Net wor k Wor ki ng Group D. McDonal d

Request for Comments: 2367 C. Mtz
Cat egory: | nformational B. Phan
July 1998

PF_KEY Key Managenent API, Version 2
Status of this Meno

This meno provides infornmation for the Internet conmunity. It does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C The Internet Society (1998). Al Rights Reserved.
Abst r act

A generic key management APl that can be used not only for IP
Security [Atk95a] [Atk95b] [Atk95c] but also for other network
security services is presented in this docunent. Version 1 of this
APl was inplenented inside 4.4-Lite BSD as part of the U S. Nava
Research Laboratory’'s freely distributable and usable | Pv6 and | Psec
i mpl ement ati on[AMPMC96]. It is docunented here for the benefit of
others who m ght al so adopt and use the API, thus providing increased
portability of key nmanagenent applications (e.g. a manual keying
application, an | SAKMP daenon, a GKMP daenon [HWB7a] [HW7b], a
Photuris daenon, or a SKIP certificate discovery protocol daenon).

Tabl e of Contents

1 INtroduCti ON ... 3
1.1 Term Nol OQY .. oot 3
1.2 Conceptual Mdel 4
1.3 PF_KEY Socket Definition 8
1.4 Overvi ew of PF_KEY Messaging Behavior 8
1.5 Common PF_KEY Qperations 9
1.6 Di fferences Between PF_KEY and PF ROUTE 10
1.7 NamB SPacCEe 11
1.8 On Manual Keying 11
2 PF_KEY Message Format iy 11
2.1 Base Message Header Format 12
2.2 Al'ignment of Headers and Extension Headers 14
2.3 Additional Message Fields 14
2.3.1 Association EXtension 15
2.3.2 Lifetime EXtension 16

McDonal d, et. al. I nf or mat i onal [Page 1]

RFC 2367

BWwwwwww
©Co~NOOUThW

POO~NOUIRAWNPE

CRNOUBWNRRERRRERERRERRR

CUNNOURARRWRNRRWRRRWWWRRWRWRWNNRNNNNNN
AWNBEF

TmoO o>

McDonal d,

PF_KEY Key Managenent API July 1998
Address EXtensiOn 18
Key EXtensi On 19
ldentity EXtension 21
Sensitivity BExtension 21
Proposal EXtension 22
Supported Algorithnms Extension 25
SPI Range EXtension i, 26
Illustration of Message Layout 27
Synbolic Names 30
MESSage TYPeS . .o 31
SADB_GETSPl ..t 32
SADB_UPDATE . . . oot 33
SADB_ADD . . . 34
SADB DELETE 35
SADB GET .ottt 36
SADB_ ACQUI RE . .. ot 36
SADB_REG STER 38
SADB_EXPI RE . . . 39
SADB_FLUSH . .. 40
SADB DUMP . . oottt e e e e e e 40
Security Association Flags 41
Security Association States i, 41
Security Association Types, 41
Al gorithm Types e e e 42
Extension Header Values i 43
Identity Extension Values i, 44
Sensitivity Extension Values 45
Proposal Extension Values 45
Future Directions e 45
EXanpl €S ... e 45
Sinmple IP Security Exanple 46
Proxy IP Security Exanple i, 47
OSPF Security Exanple 50
M scel l aneous 50
Security Considerations 51
Acknowl edgnents e 52
Ref erences 52
D SClal MBI .. e 54
Aut hors’ AddressSes 54
Pronmi scuous Send/ Receive Extension 55
Passi ve Change Message Extension 57
Key Managenent Private Data Extension 58
Sample Header File i, 59
Change Logot 64
Full Copyright Statenment 68

et. al. I nf or mat i onal [Page 2]

RFC 2367 PF_KEY Key Managenent API July 1998

1 Introduction

PF_KEY is a new socket protocol famly used by trusted privil eged key
managenent applications to communicate with an operating systenis key
managenent internals (referred to here as the "Key Engine" or the
Security Association Database (SADB)). The Key Engine and its
structures incorporate the required security attributes for a session
and are instances of the "Security Association" (SA) concept
described in [Atk95a]. The nanes PF_KEY and Key Engine thus refer to
nmore than cryptographi c keys and are retained for consistency wth
the traditional phrase, "Key Managenent".

PF_KEY is derived in part fromthe BSD routing socket, PF_ROUTE.

[Skl 91] This docunent describes Version 2 of PF_KEY. Version 1 was
implemented in the first five alpha test versions of the NRL

| Pv6+l Psec Software Distribution for 4.4-Lite BSD UNI X and the Ci sco
| SAKMP/ Cakl ey key managenent daenon. Version 2 extends and refines
this interface. Theoretically, the nmessages defined in this docunent
could be used in a non-socket context (e.g. between two directly
communi cati ng user-|evel processes), but this document will not

di scuss in detail such possibilities.

Security policy is deliberately omtted fromthis interface. PF_KEY
is not a mechanismfor tuning systemm de security policy, nor is it

i ntended to enforce any sort of key nanagenent policy. The devel opers
of PF_KEY believe that it is inportant to separate security
nmechani snms (such as PF_KEY) fromsecurity policies. This permts a
singl e mechanismto nore easily support nmultiple policies.

1.1 Term nol ogy

Even though this docunent is not intended to be an actual |nternet
standard, the words that are used to define the significance of
particul ar features of this interface are usually capitalized. Sone
of these words, including MIJST, MAY, and SHOULD, are detailed in

[Bra97].

