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1. Introduction 
There is a need for standard mechanisms to allow the definition of abstract data that is not
intended to be implemented as configuration or operational state. The "yang-data" extension
statement from RFC 8040  was defined for this purpose, but it is limited in its
functionality.

[RFC8040]
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The intended use of the "yang-data" extension was to model all or part of a protocol message,
such as the "errors" definition in the YANG module "ietf-restconf" , or the contents of a
file. However, protocols are often layered such that the header or payload portions of the
message can be extended by external documents. The YANG statements that model a protocol
need to support this extensibility that is already found in that protocol.

This document defines a new YANG extension statement called "structure", which is similar to
but more flexible than the "yang-data" extension from . There is no assumption that a
YANG data structure can only be used as a top-level abstraction, and it may also be nested within
some other data structure.

This document also defines a new YANG extension statement called "augment‑structure", which
allows abstract data structures to be augmented from external modules and is similar to the
existing YANG "augment" statement. Note that "augment" cannot be used to augment a YANG
data structure since a YANG compiler or other tool is not required to understand the "structure"
extension.

[RFC8040]

[RFC8040]

YANG data structure:

1.1. Terminology 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

The following term is used within this document:

A data structure defined with the "structure" statement. 

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.1.1. NMDA 

The following terms are defined in the Network Management Datastore Architecture (NMDA) 
 and are not redefined here:

configuration 
operational state 

[RFC8342]

• 
• 

1.1.2. YANG 

The following terms are defined in  and are not redefined here:

absolute-schema-nodeid 
container 
data definition statement 
data node 
leaf 
leaf-list 
list 

[RFC7950]

• 
• 
• 
• 
• 
• 
• 
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2. Definitions 
A YANG data structure is defined with the "structure" extension statement, which is defined in
the YANG module "ietf-yang-structure-ext". The argument to the "structure" extension statement
is the name of the data structure. The data structures are considered to be in the same identifier
namespace as defined in . In particular, the seventh bullet states:

All leafs, leaf-lists, lists, containers, choices, rpcs, actions, notifications, anydatas, and
anyxmls defined (directly or through a "uses" statement) within a parent node or at the
top level of the module or its submodules share the same identifier namespace. 

This means that data structures defined with the "structure" statement cannot have the same
name as sibling nodes from regular YANG data definition statements or other "structure"
statements in the same YANG module.

This does not mean a YANG data structure, once defined, has to be used as a top-level protocol
message or other top-level data structure.

A YANG data structure is encoded in the same way as an "anydata" node. This means that the
name of the structure is encoded as a "container", with the instantiated children encoded as child
nodes to this node. For example, this structure:

can be encoded in JSON as:

Section 6.2.1 of [RFC7950]

  module example-errors {
    ...

    sx:structure my-error {
      leaf error-number {
        type int;
      }
    }
  }

  "example-errors:my-error": {
    "error-number": 131
  }
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3. YANG Data Structures in YANG Tree Diagrams 
A YANG data structure can be printed in a YANG tree diagram . This document updates
RFC 8340  by defining two new sections in the tree diagram for a module:

YANG data structures, which are offset by two spaces and identified by the keyword
"structure" followed by the name of the YANG data structure and a colon (":") character. 
YANG data structure augmentations, which are offset by 2 spaces and identified by the
keyword "augment‑structure" followed by the augment target structure name and a colon
(":") character. 

The new sections, including spaces conventions, appear as follows:

Nodes in YANG data structures are printed according to the rules defined in 
. The nodes in YANG data structures do not have any <flags>.

[RFC8340]
[RFC8340]

1. 

