——

CSC

Linear Solvers of Elmer
N
serial & parallel

ElmerTeam
CSC

Algorithm scalability

* Before going into parallel computation let’s study
where the bottle-necks will appear in the serial
system

* Each algorithm/procedure has a characteristic
scaling law that sets the lower limit to how the
solution time t increases with problem size n

oThe parallel implementation cannot hope to beat this
limit systematically

* Targeting very large problems the starting point
should be nearly optimal (=linear) algorithm!

CPU time for serial pre-processing and solution

csc
. CPU time for Preprocessing steps
10 E T T T T o TTTTT T o rTTTTT B
10° ! i
- E BRI
3 N
] o NI
1 r%ﬁﬁwﬁﬁﬂﬂh ‘
HREAKIAAK AN
|] o
vr ; KT oy
)]
h -
10" L -
10"
3 O ElmerGrid / hexas [
O Metis { hexas]
5 O Gmsh [tets i
O Metis / tets
O GMGhexas
10_2 1 1 1 1 111 II 1 1 1 1 1111 | 1 1 1 1 111 I| 1 1 1 1 | 1 1 1 1 1111
10° 10" 10 10' 10° 10°

I”

N_ (M) "winke

CPU time for serial solution — one level vs. multilevel

CPU time for solution of linear systems €se

107 — e ——— :
J “ N
A ;
10° L 4 ' ““}‘,‘ﬁ«lﬁ?z‘ﬁ'ﬁ%\‘\}y
- - oy
: s AW
_ NI,
] TR0
] ' égﬁ%ﬁ"‘“ lM
® 0 | |
- C]
10" L |
O BiCGstab+GMG+SGS |
O BiCGstab+CMG+3GS |
O BiCGstab+ILUO 1
: < BiCGstab+ILUOQ
10_ I I 1 1 1 Lo I I 1 1 I | 1 1 1 1 L1 1
10° 10" 10 10'

I”

“ "winke

Algorithmic scalability results (old)

Serial performance of different tools and algorithms in terms of

CPU time and memory consumption for Poisson equation. t — Oé?’L’B
software algorithm mesh ap(s/M) [r apr(b)

ElmerGrid meshing hexas 0.295 0.939 73.8

Metis PartMeshNodal hexas 6.67 0.932 377.0

Gmsh Delaunay tets 5.2 0.93 1481

Gmsh Advancing Front tets 155.1 1.00 643

Metis PartMeshDual tets 23.1 097 5134

BiCGStab CMG + SGS hexas 134.9 1.100 1595

BiCGStab ILUO hexas 198.53 1548 JIFLT

T(solution) > T(tet meshing) > T(partitioning) > T(hex meshing)

The solution is the first bottleneck even for simple equations,
for complex equations and transient problems even more so!

Poisson equation at "Winkel”

* Success of various iterative methods
determined mainly by preconditioning
strategy

* Best preconditioner is clustering multigrid
method (CMGQG)

* For simple Poisson almost all
preconditioners work reasonable well

* Direct solvers differ significantly in scaling

* For vector valued problems number of
possible strategies increases due to
various splitting techniques

o Monolithicvs. segregated methods

6 4.2.2021

Linear solver
BiCGStab+CMGO (SGS1)
GCR+CMGO (SGS2)
Idrs+CMGO (SGS1)

BiCgStab + ILUO

CG + wvanka
Idrs (4) + wvanka

CG + diag
BiCgStab (4) + diag

MUMPS (PosDef)
MUMPS
umfpack

alpha

178.
180.
175.

192.

282.
295.

257.
290.

4753.
12088.
74098.