- CONFORMANCE and COWPLI ANCE

Conformance to this specification has the same nmeani ng as conpliance
to this specification. |In either case, the mandatory-to-inplenment,
or MJUST, itens MJST be fully inplenented as specified here. |If any
mandatory itemis not inplenented as specified here, that

i mpl enentation is not conform ng and not conpliant with this

speci fication.

McDonal d, et. al. I nf or mat i onal [Page 3]

RFC 2367 PF_KEY Key Managenent API July 1998

This specification also uses many terns that are commonly used in the
context of network security. O her docunents provide nore
definitions and background information on these [VK83, HA94, Atk95a].
Two ternms deserve special mention

- (Encryption/ Authentication) Al gorithm

For PF_KEY purposes, an algorithm whether encryption or

aut hentication, is the set of operations performed on a packet to
conpl ete authentication or encryption as indicated by the SA type. A
PF_KEY al gorithm MAY consi st of nore than one cryptographic

al gorithm Another possibility is that the sane basic cryptographic
algorithm may be applied with different nodes of operation or sone

ot her inplenentation difference. These differences, henceforth called
algorithmdifferentiators, distinguish between different PF_KEY

al gorithnms, and options to the sane algorithm Al gorithm
differentiators will often cause fundanentally different security
properties.

For exanple, both DES and 3DES use the sanme cryptographic al gorithm
but they are used differently and have different security properties.
The triple-application of DES is considered an al gorithm
differentiator. There are therefore separate PF_KEY algorithns for
DES and 3DES. Keyed-MD5 and HVAC- MD5 use the sane hash function, but
construct their nmessage authentication codes differently. The use of
HVAC is an algorithmdifferentiator. DES-ECB and DES-CBC are the
same cryptographic algorithm but use a different node. Mdde (e.qg.
chai ning vs. code-book) is an algorithmdifferentiator. Blowfish with
a 128-bit key, however, is simlar to Blowfish with a 384-bit key,
because the algorithnmis workings are otherwi se the sane and therefore
the key length is not an algorithmdifferentiator

In terms of IP Security, a general rule of thunb is that whatever
m ght be | abeled the "encryption" part of an ESP transformis
probably a PF_KEY encryption algorithm Whatever night be |abelled
the "authentication" part of an AH or ESP transformis probably a
PF_KEY aut hentication al gorithm

1.2 Conceptual Model

This section describes the conceptual nodel of an operating system
that inplenents the PF_KEY key managenent application programing
interface. This section is intended to provi de background nateria
useful to understand the rest of this document. Presentation of this
conceptual nodel does not constrain a PF_KEY inplenentation to
strictly adhere to the conceptual conponents discussed in this
subsecti on.

McDonal d, et. al. I nf or mat i onal [Page 4]

RFC 2367 PF_KEY Key Managenent API July 1998

Key managenent is nost comonly inplenented in whole or in part at
the application layer. For exanple, the | SAKMP/ Cakl ey, CGKWMP, and
Photuris proposals for |IPsec key managenent are all application-Iayer
protocols. Mnual keying is also done at the application |ayer.

Even parts of the SKIP IP-1ayer keying proposal can be inplenented at
the application layer. Figure 1 shows the relationship between a Key
Managenment daenon and PF_KEY. Key nanagenent daenons use PF_KEY to
comuni cate with the Key Engine and use PF_INET (or PF_INET6 in the
case of IPv6) to communicate, via the network, with a renote key
managenent entity.

The "Key Engi ne" or "Security Association Database (SADB)" is a
logical entity in the kernel that stores, updates, and del etes
Security Association data for various security protocols. There are
| ogical interfaces within the kernel (e.g. getassocbyspi(),

get assochbysocket ()) that security protocols inside the kernel (e.g.

I P Security, aka |IPsec) use to request and obtain Security
Associ ati ons.

In the case of IPsec, if by policy a particular outbound packet needs
processing, then the IPsec inplenmentation requests an appropriate
Security Association fromthe Key Engine via the kernel-interna

interface. |If the Key Engine has an appropriate SA, it allocates the
SAto this session (marking it as used) and returns the SAto the
| Psec inplenmentation for use. |If the Key Engine has no such SA but a

key managenent application has previously indicated (via a PF_KEY
SADB_REG STER nessage) that it can obtain such SAs, then the Key
Engi ne requests that such an SA be created (via a PF_KEY SADB ACQUI RE
message). Wien the key managenent daenon creates a new SA, it places
it into the Key Engine for future use.

McDonal d, et. al. I nf or mat i onal [Page 5]

RFC 2367 PF_KEY Key Managenent API July 1998

Applications

CS Ker nel

e I S +
| Key Engine | | TCP/ 1P, |
| or SADB |---| including IPsec |
B S + | |
R LT +

+| ------- +

| Network |

| Interface |

[S +

Figure 1: Relationship of Key Mynt to PF_KEY

For performance reasons, some security protocols (e.g. |IP Security)
are usually inplenented inside the operating systemkernel. O her
security protocols (e.g. GOSPFv2 Cryptographic Authentication) are

i mpl enented in trusted privileged applications outside the kernel.
Figure 2 shows a trusted, privileged routing daenon using PF_INET to
conmuni cate routing information with a renote routing daenon and
using PF_KEY to request, obtain, and delete Security Associations
used with a routing protocol.

