Provable Non-convex Phase Retrieval with Outliers: Median Truncated Wirtinger Flow by Huishuai Zhang, Yuejie Chi, Yingbin Liang

Solving systems of quadratic equations is a central problem in machine learning and signal processing. One important example is phase retrieval, which aims to recover a signal from only magnitudes of its linear measurements. This paper focuses on the situation when the measurements are corrupted by arbitrary outliers, for which the recently developed non-convex gradient descent Wirtinger flow (WF) and truncated Wirtinger flow (TWF) algorithms likely fail. We develop a novel median-TWF algorithm that exploits robustness of sample median to resist arbitrary outliers in the initialization and the gradient update in each iteration. We show that such a non-convex algorithm provably recovers the signal from a near-optimal number of measurements composed of i.i.d. Gaussian entries, up to a logarithmic factor, even when a constant portion of the measurements are corrupted by arbitrary outliers. We further show that median-TWF is also robust when measurements are corrupted by both arbitrary outliers and bounded noise. Our analysis of performance guarantee is accomplished by development of non-trivial concentration measures of median-related quantities, which may be of independent interest. We further provide numerical experiments to demonstrate the effectiveness of the approach.

**Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !**

Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

## No comments:

Post a Comment