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1 Introduction

As increasingly powerful computers find their way into people’s homes, there is growing
interest in extending Internet connectivity to those computers. Unfortunately, this exten-
sion exposes some complex problems in link-level framing, address assignment, routing,
authentication and performance. As of this writing there is active work in all these areas.
This memo describes a method that has been used to improve TCP/IP performance over
low speed (300 to 19,200 bps) serial links.

The compression proposed here is similar in spirit to theThinwire-II protocol described
in [5]. However, this protocol compresses more effectively (the average compressed header
is 3 bytes compared to 13 in Thinwire-II) and is both efficient and simple to implement
(the Unix implementation is 250 lines of C and requires, on the average, 90�s (�170
instructions) for a 20MHz MC68020 to compress or decompress a packet).

This compression is specific to TCP/IP datagrams.1 The author investigated com-
pressing UDP/IP datagrams but found that they were too infrequent to be worth the bother
and either there was insufficient datagram-to-datagram coherence for good compression
(e.g., name server queries) or the higher level protocol headers overwhelmed the cost of
the UDP/IP header (e.g., Sun’s RPC/NFS). Separately compressing the IP and the TCP
portions of the datagram was also investigated but rejected since it increased the average
compressed header size by 50% and doubled the compression and decompression code
size.

2 The problem

Internet services one might wish to access over a serial IP link from home range from
interactive “terminal” type connections (e.g., telnet, rlogin, xterm) to bulk data transfer
(e.g., ftp, smtp, nntp). Header compression is motivated by the need for good interactive
response. I.e., theline efficiencyof a protocol is the ratio of the data to header+data in a
datagram. If efficient bulk data transfer is the only objective, it is always possible to make
the datagram large enough to approach an efficiency of 100%.

Human-factors studies[15] have found that interactive response is perceived as “bad”
when low-level feedback (character echo) takes longer than 100 to 200 ms. Protocol headers
interact with this threshold three ways:

(1) If the line is too slow, it may be impossible to fit both the headers and data into a 200
ms window: One typed character results in a 41 byte TCP/IP packet being sent and
a 41 byte echo being received. The line speed must be at least 4000 bps to handle
these 82 bytes in 200 ms.

1The tie to TCP is deeper than might be obvious. In addition to the compression “knowing” the format of
TCP and IP headers, certain features of TCP have been used to simplify the compression protocol. In particular,
TCP’s reliable delivery and the byte-stream conversation model have been used to eliminate the need for any
kind of error correction dialog in the protocol (see sec. 4).
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(2) Even with a line fast enough to handle packetized typing echo (4800 bps or above),
there may be an undesirable interaction between bulk data and interactive traffic: For
reasonable line efficiency the bulk data packet size needs to be 10 to 20 times the
header size. I.e., the linemaximum transmission unitor MTU should be 500 to 1000
bytes for 40 byte TCP/IP headers. Even with type-of-service queuing to give priority
to interactive traffic, a telnet packet has to wait for any in-progress bulk data packet
to finish. Assuming data transfer in only one direction, that wait averages half the
MTU or 500 ms for a 1024 byte MTU at 9600 bps.

(3) Any communication medium has a maximum signalling rate, the Shannon limit.
Based on an AT&T study[2], the Shannon limit for a typical dialup phone line is
around 22,000 bps. Since a full duplex, 9600 bps modem already runs at 80% of
the limit, modem manufacturers are starting to offer asymmetric allocation schemes
to increase effective bandwidth: Since a line rarely has equivalent amounts of data
flowing both directions simultaneously, it is possible to give one end of the line
more than 11,000 bps by either time-division multiplexing a half-duplex line (e.g.,
the Telebit Trailblazer) or offering a low-speed “reverse channel” (e.g., the USR
Courier HST).2 In either case, the modem dynamically tries to guess which end of
the conversation needs high bandwidth by assuming one end of the conversation is
a human (i.e., demand is limited to<300 bps by typing speed). The factor-of-forty
bandwidth multiplication due to protocol headers will fool this allocation heuristic
and cause these modems to “thrash”.

From the above, it’s clear that one design goal of the compression should be to limit the
bandwidth demand of typing and ack traffic to at most 300 bps. A typical maximum typing
speed is around five characters per second3 which leaves a budget 30� 5= 25 characters
for headers or five bytes of header per character typed.4 Five byte headers solve problems
(1) and (3) directly and, indirectly, problem (2): A packet size of 100–200 bytes will easily
amortize the cost of a five byte header and offer a user 95–98% of the line bandwidth for

2See the excellent discussion of two-wire dialup line capacity in [1], chap. 11. In particular, there is
widespread misunderstanding of the capabilities of ‘echo-cancelling’ modems (such as those conforming to
CCITT V.32): Echo-cancellation can offer each side of a two-wire line the full linebandwidthbut, since the
far talker’s signal adds to the local ‘noise’, notthe full linecapacity. The 22Kbps Shannon limit is a hard-limit
on data rate through a two-wire telephone connection.

3See [13]. Typing bursts or multiple character keystrokes such as cursor keys can exceed this average
rate by factors of two to four. However the bandwidth demand stays approximately constant since the TCP
Nagle algorithm[8] aggregates traffic with a<200ms interarrival time and the improved header-to-data ratio
compensates for the increased data.

4A similar analysis leads to essentially the same header size limit for bulk data transfer ack packets. As-
suming that the MTU has been selected for “unobtrusive” background file transfers (i.e., chosen so the packet
time is 200–400 ms — see sec. 5), there can be at most 5 data packets per second in the “high bandwidth”
direction. A reasonable TCP implementation will ack at most every other data packet so at 5 bytes per ack the
reverse channel bandwidth is 2:5� 5= 12:5 bytes/sec.
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Figure 1:A topology that gives incomplete information at gateways

data. These short packets mean little interference between interactive and bulk data traffic
(see sec. 5.2).

Another design goal is that the compression protocol be based solely on information
guaranteed to be known to both ends of a single serial link. Consider the topology shown in
fig. 1 where communicating hosts A and B are on separate local area nets (the heavy black
lines) and the nets are connected by two serial links (the open lines between gateways C–D
and E–F).5 One compression possibility would be to convert each TCP/IP conversation
into a semantically equivalent conversation in a protocol with smaller headers, e.g., to an
X.25 call. But, because of routing transients or multipathing, it’s entirely possible that
some of the A–B traffic will follow the A-C-D-B path and some will follow the A-E-F-B
path. Similarly, it’s possible that A!B traffic will flow A-C-D-B and B!A traffic will
flow B-F-E-A. None of the gateways can count on seeing all the packets in a particular TCP
conversation and a compression algorithm that works for such a topology cannot be tied to
the TCP connection syntax.

A physical link treated as two, independent, simplex links (one each direction) imposes
the minimum requirements on topology, routing and pipelining. The ends of each simplex
link only have to agree on the most recent packet(s) sent on that link. Thus, although any
compression scheme involves shared state, this state is spatially and temporally local and
adheres to Dave Clark’s principle offate sharing[4]: The two ends can only disagree on
the state if the link connecting them is inoperable, in which case the disagreement doesn’t
matter.

5Note that although the TCP endpoints are A and B, in this example compression/decompression must be
done at the gateway serial links, i.e., between C and D and between E and F. Since A and B are using IP, they
cannot know that their communication path includes a low speed serial link. It is clearly a requirement that
compression not break the IP model, i.e., that compression function between intermediate systems and not just
between end systems.
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Figure 2:The header of a TCP/IP datagram

3 The compression algorithm

3.1 The basic idea

Figure 2 shows a typical (and minimum length) TCP/IP datagram header.6 The header size
is 40 bytes: 20 bytes of IP and 20 of TCP. Unfortunately, since the TCP and IP protocols
were not designed by a committee, all these header fields serve some useful purpose and
it’s not possible to simply omit some in the name of efficiency.

However, TCP establishes connections and, typically, tens or hundreds of packets are
exchanged on each connection. How much of the per-packet information is likely to stay
constant over the life of a connection? Half—the shaded fields in fig. 3. So, if the sender and
receiver keep track of active connections7 and the receiver keeps a copy of the header from
the last packet it saw from each connection, the sender gets a factor-of-two compression by
sending only a small (�8 bit) connection identifiertogether with the 20 bytes that change
and letting the receiver fill in the 20 fixed bytes from the saved header.

One can scavenge a few more bytes by noting that any reasonable link-level framing

6The TCP and IP protocols and protocol headers are described in [10] and [11].
7The 96-bit tuplehsrc address, dst address, src port, dst porti uniquely identifies a TCP connection.
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Figure 3:Fields that change during a TCP connection

protocol will tell the receiver the length of a received message sototal length(bytes 2
and 3) is redundant. But then theheader checksum(bytes 10 and 11), which protects
individual hops from processing a corrupted IP header, is essentially the only part of the
IP header being sent. It seems rather silly to protect the transmission of information that
isn’t being transmitted. So, the receiver can check the header checksum when the header is
actually sent (i.e., in an uncompressed datagram) but, for compressed datagrams, regenerate
it locally at the same time the rest of the IP header is being regenerated.8

This leaves 16 bytes of header information to send. All of these bytes are likely to change
over the life of the conversation but they do not all change at the same time. For example,
during an FTP data transfer only thepacket ID, sequence numberandchecksumchange
in the sender!receiver direction and only thepacket ID, ack, checksumand, possibly,
window, change in the receiver!sender direction. With a copy of the last packet sent for
each connection, the sender can figure out what fields change in the current packet then

8The IP header checksum isnotan end-to-end checksum in the sense of [14]: The time-to-live update forces
the IP checksum to be recomputed at each hop. The author has had unpleasant personal experience with the
consequences of violating theend-to-end argumentin [14] and this protocol is careful to pass the end-to-end
TCP checksum through unmodified. See sec. 4.
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send a bitmask indicating what changed followed by the changing fields.9

If the sender only sends fields that differ, the above scheme gets the average header size
down to around ten bytes. However, it’s worthwhile looking at how the fields change: The
packet ID typically comes from a counter that is incremented by one for each packet sent.
I.e., the difference between the current and previous packet IDs should be a small, positive
integer, usually<256 (one byte) and frequently=1. For packets from the sender side of
a data transfer, the sequence number in the current packet will be the sequence number in
the previous packet plus the amount of data in the previous packet (assuming the packets
are arriving in order). Since IP packets can be at most 64K, the sequence number change
must be<216 (two bytes). So, if thedifferencesin the changing fields are sent rather than
the fields themselves, another three or four bytes per packet can be saved.

