
RFC 8744
Issues and Requirements for Server Name
Identification (SNI) Encryption in TLS

Abstract
This document describes the general problem of encrypting the Server Name Identification (SNI)
TLS parameter. The proposed solutions hide a hidden service behind a fronting service, only
disclosing the SNI of the fronting service to external observers. This document lists known
attacks against SNI encryption, discusses the current "HTTP co-tenancy" solution, and presents
requirements for future TLS-layer solutions.

In practice, it may well be that no solution can meet every requirement and that practical
solutions will have to make some compromises.

Stream: Internet Engineering Task Force (IETF)
RFC: 8744
Category: Informational
Published: July 2020
ISSN: 2070-1721
Author: C. Huitema

Private Octopus Inc.

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8744

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

Huitema Informational Page 1

https://www.rfc-editor.org/rfc/rfc8744
https://www.rfc-editor.org/info/rfc8744

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 2

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. History of the TLS SNI Extension

2.1. Unanticipated Usage of SNI Information

2.2. SNI Encryption Timeliness

2.3. End-to-End Alternatives

3. Security and Privacy Requirements for SNI Encryption

3.1. Mitigate Cut-and-Paste Attacks

3.2. Avoid Widely Shared Secrets

3.3. Prevent SNI-Based Denial-of-Service Attacks

3.4. Do Not Stick Out

3.5. Maintain Forward Secrecy

3.6. Enable Multi-party Security Contexts

3.7. Support Multiple Protocols

3.7.1. Hiding the Application-Layer Protocol Negotiation

3.7.2. Supporting Other Transports than TCP

4. HTTP Co-tenancy Fronting

4.1. HTTPS Tunnels

4.2. Delegation Control

4.3. Related Work

5. Security Considerations

6. IANA Considerations

7. Informative References

Acknowledgements

Author's Address

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 3

1. Introduction
Historically, adversaries have been able to monitor the use of web services through three
primary channels: looking at DNS requests, looking at IP addresses in packet headers, and
looking at the data stream between user and services. These channels are getting progressively
closed. A growing fraction of Internet communication is encrypted, mostly using Transport Layer
Security (TLS) . Progressive deployment of solutions like DNS over TLS and
DNS over HTTPS mitigates the disclosure of DNS information. More and more services
are colocated on multiplexed servers, loosening the relation between IP address and web service.
For example, in virtual hosting solutions, multiple services can be hosted as co-tenants on the
same server, and the IP address and port do not uniquely identify a service. In cloud or Content
Delivery Network (CDN) solutions, a given platform hosts the services or servers of a lot of
organizations, and looking up what netblock an IP address belongs to reveals little. However,
multiplexed servers rely on the Server Name Information (SNI) TLS extension to direct
connections to the appropriate service implementation. This protocol element is transmitted in
cleartext. As the other methods of monitoring get blocked, monitoring focuses on the cleartext
SNI. The purpose of SNI encryption is to prevent that and aid privacy.

Replacing cleartext SNI transmission by an encrypted variant will improve the privacy and
reliability of TLS connections, but the design of proper SNI encryption solutions is difficult. In the
past, there have been multiple attempts at defining SNI encryption. These attempts have
generally floundered, because the simple designs fail to mitigate several of the attacks listed in
Section 3. In the absence of a TLS-level solution, the most popular approach to SNI privacy for
web services is HTTP-level fronting, which we discuss in Section 4.

This document does not present the design of a solution but provides guidelines for evaluating
proposed solutions. (The review of HTTP-level solutions in Section 4 is not an endorsement of
these solutions.) The need for related work on the encryption of the Application-Layer Protocol
Negotiation (ALPN) parameters of TLS is discussed in Section 3.7.1.

[RFC8446] [RFC7858]
[RFC8484]

[RFC6066]

2. History of the TLS SNI Extension
The SNI extension was specified in 2003 in to facilitate management of "colocation
servers", in which multiple services shared the same IP address. A typical example would be
multiple websites served by the same web server. The SNI extension carries the name of a
specific server, enabling the TLS connection to be established with the desired server context.
The current SNI extension specification can be found in .

The SNI specification allowed for different types of server names, though only the "hostname"
variant was specified and deployed. In that variant, the SNI extension carries the domain name
of the target server. The SNI extension is carried in cleartext in the TLS "ClientHello" message.

[RFC3546]

[RFC6066]

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 4

2.1. Unanticipated Usage of SNI Information
The SNI was defined to facilitate management of servers, but the developers of middleboxes
found out that they could take advantage of the information. Many examples of such usage are
reviewed in . Other examples came out during discussions of this document. They
include:

Filtering or censoring specific services for a variety of reasons
Content filtering by network operators or ISPs blocking specific websites, for example, to
implement parental controls or to prevent access to phishing or other fraudulent websites
ISP assigning different QoS profiles to target services
Firewalls within enterprise networks blocking websites not deemed appropriate for work
Firewalls within enterprise networks exempting specific websites from man-in-the-middle
(MITM) inspection, such as healthcare or financial sites for which inspection would intrude
on the privacy of employees

The SNI is probably also included in the general collection of metadata by pervasive surveillance
actors , for example, to identify services used by surveillance targets.

[RFC8404]

•
•

•
•
•

[RFC7258]

2.2. SNI Encryption Timeliness
The cleartext transmission of the SNI was not flagged as a problem in the Security Considerations
sections of , , or . These specifications did not anticipate the
alternative usage described in Section 2.1. One reason may be that, when these RFCs were
written, the SNI information was available through a variety of other means, such as tracking IP
addresses, DNS names, or server certificates.

Many deployments still allocate different IP addresses to different services, so that different
services can be identified by their IP addresses. However, CDNs commonly serve a large number
of services through a comparatively small number of addresses.

The SNI carries the domain name of the server, which is also sent as part of the DNS queries.
Most of the SNI usage described in Section 2.1 could also be implemented by monitoring DNS
traffic or controlling DNS usage. But this is changing with the advent of DNS resolvers providing
services like DNS over TLS or DNS over HTTPS .

The subjectAltName extension of type dNSName of the server certificate (or in its absence, the
common name component) exposes the same name as the SNI. In TLS versions 1.0 , 1.1

, and 1.2 , servers send certificates in cleartext, ensuring that there would be
limited benefits in hiding the SNI. However, in TLS 1.3 , server certificates are
encrypted in transit. Note that encryption alone is insufficient to protect server certificates; see
Section 3.1 for details.

[RFC3546] [RFC4366] [RFC6066]

[RFC7858] [RFC8484]

[RFC2246]
[RFC4346] [RFC5246]

[RFC8446]

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 5

The decoupling of IP addresses and server names, deployment of DNS privacy, and protection of
server certificate transmissions all contribute to user privacy in the face of an RFC 7258-style
adversary . Encrypting the SNI complements this push for privacy and makes it harder
to censor or otherwise provide differential treatment to specific Internet services.

