
RFC 8791
YANG Data Structure Extensions

Abstract
This document describes YANG mechanisms for defining abstract data structures with YANG.

Stream: Internet Engineering Task Force (IETF)
RFC: 8791
Updates: 8340
Category: Standards Track
Published: June 2020
ISSN: 2070-1721
Authors: A. Bierman

YumaWorks
M. Bjorklund
Cisco

K. Watsen
Watsen Networks

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8791

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Bierman, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8791
https://www.rfc-editor.org/rfc/rfc8340
https://www.rfc-editor.org/info/rfc8791
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Terminology

1.1.1. NMDA

1.1.2. YANG

2. Definitions

3. YANG Data Structures in YANG Tree Diagrams

4. YANG Data Structure Extensions Module

5. IANA Considerations

5.1. YANG Module Registry

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Examples

A.1. "structure" Example

A.2. "augment‑structure" Example

A.3. XML Encoding Example

A.4. JSON Encoding Example

A.5. "structure" Example That Defines a Non-top-level Structure

Authors' Addresses

1. Introduction
There is a need for standard mechanisms to allow the definition of abstract data that is not
intended to be implemented as configuration or operational state. The "yang-data" extension
statement from RFC 8040 was defined for this purpose, but it is limited in its
functionality.

[RFC8040]

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 2

The intended use of the "yang-data" extension was to model all or part of a protocol message,
such as the "errors" definition in the YANG module "ietf-restconf" , or the contents of a
file. However, protocols are often layered such that the header or payload portions of the
message can be extended by external documents. The YANG statements that model a protocol
need to support this extensibility that is already found in that protocol.

This document defines a new YANG extension statement called "structure", which is similar to
but more flexible than the "yang-data" extension from . There is no assumption that a
YANG data structure can only be used as a top-level abstraction, and it may also be nested within
some other data structure.

This document also defines a new YANG extension statement called "augment‑structure", which
allows abstract data structures to be augmented from external modules and is similar to the
existing YANG "augment" statement. Note that "augment" cannot be used to augment a YANG
data structure since a YANG compiler or other tool is not required to understand the "structure"
extension.

[RFC8040]

[RFC8040]

YANG data structure:

1.1. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

The following term is used within this document:

A data structure defined with the "structure" statement.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.1.1. NMDA

The following terms are defined in the Network Management Datastore Architecture (NMDA)
 and are not redefined here:

configuration
operational state

[RFC8342]

•
•

1.1.2. YANG

The following terms are defined in and are not redefined here:

absolute-schema-nodeid
container
data definition statement
data node
leaf
leaf-list
list

[RFC7950]

•
•
•
•
•
•
•

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 3

2. Definitions
A YANG data structure is defined with the "structure" extension statement, which is defined in
the YANG module "ietf-yang-structure-ext". The argument to the "structure" extension statement
is the name of the data structure. The data structures are considered to be in the same identifier
namespace as defined in . In particular, the seventh bullet states:

All leafs, leaf-lists, lists, containers, choices, rpcs, actions, notifications, anydatas, and
anyxmls defined (directly or through a "uses" statement) within a parent node or at the
top level of the module or its submodules share the same identifier namespace.

This means that data structures defined with the "structure" statement cannot have the same
name as sibling nodes from regular YANG data definition statements or other "structure"
statements in the same YANG module.

This does not mean a YANG data structure, once defined, has to be used as a top-level protocol
message or other top-level data structure.

A YANG data structure is encoded in the same way as an "anydata" node. This means that the
name of the structure is encoded as a "container", with the instantiated children encoded as child
nodes to this node. For example, this structure:

can be encoded in JSON as:

Section 6.2.1 of [RFC7950]

 module example-errors {
 ...

 sx:structure my-error {
 leaf error-number {
 type int;
 }
 }
 }

 "example-errors:my-error": {
 "error-number": 131
 }

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc7950#section-6.2.1

3. YANG Data Structures in YANG Tree Diagrams
A YANG data structure can be printed in a YANG tree diagram . This document updates
RFC 8340 by defining two new sections in the tree diagram for a module:

YANG data structures, which are offset by two spaces and identified by the keyword
"structure" followed by the name of the YANG data structure and a colon (":") character.
YANG data structure augmentations, which are offset by 2 spaces and identified by the
keyword "augment‑structure" followed by the augment target structure name and a colon
(":") character.