McDonal d, et. al. I nf or mat i onal [Page 6]

RFC 2367 PF_KEY Key Managenent API July 1998

Applications

CS Ker nel

I + e +
| Key Engine | | TCP/ 1P
| or SADB |---| |
B S + Fomm e e o +

+---! ------- +

| Network

| Interface

S +

Figure 2: Relationship of Trusted Application to PF_KEY

Wien a trusted privileged application is using the Key Engine but

i npl ements the security protocol within itself, then operation varies
slightly. In this case, the application needing an SA sends a PF_KEY
SADB_ACQUI RE nessage down to the Key Engi ne, which then either
returns an error or sends a simlar SADB ACQU RE nessage up to one or
nore key managenent applications capable of creating such SAs. As
before, the key managenment daenon stores the SA into the Key Engine.
Then, the trusted privileged application uses an SADB_GET nessage to
obtain the SA fromthe Key Engine.

In sone inplenentations, policy may be inplenented in user-space,
even though the actual cryptographic processing takes place in the
kernel. Such policy conmunication between the kernel mechani sms and
t he user-space policy MAY be inplenented by PF_KEY extensions, or

ot her such mechanism This document does not specify such
extensions. A PF_KEY inplenentation specified by the meno does NOT
have to support configuring systemm de policy using PF_KEY.

Untrusted clients, for exanple a user’'s web browser or telnet client,
do not need to use PF_KEY. Mechanisns not specified here are used by
such untrusted client applications to request security services (e.g.
| Psec) froman operating system For security reasons, only trusted,
privileged applications are pernitted to open a PF_KEY socket.

McDonal d, et. al. I nf or mat i onal [Page 7]

RFC 2367 PF_KEY Key Managenent API July 1998

1.3 PF_KEY Socket Definition

The PF_KEY protocol fanmily (PF_KEY) synbol is defined in
<sys/socket.h> in the same manner that other protocol famlies are
defined. PF_KEY does not use any socket addresses. Applications
usi ng PF_KEY MJST NOT depend on the availability of a synbol naned
AF_KEY, but kernel inplenentations are encouraged to define that
synbol for conpl et eness.

The key managenent socket is created as foll ows:

#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <net/ pf keyv2. h>

int s;
s = socket (PF_KEY, SOCK _RAW PF_KEY_V2);

The PF_KEY domain currently supports only the SOCK RAW socket type.
The protocol field MIUST be set to PF_KEY V2, or el se EPROTONOSUPPORT
will be returned. Only a trusted, privileged process can create a
PF_KEY socket. On conventional UN X systenms, a privileged process is
a process with an effective userid of zero. On non-MS proprietary
operating systens, the notion of a "privileged process" is

i mpl enent ati on-defined. On Conpartnented Mode Workstati ons (CMA) or
other systens that claimto provide Milti-Level Security (M.S), a
process MJST have the "key managenent privilege" in order to open a
PF_KEY socket[DIA]. M.S systens that don’t currently have such a
specific privilege MIST add that special privilege and enforce it
with PF_KEY in order to conply and conformw th this specification
Sonme systens, nost notably sone popul ar personal conputers, do not
have the concept of an unprivileged user. These systens SHOULD t ake
steps to restrict the prograns allowed to access the PF_KEY API

1.4 Overview of PF_KEY Messagi ng Behavi or
A process interacts with the key engine by sending and receiving

messages using the PF_KEY socket. Security association information
can be inserted into and retrieved fromthe kernel’s security

associ ation table using a set of predefined nmessages. |n the nornmal
case, all properly-forned nessages sent to the kernel are returned to
all open PF_KEY sockets, including the sender. |Inproperly forned

messages Will result in errors, and an inplenentati on MUST check for
a properly forned nessage before returning it to the appropriate
listeners. Unlike the routing socket, nost errors are sent in reply
messages, not the errno field when wite() or send() fails. PF_KEY
message delivery is not guaranteed, especially in cases where kerne
or socket buffers are exhausted and nessages are dropped.

McDonal d, et. al. I nf or mat i onal [Page 8]

RFC 2367 PF_KEY Key Managenent API July 1998

Some nessages are generated by the operating systemto indicate that
actions need to be taken, and are not necessarily in response to any
nmessage sent down by the user. Such nessages are not received by al
PF_KEY sockets, but by sockets which have indicated that kernel-

ori ginated nmessages are to be received. These nessages are speci al
because of the expected frequency at which they will occur. Also, an
i mpl enentation nay further wish to restrict return nessages fromthe
kernel, in cases where not all PF_KEY sockets are in the sane trust
donai n.

Many of the normal BSD socket calls have undefined behavi or on PF_KEY
sockets. These include: bind(), connect(), socketpair(), accept(),
get peernane(), getsockname(), ioctl(), and listen().

1.5 Common PF_KEY Operations

There are two basic ways to add a new Security Association into the
kernel. The sinplest is to send a single SADB ADD nessage,
containing all of the SA information, fromthe application into the
kernel’s Key Engine. This approach works particularly well wth
manual key managenment, which is required for |Psec, and other
security protocols.

The second approach to add a new Security Association into the kerne
is for the application to first request a Security Parameters |ndex
(SPI') value fromthe kernel using the SADB GETSPI nessage and then
send an SADB_UPDATE nessage with the conplete Security Association
data. This second approach works well w th key nanagenent daenons
when the SPI val ues need to be known before the entire Security
Associ ation data is known (e.g. so the SPI value can be indicated to
the renote end of the key managenent session).

An individual Security Association can be deleted using the
SADB DELETE nessage. Categories of SAs or the entire kernel SA table
can be del eted using the SADB _FLUSH nmessage.

The SADB GET nessage is used by a trusted application-layer process
(e.g. routed(8) or gated(8)) to retrieve an SA (e.g. RIP SA or OSPF
SA) fromthe kernel’'s Key Engi ne.

