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Chapter 1

Introduction

1.1 About This Document

This document gives an introduction to the use of a computational fluid dy-
namics (CFD) program called ELMER. The use of the program is explained in
detail by three walk-through examples, namely by backward-facing step prob-
lem, Rayleigh-Bénard convection and radiation in axisymmetric enclosure.

ELMER consists of a preprocessor, a solver and a postprocessor. The idea
of this document is to explain how these parts work and how one can work with
these parts rather than to describe thoroughly mathematical and numerical
methods applied in ELMER.

The intended audience for this document are engineers and scientists in
industry and research institutes working with CFD. It is assumed that the reader
has a basic knowledge of mathematical modeling and numerical methods.

This document aims at advicing a first time user of ELMER to use the
program. Experienced users can utilize this document in solving their own
research problems or in supporting teaching and training at universities and
research institutes.

1.2 ELMER Development

ELMER development is a part of the Finnish national CFD programme coordi-
nated by the Technology Development Centre of Finland (TEKES) since 1995.
The main objective in this project is to develop a CFD program, based on the fi-
nite element method (FEM), which can be utilized in industrial processes where
heat transfer in different forms and incompressible fluid flows are present.

ELMER is under an active development. It is based on most sophisticated
and commonly known numerical methods. In ELMER development aspects like
program maintainance, suitability and portability to a wide range of computer
architectures are emphasized.

ELMER is being developed in co-operation between the Center for Scientific
Computing (CSC), Helsinki University of Technology (HUT), Okmetic Ltd., the
Technical Research Centre of Finland (VTT) and the University of Jyvaskyld
(JYU). ELMER development is coordinated by the Coordinating board which
pays close attention to the direction and quality control of research made in

1



2 CHAPTER 1. INTRODUCTION

Name Organisation  Expertise
Risto Nieminen HUT Theoretical physics

Chairman of Coordinating board
Eero-Matti Salonen HUT FEM
Timo Tiihonen JYU Mathematical modeling, FEM
Asko Vehanen Okmetic Ltd. Industrial applications

Table 1.1: Members of Coordinating board

Name Organisation Expertise

Olli Anttila Okmetic Ltd. Industrial applications

Harri Hakula HUT Mesh generation, direct and
iterative solvers, parallel
algorithms

Jari Jarvinen CSC Mathematical modelling, FEM

Petri Kallberg Digital Equipment Corp. Graph partitioning

Jouni Malinen CSC Direct and iterative solvers,
parallel algorithms

Juha Ruokolainen CSC Mathematical modelling, FEM,

direct and iterative
solvers, parallel algorithms,

visualization
Martti Verho VTT Preprocessing, CAD Interface
Riikka Virkkunen VTT Industrial applications
Joachim Wendt VTT Industrial applications

Table 1.2: Members of Research group

the Research group. The members of the Coordinating board and the Research
group have an unique mixture of experience in physics, mathematics, computa-
tional methods and computer science.

The members of the Coordinating board and the Research group have pre-
sented in Tables 1.1 and 1.2 (situation in October, 97).

Previously Rolf Stenberg from Helsinki University of Technology and Jari
Hémalédinen from the Technical Research Centre of Finland worked as active
members in Coordinating board and Research group, respectively.

1.3 Program Capabilities

1.3.1 Application Areas

ELMER is applicable in multi-physical industrial processes containing various
heat transfer mechanisms, i.e., conduction, convection and radiation, incom-
pressible fluid flows, phase changes, displacements and stresses. Typical indus-
trial applications can be
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e Chemical industry - heat and mass transfer of materials, e.g., drifting of
impurities

e Electronics industry - cooling of components in circuit boards and cabinets

e Semiconductor industry - Czochralski crystal growth, floating zone tech-
nique

e Metal industry - continuous casting, wire casting, heat treatment including
thermal stresses

e Paper industry - heat transfer in paper machine drying section

e Material processing industry - flows of molten materials

The above list is by no means exhaustive. It gives just an idea what kind of
physical phenomena can be simulated by ELMER.

1.3.2 Class of Problems

Problems to be considered can be steady or transient and they can be described
either in 2D or axisymmetric geometry. Moreover, the solver (finite element
routines, iterative and direct solvers) and the postprocessor support also 3D
geometries. In axisymmetric geometry all field variables are independent of
azimuthal direction. If there is no swirling motion, the problem is referred to as
an axisymmetric problem. Otherwise the problem is referred to as a cylindrical
problem.
In ELMER the following phenomena can be considered:

e Isothermal flows

e Pure heat transfer problems

Coupled fluid flows

Phase change problems

Displacements and stresses

In above cases velocity vector, pressure, temperature and displacement vec-
tor form a set of primary field variables. In all cases fluid flows are assumed
to be laminar. In stress analysis consideration is limited to elastic behaviour of
materials.

In isothermal flows there is no temperature dependence in the momentum
equation (no energy equation). On the other hand, in pure heat transfer prob-
lems there is no convection, i.e., heat is transferred by conduction or radiation
only, or there is a constant convection velocity (no momentum equation). In
coupled fluid flows velocity field depends on temperature distribution and vice
versa. Phase change problems are purposed to model solid-liquid phase changes
and they can be included either in pure heat transfer problems or in coupled
fluid flows. Displacements and stresses, caused for example by temperature
variations, are modeled in solid materials. In the following section the above
physical mechanisms are discussed in more detail.
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1.3.3 Mathematical Background

In solid and liquid materials heat transfer and incompressible fluid flow are
governed by heat and Navier-Stokes equations, which can be derived from the
basic principles of conservation of mass, momentum and energy. Fluid can be
either Newtonian or non-Newtonian. In the latter case the consideration in
ELMER is limited to purely viscous behaviour with the power-law model.

In the following we present the governing equations of fluid flow, heat transfer
and stresses in elastic material applied in ELMER. Also the most usual boundary
conditions applied in computations are described.

The Governing Equations

The heat equation is expressed as

or
PCp (E +- VT) —V - (kVT) = ph, (1.1)
where p is the density, ¢, the heat capacity at constant pressure, T' the tem-
perature, @ the convection velocity, k the heat conductivity and h is source of
heat.

The Navier-Stokes equations are written as

—

0 - . S
pa—‘j—v-<2u€>+p<u-v>u+w = of (1.2)
V-i = 0, (1.3)

where Z is the linear strain rate tensor, p the pressure, and p the viscosity of
the fluid. .

Most commonly the term pf represents a force due to gravity, in which case
the vector f is the gravitational acceleration. It can also represent, for instance,
the Lorenz force when magnetohydrodynamic effects are present.

In pure heat transfer problems the equation (1.1) is applied, whereas in
isothermal flows only the equations presented in (1.3) are taken into account.

For coupled fluid flows we assume that the Boussinesq approximation is valid.
This means that the density of the fluid is constant except in the body force

term where the density depends linearly on temperature through the equation

p=po(l=B(T —Tp)), (1.4)

where [ is the volume expansion coefficient and the subscript 0 refers to a refer-
ence state. Assuming that the gravitational acceleration § is the only external
force, then the force pog(1 — B(T — Tp)) is caused in the fluid by temperature
variations. This phenomenon is called Grashof convection or natural convection.

The solidification phase change model ELMER uses is an enthalpy based
method. The enthalpy is defined to be

H(T) = /OT <pcp + pL%) d\, (1.5)

where f(T') is the fraction of solid material as a function of temperature, and L is
the latent heat. The enthalpy-temperature curve is used to compute an effective
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heat capacity, whereupon the equations become identical to the heat equation.
There are two ways of computing the effective heat capacity in ELMER:

OH
Cp7eﬂ‘ = a—T, (16)
and
VH-VH\?
Coeff = (W) : (1.7)

The former method is used only if the local temperature gradient is very small,
while the latter is the preferred method. In transient simulations a third method
is used, given by

. _oH/ot
relt = T ot

(1.8)

Frictional heating may be applied by introducing a velocity dependent heat
source

hy =24z : E. (1.9)

The magnetic induction equation describes interaction of ionized plasma and
applied and flow induced magnetic fields (refer to Appendix B). The magnetic
induction equation is given by

OB 1 - -

— ——VXxVxB-VxiuxB=0, (1.10)

at O o
where o is the electrical conductivity of the material, and pg is the magnetic
permeability. The magnetic field induced force term for the flow momentum
equations is given by

. 1 - =
fm =—J x B, (1.11)
Ho
and the Joule heating by
I 5
hp = —5J7, (1.12)
Ol

where J is the current density.

ELMER has also an elastic stress analysis module, which is meant primarily
for computing thermal stresses. The equation of stress for isotropic elastic media
is

~VAV -d) = V - (2uF) + V((BA + 2u)B(T — Tp)) = F, (1.13)
where d is the displacement vector, S the heat expansion coefficient, and Fa
volume force, A and u are the Lamé parameters

Eo FE

AT AT on=20) T aaroy

(1.14)
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E is Young’s modulus, o is the Poisson ratio, and £ is the linear strain tensor
1
gij = 5 (di,j + djﬂ') . (1.15)

If one is interested in the stresses and not in the displacement field, which is
the primary variable, one may compute the stress tensor as a post processing
step (one can actually do this inside the ELMER, Post program), using the
stress-strain relations for elastic media:

=

=MV - d)T + 24F — 3\ + 2u)B(T — To)1, (1.16)

where T is the unit tensor.

In ELMER one can choose between transient and steady state analysis. In
transient analysis one has to set, besides boundary conditions, also initial values
for unknown variables.

The Boundary Conditions

For temperature one can apply boundary conditions and have either tempera-
ture or heat flux prescribed.
Dirichlet boundary condition (temperature is prescribed) reads as

T =T, (1.17)

The value of Ty can be constant or a function of time, position or other variables.
Heat flux depending on heat transfer coefficient o and external temperature
Text may be written as

—kg—T = (T — Teyt)- (1.18)
Both variables a and Tyt can be constant or functions of time, position or other
variables. If the heat transfer coefficient « is equal to zero, it means that the
heat flux on a boundary is identically zero. The Neumann boundary condition
—kOT /On = 0 is also used in a symmetry axis in 2D, axisymmetric or cylindrical
problems.
Heat flux can consist of idealized radiation whereupon

oT
—ho = oe(T* — Tay). (1.19)
Above, o is the Stefan-Boltzmann constant and e the surface emissivity. The
emissivity and the external temperature can again be constant or functions of
time, position, or other variables.
If the surface £ is receiving radiation from other surfaces in the system, then
the heat flux reads as

N

oTy, T 1
Y Wl ——§j e T 1.2
kkank oer (T, S, > ki 15 Si) (1.20)

where the subscripts ¢ and k refer to surfaces ¢ and k, and the parameters S;
and Sy to the specific surface areas. The factors G;; are Gebhardt factors,
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and N represents the total number of radiating surfaces present in the system.
Emissivities are assumed to be constant on each surface.
One may also give an additionl heat flux term as in

oT
A 1.21
3y =4 (1.21)
Similarly, boundary conditions for velocity components and tangential or
normal stresses can be defined.
In 2D or axisymmetric cases the Dirichlet boundary condition for velocity
component u; is simply

u; = ul. (1.22)

A value u! can be constant or a function of time, position or other variables. In
cylindrical cases the Dirichlet boundary condition for angular velocity wug is

ug = w, (1.23)

where w is the rotation rate.

In axisymmetric geometries one has to set u, = 0 and du,/dr = 0 (in
cylindrical problems also ug = 0) on the symmetry axis.

If there is no flow across the surface, then

T in=0 (1.24)

where 7 is the outward unit normal.
Surface stresses can be divided into normal and tangential stresses. Normal
stress is usually written in the form
8l
On = 5 = Pa (1.25)
where 7 is the surface tension coefficient, R the mean curvature and p, the
atmospheric (or external) pressure. Tangential stress has the form

or =V, (1.26)

where V, is the surface gradient operator.

The coefficient 7 is a thermophysical property depending on the temperature.
Temperature differences on the surface influence the transport of momentum
and heat near the surface. This phenomenon is called Marangoni convection or
thermocapillary convection. The temperature dependence of the surface tension
coefficient can be approximated by a linear relation:

7 =71 =T -To)), (1.27)

where ¥ is the temperature coefficient of the surface tension and the subscript
0 refers to a reference state. If a Boussinesq hypothesis is made, i.e., the sur-
face tension coefficient is constant except in (1.26) due to (1.27), the boundary
condition for tangential stress becomes

or = =0 VY. (1.28)
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In equation (1.25) it holds then that v = ~p. The linear temperature dependence
of the surface tension coefficient is naturally only one way to present the depen-
dence. In fact, the coefficient v can be any user defined function in ELMER.
One may also give the force vector on a boundary directly as in

F-ii=f. (1.29)
For stress analysis one may prescribe displacement on a boundary
di =d, (1.30)

or force on a boundary as in

i = f. (1.31)

Qll

1.3.4 Numerical Methods

As is well known, the convective transport term of the Navier-Stokes equations
and the heat equation is a source of both physical and numerical instability.
The numerical instability must be compensated somehow in order to solve the
equations on a computer. For this reason so called stabilized finite element
method ([1],[2]) is used in ELMER to discretize these equations. The equations
in the form implemented in ELMER and the discretization are described in
more detail in Appendix B. In Appendix C a brief introduction to the methods
used in computing the diffuse gray radiation boundary condition is given. In
Appendix D the free surface problem is presented.

The convection term of the Navier-Stokes equations is nonlinear and has to
be linearized for computer solution. There are two linearizations of the convec-
tion term in ELMER:

@ ViUVl (1.32)
and
@-Virid - VU+U-Vi—U-VU, (1.33)

where I/ is the velocity vector from the previous iteration. The first of the
methods is called Picard iteration or the method of the fixed point, while the
latter is called Newton iteration. The convergence rate of the Picard iteration is
of first order, and the convergence might at times be very slow. The convergence
rate of the Newton method is of second order, but to succesfully use this method,
a good initial guess for velocity and pressure fields is required. The solution to
this problem is to first take a couple of Picard iterations, and switch to Newton
iteration after the convergence has begun.

The heat equation is also a nonlinear when radiation is modelled. The
remarks made previously for the Navier-Stokes equations apply here as well.

When iterating the nonlinearity one may also use relaxation, where the cur-
rent solution vector is replaced by a vector defined as

u; = du; + (1 — Nuj_1, (1.34)

where A is the relaxation factor. A factor below unity might help to stabilize
the nonlinear solver. A factor above unity might speed up the convergence.
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Time integeration of the equations is done with the implicit Euler method.
Mathematically this reads

M%—ltl +AUZF:>AitM(lli—llifl)-f-AuiNFi. (135)

ELMER has both a direct and iterative solver for solving the various linear
systems. The direct solver uses a band matrix solver from the LAPACK set
of linear algebra routines. This routine is based in LU decomposition. The
iterative solver uses the package HUTIter described elsewhere in this document.
HUTTter contains various iterative solution algorithms, including stabilized bi-
conjugate gradient (BiCGStab) method, transpose free quasi minimal residual
(TFQMR) method, conjugate gradient squared (CGS) method, and generalized
minimal residual (GMRES) method. With a large base of experiments behind,
we recommend the use of the stabilized biconjugate gradient method, at least
with the ELMER Solver.

The iterative methods are almost always not usable for the linear systems
in our context without preconditioning. The preconditioning method of choice
in ELMER is the Incomplete LU (ILU) decomposition preconditioning. As the
name implies, some part of the LU decomposition of the linear system coefficient
matrix is computed. The decomposition is then used to stabilize the linear
system. Instead of the original equation

Ax =b (1.36)
we will try to solve the equation
(ILU) YAz = (ILU) b, (1.37)

which will hopefully be more stable than the original equation. Experiments
have shown this method to be effective. The equation (1.37) is basically the
idea behind the method, not the actual algorithm used.

1.3.5 ELMER Structure

ELMER consists of the CAD Interface, the mesh generator, the solver and the
postprocessor. In addition, computation of view factors needed in radiation
modeling is available. The computational flow of ELMER is shown in Figure
1.1. ELMER parts are introduced in detail in the following chapters.

SETUP CAD-INTERFACE ‘

MESH VIEW POST-
SERIAL FLOW ( GENERATOR l [ FACTORS ] ( SOLVER ] ( PROCESSING ]

GRAPH
PARALLEL FLOW Li, PARTITIONING H SOLVER ]—J

| ELMER I/O - LIBRARY I

‘ ELMER DATABASE |

Figure 1.1: Computational flow of the ELMER program
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ELMER is a collection of programs rather than a single monolithic appli-
cation. Each phase of the computational process, such as mesh generation or
solution of the linear equations, is handled separately. The separate processes
communicate via a model database using a common set of routines. This flexible
design enables the engineer to work on a small scale simulation on his desktop
before performing the full simulation on an appropriate machine.



Chapter 2

The Cad i1nterface

2.1 Introduction

Cad interface is the ELMER user interface module. With it you can set all
the definitions which are needed for solving a simulation problem with other
ELEMR modules.

When starting with a new problem, model geometry must be first read from
an external file. This file can be a cad model which has been created with
an external cad program or by other means. Currently only linear 2D cad
geometries are supported. This is because current ELMER mesh generator is
restricted to linear 2D geometry.

Input file can also be an external 2D or 3D mesh file. Currently supported
mesh file formats are described below in context of the File menu commands.

This external file should describe the geometry of all the bodies (called also
objects or materials) in the problem domain. Cad interface creates internally a
so called boundary representation from the input geometry. This means that the
geometry should be completely described by the body edges in the cad model
or by the mesh surface elements in the external mesh file.

All bodies should form a closed and connected area. In 2D this means that
the edge-loops, which define the bodies, should be closed and not intersecting
with themselves or with any other edge-loops.

In 3D bodies are defined by surfaces (surface patches) and restrictions are
similar as in 2D. Surfaces are described by (3D) edge-loops and again similar
restrictions hold as for bodies in 2D.

Boundaries (edges or surfaces) of separate bodies can be adjacent. They
form so called inner boundaries between bodies. Other boundaries are called
outer boundaries.

In the following inner and outer body boundaries are often called as bound-
ary elements. These should not be confused with the mesh elements.

When an external cad geometry is read in, it cannot be changed. The bound-
ary elements in the cad input file are consequently the smallest level where, for
example, boundary conditions can be set. On the other hand, boundary ele-
ments cannot be recombined into larger elements. Creating unnecessary many
boundary elements (edges) will create a long list of separate boundary elements,
although from the problem point of view these elements could form a single phys-

11
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ical boundary. These restrictions should be taken into account when defining
the geometry in the external cad program.

On the other hand, when we use an external mesh file, a typical problem is
that we have too few boundaries. Without any specific boundary information,
the only way to find boundaries is to devide them into internal and external
boundaries based on body (material) information which is attached to each
mesh element. If we have only one body, this would mean that we have only
one (outer) boundary for the whole whole model. However, contrary to the cad
geometry, it is possible to modify mesh boundaries. You can split and combine
mesh boundaries by regrouping elements which defines these boundaries. This
procedure is explained in the context of the Edit menu commands.

2.2 Model data and files

When working with cad interface, there is no need to directly manipulate the
files which store the model data. However, it is useful to understand how data
and files are organized.

Cad interface stores all the model definitions in a separate model file. Default
name for this file is modelname.ecf ("ecf’ for Elmer Cadinterface File). This file
stores all the model information in an internal format, except the possible finite
element mesh. Only mesh file name is stored in the model file.

When a model file is created and saved, all the model information which
is relevant for Elmer Solver is by default stored in a separate solver input file.
Default name for this file is modelname.sif (’sif” for Solver Input File).

If model geometry is read from an external cad file, Elmer Mesh program
can be used to generate the finite element mesh. This mesh is stored in a set
of files which are named using the following scheme: modelname.mesh.header,
modelname.mesh.nodes, modelname.mesh.elements, etc.

The dircetory where these files are stored depends on the model directory
and model name. For example, if model directory is /elmer/MODELS and
model name is stepflow, all files will be stored by default in the directory
/elmer /MODELS /stepflow.

So, model name defines the lowest level for the directory. Model name is
also by default part of the individual file names.

For cad interface the model file is the most essential file. All the other files
can be recreated from this file using the cad interface. But if model file is
deleted, all definitions are also lost.

2.3 Using Cadinterface

Cad interface is started by entering command ElmerCadi in the command line.
You can use the following options when starting the program:

o —model-directory=model directory
e —model-name=model name

o —settings-file=settings file name
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For example, the following command would set model’s files directory to be
/elmer /MODELS /stepflow:

ElmerCadi -model-directory=/elmer/MODELS/ -model-name=stepflow

If a model file stepflow.ecf were stored in that directory, it would be auto-
matically loaded in the cad interface.

The settings file is a way to control the default behaviour of the cad inter-
face. If option -settings-file is not used, program tries to open a file named
ElmerCadiSettings username.txt or ElmerCadiSettings.txt, where username is
the string stored in the shell variable USER (or USERNAME). These files are
searched in the previous order first in the current directory and then in the
directory given in the environmental variable ELMER CADI HOME, if this
is defined.

If no settings file is found (or given as command line option) preset default
values are used. The structure and available keywords in the settings files are
explained in the appendix F.

When you start the cad interface, the main window with menu and command
buttons is displayed as shown in Figure 2.1.

Cad interface for ELMER - Radiation® M=l E3
File Edit [Dizplay Problem Model Mesh Solver Bun Help
Draw | Drraw || Dirawm I Cad Mesh |
ﬂﬂﬂﬂﬂﬂ bodies | sufaces || edoes | osamet _Qeomet
EM Ratate: ™ = T v T =2 Eoeldei'i Dizplay Reset
Save
madel
Fiead command line argument: MODEL-DIRECTORY wit | Elamicah
Reading settings file: d:elmer/sic/Cadi/EImerCadiS ettings
Load
mezh
Solve
Stop
7 I I z Clear
Browse
log
E quations: |3.-"3 [ Flow. Heat. | Timesteps: IED
daterials: |2.-"3 Initial cond: |1 /3 Body forces: INone
Outer be: |3H1E Inner be; INone Mesh param: INone

Figure 2.1: The cad interface main screen.

At the top of the window is the menu bar and two rows of command buttons.
At the right side is an addional column of buttons. In the middle of the window
is a message area, where short messages concerning different actions and com-
mands are displayed. The Clear command button deletes all current messages
in the message area. The Browse log command button open the latest module
log file in a brwoser window.

At the bottom of the window is located a set counter fields. They display
the total number of different parameters and the number of currently defined
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parameters. For example, you can see in Figure 2.1 that 50 timesteps have been
defined, and that only one of the three bodies has currently an initial condition
defined.

The main idea of the cad interface is to offer an easy to use and flexible
interface for the problem definition. Consequently, there are no strict rules which
should be obeyed when entering the data. However, certain basic definitions
must be first given, until further data entry is possible. The following is a
guideline for the recommended data entry steps when defining a new problem:

e Read the geometry from an external cad file or mesh file

e Give a name for the model (model name is needed when creating the model
directory)

e Modify mesh boundaries, if needed (when starting from an external mesh
file)

¢ Give meaningful names for bodies and boundaries
e Set coordinate system and the time dependency type for the model
e Assign equations for all the bodies

e Set other body and body element related data (material properties, bound-
ary conditions etc.)

e Set solver parameters, timestepping rules etc.

e Save the model

Defining body equations is perhaps the most important of these tasks. On
one hand, all the bodies in the problem must have an equation before any
equation related data (like material properties, body forces, initial and boundary
conditions) can be given for a body. On the other hand, when any equation
related data (like initial or boundary conditions) is entered for a body, changing
the already assigned equation could mean that these definitions must be removed
from the model.

This dependency is mainly because assigning an equation also defines the
type of suitable constraints for the body. For example, if their is no flow equation
assigned for a body, it should not be possible to enter any flow dependent
parameters for the body. On the other hand, if some parameters are set for
a body, changing the body equation could introduce contradictions with the
existing definitions, and the conflicting parameter settings must be removed.

In the rest of this chapter we go through more thoroughly the menus and
commands and explain how they are used for the problem definition.

2.4 File menu

File menu commands are used for opening, saving and browsing the model data
and related files. These commands are shown in Figure 2.2.

Commands for creating a new model or opening an existing model are the
following;:
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Edit Display Froblem Model M
Open Cad file...

Open mesh file..

Open madel file...

Load mesh (Bt
Unload mezh
Sawe model file [t

Save model file As...

EBrowse model file...
Browee zolver input file...
EBrowse logfile...

Save mesh in Elmer farmat. ..
Save mesh in ElmarPost farmat. ..

Exit s

Figure 2.2: The file menu.

e Open Cad file: read model geometry from an exernal cad file

e Open mesh file: read model geometry and mesh from an external mesh
file

e Open model file: read a previously saved model file (.ecf file)

If a model was previously opened and there is some unsaved data, you will
be given an option to save the old model before loading a new one.

Default file name extensions for cad geometry files are .unv (Ideas neutral
cad file format), .igs (Iges file format) and .egf (Elmer geometry file format).
The last format is explained in the appendix G.

Data in these files should describe bodies in wireframe 2D format. This is
currently the only cad geometry format that is supported.

Default file name extensions for external mesh files are .unv (Ideas mesh
files) and .inp (Abaqus mesh files).

The default extension for model files is .ecf. This extension is optional, but
it is recommended for clarity.

Commands which store model definitions and related data are the following:

e Save model file: saves model file (.ecf file), solver input file (.sif file)
and stores model geometry in the model’s data files directory

e Save model file As: same as previous, but the name and location for
the model file is asked instead of using the default name and location.

When model definitions have been modified, model data should be saved.
Otherwise updated model data is not available for other ELMER modules.

If mesh is very large, it could be useful not to read the mesh automatically
when a model file is opened for example just to change some material properties
(this can be controlled by the cad interface settings). Or, it could be useful
to remove a large mesh from the cad interface memory before starting other
ELMER modules. The following commands can be used during the cad interface
session to load/unload the mesh:
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e Load mesh file: if mesh file is available, this commands reads mesh
e Unload mesh file: this commands removes mesh from the memory

The following commands open files in a browser window. It is not possible
to edit the files using these commands.

e Browse model file: displays model file in a browser window

e Browse solver input file: displays solver input file in a browser win-
dow

e Browse log file: displays the log file which was created by the last
activated ELMER module

Note: although model file is a normal text file, it is not meant to be edited
‘offline’. The internal structure of the file is strictly predefined and any outside
changes could make it unreadable for the cad interface program.

e Save mesh in Elmer format: by default an external mesh is saved in
Elmer format when model is save. You can use this command to do it
explicitely, if the default behaviour is not in use.

e Save mesh in ElmerPost format: saves mesh in Elmer postprocessor
format

Exit command ends the session. If there is any unsaved data, you will be
given an option to save the data before ending the program.

2.5 Edit menu

Body properties

This command opens a panel where you can edit body names and the colors
which are used when bodies are displayed in the graphics window. This panel
is shown in Figure 2.3.

Edit body properties [_ (O] x|

el -
Heater m

0k | Cancel | Apply |

Figure 2.3: The Body properties panel.

Default body names are in the form BodyN, where N is a sequence number.
Because body names are displayed in the panels where body related data is
entered, given meaningful names for the bodies could make data entry easier.
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When a body is selected from the list box, its name is dislayed in the name
entry field. You can edit the name in this field.

The color for a selected body is shown on the Set color button. This color
is used when the body is displayed in the graphics window.

If the graphics window is not currently visible, you can open it by pressing
the Display button in the toolbar.

Pressing the Set color button opens a color palette where you can select a
new color for the body.

Boundaries

This command opens a panel where you can edit boundary names. If geometry
is read from an external mesh file (ie. model does not contain a cad geometry),
you can also edit boundaries by splitting and combining them. This panel is
shown in Figure 2.4.

Edit boundaries

IS[=] E3

Selecta body: Select a boundarny:
Body(2] Body(1]-Bndr02
Body(3] Body(1]-Bndr03
Body[1]-Bndr04

Body name: IMeIt
Boundary name: IGamma-4

Split | Combine

Unda Redo

Selection mehod:
: Selection mode:
& By neighbor
' Exterd
€ By nomal
" Reducs
€ By plane
€ Toggle
oAl
Mormal tal. [Deg 0-45]: ID.ED I I Mext active:
Distance tol. (% 0-1]: ID.D | | |

Unda

()3 | Cancel |

Figure 2.4: The Boundaries panel.