The new sections, including spaces conventions, appear as follows:

Nodes in YANG data structures are printed according to the rules defined in
. The nodes in YANG data structures do not have any <flags>.

[RFC8340]
[RFC8340]

1.

2.

 structure <structure-name>:
 +--<node>
 +--<node>
 | +--<node>
 +--<node>
 structure <structure-name>:
 +--<node>

 augment-structure <structure-name>:
 +--<node>
 +--<node>
 | +--<node>
 +--<node>
 augment-structure <structure-name>:
 +--<node>

Section 2.6 of
[RFC8340]

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc8340#section-2.6

4. YANG Data Structure Extensions Module

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 6

<CODE BEGINS> file "ietf-yang-structure-ext@2020-06-17.yang"

module ietf-yang-structure-ext {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext";
 prefix sx;

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj+ietf@4668.se>

 Author: Kent Watsen
 <mailto:kent+ietf@watsen.net>";
 description
 "This module contains conceptual YANG specifications for defining
 abstract data structures.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2020 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8791
 (https://www.rfc-editor.org/info/rfc8791); see the RFC itself
 for full legal notices.";

 revision 2020-06-17 {
 description
 "Initial revision.";
 reference
 "RFC 8791: YANG Data Structure Extensions.";
 }

 extension structure {
 argument name {
 yin-element true;
 }
 description

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 7

 "This extension is used to specify a YANG data structure that
 represents conceptual data defined in YANG. It is intended to
 describe hierarchical data independent of protocol context or
 specific message encoding format. Data definition statements
 within a 'structure' extension statement specify the generic
 syntax for the specific YANG data structure, whose name is the
 argument of the 'structure' extension statement.

 Note that this extension does not define a media type. A
 specification using this extension MUST specify the message
 encoding rules, including the content media type, if
 applicable.

 The mandatory 'name' parameter value identifies the YANG data
 structure that is being defined.

 This extension is only valid as a top-level statement, i.e.,
 given as a substatement to 'module' or 'submodule'.

 The substatements of this extension MUST follow the ABNF
 rules below, where the rules are defined in RFC 7950:

 *must-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(typedef-stmt / grouping-stmt)
 *data-def-stmt

 A YANG data structure defined with this extension statement is
 encoded in the same way as an 'anydata' node. This means
 that the name of the structure is encoded as a 'container',
 with the instantiated child statements encoded as child nodes
 to this node.

 The module name and namespace value for the YANG module using
 the extension statement are assigned to each of the data
 definition statements resulting from the YANG data structure.

 The XPath document element is the extension statement itself,
 such that the child nodes of the document element are
 represented by the data-def-stmt substatements within this
 extension. This conceptual document is the context for the
 following YANG statements:

 - must-stmt
 - when-stmt
 - path-stmt
 - min-elements-stmt
 - max-elements-stmt
 - mandatory-stmt
 - unique-stmt
 - ordered-by
 - instance-identifier data type

 The following data-def-stmt substatements are constrained
 when used within a 'structure' extension statement.

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 8

 - The list-stmt is not required to have a key-stmt defined.
 - The config-stmt is ignored if present.
 ";
 }

 extension augment-structure {
 argument path {
 yin-element true;
 }
 description
 "This extension is used to specify an augmentation to a YANG
 data structure defined with the 'structure' statement. It is
 intended to describe hierarchical data independent of protocol
 context or specific message encoding format.

 This statement has almost the same structure as the
 'augment-stmt'. Data definition statements within this
 statement specify the semantics and generic syntax for the
 additional data to be added to the specific YANG data
 structure, identified by the 'path' argument.

 The mandatory 'path' parameter value identifies the YANG
 conceptual data node that is being augmented and is
 represented as an absolute-schema-nodeid string, where the
 first node in the absolute-schema-nodeid string identifies the
 YANG data structure to augment, and the rest of the nodes in
 the string identifies the node within the YANG structure to
 augment.

 This extension is only valid as a top-level statement, i.e.,
 given as a substatement to 'module' or 'submodule'.

 The substatements of this extension MUST follow the ABNF
 rules below, where the rules are defined in RFC 7950:

 [status-stmt]
 [description-stmt]
 [reference-stmt]
 1*(data-def-stmt / case-stmt)

 The module name and namespace value for the YANG module using
 the extension statement are assigned to instance document data
 conforming to the data definition statements within this
 extension.