The kernel or an application-layer can use the SADB ACQU RE nessage
to request that a Security Association be created by sone
application-layer key nanagenment process that has registered with the
kernel via an SADB_REG STER nmessage. This ACQU RE nessage will have
a sequence nunber associated with it. This sequence nunber MJST be
used by foll owup SADB GETSPI, SADB UPDATE, and SADB_ADD nmessages, in
order to keep track of which request gets its keying material. The
sequence nunber (described below) is sinmlar to a transaction IDin a

McDonal d, et. al. I nf or mat i onal [Page 9]

RFC 2367 PF_KEY Key Managenent API July 1998

renote procedure call

The SADB_EXPI RE nessage is sent fromthe kernel to key managenent
applications when the "soft lifetinme" or "hard lifetine" of a
Security Association has expired. Key nmanagenent applications shoul d
use receipt of a soft lifetine SADB EXPlI RE nessage as a hint to
negotiate a replacenent SA so the replacenent SAwill be ready and in
the kernel before it is needed.

A SADB DUMP nessage is al so defined, but this is primarily intended
for PF_KEY inplenentor debugging and is not used in ordinary
operation of PF_KEY.

1.6 Differences Between PF_KEY and PF_ROUTE

The following bullets are points of difference between the routing
socket and PF_KEY. Programmers who are used to the routing socket
semantics will find sone differences in PF_KEY.

* PF_KEY nessage errors are usually returned in PF_KEY nessages
i nstead of causing wite() operations to fail and returning the
error nunber in errno. This nmeans that other |isteners on a PF_KEY
socket can be aware that requests from another process failed,
whi ch can be useful for auditing purposes. This al so neans that
applications that fail to read PF_KEY nessages cannot do error
checki ng.

An inplenentation MAY return the errors El NVAL, ENOVEM and ENOBUFS
by causing wite() operations to fail and returning the error
nunber in errno. This is an optim zation for comobn error cases in
which it does not make sense for any other process to receive the
error. An application MJST NOT depend on such errors being set by
the wite() call, but it SHOULD check for such errors, and handl e
themin an appropriate manner.

* The entire nessage isn't always reflected in the reply. A SADB ADD
message i s an exanple of this.

* The PIDis not set by the kernel. The process that originates the
message MJST set the sadb_nsg pid to its owmn PID. If the kerne
ORI G NATES a nessage, it MJST set the sadb nsg_pid to 0. A reply
to an original nessage SHOULD have the pid of the original nessage
(E.g. the kernel’'s response to an SADB _ADD SHOULD have its pid set
to the pid value of the original SADB_ADD nessage.)

McDonal d, et. al. I nf or mat i onal [Page 10]

RFC 2367 PF_KEY Key Managenent API July 1998

1.7 Nanme Space

Al'l PF_KEYv2 preprocessor synbols and structure definitions are
defined as a result of including the header file <net/pfkeyv2. h>.
There is exactly one exception to this rule: the synbol "PF_KEY" (two
exceptions if "AF_KEY" is also counted), which is defined as a result
of including the header file <sys/socket.h> Al PF_KEYv2
preprocessor synbols start with the prefix "SADB " and all structure
nanes start with "sadb_". There are exactly two exceptions to this
rul e: the synbol "PF_KEY V2" and the synbol "PFKEYV2_REVI SI ON'

The synbol "PFKEYV2 _REVI SION' is a date-encoded val ue not unlike
certain val ues defined by POSI X and X/ Open. The current val ue for
PFKEYV2_REVI SI ON i s 199806L, where 1998 is the year and 06 is the
nmont h.

Inclusion of the file <net/pfkeyv2. h> MUST NOT define synbols or
structures in the PF_KEYv2 nane space that are not described in this
docunent without the explicit prior permission of the authors. Any
synbol s or structures in the PF_KEYv2 nane space that are not
described in this docunent MUST start with "SADB_X " or "sadb_x_". An
i npl ementation that fails to obey these rules IS NOT COVPLI ANT W TH
THI S SPECI FI CATI ON and MUST NOT nake any claimto be. These rules
al so apply to any files that might be included as a result of
including the file <net/pfkeyv2.h> This rule provides inplenentors
with sonme assurance that they will not encounter nanmespace-rel ated
surprises.

1.8 On Manual Keying

Not unlike the 4.4-Lite BSD PF_ROUTE socket, this interface allows an
application full-reign over the security associations in a kerne

that inplenments PF_KEY. A PF_KEY inplenentation MJIST have sone sort
of manual interface to PF_KEY, which SHOULD allow all of the
functionality of the progranmatic interface described here.

2. PF_KEY Message For mat
PF_KEY nmessages consi st of a base header followed by additional data
fields, some of which may be optional. The format of the additiona
data is dependent on the type of nessage.
PF_KEY nmessages currently do not nandate any specific ordering for

non-network nulti-octet fields. Unless otherw se specified (e.g. SP
val ues), fields MJUST be in host-specific byte order

McDonal d, et. al. I nf or mat i onal [Page 11]

RFC 2367 PF_KEY Key Managenent API July 1998

2.1 Base Message Header For nat

PF_KEY nmessages consi st of the base nessage header foll owed by
security association specific data whose types and | engths are
specified by a generic type-Iength encodi ng.