Select Redo

Default boundary names are in the form BoundaryN, where N is a sequence
number. You can select a boundary from the list box, or you can select it from
the graphics display. The name of the selected boundary is diplayed in the
boundary name entry field, where you can edit it.

You can only edit boundaries for one body or bodypair at a time. Bound-
aries are split by selecting a group of mesh elements in the boundary being
edited, and using the split command. Only one boundary can be split at a
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time. Only complete boundaries can be combined. Split and combine opera-
tions can be applied in any order and both operations can be cancelled using
the undo command.

A boundary is selected for editing by double clicking the boundary either in
the boundary list box or in the graphic display. If you press control key at the
same time, you can select multiple boundaries.

There are two methods to select mesh elements for split operation within a
boundary. You can either select elements by 'painting’ them. This is done by
pressing the shift key and painting with the mouse while pressing the left mouse
button. If you press the control key, instead of the shift key, you can select
mesh elements by clicking on them with the left mouse button. Using the right
mouse button cancels selections.

The other way is to first select a reference mesh element using the mouse.
After that you can extend the selection by using the Select button in the
panel. What is selected is controlled by the criteria in the Selection method
radiobutton group. The criteria have the following meaning:

e By neighbour: selection is extended by adding neighbour elements for
currently selected elements. Neighbour elements are added only if their
normal vector changes less than what is set by the Normal tolerance
slider. Using this method you can quite easily and quickly extend the
selection along a smooth curve or a curved surface

e By normal: select all elements whose normal vector differs less than the
normal tolreance from the normal vector of the reference element.

e By plane: select all elements which are on the same plane as the reference
element. Plane distance from the origin can differ by the plane tolerance
which is set using the Distance tolerance slider

e All: select all mesh elements in the boundary

How the selection actually behaves, can be be controlled by the settings in
the Selection mode radiobutton group:

e Extend: always extend current selection
e Reduce: always reduce (unselect) current selection

e Toggle: toggle the selection state for the elements being effected

Value displayed in the Next active field tells the next tolerance value which
would select new mesh elements.

Remove cad geometry

If model’s geometry is defined by a cad geometry, its mesh boundaries cannot
be modified. This limitations is to prevent conflicts between cad and mesh
geometry. However, if the original cad geometry is removed from the model,
existing mesh can modified as it were a normal external mesh.

With this command you can remove the original cad geometry from the
model. Note that remeshing is not possible if cad geometry is removed.
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Edit solver input file

With this command you can open an existing solver input file for editing. Note
that all changes will be by default overwritten when the model is saved for the
next time. However, you can prevent this by setting the Auto Save Solver
Input flag to be False in the settings.

Settings

This command opens a panel where you can modify current settings. This panel
is shown in Figure 2.5.

User settings M=l E3

Yalues for user settings:

Models directory d:/elmer/todelz

Cad files directory d:/elmer/data/cad_files
Mesh files directory | d: /elmer/data/mesh_files
Material files directary

Input files directory

Output files directary

Usze model settings v
Auto save external mesh in Elmer format Iv!
Auta load mesh =
Auto save model file Iv!
Auto zave zolver input file v

Browser command D:AProgram FileshT extPady TATPAD32 EXE
Editor command [:4Program FileshT extPad\T=TPAD 32 EXE

Gebhardt factors browse: o Logwind. ¢ Shellwind © MNone

Mesh generatingbrowse: & | agwind. ¢ Shellwind ¢ Mane

Galver browze: ' Logwind. @ Shellwind ¢ Mone
Wiew Factars browse: @ Logwind © Shellwind ¢ Mone
Save in file Save in model Save for session Cancel

Figure 2.5: The Settings panel.

Entries in this panel correspond to the keywords in the settings file. These
keywords are explained in the appendix F.
You can use the following options to save changes made in the panel:

e Save in file: settings are saved in the current settings file

e Save in model: settings are saved (when applicable) in the current model
file

e Save for session: settings apply only in the current session

Occasionally, it could be useful to use the Save for session option before
loading a new model. For example, if the model contains a very large mesh,
and you would not like to load the mesh, you could temporarily turn off the
loading. This can be done by unchecking the Use model settings and Auto
load mesh checkboxes, and using then the Save for session command.
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2.6 Display menu

Model can be displayed using the Display command in the Display menu. This
command is also attached to the Display button. It is located in the toolbar
below the menubar.

Model is displayed in a separate graphics window. It can be manipulated
in the window either by dragging it with the mouse, or using the buttons in
the toolbar. Dragging with the left mouse button moves the model in the
window. Dragging with the right button rotates the model. You can scale
(zoom) the model with the middle mouse button (or pressing left and right
buttons simultaneously). Reset command sets the display into its initial state.

An example of the graphics window is shown in Figure 2.6. It shows the
geometry of the radiation problem which is described in 7.

 Model Radiation [0.45 x 0.85) =] E3

Figure 2.6: Display of the radiation example.

Bodies are displayed using different colors. All body elements (inner and
outer boundaries) are uniquely numbered. These numbers are also used to
identify the elements in the data entry panels. Numbering is fixed and it is
internal to the system. Numbers do not have any specfic meaning and the
numbering is not necessarily even continuous.

You can select bodies to be displayed using the Select bodies command
in the Display menu or with the button in the toolbar. This option is not very
useful for 2D models, but for complex 3D model it can be quite helpful.

In the toolbar, there are five other buttons, which control how the geometry
is displayed:

e Draw bodies: cad geometry is drawn in solid format, mesh geometry is
drawn using volume element edges

e Draw surfaces: mesh geometry is drawn using filled boundary elements
(only for 3D models)

e Draw edges: cad geometry is drawn using edges, mesh geometry is drawn
using boundary element edges
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e Cad geometry: activates/deactivates cad geometry displaying (if cad ge-
ometry is available)

e Mesh geometry: activates/deactivates mesh geometry displaying (if mesh
is geometry available)

2.7 Problem menu

ISl El fodel Mesh  Solver Bun

Model name and file directories. ..

Datafiles...

LCoordinate zettings. ..
Timestep settings...

Physical constants....

Equations...

E quation zolving order. ..

Figure 2.7: The Problem menu.

This is the menu where the actual problem definition starts. Most of the
definitions concern the whole model and are not specific to bodies or body
elements.

Model name and file paths

This command opens a panel where you can enter a name for the model and
also the file paths which are used when reading and saving data files. This panel
is shown in Figure 2.8.

Edit model properties =]
Model name: IFladiatinn
todel DE directony: Id:.-"elmer.-"MDdeIsf

odel description:

I aterial files directony:

|
Input files directony: I
|

Output files directany:

u]:8 Cancel | Apply |

Figure 2.8: The Model name and file paths panel.

The first three fields are:

e Model name: used to identify model data in the database

e Model DB directory: root directory for the model database
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e Model description: comment text (optional)

Model description is optional and it is displayed only in this panel.
The last three fields are for setting the input and ouput paths:

e Input file path: this is used as a common input path whenever a file-
name is entered without a path. For instance, all external files which store
boundary condition definitions, could be stored in one directory. When
a filename is then given as a boundary condition ’value’ in the boundary
condition definition panel, it would not be necessary to enter each time a
path name.

e Material file path: this is used similarily as the input path, but only in
the material properties definition panel. This way it is possible to collect
all material files into one directory as a kind of a material database

e Qutput file path: the default directory for solver output (result) files.

Datafiles

This command opens a panel where you specify names for input and output
files. The panel is shown in Figure 2.9

Data files =[O x]
Solver input file: Id:f’elmew’Modalsz’Fladiation.’F\adiation.sif

Resul file: | d: elmen/M adels/R adiation/R adition. dat

Restart file: I

Restart timestep position: I—

Postprocessor file: Id:f’elmer.-"Models.-"Hadiatiom’Hadiation.ep

Gebhard factars fils: Id: felmer/Models/R adiation/G ebhardtF actors. dat

Wiew factors file: | d: /elmen/M adels/R adiation/Viewfactors. dat
QK | Cancel | Apply |

Figure 2.9: The Data files panel.

Most of the file names in the panel have a default value. This value is
constructed by adding the default path to the default file name. The default
path is formed by adding the model name to the model DB directory.

If you enter a path name in addition to the file name, the value entered in
the field is used as it is (ie. nothing is added to entered values). If there is only
the file name part in the field and the Apply or 0k button is pressed, default
path is automatically added to the file name.

For example, if you want to use the default solver input file name and the
current directory, you should enter: ./stepflow.sif in the Solver input file
field. If you want change the path to the default path, you can either enter the
path name explicitely, or you can edit the field so that there is only the default
file name (stepflow.sif) and then press the Apply button.

The fields in the panel are:
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e Solver input file: input file for the solver, deafult: modelname.sif
e Output file: solver output file, default: modelname.dat

e Restart file: if name is given, solver uses variable values in this file as
initial values. This file should be in the output file format.

e Restart timestep position: timestep where to start in the restart file

e Postprocessor file: this file stores results in ELMER postprocessor
format, default : modelname.ep. This file is also used as the input file
when postprocessor is started from the Run menu.

e Gebhardt factors file: this file is used to store Gebhardt factors when
they are calculated using the Gebhardt factors command in the Run menu,
default: GebhardtFactors.dat.

e View factors file: this file is used to store view factors when they are
calculated using the View factors command in the Run menu, default:
ViewFactors.dat.

Coordinate settings

Model’s coordinate system is specified in the Coordinate settings panel. This
panel is shown in Figure 2.10.

Coordinate settings HE=E
Coordinate systarm: Symmetry axis/plane:
% Cartesian 20 & Mone
€ Axi Symmetric 7 eft
£ Cylindric Symmetric  oright
" Polar 2D  ¥ebot
' Cartesian 30 ) Hetap
' Cylindric
" Palar 3D

Coaordinate mapping:
x 1w [z z &

QK | Cancel | Apply |

Figure 2.10: The Coordinate settings panel.

The coordinate system which can be selected depends on the dimension of
the model geometry. In 2D possible systems are cartesian 2D, axisymmetric,
cylindric symmetric and polar 2D. In 3D options are cartesian 3D, cylindric and
polar 3D.

Values for coordinate dependent variables (like velocity) are entered in the
data panels by components (like velocity-X, velocity-Y, velocity-Z). Default
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mapping between the components and the coordinate axes is X = 1, Y = 2
and Z = 3. This mapping can be changed entering a new index set in the
Coordinate mapping fields. The field labels for theses entries also changes
when coordinate system is changed:

e Cartesian: X, Y, Z
e Cylindric: R(ho), Z, P(hi)
e Polar: R(ho), T(heta), P(hi)

These labels are also used in data entry panels to remind you on the coor-
dinate system and on the mapping which is in use.

If coordinate system is cartesian, it is also possible to set the symmetry
axis (2D) or symmetry plane (3D). This information can be used for automatic
setting of suitable boundary conditions at the symmetry axis/plane.

Timestep settings

Time dependency and timestep settings for the simulation are set in the Timestep
settings panel. This panel is shown in Figure 2.11.

Timestep settings [ [O] ]

Time stepping method:

S —— & Implicit Eler € Explicit Euler

1 Trarsient .
Steady state settings

i
e e Mawimum rumber of iteratiors:
Steady state output interval: I

Timesteps:
Step size [s] Stepsin interval Output interval Cumulatives
|s0501d

1.00 20 5 20.00 20 4 el Add
2.00 20 10 60.00 40 E

500 50 10 o 90 Nm
Insert

Update
Delete

Totals:
[3100 EQ J11

aK | Cancel Apply

Figure 2.11: The Timestep settings panel.

The time dependency type of the problem is seleceted in the Simulation
type box, where options are Steady state and Transient.

If Steady state is selected, you can use the following fields to control the
number of iterations and the output frequency of the results:

e Maximum number of iterations: Maximum limit for the steady state
iterations even if convergence criterion is not yet met.
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e Steady state output interval: Output frequency for steady state it-
erations

If Transient problem is selected, timestepping method can be selected using
the Timestepping method radiobuttons.

For transient problems it is also possible to use different timestep sizes. This
is done by entering three numbers in the Timestep settings field. They have
the following meaning (enter values in this order):

o Timestep size: step size in seconds in the interval
e Number of steps: number of steps in the interval

e Output interval: output frequency in the interval

These entries are added to the timestep list using the Add or Insert button.
Insertion is done above the row which is currently selected in the list. An existing
entry can be changed with the Update button. The Delete button removes the
currently selected entry from the list.

For each row in the list, running cumulatives are displayed as the last three
numbers. Total cumulatives are shown at the bottom of the panel in the Totals
fields.

Physical constants

Physical constants can be changed from their default values in the Physical
constants panel. Currently the constants are the gravity vector and the Stefan-
Boltzmann constant.

Constants are expressed in standard units. The default value for the gravity
is 9.82 m/s? in the direction of the negative y-axis. If the input data for the
problem is expressed in non-standard units, it is also necessary to change the
values of the physical constants accordingly.

Equations

All bodies in the model need an equation definition. Otherwise the simulation
problem cannot be solved. Equations for the bodies are set using the Equations
command in the Problem menu. This command opens a panel which is shown
in Figure 2.12.

In this example the equations for the radiation problem (see 7) are being
defined. The body with the flow equation is currently selected.

Body name is shown in the Body name field. Note that this name is not used
in the body listbox.

Equation definitions are displayed in the listbox which is to the right of the
body listbox. The number at the beginning of each line is the equation number.
When an equation is applied to a body, this number is displayed in the body
listbox rows after the 'Eq’ text. So text Bodyl-Eq3 tells that equation number
3 is applied to the body number 1.

You can give a name for an equation by selecting it from the equation list
and entering the name in the Parameter name field. Press the enter key to make
this name effective. Each time you select an equation, its name is displayed in
this field.
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Equations [_ O[]
Select a body: Defined equations
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Figure 2.12: The Equations panel.

When you want to attach an equation to a body, select first the body from
the body list, then select the equation from the equation list and press the
Attach button.

If a selected body already has an equation defined, this equation is automat-
ically marked selected in the equation list, but you can freely select an other
equation and attach it to the body.

New equations are added to the equation list by entering equation parameters
in the data entry area in the lower part of the panel. Press the Add button below
the equation listbox to add the new equation to the list.

The buttons located in the middle of the panel have the following functions:

e Attach: apply the currently selected equation to the currently selected
body

e Detach: remove any equation definition from the currently selected body

e Add: add a new equation to the equation list with the values in the data
entry fields

e Update: update the currently selected equation with the values in the data
entry fields

e Delete: delete the selected equation from the equation list and remove
equation definition from the bodies it possibly was applied

When you press the 0k button, all changes are checked and accepted if
correct, and the panel is closed. Note however, that you still have to save the
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model before changes are stored permanently. If you press the Cancel button,
all current changes in the panel are discarded.

When data is entered, its correctness is checked. Checking rules come partly
from the physics of the problem, partly from the limitations in the solver. They
are the following:

e Heat equation: selecting Heat equation includes automatically heat
conduction. You can add Constant convection (values are given as mate-
rial parameters for the body!) or Computed convection, but the latter only
if laminar flow is also selected. Phase change settings are only available if
Heat equation is first selected.

e Stress: Thermal stress is possible only if Heat equation is also se-
lected. You can select either Mecahnical stress or Thermal stress,
but not both.

The physical meaning and the computional procedures for these items ares
explained in more details in 5.

IMPORTANT: You should note that each body should have an equation
definition before the model can be solved. Model file can be saved although
all definitions are not complete, but model is still not solvable. When exist-
ing equation definitions are changed and if any equation related data (material
parameters, conditions etc.) has already been entered for bodies or body ele-
ments, all conflicting definitions will be automatically removed. So, you should
carefully check all previously entered data, if you change equation definitions!

Equation solving order

In this panel you can specify the solving order for the equations. Default order
is Heat equation, Navier-Stokes, KE Turbulence and Stress Analysis. You can
modify this by entering the new order numbers in the panel. Order numbers
shoul be unique, start from one and be consecutive.

2.8 Model menu

Mesh  Solver Bun

todel infa...
Body info...

Body list L4

Iritial conditionz. ..
Body forces. ..
Material parameters. .

Boundany conditions...
Figure 2.13: The Model menu.
When all body equations and other general problem data has been entered,

you can enter the model parameter specifications. It is done using the commands
in the Model menu.
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Model info

This command opens a panel which displays general model info. You cannot
edit the data in this panel. Panel is shown in Figure 2.14.

Model info =]

Cad input file: | [ *elmer/data/cad_files fradiation.uny

Mezh input file: |

Model input file: | d:/elmer/Models/R adiation/R adiation. ecf

Mof bodies: ’f
Mof boundaries: ,T
Mof outer boundaries: 'T
Mof inner boundaries: lf
Mof vertices: ’T

Madel ¢ dimensions [m}: | 0 [ o4
Model ' dmensions [m]; I 0 [ oes
Model Z dimensions [m]: | 0 | 1]
Mot mezh nodes: ’f

Mof mesh elements: '#

Mof mesh boundary elements: 1]

Figure 2.14: The Model info panel.
Fields in the panel are as follows:

e Cad input file: the name of the original cad source file
e Mesh input file: the name of the mesh input file
e Model input file: the name of the model file

e Nof bodies ... Nof vertices: counters for different objects defining
the geometry

e Model dimensions: minimum, maximum and size for x,y and z coordi-
nates, ie. model’s bounding box

e Number of mesh elements: number of mesh volume elements (0 if mesh
does not exist)

e Number of mesh boundary elements: number of bounary type mesh el-
ments

e Number of mesh nodes: total number of nodes in the mesh

Body info

This command opens a panel where you can check dimensions and number of
mesh elements for each body. You cannot edit data in this panel.
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Body list

This command opens a submenu which displays a list of all bodies in the model.
Buttons are colored with the body colors and body names are used as button
labels. This is simply meant as a quick info on the body colors and names, you
cannot activate any further commands from this menu.

Initial conditions Body forces Material parameters

Inthe Initial conditions panel you enter initial values for variables. External
body forces are set in the Body forces panel. In the Material parameters
panel you enter values which describe physical properties of the bodies.

All these panels concern data which applies to the whole body. The user
interface in these panels is also very similar. In the following we explain the
working with these panels, using the Initial conditions panel as an example.

The meaning and functioning of the buttons is also the same as those in the
Body equations panel. These were already described in 2.7

Initial conditions panel is shown in Figure 2.15.

Body initial conditions [_[O]x]
Selecta body: Defined conditions:

Body2
Body3

Attach Detach Add Update Delete

Body:  |Melt Parameter: I

Initizl condition file name ‘ | " File

“alues for initial conditions:

Velocitp- [mds] [T Proc || Pressure [Pa) I~ Pros
Velacity-y' [mes] [ Proc || Temperature [K] ™ Proc

Welocitp-Z [mds] I:l [~ Proc

ag | Cancel Apply |

Figure 2.15: The Initial conditions panel.

The main thing to notice is that entry fields which are displayed on the
panel are equation type dependent. If, for example, none of the bodies has
been applied a flow equation, no flow related entry fields are displayed on the
panel. On the other hand, the combination of all body equations define the fields
which are displayed. This means that not all of the entry fields are necessarily
applicable to all the bodies. When you select a body from the body list, only
those fields are active which can be applied to this body.

Before you can enter any data, you have to select a body or a previously
added initial condition. This means that all initial conditions (also body forces
and material parameters) are defined for a certain equation type, because this
is implied by the selected body. This also means that you can attach an initial
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condition only to a body which has the same equation type as what the condition
has.

When you add a new condition, it is by definition applicable to the body
which was selected. But knowing whether a previously defined condition is
applicable to a body could be a problem. However, when you select a body,
all those initial conditions which are allowed for this body, are marked with an
asterix (*) in the beginning of the rows in the initial condition listbox. Any of
these marked conditions can be attached to the body.

A condition is attached to a body by selecting the condition and the body
in the corresponding listboxes and then clicking the Attach button.

If you select a body and then click Detach button, condition is removed from
the body. The data entered in the entry fields is checked when you press the
Add or the Update button. Each field has a predefined type and if you enter
incorrect data (like letters in a numeric field), update is not accepted and an
error box is displayed.

This data checking concerns mainly the formal correctness of the data. The
checking of the logical or physical consistency of the data is quite limited.

The following entry fields need a bit more explanation:

e Initial condition file name: in this field you can enter the file where
you have stored previously defined initial conditions (body forces, material
properties). The file format is described in H. When you click the File
checkbutton this field is activated. If you enter only a file name in this field,
the Input file path from the Problem/Model name and file paths
panel is added as the path name. If you add the path explicitely, data in
the field is used as it is. If you click off the File checkbutton, the data
entry in the field is disabled.

e Proc checkbutton: clicking this checkbutton changes the corresponding
entry field to a text entry field. You can then enter two strings in the
field: a module name and a function name. These define the procedure
which should be used to calculate the variable values in the in the solver.
When you click off the checkbutton, the entry field returns to it original
role.

Using a file as a source for the parameters can be a quite useful option.
You can enter more complicated definitions for initial conditions (and for body
forces, material parameters and boundary conditions as well) in a file than what
is currently possible from the cad interfce panels. In the panels you can enter
only constant values, in a file it is possible to enter parameters which depend
on temperature, coordinates or any other problem variable.

If a filename is entered, it will be located before any entry field values in
the solver input file. This means that entry field values will overwrite possible
definitions in the parameter input file. This way you can store ’permanent’
values in files and make quick experimental changes using the entries in the
panel.

Boundary conditions

This panel differs from the previous panels because boundary conditions are ap-
plied to boundaries (body elements). So, in addition to the body and boundary
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condition listboxes, this panel contains a third, body element listbox. The panel
in Figure 2.16.

Boundary conditions 8 [ 5
Selecta body: Selecta boundary: Defined conditions:

* JIBody(1}-Bndr01 e |1 VELOCITY_1==O00ELOCITY_2=

Bodyl1 -Bndr03-Cond1
Body(1 Hindi04

= i [
Attach Detach | Attach mods:  KEEP_NEW Add Update Delste
Bady: [Melt Boundary [ Gammad Parameter: |

(+ MavierStokes € Heat equation

Boundary condtion fle name | | I File
Walues for boundary conditions

Welocity [m/s] 0 ™ Proc | Pressure [N/mz2] ™ Proc
Welociyy [m/s] 0 ™ Pioc | Pressure [N/m2] ™ Proc
VelosityZ[misl| | T Proc | Pressus [N/m2] L ] F Pee
Nomal_tangential veloc. [Yes/No) ™| Pressurs level [Pa] I Proc
Fres boundary. [Yes/Na] ™| Estemal pressure [Pa] I Proc
Free surface. [Yes/Ma] r Surf. tensian coeff, [M/m] ™ Proc

Suil. tension exp. coeff [1/K] ™ Proc

EI_KI Cancel ﬂl
Figure 2.16: The Boundary conditions panel.

Entry fields are grouped by the equation type in this panel. If the problem
contains more than one equation type (Navier-Stokes, Heat or Stress), you can
use the radiobuttons in the middle of the panel to select the equation.

In our example we have radiobuttons for Navier-Stokes and Heat equation.
Currently the Navier-Stokes equation is selected and we have the entry fields
related to this equation displayed on the panel.

Boundary elements are numbered using the same numbers which are dis-
played in the graphics window. If two bodies have a common boundary, they
also share the boundary elements which form this common boundary.

These common boundaries are grouped as body-pairs in the body listbox.
In practice this means that, when selecting a single body from the body listbox,
you will see all the outer boundary elements for that body. When selecting a
body-pair, you will see all the (common) inner boundary elements for those two
bodies.

Boundary elements are displayed by first selecting a body. All the boundary
elements of the body (or a body-pair) are now displayed in the element listbox.
If you now attach a boundary condition to the body, it is automatically applied
to all those boundary elments which do not yet have a boundary condition.
So, there is no need to explicitely select all elements, if you want to apply a
condition to all boundaries of a body.

If you want to select a specific element, you can do that by clicking with
the left mouse button in the element listbox. If you want to select multiple
elements at the same time, you have to press the control key while clicking with
the mouse. By pressing the shift key and the left mouse button, you can select
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by dragging with the mouse a continuous group of listbox rows.

Similarily as in the initial condition panel, those boundary conditions which
match the equation type of a body are marked with an asterix in the beginning
of the condition rows. The equation type of a body-pair is formed by combining
the equation types of the both bodies.

There is one additonal button in the boundary condition panel:

e Attach mode: this button has two modes, KEEP NEW or KEEP OLD.
You can change the mode by pressing the button. Mode is used when
deciding how a conflict between different boundary conditions should be
solved. This conflict could arise, for example, if two edges have a common
vertex and the boundary condition contains a Dirichlet type constraint
(like a temperature or velocity condition). In 3D these conflicts could arise
byn common edges for surface elements. Selecting KEEP NEW means
that the last condition applied will win in conflicts. Selecting KEEP OLD
protects always the condition which was applied first.

2.9 Mesh menu

The only command in this menu is Mesh parameters. It opens a panel where
you can set the mesh parameter for the whole model, selected bodies or body
elements. This panel is shown in Figure 2.17

Mesh parameters [_[O]x]

Selecta body: Defined mesh parameters

= =l =

Altach Detach | Attach mode:  KEEP_MEW Add Update Delete

Bodyr | Boundary: | Parameter. |

“alues for mesh parameters

Mesh parameter [m] 0.0325 ™ Prac |

oK. | Cancel Apply

Figure 2.17: The Mesh parameters panel.

In this panel there is currently only one entry field, the Mesh parameter.
This parameter controls how fine or coarse the generated mesh will be. It is
related to the size of the smallest elements that will be created. For this reason,
the dimensions of the model should be taken into account, when the value of
this parameter is set.

In the object listbox we have three different type of objects.

Model object concers the whole geometry. If the mesh parameter is given
only for the model, all parts in the model are handled equally when the mesh
is generated.

Body objects are displayed in the BodyN format. You can give a general
model level parameter and still specify different values for selected bodies.
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Body elements can be selected from objects displayed in the Body(N) format.
This is also the smallest level of geometry, where the mesh generating can be
controlled.

NOTE: Currently only model level mesh parameter is supported. So, you should
always enter a parameter at the model level. Other parameters do not currently
have any effect on the mesh generating!

2.10 Solver menu

Bun  Help

Salver parameters...

Proceszor gettings...

Figure 2.18: The Solver menu.

Solver parameters

In this panel you set the solver parameters for each equation system to be solved.
You should first select an equation system using the radiobuttons in the
upper part of the panel.
The solver panel is shown in Figure 2.19 and settings for the Navier-Stokes
equation are activated.

Solver definitions = O] =]
& Navier-Stokes ' Heat equation
 KE Tubulence  Shess analysiz
STABILIZATION: ~ Direct: L
Iterative: o BiCGStab
LUMPED MASS MATRIX T _
btz farmat: CRS
LINEARIZATION
May iterations: 5 IMax iterations: 500
Tolerance: 1.0e-05 Tolerance: 1.0e-08
Relaxation factor: 1.0 Residual output: 1
Use Mewtaon v 5 g Lo |
reconditioning
Mewtan after iteration: |3
Mewton after tolerance: I'I e-02 Steady state tolsrance: |1 0e-08

0k Cancel | Apply |

Figure 2.19: The Solver parameters panel.

All fields in the panel have default values.
Entry fields in the left hand side of the panel define general settings for the
solver. Fields are the following:

e STABILIZATION: when this button is checked, solver uses stabilization. It
is a recommended option for the Navier-Stokes equation.
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LUMPED MASS MATRIX: use this check button if you want that matrix which
corresponds the mass matrix is lumped in the equation

Max iterations: linearization is based on subiterations and this number
controls the maximum number of iterations.

Tolerance: if the error norm for the linearization is smaller than this
number, linearization iteration is stopped.

