to tag mathematical content which, as I understand
it, is a semantic project. But the tension here is, of course, merely apparent, since the intended semantic content
of tableaux is syntactic. In the IATEX Project’s sense, this package tries to provide semantic tagging. It just so
happens that the relevant semantic content is concerned with syntactic, as opposed to semantic, methods.

8Note that setting this false will not result in an untagged tableau. Nor will it allow the user to tag the tableau
manually. If you want to do either of those, see tagpdf (for the former) or ext.tagging (for the latter).

— 28 of 66 —

Typesetting Process 12.2 Local Tagging Options

tag close with = (text)
Forest toks register

Default: closed
Text replacement for close with for tagging.

tag subs with = (text)
Forest toks register

Default: substituted
Text replacement for subs with for tagging.

tag to prove = (text)
Forest toks register

Default: To prove:
Text to prepend to the proof statement when tagging.

For example, here’s a possible setup for Welsh?.

\forestset{/,
tag check with={cyflawnedig},
tag close with={caead},
tag sub with={enghreifftiwyd},
tag to prove={Profir: },

}

12.2 Local Tagging Options

alt text = (text)
Forest toks option
Provided by ext.tagging. alt text stores the content used to tag the proof statement and each

wff in the tableau. prooftrees creates this content automatically from either the proof statement
given to to prove or the content of the wff. Additional content is appended or prepended when
checked, close, subs and/or just are used. If applicable, a line number is also added.

The content used for tagging the node may be supplemented or entirely overridden by the user at
any stage, but direct use of the option must be delayed in order for the changes to be effective.

Example: P \equiv Q, just=Ass, before collating tags={alt text'={P iff Q (Premise)},},
checked,

This would use precisely the specified content when tagging i.e. the checked marker, justification
and any line number would be omitted.

Example: P \equiv Q, just=Ass, before tagging nodes={alt text'={P iff Q (Premise)},},
checked,

The would use the specified content, together with the line number and justification, but would
omit the checked marker.

See sections 10 and 13.

13 Typesetting Process

This section provides a high-level description of the process prooftree/tableau uses to construct
and typeset a proof. Further details can be found in the code documentation.

Most uses of prooftrees do not require knowledge — or, even, awareness of — the
details described in this section. Indeed, earlier versions of the documentation did not

91 do not know if there is an extant terminology for logic. If you know of one, I’d be grateful if you could file a
feature request letting me know.

— 29 of 66 —

13 Typesetting Process

include this section at all. The details may be of use to users who wish to modify tableaux in
ways unsupported by the features documented in previous sections.

1. Initialise tagging, if applicable. This is largely a matter of setting latex-lab’s plug for tikz
to noop, setting some options for ext.tagging and resetting the tagging keylist tag nodes.
This is necessary because a forest tree involves many uses of tikzpicture and the default
tagging can result in erroneous structures and/or compilation errors and produces at best
chaotic marked content.

2. Starts forest with a custom definition of stages. tag tree stage executes the code
actually responsible for tagging the proof.

Any keylist option described as ‘Does nothing by default. is explicitly intended for users to
customise the process.

Any key marked ‘forest’ is provided by forest and used unaltered.
Any key marked ‘ext.tagging’ is provided by forest-ext and used unaltered.

Any key marked ‘Internal’ is used by this package in constructing and/or tagging the
tableau. Like those used by ext.tagging and forest itself, you are both welcome to redefine
these and welcome to keep the itsy-bitsy teeny-weeny little pieces if stuff breaks.

Note that only those intended explicitly for user use by this package are marked as ‘Does
nothing by default.’, but several other such items are similarly provided by forest and
ext.tagging'®

See section 10, Zivanovié (2017) and forest-ext for details.
Here is a (long!) step-by-step description of prooftrees’s redefinition of stages.

Stage 1 Execute the standard forest parsing for the default preamble and preamble
with forest.

for root'={}
process keylist register=default preamble,
process keylist register=preamble,

1,

Stage 2 Process the forest keylist option given options. forest.
Stage 3 Process the keylist option before copying content. Does nothing by default.
Stage 4 Process the keylist option proof tree copy content. Internal.

Stage 5 Process the keylist option proof tree after copying content. Does nothing
by default.

Stage 6 Process the keylist option proof tree before typesetting nodes. Internal.
Stage 7 Process the forest keylist option before typesetting nodes. forest.

Stage 8 Process the keylist option proof tree ffurf. Internal.

Stage 9 Process the keylist option proof tree symud awto. Internal.

Stage 10 Execute forest’s typeset nodes stage. forest.

Stage 11 Process the keylist option proof tree before packing. Internal.

Stage 12 Process the forest keylist option before packing. forest.

Stage 13 Execute forest’s pack stage. forest.

Stage 14 Process the keylist option proof tree before computing xy. Internal.

10 Anything beginning before is probably OK, but you should check the other package’s documentation to be
sure.

— 30 of 66 —

References

Stage 15 Process the forest keylist option before computing xy. forest.
Stage 16 Execute forest’s compute xy stage. forest.

Stage 17 Process the keylist option before making annotations. Does nothing by de-
fault.

Stage 18 Process the keylist option proof tree creu nodiadau. Internal.
Stage 19 Process the keylist option before annotating. Does nothing by default.
Stage 20 Process the keylist option proof tree nodiadau. Internal.
Stage 21 Process the keylist option proof tree after annotations. Internal.
Stage 22 Process the ext.tagging keylist option before tagging nodes. ext.tagging.
Stage 23 Process the ext.tagging keylist option tag nodes. ext.tagging.
Stage 24 Process the ext.tagging keylist option before collating tags. ext.tagging.
Stage 25 Process the ext.tagging keylist option collate tags. ext.tagging.
Stage 26 Process the ext.tagging keylist option before tagging tree. ext.tagging.
Stage 27 Execute ext.tagging’s tag tree stage. ext.tagging.
Stage 28 Process the forest keylist option before drawing tree. forest.
Stage 29 Execute forest’s draw tree stage. forest.

3. Applies style proof tree. This style should NOT be used directly.

4. Executes the content of prooftree/tableau’s mandatory argument.

5. Creates a root node with name= (proof statement).

6. Integrates the contents of the prooftree/tableau.

Note that prooftrees sets forest’s action character to @ before defining the prooftree/tableau
environment.

14 Compatibility

Versions of prooftrees prior to 0.5 are incompatible with bussproofs, which also defines a prooftree
environment. Version 0.6 is compatible with bussproofs provided

either bussproofs is loaded before prooftrees
or prooftrees is loaded with option tableaux (see section 4).

In either case, prooftrees will not define a prooftree environment, but will instead define tableau.
This allows you to use tableau for prooftrees trees and prooftree for bussproofs trees.

References

Hodges, Wilfred (1991). Logic: An Introduction to Elementary Logic. Penguin.

Rees, Clea F. (2026). forest-ext. 0.1. 17th Jan. 2026. CTAN: forest-ext.

Tantau, Till (2015). The TikZ and PGF Packages. Manual for Version 3.0.1a. 3.0.1a. 29th Aug.
2015. URL: http://sourceforge.net/projects/pgf.

Zivanovi¢, Saso (2016). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.0.2.
4th Mar. 2016. URL: http://spj.ff.uni-1j.si/zivanovic/.

— (2017). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.1.5. 14th July
2017. CTAN: forest.

— (2023). Memoize. 1.0.0. 10th Oct. 2023. CTAN: memoize.

— 31 of 66 —

https://www.ctan.org/pkg/forest-ext
http://sourceforge.net/projects/pgf
http://spj.ff.uni-lj.si/zivanovic/
https://www.ctan.org/pkg/forest
https://www.ctan.org/pkg/memoize

15 Implementation

15 Implementation

<*sty> <@@Q=tableaux>

1 \NeedsTeXFormat{LaTeX2e}

2 \RequirePackage{svn-prov}

3 (!debug)\ProvidesPackageSVN[\filebase.styl{$Id: prooftrees.dtx 11540 2026-01-19 06:46:23Z
cfrees $}[v0.9.2 \revinfo]

4 (debug)\ProvidesPackageSVN[\filebase-debug.styl{$Id: prooftrees.dtx 11540 2026-01-19 06:46:23
cfrees $}[v0.9.2 \revinfo\ (debugging)]

5 \DefineFileInfoSVN

\prooftrees@enw Define \prooftrees@enw to hold the name of the environment.

Default is to name the environment prooftree, this ensures backwards compatibility.

6 \newcommand*\prooftrees@enw{prooftree}

Allow users to change the name to tableau using tableaux.
7 \DeclareOption{tableaux}{\renewcommand*\prooftrees@enw{tableau}t}
Just in case.
8 \DeclareOption{tableau}{\renewcommand*\prooftrees@enw{tableau}}
9 \DeclareOption*{\PassOptionsToPackage{\CurrentOption}{forest}}

If \prooftree is not yet defined, set the name to prooftree; otherwise, use tableau to avoid
conflict with bussproofs (which uses prooftree rather than bussproof as one might expect).

Is there some reason I didn’t use a hook here? obviously hooks weren’t a thing, but
\AtBeginDocument? Oh, I guess I can’t

10 \ifcsname prooftree\endcsname

11 \renewcommand*\prooftrees@enw{tableaul/,
12 \else

13 \renewcommand*\prooftrees@enw{prooftree}y
14 \fi

Let users override the default prooftree in case they need to load bussproofs later.
15 \ProcessOptions
Load forest, but load maths packages later only if needed.

16 \RequirePackage{forest}[2016/12/04]
17 \@ifpackageloaded{forest-1lib-ext.tagging}H{}{%
18 \@ifpackageloaded{forest-lib-ext.tagging-debug}t{}{’

19 (!debug) \IfFileExists{forest-lib-ext.tagging.sty}{/

20 (!debug) \useforestlibrary*{ext.tagging}/

21 (debug) \IfFileExists{forest-lib-ext.tagging-debug.sty}{/

22 (debug) \useforestlibrary*{ext.tagging-debug}i

23 Hba

24 \PackageError{prooftrees}{This version of prooftrees requires the

25 forest library ext.tagging, part of the forest-ext package.’

26 H

27 This version of prooftrees will not be pushed to CTAN until TeX

28 Live includes forest-ext. Hence, you should see this error only if
29 you installed the updated prooftrees manually or your TeX

30 distribution updated prooftrees without including the new dependency.
31 In the former case, please don’t do that. In the latter case, please
32 report the problem using your distribution’s bug tracker.,

— 32 of 66 —

15 Implementation

\linenumberstyle

33 Y
34 o
35 3}

36 }

37 \newcommand*\linenumberstyle[1] {#1.}

Currently, keys starting proof tree or tableau and macros starting prooftree or prooftree@
are intended for internal use only.