2. 

  structure <structure-name>:
    +--<node>
       +--<node>
       |  +--<node>
       +--<node>
  structure <structure-name>:
    +--<node>

  augment-structure <structure-name>:
    +--<node>
       +--<node>
       |  +--<node>
       +--<node>
  augment-structure <structure-name>:
    +--<node>

Section 2.6 of
[RFC8340]
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4. YANG Data Structure Extensions Module 
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<CODE BEGINS> file "ietf-yang-structure-ext@2020-06-17.yang"

module ietf-yang-structure-ext {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext";
  prefix sx;

  organization
    "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
  contact
    "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
     WG List:  <mailto:netmod@ietf.org>

     Author:   Andy Bierman
               <mailto:andy@yumaworks.com>

     Author:   Martin Bjorklund
               <mailto:mbj+ietf@4668.se>

     Author:   Kent Watsen
               <mailto:kent+ietf@watsen.net>";
  description
    "This module contains conceptual YANG specifications for defining
     abstract data structures.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here.

     Copyright (c) 2020 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject to
     the license terms contained in, the Simplified BSD License set
     forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (http://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 8791
     (https://www.rfc-editor.org/info/rfc8791); see the RFC itself
     for full legal notices.";

  revision 2020-06-17 {
    description
      "Initial revision.";
    reference
      "RFC 8791: YANG Data Structure Extensions.";
  }

  extension structure {
    argument name {
      yin-element true;
    }
    description
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      "This extension is used to specify a YANG data structure that
       represents conceptual data defined in YANG.  It is intended to
       describe hierarchical data independent of protocol context or
       specific message encoding format.  Data definition statements
       within a 'structure' extension statement specify the generic
       syntax for the specific YANG data structure, whose name is the
       argument of the 'structure' extension statement.

       Note that this extension does not define a media type.  A
       specification using this extension MUST specify the message
       encoding rules, including the content media type, if
       applicable.

       The mandatory 'name' parameter value identifies the YANG data
       structure that is being defined.

       This extension is only valid as a top-level statement, i.e.,
       given as a substatement to 'module' or 'submodule'.

       The substatements of this extension MUST follow the ABNF
       rules below, where the rules are defined in RFC 7950:

         *must-stmt
         [status-stmt]
         [description-stmt]
         [reference-stmt]
         *(typedef-stmt / grouping-stmt)
         *data-def-stmt

       A YANG data structure defined with this extension statement is
       encoded in the same way as an 'anydata' node.  This means
       that the name of the structure is encoded as a 'container',
       with the instantiated child statements encoded as child nodes
       to this node.

       The module name and namespace value for the YANG module using
       the extension statement are assigned to each of the data
       definition statements resulting from the YANG data structure.

       The XPath document element is the extension statement itself,
       such that the child nodes of the document element are
       represented by the data-def-stmt substatements within this
       extension.  This conceptual document is the context for the
       following YANG statements:

         - must-stmt
         - when-stmt
         - path-stmt
         - min-elements-stmt
         - max-elements-stmt
         - mandatory-stmt
         - unique-stmt
         - ordered-by
         - instance-identifier data type

       The following data-def-stmt substatements are constrained
       when used within a 'structure' extension statement.
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         - The list-stmt is not required to have a key-stmt defined.
         - The config-stmt is ignored if present.
      ";
  }

  extension augment-structure {
    argument path {
      yin-element true;
    }
    description
      "This extension is used to specify an augmentation to a YANG
       data structure defined with the 'structure' statement.  It is
       intended to describe hierarchical data independent of protocol
       context or specific message encoding format.

       This statement has almost the same structure as the
       'augment-stmt'.  Data definition statements within this
       statement specify the semantics and generic syntax for the
       additional data to be added to the specific YANG data
       structure, identified by the 'path' argument.

       The mandatory 'path' parameter value identifies the YANG
       conceptual data node that is being augmented and is
       represented as an absolute-schema-nodeid string, where the
       first node in the absolute-schema-nodeid string identifies the
       YANG data structure to augment, and the rest of the nodes in
       the string identifies the node within the YANG structure to
       augment.

       This extension is only valid as a top-level statement, i.e.,
       given as a substatement to 'module' or 'submodule'.

       The substatements of this extension MUST follow the ABNF
       rules below, where the rules are defined in RFC 7950:

         [status-stmt]
         [description-stmt]
         [reference-stmt]
         1*(data-def-stmt / case-stmt)

       The module name and namespace value for the YANG module using
       the extension statement are assigned to instance document data
       conforming to the data definition statements within this
       extension.