[RFC7258]

2.3. End-to-End Alternatives
Deploying SNI encryption helps thwart most of the unanticipated SNI usages, including
censorship and pervasive surveillance, but it also will break or reduce the efficacy of the
operational practices and techniques implemented in middleboxes, as described in Section 2.1.
Most of these functions can, however, be realized by other means. For example, some DNS
service providers offer customers the provision to "opt in" to filtering services for parental
control and phishing protection. Per-stream QoS could be provided by a combination of packet
marking and end-to-end agreements. As SNI encryption becomes common, we can expect more
deployment of such "end-to-end" solutions.

At the time of this writing, enterprises have the option of installing a firewall performing SNI
filtering to prevent connections to certain websites. With SNI encryption, this becomes
ineffective. Obviously, managers could block usage of SNI encryption in enterprise computers,
but this wide-scale blocking would diminish the privacy protection of traffic leaving the
enterprise, which may not be desirable. Enterprise managers could rely instead on filtering
software and management software deployed on the enterprise's computers.

3. Security and Privacy Requirements for SNI Encryption
Over the past years, there have been multiple proposals to add an SNI encryption option in TLS.
A review of the TLS mailing list archives shows that many of these proposals appeared promising
but were rejected after security reviews identified plausible attacks. In this section, we collect a
list of these known attacks.

3.1. Mitigate Cut-and-Paste Attacks
The simplest SNI encryption designs replace the cleartext SNI in the initial TLS exchange with an
encrypted value, using a key known to the multiplexed server. Regardless of the encryption used,
these designs can be broken by a simple cut-and-paste attack, which works as follows:

The user starts a TLS connection to the multiplexed server, including an encrypted SNI
value.
The adversary observes the exchange and copies the encrypted SNI parameter.
The adversary starts its own connection to the multiplexed server, including in its
connection parameters the encrypted SNI copied from the observed exchange.
The multiplexed server establishes the connection to the protected service, which sends its
certificate, thus revealing the identity of the service.

1.

2.
3.

4.

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 6

One of the goals of SNI encryption is to prevent adversaries from knowing which hidden service
the client is using. Successful cut-and-paste attacks break that goal by allowing adversaries to
discover that service.

3.2. Avoid Widely Shared Secrets
It is easy to think of simple schemes in which the SNI is encrypted or hashed using a shared
secret. This symmetric key must be known by the multiplexed server and by every user of the
protected services. Such schemes are thus very fragile, since the compromise of a single user
would compromise the entire set of users and protected services.

3.3. Prevent SNI-Based Denial-of-Service Attacks
Encrypting the SNI may create extra load for the multiplexed server. Adversaries may mount
denial-of-service (DoS) attacks by generating random encrypted SNI values and forcing the
multiplexed server to spend resources in useless decryption attempts.

It may be argued that this is not an important avenue for DoS attacks, as regular TLS connection
attempts also require the server to perform a number of cryptographic operations. However, in
many cases, the SNI decryption will have to be performed by a front-end component with limited
resources, while the TLS operations are performed by the component dedicated to their
respective services. SNI-based DoS attacks could target the front-end component.

3.4. Do Not Stick Out
In some designs, handshakes using SNI encryption can be easily differentiated from "regular"
handshakes. For example, some designs require specific extensions in the ClientHello packets or
specific values of the cleartext SNI parameter. If adversaries can easily detect the use of SNI
encryption, they could block it, or they could flag the users of SNI encryption for special
treatment.

In the future, it might be possible to assume that a large fraction of TLS handshakes use SNI
encryption. If that were the case, the detection of SNI encryption would be a lesser concern.
However, we have to assume that, in the near future, only a small fraction of TLS connections
will use SNI encryption.

This requirement to not stick out may be difficult to meet in practice, as noted in Section 5.

3.5. Maintain Forward Secrecy
TLS 1.3 is designed to provide forward secrecy, so that (for example) keys used in past
sessions will not be compromised even if the private key of the server is compromised. The
general concerns about forward secrecy apply to SNI encryption as well. For example, some
proposed designs rely on a public key of the multiplexed server to define the SNI encryption key.
If the corresponding private key should be compromised, the adversaries would be able to
process archival records of past connections and retrieve the protected SNI used in these
connections. These designs fail to maintain forward secrecy of SNI encryption.

[RFC8446]

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 7

3.6. Enable Multi-party Security Contexts
We can design solutions in which a fronting service acts as a relay to reach the protected service.
Some of those solutions involve just one TLS handshake between the client and the fronting
service. The master secret is verified by verifying a certificate provided by the fronting service
but not by the protected service. These solutions expose the client to a MITM attack by the
fronting service. Even if the client has some reasonable trust in this service, the possibility of a
MITM attack is troubling.

There are other classes of solutions in which the master secret is verified by verifying a
certificate provided by the protected service. These solutions offer more protection against a
MITM attack by the fronting service. The downside is that the client will not verify the identity of
the fronting service, which enables fronting server spoofing attacks, such as the "honeypot"
attack discussed below. Overall, end-to-end TLS to the protected service is preferable, but it is
important to also provide a way to authenticate the fronting service.

The fronting service could be pressured by adversaries. By design, it could be forced to deny
access to the protected service or to divulge which client accessed it. But if a MITM attack is
possible, the adversaries would also be able to pressure the fronting service into intercepting or
spoofing the communications between client and protected service.

Adversaries could also mount an attack by spoofing the fronting service. A spoofed fronting
service could act as a "honeypot" for users of hidden services. At a minimum, the fake server
could record the IP addresses of these users. If the SNI encryption solution places too much trust
on the fronting server, the fake server could also serve fake content of its own choosing,
including various forms of malware.

There are two main channels by which adversaries can conduct this attack. Adversaries can
simply try to mislead users into believing that the honeypot is a valid fronting server, especially
if that information is carried by word of mouth or in unprotected DNS records. Adversaries can
also attempt to hijack the traffic to the regular fronting server, using, for example, spoofed DNS
responses or spoofed IP-level routing, combined with a spoofed certificate.

3.7. Support Multiple Protocols
The SNI encryption requirement does not stop with HTTP over TLS. Multiple other applications
currently use TLS, including, for example, SMTP , DNS , IMAP , and
the Extensible Messaging and Presence Protocol (XMPP) . These applications, too, will
benefit from SNI encryption. HTTP-only methods, like those described in Section 4.1, would not
apply there. In fact, even for the HTTPS case, the HTTPS tunneling service described in Section
4.1 is compatible with HTTP 1.0 and HTTP 1.1 but interacts awkwardly with the multiple streams
feature of HTTP/2 . This points to the need for an application-agnostic solution, which
would be implemented fully in the TLS layer.