Thi s base header is shown bel ow, using POSI X types. The fields are
arranged primarily for alignment, and where possible, for reasons of
clarity.

struct sadb_nsg {
uint8 t sadb_nsg _version
uint8 t sadb_nsg type;
uint8 t sadb_nsg_errno;
uint8 t sadb_nsg_satype;
uint16_t sadb_nsg_Il en
uint16_t sadb_nsg_reserved
uint32 t sadb_nsg_seq;
uint32_t sadb_nsg_pid;

} il
/* sizeof (struct sadb_nsg) == 16 */

sadb_nsg_version
The version field of this PF_KEY nessage. This MJST
be set to PF_KEY V2. If this is not set to PF_KEY V2,
the wite() call MAY fail and return El NVAL.
O herwi se, the behavior is undeternined, given that
the application m ght not understand the formatting
of the messages arriving fromthe kernel

sadb_nsg_type Identifies the type of nessage. The valid nessage
types are described later in this docunent.

sadb_msg_errno Should be set to zero by the sender. The responder
stores the error code in this field if an error has
occurred. This includes the case where the responder
is in user space. (e.g. user-space negotiation
fails, an errno can be returned.)

sadb_nsg_satype Indicates the type of security association(s). Valid
Security Association types are declared in the file
<net/ pfkeyv2. h>. The current set of Security
Associ ation types is enunerated later in this
docunent .

McDonal d, et. al. I nf or mat i onal [Page 12]

RFC 2367

sadb_nsg | en

PF_KEY Key Managenent API July 1998

Contains the total length, in 64-bit words, of al
data in the PF_KEY nessage including the base header
I ength and additional data after the base header, if
any. This length includes any padding or extra space
that mght exist. Unless otherwi se stated, all other
length fields are al so neasured in 64-bit words.

On user to kernel nessages, this field MJST be
verified against the length of the inbound nessage.
EMSGSI ZE MUST be returned if the verification fails.
On kernel to user messages, a size mismatch i s nost
likely the result of the user not providing a |arge
enough buffer for the nessage. In these cases, the
user application SHOULD drop the nessage, but it MAY
try and extract what information it can out of the
nessage

sadb_nsg _reserved

sadb_mnsg_seq

sadb_nsg_pi d

McDonal d,

et.

al .

Reserved value. It MJST be zeroed by the sender. Al
fields | abel ed reserved |ater in the docunent have
t he sane semantics as this field.

Cont ai ns the sequence nunmber of this nessage. This
field, along with sadb_nsg _pid, MJUST be used to
uniquely identify requests to a process. The sender
is responsible for filling in this field. This
responsibility also includes matching the
sadb_msg_seq of a request (e.g. SADB _ACQU RE)

This field is simlar to a transaction IDin a
renote procedure call inplenentation

Identifies the process which originated this nessage,
or which process a nessage is bound for. For
exanple, if process id 2112 sends an SADB_UPDATE
message to the kernel, the process MJST set this
field to 2112 and the kernel will set this field

to 2112 in its reply to that SADB_UPDATE

nmessage. This field, along with sadb_nsg_seq, can

be used to uniquely identify requests to a

process.

It is currently assunmed that a 32-bit quantity will
hol d an operating systenis process |D space.

I nf or mat i onal [Page 13]

RFC 2367 PF_KEY Key Managenent API July 1998

2.2 Alignnent of Headers and Extension Headers

The base nessage header is a nultiple of 64 bits and fields after it
in menory will be 64 bit aligned if the base itself is 64 bit
aligned. Sone of the subsequent extension headers have 64 bit fields
in them and as a consequence need to be 64 bit aligned in an

envi ronnent where 64 bit quantities need to be 64 bit aligned.

The basic unit of alignment and length in PF_KEY Version 2 is 64
bits. Therefore:

* Al extension headers, inclusive of the sadb_ext overlay fields,
MUST be a nultiple of 64 bits |ong.

* Al variable length data MJUST be padded appropriately such that
its length in a message is a multiple of 64 bits.

* All length fields are, unless otherw se specified, in units of
64 bits.

* | nplenmentations may safely access quantities of between 8 and 64
bits directly within a nessage without risk of alignnent faults.

Al'l PF_KEYv2 structures are packed and al ready have all intended
paddi ng. | nplenentati ons MUST NOT insert any extra fields, including
hi dden padding, into any structure in this docunent. This forbids

i mpl erent ati ons from "extendi ng" or "enhancing" existing headers

wi t hout changi ng the extensi on header type. As a guard agai nst such
insertion of silent padding, each structure in this docunent is

| abeled with its size in bytes. The size of these structures in an

i mpl enentati on MUST natch the size listed.

2.3 Additional Message Fields

The additional data follow ng the base header consists of various
| engt h-type-val ues fields. The first 32-bits are of a constant form

struct sadb_ext {
uint16_t sadb_ext _len
uint16_t sadb_ext_type;
1
/* sizeof (struct sadb_ext) == 4 */

sadb_ext | en Length of the extension header in 64 bit words,
i ncl usi ve.

McDonal d, et. al. I nf or mat i onal [Page 14]

RFC 2367 PF_KEY Key Managenent API July 1998

sadb_ext type The type of extension header that follows. Values for
this field are detailed |ater. The value zero is
reserved.

Types of extension headers include: Association, Lifetinme(s),
Address(s), Key(s), ldentity(ies), Sensitivity, Proposal, and
Supported. There MUST be only one instance of a extension type in a
message. (e.g. Base, Key, Lifetinme, Key is forbidden). An EINVAL
will be returned if there are duplicate extensions wthin a nessage.
| mpl enent ati ons MAY enforce ordering of extensions in the order
presented in the EXTENSI ON HEADER VALUES secti on.

I f an unknown extension type is encountered, it MJST be ignored.
Applications using extension headers not specified in this docunent
MUST be prepared to work around ot her system conponents not
processi ng those headers. Likewise, if an application encounters an
unknown extension fromthe kernel, it nust be prepared to work around
it. Also, a kernel that generates extra extension header types MJST
NOT _depend_ on applications al so understandi ng extra extension
header types.