Relaxation factor: default value is 1.0, but a somewhat larger value
could speed up linearization in some cases. On the other hand, sometimes
a value less than unity is needed to get any solution.

Use Newton: when this button is checked Newton’s linearization method
is used. It is faster than the default method (Picard), but is useful only
when we are near enough the actual solution. The following fields control
when Newton’s method is started.

Newton after iteration, Newton after tolerance: Newton’s method
is not started until at least one of these criteria is fullfilled.

The entry fields on the right hand side of the panel control how the linear
system, which is formed by discretizing the original equations, is solved:

Direct: this radiobutton selects direct solving method. Currently the only
available direct method is BANDED solver. For relatively small problems
direct solver is normally faster than an iterative solver, but for any larger
problem it is propably better to use an iterative solver.

Iterative: this button selects iterative solving method. You can select
the actual method by double clicking in the listbox which opens when you
press the button to the right of the radiobutton. Available options are:

BiCGStab: BiConjugate Gradient Stabilized method
— TFQMR: Transpose Free Quasi-Minimal Residual method
— CGS: Conjugate Gradient Squared method

CG: Conjugate Gradient method
GMRES: Generalized Minimal Residual method

Matrix format: matrix storage format

— CRS: compressed row stroage
— Band: banded matrix

— Symmetric Band: symmetric banded matrix
Max iterations: maximum number for iterations for the iterative solver

Tolerance: if the error norm is smaller than this number, iteration is
stopped

Residual output: given as integer N; linear system residual is output for
each Nth iteration (value zero disables the output)
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e Preconditioning: using preconditioning normally speeds up the itera-
tion, but with the cost of some overhead. Options here are:

— None: no preconditioning

— Diagonal: Diagonal preconditioning matrix. Fast to construct, but
not very effective

— ILU: Different level of Incomplete LU decompositions. ILUO is the
recommended choice

e Steady state tolerance: if the error norm is smaller than this number,
the steady state iteration is stopped. If we have multiple, connected equa-
tion systems, you can use this parameter to select which of the systems
stops the iterations for a steady state problem.

Processor settings

This command opens a panel where you can enter the number of processors
that are available for solving the problem. This parameter has meaning only in
a parallel processing environment. The default value for the parameter is one.
This panel is shown in Figure 2.20

Processor settings [_ O]

oettings for parallel processing:

MHumber of proceszors: |1

] | Cancel Apply |

Figure 2.20: The Processor settings panel.

2.11 Run menu

bl -

Generate mesh Clrl+1

LCalculate “iew factors Clrl+2
Calculate Gebhardt factors  Chrl+3

Solver Clrl+d

Postprocessor Clrl+5

Figure 2.21: The Run menu.

You can start other ELMER modules from this menu. Before a module can
be started all the necessary definitions and settings must have been done. If



36 CHAPTER 2. THE CAD INTERFACE

this not the case, a message box is displayed. If the missing data is essential for
the module, you cannot continue with the process. Otherwise you can continue,
but with the risk that some data is not up-to-date.

Commands in the menu are:

e Generate mesh: starts the ELMER mesh generator. NOTE: if the Display
mesh button is selected, the mesh is automatically read from the database
and displayed!

e Calculate View factors: starts ELMER Viewfactors program. It stores
the data in the View factors file defined in the Problem/Datafiles
panel. NOTE: this can be a lengthy process for large meshes!

e Calculate Gebhardt factors: starts the ELMER GeghardtFactors pro-
gram. It stores the data in the Gebhardt factors file defined in the
Problem/Datafiles panel. NOTE: this can also be a lengthy process!

e Solver: starts the ELMER solver using the solver input file defined in the
Problem/Datafiles panel

e Postprocessor: starts the ELMER postprocessor using the postprocessor
file defined in the Problem/Datafiles panel as the input file
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Elmer Mesh Generation

FEM-simulation always requires that the computational domain is discretized.
Discretization, i.e., construction of a valid mesh covering the computational
domain, is a laborious and error prone task if done by hand. Therefore, this
process is usually automatized. Moreover, we normally want to control the
characteristics of the mesh which have an impact on the accuracy of the simula-
tion. Perhaps the most important of these characteristics is the mesh parameter
which indicates the scale of resolution of the solution as the size of the elements.
For any mesh generation to be successful, the user has to define at least:

e the geometry of the problem, including the features relevant to the simu-
lation such as material boundaries inside bodies, and

e the mesh characteristics.

In theory, the mesh characteristics could be derived from the geometric features
but this approach is not often sensible for flow simulations in particular.

3.1 Capabilities of the Mesh Generator

The current version of ElmerMesh, the ELMER mesh generator, is an auto-
matic 2D-mesh generator. The valid geometries are those handled by the CAD-
interface. Note that curved boundaries are linearised in the conversion from
CAD to mesh geometry. The mesh size is given in the form of the mesh param-
eter, h. No other mesh characteristics can be defined.

The generated meshes are triangular, that is, the elements of the mesh are all
triangles. Once generated, the elements can be either linear or quadratic. Also
the dual of the mesh is generated. The dual is used in the partitioning phase
if parallel solvers are to used in the simulation. In Figure 3.1 a simple mesh
with four elements is shown with its dual (dashed lines). Note that the dual is
not a triangulation. However, by partitioning the dual graph we partition the
elements and not the nodes which is appropriate for FEM.

3.2 Mesh Generation Strategy

Mesh generators are based on either of the two approaches: the advancing front
method and the Delaunay method. Both approaches have their pros and cons

37
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Figure 3.1: A simple mesh and its dual.

and in general it is not possible to explicitly show one superior over the other.
ElmerMesh is a Delaunay type mesh generator and more specifically, a Voronoi-
Segment type mesh generator.

The Delaunay property of a triangulation of points is that none of the points
of the triangulation are inside a circle defined by the three points forming a tri-
angle in the triangulation. The triangulation process is incremental in the sense
that by definition we start from a valid triangulation and modify it whenever
new points are added. So, the actual mesh generation consists of a sequence of
two steps: point generation and triangulation, which terminates only when the
desired mesh has been obtained. A stopping criterion can be for instance that
all triangles are of the size defined by the mesh parameter. Figure 3.2 shows
the changes induced by the introduction of two points. Note that the first two
triangles are not preserved after two insertions but the second insertion does
not destroy all existing triangles, the two at the lower left corner remain the
same.

Figure 3.2: Adding points to a Delaunay triangulation.

3.3 Practical Issues

Since the Delaunay property applies only to the set of points, we say it is a con-
nection property, the concept of boundaries is alien to the actual triangulation
process. First we discretize the boundaries and connect them before the interior
of the domain is discretized.

The tracking of the boundary integrity is the foremost problem in Delaunay
type mesh generators. If the geometry has some features of the same order as
the mesh parameter, it is possible that the boundaries are not recovered, e.g.,
the mesh covers the whole domain, but the internal material boundaries are
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overlapped by some triangles. If case this happens, ElmerMesh tries to capture
the boundaries automatically, but this “recovery”-process may lead to elements
which have very much different characteristics than those requested by the user.

3.4 When the System Takes Over the Control

There are two cases when the generator changes the mesh without user inter-
action. If the boundaries are not recovered by the standard algorithm as ex-
plained above the generator adds points to the missing boundary segments and
thus effectively changes the local mesh parameter. This may lead to unexpected
features in the mesh. This is illustrated in Figure 3.3, where the computational
domain is of the shape of letter j. Simply connecting the geometry defining
nodes is not enough, the right-hand side bar is not captured in the mesh so an
additional point is inserted in the middle of the missing edge.

Figure 3.3: Automatic boundary recovery.

For free-boundary problems it is quite natural that the user is not required
to change the mesh manually after every iteration. Those boundary nodes which
are moved in the simulation are moved in the direction of the vector field and
the mesh is smoothened using spring-equilibrium techniques. This approach is
often referred to as the r-method.

3.5 Guidelines

The meshes generated by ElmerMesh tend to retain a relatively rigid struc-
ture away from the boundaries. This structure is then inevitably fitted to the
boundaries. In 2D-geometries, this is the only region where elongated elements
with high aspect ratios may result. No regularization is done, however, and the
non-desired elements are used in the simulation.

The algorithm always starts from the first boundary segment of the descrip-
tion of the body. If mesh alignment is necessary it can be induced by changing
the geometry description appropriately.

It is often advisable to generate meshes with different mesh sizes also purely
from the mesh generation point of view. Paradoxically, the most difficult prob-
lem is to create small meshes due to boundary integrity issues. If the automatic
boundary recovery is activated, as a rule of thumb we can say that the mesh
parameter should be smaller.
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Elmer Graph Partitioning

ElmerSplit is the graph partitioning module of ELMER. The purpose of Elmer-
Split is to distribute the mesh evenly between multiple CPUs in a parallel en-
vironment to help optimize performance of the solver.

When only a single CPU is used, there is no need for partitioning mesh.
The mesh generator has already created one “partition” which is required. This
means that only one solver process can be used.

Figure 4.1: Single CPU configuration

If multiple CPUs are available, through-put time can be reduced by using
multiple solver processes, each running in its own CPU as shown in figure 4.2.
To work efficiently each solver -process must be able to use its local data as much
as possible. ElmerSplit makes this possible by splitting the original mesh into
smaller pieces so that connections between different pieces are kept at minimum.

Figure 4.2: Configuration with multiple CPUs

40
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4.1 ElmerSplit Capabilities

4.1.1 How Partitioning Works

Partitioning algorithms used in ElmerSplit are based on Metis -library by George
Karypis and Vipin Kumar from University of Minnesota. Metis implements a
collection of multilevel graph partitioning algorithms.

The Idea of multilevel graph partitioning is to approximate the original graph
by a sequence of smaller graphs. The smallest graph is then partitioned using
some suitable method and results are projected back to the original graph. The
advantage of multilevel approach is that the graph coarsening can be done in
time proportional to the number of edges, while the complexity of partitioning
increases exponentially with the number of nodes.

ElmerSplit uses so-called dual-graph, which is based on connections between
elements in the mesh. Each vertex of the graph represents one element and
edges are connections between elements. Dual-graph is feed to the partitioning
algorithm and result tells for each element in which partition it belongs. Since
the original graph has more degrees of freedom, some refining is usully made at
this point to further decrase the number of connections between partitions.

4.1.2 Mesh coarsening

There are basicly two kinds of graph reduction algorithms. Some algorithms,
like Random Matching (RM), just match random vertices together, while others,
like Heavy Edge Matching (HEM) and Heavy Clique Matching (HCM), use the
connectivity information to find a groups of tightly connected vertices.

Random algorithms work quite well when degrees of vertices are close to the
average degree of the graph. Graphs from finite element applications (FEM) are
typically in this category. However, if a graph has tightly connected components
it is usually better to keep those components together and use something like
HEM or HCM. Splitting tightly connected components into different partitions
typically leads to unnecessary increase in the connection cost of partitioning.

Since reduction algorithms have roughly similar complexity, it is usually
better to use some more advanced algorithm like HEM or HCM than try to
save a little time using RM. Carelessly done reduction can harm partitioning
algorithm and lead to significantly higher cost partitions.

Random Matching

Random Matching (RM) visits vertices in random order. If vertex has not been
matched yet, we randomly select one of its unmatched neighbors and mark both
the vertices and the edge between them as matched. If vertex has no unmatched
neighbors, it remains unmatched. This continues until no more vertices can be
matched. After that, matched vertices are joined together and are marked as
unmatched for the next reduction step.

Heavy Edge Matching

Heavy Edge Matching (HEM) visits vertices in random order, same way as RM
did. However, when selecting a neighbor to match with, it chooses the one that
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is connected with the heaviest edge. Naturally only such neighbors that are not
already matched are considered.

The idea of HEM is to minimize the edge weights of the reduced graph.
Smaller edge weight typically leads to smaller connection cost when reduced
graph is partitioned. This algorithm doesn’t guarantee that the edge weight of
the reduced graph is minimized, but experience has shown that it works very
well.

Modified Heavy Edge Matching

Modified Heavy Edge Matching (MHEM) tries to minimize the average degree
of the graph. Again vertices are visited in random order and matched with the
neighbor that has the heaviest connection. If there are more than one vertex
to choose from, the vertex that has most connections from it’s neighbors to a
matching vertex, is chosen. Analysis of the multilevel bisection algorithm in
shows that a good edge-cut of a coarser graph is closer to a good edge-cut of
the original graph if the average degree of the coarser graph is small and/or the
average weight of the edges in the coarser graph is small.

Light Edge Matching

Light Edge Matching (LEM) is like HEM, but instead of matching heavily con-
nected vertices it matches neighbors that has the lightest edge between them.
Reduced graphs produced by LEM have typically much higher average degree
than the original graphs. This kind of graphs are easier to handle for some par-
titioning algorithms like Kernighan-Lin. The choice between HEM and LEM
depends on what kind of partitioning algorithm is selected for the reduced graph.

Heavy Clique Matching

Heavy Clique Matching (HCM) tries to find subgraphs that are fully or almost
fully connected. The idea is very similar to the HEM but instead of just match-
ing vertices with the heaviest edge between them, HCM joins vertices that have
the highest edge density.

For a pair of vertices (u,v) edge density is defined as follows :

2(CE(u) + CE(v) + EW (u,v))

EdgeDensity = (VW (w) + VIV () (VW (w) + VIV (v) — 1)

where VIV (x) is the weight of vertex x, EW (z,y) is the weight of edge between
vertices x and y, and CE(z) is the total weight of edges already collapsed into
a vertex x. Vertices that are not connected in any way have edge density of 0
and vertices that form a clique have edge density of 1.
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4.1.3 Creating partitions

After the graph has been coarsened down to desired size, it’s time to create
partitions. Since the graph partitioning problem is NP-complete, an exhaustive
search for finding the best partitioning is usually impossible because of a vast
number of possible solutions.

Metis offers four different partitioning algorithms that are able to find good
partitionings in a reasonable time. In paractice results are quite good, yet there
is no quarantee that results will be optimal,

Graph Growing

Graph Growing (GGP) algorithm starts from a random vertex and grows a
region around it in breath-first fashion, until desired number of the vertices or
vertex weight has been included. Partitions generated by graph growing are, by
definition, always connected. However, the quality of partitions depends totally
on a chose of the initial vertex.

Greedy Graph Growing

Greedy Graph Growing (GGGP) is a modification of GGP. Instead of growing
a region in a strict breath-first fashion we can compute a gain value for each
vertex on a region boundary. Gain value tells how the costs of the partitions
will change if a vertex is added to a growing region. Vertices are then sorted by
their gains and the vertex that has the biggest decrease (or smallest increase)
of partition cost is inserted first. Then the gain values of adjacent vertices are
updated and new vertices are joined to region boundary.

GGGP has the same problem as basic GGP. The quality of partitions de-
pends on the choice of initial vertex. However this dependency is not as strong
as in GGP. Usually GGGP gives better partitions with less work than GGP.

Graph Growing with Kernighan-Lin

Kernighan-Lin (KL) algorithm starts with initial partitioning of the graph. In
each iteration it tries to find a subset of vertices from each partition of the graph
such that swapping them leads to better partitions. If such subset exists, swap
is performed and new iteration is performed for changed partitions. Algorithm
stops when no such subsets can be found. In this scheme Graph Growing is first
used to create initial partitions which are further improved by running KL on
partition boundaries.

Kernighan-Lin algorithm has been effective in finding locally optimal parti-
tionings when it starts with a fairly good initial partitions and when the average
degree of of the graph is large.

Spectral Bisectioning

Spectral Bisectioning (EIG) is based on the properties of second eigenvector
of Laplacian matrix associated with the partitioned graph. Unlike other al-
gorithms, Spectral Bisectioning invoves a lot of floating point arithmetics and
for that reason can be much slower than other algorithms. Typically partition
quality is similar other algorithms or little better.
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4.1.4 Refining partitions

After the reduced graph is partitioned the results have to be projected back
to the original graph. This can be done by simply assigning all vertices to the
same partition as their parent in the reduced graph. However, since the original
graph is much finer and has many more degrees of freedom than the reduced
one, these projected results can usually still be improved by swapping some
vertices from one partition to another.

Metis offers six refinement algorithms, three basic algorithms and so-called
boundary versions of each. Partition refining can also be turned off, if desired.

Kernighan-Lin Refinement

Kernighan-Lin refinement (KLR) simply runs KL partitioning algorithm with
projected partitions. Since those partitions are already quite good, algorithm
converges fast, typically within three to five iterations.

Greedy Refinement

Experiments show that the largest gain is obtained during the first iteration
step. Greedy refinement (GR) runs only a single iteration of KL algorithm.
Iteration is stopped immediately when no more swaps with positive gain are
found. This reduces the complexity of refinement phase. Unfortunately the
number of swapped vertices and total running time does not change in asymp-
totic terms because a lot of work has to be done while building appropriate data
structures before iteration.

Combination of GR and KLR

The Idea of combining Greedy and Kernighan-Lin refinement algorithms is to
use KL as long as the graph is small, and switch to GR when the graph is large.
The motivation of this scheme is that single vertex swaps in the coarser graph
can lead to larger improvement in partition quality than in the finer graph. By
using KL at coarser graphs better refinement is achieved, and because these
graphs are very small compared to the orginal graph, KL algorithm doesn’t
require a lot of computing time.

Boundary Algorithms

Almost all of the swaps in refinement phase are done between vertices on a par-
tition boundary. Boundary refinement uses this information to skip unnecessary
work. The idea is to focus on those vertices that are on a partition boundary
and forget all other vertices. After every iteration algorithm has to check for
new vertices that might have got onto a boundary due to swapping of vertices
that were already on the partition boundary. Boundary-idea can applied to all
basic refining algorithms.
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4.2 Using the ElmerSplit

4.2.1 Command-line syntax

By default ElmerSplit uses partitioning strategy which suits well on most cases.
However if needed there are also various parameters which can be tuned for
optimal performance and partition quality.

elmersplit --model-name=NAME --model-directory=DIR

--nproc=PARTITIONS [--coarsento=NODES]
[--ptype=PARTITIONING ALGORITHM]
[--mtype=MATCHING_ALGORITHM]
[--rtype=REFINING_ALGORITHM]
[--verbose] [--help]

-model-name

—model-directory

—nproc

—coarsento

—ptype

—mtype

-rtype

Figure 4.3: Elmersplit command-line syntax

Compulsory parameter that defines the name of the model.

Compulsory parameter that defines the location of the model
database.

Compulsory parameter that defines the number of partitions
to be generated. Value of this parameter must be > 1.

Optional parameter that defines the number of elements in
coarsened mesh. This must be greater than —nproc. If not
defined, the default value of 100 elements is used.

Optional parameter that selects the partitioning algorithm.

1 GGP Graph growing partitioning

2 GGGP Greedy graph growing partitioning

3 EIG Spectral bisectioning

4 GGPKL Graph growing with boundary Kerninghan-Lin

If not defined, the default algorithm (GGPKL) is used.

Optional parameter that selects the matching algorithm.

1 RM Random

HEM  Heavy-edge

LEM Light-edge

HCM  Heavy-clique

HEM* Modified Heavy-edge

11 SRM Sorted Random

21 SHEM Sorted Heavy-edge

51 SHEM* Sorted Modified Heavy-edge

If not defined, the default algorithm (HCM) is used.

U W N

Optional parameter that selects the refining algorithm.
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1 GR Greedy

2 KLR Kernighan-LIN

3 GKLR Combination of GR and KLR

11 BGR Boundary Greedy

12 BKLR Boundary Kernighan-Lin

13 BGKLR Combination of BGR and BKLR
20 NR No refinement

If not defined, the default algorithm (BKLR) is used.
—verbose Selects verbose output.

—help Prints short on-line help message.

4.2.2 General guidelines

To select the best partitioning scheme for given problem you must first decide
whether are you trying to optimize partition quality or computing time used in
generating partitions. Ie. if you are going to use the same mesh over and over
again you should propably focus on partition quality and use more computing
time on partitioning. On the other hand, if the structure of your mesh will
change frequently it is not a worthwhile to use alot of time to get marginal
improment in quality.

In most cases default values will suit just fine. However there are some points
that should be noticed when choosing parameters :

e Matching algorithm. Out of available matching algorithms HEM, HCM
and HCM* perform consistently better than RM or LEM. HEM suits espe-
cially well for 3D element meshes. Also when LEM is used for coarsening,
both the time spent for coarsening and refining is fairly high.

o Size of coarsened mesh. To preserve the original structure of mesh it is
not a good idea to coarsen mesh too much. Ie. If 1.000.000 elements
are coarsened down to 10 nodes, partitioning phase will be very fast but
alot of extra work have to made during coarsening and refining. Also the
structure of the original mesh could be lost which leads to badly formed
partitions. Size of coarsened mesh should always be significantly larger
than number of created partitions to allow partitioning algorithm do some
real optimization in addition to coarsening. Also if mesh has alot of small
details, a larger number of elements should be left in coarsened mesh.

o Partitioning algorithm. GGP is the fastest algorithm but it tends to create
worse partitions than other algorithms. EIG tends to give worse partitions
than GGGP and GGPKL and require more time. Also if the coarsened
mesh is quite large, FIG can require much more computing time than
others.

e Refining algorithm. Generally the boundary versions of algorithms out-
perform their non-boundary counter-parts in both speed and partition
quality. BGR is the fastest algorithm but quality of partitions is not very
good. If the number of partitions is large (ie. > 64 partitions) BGKLR
is a good choise. With a smaller number of partitions BKLR tends to
perform little better than BGKLR.
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Overview of The Solver

The solver is a program that uses user defined model data, hopefully describing
a meaningful mathematical or physical problem, to solve field variables (velocity,
displacement, temperature, etc.) at mesh nodal points, or more accurately the
coefficients of the piecewise, interpolating polynomials used to approximate the
field variables. The user provided data includes initial and boundary conditions,
material parameters, equation definitions, and the mesh. The equations and
boundary conditions the solver currently can handle have been described earlier
in Chapter 1.

However, the solver is readily extensible as the source code is provided in
addition to the prelinked executable program. One can also extend the solver by
providing dynamically linkable user defined functions instead of directly modi-
fying the base code.

The building blocks of the solver are, in principle, not dependent on any
specific equation or set of equations, but contain a quite general finite element
package.

The solver is coded in Fortran 90, and to make full use of the features in
more challenging problems that require user routines or modification of the code,
some understanding of the peculiarities of this programming language will be
needed.

5.1 Solver Capabilities

As was told in Chapter 1, the solver is capable of solving steady state or time
dependent, coupled flow and heat equations. Also a thermal stress analysis type
is provided. The solver is capable of handling these equations in several different
coordinate systems: cartesian 2D and 3D coordinates, polar 2D and 3D coordi-
nates, cylindrical coordinate system, including axial symmetry of geometry and
flow field or just that of the geometry.

A coordinate system is given by writing a few routines returning values of
the coordinate system metric, Christoffel symbols, and derivates of Christoffel
symbols at given coordinate point. This makes it really easy to include new
coordinate systems as rest of the code, specifically the code for the differential
equations, is independent of the coordinate system. At the moment this re-
quires modification of the base code however (there are no user routines for this
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purpose).

Heat is transferred inside liquid or gaseous material by conduction and con-
vection, and inside solid material by conduction. In the ELMER solver, heat
transfer mechanisms may also include radiation, either idealized radiation (a
physical body loses or gains energy on a boundary depending on the temper-
ature difference of the body on the boundary and ’external’ temperature) or
diffuse gray radiation, modelling exchange of energy between various surfaces of
a geometrical model. When using the diffuse gray radiation model, geometrical
information (called view factors) of how much different parts of the model ’see’
each other needs to be known. In 3D this is a though question, potentially need-
ing a lot of computer resources. A view factor determination program based on
ray tracing is provided separately from the solver. For cylindrically symmetric
geometries there is a different program, originally developed by Katajamé&ki.
Refer to appendix C for more information about the radiation modelling.

Nonlinear Navier-Stokes equations and the heat equation with the nonlinear
radiation term are solved with Newton’s method, possibly with a few Picard
iterations to start with. Nonlinarities resulting from nonlinear materials are
solved with Picard iteration.

5.2 Structure of a Simulation Run

Input File
Output File

CSimuIation Control Data) Bodies

Equation Solvers

Materils
Initial Conditions
Equation Sets

Body Forces

Navier—Stokes
Heat Equation
Stress Equations

Boundary
Conditions

The Fem code
Linear equation solvers
Utilities

Bulk
Elements
Boundary
Elements

Figure 5.1: The solver picture of a simulation.

The model input data for the solver consists of the following elements:

¢ bodies,
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e body forces,

e boundaries,

e boundary conditions,
e equations,

e initial conditions,

e materials,

e solvers,

e case control data,

e mesh description including boundaries and mapping of boundary condi-
tions to boundaries.

A body is a geometrical entity which has boundaries, governing equations,
initial coditions, body (mass) forces and material parameters. Note that a
physical body may consist of several simulation bodies, if boundary conditions
between different parts of the physical body are needed. Equations for a given
body may be any set of the equations implemented in the solver. Initial con-
ditions contain starting values of the field variables. Body material contains
material parameter values or pointers to data from which to compute them,
possibly with using user written functions. Body force definitions are means to
give additional force terms for the equations (for example gravity for the stress
analysis or a magnetic field generated force for the low momentum equations).
When the equation solver is computing local matricies for any given element it
uses the elements knowledge of the body it belongs to get hold of the values of
the needed parameters.

Boundary conditions are organized as a set of values (for all of the equations)
for one boundary or a set of boundaries of model bodies. The mapping of
boundary conditions to boundaries is also given in the solver input file. For
more information on this issue and creation of the mesh in general refer to
Chapters 3 and 2.

The solver field of the input file contains variables for controlling the nonlin-
ear equation solver options and the linear equation solver options. Each solver
is assigned an equation type for which this solver is to be used.

The definitions of all control parameters may be set from the CAD Interface
program or from the solver input file. The format of the whole solver input file
is described in appendix H.

5.3 Structure of the Equation Solvers

The current solver contains four specific equation solvers: the Navier-Stokes
equations, the heat equation, the magnetic induction equation, and the elastic
stress equations.

The Navier-Stokes equations may be coupled to the heat equation by the
temperature variations of the density in the force term (the so called Bussinesq
approximation), temperature variations of the surface tension coefficient and the
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temperature dependancy of viscosity when using the solidification phase change
model, where the variable viscosity method is used. Also one may specify special
body forces or material parameters, which may depend on field variables, for
example temperature. Thermal stress analysis also uses the solved temperature
field.

The heat equation is coupled to the Navier-Stokes equations by the con-
vection term. Both the Navier-Stokes equations and the heat equatiation are
both coupled to the magnetic induction equation, and the induction equation is
coupled to the Navier-Stokes equation.

The element mesh describing the computational domain is divided into bulk
elements and boundary elements, which are stored inside the program basically
the same way. They are also handled identically by the equation solvers, ex-
cept that the equations for the boundary elements differ from the bulk element
equations.

Material and solver control parameters are not statically defined, but the
solver routines ask for the values of the parameters by name when needed.
The values are provided by utility routines which also check, if the values are
defined to be constant, varying piecewise linearily with some field variable or
provided by user functions. Within one timestep or coupled system iteration the
equation solvers iterate the nonlinearities within equations until a user specified
convergence criterion is met or iteration count is exceeded.

5.4 Equation Discretization at the Element Level

The FEM part provides ready made discretizations at the element level (called
local matrix generation) of stabilized Navier-Stokes equations, a general scalar
diffusion-convection equation and elastic stress equations and their boundary
conditions. All the material parameters (for example heat conductivity, density,
viscosity) may be provided to these routines at element nodes, so that they
may vary in space (depend on temperature, for example). Also some of the
parameters may be given as tensors (for example heat conductivity), instead of
scalar values. This is required if the code is to handle anisotropic materials. All
the equations are written in tensor form anyway, so the usage of tensor valued
material parameters is no problem.