[RFC3207] [RFC7858] [RFC8314]
[RFC7590]

[RFC7540]

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 8

3.7.1. Hiding the Application-Layer Protocol Negotiation

The Application-Layer Protocol Negotiation (ALPN) parameters of TLS allow implementations to
negotiate the application-layer protocol used on a given connection. TLS provides the ALPN
values in cleartext during the initial handshake. While exposing the ALPN does not create the
same privacy issues as exposing the SNI, there is still a risk. For example, some networks may
attempt to block applications that they do not understand or that they wish users would not use.

In a sense, ALPN filtering could be very similar to the filtering of specific port numbers exposed
in some networks. This filtering by ports has given rise to evasion tactics in which various
protocols are tunneled over HTTP in order to use open ports 80 or 443. Filtering by ALPN would
probably beget the same responses, in which the applications just move over HTTP and only the
HTTP ALPN values are used. Applications would not need to do that if the ALPN were hidden in
the same way as the SNI.

In addition to hiding the SNI, it is thus desirable to also hide the ALPN. Of course, this implies
engineering trade-offs. Using the same technique for hiding the ALPN and encrypting the SNI
may result in excess complexity. It might be preferable to encrypt these independently.

3.7.2. Supporting Other Transports than TCP

The TLS handshake is also used over other transports, such as UDP with both DTLS
and QUIC . The requirement to encrypt the SNI applies just as well for these transports as
for TLS over TCP.

This points to a requirement for SNI encryption mechanisms to also be applicable to non-TCP
transports such as DTLS or QUIC.

[DTLS-1.3]
[QUIC]

4. HTTP Co-tenancy Fronting
In the absence of TLS-level SNI encryption, many sites rely on an "HTTP co-tenancy" solution,
often referred to as "domain fronting" . The TLS connection is established with the
fronting server, and HTTP requests are then sent over that connection to the hidden service. For
example, the TLS SNI could be set to "fronting.example.com" (the fronting server), and HTTP
requests sent over that connection could be directed to "hidden.example.com" (accessing the
hidden service). This solution works well in practice when the fronting server and the hidden
server are "co-tenants" of the same multiplexed server.

The HTTP domain fronting solution can be deployed without modification to the TLS protocol
and does not require using any specific version of TLS. There are, however, a few issues
regarding discovery, client implementations, trust, and applicability:

The client has to discover that the hidden service can be accessed through the fronting
server.
The client's browser has to be directed to access the hidden service through the fronting
service.

[DOMFRONT]

•

•

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 9

Since the TLS connection is established with the fronting service, the client has no
cryptographic proof that the content does, in fact, come from the hidden service. Thus, the
solution does not mitigate the context sharing issues described in Section 3.6. Note that this is
already the case for co-tenanted sites.
Since this is an HTTP-level solution, it does not protect non-HTTP protocols, as discussed in
Section 3.7.

The discovery issue is common to most SNI encryption solutions. The browser issue was solved
in by implementing domain fronting as a pluggable transport for the Tor browser.
The multi-protocol issue can be mitigated by implementing other applications over HTTP, for
example, DNS over HTTPS . The trust issue, however, requires specific developments.

•

•

[DOMFRONT]

[RFC8484]

4.1. HTTPS Tunnels
The HTTP domain fronting solution places a lot of trust in the fronting server. This required trust
can be reduced by tunneling HTTPS in HTTPS, which effectively treats the fronting server as an
HTTP proxy. In this solution, the client establishes a TLS connection to the fronting server and
then issues an HTTP connect request to the hidden server. This will establish an end-to-end
HTTPS-over-TLS connection between the client and the hidden server, mitigating the issues
described in Section 3.6.

The HTTPS-in-HTTPS solution requires double encryption of every packet. It also requires that
the fronting server decrypt and relay messages to the hidden server. Both of these requirements
make the implementation onerous.

4.2. Delegation Control
Clients would see their privacy compromised if they contacted the wrong fronting server to
access the hidden service, since this wrong server could disclose their access to adversaries. This
requires a controlled way to indicate which fronting server is acceptable by the hidden service.

This problem is similar to the "word of mouth" variant of the "fronting server spoofing" attack
described in Section 3.6. The spoofing would be performed by distributing fake advice, such as
"to reach hidden.example.com, use fake.example.com as a fronting server", when
"fake.example.com" is under the control of an adversary.

In practice, this attack is well mitigated when the hidden service is accessed through a
specialized application. The name of the fronting server can then be programmed in the code of
the application. But the attack is harder to mitigate when the hidden service has to be accessed
through general-purpose web browsers.

There are several proposed solutions to this problem, such as creating a special form of
certificate to codify the relation between the fronting and hidden server or obtaining the relation
between the hidden and fronting service through the DNS, possibly using DNSSEC, to avoid
spoofing. The experiment described in solved the issue by integrating with the
Lantern Internet circumvention tool.

[DOMFRONT]

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 10

[DOMFRONT]

[DTLS-1.3]

[HTTP2-SEC-CERTS]

7. Informative References
,

, , 2015,
.

,
, ,

, 29 May 2020, .

,
, ,

, 14 May 2020,
.

We can observe that CDNs have a similar requirement. They need to convince the client that
"www.example.com" can be accessed through the seemingly unrelated "cdn-node-
xyz.example.net". Most CDNs have deployed DNS-based solutions to this problem. However, the
CDN often holds the authoritative certificate of the origin. There is, simultaneously, verification
of a relationship between the origin and the CDN (through the certificate) and a risk that the CDN
can spoof the content from the origin.

4.3. Related Work
The ORIGIN frame defined for HTTP/2 can be used to flag content provided by the
hidden server. Secondary certificate authentication can be used to manage
authentication of hidden server content or to perform client authentication before accessing
hidden content.

[RFC8336]
[HTTP2-SEC-CERTS]

5. Security Considerations
This document lists a number of attacks against SNI encryption in Sections 3 and 4.2 and
presents a list of requirements to mitigate these attacks. Current HTTP-based solutions described
in Section 4 only meet some of these requirements. In practice, it may well be that no solution
can meet every requirement and that practical solutions will have to make some compromises.

In particular, the requirement to not stick out, presented in Section 3.4, may have to be lifted,
especially for proposed solutions that could quickly reach large-scale deployments.

Replacing cleartext SNI transmission by an encrypted variant will break or reduce the efficacy of
the operational practices and techniques implemented in middleboxes, as described in Section
2.1. As explained in Section 2.3, alternative solutions will have to be developed.