Al'l extension definitions include these two fields (len and exttype)
because they are instances of a generic extension (not unlike
sockaddr _in and sockaddr _in6 are instances of a generic sockaddr).
The sadb_ext header MJUST NOT ever be present in a nessage w thout at
| east four bytes of extension header data following it, and,
therefore, there is no problemwith it being only four bytes |ong.

Al'l extensions docunented in this section MJST be inplenmented by a
PF_KEY i npl enent ati on.

2.3.1 Associ ati on Extension

The Associ ati on extension specifies data specific to a single
security association. The only tinmes this extension is not present is
when control nessages (e.g. SADB FLUSH or SADB REQ STER) are being
passed and on the SADB ACQUI RE nessage.

struct sadb_sa {
uint16_t sadb_sa | en
uint16_t sadb_sa_exttype;
uint32 t sadb_sa_spi
uint8 t sadb_sa_replay;
uint8 t sadb_sa state;
uint8 t sadb_sa_auth;
uint8 t sadb_sa_encrypt;
uint32_t sadb_sa_fl ags;

McDonal d, et. al. I nf or mat i onal [Page 15]

RFC 2367 PF_KEY Key Managenent API July 1998

/* sizeof (struct sadb_sa) == 16 */

sadb_sa_spi The Security Paranmeters Index value for the security
association. Although this is a 32-bit field, sone
types of security associations mght have an SPI or
key identifier that is less than 32-bits long. In
this case, the smaller value shall be stored in the
| east significant bits of this field and the unneeded
bits shall be zero. This field MIST be in network
byte order.

sadb_sa replay The size of the replay window, if not zero. If zero,
then no replay window is in use.

sadb_sa_state The state of the security association. The currently
defined states are described later in this docunent.

sadb_sa_auth The aut hentication algorithmto be used with this
security association. The valid authentication
al gorithms are described later in this docunent. A
val ue of zero neans that no authentication is used
for this security association.

sadb_sa_encrypt The encryption algorithmto be used with this
security association. The valid encryption algorithns
are described later in this docunment. A value of zero
nmeans that no encryption is used for this security
associ ation.

sadb_sa_fl ags A bitmap of options defined for the security
association. The currently defined flags are
described later in this docunent.

The kernel MUST check these val ues where appropriate. For exanpl e,
| Psec AH with no authentication algorithmis probably an error

When used with some nessages, the values in sone fields in this
header shoul d be ignored.

2.3.2 Lifetine Extension

The Lifetinme extension specifies one or nore lifetinme variants for
this security association. |If no Lifetine extension is present the
association has an infinite lifetinme. An association SHOULD have a
lifetime of some sort associated with it. Lifetine variants conme in
three varieties, HARD - indicating the hard-linmt expiration, SOFT -
indicating the soft-limt expiration, and CURRENT - indicating the
current state of a given security association. The Lifetine

McDonal d, et. al. I nf or mat i onal [Page 16]

RFC 2367 PF_KEY Key Managenent API July 1998

extensi on | ooks |ike:

struct sadb lifetime {
uintl6 t sadb lifetinme_|en
uint16_t sadb_lifetine_exttype;
uint32 t sadb _lifetine_allocations;
uint64_t sadb _lifetine_bytes;
uinte4 t sadb_lifetine_addtine;
uint64_t sadb_lifetine_usetine;

}
/* sizeof (struct sadb_lifetime) == 32 */

sadb_lifetime_allocations
For CURRENT, the nunber of different connections,
endpoi nts, or flows that the association has been
al l ocated towards. For HARD and SOFT, the nunber of
these the association may be allocated towards
before it expires. The concept of a connection
flow, or endpoint is systemspecific.

sadb_lifetine_bytes
For CURRENT, how many bytes have been processed
using this security association. For HARD and SOFT,
t he nunber of bytes that may be processed using
this security association before it expires.

sadb_lifetime_addti me
For CURRENT, the tinme, in seconds, when the
associ ation was created. For HARD and SOFT, the
nunber of seconds after the creation of the
association until it expires.

For such time fields, it is assuned that 64-bits is
sufficiently large to hold the POSI X tinme_t val ue.

If this assunption is wong, this field will have to
be revisited.

sadb_lifetinme_usetine
For CURRENT, the tine, in seconds, when association
was first used. For HARD and SOFT, the nunber of
seconds after the first use of the association unti
it expires.

The semantics of lifetinmes are inclusive-OR first-to-expire. This
nmeans that if values for bytes and tinme, or nultiple tines, are
passed in, the first of these values to be reached will cause a
lifetime expiration.

McDonal d, et. al. I nf or mat i onal [Page 17]

RFC 2367 PF_KEY Key Managenent API July 1998

2. 3.3 Address Extension

The Address extension specifies one or nore addresses that are
associated with a security association. Address extensions for both
source and destination MJST be present when an Associ ation extension
is present. The fornmat of an Address extension is:

struct sadb_address {
uint16_t sadb_address_len
uint16_t sadb_address_exttype;
uint8_ t sadb_address_proto;
uint8 t sadb_address_prefixlen
uintl16 t sadb_address_reserved;

} il
/* sizeof (struct sadb_address) == 8 */
/* followed by sonme formof struct sockaddr */

The sockaddr structure SHOULD conformto the sockaddr structure of
the systeminplementing PF_KEY. If the systemhas an sa_len field, so
SHOULD t he sockaddrs in the nessage. If the systemhas NO sa_l en
field, the sockaddrs SHOULD NOT have an sa len field. Al non-address
information in the sockaddrs, such as sin_zero for AF_|I NET sockaddrs,
and sin6 _flowinfo for AF_I NET6 sockaddrs, MJST be zeroed out. The
zeroing of ports (e.g. sin_port and sin6_port) MJST be done for al
messages except for originating SADB ACQUI RE nessages, which SHOULD
fill themin with ports fromthe relevant TCP or UDP session which
generates the ACQU RE nessage. |If the ports are non-zero, then the
sadb_address_proto field, normally zero, MIST be filled in with the
transport protocol’s nunber. |If the sadb_address prefixlen is non-
zero, then the address has a prefix (often used in KM access contro
decisions), with length specified in sadb_address_prefixlen. These
additional fields may be useful to KM applications.