That gets us to the five-byte header target. Recognizing a couple of special cases will
get us three byte headers for the two most common cases—interactive typing traffic and
bulk data transfer—but the basic compression scheme is the differential coding developed
above. Given that this intellectual exercise suggests it is possible to get five byte headers,
it seems reasonable to flesh out the missing details and actually implement something.

3.2 The ugly details

3.2.1 Overview

Figure 4 shows a block diagram of the compression software. The networking system
calls a SLIP output driver with an IP packet to be sent over the serial line. The packet
goes through a compressor which checks if the protocol is TCP. Non-TCP packets and
“uncompressible” TCP packets (described below) are just marked asTYPE IP and passed
to a framer. Compressible TCP packets are looked up in an array of packet headers. If
a matching connection is found, the incoming packet is compressed, the (uncompressed)
packet header is copied into the array, and a packet of typeCOMPRESSED TCP is sent to the
framer. If no match is found, the oldest entry in the array is discarded, the packet header is
copied into that slot, and a packet of typeUNCOMPRESSED TCP is sent to the framer. (An
UNCOMPRESSED TCP packet is identical to the original IP packet except the IP protocol field
is replaced with aconnection number—an index into the array of saved, per-connection
packet headers. This is how the sender (re-)synchronizes the receiver and “seeds” it with
the first, uncompressed packet of a compressed packet sequence.)

The framer is responsible for communicating the packet data, type and boundary (so
the decompressor can learn how many bytes came out of the compressor). Since the

9This is approximatelyThinwire-I from [5]. A slight modification is to do a “delta encoding” where
the sender subtracts the previous packet from the current packet (treating each packet as an array of 16 bit
integers), then sends a 20-bit mask indicating the non-zero differences followed by those differences. If distinct
conversations are separated, this is a fairly effective compression scheme (e.g., typically 12-16 byte headers)
that doesn’t involve the compressor knowing any details of the packet structure. Variations on this theme have
been used, successfully, for a number of years (e.g., the Proteon router’s serial link protocol[3]).
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Figure 4:Compression/decompression model

compression is a differential coding, the framer must not re-order packets (this is rarely
a concern over a single serial link). It must also providegood error detection and, if
connection numbers are compressed, must provide an error indication to the decompressor
(see sec. 4).10

The decompressor does a ‘switch’ on the type of incoming packets: ForTYPE IP,
the packet is simply passed through. ForUNCOMPRESSED TCP, the connection number
is extracted from the IP protocol field andIPPROTO TCP is restored, then the connection
number is used as an index into the receiver’s array of saved TCP/IP headers and the
header of the incoming packet is copied into the indexed slot. ForCOMPRESSED TCP, the
connection number is used as an array index to get the TCP/IP header of the last packet
from that connection, the info in the compressed packet is used to update that header, then
a new packet is constructed containing the now-current header from the array concatenated
with the data from the compressed packet.

Note that the communication issimplex—no information flows in the decompressor-
to-compressor direction. In particular, this implies that the decompressor is relying on TCP
retransmissions to correct the saved state in the event of line errors (see sec. 4).

3.2.2 Compressed packet format

Figure 5 shows the format of a compressed TCP/IP packet. There is achange maskthat
identifies which of the fields expected to change per-packet actually changed, aconnection
numberso the receiver can locate the saved copy of the last packet for this TCP connection,

10Link level framing is outside the scope of this document. Any framing that provides the facilities listed
in this paragraph should be adequate for the compression protocol. However, the author encourages potential
implementors to see [9] for a proposed, standard, SLIP framing.
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Figure 5:The header of a compressed TCP/IP datagram

the unmodified TCP checksum so the end-to-end data integrity check will still be valid,
then for each bit set in the change mask, the amount the associated field changed. (Optional
fields, controlled by the mask, are enclosed in dashed lines in the figure.) In all cases, the
bit is set if the associated field is present and clear if the field is absent.11

Since the delta’s in the sequence number, etc., are usually small, particularly if the
tuning guidelines in section 5 are followed, all the numbers are encoded in a variable length
scheme that, in practice, handles most traffic with eight bits: A change of one through 255
is represented in one byte. Zero is improbable (a change of zero is never sent) so a byte
of zero signals an extension: The next two bytes are the MSB and LSB, respectively, of a
16 bit value. Numbers larger than 16 bits force an uncompressed packet to be sent. For
example, decimal 15 is encoded as hex0f , 255 asff , 65534 as00 ff fe , and zero as00
00 00 . This scheme packs and decodes fairly efficiently: The usual case for both encode
and decode executes three instructions on a MC680x0.

The numbers sent for TCP sequence number and ack are the difference12 between the
current value and the value in the previous packet (an uncompressed packet is sent if the
difference is negative or more than 64K). The number sent for the window is also the

11The bit ‘P’ in the figure is different from the others: It is a copy of the “PUSH” bit from the TCP header.
“PUSH” is a curious anachronism considered indispensable by certain members of the Internet community.
Since PUSH can (and does) change in any datagram, an information preserving compression scheme must pass
it explicitly.

12All differences are computed using two’s complement arithmetic.
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difference between the current and previous values. However, either positive or negative
changes are allowed since the window is a 16 bit field. The packet’s urgent pointer is sent
if URG is set (an uncompressed packet is sent if the urgent pointer changes but URG is
not set). Forpacket ID, the number sent is the difference between the current and previous
values. However, unlike the rest of the compressed fields, the assumed change whenI is
clear is one, not zero.

There are two important special cases:

(1) The sequence number and ack both change by the amount of data in the last packet;
no window change or URG.

(2) The sequence number changes by the amount of data in the last packet, no ack or
window change or URG.

(1) is the case for echoed terminal traffic. (2) is the sender side of non-echoed terminal
traffic or a unidirectional data transfer. Certain combinations of the S, A, W and U bits
of the change mask are used to signal these special cases. ‘U’ (urgent data) is rare so two
unlikely combinations are S W U (used for case 1) and S A W U (used for case 2). To avoid
ambiguity, an uncompressed packet is sent if the actual changes in a packet are S * W U.

Since the ‘active’ connection changes rarely (e.g., a user will type for several minutes
in a telnet window before changing to a different window), the C bit allows the connection
number to be elided. If C is clear, the connection is assumed to be the same as for the
last compressed or uncompressed packet. If C is set, the connection number is in the byte
immediately following the change mask.13

From the above, it’s probably obvious that compressed terminal traffic usually looks
like (in hex): 0B c c d , where the0B indicates case (1),c c is the two byte TCP checksum
andd is the character typed. Commands tovi or emacs, or packets in the data transfer
direction of an FTP ‘put’ or ‘get’ look like0F c c d . . . , and acks for that FTP look like
04 c c a wherea is the amount of data being acked.14

3.2.3 Compressor processing

The compressor is called with the IP packet to be processed and the compression state
structure for the outgoing serial line. It returns a packet ready for final framing and the link
level ‘type’ of that packet.

13The connection number is limited to one byte, i.e., 256 simultaneously active TCP connections. In al-
most two years of operation, the author has never seen a case where more than sixteen connection states
would be useful (even in one case where the SLIP link was used as a gateway behind a very busy, 64-port
terminal multiplexor). Thus this does not seem to be a significant restriction and allows the protocol field in
UNCOMPRESSED TCP packets to be used for the connection number, simplifying the processing of those packets.

14It’s also obvious that the change mask changes infrequently and could often be elided. In fact, one can do
slightly better by saving the last compressed packet (it can be at most 16 bytes so this isn’t much additional
state) and checking to see if any of it (except the TCP checksum) has changed. If not, send a packet type that
means “compressed TCP, same as last time” and a packet containing only the checksum and data. But, since
the improvement is at most 25%, the added complexity and state doesn’t seem justified. See appendix C.
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As the last section noted, the compressor converts every input packet into either a
TYPE IP, UNCOMPRESSED TCP or COMPRESSED TCP packet. ATYPE IP packet is an un-
modified copy15 of the input packet and processing it doesn’t change the compressor’s state
in any way.

An UNCOMPRESSED TCP packet is identical to the input packet except theIP protocol
field (byte 9) is changed from ‘6’ (protocol TCP) to aconnection number. In addition,
the state slot associated with the connection number is updated with a copy of the input
packet’s IP and TCP headers and the connection number is recorded as thelast connection
senton this serial line (for the C compression described below).

A COMPRESSED TCP packet contains the data, if any, from the original packet but
the IP and TCP headers are completely replaced with a new, compressed header. The
connection state slot andlast connection sentare updated by the input packet exactly as for
anUNCOMPRESSED TCP packet.

The compressor’s decision procedure is:

� If the packet is not protocol TCP, send it asTYPE IP.

� If the packet is an IP fragment (i.e., either thefragment offsetfield is non-zero or the
more fragmentsbit is set), send it asTYPE IP.16

� If any of the TCP control bitsSYN, FINor RSTare set or if theACK bit is clear,
consider the packet uncompressible and send it asTYPE IP.17

If a packet makes it through the above checks, it will be sent as eitherUNCOMPRESSED TCP

or COMPRESSED TCP:

� If no connection state can be found that matches the packet’s source and destination
IP addresses and TCP ports, some state is reclaimed (which should probably be the
least recently used) and anUNCOMPRESSED TCP packet is sent.

15It is not necessary (or desirable) to actually duplicate the input packet for any of the three output types.
Note that the compressor cannot increase the size of a datagram. As the code in appendix A shows, the protocol
can be implemented so all header modifications are made ‘in place’.

16Only the first fragment contains the TCP header so the fragment offset check is necessary. The first
fragment might contain a complete TCP header and, thus, could be compressed. However the check for a
complete TCP header adds quite a lot of code and, given the arguments in [6], it seems reasonable to send all
IP fragments uncompressed.