This does not apply to the environment prooftree.
Other keys and macros are intended for use in documents.

In particular, the style proof tree is **NOT** intended to be used directly by the
user and its direct use is **ABSOLUTELY NOT SUPPORTED IN ANY WAY,
SHAPE OR FORM%*#*; it is intended only for implicit use when the prooftree
environment calls it.

Don’t use @ in register/option names - the documentation is lying when it says non-alphanumerics
will be converted to underscores when forming pgfmath functions ;)

38 \forestset{}
Line numbers

39 declare boolean register={line numbering},
Default is for line numbers

40 line numbering,
Line justifications

41 declare boolean register={justifications},

Default is for no line justifications (b/c there’s no point in enabling this if the user doesn’t specify
any content)

42 not justificatioms,

Single branches: explicitly drawn branches and a normal level distance between lone children and
their parents

43 declare boolean register={single branches},
Default is for lone children to be grouped with their parents
44 not single branches,
45 declare boolean register={auto move},’% ble mae’n bosibl, symud pethau’n awtomatig
Default: symud yn awtomatig
46 auto move,
Default will be set to the width of 99 wrapped in the line numbering style
47 declare dimen register={line no width},
Fallback default is Opt

48 line no width’=0pt,

— 33 of 66 —

15 Implementation

Amount by which to shift justifications away from the main tree
49 declare dimen register={just sep},
Default is 1.5em
50 just sep’=1.5em,
Distance of justifications from centre of inner tree; overrides just sep

51 declare dimen register={just dist},
52 just dist’=0pt,

Amount by which to shift line numbers away from the main tree

53 declare dimen register={line no sep},
54 line no sep’=1.5em,

Distance of line nos. from centre of inner tree; overrides line no sep

55 declare dimen register={line no dist},
56 line no dist’=0pt,

Distance between closure symbols and any following annotation

57 declare dimen register={close sep},

58 close sep’=.75\baselineskip,

59 declare dimen register={proof tree line no x},

60 proof tree line no x’=0Opt,

61 declare dimen register={proof tree justification x},

62 proof tree justification x’=Opt,

63 declare dimen register={proof tree inner proof width},

64 proof tree inner proof width’=0pt,

65 declare dimen register={proof tree inner proof midpoint},
66 proof tree inner proof midpoint’=0Opt,

Count the levels in the proof tree

67 declare count register={proof tree rhif lefelau},
68 proof tree rhif lefelau’=0,

Count the line numbers (on the left)

69 declare count register={proof tree lcount},
70 proof tree lcount’=0,

Count the justifications (on the right)

71 declare count register={proof tree jcount},
72 proof tree jcount’=0,

Adjustment for line numbering

73 declare count register={line no shift},
74 line no shift’=0,

75 declare count register={proof tree aros},
76 proof tree aros’=0,

77 declare toks register={check with},

78 check with={\ensuremath{\checkmark}},
79 declare boolean register={check right},
80 check right,

81 check left/.style={not check right},

82 declare toks register={subs with},

83 subs with={\ensuremath{\backslash}},

— 34 of 66 —

15 Implementation

84 declare boolean register={subs right},

85 subs right,

86 subs left/.style={not subs right},

87 declare toks register={close with},

88 close with={\ensuremath{\otimes}},

89 declare keylist register={close format},

90 close format={font=\scriptsizel},

91 declare keylist register={close with format},

92 close with format={},

93 declare toks register={merge delimiter},

94 merge delimiter={\text{; }},

95 declare boolean register={just refs left},

96 just refs left,

97 just refs right/.style={not just refs left},

98 declare keylist register={just format},

99 just format={},

100 declare keylist register={line no format},

101 line no format={},

102 declare autowrapped toks register={highlight format},
103 highlight format={draw=gray, rounded corners},

104 declare keylist register={proof statement format},
105 proof statement format={},

106 declare keylist register={wff format}l,

107 wff format={},

108 declare boolean={proof tree justification}{0},

109 declare boolean={proof tree line number}{0},

110 declare boolean={grouped}{0},

111 declare boolean={proof tree phantom}{0},

112 declare boolean={highlight wff}{0},

113 declare boolean={highlight just}{0},

114 declare boolean={highlight line no}{0},

115 declare boolean={highlight 1ine}{0},

116 Autoforward={highlight line}{highlight just, highlight wff, highlight line no},
117 declare boolean={proof tree toing}{0},

118 declare boolean={proof tree toing with}{0},

119 declare boolean={proof tree rhiant cymysg}{0},

120 declare boolean={proof tree rhifol}{1},

121 declare boolean={proof tree arweinydd}{0},

122 declare autowrapped toks={just}{},

123 declare toks={proof tree rhestr rhifau llinellau}{},
124 declare toks={proof tree closel}{},

125 declare toks={proof tree rhestr rhifau llinellau caul}{},
126 declare autowrapped toks={just options}{},

127 declare autowrapped toks={line no options}{},

128 declare autowrapped toks={wff options}{},

129 declare autowrapped toks={line options}{},

130 Autoforward={line options}{just options={#1}, line no options={#1}, wff options={#1}},
131 declare count={proof tree toing by}{0},

132 declare count={proof tree cadw toing by}{0},

133 declare count={proof tree toooing}{0},

134 declare count={proof tree proof line no}{0},

Keylists for internal storage

135 declare keylist={proof tree jrefs}{},
136 declare keylist={proof tree crefs}{},

Internal keylists for use in stages

137 declare keylist={proof tree ffurfl}{},
138 declare keylist={proof tree symud awto}{},
139 declare keylist={proof tree creu nodiadau}{},

— 35 of 66 —

15 Implementation

140 declare keylist={proof tree nodiadaul}{},
Additional internal keylists so we don’t pollute forest’s and customisation is easier.

141 declare keylist={before copying content}{},
142 declare tagging keylist={proof tree copy content}{},

Line nos and justifications don’t exist yet, even if they are requested, so proof tree wffs is not
an option, for instance.

143 proof tree copy content processing order/.nodewalk style={unique={fake=root,descendants}},
144 declare keylist={proof tree after copying contentl}{},

145 declare keylist={proof tree before typesetting nodes}{},

146 declare keylist={proof tree before packing}{},

147 declare keylist={proof tree before computing xy}{},

148 declare keylist={proof tree after annotations}{},
Empty by default. Allow changes in between processing of standard keylists.

149 declare keylist={before making annotations}{},
150 declare keylist={before annotating}{},

Additions for tagging. These are not actually used yet, but make experimenting (with prooftrees-
debug easier.

151 declare boolean register={tag},

152 tag=0,

153 % ~"A declare toks register={plug},

154 declare toks register={tag check with},

155 tag check with={discharged},

156 declare toks register={tag close with},

157 tag close with={closed},

158 declare toks register={tag subs with},

159 tag subs with={substituted},

160 declare toks register={tag to provel},

161 tag to prove={To prove: },

162 % ~"A declare keylist={before making tags}{},
163 % ~"A declare keylist={proof tree tag nodes}{},
164 % ~~A declare keylist={before getting tags}{},
165 % ~"A declare keylist={proof tree get tags}{},
166 % ~"A declare toks={ttoks}{},

> indicates use of process when it is the first token, preceding a list of instructions as opposed to
pgfmath stuff

167 define long step={proof tree symud}{}{%
168 root,sort by={>{0}{levell},>{_0<}{1}{n children}},sort’=descendants
169 ¥,

170 define long step={proof tree cywiro symud}{}{%
171 root,if line numbering={n=2}{n=1},sort by={>{0}{levell},>{_0<}{1}{n children}},sort’=desc
172 3},

Updated version of defn. from saso’s code (forest2-saso-ptsz.tex) & https://chat.stackexchange.
com/transcript/message/28321501#28321501

173 define long step={proof tree camau}{}{J
Angen +d - gweler https://chat.stackexchange.com/transcript/message/28607212#28607212

174 root,sort by={>{0}{y},>{0wi+d{x}{-##1}},sort’={filter={descendants}{>{00!&}{proof
tree rhifo}{proof tree phantom}}1}/
175 3},

— 36 of 66 —

https://chat.stackexchange.com/transcript/message/28321501#28321501
https://chat.stackexchange.com/transcript/message/28321501#28321501
https://chat.stackexchange.com/transcript/message/28607212#28607212

15 Implementation

coeden brif yn unig ar 6l i greu nodiadau

176 ~ define long step={proof tree wffs}{}{J
177 fake=root,if line numbering={n=2}{n=1},tree
178 3},

Unlike the previous step, this includes any proof statement and ensures nodes are only visited
once, which we want for tagging.

179 define long step={every wff}{}{%
180 unique={name=proof statement,proof tree wffs}y
181},

See https://tex.stackexchange.com/a/749854/39222 for example usage.
Cf. Saso Zivanovié: https://tex.stackexchange.com/a/296771/
Cf. Sago Zivanovié: https://chat.stackexchange.com/transcript/message/28484520#28484520

Is there any advantage to sorting here?

182 define long step={wffs from proof line no to}{n args=2}{

183 sort by={>0{proof tree proof line nol}},

184 sort={filter={proof tree wffs}{> n0O< n0> 0! &&{#1-1}{proof tree proof line nol}{#2+1}{pro
tree proof line no}{phantom}}}%

185 },

Mark discharge with optional name substituted into existential

For building alt text, we want to do this after content is copied but still before before
typesetting nodes or proof tree before typesetting nodes.

186 checked/.style={%

187 proof tree after copying content={%

188 if check right={}

189 content+’={\ \forestregister{check with}#1},

190 if tag={J

191 alt text+/.process={Rw{tag check with}{ ##1#13}},
192 Hi,

193 H%

194 +content’={\forestregister{check with}#1\ 1},

195 if tag={/

196 +alt text/.process={Rw{tag check with}{##1#1 }},
197 H3,

198 },

199 1,

200 },

Mark substitution of name into universal

201 subs/.style={}

202 proof tree after copying content={Y%

203 if subs right={Y%

204 content+’={\ \forestregister{subs with}#1},

205 if tag={%

206 alt text+/.process={Rw{tag subs with}{ ##1#1}},
207 H3,

208 H

209 +content’={\forestregister{subs with}#1\ },

210 if tag={J

211 +alt text/.process={Rw{tag subs with}{##1#1 }I},
212 H3,

213 },

214 },

— 37 of 66 —

https://tex.stackexchange.com/a/749854/39222
https://tex.stackexchange.com/a/296771/
https://chat.stackexchange.com/transcript/message/28484520#28484520

15 Implementation

215 3},

This now uses nodes rather than a label to accommodate annotations; closing must be done
before packing the tree to ensure that sufficient space is allowed for the symbol and any following
annotation; the annotations must be processed before anything is moved to ensure that the
correct line numbers are used later, even if the references are given as relative node names

216 close/.style={},

217 if={%

218 >{__=H#1}{}

219 HI%

220 temptoksb={},

221 temptoksa={#1},

222 split register={temptoksa}{:}{proof tree close,temptoksb},
223 if temptoksb={}{}{

224 split register={temptoksb}{,}{proof tree cref},
225 },

226 },

227 proof tree after copying content={Y%

This node holds the closure symbol

228 append=1{’,

229 [\forestregister{close with},

230 not proof tree rhifo,

231 proof tree phantom,

232 grouped,

233 no edge,

234 process keylist register=close with format,

Adjust the distance between the closure symbol and any annotation

235 proof tree before computing xy={J
236 delay={%

Cywiro? Fel arall, bydda’r peth byth yn cael ei wneud achos proof tree phantom? Dim yn siwr o

gwbl.