5.5 The Structure of the Base FEM Code

The base FEM code is quite general. It can handle line, surface and volume
elements in one, two and three dimensions, and in several different coordinate
systems, as was mentioned earlier. Elements may also be curved. All the ele-
ments are considered to be isoparametric, i.e. the same basis functions are used
to approximate both the coordinates and the field variables. The FEM code
provides the following services:

e Gaussian integration points for different element types and desired accu-
racy.

e Value of a quantity given at element nodes inside the element.

e First and second derivates with respect to element coordinate system.
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e First and second derivates with respect to global coordinate system.

e Metric tensor of the global coordinate system and square root of its de-
terminant.

e Christoffel symbols of the global coordinate system and space derivates
thereof.

e Metric tensor of the element coordinate system and determinant of the
element coordinate systems Jacobian, or more generally square root of
the determinant of the metric tensor of the element coordinate system.

e Length, area or volume of a line, surface or volume element respectively.
e Measure of ’size’ of an element.

e Normal vector at given point inside of an surface or line element

e Routines to determine whether a given point in space is inside an element.

You may use several different element topologies and basis functions for
discretization of the equations. The solver recognizes linear and quadratic basis
functions in line, triangle, quadrilateral, tetrahedron and heaxhedron topologies
(Figures L.1-L.4). The available element types are described in more detail in
Appendix L. What element types to use in a specific simulation depends on
both the application and the mesh generator. The ELMER mesh generator,
for example, doesn’t include quadrilateral elements at all. Choosing the basis
function degree depends on the application, and to some degree also on personal
taste. Using the quadratic basis functions instead of the linear ones will increase
both the assembly time of the local matrices and the time spent in solving the
linear systems. On the other hand, the results of the computations, at least in
principle, are more accurate or you may use less elements to achieve the same
accuracy.

5.6 Utilities

Besides the equation solvers and the FEM code, the solver code includes various
additional utilities:

e Bandwidth optimization. This utility is obviously needed for the band
matrix solver, but the bandwidth optimization will also benefit the itera-
tive solver: the reduction of bandwidth will also reduce the potential fill-in
when preconditioning with the incomplete LU decomposition (which is al-
most a must with our linear systems), this will in turn have an effect on
the quality of the preconditioner.

e LU decomposition and matrix inverse for full matrix.

e Utility routines to handle sparse matrices in Compressed Row Storage
(CRS) format. These routines include creating the matrix, initializing the
nonzero structure of the matrix, zeroing of the matrix, zeroing a row of the
matrix, setting value of an element, adding value to an element, adding
element local matrix to the global matrix, matrix vector multiply, diagonal
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and ILU precoditioner, and a LU solver. Also a sparse approximate inverse
preconditioner is included, but experience with this preconditioner is still
limited and it can’t be used without modifying the code.

e Storage of material parameters, boundary and initial condition param-
eters, field variables and solver control variables in list structures and
manipulation of these lists. This includes adding name/value pairs to the
lists, searching for values in the lists. If a parameter is defined to vary
with some field variable, these routines will also do the interpolation, and
if the parameter is given as a user routine, they will call that routine.

e Loading and calling of the dynamically linkable user routines.

e Input file scanner, output and restart file writer and reader and post pro-
cessing file writer.

e Sort and search functions.

e A ray tracer module for the view factor computations. The ray tracer
includes hierachical volume subdivision for speeding up the intersection
calculations. Besides the usual elements, the ray tracer is able to check for
intersections with bounding boxes, spheres, polygons, general rotational
quadrics including cylinders, cones, etc.

e Some utilities for manipulation of bilinear, biquadratic and bicubic Bezier
surfaces. This module is also for the view factor computations.

5.7 Using the Solver

The solver must be run separately after the model has been defined with the
aid of ELMER, CAD Interface or by other means. How to execute the solver
from the CAD Interface has been described in Chapter 2.

When modelling radiation there is three steps to take after the model input
data and mesh have been defined:

e compute view factors,
e compute Gebhardt factors,
e execute the solver.

All these tasks may be done from the CAD Interface program or from the
command line.

The CAD Interface holds a menu entry to execute the solver. Before using
the solver the model definitions must be saved to a disk file. This file can also
be edited by hand and extended to hold time, space, temperature, etc., varying
material parameters, initial conditions, boundary conditions, and solver control
variables. The varying parameters may be specified as piecewise linear splines
by giving data points or by using user defined functions to compute the values
at any given time. The user functions may also access all the model data, the
current solved field variables and use the utility routines from which the solver
is built. The solver input file format is described in appendix H, where also a
complete case input file is explained in detail.
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Elmer Post Processing
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Figure 6.1: Elmerpost in use.

The post processing part of ELMER is called Elmerpost. Elmerpost is a
program for displaying and analyzing results from time dependent finite element
method simulations. Elmerpost can handle both 2D- and 3D- element models.
Elmerpost is only loosely connected to the rest of the ELMER, package, and
might be used in a totally different context.

The basic building blocks of the program are: TCL/TK for user interface,
OpenGL graphics library and C language. A software package called Mesa is a
free implementation of OpenGL. These are all tools that are portable to various
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platforms including all Unix versions that we have tried, Windows NT, and
potentially also Macintosh computers.

In the following a brief description of the software is given. For more specific
information about this software refer to the Elmerpost documentation.

6.1 Elmerpost Capabilities

The program provides several options for displaying vector and scalar field vari-
ables:

e contour line display

e color coded meshes

e contour surfaces

e vector display

e sphere display

e particle and stream line display

e selecting arbitrary cuts from the model

In addition to being able to display the data there is more to Elmerpost.
Several additional features include

e A matrix language MATC, which can be used to manipulate data with

— Basic matrix and vector operations

Dynamically sizeable variables

— A programming language with functions, flow control, loops, 1/0,
etc.

— Derivative operators for the finite element model: gradient (V), di-
vergence (V-), and curl (Vx)

e Both a graphical and a command line user interface

e The TCL/TK environment can be used to full extent, providing pro-
grammable user interface to extend the program to specific needs

e Colormap editor, surface material editor, bacground color editor
e Unlimited number of user controllable views of the model

e A versatile clipping ability

e Element grouping

e Online help in HTML format (a simple basic HTML browser is also in-
cluded)
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Manipulation of the data is possible through a matrix language called MATC
included in the program. One might, for example, want to compute the stress
tensor from a displacement field. Field variables from the simulation are auto-
matically seen as MATC variables, after the FEM model and simulation data
are read in to Elmerpost.

Having two programming languages, TCL and MATC, within a single ap-
plication might seem a little complicated, but at the same time it adds a lot to
the functionality of the program. The scope of the two are also quite different,
TCL being a command /script language, and MATC on the other hand being a
matrix programming language. Thus they complement each other.

Elmerpost has also a built-in ability to execute user provided extension pro-
grams. These extension programs may, for example, draw to the Elmerpost
graphics window using OpenGL graphics calls or manipulate directly the MATC
variables, etc.

6.2 Elmerpost Element Types

The element types Elmerpost is aware of are the same as in the solver. These
have been described in the Appendix L.

6.3 Elmerpost Input Format

The input file format of Elmerpost has been described in Appedix J. In addition
to this format, Elmerpost is able to read the FIDAP neutral file format. The
mesh of the model must be given to Elmerpost using either of these formats,
but data might be read in separately, using the MATC input routines, both via
the load command and a set of routines which resemble the C language stdio
routines.



Chapter 7

Some Walk Through
Examples

In this chapter three case studies are used to demonstrate the usage of ELMER
in detail, namely the backward-facing step problem, Rayleigh-Bénard convec-
tion, and radiation in axisymmetric enclosure.

7.1 The Backward Facing Step

The geometry of this problem is shown in 7.1. This case is a isothermal steady-
state laminar flow problem in 2D. The flow is driven by the inflow velocity
boundary condition, where the velocity profile is set to constant value in z-
coordinate direction and zero in the y direction. The inflow boundary is the
leftmost boundary. At outflow on the right, the flow field is assumed to have
developed fully, so that the velocity profile at outflow should be parabolic.

L
I Q I
L

Figure 7.1: Geometry of the Backward-Facing Step Problem.
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7.1.1 The Equations to be Solved

The mathematical description of the problem is as follows

~V - (2u8) + p(@ - V)d + Vp 0 inQ
Vi = 0 inQ
up=1, us = 0 only,
uz = 0 onTy,
i@ = 0 onlD3, Iy

The material parameters, in non-dimensional units, are

p = 1.0,
= 5-1073.

7.1.2 Defining the problem

We start the problem definition by reading the cad file describing the geometry
of the step problem. You can open this file selecting the Open Cad file in the
File menu. The file for this problem is .../ELMER/Demo/step.unv. The cad
geometry is shown in Figure 7.2.

1 Model Step (0.3 & 0.03) [_ (O] =]

=
[

"8

W

Y

X

Figure 7.2: The cad geometry of the Step problem.

If you compare this display with Figure 7.1, you can see that boundaries
are numbered differently. In Figure 7.1 boundaries are identified according to
their role in the problem. In Figure 7.2 boundary elements are created and
numbered according to how they are represented in the original cad model.
When you define boundary conditions, you can group boundary elements so
that they match boundaries in Figure 7.1. Grouping here means simply that
you apply the same boundary condition to all elements which define a single
'physical’ boundary. For example the boundary I'y consists of the elements 1,2
and 3 in Figure 7.2.

As the very first step we should give a name to the model and define
a path for the model files. Use the Problem/Model command to open the
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panel for this data. If you enter text STEP in the Model name entry and
text /ELMER/MODELS in the Model DB path entry, model files are stored
in /ELMER/MODELS/STEP directory. If this directory does not exist, it is
created.

There is no need to define any input or output paths, because we do not
need any specific external files for this problem.

You can also change the default body name (Bodyl) to something more
meaningful and change the color which is used to disaply the body in the graph-
ics window. To do this, use the Body properites command in the Edit menu.

Also, you could rename the boundaries using the names in Figure 7.1. This
would make entering the boundary somewhat conditions easier. Boundary
names can be given in the Edit/Boundaries panel.

Step problem is a 2D steady state problem in cartesian coordinate system.
This means that you do not have to change the default coordinate settings, but
the Simulation type must be changed to Steady state. This can be done in
the Problem/Timestep settings panel.

You can also set the values of the maximum number of iterations and output
frequency in this panel. Default walues are 20 and 1, the latter means that all
iterations will be ouput to the solver output file.

Next you should set the equations to be solved. To do this, open the
Problem/Equations panel. We are solving an isothermal laminar flow prob-
lem. To set this equation, click the Navier-Stokes checkbutton, because the
default value is laminar flow. The equation definition for the Step body is shown
in Figure 7.3.

[T [_]0]
Selecta body: Defined equations
] 11uEFTET»—H[FTuT

Attach Detach Add Update | Delete

Body: IStep Parameter: IStepequal\on

Equations for the body:

NAVIER-STOKES EQUATION: @ | HEAT EQUATION: [T | STRESS ANaLYSIS: T
Cale: hydrostatic pressure [~ | Convection

Tubulence mod! © Hone © Mechanical

1+ None " Constant £ Themal

C KE " Computed

KEClip [1.0e-08 ™ Proc | Phase change modsl

" Mone

" Spatial 1
" Spatial 2
 Temporal

Check latent heat release: [

oK Cancel Apply

Figure 7.3: Equation definition for the Step problem.

General problem settings are now done and we can continue with the model
settings. Because there are no body forces and for this problem we do not
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have any initial values, you can start from the material properties. Open this
panel using the Model/Material parameters command and enter the values
for density and viscosity as is shown in Figure 7.4

You can enter the viscosity value (as any other real number) in the exponen-
tial format like 5.e-3. This is equivalent to 0.005. The latter format is used for
display when the data has been checked, ie. when you have pressed the Add or
Update button. Clicking the Ok button will save the material parameters, and
you can continue with the boundary conditions.

Material parameters H=]

Selecta body: Defined materials:

} “1VISCOSITY==0.005DENSIT ==1
=

|
Attach Detach Add Update Delete

Body: [Step Parameter: |Step material propertie]
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Wiscasity [ka/ms] 0.005 I™ Pioc | Density [ka/m3] 1 I Proc
Heat expansion coeff. [1/K] I© Pioc

Reference temperature [K] ™ Prioc

oK Cancel Bpply

Figure 7.4: Material parameters for the Step body.

The boundary conditions panel is open with the Model/Boundary conditons
command. This panel is shown in Figure 7.5.

Element Bodyl-Elm6 is the inflow boundary I';. Here the flow should be
strictly in x-direction, so enter 1.0 in the Velocity X and 0 in the Velocity Y
field. This is a 2D problem and so the Velocity Z field is disabled.

Element Body1-Elm4 is the ouflow boundary I's. Also here the flow should
be in x-direction, but now we do not know the magnitude, it is calculated. You
should enter again 0 for the Velocity Y, but nothing for the Velocity X. An
empty field means no value and for the unknown variable in the problem it
means that it is free, calculated.

Boundaries I's and I'y are no-slip wall boundaries and there you should set
both velocities to zero. In Figure 7.5 we have called this condition as the Wall
condition and it is applied to the boundary elements 1,2,3 and 5, which together
form the boundaries I's and I'y.

Problem is now well defined. However, mesh parameters should be set be-
fore you can generate the mesh for the problem. For this simple geometry a
modelwide parameter is enough. Open the Mesh/Mesh parameters panel and
add a parameter with the value 0.005 (of course you can try other values too)
to the parameter listbox and apply the parameter to the model object. To save
the setting press the Ok button.

If you want, you can experiment with the solver settings in the Solver/Solver
parameters panel, but the default values for the Navier-Stokes equation should



60 CHAPTER 7. SOME WALK THROUGH EXAMPLES

Boundary conditions M= E ||
Select a body: Selecta boundary: Defined conditions:

“ IFIMELOCITY_1==1WELOCITY 2= +

=l = (=
ﬂl Detach | Attach mode:  KEEP_NEW EI Update ﬂ
Body: ISlep Boundary: |Gamma4a Parameter. IWaII
Boundary condition file name | | I Fie
Walues for boundary conditions:

Welocity [m/s] 1 ™ Proc | Pressure [N/m2] ™ Proc
Welocityy" [mds]| 0 ™ Proc || Pressue [N/m2] ™ Proc
VelosityZ[mésl | [ Pioc | Pressue N/m2] L ] Pree
Mormal_tangential veloc. [Yes/No] | Pressure level [Pa] ™ Proc
Free boundary. [Tes/No) ' Extemal pressure [Pa] ™ Proc
Free surface. [Yes/MNo] ' Surf. tension cosff. [N/m] " Proc
Surf. tension exp. coeff [1/K] ™ Proc

oK Cancel | Apply

Figure 7.5: Boundary conditions for the Step problem.

be enough for this problem.

Before continuing you should save the model. Selecting File/Save model
As will save the model file and also create the solver input file. Selecting
File/Store model in ElmerDB As will create the database files needed for the
ELMER mesh generator.

You can now create the mesh, solve the problem and display the results
selecting the following commands in the Run menu:

e Generate mesh
e Solver

e Postprocessor

7.1.3 Results

The velocity and pressure fields are shown in Figure 7.6. We can see the con-
vection roll below the step in the velocity field. Also, the outflow boundary
condition has been satisfied, .i.e. the velocity profile at outflow is parabolic and
the pressure gradient vanishes.

7.2 Rayleigh-Bénard Convection

The Rayleigh-Bénard convection is a time dependent coupled heat and flow
problem in a rectangular area (Figure 7.7), where the flow is driven by a tem-
perature difference between the top and bottom boundaries. In this example
the temperature of the bottom boundary was set to unity. The temperature of
the top boundary was set to zero. On the right boundary the velocity is set to
zero. The left boundary is a symmetry boundary so that, for symmetry reasons,
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Figure 7.6: Results for the backward-facing step example. We show the isocon-
tours of the pressure field and the velocity vectors.
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Figure 7.7: Geometry of the Rayleigh-Bénard convection example.

the x-velocity is set to zero, and the y-velocity is free to change. Here the time
history of the flow and temperature distribution will be computed. The liquid
is initially at rest.
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7.2.1 The Equations to be Solved

The mathematical description of the problem is

oo (2B + ol V)4V = p( - AT~ Tp) n

V- = 0 inQ
pep g + pepi-NT —V - (kVT) = 0 inQ,
@(0)=0, T(0) = 0, inQ,

t=0, T = 1 only,

=0, T = 0 onTs,

i =0, —kg—: = 0 onlj,

u; =0, —kg—: = 0 only.

The following material parameters are those of water at room temperature

p= 9982 kgg,
= 9.93 10~ %
c,= 41825 kgiK,
k= 0597 I%V—K
f= 21100 .

7.2.2 Defining the problem

The cad geometry of the Rayleigh-Bénard problem is defined in the .../ELMER /Demo/rb.unv
file. This geometry is displayed in Figure 7.8.

: Model Rb (0.06 x 0.01) =] =

Figure 7.8: Cad geometry for the Rayleigh-Bénard problem.
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If you compare the numbering of the boundary elements in the graphics
window with the boundaries in Figure 7.7, you should notice that the element
number 2 is the boundary I's and the element number 3 is I's. This should be
taken into account when setting the boundary conditions.

If you rename boundaries using the names in Figure 7.7, entering the bound-
ary conditions would be easier. Boundary names can be given in the Edit/Boundaries
panel.

The Rayleigh-Bénard problem is a transient 2D problem in cartesian co-
ordinate system and these are also default values. But you should set the
timestepping scheme in the Problem/Timestep settings panel. A constant
timestep size of one second is suitable for this problem. A steady state solution
is reached after about 200 seconds. If you want to output every fourth timestep,
you should enter the numbers 1.0 200 4 in the Timestep settings entry and
press the Add button. Pressing the 0k button will save the settings.

The Rayleigh-Bénard problem is a coupled flow and heat problem where
flow is driven by the natural convection which arises from the gravity and the
temperature differences. The equations we need in this case are the laminar
Navier-Stokes and the heat equation with computed convection. Necessary def-
initions are shown in Figure 7.9

J

Equations

Selecta body:

|

Aittach Detach | Add | Update | Delate

Body: |Rb Parameter, |Rb equatior]

Equations far the body:

NAYIER-STOKES EQUATION: v HEAT EQUATION: I STRESS AMALYSIS: [
Calc hydrostatic pressure [~ | Convection

Turbulence madek: " Hone ' Mechanical

1 None " Constant € Themal

KE & Computed

KECip [ | [ proc | Phess changs modst

= None
 Spatial1
 Spatial 2

" Temporal

Check latent heat release: [

aK Cancel Apply

Figure 7.9: Equations for the Rayleigh-Bénard problem.

Natural convection is modelled using the Boussinesq body force. To set
this force open the Model/Body forces panel. Select the body and click the
Boussinesq checkbox. Add the definition to the body forces list and apply it to
the body. Press 0k to save the definition.

Initially the liquid is at rest and temperature is zero. To define this open
the Model/Initial conditions panel. Select the body and enter zeros to the
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Velocity_X, Velocity_Y and Temperature fields. Add the definition to the
initial conditions list and apply it to the body. Press 0k to save the definition.
This definition is shown in Figure 7.10

Body initial conditions ==

Select a body: Defined conditions:

] FIVELOCITY_1==0VELDCITY_2==0]T i

Attach Detach | Add Update | Delete |

Body: IFHJ Parameter: IF\himhaI condition
Iriitizl condition file namel ‘ " Fie

“walues for initial conditions:

Welacite-> [méz] | 0 I Proc | Pressure [Pa) ™ Proc

“Welocity-v' [mis] | O I” Proc | Temperature [K] O ™ Proc

Welocity-2 [mdz] |:| ™ Proc

0K Cancel Apply |

Figure 7.10: Initial conditions for the Rayleigh-Bénard problem.

Material parameters for the problem are shown in Figure 7.11.

Material parameters [—[ol=]|

Selecta body:
=]

Attach Detach Add Update Delete

Body:  |Rb Parameter: | Rb matenial propertied

Material file name | | ™ Fie

Walues for material parameters:

Wiscosity [ka/ms] 0.000933 ™ Proc | Dersity [kg/m3] 998.2 ™ Proc
Heat expansion cosff. [1/K] 0.00021 I Proc | Heat capacity [J/kgk] | 41825 ™ Proc
Reference temperature [K] ™ Proc | Heat conductivity [w/m 0.597 ™ Proc

Enthalpy [ka/m3] ™ Proc

ok Cancel Apply

Figure 7.11: Material parametrs for the Rayleigh-Bénard problem.

To set boundary conditions we first define four conditions with the following
names: the Bottom (Condl), the Top (Cond2), the Left (Cond3) and the Right
(Cond4).

All except the Left describe fixed walls and the velocities are set to zeros at

these boundaries. At the Bottom Temperature is set to zero and at the Top to
unity.



7.2. RAYLEIGH-BENARD CONVECTION 65

The Right wall is isolated and heat flux is set there to zero. The Left
boundary is a symmetry boundary and the velocity in the x-direction is set to
zero and the y-velocity is free. Because of the symmetry, heat flux is also set to
zero in this boundary.

The applied conditions and the heat equation settings for the Right wall are
shown in Figure 7.12. You should note the radiobuttons in the middle of the
panel. They are used to select the equation and consequently the entry fields
which are displayed on the panel. It is important that you check the entry values
for each equation before you add a boundary condition to the list. Otherwise
you could forget some old values into the entries which are not visible.

Boundary conditions M= E
Selecta body: Select a boundary, Defined conditions:
ELOCITY 2= =

Body[1)Brerd-Con
Bacy(1}Bnckd-Con

Attach Dietach | Attach mode:  KEEP_MWEW | Add Update | Delete:
Body: IHb Boundary: IGamma-S Parameter: IH\ghl

" MavierStokes (* Heat equation

Bowndary sondtion fils name | | ™ Fie

Walues for boundary conditions:

Temperature [K] ™ Proc | Extemal temperature [ I~ Proc

Heat flus [W/m2] 0 I Proc | Fiadiation
@ None © Ideaized ¢ Diffuse gray

Emisshvity (01] T | FlPes

Hon blocking surfacs. [Yes/Na] r

Heat transfer coeff. [w//m2K] I~ Proc

oK Cancel Apply

Figure 7.12: Boundary conditions for the Rayleigh-Bénard problem.

After saving the boundary conditons you can save the model, create the
mesh and continue with solving the problem. You can also experiment with
settings for the solver, but default values are again appropriate.

7.2.3 Results

Heat is initially transferred by conduction only (at least until 50 seconds of
simulation time), and the liquid is otherwise at rest. When the local temperature
differences become large enough, the liquid begins to move (from 50 secods up).
At 100 seconds the flow has already formed the final eight convection rolls and
at 200 seconds we have reached a steady state solution. The development of the
convection rolls are shown in Figures 7.13 and 7.14.
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D

Figure 7.13: Results of the Rayleigh-Bénard convection example. Time history
of the temperature field: isocontours of temperature at times ¢t = 0s, ¢t = 50s,
t = 100s,t = 150s, and t = 200s.

7.3 Radiation in Axisymmetric Enclosure

This example is a steady state coupled flow and heat problem with axisymmet-
ric geometry. The geometry of the problem is shown in Figure 7.15. Heat is
exchanged between the inner boundaries of the enclosure by diffuse gray radia-
tion. This radiative exchange of heat results in temperature differences between
the boundaries of the area 2y, where the flow equations are applied. These
temperature differences drive the velocity and pressure fields. Inside 2 heat is
transferred by conduction and convection, which has an effect on the boundary
temperatures of this area and thus the global temperature field is connected
back to flow field.
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Figure 7.14: Results of the Rayleigh-Bénard convection example. Time history
of the velocity field: velocity vectors at times ¢

and ¢t = 200s.

b

= 150s

t

= 50s, t = 100s,

t

b

= 0s

7.3.1 The Equations to be Solved

The equations for this case are written below. Note that the geometry is ax-

isymmetric, and the definition of the variables and derivative operators should



68

=

CHAPTER 7. SOME WALK THROUGH EXAMPLES

1

—

S

15
| o
|
|
|
|
|
|
|
|
| [}
|
| Ty
f
|
| Iy T'g Q,
L
: Q T, T3
|
|
|
I
| I, I3
|
|
I r
| L0
|
| o
f
|
T
|
|
| r
1
|
|

Figure 7.15: Geometry of the Radiation Example.

be taken accordingly.
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The material parameters in the area 21, in non-dimensional units, are

p= 1.0,

p= 2.2222-107°,
cp = 1000.0,

k= 0.5,

B = 2.0-1073,
Ty = 200,

€= 0.75.

The material parameters in the area (25 are set as follows

p= 1.0,
k= 0.5,
e= 08

The material parameters in the area ()3 are

p= 1.0,
k= 0.5,
e= 0.8.

7.3.2 Defining the problem

The cad geometry of the radiation problem is defined in the .../ELMER /Demo,/radiation.unv
file. This geometry is displayed in Figure 2.6

The radiation problem is a steady-state axi-symmetric 2D problem. You
should select these options in the Coordinate settings and the Timesteps
settings panels.

Like the Rayleigh-Bénard problem, this is a coupled flow and heat problem
where flow is driven by the natural convection. For the body ; the equations
are the laminar Navier-Stokes and heat equation with computed convection.
For the other two bodies you should select just the Heat equation, because we
need to calculate only the heat condcution in these bodies.

To set the body forces on the Model/Body forces panel. For the flow body
Q1 you should apply the Boussinesq body force The body 2, a heater. Create
a heat source body force with the value 10 000 J/m?s and apply it to Qs.

For the flow body (€2;) we have the same material parameters as in the
Raleigh-Bénard problem. Note that the value for the Reference temperature
is now 200. For the other two bodies you have to define only values for density
and heat conductivity.

Note that emissivity (€) is not defined as a material parameter, but as a
boundary condition parameter for the radiation boundaries.

Radiation is the factor which makes this problem more complicated than the
previous examples. To make the setting of the boundary conditions easier, it is
better to group the boundaries into homogenous groups.

As in previous examples, you could rename the cad boundaries using the
names in Figure 7.15. Use the panel Edit/Boundaries to rename the bound-
aries.
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First, the boundaries at the symmetry axis (I'1, 5, ['1) are nearly similar.
At the symmetry axis heat flux is zero. Because I'; belongs to the flow domain,
we have to also set the velocity in the r-direction to zero at the boundary.

The other condition for the boundary I’y ( % = 0) is built in the equations,
so there is no need to specify it.

This gives us two different boundary conditions. We will call them the Flow
symmetry and the Heat symmetry conditions.

Boundaries I'; through I'y; all have a radiation boundary condition, but the
flow boundaries I'y, I's and T'y are again a bit different. Boundaries 2 and 3 are
walls and we have a no-slip condition there. At the boundary I'y liquid velocity
is set to zero in the normal direction, but otherwise the liquid can flow freely in
the surface. At the boundaries I's through I'1; radiation is the only condition.

This gives us three additional boundary condition groups. We call them as
the Flow walls, the Flow surface and the Radiation walls conditions.

The rest of the boundaries are at the outside cover and we call them the
Bottom (I'y3), the Top (I'14) and the Right (Iy3) conditions.

The Bottom is kept in constant temperature, the Right is isolated (no heat
flux) and the Top is also kept in constant temperature.

It is better to first define all these boundary conditions and only after that
apply them to proper boundary elements. This is perhaps easiest to do if you
first select 1 (Body1) and enter the values for the Flow symmetry, Flow walls
and Flow surface conditions, because these all are related to the equation type
of that body. To define the rest of the conditions it is enough to select one
of the remaining bodies, because both have a similar equation definition and
consequently same entry fields are available for them.

You have to again compare Figure 7.15 and Figure 2.6 in order to match
boundaries and boundary elements. Remember to check values for the Navier-
Stokes entries and the Heat equation entries before adding the conditions for
Q.

Boundary condition panel for this problem is displayed in Figure 7.16. Note
how the boundary condition for the Flow surface is defined using the Normal-tangential
velocity flag when setting the velocity condition. Check that you set the nor-
mal velocity to be zero at this boundary.

This problem should be solved using the diffuse-gray radiation model. So,
select first the Diffuse gray radiobutton in the heat equation Radiation entry.
After that you can enter the value for emissivity.