17The ACK test is redundant since a standard conforming implementation must set ACK in all packets except
for the initial SYN packet. However, the test costs nothing and avoids turning a bogus packet into a valid one.

SYN packets are not compressed because only half of them contain a valid ACK field and they usually
contain a TCP option (the max. segment size) which the following packets don’t. Thus the next packet would
be sent uncompressed because the TCP header length changed and sending the SYN asUNCOMPRESSED TCP

instead ofTYPE IP would buy nothing.
The decision to not compress FIN packets is questionable. Discounting the trick in appendix B.1, there is a

free bit in the header that could be used to communicate the FIN flag. However, since connections tend to last
for many packets, it seemed unreasonable to dedicate an entire bit to a flag that would only appear once in the
lifetime of the connection.
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� If a connection state is found, the packet header it contains is checked against the
current packet to make sure there were no unexpected changes. (E.g., that all the
shaded fields in fig. 3 are the same). The IP protocol, fragment offset, more fragments,
SYN, FIN and RST fields were checked above and the source and destination address
and ports were checked as part of locating the state. So the remaining fields to check
are protocol version, header length, type of service, don’t fragment, time-to-live,
data offset, IP options (if any) and TCP options (if any). If any of these fields differ
between the two headers, anUNCOMPRESSED TCP packet is sent.

If all the “unchanging” fields match, an attempt is made to compress the current packet:

� If the URG flag is set, theurgent datafield is encoded (note that it may be zero)
and the U bit is set in the change mask. Unfortunately, if URG is clear, the ur-
gent data field must be checked against the previous packet and, if it changes, an
UNCOMPRESSED TCP packet is sent. (‘Urgent data’ shouldn’t change when URG is
clear but [11] doesn’t require this.)

� The difference between the current and previous packet’swindowfield is computed
and, if non-zero, is encoded and the W bit is set in the change mask.

� The difference betweenackfields is computed. If the result is less than zero or greater
than 216

� 1, anUNCOMPRESSED TCP packet is sent.18 Otherwise, if the result is
non-zero, it is encoded and the A bit is set in the change mask.

� The difference betweensequence numberfields is computed. If the result is less than
zero or greater than 216

�1, anUNCOMPRESSED TCP packet is sent.19 Otherwise, if
the result is non-zero, it is encoded and the S bit is set in the change mask.

Once the U, W, A and S changes have been determined, the special-case encodings can be
checked:

� If U, SandWare set, the changes match one of the special-case encodings. Send an
UNCOMPRESSED TCP packet.

� If only S is set, check if the change equals the amount of user data in the last packet.
I.e., subtract the TCP and IP header lengths from the last packet’stotal lengthfield
and compare the result to the S change. If they’re the same, set the change mask to
SAWU (the special case for “unidirectional data transfer”) and discard the encoded
sequence number change (the decompressor can reconstruct it since it knows the last
packet’s total length and header length).

18The two tests can be combined into a single test of the most significant 16 bits of the difference being
non-zero.

19A negative sequence number change probably indicates a retransmission. Since this may be due to the
decompressor having dropped a packet, an uncompressed packet is sent to re-sync the decompressor (see sec. 4).
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� If only S andA are set, check if they both changed by the same amount and that
amount is the amount of user data in the last packet. If so, set the change mask
to SWU (the special case for “echoed interactive” traffic) and discard the encoded
changes.

� If nothing changed, check if this packet has no user data (in which case it is probably
a duplicate ack or window probe) or if the previous packet contained user data (which
means this packet is a retransmission on a connection with no pipelining). In either
of these cases, send anUNCOMPRESSED TCP packet.

Finally, the TCP/IP header on the outgoing packet is replaced with a compressed header:

� The change in thepacket IDis computed and, if not one,20 the difference is encoded
(note that it may be zero or negative) and the I bit is set in the change mask.

� If the PUSHbit is set in the original datagram, the P bit is set in the change mask.

� The TCP and IP headers of the packet are copied to the connection state slot.

� The TCP and IP headers of the packet are discarded and a new header is prepended
consisting of (in reverse order):

– the accumulated, encoded changes.

– theTCP checksum(if the new header is being constructed “in place”, the check-
sum may have been overwritten and will have to be taken from the header copy
in the connection state or saved in a temporary before the original header is
discarded).

– theconnection number(if different than the last one sent on this serial line). This
also means that the the line’slast connection sentmust be set to theconnection
numberand theC bit set in the change mask.

– the change mask.

At this point, the compressed TCP packet is passed to the framer for transmission.

3.2.4 Decompressor processing

Because of the simplex communication model, processing at the decompressor is much
simpler than at the compressor — all the decisions have been made and the decompressor
simply does what the compressor has told it to do.

20Note that the test here is againstone, not zero. The packet ID is typically incremented by one for each
packet sent so a change of zero is very unlikely. A change of one is likely: It occurs during any period when
the originating system has activity on only one connection.
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The decompressor is called with the incoming packet,21 the length and type of the packet
and the compression state structure for the incoming serial line. A (possibly re-constructed)
IP packet will be returned.

The decompressor can receive four types of packet: the three generated by the com-
pressor and aTYPE ERROR pseudo-packet generated when the receive framer detects an
error.22 The first step is a ‘switch’ on the packet type:

� If the packet isTYPE ERROR or an unrecognized type, a ‘toss’ flag is set in the state
to forceCOMPRESSED TCP packets to be discarded until one with the C bit set or an
UNCOMPRESSED TCP packet arrives. Nothing (a null packet) is returned.

� If the packet isTYPE IP, an unmodified copy of it is returned and the state is not
modified.

� If the packet isUNCOMPRESSED TCP, the state index from the IP protocol field is
checked.23 If it’s illegal, the toss flag is set and nothing is returned. Otherwise, the
toss flag is cleared, the index is copied to the state’slast connection receivedfield,
a copy of the input packet is made,24 the TCP protocol number is restored to the IP
protocol field, the packet header is copied to the indicated state slot, then the packet
copy is returned.

If the packet was not handled above, it isCOMPRESSED TCP and a new TCP/IP header has
to be synthesized from information in the packet plus the last packet’s header in the state
slot. First, the explicit or implicit connection number is used to locate the state slot:

� If the C bit is set in the change mask, the state index is checked. If it’s illegal, the
toss flag is set and nothing is returned. Otherwise,last connection receivedis set to
the packet’s state index and the toss flag is cleared.

� If the C bit is clear and the toss flag is set, the packet is ignored and nothing is
returned.

At this point, last connection receivedis the index of the appropriate state slot and the
first byte(s) of the compressed packet (the change mask and, possibly, connection index)

21It’s assumed that link-level framing has been removed by this point and the packet and length donot include
type or framing bytes.

22No data need be associated with aTYPE ERROR packet. It exists so the receive framer can tell the
decompressor that there may be a gap in the data stream. The decompressor uses this as a signal that packets
should be tossed until one arrives with an explicit connection number (C bit set). See the last part of sec. 4.1
for a discussion of why this is necessary.

23State indices follow the C language convention and run from 0 toN � 1, where 0< N � 256 is the
number of available state slots.

24As with the compressor, the code can be structured so no copies are done and all modifications are done
in-place. However, since the output packet can be larger than the input packet, 128 bytes of free space must be
left at the front of the input packet buffer to allow room to prepend the TCP/IP header.
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have been consumed. Since the TCP/IP header in the state slot must end up reflecting
the newly arrived packet, it’s simplest to apply the changes from the packet to that header
then construct the output packet from that header concatenated with the data from the input
packet. (In the following description, ‘saved header’ is used as an abbreviation for ‘the
TCP/IP header saved in the state slot’.)

� The next two bytes in the incoming packet are the TCP checksum. They are copied
to the saved header.

� If the P bit is set in the change mask, the TCP PUSH bit is set in the saved header.
Otherwise the PUSH bit is cleared.

� If the low order four bits (S, A, W and U) of the change mask are all set (the ‘unidi-
rectional data’ special case), the amount of user data in the last packet is calculated
by subtracting the TCP and IP header lengths from the IP total length in the saved
header. That amount is then added to the TCP sequence number in the saved header.

� If S, W and U are set and A is clear (the ‘terminal traffic’ special case), the amount of
user data in the last packet is calculated and added to both the TCP sequence number
and ack fields in the saved header.

� Otherwise, the change mask bits are interpreted individually in the order that the
compressor set them:

– If the U bit is set, the TCP URG bit is set in the saved header and the next
byte(s) of the incoming packet are decoded and stuffed into the TCP Urgent
Pointer. If the U bit is clear, the TCP URG bit is cleared.

– If the W bit is set, the next byte(s) of the incoming packet are decoded and
added to the TCP window field of the saved header.

– If the A bit is set, the next byte(s) of the incoming packet are decoded and added
to the TCP ack field of the saved header.

– If the S bit is set, the next byte(s) of the incoming packet are decoded and added
to the TCP sequence number field of the saved header.

� If the I bit is set in the change mask, the next byte(s) of the incoming packet are
decoded and added to the IP ID field of the saved packet. Otherwise, one is added to
the IP ID.

At this point, all the header information from the incoming packet has been consumed
and only data remains. The length of the remaining data is added to the length of the saved
IP and TCP headers and the result is put into the saved IP total length field. The saved IP
header is now up to date so its checksum is recalculated and stored in the IP checksum field.
Finally, an output datagram consisting of the saved header concatenated with the remaining
incoming data is constructed and returned.
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4 Error handling

4.1 Error detection

In the author’s experience, dialup connections are particularly prone to data errors. These
errors interact with compression in two different ways:

First is the local effect of an error in a compressed packet. All error detection is based
on redundancy yet compression has squeezed out almost all the redundancy in the TCP and
IP headers. In other words, the decompressor will happily turn random line noise into a
perfectly valid TCP/IP packet.25 One could rely on the TCP checksum to detect corrupted
compressed packets but, unfortunately, some rather likely errors will not be detected. For
example, the TCP checksum will often not detect two single bit errors separated by 16 bits.
For a V.32 modem signalling at 2400 baud with 4 bits/baud, any line hit lasting longer than
400�s. would corrupt 16 bits. According to [2], residential phone line hits of up to 2ms. are
likely.