6. IANA Considerations
This document has no IANA actions.

Fifield, D., Lan, C., Hynes, R., Wegmann, P., and V. Paxson "Blocking-resistant
communication through domain fronting" DOI 10.1515/popets-2015-0009
<https://www.bamsoftware.com/papers/fronting/>

Rescorla, E., Tschofenig, H., and N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" Work in Progress Internet-Draft, draft-
ietf-tls-dtls13-38 <https://tools.ietf.org/html/draft-ietf-tls-dtls13-38>

Bishop, M., Sullivan, N., and M. Thomson "Secondary Certificate
Authentication in HTTP/2" Work in Progress Internet-Draft, draft-ietf-httpbis-
http2-secondary-certs-06 <https://tools.ietf.org/html/draft-ietf-
httpbis-http2-secondary-certs-06>

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 11

https://www.bamsoftware.com/papers/fronting/
https://tools.ietf.org/html/draft-ietf-tls-dtls13-38
https://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs-06
https://tools.ietf.org/html/draft-ietf-httpbis-http2-secondary-certs-06

[QUIC]

[RFC2246]

[RFC3207]

[RFC3546]

[RFC4346]

[RFC4366]

[RFC5246]

[RFC6066]

[RFC7258]

[RFC7540]

[RFC7590]

[RFC7858]

[RFC8314]

, , ,
, 9 June 2020,

.

, , ,
, January 1999, .

,
, , , February 2002,

.

,
, , ,

June 2003, .

,
, , , April 2006,

.

,
, , ,

April 2006, .

,
, , , August 2008,

.

,
, , , January 2011,

.

, , ,
, , May 2014,

.

,
, , , May 2015,

.

,
, ,

, June 2015, .

,
, ,

, May 2016, .

,
, ,

, January 2018, .

Thomson, M. and S. Turner "Using TLS to Secure QUIC" Work in Progress
Internet-Draft, draft-ietf-quic-tls-29 <https://tools.ietf.org/html/
draft-ietf-quic-tls-29>

Dierks, T. and C. Allen "The TLS Protocol Version 1.0" RFC 2246 DOI 10.17487/
RFC2246 <https://www.rfc-editor.org/info/rfc2246>

Hoffman, P. "SMTP Service Extension for Secure SMTP over Transport Layer
Security" RFC 3207 DOI 10.17487/RFC3207 <https://www.rfc-
editor.org/info/rfc3207>

Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright
"Transport Layer Security (TLS) Extensions" RFC 3546 DOI 10.17487/RFC3546

<https://www.rfc-editor.org/info/rfc3546>

Dierks, T. and E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.1" RFC 4346 DOI 10.17487/RFC4346 <https://www.rfc-editor.org/
info/rfc4346>

Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J., and T. Wright
"Transport Layer Security (TLS) Extensions" RFC 4366 DOI 10.17487/RFC4366

<https://www.rfc-editor.org/info/rfc4366>

Dierks, T. and E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension
Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-
editor.org/info/rfc6066>

Farrell, S. and H. Tschofenig "Pervasive Monitoring Is an Attack" BCP 188 RFC
7258 DOI 10.17487/RFC7258 <https://www.rfc-editor.org/info/
rfc7258>

Belshe, M., Peon, R., and M. Thomson, Ed. "Hypertext Transfer Protocol Version
2 (HTTP/2)" RFC 7540 DOI 10.17487/RFC7540 <https://www.rfc-
editor.org/info/rfc7540>

Saint-Andre, P. and T. Alkemade "Use of Transport Layer Security (TLS) in the
Extensible Messaging and Presence Protocol (XMPP)" RFC 7590 DOI 10.17487/
RFC7590 <https://www.rfc-editor.org/info/rfc7590>

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., and P. Hoffman
"Specification for DNS over Transport Layer Security (TLS)" RFC 7858 DOI
10.17487/RFC7858 <https://www.rfc-editor.org/info/rfc7858>

Moore, K. and C. Newman "Cleartext Considered Obsolete: Use of Transport
Layer Security (TLS) for Email Submission and Access" RFC 8314 DOI 10.17487/
RFC8314 <https://www.rfc-editor.org/info/rfc8314>

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 12

https://tools.ietf.org/html/draft-ietf-quic-tls-29
https://tools.ietf.org/html/draft-ietf-quic-tls-29
https://www.rfc-editor.org/info/rfc2246
https://www.rfc-editor.org/info/rfc3207
https://www.rfc-editor.org/info/rfc3207
https://www.rfc-editor.org/info/rfc3546
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4366
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7590
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc8314

[RFC8336]

[RFC8404]

[RFC8446]

[RFC8484]

, , ,
, March 2018, .

,
, , , July 2018,

.

, , ,
, August 2018, .

, , ,
, October 2018, .

Nottingham, M. and E. Nygren "The ORIGIN HTTP/2 Frame" RFC 8336 DOI
10.17487/RFC8336 <https://www.rfc-editor.org/info/rfc8336>

Moriarty, K., Ed. and A. Morton, Ed. "Effects of Pervasive Encryption on
Operators" RFC 8404 DOI 10.17487/RFC8404 <https://www.rfc-
editor.org/info/rfc8404>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Hoffman, P. and P. McManus "DNS Queries over HTTPS (DoH)" RFC 8484 DOI
10.17487/RFC8484 <https://www.rfc-editor.org/info/rfc8484>

Acknowledgements
A large part of this document originated in discussion of SNI encryption on the TLS WG mailing
list, including comments after the tunneling approach was first proposed in a message to that
list: .

Thanks to for his multiple suggestions, reviews, and edits to the successive draft
versions of this document.

Thanks to for a pretty detailed review of the initial draft of this document.
Thanks to , , , , ,

, , , , , ,
, , and employees of the UK National Cyber Security Centre for their

reviews. Thanks to , , and for helping move this document
toward publication.

<https://mailarchive.ietf.org/arch/msg/tls/tXvdcqnogZgqmdfCugrV8M90Ftw>

Eric Rescorla

Daniel Kahn Gillmor
Bernard Aboba Mike Bishop Alissa Cooper Roman Danyliw Stephen Farrell Warren

Kumari Mirja Kuelewind Barry Leiba Martin Rex Adam Roach Meral Shirazipour Martin
Thomson Eric Vyncke

Chris Wood Ben Kaduk Sean Turner

Author's Address
Christian Huitema
Private Octopus Inc.