When all the boundary condtions have been defined, you should save the
model and then solve it using the following commands in the Run menu:

e Generate mesh

e Calculate View factors: these should be recalculated each time the
mesh is changed.

e Calculate Gebhardt factors: these should be recalculated when the
view factors are recalculated or if the emissivity value for any boundary
is changed.

e Run Solver

e Run Postprocessor
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Boundary candition file name ‘ | ™ File
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Welocity N [m/s] 1] I Proc || PressureRi [N/m2] " Proc
Welacity-T [mds] ™ Proc | PressueZ [M/m2] ™ Proc
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oK Cancel Apply

Figure 7.16: Boundary conditions for the Radiation problem.

7.3.3 Results

Results of the simulation are shown in Figure 7.17.
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Figure 7.17: Results of the Radiation Example. We have plotted the isocontours
of the temperature field and the velocity vectors
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Figure 7.18: Results of the Radiation Example. The figure shows the velocity
vectors of the flow field.



Appendix A

A Very Short Introduction to
Tensors

In this chapter a very short practically oriented introduction to tensor formalism
is given. Emphasis is placed on the computation rules for tensors.

A.1 Covariant and Contravariant Tensors

Tensors are mathematical concepts independent of coordinate systems. When
expressed componentwise in a coordinate system, the components change ac-
cording to specific laws when a change of coordinates is made. If a tensor
dependes on n indeces, it is said to be of rank n. Scalars (temperature, for
example) are rank zero tensors, vectors (pressure gradient or velocity, for ex-
ample) are rank one tensors. The stress tensor is an example of a rank two
tensor, depending on two indices. The components of a tensor may be covariant
or contravariant. A given tensor might have both covariant and contravari-
ant components at the same time, and thus has both a covariant rank and a
contravariant rank.

Let a coordinate transformation between two coordinate systems (y?) and
(x%) be given

=2yt YY), i=1,... 0. (A.1)
Scalars transform by invariance

Tx (' (y's ..oy, 2™y y™) =Ty (¥ .. y™).

Covariant components of a vector transform by the covariant law of transfor-
mation

_ Oz®
T oy

This is also the usual chain rule of derivation if v is a gradient vector, and indeed
a prototypical covariant vector is the gradient vector of a scalar quantity. The
contravariant law of transformation on the other hand is
. (‘)yi
vt = —=—v®, A3
py (A.3)

(A.2)

Vi

73
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which, for example, can be identified as the transformation law of a vector as-
sembled from differentials. We will follow the convention that a contravariant
index of a tensor is denoted by superscript, covariant by subscript. The trans-
formation laws generalize in an obvious way to tensors of rank higher than one.

A.2 The Metric Tensor and the Christoffel Sym-
bols

We can metricize a given vector space by forming a measure of length (s) of a
curve segment as follows

ds® = g;idatdx’ . A4
J

The length of a curve parametrized by ¢ may now be computed as

f dx? dxi
s = gij ————dt. (A.5)
/to Yodt dt

The formula (A.4) is called the first fundamental quadratic form. A space
metricized as given is called a Riemannian space. The coefficients g;; of the
quadratic form are the covariant components of a rank two tensor, called the
fundamental tensor or the metric tensor. As can be seen from the definition,
the metric tensor is symmetric i.e. g;; = gj. If the coordinate system is
orthogonal, the metric tensor is diagonal i.e. g¢;; = 0, ¢ # j. The metric
tensor of the orthonormal cartesian coordinates is the unit tensor d;;, (d;; =
1, i=j, d;; =0, otherwise).

Given a connection between the coordinate system at hand (y?) and some
coordinates (z') for which the metric h;; is known

et =2yt "), i=1,...,n (A.6)

the contravariant form of the metric tensor g% can be computed with the aid
of the covariant components of the metric tensor

dx® dxP

9ij 8y’ ay] B ( 7)

by g% = (9i5)
Christoffel symbols of the second kind can also be computed with the aid of
the covariant form of the metric tensor

.. 1 (Ogix 3gjk 3%;’
== = 4 — — . A.
[”7 k] 2 < oy’ yt oy (4-8)

Christoffel symbols of the first kind are then given by

E L rarss
{Z.j }—g ij.al. (4.9)

Christoffel symbols are not tensors and hence do not follow the transforma-
tion rules of tensors (unless the coordinate transformation (A.6) is affine). Both
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kinds of the Christoffel symbols are symmetric with respect to indices ¢ and j.
If the coordinates z* are the orthonormal cartesian coordinates, the Christoffel
symbols of the first kind can be seen to be

2, .0 k
R (A.10)
(] Oytdyl x>
and the symbols of the second kind
0%z Oz“

ij k| = ——=———=——. A1l
5K = 555 5 (A1)

A.3 Covariant to Contravariant and Back

The two forms of tensors can be converted to each other with the aid of the
metric tensor. Covariant indices can be raised to contravariant position by

V' =g %, 07 =g 0, (A12)
and similarily contravariant indices can be lowered to covariant position by
Vi = GiaV®, 04 = gia9j60a5~ (A.13)

One can also form mixed tensors by rasing or lowering only some of the indices

a§ = gja0'®. (A.14)

A.4 Covariant Differentiation

Covariant derivate of a scalar is the usual partial derivate

Ip
Pi= 55 (A.15)
Covariant derivate of a contravariant vector is given by
, ou’ i
i Y% k
U’J_8y1+{kj }u, (A.16)
Covariant derivate of a covariant vector on the other hand is
ou’ k
Ugyj = a—y] — { i ] }Uk. (A17)
Covariant derivate of a general tensor can be written as
1
a2 0 e e v ai?..i®
G142, jmal = Bl g + {al} 1l gm (A.18)

Lo bt {0 b - {4 gt - o

{J.O;l }A;iiij_.___.]z;; I {ﬁz} R (A.20)



76 APPENDIX A. A VERY SHORT INTRODUCTION TO TENSORS

Because covariant derivate of a tensor is a tensor (of rank one higher than
the original and covariant with respect to the new index) one can form second
covariant derivates by differentiating covariantly again.

Difference between two second covariant derivates of covariant components
of a vector taken in different order

Rl Aa = Aiyjr —Aiskj (A.21)

is called the Riemann-Christoffel tensor. If the covariant differentiation is to
be commutative, this tensor should vanish identically. A space where this is
true is called Euclidian. The vanishing of the Riemann-Christoffel tensor is also
enough to guarantee that the quadratic form (A.4) can be reduced, by a suitable
change of coordinates, to

ds® = da'dax’, (A.22)

indicating orthonormal cartesian coordinates. In what follows we consider only
Euclidian spaces.

A.5 The Second Fundamental Form and the Mean
Curvature

Let space coordinates of a surface be given parametrically as in
2t =a2t(utu?), i=1,...,3. (A.23)
Using this definition, we may compute the metric tensor of the surface

Ozt Ozl

where g;; is the metric tensor of the space coordinates zt,
The normal vector to the surface may be written
1 .
n; = ieaﬂeijkxéx/]&, (A.25)

where

: Oz
and €'?2 = 1/\/a, €' = —1/\/a, and €' = ¢ = 0. In the same manner
€ijk = /9, whenever ijk is an even permutation of 123, €;;, = —,/g whenever

the permutation is odd, and €;;, = 0, if two or more of the indices are alike.
A second rank tensor b,z defined by

bog = x’aBnZ (A.27)

is called the second fundamental form of the surface. With the aid of the both
fundamental forms of the surface, the mean curvature of the surface may be
expressed as follows

1
H= §ao‘5bag. (A.28)
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Discretization of the
Equations

The following describes the ELMER Solver discretization of the incompressible
Navier-Stokes equations, the scalar diffusion-convection equation and the elastic
stress equations.

B.1 The Incompressible Navier-Stokes Equations

One possible starting point in deriving the Navier-Stokes equations is the New-
tons second law of motion (for the notation refer to Appendix A)

ol i=0p (ai — f’) , (B.1)
where 0¥/ is the contravariant form of the (incompressible) stress tensor

o = —pg + 2" (B.2)
£% the linear strain rate tensor

. 1 A L
£ = 5 (gl kg™ ) (B.3)

describing a Newtonian fluid, u? the velocity vector, u the viscosity of the fluid,
p is density, f* external (volume) force, a* the acceleration

o out S
G,Z = E —+ ’U,l,j U,J7 (B4)

p pressure, and g% the contravariant form of the metric tensor of the coordinate
system.
The notation u',; denotes covariant differentiation

; ou’ i
i _ k
u,j——ayj-i—{kj }u, (B.5)
where the symbols with curly braces is the Christoffel symbol of the first kind.

7
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Combining all the above we have the Navier-Stokes equations
o’
ot

+ 97, —2ueY j +pu’jul = pf? (B.6)
or
dut | ik i ik, j I R
P+ 97— (9 gt )+ putud = pf (B.7)
or taking the (incompressible) mass conservation law
ul;=0
into account

ou’

P ¢

Next we will derive the variational formulation and discretize the equations.

+ 9", —ng’ul i +put o = pft (B.8)

B.1.1 Variational Formulation

We can write down the variational form of the equation (B.7) of the above
section as

/(p ot +9py (g ul p +g"%u ), +puly; “J> i dV:/Pf’wi dv
(B.9)

(dV = \/gdyl ...dy"™, where g is the determinant of g;;) which after integrating
the diffusion and pressure terms (i.e. the stress tensor part of the Navier-Stokes
equations) by parts reads

/ﬂﬁwi v+ /(—g”p+,u (ngu’,k +g”“u3,k)) w;,; AV (B.10)
+ /pui,j iji dV = /Uijnjwi dl’ + /pf’wz d‘/(B].].)
The variational form of the continuity equation is simply

/ui,iwc av = 0. (B.12)

B.1.2 Discretization of the Variational Formulation

If we now make the interpolation substitutions for the variables according to
the Galerkin method

P=_sps, U= YUl wi=we=7a, (B.13)
5 5

where the functions v are the piecewise defined polynomials, and the « and
indices are node indices, write the variational equation in matrix form (for one
node) as

ox

M—— +Ax=F, B.14
5 TAX=1F (B.14)
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T . L .

where x = (u!' w? «® p)”, and use Picard linearization for the convection term
ui,j W = ui,j us, (B.15)

we can write the diagonal matrix M as

M11 = M22 = M33 = /p’)/g’ya dV. (B].G)

Lets describe the A matrix in a procedural manner, setting the elements of
the matrix to zero initially. Then we can first add the pressure terms as

Ay += /ging—zj v, (B.17)
Aps —= /g”w{ z'I;' }“Ya dv. (B.18)
Next we add the diffusive terms:

Ay += /ugjkg—;ig—z(; dv, (B.19)
Ay += /ugikg—ﬁg—z(; av, (B.20)
Au += /u (gjk{ l’k} +g““{ l],; }) 752—33“ v, (B.21)
Ay —= /ugjkg—;i{ilj }’va v, (B.22)
Ay - = / ugi’“g—ﬁ{ Z] }’va av, (B.23)

T (B SRR ) R

For the convective terms we have
_ s, j
A += /ﬂa—yju Ya dV, (B.25)
i )
Aik: + = /p{ k}j }’yﬁuj’}/a dV (B26)

We will also add the continuity equation in the matrix as

Al
A i - - Yo d ) B2
4 + el V. (B.27)
Ay += /{JZZ }7/37(1 av. (B.28)
The force F' is
Fo= / pFva dV, (B.29)

F. = 0. (B.30)
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When the Newton linearization for the convection terms
ulul =ut U+ U U U (B.31)

is used instead of the Picard linearization, we have a few additional terms

B ou’ i &
Aij + = /p <8xj + { kj }Z/I ) ¥8Va AV (B.32)
and
_ ou’ U R
b (% e s

B.1.3 Stabilization

Stabilization given in Franca et.al., can be written in tensor form as (to be
added to the variational formulation)

Z/TR(U,UJ), t) (—we,i —pg?* (wiyji +wjn ) + pwi; UT) dV, (B.34)

where R(u,U,p,t) is the residual of the Navier-Stokes equations

ou

[
5 T 9 P — (g7 u i g™ i) + put ;U — pff. (B.35)

R(u7u7p7t) = p

The sum above is over the elements, and integral over element interiors. Conti-
nuity equation gives an additional term

/5ui,i gijwj,i dV. (B36)

The stabilization parameters 7 and § are given as in the reference:

6 = pllt]|hkRe, (B.37)
hi
T = ———Re,, (B.38)
2plU]|
Re, = min (%KWHJ). (B.39)
n

The parameter hg is determined by size of the element and my by the inter-
polation degree.

B.1.4 Discretization

Lets first write the residual (without the time derivate term) in a form, where
the variables (u®, p) have been separated from each other and making the inter-
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polation substitutions at the same time

= (S (W) e o
o= e (L))
Ue = o{ 4 bott! (B.42)
Uy = —u <gjk{lij}+g““{lj.}>%— (B.43)

j
TSR ORIETS (IR RCAl (B.44)
P Yk ("9 Y1k () 9ad :

i 08
Uy = gv—=. B.47
4 9" 5 (B.47)
If we are using Newton linearization for the convection term, there is an

additional term

_ ou’ i k
Uj + = <% + { k}] }Z/{ ) VB- (B48)
There is also a term to be added to the stabilization force term in this case, this

is done below.
Ok, now we’ll do the same for the weight function terms:

, 0%y 1) 9 e,
. — _ Jk (o7 _ o (o7 7
! Ha <3x48xk {jk } Ot ) * paij{ ’ (B-49)
W - 0%y 10
=T <3x48x’“ { ik } Ozt ) ' (B-50)
k .
W, = p{ ij }fyal/lj, (B.51)
ko J 1 1 9a k) 1|97 k) 1197
— ik ik jk
W, g Q{ij}ax’“ + ug {ik}axj + g {Jk}ax’ + (B.52)

{;’Iz {rrln}+{:2}{]fn}>% (B.54)
NMa

Wi = S (B.55)
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Using the above notations we can write the out the matrices. Note that
no loop is indicated by the indices in Wp and Ug (I' = © = 1, j, k,[,4) below,
but these are to be substituted to the equations as written before any further
processing. First we’ll write the M ?® matrix as

Mg, += / TpysWr dV, (B.56)
the A% matrix as
Are += / TUeWr dV, (B.57)
A, / 5 275 273“ dv, (B.58)
A5, 4= / 59“'{ kll} g’;‘; qv, (B.59)
ho— = / 59”%{ i }va av, (B.60)

s gl k
kk T = /59 J{ ki }75{ l] }“Ya av. (BG]')

Stabilization for the force vector can be written as
F += /Tpr dv. (B.62)

and in addition to the previous term, when using Newton linearization

o’ ,
Ff += /Tp <8xj + { ki }u’“) UWr dV (B.63)

B.2 Computing the Second Derivates

In the stabilization terms of the Navier-Stokes equations we need second partial
derivates of quantities with respect to the global coordinates. The computation
proceeds in the following manner. Let the space coordinates of the element be
given

2t =2t u?), i=1,...,3. (B.64)

Let also the quantity f be given at element nodes, whereupon it may be ex-
pressed in the same way as the coordinates

f=fuh,u?). (B.65)

What we need is the matrix of second partial derivates of f with respect to
space coordinates z*

o2 f

W. (B.66)
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To this end we will first compute the second covariant derivates of the quantity
f with respect to the element local coordinates:

fos & { 7 }ﬁ = hag. (B.67)

T uweodf  \af [ our
This second rank tensor may be converted to contravariant base by
hP = g*7g% oy (B.68)
As you may recall (Appendix A), the contravariant rule of transformation is

_ 0" 02l o
© Que OuP

h'i (B.69)

If the element coordinate system metric, and thus also the Christoffel symbols,
are with respect to Cartesian coordinates, the values h% contain the second
partial derivates of the function f with respect to the space coordinates z* (not
necesserily Cartesian).

B.3 The Scalar Diffusion-Convection Equation

The scalar diffusion-convection equation written in tensor form, allowing anisotropic
diffusion (heat conduction, for example), reads

T ) g
Ctaa_t + CoT + Chu'T; — (c;frj) =h (B.70)

2

Next we will derive the variational formulation and discretize the equations.

B.3.1 Variational Formulation

We can write down the variational form of the previous equation (B.70) as

/ (c&%—f +CoT + CLu'T; — (C;jT,j) ) wdV = /hw dv. (B.71)

Integrating the diffusion term by parts, we get

T . . .
/ (Ct%—t + O()T + 01UZT7Z') w dV + /O;JTJ"LUJ dV = /O;JTJ'TLZ' dl' + / hw dV
(B.72)

B.3.2 Discretization of the Variational Formulation

Using the same notation as for the Navier-Stokes equations, we get the mass
matrix

M = /C’ﬂ/ﬂa dv. (B.73)
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Lets describe the A matrix in a procedural manner, setting the elements of
the matrix to zero initially. Then we can first add the term proportional to the
zero order derivate

A4+ = /C()’}/B’ya C”/7 (B74)

secondly we add the diffusive terms

A+ = / c;f?ﬁ Z;j dv. (B.75)

For the convective terms we have

A+ = i ’w dv. (B.76)

B.3.3 Stabilization

Stabilization given in Franca et.al. may be written as
Z/TR(T, t) (—Cow + Crutw; — (c;fw,j)J) : (B.77)
e
where R(T,t) is the residual of the diffusion-convection equation

T . g
R(T,t) = Ctaa_t +CoT + CLu'T,; — (c;JT,j) —h (B.78)

The sum above is over the elements, and the integral over element interiors.
The stabilization parameter 7 is given as in reference:

hk
- B.79
AT (B.79)
where
Pe = min (el (B.80)
2C5

The parameter hg is determined by size of the element and mpy by the inter-
polation degree.
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B.3.4 Discretization

Lets first write the residual (without the time derivate term)

U
U

00757
o
ij 62’76

2 dxidxd’
aCy' s
Qi Oxi’

i [ k08
1]
CZ {i.]}axk.7
) 7 198
02 {]k}@x”

ki i 198
e Yo

Ok, now we’ll do the same for the weight function terms

T ¥ = = = =

00’757
o
ij 62’76

2 dxidxd’
aCy' s
Qi Oxi’

i [ k08

ij vB
02 { 'L] }8xk7

k) J %
02 {]k } axl ’

ki i 19
e Yo
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(B.81)
(B.82)

(B.83)
(B.84)
(B.85)
(B.86)

(B.87)

(B.88)
(B.89)

(B.90)
(B.91)

(B.92)
(B.93)

(B.94)

Using the above equations, stabilization term for the mass matrix is then

for the A matrix

and for the force vector

M = / rCyaW dV,

A = / TUW dvV,

F?° = /TVQW dv.

(B.95)

(B.96)

(B.97)
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B.4 The Compressible Navier-Stokes Equations

We have already introduced the general Navier-Stokes equations
i
P ot

which apply also to the compressible case, if the (Newtonian) stress tensor is
defined to contain an extra term as follows

+pui,j w —aij,j:pfi (B.98)

o = —pg" + 2ue” — g/,auk,k g (B.99)

and the density is non-constant, following some state law. We will assume here
the ideal gas law

p=—-—. (B.100)
The continuity equation becomes
pulsi +up,i=0. (B.101)

The compressible flow is usually couple to the heat equation, which becomes in
the compressible case

ar . 9 o
Py <§ + ulTvi) +4q"i+T <8_§’> u'yi +7%u4,5=h (B.102)
v

where 7% is the viscous part of stress tensor (check contraction!), and for ideal
gas

cw=cp—R (B.103)
and the expansion term is
ap> . .
T <— u'yy=puy. (B.104)
aT v 13 (2
According to Fourier’s law
¢ =kYT,; (B.105)

B.5 The Elastic Stress Equations

The starting point for these equations is exactly the same as for the Navier-
Stokes equations

o' = pla’ — f1). (B.106)

The stress-strain relations naturally differ somewhat from the flow equations.
For elastic isotropic material (allowing anisotropy of the heat expansion though)
we have

o'l = gAY + 2ue — g NBFH(T — Ty) — 2B (T — To) (B.107)
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where A and p are the Lamé parameters, €%/ the contravariant form of the linear
strain tensor

- 1. .. . o
il = 5 (g% +g™d 1), (B.108)

and % the heat expansion tensor. For isotropic heat expansion, we may take
3 = g o, (B.109)

where [y is the scalar heat expansion coefficient.

Assuming that we may discard the acceleration a and taking T as a known
quantity we may write down the elastic stress equations:

—g" () ;= @ueV) = —g" BT ~ To)) j — (2uBY(T — To)),; + F
(B.110)

B.5.1 Variational Formulation

The variational formulation of the equation (B.110) reads

/ (=Ad — (g d e +9* d )5 ) ws dV = (B.111)

[ (P04 (@ =) + 2059 (0 = 1) i v + [ pfwiav. Ban2)
Integrating by parts again

—//\df“kwi dV+/(u(gj’“di,k +g*d ) wiy dV = (B.113)
/ (=g \BM (T — Tpy) — 2uB" (T — Ty)) wy ; AV + (B.114)

/Jijnjwi dar +/fiwi dv. (B.115)
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B.5.2 Discretization of the Variational Formulation

Again using the same notation as in previous sections:

A += /Agij%é)—vj" dv, (B.116)
vk y
975 Oa
A += / ,ugjk—afy’[]z—fyj av, (B.117)
vk y
3 a’YB 87(1
Ay + = / kL ZT2 gy, B.118
j 9" SR ( )

(k) OV
)\gJ{ o }yﬂalyj av, (B.119)

Yo dV, (B.123)

|
}’m—j dv, (B.121)
{
{

9
}'ya dv, (B.122)
|

B
ugj’“{ k:n }ws{ Z? }va av, (B.124)
Lo}

fyg{ il. }fya dv. (B.125)
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B.6 The Magnetic Induction Equation

Magnetohydrodynamics (MHD) is an approximation to the behaviour of ionized
plasma under the influence of magnetic fields in moderate energy scales and
relatively high densities. The presence of applied and induced magnetic fields
in a flow of plasma will result in an additional force for the flow momentum
equations, the Lorenz force, and also in an additional heat source for the heat
equation. In the following we present the underlying equations.

The macroscopic Maxwell equations may be written as

DY = p, (B.126)
L oD* )
IR HE; = ot (B.127)
oB! .
5 + 6B, = 0, (B.128)
B = 0, (B.129)

where D is the displacement current, H is the magnetic field, B is the magnetic
induction, E is the electric field, J is the current density, and p the charge
density. It is usually assumed (and we also assume), that the simple form of
Ohms law holds

J=0E, (B.130)

where o is the conductivity of the plasma. In laboratory frame this may be
written as

J =0 (E'+ e u;By) . (B.131)

What is still missing is the description of the relationship of the fields E and B,
and D and H respectively. We assume the simplest model

D = ¢E, (B.132)
1

H=—B, (B.133)
Ho

where the parameters ey and po are the electrical permittivity and magnetic
permeability of free space respectively.

Next in our series of approximations is to ignore the time derivate of the
displacement current D entirely. To see how this might be justified, lets take a
look at the values of the fields. From the value of ¢y for free space

_ 107
 dne?

€0 ~10 M (B.134)
we see that the E field is much larger in value than the D field, so that in
a numerical simulation we have J >> 9D/0t in the time scales and velocities
of interest in magnetohydrodynamics. The basic assumption is then, that the
macroscopic collective velocities of charged particles are of the order of the fluid
motion, and that the charge separation does not occur.
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Using the above assumptions we may eliminate the electric field from the
Maxwell equations to reach the induction equation

0B?

ot

g 1.
— €7F gy elmn (umBn) ; + Jemkgklelman,nj =0. (B.135)
0

The force generated by the magnetic and electric fields for the low momen-
tum equations may be expressed as

) 1 1 ..
Fi= —(J xB)=—€9*J;By, (B.136)
Ho Ho

and the Joule heating as

1 1
h=—J%=—J'. (B.137)

o THy
The induction equation together with the Navier-Stokes and the heat equa-
tion with the above source terms are the equations of magnetohydrodynamics.
B.6.1 Discretization

For the purpose of discretizing the equation (B.135), we will first write it in a
different form using the vector identities

€ijkgk:lﬁlman,nj — gikB.,jjk — gjkB,ijk (B138)
and

€0k grm™n (umBn) ; = u’B]] - Biu{j + Bjufj - ujij. (B.139)

From the Maxwell equations we see that

B =0, (B.140)

,i
so that the first of the equations becomes
Gijkgk,lﬁlman’nj = —gjkB’ijk. (B].4].)
The induction equation may now be written as

OB’
ot

—u'B’, + B'v!, — Blu'; + v/ BY; + U—Mogjkajk =0. (B.142)

Multiplying by the weight functions w; and integrating we obtain

oB: . . - o o 1 .
/ ( T u'B% + B'ul; — Blul; +u! Bl + —ngB’jk> w;dV =0. (B.143)
: ; ; I oo ;

Integrating the diffusion term by parts we get

OB? L o o o
/ < T u'B’; + B'w!; — Blu!; + ujij) w;dV — (B.144)
1 ., . o
a—,uog]kB’zkwi’jdV = /ngBfkwinjdV (B.145)
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Now we may write the discretized matrices as

_ 95
Az] - U; W’ya dV

Uz{ }7,3'704 av,

/
=/
.

Ay / W e av,
=/
=/
/

Er
w { }'Yoz vs dV,

Ak
A RS L 97a 08
" oo’ Bk 9zd ¢
Ay += U,:llto 7 gzi{ }’75 v,
Ay —= /%ﬂog"’“{ ' }7 ?f dv,
N A P

The mass matrix is the same as in other cases.

ou’ i
o (G { e f) e
<W { i }uk) e dV,
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Appendix C

The Diffuse Gray Radiation
Boundary Condition

We describe the diffuse gray radiation boundary condition in this appendix.

C.1 The Diffuse Gray Radiation Boundary Con-
dition

On outer boundaries of a solid or liquid body, where the temperature is not
fixed, the heat flux must be specified:

oT

k= =gq. C.1

o = 4 (C.1)
The flux ¢ may depend on temperatures of other boundaries of the system, if
radiative exchange of heat is present. The model used here is the diffuse gray
radiation model, which means that a surface radiates energy to every direction
with equal intensity, and that the intensity is also independent of the wavelength
of the radiation. Using these assumptions we may write the heat flux for a given
point on a surface, resulting from the radiation, as

(ET)= o (e(f)T‘*(f) - [cweaarm dAy) L (2

where o is the Stefan-Bolzmann constant, ¢(#) is surface emissivity, and the
integral is over all the surfaces of the model. The function G is the so called
Gebhardt factor. The Gebhardt factor may be computed using the equation

G %) — / F@.8)(1 - «()G(,7) dA. = F@7,De(®),  (C3)

where the function F' is defined as follows

Fd, ;) = S8 g (C.4)

w2

The angles are between the normals of the surfaces and the line connecting the
points and H;; the visibility. The function F' is the so called view factor.

92
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In practice, the surfaces of the model are divided to, say, total of IV finite
parts, the boundary elements. This discretization is then used to compute the
view factors (refer to next section) and the Gebhardt factor for these parts. The
Gebhardt factors may be computed from the equation

G=F(I—-(I-E)F)E, (C.5)
where F' is the view factor matrix, and E a diagonal matrix of surface emissiv-
ities.

Writing the discrete version of the boundary condition we get

8Tk A 1 al 4

Apey,
i=1

This equation is still nonlinear, and has to be linearized in order to solve
the equation on a computer. To illustrate the point here, we will first show how
to linearize the idealized radiation boundary condition instead of the diffuse
gray radiation boundary condition. As you may recall, the idealized boundary
condition reads

or
—hg-=oe (T*-1T2,) - (C.7)
We may write this somewhat differently as in
or 3 2 2 3
—k% =0c (T + T?Tewt + TT. + T2,) (T — Towt) - (C.8)

If we now take T' = T, the temperature from the previous iteration, in first
of the product terms, we have an expression linear in 7. This is somewhat
strange linearization, not quite a Newton method, but effective in being more
insensitive to the initial guess of the temperature field than the Newton method,
while still having a much better convergence rate than the fixed point method.
The Newton linearization is also easy to produce by writing down the Taylor
series expansion of the equation (C.7) around 7 and retaining only the constant
terms and the terms linear in T:
or

—ho -~ oe (AT°T = 3T* - T2,).