30
22
20

50

07
18

98
11

99
74
48

+

csc

beta
1.09
1.10
1.10

1.13

1.16
1.16

1.17
1.19

1.77
1.93
2.29

Serial linear solvers used with Elmer

We must solve large sparse linear systems: Ax = b

Iterative methods Direct methods
* Internal Krylov methods * Banded (serial only)
o HUT library: CG, BiCGStab, BiCGStabl, |
GMRes TMOMR, OMR » Umfpack (serial only)
o Recent additions: GCR, Idrs, BiCGStabl e MUMPS (serial and parallel)
* Internal Algebraic multigrid « MKL Pardiso (parallel, not free)

o Serial AMG and CMG methods (alpha version)

* Hypre
o Linear solvers
o Both Krylov methods & BoomerAMG

e Trilinos

7. AM GX 4.2.2021
EELRRRELELELOEGOGEGEGEGGEGEGEGEGEGEGEGDGEGEGEGEBEBEEBEBEEBBBRRREYT

Preconditioning of linear systems 1

* Instead of solving the original linear system, one may solve the (left)
preconditioned system:

PAx = Pb * Preconditioners in Elmer
where P is an approximation of the inverse if A olLUn, n=0,1,2,3, ...
o ILUn, Incomplete LU depomposition with fill pattern defined by A" o ILUt, specific tolerance
o Diagonal precondtioner, P=1/diag(A) o Diagonal
o No strict guidelines on construction, experimental numerics o Vanka

* P may also be considered to an operator 0 AMG and AMG

o Multigrid as precondioner

* The goal of this preconditioned system is to reduce the condition
number
o Results to more robust and faster convergence of linear system

* Typically iterative solution: Krylov method + preconditioner

8 4.2.2021

Linear solvers, example

Linear Solver I
Linear
Linear
Linear
Linear
Linear
Linear

Linear

System
System
System
System
System
System
System

Tterative

Convergenc
Abort Not
Preconditi
ILUt Toler
System Residual O
!Idrs Parameter 4
'BiCGStabl Polynomial De

'Linear System Residual
'Linear System Robust

! Direct alternative
'Linear System Solver
Linear System Direct Met

9 4.2.2021

Max Iterations

+

csc

terative
Method = "GCR”
500

e Tolerance 1.0E-08
Converged False
oning = "ILUQO” !
ance 1.0e-3
utput 10

! BiCGStab, BiCGStabl,

GMRes, Idrs,

IL.uo, ILUl, ILUZ2, ILUT

gree

Mode Logical True
Logical True ! Works with GCR and BiCGStabl

Direct
hod

= MUMPS ! umfpack

Parallel computing concepts -

csc

Computer architectures Programming models
e Shared memory * Threads (pthl’eads, OpenMP)
o All cores can access the whole memory o Can be used only in shared memory computer

o Limited parallel scalability

* Distributed memory o Simpler or less explicit programming

o All cores have their own memory

o Communication between cores is needed in * Message passing (MPI)

order to access the memory of other cores o Can be used both in distributed and shared memory
computers

* Current supercomputers combine the
distributed and shared memory (within
nodes) approaches

o Programming model allows good parallel scalability
o Programming is quite explicit

* Massively parallel FEM codes use typically MPI as
the main parallelization strategy

Weak vs. strong parallel scaling 1

Strong scaling Weak scaling

* How the solution time T varies with the * How the solution time T varies with the
number of processors P for a number of processors P for a fixed
fixed total problem size. problem size per processor.

* Optimal case: P xT = const. * Optimal case: T=const.

* A bad algorithm may have excellent strong * Weak scaling is limited by algorithmic
scaling scaling

* Typically 104-105 dofs needed in FEM for
good strong scaling

=7 |lese 8o

11 4.2.2021

Basic Parallel workflow (of EImer) cic

* Both assembly and solution is done in parallel using MPI
* Assembly is trivially parallel

* This is the most common parallel workflow

(-msh
MESHING NETGEN
PARTITIONING Mélﬂ"gG”d
ASSEMBLY 2%
<7
SOLUTION Elmer

VISUALIZATION

lll ParaView

Mesh partitioning with ElmerGrid

* Two main strategies for mesh partitioning

* Metis graph partitioning library:
-metiskway #np & -metisrec #np

o Generic strategy

olIncludes five different graph partitioning routines fi
Metis

* Recursive division by cartesian directions:
-partition nx ny nz
.