237 1’=\baselineskip,%

238 for children={%

239 1/.register=close sep,

240 1,

241 1,

242 1,

243 proof tree after annotations={}

244 if={>{RR|}{line numbering}{justifications}}{%
245 proof tree proof line no/.option=!parent.proof tree proof line no,
246 Hi,

247 1,

248 if={%

249 >{__=H#1}X{}%

250 HH%

Don’t create a second node if there’s no annotation.

251 delay={%
252 append={%

This node holds the annotation, possibly including cross-references which will be relative to the
node’s grandparent.

— 38 of 66 —

15 Implementation

253 L,

254 not proof tree rhifo,

255 proof tree phantom,

256 grouped,

257 no edge,

258 process keylist register=close format,

259 if={%

260 >{0_=}{!parent,parent.proof tree close}{}/

261 }H3}{content/.option=!{parent,parent}.proof tree close},

262 proof tree crefs/.option=!{parent,parent}.proof tree crefs,

263 delay={%

264 !{parent,parent}.proof tree crefs’={},

265 1,

266 proof tree after annotations={}

267 if={>{RR|}{1line numbering}{justifications}}{’

268 proof tree proof line no/.option=!{parent,parent}.proof tree proof
line no,

269 H3,

270 3,

271 1%

272 },

273 1,

274 1,

275 1%

276 1,

277 },

278 },

Creates the line numbers on the left; note that it *does* matter that these are part of the tree,
even though they do not need to be packed or to have xy computed; moreover, it matters that
each is the child of the previous line number... so it won’t do for them to *remain* siblings, even
though that’s fine when they are created.

279 proof tree line no/.style={J}

280 anchor=base west,

281 no edge,

282 proof tree line number,

283 text width/.register=line no width,

284 x’/.register=proof tree line no x,

285 process keylist register=line no format,

286 delay={%

287 proof tree lcount’+=1,

288 tempcounta/.process={RRw2+n}{proof tree lcount}{line no shift}{##1+##2},

289 content/.process={Rwil}{tempcounta}{\linenumberstyle{##1}},% content i.e. the line
number

Name them so they can be moved later

290 name/ .expanded={line no \foresteregister{tempcountall},%
291 typeset node,

The initial location of most line numbers is incorrect and they must be moved
292 if proof tree lcount>=3{J

Move the line number below the previous line number

293 for previous={}

294 append/.expanded={line no \foresteregister{tempcountal}}
295 },

206 Hi,

297 1,

— 39 of 66 —

15 Implementation

298 },
Creates the justifications on the right but does not yet specify any content

299 proof tree line justification/.style={}

300 anchor=base west,

301 no edge,

302 proof tree justification,

303 x’/.register=proof tree justification x,

304 process keylist register=just format,

305 delay={%

306 proof tree jcount’+=1,

307 tempcounta/.process={RRw2+n}{proof tree jcount}{line no shift}{##1+##2},

Name them so they can be moved

308 name/.expanded={just \foresteregister{tempcountal},
Angen i osgoi broblemau ’da highlight just/line etc.

309 typeset node,

Correct the location as for the line numbers (cf. line no style)

310 if proof tree jcount>=3{J

311 for previous={}

312 append/ .expanded={just \foresteregister{tempcountal}},
313 1,

314 H?,

315 },

316},

317 zero start/.style={J

318 line no shift’+=-1,

319 3},

Sets a proof statement

320 to prove/.style={}

321 for root={}

322 proof tree before typesetting nodes={J%

323 content={#1},

324 phantom=false,

325 baseline,

326 if line numbering={anchor=base west}{anchor=base},
327 process keylist register=proof statement format,
328 if={>R{tag}}{%

329 (debug) debug tagging=Copying to prove to alt text,
330 alt text/.process={0Rw2{content}{tag to prove}{##2\ \ensuremath{##1}}},
331 (debug) debug tagging/.option=alt text,

332% ~TA collate tags={%

333 % ~"A Y<debug> debug tagging=Pick up alt text from to prove,
334 7% ~TA collate/.option=alt text,

335 % ~TA },

336 Hi,

337 },

338 proof tree before computing xy={%

339 delay={%

340 for children={}

341 1=1.5%\baselineskip,

342 1,

— 40 of 66 —

15 Implementation

343 },
344 },
345 },

346 },

This style should **NOT** be used directly in a forest environment - see notes at top of this file.

347 proof tree/.style={}%

348 for tree={%

manual 64

349 parent anchor=children,
manual 64

350 child anchor=parent,
351 math content,

352 delay={%

If we’ve got justifications, make sure nodes are created for them later and split out cross-references

so we identify the correct nodes before anything gets moved, allowing the use of relative node
names.

353 if just={}{3}{%

354 justifications,

355 temptoksa={},

356 split option={just}{:}{just,temptoksal,

357 if temptoksa={}{}{%

358 split register={temptoksa}{,}{proof tree jref},
359 1,

360 1,

361 if content={}{), if there’s no proof statement
362 if level=0{}{%

363 shape=coordinate,

364 1,

365 H3i,

366 },

367 },

368 where level=0{}

No edges from phantom root or proof statement to children.

369 for children={},

370 proof tree before typesetting nodes={}
371 no edge,

372 1,

373 },

374 delay={}

375 if content={}{phantom}{},

Create the line numbers if appropriate.

376 if line numbering={%

377 parent anchor=south west,

378 if line no width={0pt}{/

379 line no width/.pgfmath={width("\noexpand\linenumberstyle{99}")},
380 Hi,

381 H3,

382 1,

— J1 of 66 —

15 Implementation

This is processed after computing xy.

383

proof tree creu nodiadau={%

Count proof lines if necessary.

384
385
386
387
388
389
390
391

399
400
401
402
403
404
405
406
407
408

if={>{RR|}{1line numbering}{justifications}}{%

proof tree rhif lefelau’/.register=line no shift,
for proof tree camau={}
if level>=1{%
if={%
>{00<}{y}{!back.y}
H%
proof tree rhif lefelau’+=1,
proof tree proof line no’/.register=proof tree rhif lefelau,
H%
proof tree proof line no’/.register=proof tree rhif lefelau
1,

H?,
1,
proof tree inner proof midpoint/.min={}

>{00w2+dHx H{min x}{##1+##2}%

}{fake=root,descendants},
proof tree inner proof width/.max={}
>{00w2+dHx}I{max x}{##1+##2}],
}{fake=root,descendants},
proof tree inner proof width-/.register=proof tree inner proof midpoint,
proof tree inner proof midpoint+/.process={J,
Rw+d{proof tree inner proof width}{##1/2}}
1,

Hi,

Get the x position of line numbers and adjust the location and alignment of the proof statement.

409
410

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

if line numbering={%

proof tree line no x/.min={>{00w2+d}{x}{min x}{##1+##2}}{fake=root,descendants},
if={%
> Rd= {line no dist}{Optl}/
Hu%
proof tree line no x-/.register=line no sep,
Hu
tempdima/.register=proof tree inner proof width,
tempdima:=2,
if={%
> RR< {line no dist}{tempdimaly
HH%
proof tree line no x/.register=proof tree inner proof midpoint,
proof tree line no x-/.register=line no dist,
1,
+
proof tree line no x-/.register=line no width,
for root={}
tempdimc/.option=x,
x’+/.register=proof tree line no x,
x’-/.option=min x,

},

create line numbers on left

431
432
433

prepend={/%
[,

proof tree line no,

— 42 of 66 —

15 Implementation

() to group are required here - otherwise, the -1 (or -2 or whatever) is silently ignored. Most are
created in the wrong place but proof tree line no moves them later.

434 repeat={((proof_tree_rhif_lefelau)-1)-(line_no_shift)}{/
435 delay n={proof_tree_lcount}{

436 append={[, proof tree line nol},

437 },

438 },

439 1%

440 },

441 H,

Get the x position of justifications and create the nodes which will hold the justification content,
if required.

442 if justifications={%

443 proof tree justification x/.max={J

444 >{00w2+dHx Hmax xI{##1+##2}),

445 }{fake=root,descendants},

446 if={%

447 > Rd= {just dist}{Optl}V

448 Ho

449 proof tree justification x+/.register=just sep,
450 H%

451 tempdima/.register=proof tree inner proof width,
452 tempdima:=2,

453 if={%

454 > RR< {just dist}{tempdimal},

455 HY

456 proof tree justification x/.register=proof tree inner proof midpoint,
457 proof tree justification x+/.register=just dist,
458 1,

459 1,

460 append={/,

461 L,

462 proof tree line justification,

Most are created in the wrong place but proof tree line justification moves them later.

463 repeat={((proof_tree_rhif_lefelau)-1)-(line_no_shift)}{/
464 delay n={proof_tree_jcount}{}

465 append={[, proof tree line justification]},
466 },

467 %

468 1%

469 },

470 H3,

471 },

472 Hu%

473 delay={%

Automatically group lines if not using single branches.

474 if single branches={}{%
475 if n children=1{%

476 for children={Y%

477 grouped,

478 },

479 Hz,

480 },

481 },

— 43 of 66 —

15 Implementation

Apply wit-specific highlighting and additional TikZ keys.

482 proof tree before typesetting nodes={J

483 process keylist register=wff format,

484 if highlight wff={node options/.register=highlight format}{},
485 node options/.option=wff options,

486 },

487 },

Processed before proof tree symud auto: adjusts the alignment of lines when some levels of the
tree are grouped together either whenever the number of children is only 1 or by applying the
grouped style to particular nodes when specifying the tree.