       The XPath document element is the augmented extension
       statement itself, such that the child nodes of the document
       element are represented by the data-def-stmt substatements
       within the augmented 'structure' statement.

       The context node of the 'augment-structure' statement is
       derived in the same way as the 'augment' statement, as defined
       in Section 6.4.1 of [RFC7950]. This conceptual node is
       considered the context node for the following YANG statements:

         - must-stmt
         - when-stmt
         - path-stmt

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 9



         - min-elements-stmt
         - max-elements-stmt
         - mandatory-stmt
         - unique-stmt
         - ordered-by
         - instance-identifier data type

       The following data-def-stmt substatements are constrained
       when used within an 'augment-structure' extension statement.

         - The list-stmt is not required to have a key-stmt defined.
         - The config-stmt is ignored if present.

       Example:

          module foo {
             import ietf-yang-structure-ext { prefix sx; }

             sx:structure foo-data {
               container foo-con { }
             }
          }

          module bar {
             import ietf-yang-structure-ext { prefix sx; }
             import foo { prefix foo; }

             sx:augment-structure /foo:foo-data/foo:foo-con {
               leaf add-leaf1 { type int32; }
               leaf add-leaf2 { type string; }
             }
          }
      ";
  }
}

<CODE ENDS>

5. IANA Considerations 

URI:
Registrant Contact:
XML:

Name:

5.1. YANG Module Registry 
IANA has registered the following URI in the "ns" subregistry within the "IETF XML Registry" 

:

urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext 
The IESG. 

N/A; the requested URI is an XML namespace. 

IANA has registered the following YANG module in the "YANG Module Names" subregistry 
 within the "YANG Parameters" registry:

ietf-yang-structure-ext 

[RFC3688]

[RFC6020]
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Appendix A. Examples 

A.1. "structure" Example 
This example shows a simple address book that could be stored as an artifact:

module example-module {
  yang-version 1.1;
  namespace "urn:example:example-module";
  prefix exm;

  import ietf-yang-structure-ext {
    prefix sx;
  }

  sx:structure address-book {
    list address {
      key "last first";
      leaf last {
        type string;
        description "Last name";
      }
      leaf first {
        type string;
        description "First name";
      }
      leaf street {
        type string;
        description "Street name";
      }
      leaf city {
        type string;
        description "City name";
      }
      leaf state {
        type string;
        description "State name";
      }
    }
  }
}
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Below is the tree diagram of this module:

module: example-module

  structure address-book:
    +-- address* [last first]
       +-- last      string
       +-- first     string
       +-- street?   string
       +-- city?     string
       +-- state?    string

A.2. "augment‑structure" Example 
This example adds "county" and "zipcode" leafs to the address book:

Below is the tree diagram of this module:

module example-module-aug {
  yang-version 1.1;
  namespace "urn:example:example-module-aug";
  prefix exma;

  import ietf-yang-structure-ext {
    prefix sx;
  }
  import example-module {
    prefix exm;
  }

  sx:augment-structure "/exm:address-book/exm:address" {
    leaf county {
      type string;
      description "County name";
    }
    leaf zipcode {
      type string;
      description "Postal zipcode";
    }
  }
}

module: example-module-aug

  augment-structure /exm:address-book/exm:address:
    +-- county?    string
    +-- zipcode?   string
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A.3. XML Encoding Example 
This example shows how an address book can be encoded in XML :[W3C.REC-xml-20081126]

<address-book xmlns="urn:example:example-module">
  <address>
    <last>Flintstone</last>
    <first>Fred</first>
    <street>301 Cobblestone Way</street>
    <city>Bedrock</city>
    <zipcode xmlns="urn:example:example-module-aug">70777</zipcode>
  </address>
  <address>
    <last>Root</last>
    <first>Charlie</first>
    <street>4711 Cobblestone Way</street>
    <city>Bedrock</city>
    <zipcode xmlns="urn:example:example-module-aug">70777</zipcode>
  </address>
</address-book>