, Friday Harbor WA 98250
United States of America

 huitema@huitema.net Email:

RFC 8744 TLS-SNI Encryption Requirements July 2020

Huitema Informational Page 13

https://www.rfc-editor.org/info/rfc8336
https://www.rfc-editor.org/info/rfc8404
https://www.rfc-editor.org/info/rfc8404
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8484
https://mailarchive.ietf.org/arch/msg/tls/tXvdcqnogZgqmdfCugrV8M90Ftw
mailto:huitema@huitema.net

	RFC 8744
	Issues and Requirements for Server Name Identification (SNI) Encryption in TLS
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. History of the TLS SNI Extension
	2.1. Unanticipated Usage of SNI Information
	2.2. SNI Encryption Timeliness
	2.3. End-to-End Alternatives

	3. Security and Privacy Requirements for SNI Encryption
	3.1. Mitigate Cut-and-Paste Attacks
	3.2. Avoid Widely Shared Secrets
	3.3. Prevent SNI-Based Denial-of-Service Attacks
	3.4. Do Not Stick Out
	3.5. Maintain Forward Secrecy
	3.6. Enable Multi-party Security Contexts
	3.7. Support Multiple Protocols
	3.7.1. Hiding the Application-Layer Protocol Negotiation
	3.7.2. Supporting Other Transports than TCP

	4. HTTP Co-tenancy Fronting
	4.1. HTTPS Tunnels
	4.2. Delegation Control
	4.3. Related Work

	5. Security Considerations
	6. IANA Considerations
	7. Informative References
	Acknowledgements
	Author's Address

 Issues and Requirements for Server Name Identification (SNI) Encryption in TLS

 Private Octopus Inc.

 Friday Harbor
 WA
 98250
 United States of America

 huitema@huitema.net

 Network

 This document describes the general problem of encrypting the
Server Name Identification (SNI) TLS parameter. The proposed
solutions hide a hidden service behind a fronting service,
only disclosing the SNI of the fronting service to external
observers. This document lists known attacks against
SNI encryption, discusses the current "HTTP co-tenancy" solution,
and presents requirements for future TLS-layer solutions.

 In practice, it may well be that no solution can meet every requirement
and that practical solutions will have to make some compromises.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . History of the TLS SNI Extension

 . Unanticipated Usage of SNI Information

 . SNI Encryption Timeliness

 . End-to-End Alternatives

 . Security and Privacy Requirements for SNI Encryption

 . Mitigate Cut-and-Paste Attacks

 . Avoid Widely Shared Secrets

 . Prevent SNI-Based Denial-of-Service Attacks

 . Do Not Stick Out

 . Maintain Forward Secrecy

 . Enable Multi-party Security Contexts

 . Support Multiple Protocols

 . Hiding the Application-Layer Protocol Negotiation

 . Supporting Other Transports than TCP

 . HTTP Co-tenancy Fronting

 . HTTPS Tunnels

 . Delegation Control

 . Related Work

 . Security Considerations

 . IANA Considerations

 . Informative References

 Acknowledgements

 Author's Address

 Introduction
 Historically, adversaries have been able to monitor the use of web
services through three primary channels: looking at DNS requests, looking
at IP addresses in packet headers, and looking at the data stream between
user and services. These channels are getting progressively closed.
A growing fraction of
Internet communication is encrypted, mostly using Transport Layer Security
(TLS) .
Progressive deployment of solutions like DNS over
TLS and DNS over HTTPS
mitigates the disclosure of DNS information. More and
more services are colocated on multiplexed servers, loosening the
relation between IP address and web service. For example, in virtual hosting
solutions, multiple services can be hosted as co-tenants on the same server,
and the IP address and port do not uniquely identify a service. In cloud or
Content Delivery Network (CDN) solutions, a given platform hosts the services
or servers of a lot of organizations, and looking up what netblock
an IP address belongs to reveals little. However, multiplexed servers
rely on the Server Name Information (SNI) TLS extension to direct connections
to the appropriate service implementation. This protocol element
is transmitted in cleartext. As the other methods of monitoring get
blocked, monitoring focuses on the cleartext SNI. The purpose
of SNI encryption is to prevent that and aid privacy.

 Replacing cleartext SNI transmission by an encrypted variant will
improve the privacy and reliability of TLS connections, but the design
of proper SNI encryption solutions is difficult.
In the past, there have been multiple attempts at defining SNI encryption.
These attempts have generally floundered, because the simple designs fail
to mitigate several of the attacks listed in . In the absence of
a TLS-level solution, the most popular approach to SNI privacy for web
services is HTTP-level fronting, which we discuss in .

 This document does not present the design of a solution but
provides guidelines for evaluating proposed solutions. (The review of
HTTP-level solutions in is not
an endorsement of these solutions.)
The need for related work on the encryption of the Application-Layer
Protocol Negotiation (ALPN) parameters of TLS is discussed in
 .

 History of the TLS SNI Extension
 The SNI extension was specified in 2003 in to facilitate management
of "colocation servers", in which multiple services shared the same IP
address. A typical example would be multiple websites served by the
same web server. The SNI extension carries the name of a specific
server, enabling the TLS connection to be established with the desired
server context. The current SNI extension specification can be
found in .

 The SNI specification allowed for different types of server names,
though only the "hostname" variant was specified and deployed. In that
variant, the SNI extension carries the domain name of the target
server. The SNI extension is carried in cleartext in the TLS "ClientHello"
message.

 Unanticipated Usage of SNI Information
 The SNI was defined to facilitate management of servers, but the
developers of middleboxes found out that they could take
advantage of the information. Many examples of such usage are
reviewed in . Other examples came out
during discussions of this document. They include:

 Filtering or censoring specific services for a variety of reasons
 Content filtering by network operators or ISPs blocking specific
	 websites, for example, to implement parental controls or to prevent access
to phishing or other fraudulent websites
 ISP assigning different QoS profiles to target services
 Firewalls within enterprise networks blocking websites not deemed
appropriate for work
 Firewalls within enterprise networks exempting specific websites from
man-in-the-middle (MITM) inspection, such as healthcare or financial
sites for which inspection would intrude on the privacy of employees

 The SNI is probably also included in the general collection of metadata
by pervasive surveillance actors ,
for example, to identify services
used by surveillance targets.

 SNI Encryption Timeliness
 The cleartext transmission of the SNI was not flagged as a problem
in the Security Considerations sections of , , or
 . These specifications did not anticipate the
alternative usage described
in . One reason may be that, when
these RFCs were written, the
SNI information was available through a variety of other means,
such as tracking IP addresses, DNS names, or server certificates.

 Many deployments still allocate different IP addresses to different
services, so that different services can be identified by their IP
addresses. However, CDNs commonly
serve a large number of services through a comparatively small
number of addresses.

 The SNI carries the domain name of the server, which is also sent as
part of the DNS queries. Most of the SNI usage described in
could also be implemented by monitoring DNS traffic or controlling DNS
usage. But this is changing with the advent of DNS resolvers
providing services like DNS over TLS
or DNS over HTTPS .