488 proof tree ffurf={}

489 if auto move={}%

490 if single branches={}

491 where={},

492 >{0! _0< 0 &&}{grouped}{2}{level}{proof tree rhifol}},
493 Ho

494 if={%

495 >{_0= _0< &}{1}{!parent.n children}{1}{!parent,parent.n children},
496 Ho

497 not tempboola,

498 for root/.process={0wl}{level}{)

499 for level={##1}{J

500 if={J

501 >{_0< _0= &}{1}{!parent.n children}{1}{n}%
502 Ho

503 tempboola,

504 Hi,

505 1,

506 1,

507 if tempboola={},

508 proof tree toing,

509 H,

510 H?,

511 H:,

512 H3,

513 where={Y,

514 >{0 _0< 0 &&}{grouped}{1}{level}{proof tree rhifol}}

This searches for certain kinds of structural asymmetry in the tree and attempts to move lines
appropriately in such cases - the algorithm is intended to be relatively conservative (not in the
sense of "cautious’ or ’safe’ but in the sense of 'reflection of the overlapping consensus of reasonable
users’ / 'what would be rationally agreed behind the prooftrees veil of ignorance’; however, I
should have realised I actually had 'the overlapping concensus of reasonable Beamer users’ in
mind rather than ’the overlapping consensus of reasonable users’, so there is now an option to
turn it off; apologies if this comment previously misclassified you as 'unreasonable’; apologies for
the inconvenience if you are an unreasonable user).

515 H%

516 not tempboola,

517 for root/.process={0wil}{level}{%

518 for level={##1}{%

519 if={}

520 >{_0< _0= &}{1}{!parent.n children}{1}{n}%
521 H%

522 tempboola,

523 H3,

524 },

— J4 of 66 —

15 Implementation

SaSo: https://chat.stackexchange.com/transcript/message/27874731#27874731, see also
https://chat.stackexchange.com/transcript/message/27874722#27874722.

525 1Y)
526 if tempboola={}
527 if n children=0{%

We’re already moving the parent and the child will move with the parent, so we can just mark
this and do nothing else.

528 if={>{00|}{!parent.proof tree toing}{!parent.proof tree toing with}}{/
529 proof tree toing with,
530 H

Don’t move a terminal node even in case of asymmetry: instead, create a separate proof line for
terminal nodes on this level which are only children, by moving children with siblings on this
level down a proof line, without altering their physical location.

531 for root/.process={0wi}{levell}{/

This makes the tree more compact and stops it looking silly.

532 for level={##1}{J

533 if={%

534 >{_0< _0= &}{1}{!parent.n children}{1}{n}%
535 Ho

This just serves to keep the levels nice for the sub-tree and ensure things align. We need this
because we want to skip a level here to allow room for the terminal node in the other branch.

536 for parent={%
We mark the parent to avoid increasing the line number of its descendants more than once.

537 if proof tree rhiant cymysg={}{%
538 proof tree rhiant cymysg,

539 for descendants={%

540 proof tree toing by’+=1,

541 1,

542 },

543 },

544 Hi,

545 1},

Saso: https://chat.stackexchange.com/transcript/message/27874731#27874731, see also
https://chat.stackexchange.com/transcript/message/27874722#27874722.

546 }.%

547 1,

548 no edge,

549 H%

550 if={%

551 >{_0= _0< &}{1}{!parent.n children}{1}{!parent,parent.n children},

Don’t try to move if the node has more than 1 child or the grandparent has no more than that;
otherwise, mark the node as one to move - we figure out where to move it later.

552 H%

553 proof tree toing,
554 Hno edgel,

555 1,

556 }no edge},

557 H3,

— 45 of 66 —

https://chat.stackexchange.com/transcript/message/27874731#27874731
https://chat.stackexchange.com/transcript/message/27874722#27874722
https://chat.stackexchange.com/transcript/message/27874731#27874731
https://chat.stackexchange.com/transcript/message/27874722#27874722

15 Implementation

558 H3,
559 },

Processed before typesetting nodes: if this could be done during packing, that would be very nice,
even if the previous stuff can’t be.

560 proof tree symud awto={}
561 if auto move={Y%

562 proof tree aros’=0,

563 for proof tree symud={}

This relies on an experimental feature of forest, which is anffodus.

564 if proof tree toing={}

565 for nodewalk={fake=parent,fake=sibling,descendants}{do dynamics},
566 delay n={\foresteregister{proof tree aros}}{%

567 tempcounta/.max={},

568 >{0000w4+n}{level}{proof tree toing by}{proof tree toooing}i
569 {proof tree rhifo}{ (##1-+##2+##3)x##4}Y,

570 Hparent,sibling,descendants},

571 if tempcounta>=1{}

572 if={%

573 >{Rwi+n 00w2+n >}{tempcountal}{##1+1}{level}{proof tree toing byl}{##1+##2}J
574 H%

575 tempcounta-/.option=level,

576 tempcounta’+=1,

577 move by/.register=tempcounta,

578 }no edgel},

579 }Hno edge},

580 1,

581 proof tree aros’+=4,

582 Hi,

583 1,

584 Hi,

585 },

Processed after proof tree creu nodiadau and before before drawing tree: creates annotation
content which may include cross-references, applies highlighting and additional TikZ keys to line
numbers, justifications and to wifs where specified for entire proof lines.

586 proof tree nodiadau={Y%

Resolve cross-refs in closures.

587 where proof tree crefs={}{}{%

588 split option={proof tree crefs}{,}{proof tree rhif 1llinell cau},

589 if content={}{%

590 content/.option=proof tree rhestr rhifau llinellau cau,

591 Ho%

592 content+/.process={_0}{\ }{proof tree rhestr rhifau llinellau cau},
593 1},

594 typeset node,

595 1,

Apply highlighting and additional TikZ keys to line numbers; initial alignment of numbers with
proof lines.

596 if line numbering={Y%
597 for proof tree wffs={}
598 if highlight line no={%

— J6 of 66 —

15 Implementation

From Saso’s anti-pgfmath version - rhaid ddweud proof tree proof line no yn ddwywaith ?! dim
yn bosibl i ailddefnyddio’r gyntaf 7!

599 for name/.process={0w1000w3}{proof tree proof line no}{line no ##1}{proof
tree proof line no}{line no options}{y}{%

600 node options/.register=highlight format,

601 ##2,

602 v =##3,

603 proof tree proof line no’=##1,

604 typeset node,

605 Yh

606 H%

607 if line no options={}{%

608 if proof tree phantom={}{%

609 for name/.process={0w100w2}{proof tree proof line no}{line no ##1}{proof
tree proof line no}{y}{%

610 yo=H##2,

611 proof tree proof line no’=##1,

612 Yh

613 1,

614 H%

615 for name/.process={0w1000w3}{proof tree proof line no}{line no ##1}{proof
tree proof line no}{line no options}{y}{%

616 ##2,

617 v =##3,

618 proof tree proof line no’=##1,

619 typeset node,

620 Yh

621 1,

622 1,

623 1,

624 H1,

Initial alignment of justifications with proof lines, addition of content, resolution of cross-references
and application of highlighting and additional TikZ keys.

625 if justifications={%

626 for proof tree wffs={J,

627 if just={}{%

628 if proof tree phantom={}{%

From Saso’s anti-pgfmath version - rhaid ddweud proof tree proof line no yn ddwywaith 7! dim
yn bosibl i ailddefnyddio’r gyntaf ?!

629 for name/.process={0w100w2}{proof tree proof line no}{just ##1}{proof tree
proof line no}{y}{%

630 y =##2,

631 proof tree proof line no’=##1l,

632 Yh

633 1,

634 Ho

Puts the content of the justifications into the empty justification nodes on the right; because this
is done late, the nodes need to be typeset again.

635 if proof tree jrefs={}{}{/%

Resolve cross-refs in justifications.

636 split option={proof tree jrefs}{,}{proof tree rhif 1linell},
637 if just refs left={J
638 +just/.process={0_}{proof tree rhestr rhifau llinellau}{\ 7},

— }7 of 66 —

15 Implementation

639 H

640 just+/.process={_0}\ }{proof tree rhestr rhifau llinellau},
641 1,

642 },

Apply highlighting and additional TikZ keys to justifications, set content and merge any conflicting
specifications, warning user if appropriate.

643 if highlight just={%

From Saso’s anti-pgfmath version - rhaid ddweud proof tree proof line no yn ddwywaith ?! dim
yn bosibl i ailddefnyddio’r gyntaf 7!

644 for name/.process={0w10000w4}{proof tree proof line no}{just ##1}{proof
tree proof line no}{just}{just options}{y}r{%

645 if={}

646 >{0_= 0_= |}{content}{}{content}{##2}/

Gweler isod - o god Saso.

647 H%
648 content={##2},

Avoid merging tags for merged justifications. We need this in four places: for merged and
unmerged justifications with and without highlighting. This would have been easier with Peter
Smith’s preferred design

649 Hu%
650 content+’={\foresteregister{merge delimiter}##2},
651 TeX={\PackageWarning{prooftrees}{Merging conflicting justifications

for line ##1! Please examine the output carefully and use "move by" to move lines later
in the proof if required. Details of how to do this are included in the documentation.}},

Avoid merging tags for merged justifications.

652 1,

653 node options/.register=highlight format,
654 ##3,

655 y’=##4,

656 proof tree proof line no’=##1,

657 typeset node,

658 }/%~"A do NOT put a comma here!

659 Ho

From Saso’s anti-pgfmath version - rhaid ddweud proof tree proof line no yn ddwywaith ?! dim
yn bosibl i ailddefnyddio’r gyntaf ?!

660 for name/.process={0w10000w4}{proof tree proof line no}{just ##1}{proof
tree proof line no}{just}{just options}{y}{/
661 if={%

From Saso’s anti-pgfmath version - I appreciate this is faster, but why is it required?!

662 >{0_= 0_= |}{content}{}{content}{##2}/,
663 H%
664 content={##2},

Avoid merging tags for merged justifications.

665 Hu%
666 content+’={\foresteregister{merge delimiter}##2},
667 TeX={\PackageWarning{prooftrees}{Merging conflicting justifications

for line ##1! Please examine the output carefully and use "move by" to move lines later
in the proof if required. Details of how to do this are included in the documentation.}},

— 48 of 66 —

15 Implementation

Avoid merging tags for merged justifications.

668 ¥,

669 ##3,

670 y =##4,

671 proof tree proof line no’=##1,
672 typeset node,

673 }/%""A do NOT put a comma here!
674 }

675 },

676 },

677 H,

Apply highlighting and TikZ keys which are specified for whole proof lines to all applicable wifs.