o Simple shapes (ideal for quads and hexas)
o Choice between partitioning of nodes or elements fi

csc

Mesh partitioning with ElmerGrid

* Optimal partitioning depends on geometry

* To find the best partitioning is a non-trivial task

1 2 3 4 1 2 3 4 1 2 3 4
Partition Partition Partition

—partition 2 2 1 -partdual -metisrec 4 -partdual -metiskway 4

ElmerGrid command in parallel

Keywords are related to mesh partitioning for parallel ElmerSolver runs:
-partition int[3] the mesh will be partitioned in cartesian main directions
-partorder real[3] : 1n the 'partition' method set the direction of the ordering
—-partcell int[3] the mesh will be partitioned in cells of fixed sizes

—partcyl int[3]
-metis 1int
-metiskway int
-metisrec int
-metiscontig
-metisseed
-partdual
—halo

—halobc

-haloz / -halor

15 4.2.2021

the mesh will be partitioned in cylindrical main directions

mesh will be partitioned with Metis using mesh routines

mesh will be partitioned with Metis using graph Kway routine
mesh will be partitioned with Metis using graph Recursive routine
enforce that the metis partitions are contiguous

random number generator seed for Metis algorithms

use the dual graph in partition method (when available)

create halo for the partitioning for DG

create halo for the partitioning at boundaries only

create halo for the the special z- or r-partitioning-halogreedy

Mesh structure of Elmer

Serial
meshdir/

* mesh.header
size info of the mesh

* mesh.nodes
node coordinates

*mesh.elements
bulk element defs

*mesh.boundary
boundary element defs with reference
to parents

~

cscC

Parallel

meshdir/partitioning.N/
*mesh.n.header
*mesh.n.nodes
*meshtr . elclCT 1 s
*mesh.n.boundary

* mesh.n.shared
information on shared nodes

foreachiin [o,N-1]

Serial vs. parallel solution

Serial
* Serial mesh files

e Execution with
ElmerSolver case.sif

e Writes results to one file: vtu files

csc

Parallel
e Partitioned mesh files

* Execution with
mpirun -np N ElmerSolver mpi
case.sif

* Calling convention is platform dependent

e Writes results to N vtu files + one pvtu file

Partitioning and matrix structure

400 | | | | |
350}
300}
250}
200}
150} i
100:?{?"“

50}

100 200 300 400
Contiguous parallel ndmbering used

csc

* Shared nodes result to need for communication.

o Each dof has just one owner partiotion and we know the
neighbours for

o Owner partition usually handles the full row
o Results to point-to-point communication in MPI

* Matrix structure sets challenges to efficient
preconditioners in parallel

o It is more difficult to implement algorithms that are
sequential in nature, e.g. ILU

o Krylov methods require just matrix vector product, easy!

« Communication cannot be eliminated. It reflects the
local interactions of the underlying PDE

2000 =

1800 =

-+
1600 =

1200 =

7 o e

200 =

BOO

400

200

+

csc

Partitioning and matrix structure — unstructured mesh

* Partitioning should try
to minimize

communication

* Relative fraction of
shared nodes goes as
NA(-1/DIM)

 For vector valued and
high order problems
more communication
with same dof count

1 L L L 1 L 48kl
200 400 GO0 800 1000 1200 1400 1600

1 L
1800 2000

22 4.2.2021

Metis partitioning into 8

Parallel linear solvers used with Elmer
Iterative Direct
* Internal Krylov methods * MUMPS
o Usable as in serial o Direct solver that may work when averything
else fails

o ILUn done only partitionwise
* MKL Pardiso

* Hypre
o Krylov solvers o Comes with the Intel MKL library
o Algebraic multigrid: BoomerAMG o Multihreaded

o Truly parallel ILU and Parasails preconditioning

* Trilinos
o Krylov solvers
o Algebraic multigrid: ML

O ...