The SRC and DST addresses for a security association MIST be in the
same protocol famly and MUST al ways be present or absent together in
a nmessage. The PROXY address MAY be in a different protocol fanmily
and for nost security protocols, represents an actual originator of a
packet. (For exanple, the inner-packets' s source address in a
tunnel .)

The SRC address MJUST be a unicast or unspecified (e.g., | NADDR _ANY)
address. The DST address can be any valid destination address
(unicast, multicast, or even broadcast). The PROXY address SHOULD be
a uni cast address (there are experinental security protocols where
PROXY senmantics may be different than descri bed above).

McDonal d, et. al. I nf or mat i onal [Page 18]

RFC 2367 PF_KEY Key Managenent API July 1998

2.3.4 Key Extension

The Key extension specifies one or nore keys that are associated with
a security association. A Key extension will not always be present

wi th nessages, because of security risks. The format of a Key
extension is:

struct sadb_key {
uint16_t sadb_key | en
uint16_t sadb_key_exttype;
uint16_t sadb_key_ bits;
uint16_t sadb_key reserved;
1
/* sizeof (struct sadb_key) == 8 */

/* followed by the key data */

sadb_key bits The Il ength of the valid key data, in bits. A val ue of
zero in sadb_key bits MJST cause an error

The key extension comes in two varieties. The AUTH version is used
wi th authentication keys (e.g. |Psec AH OSPF MD5) and t he ENCRYPT
version is used with encryption keys (e.g. IPsec ESP). PF_KEY deals
only with fully formed cryptographic keys, not with "raw key
material". For exanple, when | SAKMP/ Cakley is in use, the key
managenent daenon is al ways responsible for transfornming the result
of the Diffie-Hellman conmputation into distinct fully formed keys
PRIOR to sending those keys into the kernel via PF_KEY. This rule is
made because PF_KEY is designed to support nultiple security
protocols (not just IP Security) and also nultiple key nanagenent
schenes incl udi ng manual keyi ng, which does not have the concept of
"raw key material". A clean, protocol-independent interface is
important for portability to different operating systens as well as
for portability to different security protocols.

If an algorithmdefines its key to include parity bits (e.g. DES)
then the key used with PF_KEY MJST al so include those parity bits.
For exanple, this neans that a single DES key is always a 64-bit
gquantity.

When a particular security protocol only requires one authentication
and/ or one encryption key, the fully forned key is transnitted using
the appropriate key extension. Wen a particular security protoco
requi res nore than one key for the same function (e.g. Triple-DES
using 2 or 3 keys, and asymmetric algorithms), then those two fully
fornmed keys MJST be concatenated together in the order used for

out bound packet processing. In the case of nultiple keys, the

al gorithm MJUST be able to determ ne the | engths of the individua

McDonal d, et. al. I nf or mat i onal [Page 19]

RFC 2367 PF_KEY Key Managenent API July 1998

keys based on the infornation provided. The total key |length (when
conmbi ned with knowl edge of the algorithmin use) usually provides
sufficient information to nmake this determ nation

Keys are al ways passed through the PF_KEY interface in the order that
they are used for outbound packet processing. For inbound processing,
the correct order that keys are used mght be different fromthis
canoni cal concatenation order used with the PF_KEY interface. It is
the responsibility of the inplenmentation to use the keys in the
correct order for both inbound and out bound processing.

For exanpl e, consider a pair of nodes conmmunicating unicast using an
ESP three-key Triple-DES Security Association. Both the outbound SA
on the sender node, and the inbound SA on the receiver node wl|l
contain key-A, followed by key-B, followed by key-Cin their
respecti ve ENCRYPT key extensions. The outbound SA will use key-A
first, followed by key-B, then key-C when encrypting. The inbound SA
will use key-C, followed by key-B, then key-A when decrypting

(NOTE: W are aware that 3DES is actually encrypt-decrypt-encrypt.)
The canonical ordering of key-A, key-B, key-Cis used for 3DES, and
shoul d be docunented. The order of "encryption" is the canonica
order for this exanple. [Sch96]

The key data bits are arranged nost-significant to | east significant.
For exanple, a 22-bit key would take up three octets, with the | east
significant two bits not containing key material. Five additiona
octets would then be used for padding to the next 64-bit boundary.