678 for proof tree wffs={}

679 if proof tree phantom={}{%

680 if highlight line={%

681 for proof tree wffs/.process={00w2}{proof tree proof line no}{line options}{/
682 if proof tree proof line no={##1}{%

683 node options/.register=highlight format,

684 ##2,

685 HY%

686 1,

687 Hu%

688 for proof tree wffs/.process={00w2}{proof tree proof line no}{line options}{%
689 if proof tree proof line no={##1}{##2}{},

690 1,

691 1,

692 delay={typeset nodel},

693 3,

694 },

695 },

Initial alignment so we don’t get proof line numbers incrementing due to varying height/depth
of nodes, for example - when single branches is true and few nodes are grouped, this is also a
reasonable first approximation.

696 proof tree before packing={}

697 for tree={J

698 tier/.process={00w2+nwi}{level}{proof tree toing by}{##1+##2}{tier ##1},
699 },

If there’s no proof statement, adjust the alignment of the proof relative to the surrounding text.

700 for root={Y%

701 if content={}{%
702 1{n=1}.baseline,
703 H3,

704 },

705 },

Adjust distance between levels for grouped nodes after tree is packed.

706 proof tree before computing xy={}
707 for tree={J

708 if={}

709 >{0 _0< &}{grouped}{1}{levell}’

Osgoi overlapping nodes, if posibl: cwestiwn https://tex.stackexchange.com/q/456254/.

710 H
711 not tempboola,

— 49 of 66 —

https://tex.stackexchange.com/q/456254/

15 Implementation

712 tempcounta/.option=level,

713 tempcountb/.option=proof tree toing,

714 tempcountb+/.option=proof tree toooing,

715 for nodewalk={fake=root, descendants}{if={> RO= On> 0! 0! 00w2+nR= &&&&

716 {tempcounta}{level} {!u.n children}{1} {proof tree arweinydd} {proof tree

phantom} {proof tree toing by} {proof tree toooing}{##1+##2} {tempcountbl}
717 Htempboola}{}},

718 if tempboola={}{1’=\baselineskip},
719 Hi,

720 1,

721 },

Set final alignment for proof lines which have been moved by effectively grouping lead nodes and
moving their subtrees accordingly - this requires that each line number and justification be the
child of the previous one and that if justifications are used at all, then justifications exist for all
proof lines, even if empty.

722 proof tree after annotations={}

Correct the alignment of move by lines when single branches is false - o fersiwn anti-pgfmath
Saso.

723 if={>{RRIR!&}{1line numbering}{justifications}{single branches}}{/
Track cumulative adjustments to line numbers and justifications

724 tempdimc’=0pt,
725 for proof tree cywiro symud={%

Only examine the lead nodes - their descendants need the same (cumulative) adjustments

726 if proof tree arweinydd={%
727 tempdima’/.option=y,

If there are line numbers, we use the previous line number’s vertical position

728 if line numbering={J,

729 for name/.process={0wl+nwl}{proof tree proof line no}{##1-1}{line no ##1}{%
arafach 7

730 tempdimb’/.option=y,

731 Yh

If not, we use the previous justification’s vertical position

732 Ho%

733 for name/.process={0wl+nwi}{proof tree proof line no}{##1-1}{just ##1}{J
arafach 7

734 tempdimb’/.option=y,

735 Yh

736 1,

The parent (which will be a phantom) gets aligned with the previous line

737 for parent={Y%
738 y’/.register=tempdimb,
739 1,

Adjust so we align this line below the previous one (assuming we’re going down)

740 if tempdimb<={Opt}{%

741 tempdimb’-=\baselineskip,
742 Ho%

743 tempdimb’+=\baselineskip,
744 1,

— 50 of 66 —

15 Implementation

How far are we moving?
745 tempdimb’-/.register=tempdima,

Adjust this node and all descendants

746 for tree={J
747 y’+/.register=tempdimb,
748 1,

Deduct any tracked cumulative adjustments to line numbers and justifications
749 tempdimb’-/.register=tempdimc,

Adjust the line numbers, if any

750 if line numbering={J,

751 for name/.process={0wl}{proof tree proof line no}{line no ##1}{%
752 for tree={J

753 y’+/.register=tempdimb,

754 },

755 Yh

756 Hi,

Adjust the justifications, if any
757 if justifications={%

t. 60 manual 2.1 rcl

758 for name/.process={0wl}{proof tree proof line no}{just ##1}{%
759 for tree={}

760 y’+/.register=tempdimb,

761 1,

762 Yh

763 H?,

Add the adjustment just implemented to the tracked cumulative adjustments for line numbers
and/or justifications

764 tempdimc’/.register=tempdimb,
765 Hi,

766 1,

767 H,

768 if={7%

769 > RR| {auto move}{single branches}y,
770 HY%

771 where proof tree arweinydd={%

772 for nodewalk={},

773 save append={proof tree walk}{J
774 current,

775 do until={%

776 > 0+t_+t=! {content}{}’

777 }{parent}),

778 Yh

779 H:,

780 H3,

781 where level>=1{Y,

782 if grouped={J

783 if in saved nodewalk={current}{proof tree walk}{}{/
784 no edge,

785 },

786 Hi,

— 51 of 66 —

15 Implementation

787 Hz,
788 },

789 },

790 },

This implements both the automated moves prooftrees finds necessary and any additional moves
requested by the user - more accurately, it implements initial moves, which may get corrected
later (e.g. to avoid skipping numbers or creating empty proof lines, which we assume aren’t
wanted).

791 move by/.style={}
792 if={
793 >{_n<}{0oH{#1}%

Only try to move the node if the target line number exceeds the one i.e. the line number is to be
positively incremented.

794 H%

795 proof tree cadw toing by/.option=proof tree toing by,
796 proof tree arweinydd,

797 for tree={J

798 if={%

799 >S{_n<H1H#11}Y

Track skipped lines for which we won’t be creating phantom nodes

800 H%

801 proof tree toing by+=#1-2,
802 proof tree toooing’+=1,
803 Hi,

804 1,

Insert our first phantom

805 delay={%

806 replace by={},

807 L,

808 if={}%

809 >{_n<}1}{#1}}

810 Ho

811 child anchor=parent,
812 parent anchor=parent,
813 Ho

814 child anchor=children,
815 parent anchor=children,
816 1,

817 proof tree phantom,

Sago Zivanovié: https://chat.stackexchange.com/transcript/message/27990955#27990955.

818 edge path/.option=!last dynamic node.edge path,

819 edge/.option=!last dynamic node.edge,

820 append,

821 proof tree after annotations={}

822 if={>{RR|}{1line numbering}{justifications}}{J

823 proof tree proof line no/.process={0wl+n}{!parent.proof tree proof line
no}{##1+1},

824 H3,

825 1,

826 if={%

827 >{_n<}1}{#1}}

— 52 of 66 —

https://chat.stackexchange.com/transcript/message/27990955#27990955

15 Implementation

If we are moving by more than 1, we insert a second phantom so that a node with siblings which
is moved a long way will not get a unidirectional edge but an edge which looks similar to others
in the tree (by default, sloping down a line or so and then plummeting straight down rather than
a sharply-angled steep descent).

828 Ho

829 delay={%

830 append={%

831 L,

832 child anchor=parent,

833 parent anchor=parent,

834 proof tree toing by=#1-2+proof_tree_cadw_toing_by,

835 proof tree phantom,

836 edge path/.option=!u.edge path,

837 edge/.option=!u.edge,

838 proof tree after annotations={J,

839 if={>{RR|}{line numbering}{justifications}}{%

840 proof tree proof line no/.process={0wl+n}{!n=1.proof tree proof
line no}{##1-1},

841 Hi,

842 1,

843 append=!sibling,

844 1%

845 1,

846 1,

847 Ho

848 if single branches={}{}

849 delay={%

850 for children={}

851 no edge,

852 1,

853 1,

854 1,

855 1,

856 1%

857 1,

858 1,

859 Ho

860 TeX/.process={0wl}{name}{\PackageWarning{prooftrees}{Line not moved! I can only

move things later in the proof. Please see the documentation for details. ##1}},

Get the names of nodes cross-referenced in closure annotations for use later

863 proof tree cref/.style={%
864 proof tree crefs+/.option=#1.name,
865 T,

Get the proof line numbers of the cross-referenced nodes in closure annotations, using the list of
names created earlier.

866 proof tree rhif 1linell cau/.style={J,

867 if proof tree rhestr rhifau llinellau cau={}{}{/%

868 proof tree rhestr rhifau llinellau cau+={,\,},

869 1,

870 proof tree rhestr rhifau 1llinellau cau+/.option=#1.proof tree proof line no,
871 1,

Get the names of nodes cross-referenced in justifications for use later.

872 proof tree jref/.style={Y

— 53 of 66 —

15 Implementation

873 proof tree jrefs+/.option=#1.name,
874 },

Get the proof line numbers of the cross-referenced nodes in justifications, using the list of names
created earlier.

875 proof tree rhif 1linell/.style={%

876 if proof tree rhestr rhifau llinellau={}{}{/
877 proof tree rhestr rhifau llinellau+={,\,},
878 1,

works according to Saso’s anti-pgfmath version

879 proof tree rhestr rhifau llinellau+/.option=#1.proof tree proof line no,
880),

2018-02-19 ateb https://tex.stackexchange.com/a/416037/

881 line no override/.style={Y%

882 proof tree after annotations={

883 for name/.process={0w}{proof tree proof line no}{line no ##1}{
884 content=\linenumberstyle{#1},

885 typeset node,

886 1,

887 },

888 1,

2018-02-19 gweler uchod

889 mno line no/.style={%

890 proof tree after annotations={

891 for name/.process={0w}{proof tree proof line no}{line no ##1}{
892 content=,

893 typeset node,

894 1,

895 },

896 1},

Styles to make facilitate drawing around nodewalks.

897 prooftrees@nodewalkOnode/.style={inner sep=Opt},
898 nodewalk node+/.code={%

899 \pgfgkeys{/forest}{prooftrees@nodewalk@ode/.append style={#1}1}/,
900 1},

901 +nodewalk node/.code={Y%

902 \pgfgkeys{/forest}{prooftrees@nodewalk@ode/.prepend style={#1}}/,
903 },

904 nodewalk node’/.code={%

905 \pgfgkeys{/forest}{prooftrees@nodewalk@ode/.style={#1}1}/,

906 },

907 nodewalk node/.forward to=/forest/nodewalk node+,
908 nodewalk to node/.style 2 args={%

909 proof tree after annotations={},

910 tikz+={},

911 \node [fit to={#2},/forest/prooftrees@nodewalk@node] (#1) {};
912 3,

913 1,

914 },

Two styles for debugging. Despite the names, these are available in the non-debug package for
largely historical reasons, but also because they probably do not cost much.