(C.9)

This linearization has a better convergence rate than the previous one, but with
the expense of being more sensitive to the initial guess. These two linearizations
may be used in succession, first taking a few steps with the former linearization,
and then switch to the latter when the convergence is on the way.

The linearization of the diffuse gray radiation boundary condition is very
similiar. We may, for example, use the temperatures from the previous iteration
to compute an ’external’ temperature

1
Top ~ EkZGikEiﬁlAia (C.10)

and use either of the equations (C.8) or (C.9). The convergence rates of these
methods are of first order, and usually they are used only to provide an initial
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guess for the full Newton iteration. The full Newton method may be written as

e 9Tk T L T TN
K & % (477ch 37; Akgk;c:lkgl(mgﬂ 374 A4; . (C.11)

One final note is due. The Gebhardt factors computed in the way presented
here are assumed to be constant within elements, while the temperatures from
the previous iteration are known at the element nodal points. Terms of type
aGy, T, are to be integrated over the element ¢. This is done by a one point
integration rule and requires values of the powers of the temperature field at
the element center. To conserve the heat flux, the powers of the temperature
field will first have to be computed on nodal points, and only after that inter-
polated to the element center, rather than first interpolating the temperatures
and computing the powers afterwards.

C.2 Computing the View Factors in 3D

A view factor between two surface patches (boundary elements) of a geometrical
model (mesh) is defined as

1 COS @ COS O
Fi= /A /A,. 0 Hy A A, (C.12)

where A; and A; are the areas of the patches ¢ and j respectively, ¢; and ¢;
the angles between the normals of the surfaces at given points and the line
connecting the points and r the distance between the two points. The most
problematic thing about the definition of the view factor integral (C.12) is the
evaluation of the visibility function H;;. The value of the function H;; is one,
if there are no obstacles between the two points, and zero otherwise. The view
factors are computed for every pair of surface patches in the model, so that we
eventually get a N x N matrix F'.
Noting that

allows only one half of the factors to be actually computed.

In three dimensional cases, the method the ELMER view factor computa-
tion program uses to evaluate the integral (C.12) is direct numerical integration
combined with an adaptive subdivision procedure, where the elements are sub-
divided to smaller and smaller pieces, until user specified accuracy criteria are
fullfilled. An area weighted average of the factors of the parts of the subdivided
patches is then computed. The subdivision of patches is stored in hierarchi-
cal storage, so that it doesn’t have to be repeated for every pair of patches.
This subdivision is also used by the ray tracer, which is used for computing
the visibility function. For quadratic and cubic elements the intersection com-
putation is done with a similiar adaptive subdivision procedure combined with
Newton iteration for finding the roots of the polynomial equations describing
the intersection points of the rays and the surfaces.

First of the criteria to terminate the integration subdivision procedure is
fullfilled when the areas of the subdivided elements are small enough. This cri-
terion prevents the subdivision to continue forever in areas where the integrand



C.3. NORMALIZING THE VIEW FACTORS 95

is actually discontinuous (any sharp corner, for example). The second criterion
to terminate the subdivision is fullfilled when the view factors themselves have
become small enough. This criterion prevents unnecessery subdivision of areas
which are either far away from each other or oriented so that the projections of
their areas to each other are small.

The function H;; is evaluated by sending a number of rays from one of the
patches to another, and checking whether they hit some other patch of the
model before hitting the target. This is potentially a very time consuming task,
as in the worst case, for every pair of boundary elements, all the other boundary
elements of the model must be checked for obstructing the view between the
pair. The ray tracer module is designed to reduce the time spent in computing
the intersections, by making a hierarchical volume subdivision of the model
volume and assigning each element of the model to some of these subdivided
volumes in a fixed hierarchy level. The ray tracer is then able to check whether
the ray will hit the bounding boxes of the volumes, then the second level of
bounding boxes, etc. before eventually going through the elements assigned to
a volume in the last hierarchy level. There might be only a couple of elements
assigned to that volume.

When the visibility between two surface patches is in doubt (some of the
rays are obstructed, some not) an additional subdivision cycle is made. When
the subdivision is eventually terminated, H;; is computed as

Hij =1- nb/n, (014)

where ny is the number of the rays blocked and n the total number of rays sent.

C.3 Normalizing the View Factors

The view factors computed by, for example, the kind of procedure described in
the previous section, are only approximate. For the radiative exchange of heat
in finite element computations, it is sometimes important to guarantee that
energy is conserved. The energy conservation requires, that in a closed system

N

Y Fy=1. (C.15)
j=1

Together with the equation (C.13) this condition may be used to normalize the
factors so that energy will be conserved.
Lets begin with defining a symmetric matrix

1
Sij = E(AiFij + A;Fy;). (C.16)

This matrix we can relatively easily scale so that the row sums (and as we
should preserve the symmetry, also column sums) of the matrix are equal to
corresponding surface patch areas, by solving a set of equations:

N
> did;Sij=Ai, i=1,..,N (C.17)

j=1
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where the d;:s are scale factors. The equation set is quadratic in d;:s and may be
solved by Newton iteration. The resulting linear system is diagonally dominant
and very stable, so there should be no problems in solving the equation.

After the scaling is known we may compute the normalized factors by

Fij = d;d;Sij/A; (C.18)



Appendix D

Free surfaces

In this appendix a brief introduction to the methods used in tracking of a free
surface is given. The methods may be used to track a free surface between two
non-mixing liquids or on a liquid-gas interface. Note however, that ELMER
at present doesn’t include the compressible flow equations. Currently the free
surface model can not be used in a transient simualtion.

D.1 The Free Surface Boundary Condition

On a free surface we must set two boundary conditions:

i=f (D.1)

Qll

and
(@) =0. (D.2)

The latter is to ensure that there is no flow across the boundary (i.e. ensure
that the boundary is a boundary...). As for the former, refer to chapter 1.

D.2 Computing the Mean Curvature

In the specification of the normal component of the force on the boundary we
have the mean curvature (2H = 1/R, Chapter 1). The definition of the mean
curvature has been given in appendix A. The computation of the mean curvature
requires second derivates of the boundary surface coordinates at the mesh nodes.
This is a problem because the derivates computed from the piecewise polynomial
basis functions of the elements may differ on the element-element boundaries.
Also, for the linear basis functions, the second derivates are zero. For these
reasons, the computation of the derivates on the nodes of the elements is done
by computing an average of the elementwise derivates. The second derivates are
computed by differentiating the first derivates.

Another approach to computing the derivates on nodes of the surfaces might
be to fit the surface to a twice differentiable function (cubic spline in 2D, for
example), and compute the derivates by differentiating this function. This ap-
proach may be used in future.
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D.3 The Surface Update

The free surface is tracked by minimizing the equation

/(ﬁ- 7)2dS (D.3)
S

on the free boundary. This is done with an iterative process, where the flow
field is first solved, the free boundary tracked, the flow field solved again using
the new position of the surface, etc.

The tracking of the surface within an iteration step is done by moving nodes
on the free surface using an equation of type

Yyt =yt 4 a(a@t - it), (D.4)

where « is to be determined, for example, so that the surface for the next
iteration step will be lined with the velocity field of the current iteration step,
i.e.

(@ i) = 0. (D.5)

In two dimensions the update of components of the normal vector may then
be written as

nitlt = n;—%a(ﬁi~m), (D.6)
n;"'l = n; (D.7)

Using the basis function approximation to the coordinate y, we may write the
equation for the x component of the normal vector as

o= = oo S Wit =y (D.8)
j
, , 9,
= 0l ('t -y (D.9)

where n is the index of the node, within the element, we are moving (it is
implicit, that the y coordinate referred above is also the coordinate of the node
in question and that the normal vector we are referring to is the normal vector
of the surface at this point; we are moving only one node at the time). Using
the equation D.5 the coordinate update is then

ytt =yt 4+ (@ - it%). (D.10)

In three dimensions the process is the same. Supposing that we are moving
the surface in the z coordinate direction, we may write down the update of the
normal vector as

dy 0

i+l i i =iy ~i =i
ng = n.,+ 5 8Ua(u ') 5 8ua(u i), (D.11)
. - Ox O o or O L
i+1 _ i =i 2 21 =
Ny =y e —8Ua(u ) e —8ua(u i), (D.12)
nitt = nl (D.13)
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Again using the basis function approximation to the z coordinate we get

i+l i (a* -

z =z —
0y 9vn _ Oy 0n Az Oy _ Oz
(8u v v ou ) Y + v Ou ou o0 ) Wy

(D.14)

D.4 The Mesh Update

After the surface update is done the mesh will have to be redefined, because
moving the surface nodes might result in bad or degenerate or even overlapping
elements. The mesh update is done by solving the equation

Viy =0, (D.15)

where y is the coordinate whose nodes we moved using the method described
in the previous section. Dirichlet boundary conditions for the boundary coordi-
nates of fixed boundaries (and the free surface) should be set for this equation.
The equation is solved using the mesh before the update of the free surface
coordinates.

The diffusion equation will distribute the coordinates evenly.



Appendix E

HUTIter library

E.1 Introduction
E.1.1 General

A very general problem in linear algebra is, like in this presentation, how to
solve the systems of linear equations

Az =5 (E.1)

In order to have a unique solution for the equation (E.1) the coefficient matriz
A has to be of size n x n and non-singular. Vectors x and b are of size n x 1.

When A is formed by discretizing partial differential equations (PDEs) the
structure of A is often very sparse. The ability to take advantage of this fact is
very beneficial in computer based solutions.

The methods available to solve the equation (E.1) can be divided into direct
methods and iterative methods. The behaviour and robustness of direct methods
is predictable. This is not the case with different iterative methods [9]. There are
different kind of iterative methods and some of them have many variants. The
usefulness of some method depends both on the structure and characteristics of
the coefficent matrix.

When the structure of the matrix A is not known then the direct methods
are preferred. Unfortunately using a direct method can be very time consuming
and the needed resources in a computer can be vast. If the structure of A is
exploited carefully some iterative method can be very efficient. This is the key
reason for their success.

In modern scientific computing parallelism is coming more and more impor-
tant. That setting will pose totally new requirements for the algorithms used.
The set of basic operations between vectors and matrices in iterative methods
makes them much easier to parallelize.

Iterative methods are divided into two categories: stationary and non-stationary.
Examples of stationary methods are Jacobi and Gauss-Seidel iterations. Non-
stationary methods include Conjugate Gradients (CG) and variants (CGS) and
methods based on Minimal Residuals (GMRES,QMR).

HUTTI is an effort to make an effective and well structured library containing
a collection of iterative methods. The methods implemented in the library are:
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e Conjugate Gradient (CG) [3]

e Conjugate Gradient Squared (CGS) [3]

e Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) [3]

e Bi-Conjugate Gradient Stabilized (2) (Bi-CGSTAB(2))
e Quasi-Minimal Residual (QMR) [3, 4, 7, §]

e Transpose-Free Quasi-Minimal Residual (TFQMR) [6]

e Generalized Minimum Residual (GMRES) [3, 9]

This library supports both serial and parallel execution. Parallelisation has
been made in a distributed memory environment using message passing as a
communication method between processes. User has the same interface into the
library for both of the execution models.

The name HUTI comes from Helsinki University of Technology (HUT) and
Iterative solvers.

E.2 Using HUTI

E.2.1 Overall Structure

The key idea in HUTTI is that all iterative solvers have the same calling con-
ventions regardless of the selected method. All matrix related operations are
done externally from the iterator library. This means that the solver doesn’t
need to know the exact matrix structure. Matrix can be stored for example in
well-known Compressed Row Storage (CRS) or Compressed Comlumn Storage
(CCS) formats. This eases the optimization of memory usage in each particular
case.

In parallel setting it is on users responsibility to define the storage convention
for the distribution of matrices and vectors. Well-known distribution concepts
are for example block-cyclic decomposition and domain based decompositions.
More information can be found from [10, 9].

The core routines (solvers) are written in pseudocode style using Fortran90
language. All the different precision and machine dependent parts are defined
using preprocessor and generated from one source code. The most valuable
advantage is the readability and possibility to implement new methods and
their variants very quickly.

The needed layers above and below HUTI are presented in Figure E.1.
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User Application

Main Program

User supplied | | User supplied
routine routine
A A
\ \ /

HUTIter Library

' '

Message Passing Interface

;

Parallel System (OS, HW)

Figure E.1: The position of the HUTIter library

E.2.2 Naming Conventions

All the HUTI routine names and variables start with the

huti_
or
HUTI_

prefix. In the routine names the precision is denoted by an appropriate charac-
ter: s for single precision, d for double precision, c for complex and z for double
complex.

Solver routines are called in the following way:

CALL HUTI_x_SOLVER_TYPE ( X, RHS, IPAR, DPAR, WORK, MATVEC,
PCONDL, PCONDR, DOTPROD, NORM,
STOPC)

where  x is either S, D, C or Z depending on the precision.
SOLVER_TYPE is either CG, CGS, BICGSTAB, BICGSTAB_2, QMR, TFQMR or GMRES
depending on the method.

Table E.1 describes the parameters for solver routines.



E.2. USING HUTI 103

Argument Type Description
X vector of Vector z, the current iterate
type *
RHS vector of b, the Right Hand Side
type *
IPAR vector type IPAR-structure, see section E.2.4
integer
DPAR vector of type DPAR-structure, see section E.2.4
double prec.
WORK matrix of User allocated working array, size varies
type * depending on the method, see table E.7
MATVEC subroutine User supplied external routine,
must perform matrix-vector product
PCONDL subroutine User supplied routine for left side
preconditioning
PCONDR subroutine User supplied routine for right side
preconditioning
DOTPROD function Used supplied routine to perform dot
product
NORM function User supplied routine returning norm
of a vector
STOPC function User supplied routine to perform stopping

criteria testing

Table E.1: Parameters for the solver routines

The external routine MATVEC is the only needed routine when calling a solver.
It should perform matrix-vector product. Using zeros in place of the other ex-
ternal routine names will force the library to use default routines applicapable to
the selected execution model. For example double complex Conjugate Gradient
method could be called from a FORTRAN program in the following way:

CALL HUTI_Z_CG (X, RHS, IPAR, DPAR, WORK, MATVEC, 0, O, 0, 0, 0)

where X, RHS, IPAR, DPAR are user supplied vectors and WORK is the user al-
located work space (an array) for the iterator. In this case the library would
use BLAS-1 calls for DOTPROD and NORM if executed in serial execution mode.
There would be no preconditioning applied. The IPAR and DPAR structures must
contain user supplied information about the dimensions of the vectors and work
array and certain control information for the iterators.

E.2.3 External Routines

This section describes external routines that can be given as arguments for the
solver routine. Only MATVEC routine is required, others routines are optional.

These routines are called from the solver and type of arguments and order
is presented for each routine.

The matrix A can be stored in any format because it is totally on the user’s
responsability to make it available for the external routines.

The IPAR structure is passed to some of the external routines and is used to
carry on certain control variables from the solver routine. In the IPAR structure
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there is for example the assumed type of the matrix in external operation.
This applies for both the matrix-vector operation Au = v and preconditioning
operations M; 'u = v and M, 'u = v.

Matrix-Vector operation

The arguments for the external matrix-vector operation MATVEC are given in
Table E.2. This routine should perform matrix-vector product. In the IPAR
structure the iterator provides information about the matrix form, should it
be transposed or not. Only non-transposed forms are used in CG, CGS, Bi-
CGSTAB, TFQMR and GMRES methods. Only QMR will need a transposed
matrix-vector product, that is ATu = v.

The calling convention for the MATVEC is:

SUBROUTINE MATVEC ( U, V, IPAR )

Argument Type Description

U vector of Vector u in Au =wv
type *

\'% vector of Vector v in Au = v
type *

IPAR vector of type IPAR-structure, see section E.2.4
integer

Table E.2: Parameters for the external MATVEC subroutine

Preconditioning

The routines PCONDL and PCONDR should solve the Miju = v and Msyu = v
respectively if preconditioning matrix is splitted in two parts. If only one pre-
conditioning matrix M is available, the PCONDL routine should solve Mu = v
and PCONDR should not be supplied for the solver (the argument must be zero).

The arguments for the external preconditioning operations PCONDL and PCONDR
are given in Table E.3. Preconditioning routines should use the information in
IPAR structure to apply transposed or non-transposed solve when needed. Only
QMR method will need the M =Ty = v operation.

The calling convention for the PCONDL is

SUBROUTINE PCONDL ( U, V, IPAR )

and for the PCONDR

SUBROUTINE PCONDR ( U, V, IPAR )
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Argument Type Description

U vector of Vector u in Mu = v
type *

\% vector of Vector vin Mu =v
type *

IPAR vector of type IPAR-structure, see section E.2.4
integer

Table E.3: Parameters for the external PCONDL and PCONDR subroutines

Global Dot Product

The external function DOTPROD is supposed to perform global dot product for
two given vectors. In the serial case this routine is by default the corresponding
BLAS-1 routine. In the parallel case this is the place to do global product using
for example MPI_ALLREDUCE function to sum up the local products computed
using for example BLAS-1 routine.

The calling convention for the function DOTPROD is

FUNCTION DOTPROD ( NDIM, X, INCX, Y, INCY )

Argument Type Description

NDIM integer Dimension of vectors X and Y
X vector of Vector x in z -y
type *
INCX integer The increment for the elements of X
Y vector of Vector yin z -y
type *
INCY integer The increment for the elements of Y

Table E.4: Parameters for the external DOTPROD function

The function DOTPROD must return a value of the same type as the argument
vectors.

Global Vector Norm

The external routine NORM is used to produce the global vector norm, usually the
vector 2-norm ||z||2. In the serial case this routine is by default the corresponding
BLAS-1 routine. In parallel case this is very similar as DOTPROD function.

The calling convention for the function NORM is

FUNCTION NORM ( NDIM, X, INCX )
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Argument Type Description
NDIM integer Dimension of vector X
X vector of  Vector x in ||z||
type *
INCX integer The increment for the elements of X

Table E.5: Parameters for the external NORM function

The function NORM must return a value that is either real if X is single
precision (real or complex) or double if X is double precision (double precision
or double compler).

Stopping Criterion

Stopping criterion can be selected from the built-in stopping criteria or it can
be supplied by the user. Built-in alternatives are listed in table E.7.
The calling convention for the user supplied function STOPC is

FUNCTION STOPC ( X, B, R, IPAR, DPAR )

Argument Type Description
X vector of Current iterate z,,
type *
B vector of The original right-hand side
type *
R vector of Current residual vector r,
type *
IPAR vector of type IPAR-structure, see section E.2.4
integer
DPAR vector of type DPAR-structure, see section E.2.4

double precision

Table E.6: Parameters for the external STOPC function

The function STOPC must return a value of same type as the NORM function
for selected precision. See the previous section.

The returned value should describe somehow how close the current iterate is
the user supplied tolerance. It will be tested against the tolerance and printed
if requested.

E.2.4 Iteration Parameters
IPAR -Structure

The IPAR structure is used to control the progress and behaviour of the iterator
routine and to get status back from it. IPAR is also passed futher to some of
the user supplied routines.

Input parameters are described in table E.7 along with their default values,
output parameters are in table E.8.
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A more detailed description of the various parameters and output values for
each solver is listed on the corresponding reference pages.

Element Description Default
General parameters
1 Length of the IPAR structure 50
2 Length of the DPAR structure 10
3 Leading dimension of the matrix (and vectors)
4 Number of vectors in the work array:
CG: 4
CGS: 7
Bi-CGSTAB: 8
Bi-CGSTAB_2: 8
QMR: 14
TFQMR: 10
GMRES: 7 4+ number of restart vectors
5 Number of iterations between debug output 0
6 Assumed matrix type in external operations
0: Matrix must not be transposed
1: Matrix must be transposed
Iteration parameters
10 Maximum number of iterations allowed 5000
12 Stopping criterion used: 0
(e is the tolerance given by the user, see table E.9)
0: |Irnll <€
1: fIrall < el
2: ||znll < €
3: |znl] < ellol
4 M|zl < eM b
5 ||en — xn_1]] <€
6: upper bound < e (only with TFQMR)
10: Use the user supplied routine STOPC
13 Preconditioning technique used: 0
0: None
1: Right preconditioning
2: Left preconditioning
3: Symmetric preconditioning
14 Initial x¢, starting vector: 0
0: Random =z
1: User supplied zq, vector in XVEC
15 Number of restart vectors in GMRES(m) 1
Parallel environment parameters
20 Processor identifaction number for spesific process
21 Number of processors 1

Table E.7: IPAR-structure, input parameters
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Element Description

General parameters

30 Status information:
0: No change
1: Iteration converged
2: Maximum number of iterations reached

10:
11:
12:
13:
14:
20:
25:
30:
35:
36:
37:

QMR breakdown in p or ¥
QMR breakdown in §

QMR breakdown in €

QMR breakdown in 8

QMR breakdown in vy

CG breakdown in p

CGS breakdown in p
TFQMR breakdown in p
Bi-CGSTAB breakdown in p
Bi-CGSTAB breakdown in ||s]]
Bi-CGSTAB breakdown in w

31 Number of iterations runned through

Table E.8: IPAR-structure, output parameters

DPAR -Structure

For parameters of type double precision there is a structure called DPAR. Table
E.9 describes the elements of this structure.

Element Description Default

General parameters

1 Tolerance used by stopping criterion 10e ™8

Table E.9: DPAR-structure

E.2.5 Header Files

huti_fdefs.h and huti_defs.h

There are header files in preprocessor format for both Fortran90 and C lan-
guages. These header files include definitions for all of the variables described
in tables E.7, E.8 and E.9. There are also definitions for possible flags of certain
variables and default values.

The user should use the named definitions by including header file via
#include ‘“‘huti_defs.h” for C defines and #include ‘‘huti_fdefs.h” for
Fortran90 defines. In that way the compatibility is guaranteed also with the
later versions of the library.
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Format of the ELMER Cad
Interface settings file

In this appendix we describe the structure of the cad interface settings file. An
example of the settings file is also given.

The general structure of the file is the following:

User Settings
Keyword
Data type
Value
End

If a keyword is not given in the settings file, the default value for that keyword
is used.

Keywords (not case sensitive) in use are:

e Default Models Directory: main directory for the models. Individual
models will be stored in subdirectories
default value: current directory

e Default Cad Files Directory: the directory where cad geometry files
are read
default value: current directory

e Default Mesh Files Directory: the directory where external mesh ge-
ometry files are read
default value: current directory

e Default Material Files Directory: the default include path when ma-
terial properties are read from a file. You can keep your "material database"
in this directory!
default value: model directory
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e Default Input Files Directory: the default include path when other
parameters are read from a file
default value: model directory

e Default Output Files Directory: the default directory for the solver
output files
default value: model directory

e Default Use Model Settings: this flag controls if settings saved in the
model file should be used when the model file is loaded
default value: True

e Auto Load Mesh: this flags controls if mesh should be autmatically loaded
default value: True

e Auto Save Model: this flag controls if updated model file should be saved
before running any other Elmer modules.
default value: True

e Auto Save Solver Input: this flag controls if solver input file should be
always updated when model file is updated.
default value: True

e Browser Command: command for an external browser program
default value: internal browser

e Editor Command: command for an external editor program
default value: internal editor

e Browse Mode Gebhardt Factors: log browse mode for Elmer Gebhardt
Factors calculation module
default value: Logfile

e Browse Mode Mesh: log browse mode for Elmer Mesh generator module
default value: Logfile

e Browse Mode Cadi2Db: log browse mode for Elmer model to database
converting module
default value: Logfile

e Browse Mode Solver: log browse mode for Elmer Solver module
default value: Logfile

e Browse Mode View Factors: log browse mode for Elmer View Factors
calculation module
default value: Logfile

Possible values for Browse Mode keywords are:

e Logfile : output goes to a logfile and you can use a browser to read the
log

e Shell : output goes to system console

e None : no output
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NOTE: All keywords starting with "Default" are keywords, which are stored
and read only from the settings-file (like this) Other keyword values are also
stored in the model file, and they are used when loading the model file (.ecf
file). However you can prevent this by setting the keyword "Default Use Model
Settings" to be untrue.

Data types in use are:

e String: if a string value contains spaces, the hole string should be inside
quotation marks

e Logical: possible values are True/1 and False/0

NOTE: In the following, lines starting with the exclamation (!) mark, are
comments.

'An example file
User Settings

Default Models Directory
String "c:/elmer/Models"

Default Cad Files Directory
String "c:/elmer/data/cad\_files"

Default Mesh Files Directory
String "c:/elmer/data/mesh\_files"

Default Material Files Directory
String "c:/elmer/material\_files"

Default Input Files Directory
String "c:/elmer/Models/stepflow"

Default Output Files Directory
String "c:/elmer/Models/stepflow"

Default Use Model Settings
Logical 1

Auto Load Mesh
Logical 1

Auto Save Model
Logical 1

Auto Save Solver Input
Logical 1

!NOTE: read only mode (-r) for the external browser
Browser Command
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String "C:\Program Files\TextPad\TXTPAD32.EXE -r"

! External editor
Editor Command
String "C:\Program Files\TextPad\TXTPAD32.EXE"

!The following Browse Mode flags control the output log
'of the ELMER Run-menu programs (default flag value is Logfile):

Browse Mode Gebhardt Factors
String Logfile

Browse Mode Mesh
String Logfile

!Normally no need for a log here
Browse Mode Cadi2Db
String None

!Solver log can be quite long, so system console is the fastest.
!However, a good external text editor could also be useful
'if its updates its view quickly, anyway you can scroll it!
Browse Mode Solver

String Shell

Browse Mode View Factors
String Logfile

End
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Format of the Elmer
Geometry File

ELMER geometry file is one of the supported geometry formats for cad interface.
The file name should be in the format filename.egf (’egf’ for Elmer Geometry
File).

Currently only linear (polygon based) 2D geometries are supported. There
are no lmitations for the number of bodies defined, as long body edges define
closed and non-intersecting geometries. A body can consist of multiple edge
loops, as long as loops define a simply connected area. Outermost loop should
always be counterclockwise (ccw) oriented. Possible inner loop(s) should be
clockwise (cw) oriented

In this appendix we describe the structure of the ELMER geometry file using
two example files. First file defines two adjacent squares, both with 1 meter side
length. The other file defines a unit square with a square hole in the center.

!NOTE: lines starting with exclamation (!) mark are comments.

!Header section should be always first in the file.

!Example file 1, two adjacent squares
!

Header
'Model name is optional
Model Name
String "Squares2"
!Geometry dimension (currently only 2 (2D) is supported)
Dimension
Integer 2
End

'All model vertices should be defined before any body definition
Vertices are implicitely indexed (1, 2, ...)
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'Default value for the z-coordinate is 0.0
Vertices
Points
! Here we give all coordinates, although model is 2D
! Size could be also 6 2, if only x and y were given

Size 6 3
Real
0.0 0.0 0.0
1.0 0.0 0.0
1.0 1.0 0.0
0.0 1.0 0.0
2.0 0.0 0.0
2.0 1.0 0.0

End

'Bodies numbered 1, 2, ...
'Name and color fields are optional
Integer values for the color are RGBA values (0, ...,255), default Alpha is 255

Body 1
Name
String Red
Color
Size 4
Integer 2550 0 255
'Body defined by four vertices
Polygon
Size 4
Vertex indices
Integer 1234
End

Body 2
Name
String "Blue"
Color
'Default alpha is used here
Size 3
Integer 0 0 255
Polygon
Size 4
Integer 256 3
End

'Example file 2, a unit square with a square hole
!




Header
Model Name "SquareWithHole"
Dimension
Integer 2
End
Vertices
Points
Size 8 3
Real
!Outer square (1lm * 1m)
0.0 0.0 0.0
1.0 0.0 0.0
1.01.0 0.0
0.0 1.0 0.0
!