FETI
o Uses MUMPS for local problem

23 4.2.2021

Challenge of real-world problems

e Linear solver libraries work great for many standard problems

o Scalability demonstrated up to 1000's of cores

* Unfortunately many of the real world cases are

o Unsymmetric

o Constrained

o Compromized in mesh quality (aspect ratio)
o Etc.

* Often the target number of cores is often rather modest

0100'’s of cores
oBut direct solvers are still too slow or memory intensive

* We look on strategies that split the complex problems into
more simple ones where standard libraries excel
.. => block.precontioning

csc

Block preconditioning

* In parallel runs a central challenge is to have good
parallel preconditioners

* This problem is increasingly difficult for PDEs with vector fields

o Navier-Stokes, elasticity, acoustics,...
o Strongly coupled multiphysics problems

* Preconditioner need not to be just a matrix, it can be a procedure!

* Idea: Use as preconditioner a procedure where the components are
solved one-by-one and the solution is used as a search direction in
an outer Krylov method

* Number of outer iterations may be shown to be bounded

* Individual blocks may be solved with optimally scaling methods

o Multilevel methods

Block precontioning

 Given a block system

[Kin -+ Ky } X1 by
Kvi -+ Kwwn KIN b.N
* Block Gauss-Seidel Block Jacobi
Kll 0 o --. Kll 0 o ...
P=1| Kyy Kyp 0 ... P = 0 Kn 0 --.

* Preconditioner is the operator which produces the new search direction s®
* Use GCR to minimize the residual [lb—Kx®)]|

over the space Vi = x® +span{st) s® .. s}

26 4.2.2021

GCR with general search directions to solve Ku = f

k=0
r) = f — Kul®)
while (||[r'®)|| < TOL||f|| and k < m)
Generate the search direction s(¥+1)
v(k+1) — Kg(k+1)
doj=1.k
vkl — y(k+1) _ (vUJ:U(Hl))vU)
s(k+1) — g(k+1) _ (y(0) y(k+1)sl)
end do
v(k+1) — U(k+1)/|‘v(k+1)”
glk+1) — S(k+1)/”,u.{k+1)”
ukt1) = y(0) 4 (y(ktD) p(R)ygk+1)
plkt1) — (k) _ (u(“l), r(k)>u(k+1)
k=k+1
end while

27 £4.2.2021

Motivation for using block preconditioner \

csc

» Comparison of algorithm scaling in linear elasticity between different preconditioners

o ILU1 vs. block preconditioning (Gauss-Seidel) with agglomeration multigrid for each component

* At smallest system performance about the same

* Increasing size with 8/A3=512 gives the block solver
scalability of O(~1.03) while ILU1 fails to converge

- BiCGstab(4)+ILU1 GCR+BP(AMG)

#dofs T(s) #iters T(s) #iters
7,662 1.12 36 1.19 34
40,890 11.77 76 6.90 45
300,129 168.72 215 70.68 82

2,303,472 >21,244%* >5000% 756.45 116

Simulation Peter Raback, CSC. * No convergence was obtained

Stokes problem in computational glaciology T

* Stokes equation
—div[2n(D)D(v)] + Vp = pg,
—divv=0
where the strain rate tensor is
D=D(v)=1/2(Vv+Vv').

* Ice is a shear-thinning fluid that follows the Glen’s flow law

n=1/2A7K[L(D)]k-1)/2

* Resulting system is very challenging to solve

o The viscosity variations may be of order 105
o The aspect ratio of the ice may be of order 103

30 4.2.2021

Block preconditioner for the Stokes problem
* Each nonlinear step requires solving the Stokes problem o R
! Fast Iterative Solvers

A B’ V| |[F

B C P N G I‘HI.’:-\ \Il:l):.l.\l AN
* Note that here Cis result of stabilization, with suitable choice of basis Cnmima

vectors it can also be zero. The preconditioner is of the form =
o _ l A B’]
0 Q OXFORD SCIENCH PUBLICATIONS

* An optimal choice of Q corresponds to the Schur complement.

