
Network Working Group A. Melnikov, Ed.
Request for Comments: 4752 Isode
Obsoletes: 2222 November 2006
Category: Standards Track

 The Kerberos V5 ("GSSAPI")
 Simple Authentication and Security Layer (SASL) Mechanism

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

 Copyright (C) The IETF Trust (2006).

Abstract

 The Simple Authentication and Security Layer (SASL) is a framework
 for adding authentication support to connection-based protocols.
 This document describes the method for using the Generic Security
 Service Application Program Interface (GSS-API) Kerberos V5 in the
 SASL.

 This document replaces Section 7.2 of RFC 2222, the definition of the
 "GSSAPI" SASL mechanism. This document, together with RFC 4422,
 obsoletes RFC 2222.

Melnikov Standards Track [Page 1]

RFC 4752 SASL GSSAPI Mechanism November 2006

Table of Contents

 1. Introduction ..2
 1.1. Relationship to Other Documents2
 2. Conventions Used in This Document2
 3. Kerberos V5 GSS-API Mechanism2
 3.1. Client Side of Authentication Protocol Exchange3
 3.2. Server Side of Authentication Protocol Exchange4
 3.3. Security Layer ...6
 4. IANA Considerations ...7
 5. Security Considerations ...7
 6. Acknowledgements ..8
 7. Changes since RFC 2222 ..8
 8. References ..8
 8.1. Normative References8
 8.2. Informative References9

1. Introduction

 This specification documents currently deployed Simple Authentication
 and Security Layer (SASL [SASL]) mechanism supporting the Kerberos V5
 [KERBEROS] Generic Security Service Application Program Interface
 ([GSS-API]) mechanism [RFC4121]. The authentication sequence is
 described in Section 3. Note that the described authentication
 sequence has known limitations, in particular, it lacks channel
 bindings and the number of round-trips required to complete
 authentication exchange is not minimal. SASL WG is working on a
 separate document that should address these limitations.

1.1. Relationship to Other Documents

 This document, together with RFC 4422, obsoletes RFC 2222 in its
 entirety. This document replaces Section 7.2 of RFC 2222. The
 remainder is obsoleted as detailed in Section 1.2 of RFC 4422.

2. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [KEYWORDS].

3. Kerberos V5 GSS-API Mechanism

 The SASL mechanism name for the Kerberos V5 GSS-API mechanism
 [RFC4121] is "GSSAPI". Though known as the SASL GSSAPI mechanism,
 the mechanism is specifically tied to Kerberos V5 and GSS-API’s
 Kerberos V5 mechanism.

Melnikov Standards Track [Page 2]

RFC 4752 SASL GSSAPI Mechanism November 2006

 The GSSAPI SASL mechanism is a "client goes first" SASL mechanism;
 i.e., it starts with the client sending a "response" created as
 described in the following section.

 The implementation MAY set any GSS-API flags or arguments not
 mentioned in this specification as is necessary for the
 implementation to enforce its security policy.

 Note that major status codes returned by GSS_Init_sec_context() or
 GSS_Accept_sec_context() other than GSS_S_COMPLETE or
 GSS_S_CONTINUE_NEEDED cause authentication failure. Major status
 codes returned by GSS_Unwrap() other than GSS_S_COMPLETE (without any
 additional supplementary status codes) cause authentication and/or
 security layer failure.

3.1. Client Side of Authentication Protocol Exchange

 The client calls GSS_Init_sec_context, passing in
 input_context_handle of 0 (initially), mech_type of the Kerberos V5
 GSS-API mechanism [KRB5GSS], chan_binding of NULL, and targ_name
 equal to output_name from GSS_Import_Name called with input_name_type
 of GSS_C_NT_HOSTBASED_SERVICE (*) and input_name_string of
 "service@hostname" where "service" is the service name specified in
 the protocol’s profile, and "hostname" is the fully qualified host
 name of the server. When calling the GSS_Init_sec_context, the
 client MUST pass the integ_req_flag of TRUE (**). If the client will
 be requesting a security layer, it MUST also supply to the
 GSS_Init_sec_context a mutual_req_flag of TRUE, and a
 sequence_req_flag of TRUE. If the client will be requesting a
 security layer providing confidentiality protection, it MUST also
 supply to the GSS_Init_sec_context a conf_req_flag of TRUE. The
 client then responds with the resulting output_token. If
 GSS_Init_sec_context returns GSS_S_CONTINUE_NEEDED, then the client
 should expect the server to issue a token in a subsequent challenge.
 The client must pass the token to another call to
 GSS_Init_sec_context, repeating the actions in this paragraph.

