
RFC 8802
The Quality for Service (Q4S) Protocol

Abstract
This memo describes an application-level protocol for the communication of end-to-end QoS
compliance information based on the HyperText Transfer Protocol (HTTP) and the Session
Description Protocol (SDP). The Quality for Service (Q4S) protocol provides a mechanism to
negotiate and monitor latency, jitter, bandwidth, and packet loss, and to alert whenever one of
the negotiated conditions is violated.

Implementation details on the actions to be triggered upon reception/detection of QoS alerts
exchanged by the protocol are out of scope of this document; it is either application dependent
(e.g., act to increase quality or reduce bit-rate) or network dependent (e.g., change connection's
quality profile).

This protocol specification is the product of research conducted over a number of years; it is
presented here as a permanent record and to offer a foundation for future similar work. It does
not represent a standard protocol and does not have IETF consensus.

Stream: Independent Submission
RFC: 8802
Category: Informational
Published: July 2020
ISSN: 2070-1721
Authors:

 J.J. Aranda
Nokia

M. Cortés
Nokia

J. Salvachúa
Univ. Politecnica de Madrid

M. Narganes
Tecnalia

I. Martínez-Sarriegui
Optiva Media

Status of This Memo
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8802

Aranda, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc8802
https://www.rfc-editor.org/info/rfc8802