A.4. JSON Encoding Example 
This example shows how an address book can be encoded in JSON:

"example-module:address-book": {
  "address": [
    {
      "city": "Bedrock",
      "example-module-aug:zipcode": "70777",
      "first": "Fred",
      "last": "Flintstone",
      "street": "301 Cobblestone Way"
    },
    {
      "city": "Bedrock",
      "example-module-aug:zipcode": "70777",
      "first": "Charlie",
      "last": "Root",
      "street": "4711 Cobblestone Way"
    }
  ]
}
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A.5. "structure" Example That Defines a Non-top-level
Structure 
The following example defines a data structure with error information that can be included in an
<error‑info> element in an <rpc‑error>:

The example below shows how this structure can be used in an <rpc‑error>:

module example-error-info {
  yang-version 1.1;
  namespace "urn:example:example-error-info";
  prefix exei;

  import ietf-yang-structure-ext {
    prefix sx;
  }

  sx:structure my-example-error-info {
    leaf error-code {
      type uint32;
    }
  }

}

<rpc-reply message-id="101"
     xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <rpc-error>
    <error-type>protocol</error-type>
    <error-tag>operation-failed</error-tag>
    <error-severity>error</error-severity>
    <error-info>
      <my-example-error-info
          xmlns="urn:example:example-error-info">
        <error-code>42</error-code>
      </my-example-error-info>
    </error-info>
  </rpc-error>
</rpc-reply>
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contents of a file.  However, 
protocols are often layered such that the header or payload portions
of the message can be extended by external documents.  The YANG
statements that model a protocol need to support this extensibility
that is already found in that protocol.
      
       
This document defines a new YANG extension statement called
"structure", which is similar to but more flexible than the
"yang-data" extension from  .

There is no assumption that a 
YANG data structure can only be used as a top-level abstraction, and
it may also be nested within some other data structure.
      
       
This document also defines a new YANG extension statement called
"augment‑structure", which allows abstract data structures to be
augmented from external modules and is similar to the existing YANG "augment"
statement.  Note that "augment" cannot be used to augment a YANG data
structure since a YANG compiler or other tool is not required to understand
the "structure" extension.
      
       
         Terminology
         
The key words " MUST", " MUST NOT",
" REQUIRED", " SHALL", " SHALL NOT", 
" SHOULD", " SHOULD NOT",
" RECOMMENDED", " NOT RECOMMENDED",
" MAY", and
" OPTIONAL" in this document are to be interpreted as described in
BCP 14     when, and only when, they appear in all 
capitals, as shown here.
        
         
The following term is used within this document:
        
         
           YANG data structure:
           A data structure defined with the "structure"
statement.
        
         
           NMDA
           
The following terms are defined in the
Network Management Datastore Architecture
(NMDA)  
and are not redefined here:
           
             configuration
             operational state
          
        
         
           YANG
           The following terms are defined in   and are not redefined here:
           
             absolute-schema-nodeid
             container
             data definition statement
             data node
             leaf
             leaf-list
             list
          
        
      
    
     
       Definitions
       
A YANG data structure is defined with the "structure" extension
statement, which is defined in the YANG module
"ietf-yang-structure-ext".  The
argument to the "structure" extension statement is the name of the
data structure.  The data structures are considered to be in the same
identifier namespace as defined in  . In particular, the seventh bullet states:
      
       
   All leafs, leaf-lists, lists, containers, choices, rpcs, actions,
   notifications, anydatas, and anyxmls defined (directly or through
   a "uses" statement) within a parent node or at the top level of
   the module or its submodules share the same identifier namespace.

       
This means that data structures defined with the "structure" statement
cannot have the same name as sibling nodes from regular YANG data
definition statements or other "structure" statements in the same YANG
module.
      
       
This does not mean a YANG data structure, once defined, has to be used
as a top-level protocol message or other top-level data structure.
      