Usual choice is
H. Elman, D. Silvester, A. Wathen,

Finite Elements and Fast Iterative Solvers: with

Q=M.
" Applications in Incompressible Fluid Dynamics,
where M is the mass matrix and € is the viscosity from previous =~ OUP Oxford, 2005.
iteration.
31 4.2.2021

Block preconditioner robustness

* Tested on Midtre Lovenbreen glacier test case

K n Necr N n Necr
5 285131 18 20 9261 23
10 282897 23 30 29791 25
19.2 286650 25 40 68921 27
30.2 289835 29 50 1326561 29
40 289338 30 60 226981 30
80 287496 34

Robustness in respect to Robustness in respect to

element aspect ratio a problem size

* Number of outer iterations is not too much affected by
the problem size of mesh quality.

* Speed of computation determined by the strategy used
.. for individual blocks

csc

M. Malinen, J. Ruokolainen, P. Raback, J. Thies,
T. Zwinger. Parallel block preconditioning by
using the solver of ElImer. Applied Parallel and
Scientific Computing, PARA 2012, Helsinki,
Finland, Springer, Heidelberg, 2013; 545-547.

Block preconditioner: Weak scaling of 3D driven-cavity

N N o
343

171,500 44.2
433 340,736 32 60.3
5473 665,500 64 66.7
6873 1,314,036 128 73.6
8673 2,634,012 256 83.5
1083 5,180,116 512 102.0
1323 9,410,548 1024 106.8

Velocity solves with Hypre: CG + BoomerAMG preconditioner for the
3D driven-cavity case (Re=100) on Cray XC (Sisu). O(~1. 14)
Simulation Mika Malinen, CSC, 2013.

Motivation for vectorization

* New computer architectures use SIMD
(=vector) units to do fast computations

* If you (on an Intel chip) don't utilize this,
you a priori loose % of your performance

* FEM: assembly = creating the matrix
solution = solving it

* Until recently, assembly procedures in
Elmer did not utilize SIMD

o New Stokes solver does!

o Gains depend on the number of integration
points

csc

SIMD Instruction Pool

TN
— +
8 (-
-
n- —
O (@)
+J .
° O
- =
___/

By Vadikus - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=39715273

Hybridization of the Finite Element code 1

* The number of cores in CPUs keep Multicore speecp,P=2
increasing but the clock speed has

128 threads on KNL, 24 threads on HSW

Element (#ndofs, Speedup Optimized local
stagnated #quadrature matrix
points) evaluations [s

* Significant effort has been invested for
the hybrization of EImer

KNL HSW KNL HSW

Line (3, 4) 0.7 20 42M 145M

o Assembly process has been multithreaded and _ ' ' ' '
vectorized Triangle (6, 16) 2.5 39 26M 65M
o"Coloring” of element to avoid race conditions Quadrilateral (8, 16) 2.8 10 26M 6.6 M
* Speed-up of assembly for typical Tetrahedron (10,64) 74 63 10M 15M
elements varies between 2 to 8. Prism (15, 64) 3.3 58 08M 09M

: : Hexahed 20, 64
e As an accompanion the multitreaded exahedron (20,64) 75 5.8 06M 09M
assem b|y requ ires multithreaded linear Speed-up assembly process for poisson equation using

| 2nd order p-elements. Juhani Kataja, CSC, IXPUG Annual
35 SOIVers. Spring Conference 2017.
e

Tips for linear solvers -

csc

* Direct solvers

o In 1D always
o In 2D often very competitive
o In 3D only if nothing else works

* Iterative solvers
o BiCGStabl + "BiCGStabl Polynomial Degree = 4..6"
o Perhaps the most robust iterative solver without memory problems
o IDRS + “Idrs Parameter”
o Very fast and quite robust
o GCR

o Very robust, but cost and memory consumption increases with iteration count
o Best used when number of iterations is bounded (block preconditioner)
o Does not require exact preconditioner

* Preconditioners
o ILUn + ILUt

o The standard strategy, mind that not the same in parallel
o Balance higher “n” with crappier iterative solver

o Block preconditioner

o When you aim massively parallel