— 54 of 66 —

https://tex.stackexchange.com/a/416037/

15 Implementation

Style for use in debugging moves which displays information about nodes in the tree.

915
916
917
918
919
920
921
922
923

proof tree dadfygio/.style={)
proof tree before packing={%
for tree={Y
label/.process={000w3}{level}{proof tree toing byr{id}{J
[red,font=\tiny,inner sep=0pt,outer sep=0pt, anchor=southlbelow:##1/##2/##3,
1,
},
},
proof tree after annotations={J,
for tree={J
delay={%
tikz+/.process={0wl}{proof tree proof line no}{’
\node [anchor=west, font=\tiny, text=blue, inner sep=Opt] at (.east) {#i#1};

Debugging / dangos dimension stuff.

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947

proof tree alino/.style={}
proof tree after annotations={J,
tikz+/.process={},
RRRRw4{proof tree inner proof midpoint}{line no width}{line no dist}{just dist}
{
\begin{scope} [densely dashed]
\draw [darkgray] (##1,0) coordinate (a) -- (a |- current bounding box.south);
\draw [green] (current bounding box.west) -- ++(##2,0) coordinate (b);
\draw [blue] (b) -- ++(##3,0) coordinate (c);
\draw [magental (c) -- ++(##4,0);
\end{scope}
Y

}’
}’

debug tagging is more expensive, so split this out.

ANGEN: dw i ddim yn meddwl bod crefs yn cynnwys explicit closures? Reset proof tree copy

content.

948 proof tree copy content to tags/.style={}

949 redeclare tagging keylist={proof tree copy content}{’

950 (debug) debug tagging=Copying node contents,

951 if content={}{}{%

952 (debug) debug tagging=Copying node content to alt text,
953 alt text+/.process={0w{content}{\ensuremath{##1}}},

954 (debug) debug tagging/.process={0w{alt text}{alt text is ##11}},
955 1,

956 1,

957 3},

This is not a choice key. It is an additional choice for the tag nodes uses key provided by
ext.tagging. Resets tag nodes. Adds an option to tag nodes uses.

958
959

tag nodes uses/tableaux alt text/.style={}
redeclare tagging keylist={tag nodes}{%

960 (debug) debug tagging/.process={0w{id}{Making tags for node with id ##1:}},
961 (debug) debug tagging/.process={0w{alt text}{alt text=##1}},

— 55 of 66 —

15 Implementation

962 (debug) debug tagging/.process={0w{content}{content=##1}},
963 (debug) debug tagging/.process={0w{proof tree proof line no}{proof tree proof line no=##1}
964 (debug) debug tagging/.process={0w{just}{just=##1}},

965 if={>00!&{proof tree rhifo}{proof tree phantom}}

966 %

967 if line numbering={}

968 +alt text={\ },

969 +alt text/.option=proof tree proof line no,

970 H3,

971 if justifications={}

972 (debug) debug tagging={Looking for a justification ...},

Avoid merged justifications when tagging; duplicate shared justifications where possible.

973 if just={}¥%

974 if={> 0_= {'u.n children}{2}}{%

975 if={>0_={!s. just}H{}}{}{just/.option=!s. just,},

976 (debug) debug tagging/.process={0w{just}{from sibling just is ##1}},
977 Ho%

978 temptoksa=,

979 for nodewalk={Y

980 while nodewalk valid={u}{%

981 u,

982 if proof tree phantom={}{%

983 if n children=2{Y%

984 back=1,

985 s,

986 temptoksa/.option=just,

987 Hi,

988 break,

989 Yh

990 Yh

991 Hi,

992 just/.register=temptoksa,

993 (debug) debug tagging/.process={0w{just}{from ancestor sibling just is ##1}},
994 1,

995 H3,

996 if just={}{}{%

997 alt text+/.process={}

998 Ow{just}{\ ##1\ 1}/

999 1,
1000 1,

1001 (debug) debug tagging/.process={0w{alt text}{alt text is now ##1}},

1002 Hi,
1003 (debug) debug tagging/.process={0w{alt text}{alt text is now ##1}},

1004 H

1005 if n children=0{%
1006 delay=1{}

1007 (debug) debug tagging=Leaf node,
1008 (debug) debug tagging=Get closure status,
1009 if={> 0_=! 0_=! | {proof tree crefs}{} {!uu.proof tree close}{}}
1010 AV

1011 (debug) debug tagging=Branch is closed,

1012 (debug) debug tagging/.process={0w{proof tree crefs}{crefs: ##1}},
1013 (debug) debug tagging/.process={0w{!uu.proof tree close}{!'uu.proof tree close:

##11},

1014 (debug) debug tagging/.process={0w{content}{content: ##1}},

1015 luu.alt text+/.process={0ORw2{content}{tag close with}{\ ##2\ ##1\ 1},
1016 (debug) debug tagging/.process={0w{!uu.alt text}{!uu.alt text is now ##1}},
1017 H%

1018 (debug) debug tagging=Branch is open,

— 56 of 66 —

15 Implementation

1019 1,
1020 1,
1021 HZ,
1022 },

1023 },

1024 1},

Note that this method would not work for many forest trees and may fail for some tableaux, but
should work for most proofs, I think. Note this is not just default. It is the only option even
vaguely compatible with tagging.

1025 (debug) debug tagging/.code={},
1026 % ~~A dadfygio >>>

1027 }

1028 \bracketset{action character=@}

prooftree tableau \forest/\endforest from egreg’s answer at https://tex.stackexchange.
com/a/229608/

1029 \NewDocumentEnvironment{\prooftrees@enw}{ m +b }
1030 {%

1031 \prooftrees@init

1032 \forest

1033 Ch

Customised definition of stages - we don’t use any custom stages, but we do use several custom
keylists, where the processing order of these is critical.

Nothing is removed from the standard forest definition - we only change it by adding to it.

1034 stages={}

1035 for root’={Y

1036 process keylist register=default preamble,
1037 process keylist register=preamble,

1038 1},

1039 process keylist=given options,

proof tree before typesetting nodes, proof tree after copying content, proof tree
before packing, proof tree before computing xy and proof tree after annotations
just avoid polluting forest’s keylists so they can be used to customise the tableau. proof
tree copy content is used only for tagging. These are internal lists. They should not generally
be redefined or customised by users, as doing so may render the tree structure invalid or cause
unexpected results.

In addition to the keylists provided by forest and ext.tagging, before copying content, before
making annotations and before annotating are intended for users to customise the tableau
at these points, if required.

1040 process keylist=before copying content,

1041 process keylist=proof tree copy content,

1042 process keylist=proof tree after copying content,
1043 process keylist=proof tree before typesetting nodes,
1044 process keylist=before typesetting nodes,

First two structural additions: process two custom keylists after before typesetting nodes and
before typesetting nodes to shape the tree.

1045 process keylist=proof tree ffurf,

1046 process keylist=proof tree symud awto,
1047 typeset nodes stage,

1048 process keylist=proof tree before packing,
1049 process keylist=before packing,

— 57 of 66 —

https://tex.stackexchange.com/a/229608/
https://tex.stackexchange.com/a/229608/

15 Implementation

1050 pack stage,

1051 process keylist=proof tree before computing xy,
1052 process keylist=before computing xy,

1053 compute xy stage,

Second two structural/content additions: process two custom keylists after computing xy and
before before drawing tree to create and attach the annotations.

1054 process keylist=before making annotationms,
1055 process keylist=proof tree creu nodiadau,
1056 process keylist=before annotating,

1057 process keylist=proof tree nodiadau,
Standardish

1058 process keylist=proof tree after annotations,

Hopefully for doing something useful for tagging. proof tree tag nodes and collate tags
currently do nothing, but will hopefully eventually be used to collect information for tagging the
tableau. The ‘public’ keylists are described above.

1059 process keylist=before tagging nodes,

1060 process keylist=tag nodes,

1061 process keylist=before collating tags,

1062 process keylist=collate tags,

1063 (debug) TeX={%

1064 (debug) \if@ttableau@dadfygio

1065 (debug) \typeout{ [Tag tableau debugl:: ID:}%
1066 (debug) \LogTagForestId

1067 (debug) \typeout{[Tag tableau debug]l:: Accumulated toks:}J
1068 (debug) \LogTagForestToks

1069 (debug) \fi

1070 {(debug) 1,

Try to produce some kind of useful stuff for tagging, if active. Does nothing right now.

1071 process keylist=before tagging tree,
1072 tag tree stage,

Standard.

1073 process keylist=before drawing tree,
1074 draw tree stage,

1075 },

1076 Y%

Apply the proof tree style, which sets keylists from both forest’s defaults and our custom additions.
1077 proof tree,

Tagging code still conditional, but no longer isolated, so the style which was here can disappear.

Insert user’s preamble, empty or otherwise - this allows the user both to override our defaults
(e.g. by setting a non-empty proof statement or a custom format for line numbers) and to customise
the tree using forest’s facilities in the usual way - BUT customisations of the latter kind may or
may not be effective, may or may not have undesirable - not to say chaotic - consequences, and
may or may not cause compilation failures (structural changes, in particular, should be avoided
completely).

Ref. re. ordering of \prooftrees@end before \endforest: sylwad David Carlisle: https://chat.
stackexchange.com/transcript/message/68681858#68681858.

— 58 of 66 —

https://chat.stackexchange.com/transcript/message/68681858#68681858
https://chat.stackexchange.com/transcript/message/68681858#68681858

15 Implementation

__tableaux_memoize:n
__tableaux_memoize:V

\checkmark

\text

1078 #1,

1079 [, name=proof statement @#2]7%

1080 (debug) \typeout{[Tag tableau debug]:: Executing \prooftrees@end.}
1081 \prooftrees@end

1082 (debug) \typeout{[Tag tableau debug]:: Executing \endforest.}

1083 \endforest

1084 }}

1085 \ExplSyntaxOn

Internal macro so we don’t memoize bussproofs’s prooftree by mistake.

1086 \cs_new_protected_nopar:Npn __tableaux_memoize:n #1
1087 {

1088 \mmzset{

1089 auto = { #1 } { memoize },

1090

1091 }

1092 \cs_generate_variant:Nn __tableaux_memoize:n { V }

Paid & memoize bussproofs prooftree

1093 \hook_gput_code:nnn { begindocument / before } { . }

1094 {%

1095 \@ifpackageloaded{memoize}{

1096 __tableaux_memoize:V \prooftrees@enw
1097 M3

Definition of \checkmark pilfered from amsfonts.