 The XPath document element is the augmented extension
 statement itself, such that the child nodes of the document
 element are represented by the data-def-stmt substatements
 within the augmented 'structure' statement.

 The context node of the 'augment-structure' statement is
 derived in the same way as the 'augment' statement, as defined
 in Section 6.4.1 of [RFC7950]. This conceptual node is
 considered the context node for the following YANG statements:

 - must-stmt
 - when-stmt
 - path-stmt

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 9

 - min-elements-stmt
 - max-elements-stmt
 - mandatory-stmt
 - unique-stmt
 - ordered-by
 - instance-identifier data type

 The following data-def-stmt substatements are constrained
 when used within an 'augment-structure' extension statement.

 - The list-stmt is not required to have a key-stmt defined.
 - The config-stmt is ignored if present.

 Example:

 module foo {
 import ietf-yang-structure-ext { prefix sx; }

 sx:structure foo-data {
 container foo-con { }
 }
 }

 module bar {
 import ietf-yang-structure-ext { prefix sx; }
 import foo { prefix foo; }

 sx:augment-structure /foo:foo-data/foo:foo-con {
 leaf add-leaf1 { type int32; }
 leaf add-leaf2 { type string; }
 }
 }
 ";
 }
}

<CODE ENDS>

5. IANA Considerations

URI:
Registrant Contact:
XML:

Name:

5.1. YANG Module Registry
IANA has registered the following URI in the "ns" subregistry within the "IETF XML Registry"

:

urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext
The IESG.

N/A; the requested URI is an XML namespace.

IANA has registered the following YANG module in the "YANG Module Names" subregistry
 within the "YANG Parameters" registry:

ietf-yang-structure-ext

[RFC3688]

[RFC6020]

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 10

[RFC2119]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8340]

[RFC8342]

[W3C.REC-xml-20081126]

[RFC3688]

[RFC6020]

7. References

7.1. Normative References

, , ,
, , March 1997,
.

, , ,
, August 2016, .

, , ,
, January 2017, .

, ,
, , , May 2017,

.

, , , ,
, March 2018, .

,
, , ,

March 2018, .

,
,

, November 2008,
.

7.2. Informative References

, , , , ,
January 2004, .

,
, , , October

2010, .

Namespace:
Prefix:
Reference:

urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext
sx

RFC 8791

6. Security Considerations
This document defines YANG extensions that are used to define conceptual YANG data structures.
It does not introduce any new vulnerabilities beyond those specified in YANG 1.1 .[RFC7950]

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A., Bjorklund, M., and K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bjorklund, M. and L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Bray, T., Paoli, J., Sperberg-McQueen, M., Maler, E., and F. Yergeau
"Extensible Markup Language (XML) 1.0 (Fifth Edition)" World Wide Web
Consortium Recommendation REC-xml-20081126 <http://
www.w3.org/TR/2008/REC-xml-20081126>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 11

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
http://www.w3.org/TR/2008/REC-xml-20081126
http://www.w3.org/TR/2008/REC-xml-20081126
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020

Appendix A. Examples

A.1. "structure" Example
This example shows a simple address book that could be stored as an artifact:

module example-module {
 yang-version 1.1;
 namespace "urn:example:example-module";
 prefix exm;

 import ietf-yang-structure-ext {
 prefix sx;
 }

 sx:structure address-book {
 list address {
 key "last first";
 leaf last {
 type string;
 description "Last name";
 }
 leaf first {
 type string;
 description "First name";
 }
 leaf street {
 type string;
 description "Street name";
 }
 leaf city {
 type string;
 description "City name";
 }
 leaf state {
 type string;
 description "State name";
 }
 }
 }
}

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 12

Below is the tree diagram of this module:

module: example-module

 structure address-book:
 +-- address* [last first]
 +-- last string
 +-- first string
 +-- street? string
 +-- city? string
 +-- state? string

A.2. "augment‑structure" Example
This example adds "county" and "zipcode" leafs to the address book:

Below is the tree diagram of this module:

module example-module-aug {
 yang-version 1.1;
 namespace "urn:example:example-module-aug";
 prefix exma;

 import ietf-yang-structure-ext {
 prefix sx;
 }
 import example-module {
 prefix exm;
 }

 sx:augment-structure "/exm:address-book/exm:address" {
 leaf county {
 type string;
 description "County name";
 }
 leaf zipcode {
 type string;
 description "Postal zipcode";
 }
 }
}

module: example-module-aug

 augment-structure /exm:address-book/exm:address:
 +-- county? string
 +-- zipcode? string