 (*) Clients MAY use name types other than GSS_C_NT_HOSTBASED_SERVICE
 to import servers’ acceptor names, but only when they have a priori
 knowledge that the servers support alternate name types. Otherwise
 clients MUST use GSS_C_NT_HOSTBASED_SERVICE for importing acceptor
 names.

 (**) Note that RFC 2222 [RFC2222] implementations will not work with
 GSS-API implementations that require integ_req_flag to be true. No
 implementations of RFC 1964 [KRB5GSS] or RFC 4121 [RFC4121] that
 require integ_req_flag to be true are believed to exist and it is
 expected that any future update to [RFC4121] will require that

Melnikov Standards Track [Page 3]

RFC 4752 SASL GSSAPI Mechanism November 2006

 integrity be available even in not explicitly requested by the
 application.

 When GSS_Init_sec_context returns GSS_S_COMPLETE, the client examines
 the context to ensure that it provides a level of protection
 permitted by the client’s security policy. In particular, if the
 integ_avail flag is not set in the context, then no security layer
 can be offered or accepted.

 If the conf_avail flag is not set in the context, then no security
 layer with confidentiality can be offered or accepted. If the
 context is acceptable, the client takes the following actions: If the
 last call to GSS_Init_sec_context returned an output_token, then the
 client responds with the output_token, otherwise the client responds
 with no data. The client should then expect the server to issue a
 token in a subsequent challenge. The client passes this token to
 GSS_Unwrap and interprets the first octet of resulting cleartext as a
 bit-mask specifying the security layers supported by the server and
 the second through fourth octets as the maximum size output_message
 the server is able to receive (in network byte order). If the
 resulting cleartext is not 4 octets long, the client fails the
 negotiation. The client verifies that the server maximum buffer is 0
 if the server does not advertise support for any security layer.

 The client then constructs data, with the first octet containing the
 bit-mask specifying the selected security layer, the second through
 fourth octets containing in network byte order the maximum size
 output_message the client is able to receive (which MUST be 0 if the
 client does not support any security layer), and the remaining octets
 containing the UTF-8 [UTF8] encoded authorization identity.
 (Implementation note: The authorization identity is not terminated
 with the zero-valued (%x00) octet (e.g., the UTF-8 encoding of the
 NUL (U+0000) character)). The client passes the data to GSS_Wrap
 with conf_flag set to FALSE and responds with the generated
 output_message. The client can then consider the server
 authenticated.

3.2. Server Side of Authentication Protocol Exchange

 A server MUST NOT advertise support for the "GSSAPI" SASL mechanism
 described in this document unless it has acceptor credential for the
 Kerberos V GSS-API mechanism [KRB5GSS].

 The server passes the initial client response to
 GSS_Accept_sec_context as input_token, setting input_context_handle
 to 0 (initially), chan_binding of NULL, and a suitable
 acceptor_cred_handle (see below). If GSS_Accept_sec_context returns
 GSS_S_CONTINUE_NEEDED, the server returns the generated output_token

Melnikov Standards Track [Page 4]

RFC 4752 SASL GSSAPI Mechanism November 2006

 to the client in challenge and passes the resulting response to
 another call to GSS_Accept_sec_context, repeating the actions in this
 paragraph.

 Servers SHOULD use a credential obtained by calling GSS_Acquire_cred
 or GSS_Add_cred for the GSS_C_NO_NAME desired_name and the Object
 Identifier (OID) of the Kerberos V5 GSS-API mechanism [KRB5GSS](*).
 Servers MAY use GSS_C_NO_CREDENTIAL as an acceptor credential handle.
 Servers MAY use a credential obtained by calling GSS_Acquire_cred or
 GSS_Add_cred for the server’s principal name(s) (**) and the Kerberos
 V5 GSS-API mechanism [KRB5GSS].