Inner square (0.5m * 0.5m)
0.25 0.25 0.0

0.75 0.25 0.0

0.75 0.75 0.0

0.25 0.75 0.0

End

Body 1
Name
String "Blue"
Color
Size 4
Integer 255 0 0 255

! Outer square (NOTE: ccw (counterclockwise) orientation!)
Polygon
Size 4
Integer 1 2 3 4

! Inner square (NOTE: cw (clockwise) orientation!)
Polygon
Size 4
Integer 8 7 6 5

End
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Solver Input Format

In this appendix we describe the solver input file format in detail. This file is
usually written by the ELMER CAD Interface, but can also be generated by
other means or modified by the user to suit spesific needs.

For the programmers: the solver input file reader has no knowledge of the
content of the different sections in this file except of the Header section. So in
any section you can add name-value pairs whenever needed without breaking
anything. These values may then be accessed by calling them by the name
provided. The utility routines ListGet* may be used for this purpose. These
utility routines have been described in appendix K.

Because of the generality of the format, the types of the parameters must
be given with their values. Also there are a few generalizations of the format
given below.

H.1 Array Variables

Any parameter typed Real or Integer may be given keyword size nl n2,
where n2 is optional and when given, the statement defines a two dimensional
array instead of a one dimensional. An example of an array variable is the
gravity vector declared in the constants section:

Gravity
Size 4
Real 0 1 0 9.82

The above statement gives a real vector whose length is four. In this case the
first three components give the direction vector of the gravity and the fourth
component gives its intensity.

H.2 Parameters Depending on Field Variables or
Time

Any parameter typed Real depending on some field variable or time, may be
given as a piecewise linear spline as follows:

116



H.3. USER DEFINED FUNCTIONS 117

Parameter-Name
Variable Variable-Name
Real
Variable-Value-1 Parameter-Value-1
Variable-Value-2 Parameter-Value-2

Variable-Value-n Parameter-Value-n
End

If the size keyword is also given, and differs from one, the parameter array
values are given instead of the single parameter value. The variables on which
a parameter may depend are at the moment:

e Time,

e Temperature,

e Pressure,

e Velocity 1, Velocity 2, Velocity 3,

e Coordinate 1, Coordinate 2, Coordinate 3,

e Displacement 1, Displacement 2, Displacement 3,

e Magnetic Field 1, Magnetic Field 2, Magnetic Field 3,

e Electric Current 1, Electric Current 2, Electric Current 3.

The programmer may add more variables using the utility routine VariableAdd.

In the Margoni convection example later in this chapter, there is a tem-
perature boundary condition depending on x-coordinate, which is defined as
follows:

Temperature
Variable Coordinate 1
Real
0 0.5
1 -0.5
End
This says, that the value of temperature is 0.5 degrees when x-coordinate is 0,
the value of temperature is —0.5 degrees when z-coordinate is 1, and that the
value of temperature will be linearily varying with the z-coordinate in between
these values.

H.3 User Defined Functions

Any parameter typed Real, Integer or Logical may be given keyword Procedure
instead of the value of the parameter. Then a user defined function will be ex-
ecuted when the parameter value is needed. The syntax of this statement is:

Parameter-Name
Real Procedure "Filename" "Function-name"
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The Filename is the name of the file of the dynamically loadable code (called a
shareable image on Unix and a DLL on WINDOWS). As an very simple example,
the following Fortran 90 function would return the value of the surface tension
coefficient (as in the Margoni convection example later in this chapter), when
needed:

FUNCTION SurfTension(Model,n,T) RESULT(Tension)
'DEC$ATTRIBUTES DLLEXPORT :: SurfTension
USE Types
IMPLICIT NONE

TYPE(Model_t), POINTER :: Model
INTEGER :: n
DOUBLE PRECISION :: T

DOUBLE PRECISION :: Tension

Tension = 548x%(1-T)
END FUNCTION SurfTension

If this function is in the file Surf.£90, the following command could be used to
compile and link the program on a Silicon Graphics or DEC workstation (among
others):

£f90 -I$ELMER_HOME/include -o Surf -shared Surf.f90

On a Windows NT workstation, using the Digital Visual Fortran version 5 (the
Fortran 90 comment line !DEC$ATTRIBUTES. .. is actually a compiler directive
for this compiler), the command would be:

£90 -I%ELMER_HOME),\include -o Surf -dll Surf.f90

After the function has been compiled, it can be used to define the surface tension
coefficient in the solver input file as

Surface Tension Coefficient
Variable Temperature
Real Procedure "Surf" SurfaceTension

The user function will receive as first argument the model structure holding
pointers to all information about the model, solved field variables, materials,
etc. It also holds a pointer to the element that is being assembled at the moment
when the function is called. The second argument is the number of the node
for which the function should return its value and if the parameter in question
is defined to be varying with some field variable or time, the third argument
will contain the value of that variable. The user functions may use the utility
routines defined in the solver to get hold of other parameter values, field variable
values, etc. More about the solver utility routines will be told in Appendix K.

H.4 The Format

H.4.1 The Header Section

The first section in the input file must be the header section defining various
dimensions: number of model bodies, number of body force definitions, number
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of separate boundaries, number of boundary condition definitions, number of
equation set definitions, number of initial condition definitions and finally num-
ber of equation solver definitions. Also the path to the mesh database is given
in this section. The syntax of the header section is as follows:

7 entities

Header

Mesh DB "Dir" "Name"
Bodies

Body Forces
Boundaries

Boundary Conditions
Equations

Initial Conditions
Materials

BB BBBBBB

Solvers

End

Note that this is the only section whose content is known to the solver input
reader.

H.4.2 The Constants Section

The constants section must always be present and hold at least direction and
intensity of the gravity vector and value of the Stefan-Bolzmann constant.

2 Entities

Constants

Gravity
Size 4
Real x y z abs

Stefan Bolzmann
Real

End

H.4.3 The Simulation Section

The simulation section gives the case control data:

e Simulation Type: acharacter string containing either the keyword Transient
or Steady State.

e Coordinate Mapping: mapping of the mesh coordinates to the order used
in the solver: (x,y,z) in cartesian coordinates, (r,z,6) in cylindrical co-
ordinates and (r,f,¢) in polar coordinates. The mapping is a triplet of
integers giving the order number of the solver coordinate variables in the
mesh coordinate arrays.
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Coordinate System: a character string defining the coordinate system
to be used, one of: Cartesian 2D, Cartesian 3D, Polar 2D, Polar 3D,
Cylindric, Cylindric Symmetric and Axi Symmetric.

Gebhardt Factors: If the model includes diffuse gray radiation, the file
containing the Gebhardt factors must be given. This is written by the
program GebhardtFactors as a preprocessing step.

View Factors: If the model includes diffuse gray radiation, the file con-
taining the view factors must be given to the program computing the
Gebhardt factors. This is written by the program Viewfactors as a pre-
processing step. The tasks of computing view factors and the Gebhardt
factors have been divided, because the view factors depend only on geom-
etry (and thus the mesh), while the Gebhardt factors also depend on the
emissivities.

Timestep Intervals: timesteps are given in intervals of fixed sizes, this
integer array gives the number of timesteps within each of the intervals.
The number of intervals must be given with the size specifier.

Timestep Sizes: array of the same size as given with the Timestep
Intervals keyword, giving size of the timesteps within the intervals.

Output File: Name of the output file. Format of the output file is de-
scribed in Section I.

Output Intervals: array of the same size as given with the Timestep
Intervals keyword, giving the update frequency of the output file within
the timestep intervals. For steady state simulation, there is only one
interval.

Post File: If this keyword is given, mesh and results are written to the
file in the format understood by Elmer Post.

Restart File: The format of the restart file is the same as that of the
Output File. The restart file gives field variable values, which will replace
the values of the variables inside the solver after initial conditions have
been set. The format of the file allows only some of the field variables to
be given.

Restart Position: Integer giving the order number of the timestep or
steady state iteration output within the restart file. If this number is
larger than the number of timesteps in the given file, last timestep found
is used. If this keyword is not given, the first timestep from the file will
be used.

Steady State Max Iterations: Maximum number of steady state, cou-
pled system iterations. If equation specific convergence tolerances are
achieved before the iteration count is exceeded, they will terminate the
iteration instead.

! 13 entities
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Simulation
Coordinate Mapping
Size 3
Integer
Coordinate System

Gebhardt Factors
Output File
Output Intervals
Post File
Restart File
Restart Position
Simulation Type

String [Cartesian 2D]
[Cartesian 3D]

[Cylindric Symmetric]

[Axi Symmetric]

[Cylindric]
[Polar 2D]
[Polar 3D]

File

File

Integer Array

File

File

File

String [Transient]

[Steady Statel

Steady State Max Iterations Integer

Timestep Intervals
Timestep Sizes

Integer Array
Real Array

View Factors File

End

H.4.4 The Solver Section

The solver section defines equation solver control variables:

Equation: a character string containing the name of the equation this
solver is intended for, one of: Navier-Stokes, Heat Equation, Stress
Equations.

Linear System Solver: a character string containing either Iterative
or Direct.

Linear System Iterative Method: a character string containing name
of the iterative method to be used: BiCGStab, CGS, TFQMR, GMRES or CG.
Beware, that the last of the choices is for symmetrical linear systems,
which is not the case for any of the default equations in our context. Even
if the equations themselves would be symmetric, symmetry is destroyed by
the way the Dirichlet boundary conditions are handeled inside the solver.
This keyword must be given, if the iterative solver is used.

Linear Solver Max Iterations: the maximum number of iterations the
iterative solver is allowed to do. If the residual of the linear system is small
enough before the iteration count is met, this will terminate the iteration
instead.

Linear Solver Preconditioning: a character string containing the name
of the preconditioning method for iterative solver, one of: None, Diagonal,
ILU. The choice ILU (ILU stands for Incomplete LU decomposition) is the
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recommended choice, and usually the iterative solver won’t be able to
solve the equations without this preconditioning.

e Linear System Convergence Tolerance: a threshold value giving the
value of the residual to terminate the iteration. More accurately, the
termination criterion is

[[Az —b]| < el|oll,
where € is the value given with this keyword.

e Nonlinear System Convergence Tolerance: this keyword gives a cri-
terion to terminate the nonlinear iteration after the relative change of
the norm of the field variable between two consecutive iterations is small
enough

i — wi1|| < ef|ugll,

where € is the value given with this keyword.

e Nonlinear System Max Iterations: The maxmimum number of non-
linear iterations the solver is allowed to do.

e Nonlinear System Newton After Iterations: Change the nonlinear solver
type to Newton iteration after a number of Picard iterations have been
performed. If a given convergence tolerance between two iterations is met
before the iteration count is met, it will switch the iteration type instead.

e Nonlinear System Newton After Tolerance: Change the nonlinear solver
type to Newton iteration, if the relative change of the norm of the field
variable meets a tolerance criterion:

i — i ]| < elluill,
where € is the value given with this keyword.

e Nonlinear System Relaxation Factor: Giving this keyword triggers
the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear
system. A factor above unity might speed up the convergence. Relaxed
variable is defined as follows:

u;- =i + (1= Nuj—q,

where A is the factor given with this keyword. The default value for the
relaxation factor is unity.

e Steady State Convergence Tolerance: With this keyword a equation
specific steady state convergence tolerance is given. First of the the solvers
to reach the tolerance criterion will end the coupled system iteration. The
tolerance criterion is:

Jwi — wi—1|] < €f|ugll,

where € is the value given with this keyword.
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e Stabilize: If this flag is set true the solver will use stabilized finite ele-
ment method when solving the Navier-Stokes equations, and heat equa-
tion with a convection term. Usually stabilization of the equations must
be done in order to succesfully solve the equations. This setting has no
meaning for the stress analysis type, at least not at the moment.

'
! 12 enti
Solver id

Equatio

Linear
Linear

Linear
Linear

Linear

Nonline

Nonline

Nonline

Nonline

Nonline

Stabili
End

ties

n

System Convergence Tolerance
System Iterative Method

System Max Iterations
System Preconditioning

System Solver

ar System Convergence Tolerance

ar System Max Iterations

ar System Newton After Iterations
ar System Newton After Tolerance

ar System Relaxation Factor
ze

H.4.5 The Body Section

String [Navier-Stokes]
[Heat Equation]
[Stress Equations]
[Magnetic Induction}

Real

String [BiCGStab] [CGS]
[TFQMR] [GMRES] [CG]

Integer

String [None] [Diagonall

[ILU]

String [Iterativel
[Direct]

Real

Integer

Integer

Real

Real

Logical

The body section defines which of the equations, initial conditions, materials,
and body forces defined in the input file, should be used for the given simulation
body. All these sections are described in detail below.

! 4 entities

!

Body id
Body Force Integer
Equation Integer
Material Integer
Initial Condition Integer

End

H.4.6 The Equation Section

The equation section is used to define a set of equations for a body:

e Navier-Stokes: if set to true, solve the Navier-Stokes equations.

e Heat Equation: if set to true, solve the heat equation.
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Magnetic Induction: if set to true, solve the magnetic induction equa-
tion.

Stress Analysis: if set to true, solve the stress equations.

Convection: a character string giving the convection type to be used in
the heat equation, one of: None, Computed, Constant.

Flow Model: This keyword specifies the flow model to be used. Currently
it can only be set to Laminar.

Stress Model: acharacter string containing either Mechanical or Thermal.
If the latter choice is used heat equation must also be solved.

Phase Change: if set to true, the solidification phase change model is acti-
vated. Note that when soldification is modelled, the enthalpy-temperature-
and viscosity-temperature-curves must be defined in the material section.

! 12 entities
Equation id

Convection String [None] [Computed] [Constant]
Flow Model String [Laminar] [Turbulent KE]
Heat Equation Logical
Navier-Stokes Logical
Phase Change Logical
Phase Change Model String [Enthalpy]
Stress Analysis Logical
Stress Model String [Mechanical] [Thermal]
Magnetic Induction Logical True

End

H.4.7 The Body Force Section

The body force section may be used to give additional force terms for the equa-
tions. The following keywords are recongnized by the solver:

Bussinesq: a logical value, if set true, sets the Bussinesq model on.

Flow BodyForce 1,2,3: may be used to give additional body force for
the flow momentum equations.

Heat Source: an additional heat source for the heat equation may be
given with this keyword.

Stress Bodyforce 1,2,3: an additional force term for the stress equa-
tions may be given with these keywords.

Lorenz Force: a logical value, if set true, triggers the magnetic field
force for the flow mementum equations, and the Joule heating for the
heat equation.
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e Friction Heat: a logical value, if set true, triggers use of the friction

heating:
hy = 2us?. (H.1)

! 10 entities

!

Body force id
Bussinesq Logical
Flow Bodyforce 1 Real
Flow Bodyforce 2 Real
Flow Bodyforce 3 Real
Heat Source Real
Stress Bodyforce 1 Real
Stress Bodyforce 2 Real
Stress Bodyforce 3 Real
Lorenz Force Logical
Friction Heat Logical

End

H.4.8 The Initial Condition Section

The initial codition section may be used to set initial values for the field vari-
ables. The following variables are active:

e Pressure

e Temperature

e Velocity 1, Velocity 2, Velocity 3

e Displacement 1, Displacement 2, Displacement 3

e Magnetic Field 1, Magnetic Field 2, Magnetic Field 3

e Electric Current 1, Electric Current 2, Electric Current 3

! 16 entities
'

Initial Condition id

Kinetic Energy Real
Kinetic Energy Dissipation Real
Pressure Real
Temperature Real
Velocity 1 Real
Velocity 2 Real
Velocity 3 Real
Displacement 1 Real
Displacement 2 Real
Displacement 3 Real
Magnetic Field 1 Real
Magnetic Field 2 Real
Magnetic Field 3 Real

End
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H.4.9 The Material Section

The material section is used to give the material parameter values. The following
material parameters may be set:

e Density

e Enthalpy: note that, when using the solidification modelling, an enthalpy-
temperature curve must be given. The enthalpy is derived with respect to
tempererature to get the value of the effective heat capacity.

e Viscosity: note that, when using the solidification modelling, a viscosity-
temperature curve must be given. The viscosity must be set to high enough
value in the temperature range for solid material to effectively set the
velocity to zero.

e Heat Capacity
e Heat Conductivity
e Heat Expansion Cofficient

e Reference Temperature: This is the reference temperature for the Bussi-
nesq model of temperature dependancy of density.

e Poisson Ratio

e Youngs Modulus

e Magnetic Permeability
e Electric Conductivity

e Convection Velocity 1,2,3: Convection velocity for the constant con-
vection model.

e Applied Magnetic Field 1,2,3: An applied magnetic field may be given
with these keywords.

! 17 entities
'

Material id

Density Real
Enthalpy Real
Heat Capacity Real
Heat Conductivity Real
Heat Expansion Coefficient Real
Poisson Ratio Real
Reference Temperature Real
Viscosity Real
Youngs Modulus Real
Electric Conductivity Real

Magnetic Permeability Real
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Convection Velocity 1 Real

Convection Velocity 2 Real

Convection Velocity 3 Real

Applied Magnetic Field 1 Real

Applied Magnetic Field 2 Real

Applied Magnetic Field 3 Real
End

H.4.10 The Boundary Section

In this section a mapping of boundary conditions to boundaries of the geomet-
rical model is given. In the boundary section the following keywords may be
given

e Body 1: With this keyword the id of the first body which the boundary
belongs is given.

e Body 2: With this keyword the id of the second body which the boundary
belongs is given.

e Boundary Condition: With this keyword the id of the boundary condi-
tion to be applied on this boundary is given.

Boundary id

Body 1 Integer

Body 2 Integer

Boundary Condition  Integer
End

H.4.11 The Boundary Condition Section

The boundary condition section holds the parameter values for various bound-
ary condition types. Dirichlet boundary conditions may be set for all the pri-
mary field variables: displacement (keywords Displacement 1, Displacement
2, Displacement 3), velocity (keywords Velocity 1,Velocity 2, and Velocity
3), temperature and pressure, and magnetic field (Magnetic Field 1,Magnetic
Field 2, and Magnetic Field 3. The Dirichlet conditions for the vector vari-
ables may be given in normal-tangential coordinate system instead of the coor-
dinate axis directed system using the keywords Normal-Tangential Velocity,
Normal-Tangential Displacement,and Normal-Tangential Magnetic Field.
For the heat equation the heat flux boundary condition control variables are:

e Heat Flux BC: must be set to true, if heat flux boundary condition is
present.

e Heat Flux: a user defined heat flux term.

e Heat Transfer Coefficient, External Temperature: a heat flux bound-
ary condition of the type

oT
—ka—n = a(T — Tezt)
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is used. The variable « is the value given with the keyword Heat Transfer
Coefficient, the variable T,; is the value given with the keyword External
Temperature.

e Radiation, Emissivity: with these keywords the radiation boundary
condition is activated. With the keyword Radiation a character string is
given, containing the type of the radiation model for this boundary, one
of: None, Idealized, Diffuse Gray. Emissivity is the emissivity of the
boundary surface. Note that, if using the diffuse gray radiation model,
the file containing the Gebhardt factors must be given in the simulation
section.

For the Navier-Stokes equations, the following variables control the force
boundary conditions:

e Flow Force BC: alogical value that must be set to true, if there is a force
boundary condition for the Navier-Stokes equations.

e Surface Tension Coefficient, Surface Tension Expansion Coefficient:

Giving these values triggers a tangetial stress boundary condition to be
used. If the keyword Surface Tension Expansion Coefficientisgiven,
a linear dependancy of the surface tension coefficient on the tempera-
ture is assumed. Otherwise the value given with the Surface Tension
Coefficient is assumed to hold the dependancy explicitely. Note that
this boundary condition is the tangential derivate of the surface tension
coefficient.

e External Pressure: a pressure boundary condition directed normal to
the surface.

e Pressure 1,2,3: a pressure boundary condition vector.

A free surface is specified by giving the keyword Free Surface value True.
The logical keyword Free Moving specifies whether the regeneration of mesh is
free to move the nodes of a given boundary when remeshing after moving the
free surface nodal points. The default is that the boundary nodes are fixed.

The force boundary condition for the stress equations is a force vector given
with keywords Force 1, Force 2, Force 3.

! 33 entities
'

Boundary Condition id

Normal-Tangential Displacement Logical
Displacement 1 Real
Displacement 2 Real
Displacement 3 Real
Emissivity Real
External Pressure Real
External Temperature Real
Flow Force BC Logical
Force 1 Real
Force 2 Real

Force 3 Real



H.5. AN EXAMPLE OF USING THE INPUT FILE 129

Heat Flux Real
Heat Flux BC Logical
Heat Transfer Coefficient Real
Kinetic Energy Real
Kinetic Energy Dissipation Real
Pressure 1 Real
Pressure 2 Real
Pressure 3 Real
Radiation String [None] [Idealized]
[Diffuse gray]
Surface Tension Coefficient Real
Surface Tension Expansion Coefficient Real
Temperature Real
Normal-Tangential Velocity Logical
Velocity 1 Real
Velocity 2 Real
Velocity 3 Real
Free Surface Logical
Free Moving Logical
Normal-Tangential Magnetic Field Logical
Magnetic Field 1 Real
Magnetic Field 2 Real
Magnetic Field 3 Real
End

H.5 An Example of Using the Input File

In the following a sample solver input file, written by the ELMER CAD Interface
program, will be described. The problem the solver input file applies is a steady-
state coupled heat and flow simulation, where the coupling comes from the
convection term in the heat equation side, and temperature dependancy of the
surface tension coefficient (called Margoni convection) in the flow solver side.
The geometry used in this simple example is a unit square, so there are four
boundaries in this model. The boundaries were assigned boundary conditions so
that bottom, top, left and right boundaries had boundary conditions id:s 1,2,3
and 4 respectively (figure H.1).
Mathematically the equations to be solved are

—V - (2ug) + p(i - V)i + Vp 0 inQ
Vi = 0 in
pcpt - VT —V-(kVT) = 0 inQ,
1
©=0, T = 3¢ on I'y,
0 . or
T_a_Z’ w1 =0, —ka—n = 0 only,
1
1_1:207 T = - OnI‘g7
2
620, T = —— ODF4.
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I’

1

Figure H.1: Geometry of the Margoni convection example.

The material parameters, in non-dimensional units, are as follows:

p = 1.0,
uw = 1.0,
cp, = 1.0,
= 1.37,
= 548.0(1-1T).

The Input File Header

First in the solver input file there is the header section. In the header section
various dimensions of other sections are given. Also path to the mesh database
is given here:

Header
Mesh DB '"Models" "Square"
Bodies 1
Materials 1
Equations 1
Solvers 2
Body Forces 1
Boundaries 4
Boundary Conditions 4

End

Solver Control Data

Next we must give the solver the case control data
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Simulation
Coordinate System
String Cartesian 2D

Simulation Type
String Steady State

Steady State Max Iterations
Integer 50

Output Intervals
Size 1
Integer 1

Output File
File "Margoni.dat"

Post File
File "Margoni.ep"
End

The output file will contain the solved field variables for every iteration of the
coupled system: temperature, velocity and pressure. The post processing file
will also contain the mesh.

Body Definitions

This model has only one body which is assigned material and the equation set
(to be defined later). There are no initial conditions or mass forces definition
for the current case.

Body 1
Equation
Integer 1

Material
Integer 1
End

Equation Set Definitions

Next we define which equations to solve (there is only one set of equations in
this example). The case where we would have more than one equation set is,
for example, a case where temperature is solved in the whole model, but flow
field is solved only in some parts of the model.

Equation 1
Navier-Stokes
Logical True

Heat Equation
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Logical True

Convection
String Computed
End

Now we are ready to define solver parameters for the heat equation

Solver 1
Equation
String Heat Equation

Stabilize
Logical True

Nonlinear System Max Iterations
Integer 1

Linear System Solver
String Iterative

Linear System Iterative Method
String BiCGStab

Linear System Preconditioning
String ILU

Linear System Max Iterations
Integer 100

Linear System Convergence Tolerance
Real 1.0e-8
End

There is no nonlinearity present in the current case for the heat equation, so
that we can set the number of nonlinear iterations to unity. The linear system is
solved with an iterative method and system is precoditioned with an incomplete
LU decomposition.

Solver Definitions

Define solver parameters for the Navier-Stokes equations

Solver 2
Equation
String Navier-Stokes

Stabilize
Logical True

Nonlinear System Max Iterations
Integer 10
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Nonlinar System Convergence Tolerance
Real 1.0e-6

Nonlinear System Newton After Iterations
Integer 3

Nonlinear System Newton After Tolerance
Real 1.0e-2

Nonlinear System Relaxation Factor
Real 1.0

Linear System Solver
String Iterative

Linear System Iterative Method
String BiCGStab

Linear System Preconditioning
String ILU

Linear System Max Iterations
Integer 100

Linear System Convergence Tolerance
Real 1.0e-8

Steady State Convergence Tolerance
Real 1.0e-5
End

Material parameters

The material parameters are all constant in this example

Material 1
Density
Real 1.00

Viscosity
Real 1.00

Heat Capacity
Real 1.00

Heat Conductivity
Real 1.37
End

133
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Boundaries and Boundary Conditions

The mapping of the boundary condtions to boundaries must first be given. In
this case it is the trivial mapping:

Boundary 1
Boundary Condition
Integer 1
End
Boundary 2
Boundary Condition
Integer 2
End
Boundary 3
Boundary Condition
Integer 3
End
Boundary 4
Boundary Condition
Integer 4
End

The bottom boundary has a Dirichlet boundary condition for temperature,
which varies linearily from 0.5 degrees on the left side to -0.5 degrees on the right
side. This boundary condition has been given below as data points describing
(generally) a piecewise linear spline. There are other methods to implement
varying boundary conditions to be described later.

Vxxxk*x*x Bottom BC: Temperature T(x) from T(0)= 0.5
! to T(1)=-0.5,Velocity=0
Boundary Condition 1
Temperature
Variable Coordinate 1

Real

'x T
0 0.5
1 -0.5
End

Velocity 1
Real 0.0

Velocity 2
Real 0.0
End

The top boundary has a stress boundary condition. Note that the force
boundary conditions must be flagged with the 'Flow Force BC’ keyword in order
to be recognized by the solver. The tangetial component of the force vector is
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the tangential derivate of the temperature dependent surface tension coefficient.
The temperature dependancy of this parameter is assumed to be linear in this
case. The normal component of the stress condition may be omitted as the
curvature of the boundary is zero, and the level of the atmospheric pressure is
immaterial and would only move the zero level of the pressure field. Instead the
condition u - n = 0 (no flow across the surface) is enforced.

Vxxxkkk Top BC: Tangetial Stress, normal velocity zero
Boundary Condition 2
Flow Force BC
Logical True

Surface Tension Coefficient
Variable Temperature

Real
' T \gamma (only the slope matters...)
-1.0 548.0
1.0 -548.0
End

Normal-Tangential Velocity
Logical True

Velocity 1
Real 0.0
End

Right and left sides have Dirichlet boundary conditions for both the tem-
perature and the velocity components.

Vxxxkkk Right side BC: Temperature=-0.5, Velocity=0
Boundary Condition 3
Temperature
Real -0.5

Velocity 1
Real 0.0

Velocity 2
Real 0.0
End

Vikxkkk Left side BC: Temperature=0.5, Velocity=0
Boundary Condition 4
Temperature
Real 0.5

Velocity 1
Real 0.0

Velocity 2
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Real 0.0

End

Results
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Figure H.2: Results of the Margoni convection example.

temperature field and the velocity vectors.

The resulting temperature and velocity fields are shown in figure H.2.



Appendix 1

Format of the Solver Output
File

The solver output file format is very simple. The file consist of a header and the
solution data. The solver output format is also used in the restart files (refer to
previous chapter for more information about the restart files).