 The subjectAltName extension of type dNSName of the server certificate
(or in its absence, the common name component) exposes
the same name as the SNI. In TLS versions 1.0 , 1.1 ,
and 1.2 , servers send certificates in cleartext,
ensuring that there would be limited benefits in hiding the SNI. However,
in TLS 1.3 , server certificates are
encrypted in transit.
Note that encryption alone is insufficient to protect server certificates;
see for details.

 The decoupling of IP addresses and server names, deployment of DNS
 privacy, and protection of server certificate transmissions all
 contribute to user privacy in the face of an RFC 7258-style adversary
 . Encrypting the SNI
 complements this push for privacy and makes it harder to censor or
 otherwise provide differential treatment to specific Internet
 services.

 End-to-End Alternatives
 Deploying SNI encryption helps thwart most of the unanticipated SNI usages,
including censorship and pervasive surveillance, but it also
will break or reduce the efficacy of the operational practices and
techniques implemented in middleboxes, as described in . Most of
these functions can, however, be realized by other means. For example, some DNS service
providers offer customers the provision to "opt in" to filtering services
for parental control and phishing protection. Per-stream QoS could be provided by
a combination of packet marking and end-to-end agreements. As
SNI encryption becomes common, we can expect more deployment of such "end-to-end"
solutions.

 At the time of this writing, enterprises have the option of installing a
firewall performing SNI filtering to
prevent connections to certain websites. With SNI encryption, this becomes ineffective.
Obviously, managers could block usage of SNI encryption in enterprise computers, but
this wide-scale blocking would diminish the privacy protection of traffic leaving the
enterprise, which may not be desirable.
Enterprise managers could rely instead on filtering software and management
software deployed on the enterprise's computers.

 Security and Privacy Requirements for SNI Encryption
 Over the past years, there have been multiple proposals to add an SNI encryption
option in TLS. A review of the TLS mailing list archives shows that
many of these proposals appeared promising but were rejected
after security reviews identified plausible attacks. In this section,
we collect a list of these known attacks.

 Mitigate Cut-and-Paste Attacks
 The simplest SNI encryption designs
	replace the cleartext SNI in the initial TLS
 exchange with
an encrypted value, using a key known to the multiplexed server. Regardless of the
encryption used, these designs can be broken by a simple cut-and-paste attack, which works
as follows:

 The user starts a TLS connection to the multiplexed server, including an encrypted
 SNI value.
 The adversary observes the exchange and copies the encrypted SNI parameter.
 The adversary starts its own connection to the multiplexed server, including in its
 connection parameters the encrypted SNI copied from the observed exchange.
 The multiplexed server establishes the connection to the protected service, which sends its certificate, thus revealing the identity of the service.

 One of the goals of SNI encryption is to prevent adversaries from knowing which
hidden service the client is using. Successful cut-and-paste attacks break that goal by
allowing adversaries to discover that service.

 Avoid Widely Shared Secrets
 It is easy to think of simple schemes in which the SNI is encrypted or hashed using a
shared secret. This symmetric key must be known by the multiplexed server and by
every user of the protected services. Such schemes are thus very fragile, since the
compromise of a single user would compromise the entire set of users and protected
services.

 Prevent SNI-Based Denial-of-Service Attacks
 Encrypting the SNI may create extra load for the multiplexed server. Adversaries may mount
denial-of-service (DoS) attacks by generating random encrypted SNI values and forcing the
multiplexed server to spend resources in useless decryption attempts.

 It may be argued that this is not an important avenue for DoS attacks,
as regular TLS connection
attempts also require the server to perform a number of cryptographic operations. However,
in many cases, the SNI decryption will have to be performed by a front-end component
with limited resources, while the TLS operations are performed by the component dedicated
to their respective services. SNI-based DoS attacks could target the front-end component.

 Do Not Stick Out
 In some designs, handshakes using SNI encryption can be easily differentiated from
"regular" handshakes. For example, some designs require specific extensions in
the ClientHello packets or specific values of the cleartext SNI parameter.
If adversaries can easily detect the use of SNI encryption,
they could block it, or they could flag the users of SNI encryption for
special treatment.

 In the future, it might be possible to assume that a large fraction of TLS handshakes
use SNI encryption. If that were the case, the detection of SNI encryption would
be a lesser concern. However, we have to assume that, in the near future, only
a small fraction of TLS connections will use SNI encryption.

 This requirement to not stick out may be difficult to meet in
 practice, as noted in .

 Maintain Forward Secrecy
 TLS 1.3 is designed to provide forward
 secrecy, so that (for example) keys used in past sessions will not be
 compromised even if the private key of the server is compromised. The
 general concerns about forward secrecy apply to SNI encryption as
 well. For example, some proposed designs rely on a public key of the
 multiplexed server to define the SNI encryption key. If the
 corresponding private key should be compromised, the adversaries would
 be able to process archival records of past connections and retrieve
 the protected SNI used in these connections. These designs fail to
 maintain forward secrecy of SNI encryption.

 Enable Multi-party Security Contexts
 We can design solutions in which a fronting
service acts as a relay to reach the protected service. Some of those
solutions involve just one TLS handshake between the client and the fronting service.
The master secret is verified by verifying a certificate provided by
the fronting service but not by the protected service.
These solutions expose the client to a MITM attack by
the fronting service. Even if the client
has some reasonable trust in this service, the possibility of a
MITM attack is troubling.

 There are other classes of solutions in which the master secret is verified by
verifying a certificate provided by the protected service. These solutions offer
more protection against a MITM attack by the fronting service.
The
downside is that the client will not verify the identity of the fronting service,
which enables fronting server spoofing attacks, such as the "honeypot" attack
discussed below. Overall, end-to-end TLS to the protected service is preferable,
but it is important to also provide a way to authenticate the fronting service.

 The fronting service could be pressured by adversaries.
By design, it could be forced to deny access to
the protected service or to divulge which client accessed it. But
if a MITM attack is possible, the adversaries would also be able to pressure
the fronting service into intercepting or spoofing the communications between
client and protected service.

 Adversaries could also mount an attack by spoofing the fronting service. A
spoofed fronting service could act as a "honeypot" for users of
hidden services. At a minimum, the fake server could record the IP
addresses of these users. If the SNI encryption solution places too
much trust on the fronting server, the fake server could also
serve fake content of its own choosing, including various forms of
malware.

 There are two main channels by which adversaries can conduct this
attack. Adversaries can simply try to mislead users into believing
that the honeypot is a valid fronting server, especially if that
information is carried by word of mouth or in unprotected DNS
records. Adversaries can also attempt to hijack the traffic to the
regular fronting server, using, for example, spoofed DNS responses
or spoofed IP-level routing, combined with a spoofed certificate.