The correct way to deal with this problem is to provide for error detection at the
framing level. Since the framing (at least in theory) can be tailored to the characteristics
of a particular link, the detection can be as light or heavy-weight as appropriate for that
link.26 Since packet error detection is done at the framing level, the decompressor simply
assumes that it will get an indication that the current packet was received with errors. (The
decompressor always ignores (discards) a packet with errors. However, the indication is
needed to prevent the error being propagated — see below.)

The “discard erroneous packets” policy gives rise to the second interaction of errors
and compression. Consider the following conversation:

original sent received reconstructed

1: A 1: A 1: A 1: A
2: BC �1, BC �1, BC 2: BC
4: DE �2, DE — —
6: F �2, F �2, F 4: F
7: GH �1, GH �1, GH 5: GH

(Each entry above has the form “starting sequence number:data sent” or “�sequence num-
ber change,data sent”.) The first thing sent is an uncompressed packet, followed by four
compressed packets. The third packet picks up an error and is discarded. To reconstruct
the fourth packet, the receiver applies the sequence number change from incoming com-
pressed packet to the sequence number of the last correctly received packet, packet two, and
generates an incorrect sequence number for packet four. After the error, all reconstructed

25modulo the TCP checksum.
26While appropriate error detection is link dependent, the CCITT CRC used in [9] strikes an excellent balance

between ease of computation and robust error detection for a large variety of links, particularly at the relatively
small packet sizes needed for good interactive response. Thus, for the sake of interoperability, the framing in
[9] should be used unless there is a truly compelling reason to do otherwise.
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packets’ sequence numbers will be in error, shifted down by the amount of data in the
missing packet.27

Without some sort of check, the preceding error would result in the receiver invisibly
losing two bytes from the middle of the transfer (since the decompressor regenerates se-
quence numbers, the packets containing F and GH arrive at the receiver’s TCP with exactly
the sequence numbers they would have had if the DE packet had never existed). Although
some TCP conversations can survive missing data28 it is not a practice to be encouraged.
Fortunately the TCP checksum, since it is a simple sum of the packet contentsincluding the
sequence numbers, detects 100% of these errors. E.g., the receiver’s computed checksum
for the last two packets above always differs from the packet checksum by two.

Unfortunately, there is a way for the TCP checksum protection described above to fail
if the changes in an incoming compressed packet are applied to the wrong conversation:
Consider two active conversations C1 and C2 and a packet from C1 followed by two packets
from C2. Since the connection number doesn’t change, it’s omitted from the second C2

packet. But, if the first C2 packet is received with a CRC error, the second C2 packet will
mistakenly be considered the next packet in C1. Since the C2 checksum is a random number
with respect to the C1 sequence numbers, there is at least a 2�16 probability that this packet
will be accepted by the C1 TCP receiver.29 To prevent this, after a CRC error indication
from the framer the receiver discards packets until it receives either aCOMPRESSED TCP

packet with the C bit set or anUNCOMPRESSED TCP packet. I.e., packets are discarded until
the receiver gets an explicit connection number.

To summarize this section, there are two different types of errors: per-packet corruption
and per-conversation loss-of-sync. The first type is detected at the decompressor from a
link-level CRC error, the second at the TCP receiver from a (guaranteed) invalid TCP
checksum. The combination of these two independent mechanisms ensures that erroneous
packets are discarded.

4.2 Error recovery

The previous section noted that after a CRC error the decompressor will introduce TCP
checksum errors in every uncompressed packet. Although the checksum errors prevent data
stream corruption, the TCP conversation won’t be terribly useful until the decompressor
again generates valid packets. How can this be forced to happen?

The decompressor generates invalid packets because its state (the saved ‘last packet
header’) disagrees with the compressor’s state. AnUNCOMPRESSED TCP packet will correct
the decompressor’s state. Thus error recovery amounts to forcing an uncompressed packet
out of the compressor whenever the decompressor is (or might be) confused.

27This is an example of a generic problem with differential or delta encodings known as “losing DC”.
28Many system managers claim that holes in an NNTP stream are more valuable than the data.
29With worst-case traffic, this probability translates to one undetected error every three hours over a 9600

baud line with a 30% error rate).

Jacobson [Page 16]



RFC 1144 Compressing TCP/IP Headers February 1990

TCP
sender

TCP
receiver

compress
(forward)

compress
(reverse)

decompress
(forward)

decompress
(reverse)

data

acks

Corrupted state ⇒
re-constructed

packets with tcp
checksum errors

Checksum
errors ⇒ data

not acked

No acks ⇒
data

retransmitted

Retransmit ⇒
negative or zero

sequence number
change ⇒

uncompressed
packet

State corrected

Figure 6:Forward path error correction sequence

The first thought is to take advantage of the full duplex communication link and have the
decompressor send something to the compressor requesting an uncompressed packet. This
is clearly undesirable since it constrains the topology more than the minimum suggested
in sec. 2 and requires that a great deal of protocol be added to both the decompressor and
compressor. A little thought convinces one that this alternative is not only undesirable,
it simply won’t work: Compressed packets are small and it’s likely that a line hit will so
completely obliterate one that the decompressor will get nothing at all. Thus packets are
reconstructed incorrectly (because of the missing compressed packet) but only the TCP end
points, not the decompressor, know that the packets are incorrect.

But the TCP end points know about the error and TCP is a reliable protocol designed
to run over unreliable media. This means the end points must eventually take some sort
of error recovery action and there’s an obvious trigger for the compressor to resync the
decompressor: send uncompressed packets whenever TCP is doing error recovery.

But how does the compressor recognize TCP error recovery? Consider the schematic
TCP data transfer of fig. 6. The confused decompressor is in the forward (data transfer)
half of the TCP conversation. The receiving TCP discards packets rather than acking them
(because of the checksum errors), the sending TCP eventually times out and retransmits
a packet, and the forward path compressor finds that the difference between the sequence
number in the retransmitted packet and the sequence number in the last packet seen is either
negative (if there were multiple packets in transit) or zero (one packet in transit). The first
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Figure 7:Reverse path error correction sequence

case is detected in the compression step that computes sequence number differences. The
second case is detected in the step that checks the ‘special case’ encodings but needs an
additional test: It’s fairly common for an interactive conversation to send a dataless ack
packet followed by a data packet. The ack and data packet will have the same sequence
numbers yet the data packet is not a retransmission. To prevent sending an unnecessary un-
compressed packet, the length of the previous packet should be checked and, if it contained
data, a zero sequence number change must indicate a retransmission.

A confused decompressor in the reverse (ack) half of the conversation is as easy to detect
(fig. 7): The sending TCP discards acks (because they contain checksum errors), eventually
times out, then retransmits some packet. The receiving TCP thus gets a duplicate packet
and must generate an ack for the next expected sequence number[11, p. 69]. This ack will
be a duplicate of the last ack the receiver generated so the reverse-path compressor will
find no ack, seq number, window or urg change. If this happens for a packet that contains
no data, the compressor assumes it is a duplicate ack sent in response to a retransmit and
sends anUNCOMPRESSED TCP packet.30

30The packet could be a zero-window probe rather than a retransmitted ack but window probes should be
infrequent and it does no harm to send them uncompressed.
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5 Configurable parameters and tuning

5.1 Compression configuration

There are two configuration parameters associated with header compression: Whether or
not compressed packets should be sent on a particular line and, if so, how many state slots
(saved packet headers) to reserve. There is also one link-level configuration parameter, the
maximum packet size or MTU, and one front-end configuration parameter, data compres-
sion, that interact with header compression. Compression configuration is discussed in this
section. MTU and data compression are discussed in the next two sections.

There are some hosts (e.g., low end PCs) which may not have enough processor or
memory resources to implement this compression. There are also rare link or application
characteristics that make header compression unnecessary or undesirable. And there are
many existing SLIP links that do not currently use this style of header compression. For the
sake of interoperability, serial line IP drivers that allow header compression should include
some sort of user configurable flag to disable compression (see appendix B.2).31

If compression is enabled, the compressor must be sure to never send a connection id
(state index) that will be dropped by the decompressor. E.g., a black hole is created if the
decompressor has sixteen slots and the compressor uses twenty.32 Also, if the compressor
is allowed too few slots, the LRU allocator will thrash and most packets will be sent as
UNCOMPRESSED TCP. Too many slots and memory is wasted.

Experimenting with different sizes over the past year, the author has found that eight
slots will thrash (i.e., the performance degradation is noticeable) when many windows on
a multi-window workstation are simultaneously in use or the workstation is being used
as a gateway for three or more other machines. Sixteen slots were never observed to
thrash. (This may simply be because a 9600 bps line split more than 16 ways is already so
overloaded that the additional degradation from round-robbining slots is negligible.)

Each slot must be large enough to hold a maximum length TCP/IP header of 128 bytes33

so 16 slots occupy 2KB of memory. In these days of 4 Mbit RAM chips, 2KB seems so
little memory that the author recommends the following configuration rules:

(1) If the framing protocol does not allow negotiation, the compressor and decompressor
should provide sixteen slots, zero through fifteen.

31The PPP protocol in [9] allows the end points to negotiate compression so there is no interoperability
problem. However, there should still be a provision for the system manager at each end to control whether
compression is negotiated on or off. And, obviously, compression should default to ‘off’ until it has been
negotiated ‘on’.

32Strictly speaking, there’s no reason why the connection id should be treated as an array index. If the
decompressor’s states were kept in a hash table or other associative structure, the connection id would be a
key, not an index, and performance with too few decompressor slots would only degrade enormously rather
than failing altogether. However, an associative structure is substantially more costly in code and cpu time
and, given the small per-slot cost (128 bytes of memory), it seems reasonable to design for slot arrays at the
decompressor and some (possibly implicit) communication of the array size.

33The maximum header length, fixed by the protocol design, is 64 bytes of IP and 64 bytes of TCP.
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(2) If the framing protocol allows negotiation, any mutually agreeable number of slots
from 1 to 256 should be negotiable.34 If number of slots is not negotiated, or until it
is negotiated, both sides should assume sixteen.

(3) If you have complete control of all the machines at both ends of every link and none
of them will ever be used to talk to machines outside of your control, you are free to
configure them however you please, ignoring the above. However, when your little
eastern-block dictatorship collapses (as they all eventually seem to), be aware that a
large, vocal, and not particularly forgiving Internet community will take great delight
in pointing out to anyone willing to listen that you have misconfigured your systems
and are not interoperable.