VWhile not directly related to PF_KEY, there is a user interface issue
regardi ng odd-digit hexadeci nal representation of keys. Consider the
exanpl e of the 16-bit nunber:

0x123

That will require two octets of storage. In the absence of other
i nformati on, however, unclear whether the value shown is stored as:

01 23 oR 12 30
It is the opinion of the authors that the former (0x123 == 0x0123) is
the better way to interpret this anbiguity. Extra information (for

exanpl e, specifying 0x0123 or 0x1230, or specifying that this is only
a twelve-bit nunber) would solve this problem

McDonal d, et. al. I nf or mat i onal [Page 20]

RFC 2367 PF_KEY Key Managenent API July 1998

2.3.5 ldentity Extension

The ldentity extension contains endpoint identities. This
information is used by key managenent to select the identity
certificate that is used in negotiations. This information may al so
be provided by a kernel to network security aware applications to
identify the renpte entity, possibly for access control purposes. |If
this extension is not present, key nanagenent MJST assune that the
addresses in the Address extension are the only identities for this
Security Association. The ldentity extension | ooks |ike:

struct sadb_ident {
uintl6_t sadb_ident |en
uintl6 t sadb_ident exttype;
uint16_t sadb_ident _type;
uint16_t sadb_ident reserved
uint64_t sadb_ident _id;

1
/* sizeof (struct sadb_ident) == 16 */
/* followed by the identity string, if present */

sadb_i dent _type The type of identity information that foll ows.
Currently defined identity types are described |ater
in this docunent.

sadb_ident _id An identifier used to aid in the construction of an
identity string if none is present. A POSIX user id
value is one such identifier that will be used in this
field. Use of this field is described later in this
docunent .

A C string containing a textual representation of the identity
information optionally follows the sadb_ident extension. The format
of this string is determ ned by the value in sadb_ident_type, and is
described later in this docunent.

2.3.6 Sensitivity Extension

The Sensitivity extension contains security labeling information for

a security association. |If this extension is not present, no
sensitivity-related data can be obtained fromthis security
association. |If this extension is present, then the need for

explicit security labeling on the packet is obviated.
struct sadb_sens {

uint16_t sadb_sens_len
uintl16_t sadb_sens_exttype;

McDonal d, et. al. I nf or mat i onal [Page 21]

RFC 2367 PF_KEY Key Managenent API July 1998

uint32 t sadb_sens_dpd;
uint8 t sadb_sens_sens_| evel
uint8 t sadb_sens_sens_Il en
uint8 t sadb_sens_integ_| evel
uint8 t sadb_sens_integ_len
uint32 t sadb_sens_reserved;
1
/* sizeof (struct sadb_sens) == 16 */

/* foll owed by:
uint64_t sadb_sens_bitmap[sens_Il en];
uint64 t sadb_integ bitnap[integ |len]; */

sadb_sens_dpd Descri bes the protection domain, which allows
interpretation of the |evels and conpart nent
bi t maps.

sadb_sens_sens_| evel
The sensitivity |evel

sadb_sens_sens_| en
The length, in 64 bit words, of the sensitivity
bi t map.

sadb_sens_integ_| eve
The integrity |evel.

sadb_sens_integ |l en
The length, in 64 bit words, of the integrity
bi t map.

This sensitivity extension is designed to support the Bell-LaPadul a
[BL74] security nodel used in conpartnented-node or nulti-Ieve

secure systens, the Cark-WIlson [CW7] commercial security nodel,
and/or the Biba integrity nodel [Biba77]. These fornmal nodels can be
used to inplement a wide variety of security policies. The definition
of a particular security policy is outside the scope of this
docunent. Each of the bitmaps MJST be padded to a 64-bit boundary if
they are not inplicitly 64-bit aligned.

2.3.7 Proposal Extension

The Proposal extension contains a "proposed situation" of algorithm
preferences. It |ooks I|ike:

struct sadb_prop {
uintl6 t sadb_prop_len
uintl16 t sadb_prop_exttype;
uint8 t sadb_prop_replay;
uint8 t sadb_prop_reserved[3];

1
/* sizeof (struct sadb_prop) == 8 */

McDonal d, et. al. I nf or mat i onal [Page 22]

RFC 2367 PF_KEY Key Managenent API July 1998

/* foll owed by:
struct sadb_conb sadb _conbs[(sadb_prop _len *
sizeof (uint64_t) - sizeof(struct sadb_prop)) /
si zeof (struct sadb_conb)]; */

Fol I owi ng the header is a |list of proposed paraneter conbinations in
preferential order. The values in these fields have the sane
definition as the fields those values will nove into if the

conbi nation is chosen

NOTE: Sone algorithms in some security protocols will have
variable 1V lengths per algorithm Variable length IVs
are not supported by PF _KEY v2. |If they were, however,
proposed |V I engths would go in the Proposal Extension

These conbi nati ons | ook |ike:

struct sadb_conb {
uint8 t sadb_conb_auth;
uint8 t sadb_conb_encrypt;
uint16_t sadb_conb_fl ags;
uint16_t sadb_conb_auth _mnbits;
uint16_t sadb_conb_auth_naxbits;
uintl6 t sadb_conb_encrypt _mnbits;
uintl16 t sadb_conb_encrypt naxbits;
uint32 t sadb_conb_reserved;
uint32_t sadb_conmb_soft_all ocati ons;
uint32_t sadb_conb _hard_al |l ocati ons;
uint64_t sadb_conb_soft_bytes;
uint64_t sadb_conb_hard_bytes;
uint64_t sadb_conb_soft _addti ne;
uint64 t sadb_conb_hard_addti ne;
uint64_t sadb_conb_soft _useti ne;
uint64_t sadb_conb _hard_useti ne;

i
/* sizeof (struct sadb_conmb) == 72 */

sadb_conb_auth |f this conbination is accepted, this will be the
val ue of sadb_sa_auth.

sadb_conb_encrypt

If this conbination is accepted, this will be the
val ue of sadb_sa encrypt.

McDonal d, et. al. I nf or mat i onal [Page 23]

RFC 2367 PF_KEY Key Managenent API July 1998

sadb_conb_aut h_m nbits;

sadb_conb_aut h_maxbits;
The m ni num and naxi mum accept abl e aut hentication
key lengths