I.1 The Header

First row in the file is the string
Degrees of freedom:

followed by names of the variables, which have been written to this file, for
example

temperature
pressure
velocity 2
velocity 1

The names must each be on their own rows. The whole set of names of variables
used by the solver is

e Displacement 1
e Displacement 2
e Displacement 3
e Temperature

e Pressure

e Velocity 1

e Velocity 2

e Velocity 3
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e Coordinate 1

e Coordinate 2

e Coordinate 3

e Magnetic Field 1

e Magnetic Field 2

e Magnetic Field 3

e Electric Current 1

e Electric Current 2

e Electric Current 3

e Velocity 1

e Velocity 2

e Velocity 3
Following the names is the total number of degrees of freedom, for example:
Total DOFs: 4

This ends the header section.

I.2 The Output Data

For every timestep or steady state iteration stored in output file, there is first
a header row giving count of the timestep in this file, the timestep number and
the current simulation time, for example

Time: 1 1 0.000000000000

Following is, for every variable stored in the file, first the name of the variable,
followed by rows which contain the node number of the value and the value
itself:

temperature

300.000000000000
300.000000000000
300.000000000000
300.000000000000
300.000000000000
300.000000000000

DO WN -



Appendix J

The Elmerpost File format

The Elmerpost input file format is as follows

nn ne nf nt scalar: name vector: name ...
x0 y0O z0

! node coordinates (nn) rows (x,y,z)

Xn yn zn
group-name element-type i0O ... in

! element decriptions (ne) rows

group-name element-type i0 ... in
#time 1 timestepl timel
VX VY VZ P ...

! nn rows

VX VY VZ P ...
#time 2 timestep2 time2
VX Vy VZ p

! nn rows

VX VY VZ P ...

#time n timestepn timen
VX VY VZ P ...

! nn rows

VX VY VZ P ...

J.1

The Header

The following information must be given in the header

nn: number of the mesh nodal points
ne: number of the elements

nf: gives the total number of degrees of freedom (add three for any vector
quantity and one for a scalar quantity).

nt: number of timesteps stored in the file

scalar: name, vector: name: list of variable names

139



140 APPENDIX J. THE ELMERPOST FILE FORMAT

J.2 The Mesh

First nodal coordinates are given, each triplet on its own row. There must be
three coordinates even if the model would be 2D.
Element description:

e group-name: name of the element group (material, body or some such)

e element-type: numeric code giving the element type, refer to appendix
L.

e The numbers i0-in in the element descriptions are indexes to the nodal
coordinate array at the beginning of the file. First coordinate in the file
has index zero.

J.3 The Solution Data

For each timestep the following information is written:

e #time n t time: nis the order number of the timestep written in this file,
t is the simulation timestep number, and time is the current simulation
time.

e Next the nodal values of the degrees of freedom are given, one nodal point
at a time, and in the order given with the keywords scalar: and vector:
in the header.

Refer to Elmerpost documentation for more information.



Appendix K

Solver Utility Routines

In this appendix various solver utility routines are described. First we must
describe the structures used to hold various data used by the solver. As men-
tioned before, the solver is coded in the Fortran 90 porgramming language, and
in order to use its utilities, this programming language must be used.

K.1 Data Structures

All the data structures are defined in a Fortran 90 module Types which must
be included to a program using these structures with the Fortran statement:

USE Types

The executable code and some symbolic names have been defined in various
other modules, which must be included in the user program similarily to the
above statement, if you need services from these modules.

K.1.1 The Model Structure

The model structure holds pointers to all information about the model we are
trying to solve.

TYPE Model_t
! Coordinate system dimension + type

INTEGER :: Dimension, CoordinateSystem

The coordinate system code is held in the entry CoordinateSystem. The code
may be referenced to with a symbolic name:

e Cartesian
e Cylindric
e AxisSymmetric

e CylindricSymmetric
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e Polar

These codes have been defined in the module CoordinateSystems.

Following are the several sections read in from the solver input file described
earlier. Their content is basically name-value-pairs which are stored in list
structures. The basic list structure does not have to be known to the user, but
is manipulated by a set of utility routines to be described later.

! Simulation input data, that concern the model as a whole
!

TYPE(ValueList_t), POINTER :: Simulation
! Variables

TYPE(Variable_t), POINTER :: Variables

! Some physical constants, that will be read from the
! input file or set by other means: gravity direction/
! intensity and Stefan-Bolzmann constant)

TYPE(ValueList_t), POINTER :: Constants

! Types of equations (flow,heat,...) and some
! parameters (for example laminar or turbulent flow or
! type of convection model for heat equation, etc.)

INTEGER :: NumberOfEquations
TYPE(EquationArray_t), POINTER :: Equations(:)

! Active bodyforces: (bussinesq approx., heatsource,
! freele chosen bodyforce...)

INTEGER :: Number(OfBodyForces
TYPE (BodyForceArray_t), POINTER :: BodyForces(:)

! Initial conditions for field variables

INTEGER :: Number(0fICs
TYPE(InitialConditionArray_t), POINTER :: ICs(:)

! Boundary conditions

INTEGER :: Number(0fBCs
TYPE (BoundaryConditionArray_t), POINTER :: BCs(:)

! Material parameters

INTEGER :: Number(OfMaterials
TYPE(MaterialArray_t), POINTER :: Materials(:)
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! Active bodies, every element has a pointer to a body,
! body has material,ICs,bodyforces and equations

INTEGER :: NumberOfBodies
TYPE(BodyArray_t), POINTER :: Bodies(:)

! Equation solver control variables

INTEGER :: NumberOfSolvers
TYPE(Solver_t), POINTER :: Solvers(:)

Following are the mesh dimensions and pointers to structures describing the
mesh:

! Mesh dimensions

INTEGER :: NumberOfBulkElements, &
NumberOfNodes, &
NumberOfBoundaryElements

! Node coordinates + info for parallel computations
TYPE(Nodes_t) :: Nodes

! Max number of nodes in any one element in this model
INTEGER :: MaxElementNodes

! Elements

TYPE(Element_t) ,DIMENSION(:), POINTER :: Elements

The model structure also holds a pointer to the element currently being
assembled, so that user routines may refer to this element:
]

! For reference the current element in process
!

TYPE(Element_t), POINTER :: CurrentElement

END TYPE Model_t

K.1.2 The Element, Element Type and Node Structures
The structures holding elements are as follows:

TYPE Element_t
TYPE(ElementType_t), POINTER :: Type
INTEGER :: Bodyld
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TYPE (BoundaryInfo_t), POINTER :: BoundaryInfo
INTEGER, DIMENSION(:), POINTER :: NodeIndexes
END TYPE Element_t

The first thing in this structure is a pointer to element type (the entry Type),
where information about the element basis functions, number of nodes for the
element type, local nodal coordinates, etc., are kept. The element also holds an
index to the body it belongs (BodyId). For boundary elements there is a separate
additional structure (BoundaryInfo). Last there is the element connectivity
information (NodeIndexes).

The additional information for boundary elements is kept in a structure of
type BoundaryInfo_t:

TYPE BoundaryInfo_t
INTEGER :: Constraint
INTEGER :: LeftBody,LeftElement
INTEGER :: RightBody,RightElement
TYPE(Factors_t) :: ViewFactors,GebhardtFactors
END TYPE BoundaryInfo_t

For the boundary element, there is first the boundary condition id (Constraint),
indeces of the bodies to which it belongs (LeftBody, RightBody) and the bulk
elements it belongs (LeftElement, RightElement). It also holds pointers to
view- and Gebhardt factors if radiation modelling is defined.

The element type structure is defined as follows:

! Element type description
!

TYPE ElementType_t
! this is a list of types
TYPE(ElementType_t) ,POINTER :: NextElementType

! numeric code for element
INTEGER :: ElementCode

INTEGER :: BasisFunctionDegree, & ! 1=linear, 2=quadratic
NumberOfNodes, &
Dimension ! 1=1ine, 2=surface, 3=volume

INTEGER :: GaussPoints ! number of gauss points to use

DOUBLE PRECISION :: StabilizationMK ! stab.param. depending on
! interpolation type

DOUBLE PRECISION, DIMENSION(:,:), POINTER :: BasisFunctions

DOUBLE PRECISION, DIMENSION(:), POINTER :: NodeU,NodeV,NodeW
END TYPE ElementType_t

Numeric codes for the element types (the variable ElementCode is assigned one
of them for each element type) have beed defined in the element type definition
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file described in appendix L. The variable Basis Functions holds the basis
function matrix formed at the initialization phase, and finally the arrays NodeU,
NodeV and NodeW are the element type local coordinates.

The mesh nodes are stored in the following structure, only fields relevant to
a single processor run are the coordinate arrays x, y, and z. The rest of the
fields are used by the parallel solver only, and will not be defined for a single
processor run.

!
! Coordinate and vector type definition, coordinate
! arrays must be allocated prior to use of variables
! of this type

!

TYPE Nodes_t
INTEGER :: NumberOfNodes,TotalNodes

DOUBLE PRECISION, POINTER ox(),y () ,z(:)
LOGICAL, POINTER :: Interface(:)
TYPE(NeighbourList_t) ,POINTER :: NeighbourList(:)
INTEGER, POINTER :: GlobalNodeNumber(:)
INTEGER, POINTER :: Perm(:),INVPerm(:)

INTEGER :: NumberOfIfNodes
END TYPE Nodes_t

K.2 Retrieving Model Information Within User
Routines

All the model input information: material parameters, boundary condition pa-
rameters, field variable values, etc. are available to user routines inthe same
way as the solver gets hold of them.

User routines receive as the first argument the current model in a structure of
type Model_t defined previously. This pointer may be used to get the parameter
values through a set of ListGet* routines, and field variable values through the
routine VariableGet. To use these routines the module Lists must be included
in the program with the USE statement.

After the following variable definitions

e LOGICAL :: L

e INTEGER :: I

e INTEGER, POINTER :: J(:)

o CHARACTER(LEN=MAX_NAME_LEN) :: S

e DOUBLE PRECISION :: P,Q(n)

e DOUBLE PRECISION, POINTER :: R(:,:), S(:,:,:)

have been made, the ListGet* functions may be called as follows:

e L = ListGetLogical( List, ’Parameter name’, Exists )
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o I

ListGetInteger( List, ’Parameter name’, Exists )

e P = ListGetConstReal( List, ’Parameter name’, Exists )

Q(1:n) = ListGetReal( List, ’Parameter name’, n, NodeIndexes,
Exists )

e C = ListGetString( List, ’Parameter name’, Exists )
e J => ListGetIntegerArray( List,’ Parameter name’, Exists )
e R => ListGetConstRealArray( List, ’Parameter name’, Exists )

e S => ListGetRealArray( List, ’Parameter name’, n, NodeIndexes,
Exists )

The first argument to these functions is a pointer to the list from which the
values are to be searched, and may be one of the following (at least):

e Model % Simulation

e Model 7, Constants

e Model % BCs(i) % Values

e Model % ICs(i) % Values

e Model %, Bodies(i) % Values

e Model %, Solvers(i) % Values

e Model Y, Materials(i) % Values
e Model Y, Equations(i) % Values
e Model %, BodyForces(i) J Values
e Model Y, Boundaries(i) % Values

The last argument Exists is an optional argument of type LOGICAL and will
return true if the parameter existed. If the argument is not given, and the pa-
rameter doesn’t exist, a warning message is given. One could also add parameter
definitions to a list or change existing parameter values by using a different set
of utility routines. Refer to the solver code if you want to do this.

As an example, a user routine might want to know the value of the density
for the nodes of the element currently being assembled:

USE Types
USE Lists

TYPE( Element_t ), POINTER :: Elm
INTEGER mat,n
DOUBLE PRECISION :: Density(4) ! Assume max 4 nodes in an element

! Get the element pointer
Elm => Model ’ CurrentElement



K.2. RETRIEVING MODEL INFORMATION WITHIN USER ROUTINES147

! Material index for the element
mat = ListGetInteger( Model 7, Bodies(Elm % BodyId) % &
Values, ’Material’ )

n = elm % Type % NumberOfNodes

! And finally, density values at the element nodal points
Density(l:n) = ListGetReal( Model % Materials(mat) % Values, &
’Density’, n, elm J, NodeIndexes )

The field variables are also held in a list structure and may be retrieved by
a call to the routine VariableGet

USE Types
USE Lists

TYPE(Variable_t), POINTER :: Variable
Variable => VariableGet( Model % Variables, ’Variable name’ )

The structure Variable_t is defined as:

TYPE Variable_t
TYPE(Variable_t), POINTER :: Next
CHARACTER(LEN=MAX_NAME_LEN) :: Name

INTEGER :: DOFs

INTEGER, POINTER :: Perm(:)

DOUBLE PRECISION, POINTER :: Values(:),Norm
END TYPE Variable_t

The entry Values is a double precision array holding the variable values, DOFs
is the number of components in the array (for example, in the flow solution
array the number of components is three or four, i.e. the velocity components
and pressure) , and the Perm array contains the possible nodal renumbering of
the values. As an example, the following program segment might be used to get
value of the x-velocity at nodal point n

USE Types
USE Lists

TYPE(Variable_t), POINTER :: Velocity

INTEGER :: k

DOUBLE PRECISION :: xvelo

Velocity => VariableGet( Model 7, Variables, ’Velocity 1’ )

k=n
IF ( ASSOCIATED(Velocity % Perm) ) k = Velocity % Perm(k)

xvelo = 0.0DO
IF ( k /= 0 ) xvelo = Velocity % Values(k)
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Note that both the components of the velocity field and the flow solution array

containing the velocity field and pressure are entered in the list of variables

by the solver. The same applies to the displacement field. Note also that the

velocity might not be defined for all the nodal points. If a variable is not defined

for a nodal point, the permutation vector Perm will contain zero at that position.
The whole set of variables entered in the list by the solver is:

e Time

e Stress Solution

e Displacement 1

e Displacement 2

e Displacement 3

e Coordinate 1

e Coordinate 2

e Coordinate 3

e Temperature

e Flow Solution

e Pressure

e Velocity 1

e Velocity 2

e Velocity 3

e Magnetic Field

e Magnetic Field 1

e Magnetic Field 2

e Magnetic Field 3

e Electric Current

e Electric Current 1
e Electric Current 2
e Electric Current 3

The time variable contains only a single value, the current simulation time.
There is obviously no permutation vector for the coordinate arrays.

The user may add variables to the current list of variables by using the
routine VariableAdd:
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INTEGER :: DOFs
INTEGER, POINTER :: Perm
DOUBLE PRECISION, POINTER :: Values

CALL VariableAdd( Model % Variables,’Variable name’, &
DOFs,Values,Perm )

The last argument Perm is optional, and when provided gives a nodal renum-
bering of the variable values.



Appendix L

The Solver Element Types

The default element types of the ELMER, solver are

e linear and quadratic triangles (3, 6, and 7 nodal points, Figure L.1),

Figure L.1: The 3 and 6 node triangular elements.

e bilinear and quadratic quadrilaterals (4,5,8, and 9 nodal points, Figure
L.2),

e linear and quadratic tetrahedrons (4 and 10 nodal points, Figure L.3),

e trilinear and quadratic hexahedrons (8, 20, and 27 nodal points, Figure
L.4).

Further element types belonging to these basic topologies may be added to
the program by editing element type definition file, without touching the solver
code nor compiling or linking the program. How to create a mesh using these
element types is a separate question.

The definition file is read in when the solver code is initialized and a basis
function matrix is formed for every element type defined. The rest of the FEM
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Figure L.3: The 4 and 10 node tetrahedron elements.

code (computing local and global derivates, integration of elements) is then
basically independent of the element type
The following is listing of the default element type definition file.

1/ sk ki ks s ok ok sk sk oo o sk s sk sk o sk sk o ok ok sk s o ke ks sk sk ok sk sk sk ke sk sk s ke ok sk e s ok ok sk s ok sk sk s ok sk sk o sk sk o
ELMER, A Computational Fluid Dynamics Program.

Copyright 1st April 1995 - , Center for Scientific Computing,
Finland.

A1l rights reserved. No part of this program may be used,
reproduced or transmitted in any form or by any means

!
!
!
!
!
!
!
!
! without the written permission of CSC.
!

* X X ¥ X X ¥ X X *



152 APPENDIX L. THE SOLVER ELEMENT TYPES

Figure L.4: The 8 and 20 node hexahedron elements.

ootk ok ok ok ok oo oo s e e ok ok ok ks s s e s o o o e e o ok ook sk s s e e o o e ke e o ks sk sk s s o o s e ke ke ek ok /
!

1/ sk sk sk sk sk sk sk sk sk sk sk sk s sk s s ok ke ok ok ok ok sk sk sk s sk s s o o e e ko sk sk sk sk sk sk sk sk e s s s s ke ok ok ok sk sk sk sk sk s s sk s s ok ok ok ok ok ok sk ok
!k

! x Element type definitions, read in the initialization phase

! ox

ook ok ok ok o oo oo s e e ok ok ok ks s s e s o o o e e o ek ok ook s e e e o o ke ke o sk sk sk s s s o o s e ke ok ke ok ook ok

Author Juha Ruokolainen
Address Center for Scientific Computing

Tietotie 6, P.0. BOX 405
02101 Espoo, Finland

*¥ X X X X x*



* X X X X X ¥ X x *

Tel. +358 0 457 2723
Telefax +358 0 457 2302
EMail Juha.Ruokolainen@csc.fi
Date 04 Oct 1996
Modified by

Date of modification

153

ELEMENT 1 Node Point
'

Dimension 1
Topology Point

'

Code 101
'

Nodes 1
'

Node U 0.0

!

Basis 1

!

Gauss Points 0

'

Stabilization 0.0
END ELEMENT

ELEMENT 2 Node Line
!

Dimension 1
Topology Line

!

Code 202

'

Nodes 2

! 1 2
Node U -1.0 1.0
'

Basis 2
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Gauss Points 2

Stabilization 0.333333333333333333
END ELEMENT

ELEMENT 3 Node Line
'

Dimension 1
Topology Line

'

Code 203

'

Nodes 3

! 1 2 3

Node U -1.0 1.0 0.0
!

! 1
! 1
Basis 1

2 3
u u"2
23

Gauss Points 3

Stabilization 0.166666666666666666666
END ELEMENT

ELEMENT 3 Node Triangle
!

Dimension 2

Topology Triangle

!

Code 303

'
Nodes 3

! 1 2 3

Node U 0.0 1.0 0.0

Node V. 0.0 0.0 1.0

!

! 1 2 3 4 5 6 7 8 9

! 1 u u2 v uv u™2v v'2 uv"2 u"2v"2
Basis 124

Gauss Points 1
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Stabilization 0.333333333333333333333
END ELEMENT

ELEMENT 4 Node Triangle
!

Dimension 2
Topology Triangle
!

Code 304

'
Nodes 4

! 1 2 3 4

Node U 0.0 1.0 0.0 0.333333333333333333

Node V. 0.0 0.0 1.0 0.333333333333333333

'

! 1 2 3 4 5 6 7 8 9

! 1 u u'2 v uv u™2v v"2 uv"2 u"2v"2
Basis 1245

Gauss Points 3 ?TeT?

Stabilization 0.333333333333333333
END ELEMENT

ELEMENT 6 Node Triangle
!

Dimension 2

Topology Triangle

!

Code 306

!

Nodes 6

Node U 0.0 1.0 0.0 0.5 0.5 0.0

Node V 0.0 0.0 1.0 0.0 0.5 0.5

!

! 1 2 3 4 5 6 7 8 9

! 1 uw u2 v uv u™2v v'2 uv"2 u"2v"2
Basis 123457

Gauss Points 4

Stabilization 0.041666666666666666
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END ELEMENT

ELEMENT 7 Node Triangle
!

Dimension 2

Topology Triangle

!

Code 307

!
Nodes 7

!

! 1 2 3 4 5 6 7

Node U 0.0 1.0 0.0 0.5 0.5 0.0 0.3333333333333333
Node V 0.0 0.0 1.0 0.0 0.5 0.5 0.3333333333333333
!

! 12 3 4 5 6 7 8 9

! 1 uw u'2 v uv u™2v v'2 uv"2 u"2v”2

Basis 1 234579

Gauss Points 6 ?TeTTY

Stabilization 0.0416666666666666666
END ELEMENT

ELEMENT 4 Node Quadrilateral
'

Dimension 2

Topology Quad

'

Code 404

Nodes 4

! 1 2 3 4

Node U -1.0 1.0 1.0 -1.0

Node V. -1.0 -1.0 1.0 1.0

!

! 1 2 3 4 5 6 7 8 9

! 1 uw u'2 v uv u™2v v'2 uv"2 u"2v"2
Basis 1245

Gauss Points 4

Stabilization 0.333333333333333333
END ELEMENT
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ELEMENT 5 Node Quadrilateral
'

Dimension 2

Topology Quad

'

Code 405

Nodes 5

! 1 2 3 4 5

Node U -1.0 1.0 1.0 -1.0 0.0

Node V. -1.0 -1.0 1.0 1.0 0.0

'

! 1 2 3 4 5 6 7 8 9

! 1 u u'2 v uv u™2v v"2 uv"2 u"2v"2
Basis 12459

Gauss Points 9 °TTeYTY?

Stabilization 0.08148148148148
END ELEMENT

ELEMENT 8 Node Quadrilateral
'

Dimension 2

Topology Quad

'

Code 408

Nodes 8

! 1 2 3 4 5 6 7 8

Node U -1.0 1.0 1.0 -1.0 0.0 1.0 0.0 -1.0
Node V -1.0 -1.0 1.0 1.0 -1.0 0.0 1.0 0.0
'

! 1 2 3 4 5 6 7 8 9

! 1 u u2 v uv u"2v v"2 uv"2 u"2v"2
Basis 123456738

Gauss Points 9 ! ?TeTTY

Stabilization 0.08148148148148
END ELEMENT
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ELEMENT 9 Node Quadrilateral
'

Dimension 2

Topology Quad

'

Code 409

Nodes 9

! 1 2 3 4 5 6 7 8 9
Node U -1.0 0 0O 0.0 1.0 0.0 -
Node V -1.0 0 0-1.0 0.0 1.0

'

1. 1. 1.0 -1.
1. 1. 1.0 1.

O =
o O
o O
o O

! 1
! 1
Basis 1 2

2 3 4 5 6 7 8 9
u u"2 v uv u"2v v~"2 uv"2 u"2v"2
3456789

Gauss Points 9

Stabilization 0.08148148148148
END ELEMENT

ELEMENT 4 Node Tetrahedron
'

Dimension 3

Topology Tetra

'

Code 504

Nodes 4

! 1 2 3 4
Node U 0.0
Node V 0.0
Node W 0.0
'

O O =
O O O
O~ O
O O O
= O O
O O O

10 11 12 13 14 15 16 17 18
W uw u"2w vw uvw u”"2vw VT 2w uv”"2w u~2v-2w

19 20 21 22 23 24 25 26 27
W2 uw"2 uT2wT2 vwT2 uvwT2 ut2vwT2 vT2uT2 uvt2uT2 u”2vT2uT2

Basis 1 2 4 10
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Gauss Points 4

Stabilization 0.333333333333333333
END ELEMENT

ELEMENT 10 Node Tetrahedron
'
Dimension 3

Topology Tetra
!

Code 510

W2 uw"2 ut2w"2 vwT2 uvw"2 uT2vw"2 vT2WT2 uvT2wT2 ut2vT2wT2

Nodes 10

! 1 2 3 4 5 6 7 8 9 10

Node U 0.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 0.5 0.0

Node V. 0.0 0.0 1.0 0.0 0.0 0.5 0.5 0.0 0.0 0.5

Node W 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.5 0.5 0.5

!

!

1 2 3 4 5 6 7 8 9
' u u~2 v uv u~2v v~2 uv~2 u~2v-2
!

'10 11 12 13 14 15 16 17 18
''w uw  u"2w vw uvw u~2vw VT 2w uv-2w u~2v-2w
!

''19 20 21 22 23 24 25 26 27

!

!

Basis 1 234 5 7 10 11 13 19

Gauss Points 10 ! (7777777

Stabilization 0.333333333333333333
END ELEMENT

ELEMENT 8 Node Octahedron
'

Dimension 3

Topology Brick

'

Code 808
!
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W2 uw"2 uT2w"2 vwT2 uvwT2 ut2vwT2 vT2uT2 uvt2uT2 uT2vT2uT2

Nodes 8

! 1 2 3 4 5 6 7 8

Node U -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0

NodeV -1.0-1.0 1.0 1.0 -1.0-1.0 1.0 1.0

Node W -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0

!

!

1 2 3 4 5 6 7 8 9
LI u u~2 v uv u~2v v~2 uv~2 u~2v-2
!

''10 11 12 13 14 15 16 17 18
''w uw  u"2w vw uvw u~2vw VT 2w uv-2w u~2v-2w
!

'19 20 21 22 23 24 25 26 27

!

!

Basis 1 2 4 5 10 11 13 14
Gauss Points 8

Stabilization 0.333333333333333333
END ELEMENT

ELEMENT 20 Node Octahedron
'

Dimension 3

Topology Brick

'

Code 820

'

Nodes 20

! 1 2 3 4 5 6 7 8 9 10 11 12

Node U -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 0.0 1.0 0.0 -1.0\
-1.0 1.0 1.0 -1.0 0.0 1.0 0.0 -1.0

! 13 14 15 16 17 18 19 20

Node V. -1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 0.0 1.0 0.0\
-1.0 -1.0 1.0 1.0 -1.0 0.0 1.0 0.0
Node W -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 \
0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
!
1 2 3 4 5 6 7 8 9
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W2 uw"2 ut2w"2 vwT2 uvw"2 uT2vw"2 vT2WT2 uvT2wT2 ut2vT2wT2

' 10 11 12 13 14 15 16 17 18
'w uw u" 2w VW uvw u"2vw v©2w uv”"2w u"2v_2w
'

' 19 20 21 22 23 24 25 26 27

'

'

Basis 1 234567 8 10 11 12 13 14 15 16 17 19 20 22 23
Gauss Points 27

Stabilization 0.08148148148148
END ELEMENT

ELEMENT 27 Node Octahedron
'

Dimension 3
Topology Brick
!

Code 827

W2 uw"2 ut2w"2 vwT2 uvw"2 uT2vwT2 vT2WT2 uvT2wT2 ut2vt2wT2

!
Nodes 27
! 1 2 3 4 5 6 7 8 9 10 11 12
Node U -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 0.0 1.0 0.0 -1.0 \
-1.0 1.0 1.0 -1.0 0.0 1.0 0.0 -1.0 0.0 1.0 0.0 -1.0 \
0.0 0.0 0.0
! 13 14 15 16 17 18 19 20 21 22 23 24
! 25 26 27
Node V. -1.0 -1.0 1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 0.0 1.0 0.0\
-1.0-1.0 1.0 1.0 -1.0 0.0 1.0 .0 -1.0 0.0 1.0 0.0\
0.0 0.0 0.0
Node W -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0 \
0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0\
-1.0 1.0 0.0
!
!
1 2 3 4 5 6 7 8 9
' u u~2 v uv u~2v v~2 uv~2 u~2v-2
!
'10 11 12 13 14 15 16 17 18
''w uw  u"2w vw uvw u~2vw VT 2w uv-2w u~2v-2w
!
''19 20 21 22 23 24 25 26 27
!
!

Basis 1 23456789 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
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Gauss Points 64

Stabilization 0.08148148148148
END ELEMENT

ELEMENT 6 Node Wedge
'
Dimension 3

Topology Wedge
!

Code 606

W2 uw"2 uT2w"2 vwT2 uvw"2 uT2vwT2 vT2uT2 uvt2uT2 ut2vT2uT2

Nodes 6

! 1 2 3 4 5 6

Node U 0.0 1.0 0.0 0.0 1.0 0.0

Node V. 0.0 0.0 1.0 0.0 0.0 1.0

Node W 0.0 0.0 0.0 1.0 1.0 1.0

!

!

1 2 3 4 5 6 7 8 9
LI u u~2 A\ uv u~2v v~2 uv~2 u~2v-2
!

'10 11 12 13 14 15 16 17 18
'w uw  u"2w vw uvw u~2vw v©2w uv-2w u~2v-2w
!

19 20 21 22 23 24 25 26 27

!

!

Basis 1 2 4 10 11 13
Gauss Points 1

Stabilization 0.333333333333333333
END ELEMENT
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