5.2 Choosing a maximum transmission unit

From the discussion in sec. 2, it seems desirable to limit the maximum packet size (MTU)
on any line where there might be interactive traffic and multiple active connections (to
maintain good interactive response between the different connections competing for the
line). The obvious question is “how much does this hurt throughput?” It doesn’t.

Figure 8 shows how user data throughput35 scales with MTU with (solid line) and
without (dashed line) header compression. The dotted lines show what MTU corresponds
to a 200 ms packet time at 2400, 9600 and 19,200 bps. Note that with header compression
even a 2400 bps line can be responsive yet have reasonable throughput (83%).36

Figure 9 shows how line efficiency scales with increasing line speed, assuming that
a 200ms. MTU is always chosen.37 The knee in the performance curve is around 2400
bps. Below this, efficiency is sensitive to small changes in speed (or MTU since the two
are linearly related) and good efficiency comes at the expense of good response. Above
2400bps the curve is flat and efficiency is relatively independent of speed or MTU. In other
words, it is possible to have both good response and high line efficiency.

To illustrate, note that for a 9600 bps line with header compression there is essentially
no benefit in increasing the MTU beyond 200 bytes: If the MTU is increased to 576, the
average delay increases by 188% while throughput only improves by 3% (from 96 to 99%).

34Allowing only one slot may make the compressor code more complex. Implementations should avoid
offering one slot if possible and compressor implementations may disable compression if only one slot is
negotiated.

35The vertical axis is in percent of line speed. E.g., ‘95’ means that 95% of the line bandwidth is going
to user dataor, in other words, the user would see a data transfer rate of 9120 bps on a 9600 bps line. Four
bytes of link-level (framer) encapsulation in addition to the TCP/IP or compressed header were included when
calculating the relative throughput. The 200 ms packet times were computed assuming an asynchronous line
using 10 bits per character (8 data bits, 1 start, 1 stop, no parity).

36However, the 40 byte TCP MSS required for a 2400 bps line might stress-test your TCP implementation.
37For a typical async line, a 200ms. MTU is simply .02� the line speed in bits per second.

Jacobson [Page 20]



RFC 1144 Compressing TCP/IP Headers February 1990

MTU (bytes)

L
in

e 
ef

fi
ci

en
cy

 (
%

)

0 100 200 300 400 500 600

50
60

70
80

90
10

0

24
00

 b
p

s

96
00

 b
p

s

19
20

0 
b

p
s

Figure 8:Effective Throughput vs. MTU

5.3 Interaction with data compression

Since the early 1980’s, fast, effective, data compression algorithms such as Lempel-Ziv[7]
and programs that embody them, such as thecompressprogram shipped with Berkeley
Unix, have become widely available. When using low speed or long haul lines, it has
become common practice to compress data before sending it. For dialup connections, this
compression is often done in the modems, independent of the communicating hosts. Some
interesting issues would seem to be: (1) Given a good data compressor, is there any need
for header compression? (2) Does header compression interact with data compression? (3)
Should data be compressed before or after header compression?38

To investigate (1), Lempel-Ziv compression was done on a trace of 446 TCP/IP packets
taken from the user’s side of a typical telnet conversation. Since the packets resulted
from typing, almost all contained only one data byte plus 40 bytes of header. I.e., the
test essentially measured L-Z compression of TCP/IP headers. The compression ratio (the

38The answers, for those who wish to skip the remainder of this section, are ‘yes’, ‘no’ and ‘either’,
respectively.
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Figure 9:Small MTU line efficiency vs. line speed

ratio of uncompressed to compressed data) was 2.6. In other words, the average header
was reduced from 40 to 16 bytes. While this is good compression, it is far from the 5
bytes of header needed for good interactive response and far from the 3 bytes of header (a
compression ratio of 13.3) that header compression yielded on the same packet trace.

The second and third questions are more complex. To investigate them, several packet
traces from FTP file transfers were analyzed39 with and without header compression and
with and without L-Z compression. The L-Z compression was tried at two places in the
outgoing data stream (fig. 10): (1) just before the data was handed to TCP for encapsulation
(simulating compression done at the ‘application’ level) and (2) after the data was encap-
sulated (simulating compression done in the modem). Table 1 summarizes the results for a
78,776 byte ASCII text file (the Unixcsh.1manual entry)40 transferred using the guidelines
of the previous section (256 byte MTU or 216 byte MSS; 368 packets total). Compression

39The data volume from user side of a telnet is too small to benefit from data compression and can be
adversely affected by the delay most compression algorithms (necessarily) add. The statistics and volume of
the computer side of a telnet are similar to an (ASCII) FTP so these results should apply to either.

40The ten experiments described were each done on ten ASCII files (four long e-mail messages, three Unix
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ratios for the following ten tests are shown (reading left to right and top to bottom):

� data file (no compression or encapsulation)

� data ! L–Z compressor

� data !TCP/IP encapsulation

� data !L–Z !TCP/IP

� data !TCP/IP !L–Z

� data !L–Z !TCP/IP !L–Z

� data !TCP/IP !Hdr. Compress.

� data !L–Z !TCP/IP !Hdr. Compress.

� data !TCP/IP !Hdr. Compress.!L–Z

� data !L–Z !TCP/IP !Hdr. Compress.!L–Z

No data L–Z L–Z L–Z
compress. on data on wire on both

Raw Data 1.00 2.44 � �

+ TCP Encap. 0.83 2.03 1.97 1.58
w/Hdr Comp. 0.98 2.39 2.26 1.66

Table 1: ASCII Text File Compression Ratios

The first column of table 1 says the data expands by 19% (‘compresses’ by .83) when
encapsulated in TCP/IP and by 2% when encapsulated in header compressed TCP/IP.41

C source files and three Unix manual entries). The results were remarkably similar for different files and the
general conclusions reached below apply to all ten files.

41This is what would be expected from the relative header sizes: 256/216 for TCP/IP and 219/216 for header
compression.
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The first row says L–Z compression is quite effective on this data, shrinking it to less than
half its original size. Column four illustrates the well-known fact that it is a mistake to
L–Z compress already compressed data. The interesting information is in rows two and
three of columns two and three. These columns say that the benefit of data compression
overwhelms the cost of encapsulation, even for straight TCP/IP. They also say that it is
slightly better to compress the data before encapsulating it rather than compressing at the
framing/modem level. The differences however are small — 3% and 6%, respectively, for
the TCP/IP and header compressed encapsulations.42

Table 2 shows the same experiment for a 122,880 byte binary file (the Sun-3psexe-
cutable). Although the raw data doesn’t compress nearly as well, the results are qualitatively
the same as for the ASCII data. The one significant change is in row two: It is about 3%
better to compress the data in the modem rather than at the source if doing TCP/IP encap-
sulation (apparently, Sun binaries and TCP/IP headers have similar statistics). However,
with header compression (row three) the results were similar to the ASCII data — it’s about
3% worse to compress at the modem rather than the source.43

No data L-Z L-Z L-Z
compress. on data on wire on both

Raw Data 1.00 1.72 � �

+ TCP Encap. 0.83 1.43 1.48 1.21
w/Hdr Comp. 0.98 1.69 1.64 1.28

Table 2: Binary File Compression Ratios

42The differences are due to the wildly different byte patterns of TCP/IP datagrams and ASCII text. Any
compression scheme with an underlying, Markov source model, such as Lempel-Ziv, will do worse when
radically different sources are interleaved. If the relative proportions of the two sources are changed, i.e., the
MTU is increased, the performance difference between the two compressor locations decreases. However,
the rate of decrease is very slow — increasing the MTU by 400% (256 to 1024) only changed the difference
between the data and modem L–Z choices from 2.5% to 1.3%.

43There are other good reasons to compress at the source: Far fewer packets have to be encapsulated and
far fewer characters have to be sent to the modem. The author suspects that the ‘compress data in the modem’
alternative should be avoided except when faced with an intractable, vendor proprietary operating system.
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Average per-packet
Machine processing time (�sec.)

Compress Decompress

Sparcstation-1 24 18
Sun 4/260 46 20
Sun 3/60 90 90
Sun 3/50 130 150

HP9000/370 42 33
HP9000/360 68 70
DEC 3100 27 25
Vax 780 430 300
Vax 750 800 500

CCI Tahoe 110 140

Table 3:Compression code timings

6 Performance measurements

An implementation goal of compression code was to arrive at something simple enough to
run at ISDN speeds (64Kbps) on a typical 1989 workstation. 64Kbps is a byte every 122�s
so 120�s was (arbitrarily) picked as the target compression/decompression time.44

As part of the compression code development, a trace-driven exerciser was developed.
This was initially used to compare different compression protocol choices then later to
test the code on different computer architectures and do regression tests after performance
‘improvements’. A small modification of this test program resulted in a useful measurement
tool.45 Table 3 shows the result of timing the compression code on all the machines
available to the author (times were measured using a mixed telnet/ftp traffic trace). With
the exception of the Vax architectures, which suffer from (a) having bytes in the wrong
order and (b) a lousy compiler (Unix pcc), all machines essentially met the 120�s goal.

44The time choice wasn’t completely arbitrary: Decompression is often done during the inter-frame ‘flag’
character time so, on systems where the decompression is done at the same priority level as the serial line
input interrupt, times much longer than a character time would result in receiver overruns. And, with the
current average of five byte frames (on the wire, including both compressed header and framing), a compres-
sion/decompression that takes one byte time can use at most 20% of the available time. This seems like a
comfortable budget.

45Both the test program and timer program are included in the ftp-able package described in appendix A as
files tester.candtimer.c.
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A Sample Implementation

The following is a sample implementation of the protocol described in this document.
Since many people who might have the deal with this code are familiar with the Berkeley

Unix kernel and its coding style (affectionately known askernel normal form), this code
was done in that style. It uses the Berkeley “subroutines” (actually, macros and/or inline
assembler expansions) for converting to/from network byte order and copying/comparing
strings of bytes. These routines are briefly described in sec. A.5 for anyone not familiar
with them.