 Support Multiple Protocols
 The SNI encryption requirement does not stop with HTTP over
	TLS.
Multiple other
applications currently use TLS, including, for example, SMTP ,
DNS , IMAP ,
and the Extensible Messaging and Presence Protocol (XMPP) . These applications, too,
will benefit from SNI encryption.
HTTP-only methods, like those described in ,
would not apply there. In fact, even for the HTTPS case, the HTTPS tunneling
service described in is
compatible with HTTP 1.0 and HTTP 1.1
but interacts awkwardly with the multiple streams feature of HTTP/2 .
This points to the need for an application-agnostic solution, which would be
implemented fully in the TLS layer.

 Hiding the Application-Layer Protocol Negotiation
 The Application-Layer Protocol Negotiation (ALPN) parameters of
	 TLS allow implementations to negotiate the application-layer
	 protocol used on a given connection. TLS provides the ALPN values in
	 cleartext during the initial handshake. While exposing the ALPN
	 does not create the same privacy issues as exposing the SNI, there
	 is still a risk. For example, some networks may attempt to block
	 applications that they do not understand or that they wish users
	 would not use.

 In a sense, ALPN filtering could be very similar to the filtering
of specific port numbers exposed in some networks. This filtering by ports
has given rise to evasion tactics in which various protocols are tunneled
over HTTP in order to use open ports 80 or 443. Filtering by ALPN would
probably beget the same responses, in which the applications just move
over HTTP and only the HTTP ALPN values are used.
Applications would not
need to do that if the ALPN were hidden in the same way as the SNI.

 In addition to hiding the SNI, it is thus desirable to also hide
	 the ALPN. Of course, this implies engineering trade-offs. Using the
	 same technique for hiding the ALPN and encrypting the SNI may result
	 in excess complexity. It might be preferable to encrypt these
	 independently.

 Supporting Other Transports than TCP
 The TLS handshake is also used over other transports, such as UDP
with both DTLS and
QUIC . The requirement to
encrypt the SNI applies just as well for these transports as for TLS over
TCP.

 This points to a requirement for SNI encryption mechanisms to also
be applicable to non-TCP transports such as DTLS or QUIC.

 HTTP Co-tenancy Fronting
 In the absence of TLS-level SNI encryption, many sites rely on an
 "HTTP co-tenancy" solution, often referred to as "domain fronting" . The TLS connection is established
 with the fronting server, and HTTP requests are then sent over that
 connection to the hidden service.
For example, the TLS SNI could be set
 to "fronting.example.com" (the fronting server), and HTTP requests sent
 over that connection could be directed to "hidden.example.com"
 (accessing the hidden service). This solution works well in
practice when the fronting server and the hidden server
are "co-tenants" of the same multiplexed server.

 The HTTP domain fronting solution can be deployed without modification to
 the TLS protocol and does not require using any specific version of
 TLS. There are, however, a few issues regarding discovery, client
 implementations, trust, and applicability:

 The client has to discover that the hidden service can be accessed
	through the fronting server.
 The client's browser has to be directed to access the hidden
	service through the fronting service.
 Since the TLS connection is established with the fronting service,
	the client has no cryptographic proof that the content does, in fact,
	come from the hidden service. Thus, the solution does not mitigate the
	context sharing issues described in . Note that this is already the case for
 co-tenanted sites.
 Since this is an HTTP-level solution, it does not protect non-HTTP
protocols, as discussed in .

 The discovery issue is common to most SNI encryption solutions.
The browser issue was solved in by
implementing domain fronting as a pluggable transport for the Tor browser. The
multi-protocol issue can be mitigated by implementing other
applications over HTTP, for example, DNS over HTTPS . The trust issue, however, requires
specific developments.

 HTTPS Tunnels
 The HTTP domain fronting solution places a lot of trust in the fronting
	server. This required trust can be reduced by tunneling HTTPS in
	HTTPS, which effectively treats the fronting server as an HTTP
	proxy. In this solution, the client establishes a TLS connection to
	the fronting server and then issues an HTTP connect request to the
	hidden server. This will establish an end-to-end HTTPS-over-TLS
	connection between the client and the hidden server, mitigating the
	issues described in .

 The HTTPS-in-HTTPS solution requires double encryption of every packet. It
also requires that the fronting server decrypt and relay messages to the
hidden server. Both of these requirements make the implementation onerous.

 Delegation Control
 Clients would see their privacy compromised if they contacted the wrong
fronting server to access the hidden service, since this wrong server
could disclose their access to adversaries. This requires a controlled
way to indicate which fronting server is acceptable by the hidden service.

 This problem is similar to the "word of mouth" variant
of the "fronting server
spoofing" attack described in . The spoofing
would be performed by distributing fake advice, such as "to reach
hidden.example.com, use fake.example.com as a fronting
server", when "fake.example.com" is under the control of an
adversary.

 In practice, this attack is well mitigated when the hidden service
 is accessed through a specialized application. The name of the
 fronting server can then be programmed in the code of the
 application. But the attack is harder to mitigate when the hidden
 service has to be accessed through general-purpose web browsers.

 There are several proposed solutions to this problem, such as creating
a special form of certificate to codify the relation between the fronting and
hidden server or obtaining the relation between the hidden and fronting service
through the DNS, possibly using DNSSEC, to avoid spoofing.
The experiment
described in solved the issue by
integrating with the Lantern Internet circumvention tool.

 We can observe that CDNs have a similar requirement.
They need to convince the client that "www.example.com" can be accessed
through the seemingly unrelated "cdn-node-xyz.example.net". Most CDNs have
deployed DNS-based solutions to this problem. However, the CDN often
holds the authoritative certificate of the origin. There is, simultaneously,
verification of a relationship between the origin and the CDN (through the
certificate) and a risk that the CDN can spoof the
content from the origin.

 Related Work
 The ORIGIN frame defined for HTTP/2 can be used to flag content provided by the hidden
	server. Secondary certificate authentication can
	be used to manage authentication of hidden server content or to
	perform client authentication before accessing hidden content.

 Security Considerations
 This document lists a number of attacks against SNI encryption in Sections
 and and presents a list of
 requirements to mitigate these attacks. Current HTTP-based solutions
described in only meet some of
these requirements. In practice, it may well be that no solution can meet
every requirement and that practical solutions will have to make some
compromises.

 In particular, the requirement to not stick out, presented in
 , may have to be lifted,
especially for proposed solutions that could quickly reach large-scale
deployments.