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Scope

1.2. Motivation

1.3. Summary of Features

1.4. Differences from OWAMP/TWAMP

2. Terminology

3. Overview of Operation

4. Q4S Messages

4.1. Requests

4.2. Responses

4.3. Header Fields

4.3.1. Common Q4S Header Fields

4.3.2. Specific Q4S Request Header Fields

4.3.3. Specific Q4S Response Header Fields

4.4. Bodies

4.4.1. Encoding

5. Q4S Method Definitions

5.1. BEGIN

5.2. READY

5.3. PING

5.4. BWIDTH

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 2

https://trustee.ietf.org/license-info

5.5. Q4S-ALERT

5.6. Q4S-RECOVERY

5.7. CANCEL

6. Response Codes

6.1. 100 Trying

6.2. Success 2xx

6.2.1. 200 OK

6.3. Redirection 3xx

6.4. Request Failure 4xx

6.4.1. 400 Bad Request

6.4.2. 404 Not Found

6.4.3. 405 Method Not Allowed

6.4.4. 406 Not Acceptable

6.4.5. 408 Request Timeout

6.4.6. 413 Request Entity Too Large

6.4.7. 414 Request-URI Too Long

6.4.8. 415 Unsupported Media Type

6.4.9. 416 Unsupported URI Scheme

6.5. Server Failure 5xx

6.5.1. 500 Server Internal Error

6.5.2. 501 Not Implemented

6.5.3. 503 Service Unavailable

6.5.4. 504 Server Time-Out

6.5.5. 505 Version Not Supported

6.5.6. 513 Message Too Large

6.6. Global Failures 6xx

6.6.1. 600 Session Does Not Exist

6.6.2. 601 Quality Level Not Allowed

6.6.3. 603 Session Not Allowed

6.6.4. 604 Authorization Not Allowed

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 3

7. Protocol

7.1. Protocol Phases

7.2. SDP Structure

7.2.1. "qos-level" Attribute

7.2.2. "alerting-mode" Attribute

7.2.3. "alert-pause" Attribute

7.2.4. "recovery-pause" Attribute

7.2.5. "public-address" Attributes

7.2.6. "latency" Attribute

7.2.7. "jitter" Attribute

7.2.8. "bandwidth" Attribute

7.2.9. "packetloss" Attribute

7.2.10. "flow" Attributes

7.2.11. "measurement" Attributes

7.2.12. "max-content-length" Attribute

7.3. Measurements

7.3.1. Latency

7.3.2. Jitter

7.3.3. Bandwidth

7.3.4. Packet Loss

7.4. Handshake Phase

7.5. Negotiation Phase

7.5.1. Stage 0: Measurement of Latencies and Jitter

7.5.2. Stage 1: Measurement of Bandwidth and Packet Loss

7.5.3. Quality Constraints Not Reached

7.5.3.1. Actuator Role

7.5.3.2. Policy Server Role

7.5.4. "qos-level" Changes

7.6. Continuity Phase

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 4

7.7. Termination Phase

7.7.1. Sanity Check of Quality Sessions

7.8. Dynamic Constraints and Flows

7.9. "qos-level" Upgrade and Downgrade Operation

8. General User Agent Behavior

8.1. Roles in Peer-to-Peer Scenarios

8.2. Multiple Quality Sessions in Parallel

8.3. General Client Behavior

8.3.1. Generating Requests

8.4. General Server Behavior

9. Implementation Recommendations

9.1. Default Client Constraints

9.2. Latency and Jitter Measurements

9.3. Bandwidth Measurements

9.4. Packet Loss Measurement Resolution

9.5. Measurements and Reactions

9.6. Instability Treatments

9.6.1. Loss of Control Packets

9.6.2. Outlier Samples

9.7. Scenarios

9.7.1. Client to ACP

9.7.2. Client to Client

10. Security Considerations

10.1. Confidentiality Issues

10.2. Integrity of Measurements and Authentication

10.3. Privacy of Measurements

10.4. Availability Issues

10.5. Bandwidth Occupancy Issues

11. Future Code Point Requirements

11.1. Service Port

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 5

12. IANA Considerations

13. References

13.1. Normative References

13.2. Informative References

Acknowledgements

Contributors

Authors' Addresses

Latency:

Jitter:

Bandwidth:

Packet loss:

1. Introduction
The World Wide Web (WWW) is a distributed hypermedia system that has gained widespread
acceptance among Internet users. Although WWW browsers support other, preexisting Internet
application protocols, the primary protocol used between WWW clients and servers became the
HyperText Transfer Protocol (HTTP) (, , , , , and

). Since then, HTTP over TLS (known as HTTPS and described in) has
become an imperative for providing secure and authenticated WWW access. The mechanisms
described in this document are equally applicable to HTTP and HTTPS.

The ease of use of the Web has prompted its widespread employment as a client/server
architecture for many applications. Many of such applications require the client and the server
to be able to communicate with each other and exchange information with certain quality
constraints.

Quality in communications at the application level consists of four measurable parameters:

The time a message takes to travel from source to destination. It may be approximated
as RTT/2 (round-trip time), assuming the networks are symmetrical. In this context, we will
consider the statistical median formula.

Latency variation. There are some formulas to calculate jitter, and in this context, we will
consider the arithmetic mean formula.

Bit rate of communication. To ensure quality, a protocol must ensure the
availability of the bandwidth needed by the application.

The percentage of packet loss is closely related to bandwidth and jitter. Packet loss
affects bandwidth because a high packet loss sometimes implies retransmissions that also
consumes extra bandwidth, other times the retransmissions are not achieved (for
example, in video streaming over UDP), and the information received is less than the
required bandwidth. In terms of jitter, a packet loss sometimes is seen by the destination
as a larger time between arrivals, causing a jitter growth.

[RFC7230] [RFC7231] [RFC7232] [RFC7233] [RFC7234]
[RFC7235] [RFC2818]

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 6

Any other communication parameter, such as throughput, is not a network parameter because it
depends on protocol window size and other implementation-dependent aspects.

The Q4S protocol provides a mechanism for quality monitoring based on an HTTP syntax and the
Session Description Protocol (SDP) in order to be easily integrated in the WWW, but it may be
used by any type of application, not only those based on HTTP. Quality requirements may be
needed by any type of application that communicates using any kind of protocol, especially those
with real-time constraints. Depending on the nature of each application, the constraints may be
different, leading to different parameter thresholds that need to be met.

Q4S is an application-level client/server protocol that continuously measures session quality for a
given flow (or set of flows), end-to-end (e2e) and in real time; raising alerts if quality parameters
are below a given negotiated threshold and sending recoveries when quality parameters are
restored. Q4S describes when these notifications, alerts, and recoveries need to be sent and the
entity receiving them. The actions undertaken by the receiver of the alert are out of scope of the
protocol.

Q4S is session-independent from the application flows to minimize the impact on them. To
perform the measurements, two control flows are created on both communication paths
(forward and reverse directions).

This protocol specification is the product of research conducted over a number of years and is
presented here as a permanent record and to offer a foundation for future similar work. It does
not represent a standard protocol and does not have IETF consensus.

1.1. Scope
The purpose of Q4S is to measure end-to-end network quality in real time. Q4S does not transport
any application data. This means that Q4S is designed to be used jointly with other transport
protocols such as Real-time Transport Protocol (RTP) , Transmission Control Protocol
(TCP) , QUIC , HTTP , etc.