This code has been run on all the machines listed in the table on page 25. Thus, the
author hopes there are no byte order or alignment problems (although there are embedded
assumptions about alignment that are valid for Berkeley Unix but may not be true for other
IP implementations — see the comments mentioning alignment insl compresstcp and
sl decompresstcp).

There was some attempt to make this code efficient. Unfortunately, that may have made
portions of it incomprehensible. The author apologizes for any frustration this engenders.
(In honesty, my C style is known to be obscure and claims of “efficiency” are simply a
convenient excuse.)

This sample code and a complete Berkeley Unix implementation is available in ma-
chine readable form via anonymous ftp from Internet host ftp.ee.lbl.gov (128.3.254.68),
file cslip.tar.Z. This is a compressed Unix tar file. It must be ftped in binary mode.
All of the code in this appendix is covered by the following copyright:

=�
� Copyright (c) 1989 Regents of the University of California.
� All rights reserved.
�

� Redistribution and use in source and binary forms are permitted
� provided that the above copyright notice and this paragraph are
� duplicated in all such forms and that any documentation,
� advertising materials, and other materials related to such
� distribution and use acknowledge that the software was developed
� by the University of California, Berkeley. The name of the
� University may not be used to endorse or promote products derived
� from this software without specific prior written permission.
� THIS SOFTWARE IS PROVIDED “AS IS” AND WITHOUT ANY EXPRESS OR
� IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
� WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
�=
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A.1 Definitions and State Data

#define MAX STATES 16 =� must be>2 and <255 �=
#define MAX HDR 128 =� max TCP + IP hdr length (from protocol def)�=

=� packet types�=
#define TYPE IP 0x40
#define TYPE UNCOMPRESSEDTCP 0x70
#define TYPE COMPRESSEDTCP 0x80
#define TYPE ERROR 0x00 =� this is not a type that ever appears

� on the wire. The receive framer uses
� it to tell the decompressor there was 10

� a packet transmission error.�=

=� Bits in first octet of compressed packet�=
#define NEW C 0x40 =� flag bits for what changed in a packet�=
#define NEW I 0x20
#define TCP PUSH BIT 0x10

#define NEW S 0x08
#define NEW A 0x04
#define NEW W 0x02 20

#define NEW U 0x01

=� reserved, special�case values of above�=
#define SPECIAL I (NEW SjNEW Wj NEW U) =� echoed interactive traffic�=
#define SPECIAL D (NEW Sj NEW Aj NEW Wj NEW U) =� unidirectional data�=
#define SPECIALS MASK (NEW Sj NEW Aj NEW Wj NEW U)

=� ”state” data for each active tcp conversation on the wire. This
� is basically a copy of the entire IP=TCP header from the last packet together 30

� with a small identifier the transmit & receive ends of the line use to locate
� saved header.�=

struct cstatef
struct cstate�cs next; =� next most recently used cstate (xmit only)�=
u short cs hlen; =� size of hdr (receive only)�=
u char cs id; =� connection # associated with this state�=
u char cs filler;
union f

char hdr[MAX HDR];
struct ip csu ip; =� ip=tcp hdr from most recent packet�= 40

g slcs u;
g;
#define cs ip slcs u.csu ip
#define cs hdr slcs u.csu hdr

=� all the state data for one serial line (we need one of these per line).�=
struct slcompressf

struct cstate�last cs; =� most recently used tstate�=
u char last recv; =� last rcvd conn. id�=
u char last xmit; =� last sent conn. id�= 50
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u short flags;
struct cstate tstate[MAXSTATES]; =� xmit connection states�=
struct cstate rstate[MAXSTATES]; =� receive connection states�=

g;
=� flag values�=
#define SLF TOSS 1 =� tossing rcvd frames because of input err�=

=�
� The following macros are used to encode and decode numbers. They
� all assume that ‘cp’ points to a buffer where the next byte 60

� encoded (decoded) is to be stored (retrieved). Since the decode
� routines do arithmetic, they have to convert from and to network
� byte order.
�=

=� ENCODE encodes a number that is known to be non�zero. ENCODEZ
� checks for zero (zero has to be encoded in the long, 3 byte form).�=

#define ENCODE(n) f n
if ((u short)(n) >= 256) f n

�cp++ = 0; n 70

cp[1] = (n); n
cp[0] = (n) >> 8; n
cp += 2; n

g else f n
�cp++ = (n); n

g n
g
#define ENCODEZ(n) f n

if ((u short)(n) >= 256 jj (u short)(n) == 0) f n
�cp++ = 0; n 80

cp[1] = (n); n
cp[0] = (n) >> 8; n
cp += 2; n

g else f n
�cp++ = (n); n

g n
g

=� DECODEL takes the (compressed) change at byte cp and adds it to
� the current value of packet field ’f ’ (which must be a 4�byte 90

� (long) integer in network byte order). DECODES does the same
� for a 2�byte (short) field. DECODEU takes the change at cp and stuffs
� it into the (short) field f. ’cp’ is updated to point to the
� next field in the compressed header.�=

#define DECODEL(f) f n
if (�cp == 0) fn

(f) = htonl(ntohl(f) + ((cp[1] << 8) j cp[2])); n
cp += 3; n

g else f n
(f) = htonl(ntohl(f) + (u long)�cp++); n 100

g n
g
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#define DECODES(f) f n
if (�cp == 0) fn

(f) = htons(ntohs(f) + ((cp[1]<< 8) j cp[2])); n
cp += 3; n

g else f n
(f) = htons(ntohs(f) + (u long)�cp++); n

g n
g 110

#define DECODEU(f) f n
if (�cp == 0) fn

(f) = htons((cp[1]<< 8) j cp[2]); n
cp += 3; n

g else f n
(f) = htons((u long)�cp++); n

g n
g

A.2 Compression

This routine looks daunting but isn’t really. The code splits into four approximately equal
sized sections: The first quarter manages a circularly linked, least-recently-used list of
“active” TCP connections.46 The second figures out the sequence/ack/window/urg changes
and builds the bulk of the compressed packet. The third handles the special-case encodings.
The last quarter does packet ID and connection ID encoding and replaces the original packet
header with the compressed header.

The arguments to this routine are a pointer to a packet to be compressed, a pointer to the
compression state data for the serial line, and a flag which enables or disables connection
id (C bit) compression.

Compression is done “in-place” so, if a compressed packet is created, both the start ad-
dress and length of the incoming packet (theoffandlenfields ofm) will be updated to reflect
the removal of the original header and its replacement by the compressed header. If either a
compressed or uncompressed packet is created, the compression state is updated. This rou-
tines returns the packet type for the transmit framer (TYPE IP, TYPE UNCOMPRESSED TCP

or TYPE COMPRESSED TCP).

Because 16 and 32 bit arithmetic is done on various header fields, the incoming IP
packet must be aligned appropriately (e.g., on a SPARC, the IP header is aligned on a 32-bit
boundary). Substantial changes would have to be made to the code below if this were not
true (and it would probably be cheaper to byte copy the incoming header to somewhere
correctly aligned than to make those changes).

Note that the outgoing packet will be aligned arbitrarily (e.g., it could easily start on an
odd-byte boundary).

46The two most common operations on the connection list are a ‘find’ that terminates at the first entry (a new
packet for the most recently used connection) and moving the last entry on the list to the head of the list (the
first packet from a new connection). A circular list efficiently handles these two operations.

Jacobson [Page 31]



RFC 1144 Compressing TCP/IP Headers February 1990

u char
sl compresstcp(m, comp, compresscid)

struct mbuf �m;
struct slcompress�comp;
int compresscid;

f
register struct cstate�cs = comp�>last cs�>cs next;
register struct ip �ip = mtod(m, struct ip �);
register u int hlen = ip�>ip hl;
register struct tcphdr �oth; =� last TCP header�= 10

register struct tcphdr �th; = � current TCP header�=
register u int deltaS, deltaA; = � general purpose temporaries�=
register u int changes = 0; = � change mask�=
u char new seq[16]; = � changes from last to current�=
register u char �cp = new seq;

= � Bail if this is an IP fragment or if the TCP packet isn’t
� ‘compressible’ (i.e., ACK isn’t set or some other control bit is
� set). (We assume that the caller has already made sure the
� packet is IP proto TCP). �= 20

if ((ip�>ip off & htons(0x3fff)) jj m�>m len < 40)
return (TYPE IP);

th = (struct tcphdr �)&(( int �)ip)[hlen];
if ((th�>th flags & (TH SYNj TH FINj TH RSTj TH ACK)) != TH ACK)

return (TYPE IP);

= � Packet is compressible��we’re going to send either a
� COMPRESSEDTCP or UNCOMPRESSEDTCP packet. Either way we need
� to locate (or create) the connection state. Special case the 30

� most recently used connection since it’s most likely to be used
� again & we don’t have to do any reordering if it’s used.�=

if (ip�>ip src.s addr != cs�>cs ip.ip src.s addr j j
ip�>ip dst.s addr != cs�>cs ip.ip dst.s addr j j
�(int �)th != ((int �)&cs�>cs ip)[cs�>cs ip.ip hl]) f

= � Wasn’t the first�� search for it.
�
� States are kept in a circularly linked list with
� last cs pointing to the end of the list. The 40

� list is kept in lru order by moving a state to the
� head of the list whenever it is referenced. Since
� the list is short and, empirically, the connection
� we want is almost always near the front, we locate
� states via linear search. If we don’t find a state
� for the datagram, the oldest state is (re�)used.�=

register struct cstate�lcs;
register struct cstate�lastcs = comp�>last cs;

do f 50

lcs = cs; cs = cs�>cs next;
if (ip�>ip src.s addr == cs�>cs ip.ip src.s addr
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&& ip �>ip dst.s addr == cs�>cs ip.ip dst.s addr
&& �(int � )th == ((int � )&cs�>csip)[cs�>cs ip.ip hl])

goto found;
g while (cs != lastcs);

=� Didn’t find it �� re�use oldest cstate. Send an
� uncompressed packet that tells the other side what
� connection number we’re using for this conversation. 60

