
Network Working Group B. Kantor
Request for Comments: 1258 Univ. of Calif San Diego
 September 1991

 BSD Rlogin

Status of this Memo

 This memo documents an existing protocol and common implementation
 that is extensively used on the Internet. This memo provides
 information for the Internet community. It does not specify an
 Internet standard. Distribution of this memo is unlimited.

Protocol Description

 The rlogin facility provides a remote-echoed, locally flow-controlled
 virtual terminal with proper flushing of output. It is widely used
 between Unix hosts because it provides transport of more of the Unix
 terminal environment semantics than does the Telnet protocol, and
 because on many Unix hosts it can be configured not to require user
 entry of passwords when connections originate from trusted hosts.

 The rlogin protocol requires the use of the TCP. The contact port is
 513. An eight-bit transparent stream is assumed.

Connection Establishment

 Upon connection establishment, the client sends four null-terminated
 strings to the server. The first is an empty string (i.e., it
 consists solely of a single zero byte), followed by three non-null
 strings: the client username, the server username, and the terminal
 type and speed. More explicitly:

 <null>
 client-user-name<null>
 server-user-name<null>
 terminal-type/speed<null>

 For example:

 <null>
 bostic<null>
 kbostic<null>
 vt100/9600<null>

 The server returns a zero byte to indicate that it has received these
 strings and is now in data transfer mode. Window size negotiation

Kantor [Page 1]

RFC 1258 BSD Rlogin September 1991

 may follow this initial exchange (see below).

From Client to Server (and Flow Control)

 Initially, the client begins operation in "cooked" (as opposed to
 to "raw") mode. In this mode, the START and STOP (usually ASCII
 DC1,DC3) characters are intercepted and interpreted by the client to
 start and stop output from the remote server to the local terminal,
 whereas all other characters are transmitted to the remote host as
 they are received. (But see below for the handling of the
 local-escape character.)

 In "raw" mode, the START and STOP characters are not processed
 locally, but are sent as any other character to the remote server.
 The server thus determines the semantics of the START and STOP
 characters when in "raw" mode; they may be used for flow control or
 have quite different meanings independent of their ordinary usage on
 the client.

Screen/Window Size

 The remote server indicates to the client that it can accept window
 size change information by requesting a window size message (as
 described below) just after connection establishment and user
 identification exchange. The client should reply to this request
 with the current window size.

 If the remote server has indicated that it can accept client window
 size changes and the size of the client’s window or screen dimensions
 changes, a 12-byte special sequence is sent to the remote server to
 indicate the current dimensions of the client’s window, should the
 user process running on the server care to make use of that
 information.

 The window change control sequence is 12 bytes in length, consisting
 of a magic cookie (two consecutive bytes of hex FF), followed by two
 bytes containing lower-case ASCII "s", then 8 bytes containing the
 16-bit values for the number of character rows, the number of
 characters per row, the number of pixels in the X direction, and the
 number of pixels in the Y direction, in network byte order. Thus:

 FF FF s s rr cc xp yp

 Other flags than "ss" may be used in future for other in-band control
 messages. None are currently defined.

Kantor [Page 2]

RFC 1258 BSD Rlogin September 1991

From Server to Client

 Data from the remote server is sent to the client as a stream of
 characters. Normal data is simply sent to the client’s display, but
 may be processed before actual display (tabs expanded, etc.).

 The server can imbed single-byte control messages in the data stream
 by inserting the control byte in the stream of data and pointing the
 TCP "urgent-data" pointer at the control byte. When a TCP urgent-
 data pointer is received by the client, data in the TCP stream up to
 the urgent byte is buffered for possible display after the control
 byte is handled, and the control byte pointed to is received and
 interpreted as follows:

 02 A control byte of hex 02 causes the client to discard all buffered
 data received from the server that has not yet been written to the
 client user’s screen.