       
A YANG data structure is encoded in the same way as an "anydata" node.
This means that the name of the structure is encoded as a "container",
with the instantiated children encoded as child nodes to this
node.  For example, this structure:
      
       
  module example-errors {
    ...

    sx:structure my-error {
      leaf error-number {
        type int;
      }
    }
  }


       
can be encoded in JSON as:
      
       
  "example-errors:my-error": {
    "error-number": 131
  }


    
     
       YANG Data Structures in YANG Tree Diagrams
       
A YANG data structure can be printed in a YANG tree diagram  . 
This document updates RFC 8340   by defining
two new sections in the 
tree diagram for a module:
      
       
         YANG data structures, which are offset by two spaces and identified by the keyword
"structure" followed by the name of the YANG data structure and a colon (":")
character. 
         YANG data structure augmentations, which are offset by 2 spaces and identified by
the keyword "augment‑structure" followed by the augment target structure
name and a colon (":") character.
      
       
   The new sections, including spaces conventions, appear as follows:
      
       
  structure <structure-name>:
    +--<node>
       +--<node>
       |  +--<node>
       +--<node>
  structure <structure-name>:
    +--<node>

  augment-structure <structure-name>:
    +--<node>
       +--<node>
       |  +--<node>
       +--<node>
  augment-structure <structure-name>:
    +--<node>


       
Nodes in YANG data structures are printed according to the rules defined in
 . The nodes in YANG
data structures do not have any <flags>.
      
    
     
       YANG Data Structure Extensions Module
       
module ietf-yang-structure-ext {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext";
  prefix sx;

  organization
    "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
  contact
    "WG Web:   <https://datatracker.ietf.org/wg/netmod/>
     WG List:  <mailto:netmod@ietf.org>

     Author:   Andy Bierman
               <mailto:andy@yumaworks.com>

     Author:   Martin Bjorklund
               <mailto:mbj+ietf@4668.se>

     Author:   Kent Watsen
               <mailto:kent+ietf@watsen.net>";
  description
    "This module contains conceptual YANG specifications for defining
     abstract data structures.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
     NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
     'MAY', and 'OPTIONAL' in this document are to be interpreted as
     described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
     they appear in all capitals, as shown here.

     Copyright (c) 2020 IETF Trust and the persons identified as
     authors of the code.  All rights reserved.

     Redistribution and use in source and binary forms, with or
     without modification, is permitted pursuant to, and subject to
     the license terms contained in, the Simplified BSD License set
     forth in Section 4.c of the IETF Trust's Legal Provisions
     Relating to IETF Documents
     (http://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 8791
     (https://www.rfc-editor.org/info/rfc8791); see the RFC itself
     for full legal notices.";

  revision 2020-06-17 {
    description
      "Initial revision.";
    reference
      "RFC 8791: YANG Data Structure Extensions.";
  }

  extension structure {
    argument name {
      yin-element true;
    }
    description
      "This extension is used to specify a YANG data structure that
       represents conceptual data defined in YANG.  It is intended to
       describe hierarchical data independent of protocol context or
       specific message encoding format.  Data definition statements
       within a 'structure' extension statement specify the generic
       syntax for the specific YANG data structure, whose name is the
       argument of the 'structure' extension statement.

       Note that this extension does not define a media type.  A
       specification using this extension MUST specify the message
       encoding rules, including the content media type, if
       applicable.

       The mandatory 'name' parameter value identifies the YANG data
       structure that is being defined.

       This extension is only valid as a top-level statement, i.e.,
       given as a substatement to 'module' or 'submodule'.

       The substatements of this extension MUST follow the ABNF
       rules below, where the rules are defined in RFC 7950:

         *must-stmt
         [status-stmt]
         [description-stmt]
         [reference-stmt]
         *(typedef-stmt / grouping-stmt)
         *data-def-stmt

       A YANG data structure defined with this extension statement is
       encoded in the same way as an 'anydata' node.  This means
       that the name of the structure is encoded as a 'container',
       with the instantiated child statements encoded as child nodes
       to this node.