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 13

A.3. XML Encoding Example
This example shows how an address book can be encoded in XML :[W3C.REC-xml-20081126]

<address-book xmlns="urn:example:example-module">
 <address>
 <last>Flintstone</last>
 <first>Fred</first>
 <street>301 Cobblestone Way</street>
 <city>Bedrock</city>
 <zipcode xmlns="urn:example:example-module-aug">70777</zipcode>
 </address>
 <address>
 <last>Root</last>
 <first>Charlie</first>
 <street>4711 Cobblestone Way</street>
 <city>Bedrock</city>
 <zipcode xmlns="urn:example:example-module-aug">70777</zipcode>
 </address>
</address-book>

A.4. JSON Encoding Example
This example shows how an address book can be encoded in JSON:

"example-module:address-book": {
 "address": [
 {
 "city": "Bedrock",
 "example-module-aug:zipcode": "70777",
 "first": "Fred",
 "last": "Flintstone",
 "street": "301 Cobblestone Way"
 },
 {
 "city": "Bedrock",
 "example-module-aug:zipcode": "70777",
 "first": "Charlie",
 "last": "Root",
 "street": "4711 Cobblestone Way"
 }
]
}

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 14

A.5. "structure" Example That Defines a Non-top-level
Structure
The following example defines a data structure with error information that can be included in an
<error‑info> element in an <rpc‑error>:

The example below shows how this structure can be used in an <rpc‑error>:

module example-error-info {
 yang-version 1.1;
 namespace "urn:example:example-error-info";
 prefix exei;

 import ietf-yang-structure-ext {
 prefix sx;
 }

 sx:structure my-example-error-info {
 leaf error-code {
 type uint32;
 }
 }

}

<rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <my-example-error-info
 xmlns="urn:example:example-error-info">
 <error-code>42</error-code>
 </my-example-error-info>
 </error-info>
 </rpc-error>
</rpc-reply>

Authors' Addresses
Andy Bierman
YumaWorks

 andy@yumaworks.com Email:

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 15

mailto:andy@yumaworks.com

Martin Bjorklund
Cisco

 mbj+ietf@4668.se Email:

Kent Watsen
Watsen Networks

 kent+ietf@watsen.net Email:

RFC 8791 YANG Data Structure Extensions June 2020

Bierman, et al. Standards Track Page 16

mailto:mbj+ietf@4668.se
mailto:kent+ietf@watsen.net

	RFC 8791
	YANG Data Structure Extensions
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.1.1. NMDA
	1.1.2. YANG

	2. Definitions
	3. YANG Data Structures in YANG Tree Diagrams
	4. YANG Data Structure Extensions Module
	5. IANA Considerations
	5.1. YANG Module Registry

	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Examples
	A.1. "structure" Example
	A.2. "augment‑structure" Example
	A.3. XML Encoding Example
	A.4. JSON Encoding Example
	A.5. "structure" Example That Defines a Non-top-level Structure
	Authors' Addresses

 YANG Data Structure Extensions

 YumaWorks

 andy@yumaworks.com

 Cisco

 mbj+ietf@4668.se

 Watsen Networks

 kent+ietf@watsen.net

This document describes YANG mechanisms for
defining abstract data structures with YANG.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . NMDA

 . YANG

 . Definitions

 . YANG Data Structures in YANG Tree Diagrams

 . YANG Data Structure Extensions Module

 . IANA Considerations

 . YANG Module Registry

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . Examples

 . "structure" Example

 . "augment‑structure" Example

 . XML Encoding Example

 . JSON Encoding Example

 . "structure" Example That Defines a Non-top-level Structure

 Authors' Addresses

 Introduction

There is a need for standard mechanisms to allow the
definition of abstract data that is not intended to
be implemented as configuration or operational state.
The "yang-data" extension statement from RFC 8040 was defined for this purpose, but it is limited in its
functionality.

The intended use of the "yang-data" extension was to model all or part
of a protocol message, such as the "errors" definition in the
YANG module "ietf-restconf" , or the
contents of a file. However,
protocols are often layered such that the header or payload portions
of the message can be extended by external documents. The YANG
statements that model a protocol need to support this extensibility
that is already found in that protocol.