 Replacing cleartext SNI transmission by an encrypted variant will
 break or reduce the efficacy of the operational practices and techniques
implemented in middleboxes, as described in . As explained in , alternative solutions will have to be developed.

 IANA Considerations
 This document has no IANA actions.

 Informative References

 Blocking-resistant communication through domain fronting

 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3

 This document specifies Version 1.3 of the Datagram Transport Layer Security (DTLS) protocol. DTLS 1.3 allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery. The DTLS 1.3 protocol is intentionally based on the Transport Layer Security (TLS) 1.3 protocol and provides equivalent security guarantees with the exception of order protection/non-replayability. Datagram semantics of the underlying transport are preserved by the DTLS protocol.

 Work in Progress

 Secondary Certificate Authentication in HTTP/2

 A use of TLS Exported Authenticators is described which enables HTTP/2 clients and servers to offer additional certificate-based credentials after the connection is established. The means by which these credentials are used with requests is defined.

 Work in Progress

 Using TLS to Secure QUIC

 This document describes how Transport Layer Security (TLS) is used to secure QUIC. Note to Readers Discussion of this draft takes place on the QUIC working group mailing list (quic@ietf.org (mailto:quic@ietf.org)), which is archived at https://mailarchive.ietf.org/arch/ search/?email_list=quic. Working Group information can be found at https://github.com/quicwg; source code and issues list for this draft can be found at https://github.com/quicwg/base-drafts/labels/-tls.

 Work in Progress

 The TLS Protocol Version 1.0

 This document specifies Version 1.0 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications privacy over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 SMTP Service Extension for Secure SMTP over Transport Layer Security

 This document describes an extension to the SMTP (Simple Mail Transfer Protocol) service that allows an SMTP server and client to use TLS (Transport Layer Security) to provide private, authenticated communication over the Internet. This gives SMTP agents the ability to protect some or all of their communications from eavesdroppers and attackers. [STANDARDS-TRACK]

 Transport Layer Security (TLS) Extensions

 This document describes extensions that may be used to add functionality to Transport Layer Security (TLS). It provides both generic extension mechanisms for the TLS handshake client and server hellos, and specific extensions using these generic mechanisms. The extensions may be used by TLS clients and servers. The extensions are backwards compatible - communication is possible between TLS 1.0 clients that support the extensions and TLS 1.0 servers that do not support the extensions, and vice versa. [STANDARDS-TRACK]

 The Transport Layer Security (TLS) Protocol Version 1.1

 This document specifies Version 1.1 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 Transport Layer Security (TLS) Extensions

 This document describes extensions that may be used to add functionality to Transport Layer Security (TLS). It provides both generic extension mechanisms for the TLS handshake client and server hellos, and specific extensions using these generic mechanisms.
 The extensions may be used by TLS clients and servers. The extensions are backwards compatible: communication is possible between TLS clients that support the extensions and TLS servers that do not support the extensions, and vice versa. [STANDARDS-TRACK]

 The Transport Layer Security (TLS) Protocol Version 1.2

 This document specifies Version 1.2 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. [STANDARDS-TRACK]

 Transport Layer Security (TLS) Extensions: Extension Definitions

 This document provides specifications for existing TLS extensions. It is a companion document for RFC 5246, "The Transport Layer Security (TLS) Protocol Version 1.2". The extensions specified are server_name, max_fragment_length, client_certificate_url, trusted_ca_keys, truncated_hmac, and status_request. [STANDARDS-TRACK]

 Pervasive Monitoring Is an Attack

 Pervasive monitoring is a technical attack that should be mitigated in the design of IETF protocols, where possible.

 Hypertext Transfer Protocol Version 2 (HTTP/2)

 This specification describes an optimized expression of the semantics of the Hypertext Transfer Protocol (HTTP), referred to as HTTP version 2 (HTTP/2). HTTP/2 enables a more efficient use of network resources and a reduced perception of latency by introducing header field compression and allowing multiple concurrent exchanges on the same connection. It also introduces unsolicited push of representations from servers to clients.
 This specification is an alternative to, but does not obsolete, the HTTP/1.1 message syntax. HTTP's existing semantics remain unchanged.

 Use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP)

 This document provides recommendations for the use of Transport Layer Security (TLS) in the Extensible Messaging and Presence Protocol (XMPP). This document updates RFC 6120.

 Specification for DNS over Transport Layer Security (TLS)

 This document describes the use of Transport Layer Security (TLS) to provide privacy for DNS. Encryption provided by TLS eliminates opportunities for eavesdropping and on-path tampering with DNS queries in the network, such as discussed in RFC 7626. In addition, this document specifies two usage profiles for DNS over TLS and provides advice on performance considerations to minimize overhead from using TCP and TLS with DNS.
 This document focuses on securing stub-to-recursive traffic, as per the charter of the DPRIVE Working Group. It does not prevent future applications of the protocol to recursive-to-authoritative traffic.

 Cleartext Considered Obsolete: Use of Transport Layer Security (TLS) for Email Submission and Access

 This specification outlines current recommendations for the use of Transport Layer Security (TLS) to provide confidentiality of email traffic between a Mail User Agent (MUA) and a Mail Submission Server or Mail Access Server. This document updates RFCs 1939, 2595, 3501, 5068, 6186, and 6409.

 The ORIGIN HTTP/2 Frame

 This document specifies the ORIGIN frame for HTTP/2, to indicate what origins are available on a given connection.

 Effects of Pervasive Encryption on Operators

 Pervasive monitoring attacks on the privacy of Internet users are of serious concern to both user and operator communities. RFC 7258 discusses the critical need to protect users' privacy when developing IETF specifications and also recognizes that making networks unmanageable to mitigate pervasive monitoring is not an acceptable outcome: an appropriate balance is needed. This document discusses current security and network operations as well as management practices that may be impacted by the shift to increased use of encryption to help guide protocol development in support of manageable and secure networks.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 DNS Queries over HTTPS (DoH)

 This document defines a protocol for sending DNS queries and getting DNS responses over HTTPS. Each DNS query-response pair is mapped into an HTTP exchange.

 Acknowledgements
 A large part of this document originated in discussion of SNI encryption
on the TLS WG mailing list, including comments after the tunneling
approach was first proposed in a message to that list:
 .

 Thanks to for his multiple suggestions, reviews, and edits
to the successive draft versions of this document.

 Thanks to for a pretty
 detailed review of the initial draft of this document. Thanks to
 , ,
 , , , , ,
 , ,
 , , , , and employees of the UK National Cyber
 Security Centre for their reviews. Thanks to , , and for helping move this document toward publication.

 Author's Address

 Private Octopus Inc.

 Friday Harbor
 WA
 98250
 United States of America

 huitema@huitema.net