 10 A control byte of hex 10 commands the client to switch to "raw"
 mode, where the START and STOP characters are no longer handled by
 the client, but are instead treated as plain data.

 20 A control byte of hex 20 commands the client to resume interception
 and local processing of START and STOP flow control characters.

 All other values of the urgent-data control byte are ignored. In all
 cases, the byte pointed to by the urgent data pointer is NOT written
 to the client user’s display.

Connection Closure

 When the TCP connection closes in either direction, the client or
 server process which notices the close should perform an orderly
 shut-down, restoring terminal modes and notifying the user or
 processes of the close before it closes the connection in the other
 direction.

Implementation Notes

 The client defines a client-escape character (customarily the tilde,
 "˜"), which is handled specially only if it is the first character to
 be typed at the beginning of a line. (The beginning of a line is
 defined to be the first character typed by the client user after a
 new-line [CR or LF] character, after a line-cancel character, after
 resumption of a suspended client session, or after initiation of the
 connection.)

 The client-escape character is not transmitted to the server until

Kantor [Page 3]

RFC 1258 BSD Rlogin September 1991

 the character after it has been examined, and if that character is
 one of the defined client escape sequences, neither the client-escape
 nor the character following it are sent. Otherwise, both the
 client-escape character and the character following it are sent to
 the server as ordinary user input.

 If the character following the client-escape character is the dot
 ".", or the client-defined end-of-file character (usually control-D),
 the connection is closed. This is normally treated by the server as
 a disconnection, rather than an orderly logout.

 Other characters (client-defined, usually control-Z and control-Y)
 are used to temporarily suspend the rlogin client when the host has
 that ability. One character suspends both remote input and output;
 the other suspends remote input but allows remote output to continue
 to be directed to the local client’s terminal.

 Most client implementations have invocation switches that can defeat
 normal output processing on the client system, and which can force
 the client to remain in raw mode despite switching notification from
 the server.

A Cautionary Tale

 The rlogin protocol (as commonly implemented) allows a user to set up
 a class of trusted users and/or hosts which will be allowed to log on
 as himself without the entry of a password. While extremely
 convenient, this represents a weakening of security that has been
 successfully exploited in previous attacks on the internet. If one
 wishes to use the password-bypass facilities of the rlogin service,
 it is essential to realize the compromises that may be possible
 thereby.

 Bypassing password authentication from trusted hosts opens ALL the
 systems so configured when just one is compromised. Just as using
 the same password for all systems to which you have access lets a
 villain in everywhere you have access, allowing passwordless login
 among all your systems gives a marauder a wide playing field once he
 has entered any of your systems. One compromise that many feel
 achieves a workable balance between convenience and security is to
 allow password bypass from only ONE workstation to the other systems
 you use, and NOT allow it between those systems. With this measure,
 you may have reduced exposure to a workable minimum.

 The trusted host specification is ordinarily one of a host name. It
 is possible, by compromise of your organization’s domain name server,
 or compromise of your network itself, for a villain to make an
 untrusted host masquerade as a trusted system. There is little that

Kantor [Page 4]

RFC 1258 BSD Rlogin September 1991

 a user can do about this form of attack. Luckily, so far such
 attacks have been rare, and often cause enough disruption of a
 network that attempts are quickly noticed.

 When the file containing a user’s list of trusted logins is
 inadvertently left writeable by other users, untrustworthy additions
 may be made to it.

 Secure authentication extensions to the rlogin protocol (Kerberos,
 et al) can greatly reduce the possibility of compromise whilst still
 allowing the convenience of bypassing password entry. As these become
 more widely deployed in the internet community, the hazards of rlogin
 will decrease.

Security Considerations

 See the "A Cautionary Tale" section above.

Author’s Address

 Brian Kantor
 University of California at San Diego
 Network Operations C-024
 La Jolla, CA 92093-0214

 Phone: (619) 534-6865

 EMail: brian@UCSD.EDU

Kantor [Page 5]