 (*) Unlike GSS_Add_cred the GSS_Acquire_cred uses an OID set of GSS-
 API mechanism as an input parameter. The OID set can be created by
 using GSS_Create_empty_OID_set and GSS_Add_OID_set_member. It can be
 freed by calling the GSS_Release_oid_set.

 (**) Use of server’s principal names having
 GSS_C_NT_HOSTBASED_SERVICE name type and "service@hostname" format,
 where "service" is the service name specified in the protocol’s
 profile, and "hostname" is the fully qualified host name of the
 server, is RECOMMENDED. The server name is generated by calling
 GSS_Import_name with input_name_type of GSS_C_NT_HOSTBASED_SERVICE
 and input_name_string of "service@hostname".

 Upon successful establishment of the security context (i.e.,
 GSS_Accept_sec_context returns GSS_S_COMPLETE), the server SHOULD
 verify that the negotiated GSS-API mechanism is indeed Kerberos V5
 [KRB5GSS]. This is done by examining the value of the mech_type
 parameter returned from the GSS_Accept_sec_context call. If the
 value differs, SASL authentication MUST be aborted.

 Upon successful establishment of the security context and if the
 server used GSS_C_NO_NAME/GSS_C_NO_CREDENTIAL to create acceptor
 credential handle, the server SHOULD also check using the
 GSS_Inquire_context that the target_name used by the client matches
 either

 - the GSS_C_NT_HOSTBASED_SERVICE "service@hostname" name syntax,
 where "service" is the service name specified in the application
 protocol’s profile,

 or

 - the GSS_KRB5_NT_PRINCIPAL_NAME [KRB5GSS] name syntax for a two-
 component principal where the first component matches the service
 name specified in the application protocol’s profile.

Melnikov Standards Track [Page 5]

RFC 4752 SASL GSSAPI Mechanism November 2006

 When GSS_Accept_sec_context returns GSS_S_COMPLETE, the server
 examines the context to ensure that it provides a level of protection
 permitted by the server’s security policy. In particular, if the
 integ_avail flag is not set in the context, then no security layer
 can be offered or accepted. If the conf_avail flag is not set in the
 context, then no security layer with confidentiality can be offered
 or accepted.

 If the context is acceptable, the server takes the following actions:
 If the last call to GSS_Accept_sec_context returned an output_token,
 the server returns it to the client in a challenge and expects a
 reply from the client with no data. Whether or not an output_token
 was returned (and after receipt of any response from the client to
 such an output_token), the server then constructs 4 octets of data,
 with the first octet containing a bit-mask specifying the security
 layers supported by the server and the second through fourth octets
 containing in network byte order the maximum size output_token the
 server is able to receive (which MUST be 0 if the server does not
 support any security layer). The server must then pass the plaintext
 to GSS_Wrap with conf_flag set to FALSE and issue the generated
 output_message to the client in a challenge.

 The server must then pass the resulting response to GSS_Unwrap and
 interpret the first octet of resulting cleartext as the bit-mask for
 the selected security layer, the second through fourth octets as the
 maximum size output_message the client is able to receive (in network
 byte order), and the remaining octets as the authorization identity.
 The server verifies that the client has selected a security layer
 that was offered and that the client maximum buffer is 0 if no
 security layer was chosen. The server must verify that the src_name
 is authorized to act as the authorization identity. After these
 verifications, the authentication process is complete. The server is
 not expected to return any additional data with the success
 indicator.

3.3. Security Layer

 The security layers and their corresponding bit-masks are as follows:

 1 No security layer
 2 Integrity protection.
 Sender calls GSS_Wrap with conf_flag set to FALSE
 4 Confidentiality protection.
 Sender calls GSS_Wrap with conf_flag set to TRUE

 Other bit-masks may be defined in the future; bits that are not
 understood must be negotiated off.