This document defines a new YANG extension statement called
"structure", which is similar to but more flexible than the
"yang-data" extension from .

There is no assumption that a
YANG data structure can only be used as a top-level abstraction, and
it may also be nested within some other data structure.

This document also defines a new YANG extension statement called
"augment‑structure", which allows abstract data structures to be
augmented from external modules and is similar to the existing YANG "augment"
statement. Note that "augment" cannot be used to augment a YANG data
structure since a YANG compiler or other tool is not required to understand
the "structure" extension.

 Terminology

The key words " MUST", " MUST NOT",
" REQUIRED", " SHALL", " SHALL NOT",
" SHOULD", " SHOULD NOT",
" RECOMMENDED", " NOT RECOMMENDED",
" MAY", and
" OPTIONAL" in this document are to be interpreted as described in
BCP 14 when, and only when, they appear in all
capitals, as shown here.

The following term is used within this document:

 YANG data structure:
 A data structure defined with the "structure"
statement.

 NMDA

The following terms are defined in the
Network Management Datastore Architecture
(NMDA)
and are not redefined here:

 configuration
 operational state

 YANG
 The following terms are defined in and are not redefined here:

 absolute-schema-nodeid
 container
 data definition statement
 data node
 leaf
 leaf-list
 list

 Definitions

A YANG data structure is defined with the "structure" extension
statement, which is defined in the YANG module
"ietf-yang-structure-ext". The
argument to the "structure" extension statement is the name of the
data structure. The data structures are considered to be in the same
identifier namespace as defined in . In particular, the seventh bullet states:

 All leafs, leaf-lists, lists, containers, choices, rpcs, actions,
 notifications, anydatas, and anyxmls defined (directly or through
 a "uses" statement) within a parent node or at the top level of
 the module or its submodules share the same identifier namespace.

This means that data structures defined with the "structure" statement
cannot have the same name as sibling nodes from regular YANG data
definition statements or other "structure" statements in the same YANG
module.

This does not mean a YANG data structure, once defined, has to be used
as a top-level protocol message or other top-level data structure.

A YANG data structure is encoded in the same way as an "anydata" node.
This means that the name of the structure is encoded as a "container",
with the instantiated children encoded as child nodes to this
node. For example, this structure:

 module example-errors {
 ...

 sx:structure my-error {
 leaf error-number {
 type int;
 }
 }
 }

can be encoded in JSON as:

 "example-errors:my-error": {
 "error-number": 131
 }

 YANG Data Structures in YANG Tree Diagrams

A YANG data structure can be printed in a YANG tree diagram .
This document updates RFC 8340 by defining
two new sections in the
tree diagram for a module:

 YANG data structures, which are offset by two spaces and identified by the keyword
"structure" followed by the name of the YANG data structure and a colon (":")
character.
 YANG data structure augmentations, which are offset by 2 spaces and identified by
the keyword "augment‑structure" followed by the augment target structure
name and a colon (":") character.

 The new sections, including spaces conventions, appear as follows:

 structure <structure-name>:
 +--<node>
 +--<node>
 | +--<node>
 +--<node>
 structure <structure-name>:
 +--<node>

 augment-structure <structure-name>:
 +--<node>
 +--<node>
 | +--<node>
 +--<node>
 augment-structure <structure-name>:
 +--<node>

Nodes in YANG data structures are printed according to the rules defined in
 . The nodes in YANG
data structures do not have any <flags>.

 YANG Data Structure Extensions Module

module ietf-yang-structure-ext {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext";
 prefix sx;

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Andy Bierman
 <mailto:andy@yumaworks.com>

 Author: Martin Bjorklund
 <mailto:mbj+ietf@4668.se>

 Author: Kent Watsen
 <mailto:kent+ietf@watsen.net>";
 description
 "This module contains conceptual YANG specifications for defining
 abstract data structures.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Copyright (c) 2020 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 8791
 (https://www.rfc-editor.org/info/rfc8791); see the RFC itself
 for full legal notices.";

 revision 2020-06-17 {
 description
 "Initial revision.";
 reference
 "RFC 8791: YANG Data Structure Extensions.";
 }

 extension structure {
 argument name {
 yin-element true;
 }
 description
 "This extension is used to specify a YANG data structure that
 represents conceptual data defined in YANG. It is intended to
 describe hierarchical data independent of protocol context or
 specific message encoding format. Data definition statements
 within a 'structure' extension statement specify the generic
 syntax for the specific YANG data structure, whose name is the
 argument of the 'structure' extension statement.