� Note that since the state list is circular, the oldest
� state points to the newest and we only need to set
� lastcs to update the lru linkage.� =

comp�>last cs = lcs;
hlen += th�>th off;
hlen <<= 2;
goto uncompressed;

found:
= � Found it �� move to the front on the connection list.� = 70

if (lastcs == cs)
comp�>last cs = lcs;

else f
lcs�>cs next = cs�>cs next;
cs�>cs next = lastcs�>cs next;
lastcs�>cs next = cs;

g
g

= � Make sure that only what we expect to change changed. The first 80

� line of the ‘if ’ checks the IP protocol version, header length &
� type of service. The 2nd line checks the ”Don’t fragment” bit.
� The 3rd line checks the time�to�live and protocol (the protocol
� check is unnecessary but costless). The 4th line checks the TCP
� header length. The 5th line checks IP options, if any. The 6th
� line checks TCP options, if any. If any of these things are
� different between the previous & current datagram, we send the
� current datagram ‘uncompressed’.� =

oth = (struct tcphdr � )&(( int � )&cs�>csip)[hlen];
deltaS = hlen; 90

hlen += th�>th off;
hlen <<= 2;

if (((u short � )ip)[0] != ((u short � )&cs�>csip)[0] jj
((u short � )ip)[3] != ((u short � )&cs�>csip)[3] j j
((u short � )ip)[4] != ((u short � )&cs�>csip)[4] j j
th�>th off != oth�>th off j j
(deltaS> 5 && BCMP(ip + 1, &cs�>cs ip + 1, (deltaS� 5) << 2)) j j
(th�>th off > 5 && BCMP(th + 1, oth + 1, (th�>th off � 5) << 2)))

goto uncompressed; 100

= � Figure out which of the changing fields changed. The receiver
� expects changes in the order: urgent, window, ack, seq.� =

if (th�>th flags & TH URG) f
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deltaS = ntohs(th�>th urp);
ENCODEZ(deltaS);
changesj= NEW U;

g else if (th�>th urp != oth�>th urp)
=� argh! URG not set but urp changed�� a sensible
� implementation should never do this but RFC793 doesn’t 110

� prohibit the change so we have to deal with it.� =
goto uncompressed;

if (deltaS = (u short)(ntohs(th�>th win) � ntohs(oth�>th win))) f
ENCODE(deltaS);
changesj = NEWW;

g
if (deltaA = ntohl(th�>th ack) � ntohl(oth�>th ack)) f

if (deltaA > 0xffff)
goto uncompressed; 120

ENCODE(deltaA);
changesj = NEWA;

g
if (deltaS = ntohl(th�>th seq) � ntohl(oth�>th seq)) f

if (deltaS> 0xffff)
goto uncompressed;

ENCODE(deltaS);
changesj = NEWS;

g
130

= � Look for the special�case encodings.� =
switch(changes)f

case 0:
= � Nothing changed. If this packet contains data and the
� last one didn’t, this is probably a data packet following
� an ack (normal on an interactive connection) and we send
� it compressed. Otherwise it’s probably a retransmit,
� retransmitted ack or window probe. Send it uncompressed
� in case the other side missed the compressed version.� = 140

if (ip�>ip len != cs�>cs ip.ip len && ntohs(cs�>cs ip.ip len) == hlen)
break;

= � (fall through) � =

case SPECIAL I:
case SPECIAL D:

= � actual changes match one of our special case encodings��
� send packet uncompressed.� =

goto uncompressed; 150

case NEW Sj NEWA:
if (deltaS == deltaA && deltaS == ntohs(cs�>cs ip.ip len) � hlen) f

= � special case for echoed terminal traffic� =
changes = SPECIALI;
cp = new seq;
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g
break;

case NEW S: 160

if (deltaS == ntohs(cs�>cs ip.ip len) � hlen) f
=� special case for data xfer� =
changes = SPECIALD;
cp = new seq;

g
break;

g
deltaS = ntohs(ip�>ip id) � ntohs(cs�>cs ip.ip id);
if (deltaS != 1)f

ENCODEZ(deltaS); 170

changesj= NEW I;
g
if (th�>th flags & TH PUSH)

changesj = TCPPUSH BIT;
=� Grab the cksum before we overwrite it below. Then update our
� state with this packet’s header.� =

deltaA = ntohs(th�>th sum);
BCOPY(ip, &cs�>cs ip, hlen);

=� We want to use the original packet as our compressed packet. 180

� (cp � newseq) is the number of bytes we need for compressed
� sequence numbers. In addition we need one byte for the change
� mask, one for the connection id and two for the tcp checksum.
� So, (cp� newseq) + 4 bytes of header are needed. hlen is how
� many bytes of the original packet to toss so subtract the two to
� get the new packet size.� =

deltaS = cp� new seq;
cp = (u char � )ip;
if (compresscid == 0 j j comp�>lastxmit != cs�>cs id) f

comp�>last xmit = cs�>cs id; 190

hlen �= deltaS + 4;
cp += hlen;
� cp++ = changesj NEWC;
� cp++ = cs�>cs id;

g else f
hlen �= deltaS + 3;
cp += hlen;
� cp++ = changes;

g
m�>m len �= hlen; 200

m�>m off += hlen;
� cp++ = deltaA>> 8;
� cp++ = deltaA;
BCOPY(new seq, cp, deltaS);
return (TYPE COMPRESSEDTCP);

=� Update connection state cs & send uncompressed packet (’uncompressed’
� means a regular ip=tcp packet but with the ’conversation id’ we hope
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� to use on future compressed packets in the protocol field).�=
uncompressed: 210

BCOPY(ip, &cs�>cs ip, hlen);
ip�>ip p = cs�>cs id;
comp�>last xmit = cs�>cs id;
return (TYPE UNCOMPRESSEDTCP);

g

A.3 Decompression

This routine decompresses a received packet. It is called with a pointer to the packet,
the packet length and type, and a pointer to the compression state structure for the in-
coming serial line. It returns a pointer to the resulting packet or zero if there were errors
in the incoming packet. If the packet isCOMPRESSED TCP or UNCOMPRESSED TCP, the
compression state will be updated.

The new packet will be constructed in-place. That means that there mustbe 128 bytes
of free space in front of bufp to allow room for the reconstructed IP and TCP headers. The
reconstructed packet will be aligned on a 32-bit boundary.

u char �
sl uncompresstcp(bufp, len, type, comp)

u char �bufp;
int len;
u int type;
struct slcompress�comp;

f
register u char �cp;
register u int hlen, changes;
register struct tcphdr �th; 10

register struct cstate�cs;
register struct ip �ip;

switch (type) f

case TYPE ERROR:
default:

goto bad;

case TYPE IP: 20

return (bufp);

case TYPE UNCOMPRESSEDTCP:
= � Locate the saved state for this connection. If the
� state index is legal, clear the ’discard’ flag.�=

ip = (struct ip �) bufp;
if (ip�>ip p >= MAX STATES)

goto bad;

cs = &comp�>rstate[comp�>last recv = ip�>ip p]; 30
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comp�>flags &=˜ SLF TOSS;
=� Restore the IP protocol field then save a copy of this packet
� header. (The checksum is zeroed in the copy so we don’t
� have to zero it each time we process a compressed packet.�=

ip�>ip p = IPPROTOTCP;
hlen = ip�>ip hl;
hlen += ((struct tcphdr �)&(( int �)ip)[hlen])�>th off;
hlen <<= 2;
BCOPY(ip, &cs�>cs ip, hlen);
cs�>cs ip.ip sum = 0; 40

cs�>cs hlen = hlen;
return (bufp);

case TYPE COMPRESSEDTCP:
break;

g
=� We’ve got a compressed packet.�=
cp = bufp;
changes =�cp++;
if (changes & NEWC) f 50

=� Make sure the state index is in range, then grab the state.
� If we have a good state index, clear the ’discard’ flag.�=

if (�cp >= MAX STATES)
goto bad;

comp�>flags &=˜ SLF TOSS;
comp�>last recv = �cp++;

g else f
=� This packet has an implicit state index. If we’ve
� had a line error since the last time we got an 60

� explicit state index, we have to toss the packet.�=
if (comp�>flags & SLF TOSS)

return ((u char �)0);
g
=� Find the state then fill in the TCP checksum and PUSH bit.�=
cs = &comp�>rstate[comp�>last recv];
hlen = cs�>cs ip.ip hl << 2;
th = (struct tcphdr �)&((u char �)&cs�>cs ip)[hlen];
th�>th sum = htons((�cp << 8) j cp[1]);
cp += 2; 70

if (changes & TCPPUSH BIT)
th�>th flags j = TH PUSH;

else
th�>th flags &=˜ TH PUSH;

=� Fix up the state’s ack, seq, urg and win fields based on the changemask.�=
switch (changes & SPECIALSMASK) f
case SPECIAL I:

f
register u int i = ntohs(cs�>cs ip.ip len) � cs�>cs hlen; 80

th�>th ack = htonl(ntohl(th�>th ack) + i);
th�>th seq = htonl(ntohl(th�>th seq) + i);
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g
break;

case SPECIAL D:
th�>th seq = htonl(ntohl(th�>th seq) + ntohs(cs�>cs ip.ip len) � cs�>cs hlen);
break;

default: 90

if (changes & NEWU) f
th�>th flags j= TH URG;
DECODEU(th�>th urp)

g else
th�>th flags &=˜ TH URG;

if (changes & NEWW)
DECODES(th�>th win)

if (changes & NEWA)
DECODEL(th�>th ack)

if (changes & NEWS) 100

DECODEL(th�>th seq)
break;

g
=� Update the IP ID� =
if (changes & NEWI)

DECODES(cs�>cs ip.ip id)
else

cs�>cs ip.ip id = htons(ntohs(cs�>cs ip.ip id) + 1);

= � At this point, cp points to the first byte of data in the 110

� packet. If we’re not aligned on a 4�byte boundary, copy the
� data down so the IP & TCP headers will be aligned. Then back up
� cp by the TCP= IP header length to make room for the reconstructed
� header (we assume the packet we were handed has enough space to
� prepend 128 bytes of header). Adjust the lenth to account for
� the new header & fill in the IP total length.
� =

len �= (cp � bufp);
if (len < 0)