1098 \cs_if_exist:NF \checkmark
1099 {

This is wasteful, but less wasteful. \DeclareSymbolFont defines \csname sym#1\endcsname.
\mathhexbox, \hexnumber@ are in the format.

1100 \DeclareSymbolFont{AMSa}{U}{msa}{m}{n}
1101 \edef\checkmark{\noexpand\mathhexbox{\hexnumber@\symAMSa}58}
102}

Definition of \text pilfered from amstext. I think \DeclareRobustCommand is meant to be
deprecated, but it still seems to be the go-to for font style definitions (also in the format as far as
I know).

1103 \cs_if_exist:NF \text

1104 {

1105 \DeclareRobustCommand{\text}

1106 {

1107 \ifmmode\expandafter\text@\else\expandafter\mbox\fi
1108 }

1109}

Copy of I¥TEX’s \addto@hook. Not used if LuaTgX is used, which defines it as a primitive, or if
collargs is loaded (e.g. for memoize), which provides a more complicated version. David Carlisle:
https://chat.stackexchange.com/transcript/message/68194858#68194858.

1110 }

— 59 of 66 —

https://chat.stackexchange.com/transcript/message/68194858#68194858

15 Implementation

\if@ttableau@dadfygio

__tableaux_noop:

\prooftrees@init
__tableaux_init:

\prooftrees@end
__tableaux_end:

for debugging tagging

1111 \newif\if@ttableau@dadfygio
1112 \@ttableau@dadfygiofalse

Copied from ext.tagging.

Something to \let the end function to.

1113 \cs_new_nopar:Npn __tableaux_noop: {}

I think I don’t really get the ‘plug’ concept. It is surely pointless to assign and immediately use
one in a package which defines the relevant socket? That is, wouldn’t a macro or just the code do
equally well but faster?

1114 \cs_new_protected_nopar:Npn __tableaux_init:

115 {

116 \tag_if_active:TF{

1117 \forestset{

1118 tag=1,

1119 setup~plug=tableaux/alt,

1120 tag~plug=alt,

1121 }

1122 (debug) \if@ttableau@dadfygio

1123 (debug) \typeout{Tagging~is~active.}

1124 (debug) \forestset{

1125 (debug) debug~tagging/.code={

1126 (debug) \typeout{ [Tag~tableau~debug] : : ~##1}
1127 (debug) },

1128 (debug) }

1129 (debug) \typeout{[Tag~tableau~debug] : : ~Assigning~setup~plug-~
1130 (debug) tableaux/alt~for~ext.tagging.}

1131 (debug) \typeout{[Tag~tableau~debug] : : ~Using~hook~
1132 (debug) env/forest/begin.}

1133 (debug) \fi

1134 \cs_set_protected_nopar:Npn __tableaux_end:

1135 {

1136 (debug) \if@ttableau@dadfygio

1137 (debug) \typeout{[Tag~tableau~debug] : : ~Using~hook~
1138 (debug) env/forest/end.}

1139 (debug) \fi

1140 \hook_use:n {env/forest/end}

1141 }

1142 \hook_use:n {env/forest/begin}

143 M

1144 \forestset{tag=0}

1145 (debug) \if@ttableau@dadfygio

1146 (debug) \typeout{Tagging~is~not~active.}

1147 (debug) \fi

148 }

1149 }

1150 \cs_new_eq:NN \prooftrees@init __tableaux_init:

From ext.tagging.

1151 \cs_new_eq:NN __tableaux_end: __tableaux_noop:
1152 \cs_new_protected_nopar:Npn \prooftrees@end { __tableaux_end: }

Custom version of alt plugs for tagsupport/forest/setup and tagsupport/forest/tag. The
latter is only necessary because the library code insists the plug must exist. I should probably

— 60 of 66 —

15 Implementation

change this. The former is the only substantive difference: it populates an additional tagging
keylist and redefines another.

1153 \socket_new_plug:nnn {tagsupport/forest/setup}{tableaux/alt}

1154 {

155 \forestset{

1156 (debug) debug~tagging={Using~tagsupport/forest/setup~plug~tableaux/alt.},
1157 (debug) debug-~tagging={Executing~proof~tree~copy~content~to~tags.},

1158 proof~tree~copy~content~to~tags,

1159 (debug) debug~tagging={Executing~tag~nodes~uses~with~value~tableaux~alt~text.},
1160 tag~nodes~uses=tableaux~alt~text,

1161 (debug) debug-~tagging={Executing~collate~tags~uses~with~value~alt~text.},
1162 collate~tags~uses=alt~text,

1163 (debug) debug-~tagging={Executing~tag~tree~uses~with~value~alt.},

1164 tag~tree~uses=alt,

1165 (debug) debug~tagging={Resetting~tag~nodes~processing~order.},

1166 tag~nodes~processing~order/.nodewalk~style={unique=proof~tree~wffs},
1167 (debug) debug~tagging={Resetting~collate~tags~processing~order.},

1168 collate~tags~processing~order/.nodewalk~style={every~wff},

1169 (debug) debug-~tagging={Finishing~plug~code.},

ur ¥

17 ¥

1172 \ExplSyntax0ff

</sty>
<*doc>

1173 \RequirePackage{svn-prov}

1174 \def\GetFileBaseName#1-#2\nil{#1}

1175 \edef\MyFileBaseName{\expandafter\GetFileBaseName\jobname\nil}

1176 \ProvidesFileSVN[\MyFileBaseName-doc]{$Id: prooftrees.dtx 11540 2026-01-19 06:46:23Z cfrees
$}[v0.9.2 \revinfo]

1177 \DefineFileInfoSVN

1178 \AddToHook{begindocument}{\OnlyDescription}

1179 \input{\MyFileBaseName.dtx}
</doc>
<*doc-code>

1180 \RequirePackage{svn-prov}

1181 \def\GetFileBaseName#1-#2\nil{#1}

1182 \edef\MyFileBaseName{\expandafter\GetFileBaseName\jobname\nil}

1183 \ProvidesFileSVN[\MyFileBaseName-code]{$Id: prooftrees.dtx 11540 2026-01-19 06:46:23Z
cfrees $}[v0.9.2 \revinfo]

1184 \DefineFileInfoSVN

1185 \AddToHook{begindocument}{\AlsoImplementation}

1186 \input{\MyFileBaseName.dtx}

< /doc-code>

— 61 of 66 —

Change History

Change History

Change History

v0.3
General: First CTAN release. 31
v0.4
General: Bug fix release: forest count register
line no shift was broken; in some cases, an
edge was drawn where no edge belonged. ... 31

v0.41
General: Update for compatibility with forest 2.1. 31
v0.5
General: Significant re-implementation leveraging
the new argument processing facilities in forest
2.1. This significantly improves performance as
the code is executed much faster than the
previous pgfmath implementation.
v0.6
General: Add compatibility option for use with
bussproofs. Thanks to Peter Smith for
suggesting this.
v0.7
General: Fix bug reported at
tex.stackexchange.com/q/479263/39222. ... 31
Implement forest boolean register auto move.
The main point of this option is to allow
automatic moves to be switched off if one
teaches students to first apply all available
non-branching rules for the tableau as a whole,
as opposed to all non-branching rules for the
sub-tree. The automatic algorithm is consistent
with the latter, but not former, approach. The
algorithm favours compact trees, which are
more likely to fit on beamer slides. Switching
the algorithm off permits users to specify
exactly how things should or should not be
moved. Thanks to Peter Smith for prompting
this. ... o 16
v0.8
General: Add previously unnoticed dependency on
amstext. 31
Attempt to fix straying closure symbols evident
in documentation and a TEX SE question
(https:
//tex.stackexchange.com/q/619314/). 31
Documentation now loads enumitem, since it
depended on it already anyway and specifies
doc2 in options for ltxdoc as the code is
incompatible with the current version.
v0.9
General: Add support for memoize and utilise for
documentation.
Use \NewDocumentEnvironment, removing direct
dependency on environ.
v0.9.1
__tableaux_init:: Added
__tableaux_ttableau_init:.
\checkmark: Use unicode-math rather than
amssymb and amstext on Unicode engines, but,
in any case, only load what’s needed.
\if@ttableau@dadfygio: Add
\if@ttableau@dadfygio. 60

General: tag tableau stage following forest

pattern and noop default style. 57
Adapt memoize config if tagging or provide

conditional. 59
Add \1__tableaux_toks_tl. 60
Add \prooftrees@tableau@id. 59
Add \prooftrees@tableau@toks. 60
Add \toksappusing format definition of

\addto@hook, in case this is not

primitive/already defined. 59
Add nodewalk node+, nodewalk node',

+nodewalk node, nodewalk node and

nodewalk to mode. 54
Add checked markers to ttoks if tagging. ... 37
Add substitution markers to ttoks if tagging. 37
Add to ttoks if tagging. 40

Add ttableau style for experiments with tagging. 55
Added __tableaux_ttableau:nnn,
\prooftrees@ttableau. 60

Added for tagging experiments. 33
Additions for tagging: tag, plug, tag check with,
tag close with, tag subs with, tag to prove,
proof tree get tags, before getting tags, before
making tags, proof tree make tags, ttoks ... 36
Adjust stage processing for new keylists. 57
Avoid merging tags for merged justifications. . 48
Delay appending closures to avoid copying into
ttoks when tagging. 38

Don’t load amssymb or amstext unconditionally. 32
Experimental alt plug for tagging. 57
Experimental tagging style, ttableau. 58
New internal keylists. 36
New long step proof tree every wff.
New long step wff from proof line no to. . 37

New public keylists. 36

Renamed every wff. 37

Switch to docstrip. L L 31

Try to tag tableau. 57

v0.9.2
__tableaux_end:: Remove

__tableaux_ttableau_end:,
\prooftrees@ttableau@end; add
__tableaux_end:, \prooftrees@end. 60

__tableaux_init:: Remove
__tableaux_ttableau_init:,
\prooftrees@ttableau@init; add
__tableaux_init:, \prooftrees@init. ... 60

\checkmark: Don’t load unicode-math/amssymb

just to get \checkmark. 59
\text: Don’t load unicode-math/amstext just to get
\text. ... 59

General: forest-ext is now required, since two of its
libraries provide a framework for tagging forest
trees. This applies even if tagging is not used. 31

alt plug renamed tableaux/alt. 57
proof tree before drawing tree renamed

proof tree after amnotatioms. 36
proof tree copy content to tags style. ... 55

— 62 of 66 —

https://tex.stackexchange.com/q/479263/39222
https://tex.stackexchange.com/q/619314/
https://tex.stackexchange.com/q/619314/