 Note that this extension does not define a media type. A
 specification using this extension MUST specify the message
 encoding rules, including the content media type, if
 applicable.

 The mandatory 'name' parameter value identifies the YANG data
 structure that is being defined.

 This extension is only valid as a top-level statement, i.e.,
 given as a substatement to 'module' or 'submodule'.

 The substatements of this extension MUST follow the ABNF
 rules below, where the rules are defined in RFC 7950:

 *must-stmt
 [status-stmt]
 [description-stmt]
 [reference-stmt]
 *(typedef-stmt / grouping-stmt)
 *data-def-stmt

 A YANG data structure defined with this extension statement is
 encoded in the same way as an 'anydata' node. This means
 that the name of the structure is encoded as a 'container',
 with the instantiated child statements encoded as child nodes
 to this node.

 The module name and namespace value for the YANG module using
 the extension statement are assigned to each of the data
 definition statements resulting from the YANG data structure.

 The XPath document element is the extension statement itself,
 such that the child nodes of the document element are
 represented by the data-def-stmt substatements within this
 extension. This conceptual document is the context for the
 following YANG statements:

 - must-stmt
 - when-stmt
 - path-stmt
 - min-elements-stmt
 - max-elements-stmt
 - mandatory-stmt
 - unique-stmt
 - ordered-by
 - instance-identifier data type

 The following data-def-stmt substatements are constrained
 when used within a 'structure' extension statement.

 - The list-stmt is not required to have a key-stmt defined.
 - The config-stmt is ignored if present.
 ";
 }

 extension augment-structure {
 argument path {
 yin-element true;
 }
 description
 "This extension is used to specify an augmentation to a YANG
 data structure defined with the 'structure' statement. It is
 intended to describe hierarchical data independent of protocol
 context or specific message encoding format.

 This statement has almost the same structure as the
 'augment-stmt'. Data definition statements within this
 statement specify the semantics and generic syntax for the
 additional data to be added to the specific YANG data
 structure, identified by the 'path' argument.

 The mandatory 'path' parameter value identifies the YANG
 conceptual data node that is being augmented and is
 represented as an absolute-schema-nodeid string, where the
 first node in the absolute-schema-nodeid string identifies the
 YANG data structure to augment, and the rest of the nodes in
 the string identifies the node within the YANG structure to
 augment.

 This extension is only valid as a top-level statement, i.e.,
 given as a substatement to 'module' or 'submodule'.

 The substatements of this extension MUST follow the ABNF
 rules below, where the rules are defined in RFC 7950:

 [status-stmt]
 [description-stmt]
 [reference-stmt]
 1*(data-def-stmt / case-stmt)

 The module name and namespace value for the YANG module using
 the extension statement are assigned to instance document data
 conforming to the data definition statements within this
 extension.

 The XPath document element is the augmented extension
 statement itself, such that the child nodes of the document
 element are represented by the data-def-stmt substatements
 within the augmented 'structure' statement.

 The context node of the 'augment-structure' statement is
 derived in the same way as the 'augment' statement, as defined
 in Section 6.4.1 of [RFC7950]. This conceptual node is
 considered the context node for the following YANG statements:

 - must-stmt
 - when-stmt
 - path-stmt
 - min-elements-stmt
 - max-elements-stmt
 - mandatory-stmt
 - unique-stmt
 - ordered-by
 - instance-identifier data type

 The following data-def-stmt substatements are constrained
 when used within an 'augment-structure' extension statement.

 - The list-stmt is not required to have a key-stmt defined.
 - The config-stmt is ignored if present.

 Example:

 module foo {
 import ietf-yang-structure-ext { prefix sx; }

 sx:structure foo-data {
 container foo-con { }
 }
 }

 module bar {
 import ietf-yang-structure-ext { prefix sx; }
 import foo { prefix foo; }

 sx:augment-structure /foo:foo-data/foo:foo-con {
 leaf add-leaf1 { type int32; }
 leaf add-leaf2 { type string; }
 }
 }
 ";
 }
}

 IANA Considerations

 YANG Module Registry

IANA has registered the following URI in the "ns" subregistry within the "IETF
XML Registry" :

 URI:
 urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext
 Registrant Contact:
 The IESG.
 XML:
 N/A; the requested URI is an XML namespace.