       The module name and namespace value for the YANG module using
       the extension statement are assigned to each of the data
       definition statements resulting from the YANG data structure.

       The XPath document element is the extension statement itself,
       such that the child nodes of the document element are
       represented by the data-def-stmt substatements within this
       extension.  This conceptual document is the context for the
       following YANG statements:

         - must-stmt
         - when-stmt
         - path-stmt
         - min-elements-stmt
         - max-elements-stmt
         - mandatory-stmt
         - unique-stmt
         - ordered-by
         - instance-identifier data type

       The following data-def-stmt substatements are constrained
       when used within a 'structure' extension statement.

         - The list-stmt is not required to have a key-stmt defined.
         - The config-stmt is ignored if present.
      ";
  }

  extension augment-structure {
    argument path {
      yin-element true;
    }
    description
      "This extension is used to specify an augmentation to a YANG
       data structure defined with the 'structure' statement.  It is
       intended to describe hierarchical data independent of protocol
       context or specific message encoding format.

       This statement has almost the same structure as the
       'augment-stmt'.  Data definition statements within this
       statement specify the semantics and generic syntax for the
       additional data to be added to the specific YANG data
       structure, identified by the 'path' argument.

       The mandatory 'path' parameter value identifies the YANG
       conceptual data node that is being augmented and is
       represented as an absolute-schema-nodeid string, where the
       first node in the absolute-schema-nodeid string identifies the
       YANG data structure to augment, and the rest of the nodes in
       the string identifies the node within the YANG structure to
       augment.

       This extension is only valid as a top-level statement, i.e.,
       given as a substatement to 'module' or 'submodule'.

       The substatements of this extension MUST follow the ABNF
       rules below, where the rules are defined in RFC 7950:

         [status-stmt]
         [description-stmt]
         [reference-stmt]
         1*(data-def-stmt / case-stmt)

       The module name and namespace value for the YANG module using
       the extension statement are assigned to instance document data
       conforming to the data definition statements within this
       extension.

       The XPath document element is the augmented extension
       statement itself, such that the child nodes of the document
       element are represented by the data-def-stmt substatements
       within the augmented 'structure' statement.

       The context node of the 'augment-structure' statement is
       derived in the same way as the 'augment' statement, as defined
       in Section 6.4.1 of [RFC7950]. This conceptual node is
       considered the context node for the following YANG statements:

         - must-stmt
         - when-stmt
         - path-stmt
         - min-elements-stmt
         - max-elements-stmt
         - mandatory-stmt
         - unique-stmt
         - ordered-by
         - instance-identifier data type

       The following data-def-stmt substatements are constrained
       when used within an 'augment-structure' extension statement.

         - The list-stmt is not required to have a key-stmt defined.
         - The config-stmt is ignored if present.

       Example:

          module foo {
             import ietf-yang-structure-ext { prefix sx; }

             sx:structure foo-data {
               container foo-con { }
             }
          }

          module bar {
             import ietf-yang-structure-ext { prefix sx; }
             import foo { prefix foo; }

             sx:augment-structure /foo:foo-data/foo:foo-con {
               leaf add-leaf1 { type int32; }
               leaf add-leaf2 { type string; }
             }
          }
      ";
  }
}


    
     
       IANA Considerations
       
         YANG Module Registry
         
IANA has registered the following URI in the "ns" subregistry within the "IETF
XML Registry"  :
        
         
           URI:
           urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext
           Registrant Contact: 
           The IESG.
           XML: 
           N/A; the requested URI is an XML namespace.
        
         
IANA has registered the following YANG module in the "YANG Module Names" subregistry
  within the "YANG Parameters" registry:
        
         
           Name:
           ietf-yang-structure-ext
           Namespace:
           urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext
           Prefix:
           sx
           Reference:
           RFC 8791
        
      
    
     
       Security Considerations
        This document defines YANG extensions that are used to define conceptual
YANG data structures. It does not introduce any new vulnerabilities beyond
those specified in YANG 1.1  .
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             Key words for use in RFCs to Indicate Requirement Levels
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             The IETF XML Registry
             
               
            
             
             
               This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.
            