Change History

Change History

proof tree tag nodes now a style setting tag

nodes. 58
tag tableau replaced by ext.tagging library. . 57
Add checked markers to alt text if tagging. . 37
Add substitution markers to alt text if

tagging. oo 37
Add to alt text if tagging. 40
Delay appending closures to avoid copying into

alt text when tagging. 38
Experimental support for tagging based on

forest-ext. 31
Load the ext.tagging library. 32
Move before drawing tree to allow user

changes in more natural place. 58

Move tag nodes processing order, collate
tags processing order into setup somewhere.
It doesn’t seem to work here, which is bad, but,
if it did work, it would clobber global settings,

which would also be bad. 37
Purify \the\prooftrees@tableau@toksbefore

setting \1__tableaux_toks_tl. 60
Remove __tableaux_tag_suspend:n,

__tableaux_tag_resume:n. 60
Remove \1__tableaux_toks_tl. 60
Remove \prooftrees@tableau@id. 59
Remove \prooftrees@tableau@toks. 60
Remove \toksappafter moving to forest-ext. .. 59

Remove before making tags, before getting

tags, proof tree get tags, ttoks. See the
ext.tagging library’s alt text, before
tagging nodes, before collating tags and

collate tags. 36
Remove proof tree make tags; use tag

nodes. 36
Remove duplicate toks

\prooftrees@tableau@toks. 33
Remove tagging style, ttableau. 58
Removed __tableaux_ttableau:nnn,

\prooftrees@ttableau. 60

Rename internal function
__tableaux_memoize:n for consistency
(because I named all the new ones with a

different prefix 59
Replace pick up tags by collate. 56
Requires forest-lib-ext.tagging. 58
Use tagging keylist tag nodes from ext.tagging.

Replaces proof tree tag nodes. 55

Use ext.tagging library for tagging. Many of the

experimental functions/macros/sockets have

either been moved there or removed altogether. 60
Use \LogTagForestIdand \LogTagForestToks. 58
Use collate from ext.tagging instead of pick

up tags. 40
Use the tagging keylists tag nodes and collate

tags provided by the library ext.tagging, part

of forest-ext. 37

— 63 of 66 —

Index

Features are sorted by kind. Page references are given for both definitions and comments on use. Underlined
numbers refer to code line numbers; the remainder to pages.

Symbols

N 868, 877
\@ifpackageloaded 17, 18, 1095
\@ttableau@dadfygiofalse 1112
__tableaux_end: 1134, 1151
__tableaux_init: 1114
__tableaux_memoize:V 1086, 1096
__tableaux_memoize:n 1086
__tableaux_noop: 1113, 1151
\u 4,189,194, 204, 209, 330, 592, 638, 640, 968,

998, 1015

A
\AddTOHOOK, 1178, 1185
\AlsoImplementation 1185

B
\backslash00iuiirennon.. 83
\baselineskip 58, 237, 341, 718, 741, 743
\begin 938
\bracketset 1028

C
\checkmark 78,1098
\cs_generate_variant:Nn 1092
\cs_if_exist:NF 1098, 1103
\cs_new_eq:NN 1150, 1151
\cs_new_nopar:Npn 1113
\cs_new_protected_nopar:Npn 1086, 1114, 1152
\cs_set_protected_nopar:Npn 1134
\CurrentOption 9

D
\DeclareOption 79
\DeclareRobustCommand 1105
\DeclareSymbolFont 1100
Ndef 1174, 1181
\DefineFileInfoSVN 5, 1177, 1184
\draw 939-942

E
Nedef 1101, 1175, 1182
Nelse ... 12, 1107
Nend 943
\endcsname e 10
\endforest 1082, 1083
\ensuremath 78, 83, 88, 330, 953

ENVIRONMENTS

prooftree 15

tableau L L. 15
\expandafter 1107, 1175, 1182
\ExplSyntaxOff 1172
\ExplSyntaxOn 1085

F
\Nfi . 14, 1069, 1107, 1133, 1139, 1147
\filebase 3,4
\forest 1032
FOREST AUTOWRAPPED TOKS OPTIONS

just ..o 7,10, 17, 22, 24, 29

just options L. 16, 24

linenooptions 16, 24

line options 16, 24

wifoptions 16, 24
FOREST AUTOWRAPPED TOKS REGISTERS

highlight format 21
FOREST BOOLEAN OPTIONS

grouped 21

highlight just 16, 21, 24

highlight line 16, 21, 24

highlight lineno 16, 21, 24

highlight wif 16, 21, 24

line numbering 24

not grouped 21

not highlight line 24

not highlight lineno 24

not hightlight just 24

not hightlight wif 24
FOREST BOOLEAN REGISTERS

auto move 17

checkright 16, 19

just refsleft 16, 20, 23

justifications L L oL 17

line numbering L. 17

not automove o L 17

not check right 19

not just refs left 20

not justifications 17

not line numbering 17

not single branches 17

not subs right 20

single branches 17, 21, 22

subsright 16, 20

tag ..o 28
FOREST BRACKET KEYS

action character 31
FOREST COUNT REGISTERS

linenoshift 6, 18

Index

FOREST DIMENSION REGISTERS

closesep L 16, 18
justsep ... 18
linenosep 18
linenowidth 18
proof tree inner proof midpoint 18
proof tree inner proof width 18
FOREST KEYLIST OPTIONS
before annotating 25, 26, 31
before collating tags 26, 31
before computing xy 31
before copying content 26, 30
before drawing tree 31
before making annotations 26, 31
before packing 30
before tagging nodes 26, 31
before tagging tree 31
before typesetting nodes 30
given options 30
proof tree after annotations 31
proof tree after copying content 30
proof tree before computing xy 30
proof tree before packing 30
proof tree before typesetting nodes 30
proof tree copy content 26
proof tree creu nodiadau 31
proof tree ffurf 30
proof tree nodiadau 31
proof tree symud awto 30
stages ... 30
FOREST KEYLIST REGISTERS
close format 16, 18, 20
close format' 20
close with format 16, 19
close with format' 19
default preamble 30
just format ... Lo oL 16, 21
just format' o o 21
line no format 16, 21
line no format' 21
preamble L. 30
proof statement format 16, 21
proof statement format' 21
wif format 16, 21, 24
wif format' 21
FOREST LONG STEPS
every wif 25
wif from proof linenoto 25
FOREST STYLES
check left 19
checked 8,16, 19, 22, 29
close 16, 19, 22, 29
compute xy stage 31
draw tree stage 31
fitto ... 25
just refsright L L L. 20

line no override 24
moveby 17, 21, 23, 24
nolineno, 24
nodewalk tonode 25, 26
pack stage 30
proof tree 31
subs ... 16, 20, 22, 29
subsleft 20
tag treestage L. 30, 31
toprove oo 19
typeset nodes stage 30
zerostart L o o 19
FOREST TAGGING KEYLISTS
collate tags, 31
proof tree copy content 30
tagmnodes 31
FOREST TOKS OPTIONS
albtext 29
NAME + oo vttt et e 31
FOREST TOKS REGISTERS
check with 16, 19, 28
close with 16, 19, 29
merge delimiter 21
setup plug 28
subswith 16, 20, 29
tag check with 28
tag close with 29
tagplug 28
tagsubs with 29
tagtoprove 29
FOREST WRAPPED STYLES
+nodewalk node 25
nodewalk node 25
nodewalk node+ 25
nodewalk node' 25
\foresteregister 290, 294, 308, 312, 566, 650,
666
\forestregister 189, 194, 204, 209, 229
\forestset 38, 1117, 1124, 1144, 1155
G
\GetFileBaseName 1174, 1175, 1181, 1182
H
\hexnumber® 1101
\hook_gput_code:nnn 1093
\hook_use:n 1140, 1142
I

\if@ttableau@dadfygio 1064, 1111, 1122, 1136, 1145

\ifcsname 10

\IfFileExists 19, 21

\ifmmode 1107

\input 1179, 1186
J

\jobname 1175, 1182

— 65 of 66 —

Index Index
L \symAMSa 1101
\linenumberstyle 37, 289, 379, 884
\LogTagForestId 1066 T
\LogTagForestToks 1068 \tag_if _active:TF 1116
N = 94, 1103
M \text@ ... 1107
MACROS \tiny ..o 919, 927
\linenumberstyle 24 \typeout 1065, 1067, 1080, 1082, 1123, 1126,
\linenumberstyle 25 1129, 1131, 1137, 1146
\mathhexbox 1101
\IDOX + v v vttt 1107 Y
N T 1088 \useforestlibrary 20, 22
\MyFileBaseName 1175, 1176, 1179, 1182,
1183, 1186
N
\NeedsTeXFormatoueeuuunnn.. 1
\newcommandittrnn.. 6, 37
\NewDocumentEnvironment 1029
\newif 1111
\nil 1174, 1175, 1181, 1182
\node e 911, 927
\noexpand0.... 379, 1101
0
\OnlyDescription 1178
\otimes 88
P
PACKAGE OPTIONS
tableaux 0. 15
\PackageError 24
PACKAGES
external 27
forest-ext 1
forest 1, 15
MEMOIZE . v v vt e e i e e e e e et et e e e 1, 27
pef 27
prooftrees, 1, 15
\PackageWarning 651, 667, 860
\PassOptionsToPackage 9
\pgfagkeys 899, 902, 905
\ProcessOptions 15
\prooftrees@end 1080, 1081, 1151
\prooftrees@enw 6, 7, 8, 11, 13, 1029, 1096
\prooftrees@init 1031, 1114
\ProvidesFileSVN 1176, 1183
\ProvidesPackageSVN 3, 4
R
\renewcommand 7, 8, 11, 13
\RequirePackage 2, 16, 1173, 1180
\revinfo 3, 4, 1176, 1183
S
\scriptsize 920
\socket_new_plug:nnn 1153

— 66 of 66 —

	Contents
	1 Raison d'être
	2 Assumptions & Limitations
	3 Typesetting a Tableau
	4 Loading the Package
	5 Invocation
	6 Tableau Anatomy
	7 Options
	7.1 Global Options
	7.1.1 Dimensions
	7.1.2 Line Numbers
	7.1.3 Proof Statement
	7.1.4 Format

	7.2 Local Options
	7.2.1 Annotations
	7.2.2 Moving
	7.2.3 Format: wff, justification & line number

	8 Macros
	9 Extras
	9.1 Steps
	9.2 Fit

	10 Advanced Configuration
	11 Memoization
	12 Tagging
	12.1 Global Tagging Options
	12.2 Local Tagging Options

	13 Typesetting Process
	14 Compatibility
	15 Implementation
	Change History