IANA has registered the following YANG module in the "YANG Module Names" subregistry
 within the "YANG Parameters" registry:

 Name:
 ietf-yang-structure-ext
 Namespace:
 urn:ietf:params:xml:ns:yang:ietf-yang-structure-ext
 Prefix:
 sx
 Reference:
 RFC 8791

 Security Considerations
 This document defines YANG extensions that are used to define conceptual
YANG data structures. It does not introduce any new vulnerabilities beyond
those specified in YANG 1.1 .

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 YANG Tree Diagrams

 This document captures the current syntax used in YANG module tree diagrams. The purpose of this document is to provide a single location for this definition. This syntax may be updated from time to time based on the evolution of the YANG language.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 Informative References

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Examples

 "structure" Example

This example shows a simple address book that could be stored as an
artifact:

module example-module {
 yang-version 1.1;
 namespace "urn:example:example-module";
 prefix exm;

 import ietf-yang-structure-ext {
 prefix sx;
 }

 sx:structure address-book {
 list address {
 key "last first";
 leaf last {
 type string;
 description "Last name";
 }
 leaf first {
 type string;
 description "First name";
 }
 leaf street {
 type string;
 description "Street name";
 }
 leaf city {
 type string;
 description "City name";
 }
 leaf state {
 type string;
 description "State name";
 }
 }
 }
}

Below is the tree diagram of this module:

module: example-module

 structure address-book:
 +-- address* [last first]
 +-- last string
 +-- first string
 +-- street? string
 +-- city? string
 +-- state? string

 "augment‑structure" Example

This example adds "county" and "zipcode" leafs to the address book:

module example-module-aug {
 yang-version 1.1;
 namespace "urn:example:example-module-aug";
 prefix exma;

 import ietf-yang-structure-ext {
 prefix sx;
 }
 import example-module {
 prefix exm;
 }

 sx:augment-structure "/exm:address-book/exm:address" {
 leaf county {
 type string;
 description "County name";
 }
 leaf zipcode {
 type string;
 description "Postal zipcode";
 }
 }
}

Below is the tree diagram of this module:

module: example-module-aug

 augment-structure /exm:address-book/exm:address:
 +-- county? string
 +-- zipcode? string

 XML Encoding Example

This example shows how an address book can be encoded in XML :

<address-book xmlns="urn:example:example-module">
 <address>
 <last>Flintstone</last>
 <first>Fred</first>
 <street>301 Cobblestone Way</street>
 <city>Bedrock</city>
 <zipcode xmlns="urn:example:example-module-aug">70777</zipcode>
 </address>
 <address>
 <last>Root</last>
 <first>Charlie</first>
 <street>4711 Cobblestone Way</street>
 <city>Bedrock</city>
 <zipcode xmlns="urn:example:example-module-aug">70777</zipcode>
 </address>
</address-book>

 JSON Encoding Example

This example shows how an address book can be encoded in JSON:

"example-module:address-book": {
 "address": [
 {
 "city": "Bedrock",
 "example-module-aug:zipcode": "70777",
 "first": "Fred",
 "last": "Flintstone",
 "street": "301 Cobblestone Way"
 },
 {
 "city": "Bedrock",
 "example-module-aug:zipcode": "70777",
 "first": "Charlie",
 "last": "Root",
 "street": "4711 Cobblestone Way"
 }
]
}

 "structure" Example That Defines a Non-top-level Structure

The following example defines a data structure with error information
that can be included in an <error‑info> element in an
<rpc‑error>:

module example-error-info {
 yang-version 1.1;
 namespace "urn:example:example-error-info";
 prefix exei;

 import ietf-yang-structure-ext {
 prefix sx;
 }

 sx:structure my-example-error-info {
 leaf error-code {
 type uint32;
 }
 }

}

The example below shows how this structure can be used in an
<rpc‑error>:

<rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <rpc-error>
 <error-type>protocol</error-type>
 <error-tag>operation-failed</error-tag>
 <error-severity>error</error-severity>
 <error-info>
 <my-example-error-info
 xmlns="urn:example:example-error-info">
 <error-code>42</error-code>
 </my-example-error-info>
 </error-info>
 </rpc-error>
</rpc-reply>

 Authors' Addresses

 YumaWorks

 andy@yumaworks.com

 Cisco

 mbj+ietf@4668.se

 Watsen Networks

 kent+ietf@watsen.net