= � we must have dropped some characters (crc should detect 120

� this but the old slip framing won’t)� =
goto bad;

if ((int )cp & 3) f
if (len > 0)

OVBCOPY(cp, (int )cp &˜ 3, len);
cp = (u char � )((int )cp &˜ 3);

g
cp �= cs�>cs hlen;
len += cs�>cs hlen; 130

cs�>cs ip.ip len = htons(len);
BCOPY(&cs�>cs ip, cp, cs�>cs hlen);

= � recompute the ip header checksum� =
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f
register u short �bp = (u short �)cp;
for (changes = 0; hlen> 0; hlen �= 2)

changes +=�bp++;
changes = (changes & 0xffff) + (changes>> 16);
changes = (changes & 0xffff) + (changes>> 16); 140

((struct ip �)cp)�>ip sum = ˜ changes;
g
return (cp);

bad:
comp�>flags j= SLF TOSS;
return ((u char �)0);

g

A.4 Initialization

This routine initializes the state structure for both the transmit and receive halves of some
serial line. It must be called each time the line is brought up.

void
sl compressinit(comp)

struct slcompress�comp;
f

register u int i;
register struct cstate�tstate = comp�>tstate;

bzero((char �)comp, sizeof(�comp));
for (i = MAX STATES � 1; i > 0; ��i) f

tstate[i].cs id = i; 10

tstate[i].csnext = &tstate[i � 1];
g
tstate[0].csnext = &tstate[MAX STATES � 1];
tstate[0].csid = 0;
comp�>last cs = &tstate[0];
comp�>last recv = 255;
comp�>last xmit = 255;

g

A.5 Berkeley Unix dependencies

Note: The following is of interest only if you are trying to bring the sample code up on a
system that is not derived from 4BSD (Berkeley Unix).

The code uses the normal Berkeley Unix header files (from /usr/include/netinet) for
definitions of the structure of IP and TCP headers. The structure tags tend to follow the
protocol RFCs closely and should be obvious even if you do not have access to a 4BSD
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system.47

The macroBCOPY(src, dst, amt)is invoked to copyamtbytes fromsrc to dst. In BSD,
it translates into a call tobcopy. If you have the misfortune to be running System-V Unix,
it can be translated into a call tomemcpy. The macroOVBCOPY(src, dst, amt)is used to
copy whensrc anddstoverlap (i.e., when doing the 4-byte alignment copy). In the BSD
kernel, it translates into a call toovbcopy. Since AT&T botched the definition ofmemcpy,
this should probably translate into a copy loop under System-V.

The macroBCMP(src, dst, amt)is invoked to compareamt bytes ofsrc anddst for
equality. In BSD, it translates into a call tobcmp. In System-V, it can be translated into a
call to memcmpor you can write a routine to do the compare. The routine should return
zero if all bytes ofsrcanddstare equal and non-zero otherwise.

The routinentohl(dat)converts (4 byte) longdat from network byte order to host byte
order. On a reasonable cpu this can be the no-op macro:

#definentohl(dat) (dat)

On a Vax or IBM PC (or anything with Intel byte order), you will have to define a macro
or routine to rearrange bytes.

The routinentohs(dat)is like ntohl but converts (2 byte) shorts instead of longs. The
routineshtonl(dat)andhtons(dat)do the inverse transform (host to network byte order) for
longs and shorts.

A struct mbufis used in the call tosl compresstcp because that routine needs to
modify both the start address and length if the incoming packet is compressed. In BSD, an
mbuf is the kernel’s buffer management structure. If other systems, the following definition
should be sufficient:

struct mbuf f
u char �m off; =� pointer to start of data�=
int m len; =� length of data�=

g;

#define mtod(m, t) ((t)(m�>m off))

47In the event they are not obvious, the header files (and all the Berkeley networking code) can be anonymous
ftp’d from host ucbarpa.berkeley.edu, files pub/4.3/tcp.tar and pub/4.3/inet.tar.
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B Compatibility with past mistakes

When combined with the modern PPP serial line protocol[9], the use of header compression
is automatic and invisible to the user. Unfortunately, many sites have existing users of the
SLIP described in [12] which doesn’t allow for different protocol types to distinguish
header compressed packets from IP packets or for version numbers or an option exchange
that could be used to automatically negotiate header compression.

The author has used the following tricks to allow header compressed SLIP to interop-
erate with the existing servers and clients. Note that these arehacksfor compatibility with
past mistakes and should be offensive to any right thinking person. They are offered solely
to ease the pain of running SLIP while users wait patiently for vendors to release PPP.

B.1 Living without a framing ‘type’ byte

The bizarre packet type numbers in sec. A.1 were chosen to allow a ‘packet type’ to be
sent on lines where it is undesirable or impossible to add an explicit type byte. Note that
the first byte of an IP packet always contains “4” (the IP protocol version) in the top four
bits. And that the most significant bit of the first byte of the compressed header is ignored.
Using the packet types in sec. A.1, the type can be encoded in the most significant bits of
the outgoing packet using the code

p�>dat[0] j= sl compresstcp(p, comp);

and decoded on the receive side by

if (p�>dat[0] & 0x80)
type = TYPE COMPRESSEDTCP;

else if (p�>dat[0] >= 0x70) f
type = TYPE UNCOMPRESSEDTCP;
p�>dat[0] &=˜ 0x30;

g else
type = TYPE IP;

status = sluncompresstcp(p, type, comp);

B.2 Backwards compatible SLIP servers

The SLIP described in [12] doesn’t include any mechanism that could be used to automat-
ically negotiate header compression. It would be nice to allow users of this SLIP to use
header compression but, when users of the two SLIP varients share a common server, it
would be annoying and difficult to manually configure both ends of each connection to
enable compression. The following procedure can be used to avoid manual configuration.
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Since there are two types of dial-in clients (those that implement compression and
those that don’t) but one server for both types, it’s clear that the server will be reconfiguring
for each new client session but clients change configuration seldom if ever. If manual
configuration has to be done, it should be done on the side that changes infrequently — the
client. This suggests that the server should somehow learn from the client whether to use
header compression. Assuming symmetry (i.e., if compression is used at all it should be
used both directions) the server can use the receipt of a compressed packet from some client
to indicate that it can send compressed packets to that client. This leads to the following
algorithm:

There are two bits per line to control header compression:allowedandon. If on is set,
compressed packets are sent, otherwise not. Ifallowedis set, compressed packets can be
received and, if anUNCOMPRESSED TCP packet arrives whenon is clear,on will be set.48

If a compressed packet arrives whenallowedis clear, it will be ignored.
Clients are configured with both bits set (allowedis always set ifonis set) and the server

starts each session withallowedset andon clear. The first compressed packet from the
client (which must be aUNCOMPRESSED TCP packet) turns on compression for the server.

C More aggressive compression

As noted in sec. 3.2.2, easily detected patterns exist in the stream of compressed headers,
indicating that more compression could be done. Would this be worthwhile?

The average compressed datagram has only seven bits of header.49 The framing must
be at least one bit (to encode the ‘type’) and will probably be more like two to three bytes.
In most interesting cases there will be at least one byte of data. Finally, the end-to-end
check—the TCP checksum—must be passed through unmodified.50

The framing, data and checksum will remain even if the header is completely com-
pressed out so the change in average packet size is, at best, four bytes down to three bytes
and one bit — roughly a 25% improvement in delay.51 While this may seem significant,
on a 2400 bps line it means that typing echo response takes 25 rather than 29 ms. At the
present stage of human evolution, this difference is not detectable.

48Since [12] framing doesn’t include error detection, one should be careful not to ‘false trigger’ compression
on the server. TheUNCOMPRESSED TCP packet should checked for consistency (e.g., IP checksum correctness)
before compression is enabled. Arrival ofCOMPRESSED TCP packets should not be used to enable compression.

49Tests run with several million packets from a mixed traffic load (i.e., statistics kept on a year’s traffic from
my home to work) show that 80% of packets use one of the two special encodings and, thus, the only header is
the change mask.

50If someone tries to sell you a scheme that compresses the TCP checksum “Just say no”. Some poor fool
has yet to have the sad experience that reveals theend-to-end argumentis gospel truth. Worse, since the fool
is subvertingyour end-to-end error check,youmay pay the price for this education and they will be none the
wiser. What does it profit a man to gain two byte times of delay and lose peace of mind?

51Note again that we must be concerned about interactive delay to be making this argument: Bulk data
transfer performance will be dominated by the time to send the data and the difference between three and four
byte headers on a datagram containing tens or hundreds of data bytes is, practically, no difference.
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However, the author sheepishly admits to perverting this compression scheme for a
very special case data-acquisition problem: We had an instrument and control package
floating at 200KV, communicating with ground level via a telemetry system. For many
reasons (multiplexed communication, pipelining, error recovery, availability of well tested
implementations, etc.), it was convenient to talk to the package using TCP/IP. However,
since the primary use of the telemetry link was data acquisition, it was designed with
an uplink channel capacity<0.5% the downlink’s. To meet application delay budgets,
data packets were 100 bytes and, since TCP acks every other packet, the relative uplink
bandwidth for acks isa=200 wherea is the total size of ack packets. Using the scheme
in this paper, the smallest ack is four bytes which would imply an uplink bandwidth 2%
of the downlink. This wasn’t possible so we used the scheme described in footnote 14:
If the first bit of the frame was one, it meant “same compressed header as last time”.
Otherwise the next two bits gave one of the types described in sec. 3.2. Since the link had
excellent forward error correction and traffic made only a single hop, the TCP checksum
was compressed out (blush!) of the “same header” packet types52 so the total header size
for these packets was one bit. Over several months of operation, more than 99% of the 40
byte TCP/IP headers were compressed down to one bit.53

D Security Considerations

Security considerations are not addressed in this memo.
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Address: Van Jacobson
Real Time Systems Group
Mail Stop 46A
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Phone: Use email (author ignores his phone)

EMail: van@helios.ee.lbl.gov

52The checksum was re-generated in the decompressor and, of course, the “toss” logic was made considerably
more aggressive to prevent error propagation.

53We have heard the suggestion that “real-time” needs require abandoning TCP/IP in favor of a “light-weight”
protocol with smaller headers. It is difficult to envision a protocol that averages less than one header bit per
packet.
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