          
           
           
           
        
         
           
             YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)
             
               
            
             
             
               YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]
            
          
           
           
        
      
    
     
       Examples
       
         "structure" Example
         
This example shows a simple address book that could be stored as an
artifact:
        
         
module example-module {
  yang-version 1.1;
  namespace "urn:example:example-module";
  prefix exm;

  import ietf-yang-structure-ext {
    prefix sx;
  }

  sx:structure address-book {
    list address {
      key "last first";
      leaf last {
        type string;
        description "Last name";
      }
      leaf first {
        type string;
        description "First name";
      }
      leaf street {
        type string;
        description "Street name";
      }
      leaf city {
        type string;
        description "City name";
      }
      leaf state {
        type string;
        description "State name";
      }
    }
  }
}


         
Below is the tree diagram of this module:
        
         
module: example-module

  structure address-book:
    +-- address* [last first]
       +-- last      string
       +-- first     string
       +-- street?   string
       +-- city?     string
       +-- state?    string


      
       
         "augment‑structure" Example
         
This example adds "county" and "zipcode" leafs to the address book:
        
         
module example-module-aug {
  yang-version 1.1;
  namespace "urn:example:example-module-aug";
  prefix exma;

  import ietf-yang-structure-ext {
    prefix sx;
  }
  import example-module {
    prefix exm;
  }

  sx:augment-structure "/exm:address-book/exm:address" {
    leaf county {
      type string;
      description "County name";
    }
    leaf zipcode {
      type string;
      description "Postal zipcode";
    }
  }
}


         
Below is the tree diagram of this module:
        
         
module: example-module-aug

  augment-structure /exm:address-book/exm:address:
    +-- county?    string
    +-- zipcode?   string


      
       
         XML Encoding Example
         
This example shows how an address book can be encoded in XML  :
        
         
<address-book xmlns="urn:example:example-module">
  <address>
    <last>Flintstone</last>
    <first>Fred</first>
    <street>301 Cobblestone Way</street>
    <city>Bedrock</city>
    <zipcode xmlns="urn:example:example-module-aug">70777</zipcode>
  </address>
  <address>
    <last>Root</last>
    <first>Charlie</first>
    <street>4711 Cobblestone Way</street>
    <city>Bedrock</city>
    <zipcode xmlns="urn:example:example-module-aug">70777</zipcode>
  </address>
</address-book>


      
       
         JSON Encoding Example
         
This example shows how an address book can be encoded in JSON:
        
         
"example-module:address-book": {
  "address": [
    {
      "city": "Bedrock",
      "example-module-aug:zipcode": "70777",
      "first": "Fred",
      "last": "Flintstone",
      "street": "301 Cobblestone Way"
    },
    {
      "city": "Bedrock",
      "example-module-aug:zipcode": "70777",
      "first": "Charlie",
      "last": "Root",
      "street": "4711 Cobblestone Way"
    }
  ]
}


      
       
         "structure" Example That Defines a Non-top-level Structure
         
The following example defines a data structure with error information
that can be included in an <error‑info> element in an
<rpc‑error>:
        
         
module example-error-info {
  yang-version 1.1;
  namespace "urn:example:example-error-info";
  prefix exei;

  import ietf-yang-structure-ext {
    prefix sx;
  }

  sx:structure my-example-error-info {
    leaf error-code {
      type uint32;
    }
  }

}


         
The example below shows how this structure can be used in an
<rpc‑error>:
        
         
<rpc-reply message-id="101"
     xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <rpc-error>
    <error-type>protocol</error-type>
    <error-tag>operation-failed</error-tag>
    <error-severity>error</error-severity>
    <error-info>
      <my-example-error-info
          xmlns="urn:example:example-error-info">
        <error-code>42</error-code>
      </my-example-error-info>
    </error-info>
  </rpc-error>
</rpc-reply>
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