Melnikov Standards Track [Page 6]

RFC 4752 SASL GSSAPI Mechanism November 2006

 When decoding any received data with GSS_Unwrap, the major_status
 other than the GSS_S_COMPLETE MUST be treated as a fatal error.

 Note that SASL negotiates the maximum size of the output_message to
 send. Implementations can use the GSS_Wrap_size_limit call to
 determine the corresponding maximum size input_message.

4. IANA Considerations

 IANA modified the existing registration for "GSSAPI" as follows:

 Family of SASL mechanisms: NO

 SASL mechanism name: GSSAPI

 Security considerations: See Section 5 of RFC 4752

 Published specification: RFC 4752

 Person & email address to contact for further information:
 Alexey Melnikov <Alexey.Melnikov@isode.com>

 Intended usage: COMMON

 Owner/Change controller: iesg@ietf.org

 Additional information: This mechanism is for the Kerberos V5
 mechanism of GSS-API.

5. Security Considerations

 Security issues are discussed throughout this memo.

 When constructing the input_name_string, the client SHOULD NOT
 canonicalize the server’s fully qualified domain name using an
 insecure or untrusted directory service.

 For compatibility with deployed software, this document requires that
 the chan_binding (channel bindings) parameter to GSS_Init_sec_context
 and GSS_Accept_sec_context be NULL, hence disallowing use of GSS-API
 support for channel bindings. GSS-API channel bindings in SASL is
 expected to be supported via a new GSS-API family of SASL mechanisms
 (to be introduced in a future document).

 Additional security considerations are in the [SASL] and [GSS-API]
 specifications. Additional security considerations for the GSS-API
 mechanism can be found in [KRB5GSS] and [KERBEROS].

Melnikov Standards Track [Page 7]

RFC 4752 SASL GSSAPI Mechanism November 2006

6. Acknowledgements

 This document replaces Section 7.2 of RFC 2222 [RFC2222] by John G.
 Myers. He also contributed significantly to this revision.

 Lawrence Greenfield converted text of this document to the XML
 format.

 Contributions of many members of the SASL mailing list are gratefully
 acknowledged, in particular comments from Chris Newman, Nicolas
 Williams, Jeffrey Hutzelman, Sam Hartman, Mark Crispin, and Martin
 Rex.

7. Changes since RFC 2222

 RFC 2078 [RFC2078] specifies the version of GSS-API used by RFC 2222
 [RFC2222], which provided the original version of this specification.
 That version of GSS-API did not provide the integ_integ_avail flag as
 an input to GSS_Init_sec_context. Instead, integrity was always
 requested. RFC 4422 [SASL] requires that when possible, the security
 layer negotiation be integrity protected. To meet this requirement
 and as part of moving from RFC 2078 [RFC2078] to RFC 2743 [GSS-API],
 this specification requires that clients request integrity from
 GSS_Init_sec_context so they can use GSS_Wrap to protect the security
 layer negotiation. This specification does not require that the
 mechanism offer the integrity security layer, simply that the
 security layer negotiation be wrapped.

8. References

8.1. Normative References

 [GSS-API] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [KERBEROS] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [KEYWORDS] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [KRB5GSS] Linn, J., "The Kerberos Version 5 GSS-API Mechanism", RFC
 1964, June 1996.

Melnikov Standards Track [Page 8]

RFC 4752 SASL GSSAPI Mechanism November 2006

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121, July
 2005.

 [SASL] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [UTF8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

8.2. Informative References

 [RFC2078] Linn, J., "Generic Security Service Application Program
 Interface, Version 2", RFC 2078, January 1997.

 [RFC2222] Myers, J., "Simple Authentication and Security Layer
 (SASL)", RFC 2222, October 1997.

Editor’s Address

 Alexey Melnikov
 Isode Limited
 5 Castle Business Village
 36 Station Road
 Hampton, Middlesex TW12 2BX
 UK

 EMail: Alexey.Melnikov@isode.com
 URI: http://www.melnikov.ca/

Melnikov Standards Track [Page 9]

RFC 4752 SASL GSSAPI Mechanism November 2006

Full Copyright Statement

 Copyright (C) The IETF Trust (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Melnikov Standards Track [Page 10]