Some existent transport protocols are focused on real-time media transport and certain
connection metrics are available, which is the case of RTP and RTP Control Protocol (RTCP)

. Other protocols such as QUIC provide low connection latencies as well as advanced
congestion control. These protocols transport data efficiently and provide a lot of functionalities.
However, there are currently no other quality measurement protocols offering the same level of
function as Q4S. See Section 1.4 for a discussion of the IETF's quality measurement protocols,
One-Way Active Measurement Protocol (OWAMP) and Two-Way Active Measurement Protocol
(TWAMP).

Q4S enables applications to become reactive under e2e network quality changes. To achieve it,
an independent Q4S stack application must run in parallel with the target application. Then, Q4S
metrics may be used to trigger actions on the target application, such as speed adaptation to
latency in multiuser games, bitrate control at streaming services, intelligent commutation of
delivery node at Content Delivery Networks, and whatever the target application allows.

[RFC3550]
[RFC0793] [QUIC] [RFC7230]

[RFC3550]

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 7

1.2. Motivation
Monitoring quality of service (QoS) in computer networks is useful for several reasons:

It enables real-time services and applications to verify whether network resources achieve a
certain QoS level. This helps real-time services and applications to run over the Internet,
allowing the existence of Application Content Providers (ACPs), which offer guaranteed real-
time services to the end users.
Real-time monitoring allows applications to adapt themselves to network conditions
(application-based QoS) and/or request more network quality from the Internet Service
Provider (ISP) (if the ISP offers this possibility).
Monitoring may also be required by peer-to-peer (P2P) real-time applications for which Q4S
can be used.
Monitoring enables ISPs to offer QoS to any ACP or end user application in an accountable
way.
Monitoring enables e2e negotiation of QoS parameters, independently of the ISPs of both
endpoints.

A protocol to monitor QoS must address the following issues:

Must be ready to be used in conjunction with current standard protocols and applications,
without forcing a change on them.
Must have a formal and compact way to specify quality constraints desired by the
application to run.
Must have measurement mechanisms that avoid application disruption and minimize
network resources consumption.
Must have specific messages to alert about the violation of quality constraints in different
directions (forward and reverse) because network routing may not be symmetrical, and of
course, quality constraints may not be symmetrical.
After having alerted about the violation of quality constraints, must have specific messages
to inform about the recovery of quality constraints in corresponding directions (forward and
reverse).
Must protect the data (constraints, measurements, QoS levels demanded from the network)
in order to avoid the injection of malicious data in the measurements.

•

•

•

•

•

•

•

•

•

•

•

1.3. Summary of Features
The Quality for Service (Q4S) protocol is a message-oriented communication protocol that can be
used in conjunction with any other application-level protocol. Q4S is a measurement protocol.
Any action taken derived from its measurements are out of scope of the protocol. These actions
depend on the application provider and may be application-level adaptive reactions, may involve
requests to the ISP, or whatever the application provider decides.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 8

The benefits in quality measurements provided by Q4S can be used by any type of application
that uses any type of protocol for data transport. It provides a quality monitoring scheme for any
communication that takes place between the client and the server, not only for the Q4S
communication itself.

Q4S does not establish multimedia sessions, and it does not transport application data. It
monitors the fulfillment of the quality requirements of the communication between the client
and the server; therefore, it does not impose any restrictions on the type of application, protocol,
or usage of the monitored quality connection.

Some applications may vary their quality requirements dynamically for any given quality
parameter. Q4S is able to adapt to the changing application needs, modifying the parameter
thresholds to the new values and monitoring the network quality according to the new quality
constraints. It will raise alerts if the new constraints are violated.

The Q4S session lifetime is composed of four phases with different purposes: Handshake,
Negotiation, Continuity, and Termination. Negotiation and Continuity phases perform network
parameter measurements per a negotiated measurement procedure. Different measurement
procedures could be used inside Q4S, although one default measurement mechanism is needed
for compatibility reasons and is the one defined in this document. Basically, Q4S defines how to
transport application quality requirements and measurement results between a client and
server and how to provide monitoring and alerting, too.

Q4S must be executed just before starting a client-server application that needs a quality
connection in terms of latency, jitter, bandwidth, and/or packet loss. Once the client and server
have succeeded in establishing communication under quality constraints, the application can
start, and Q4S continues measuring and alerting if necessary.

The quality parameters can be suggested by the client in the first message of the Handshake
phase, but it is the server that accepts these parameter values or forces others. The server is in
charge of deciding the final values of quality connection.

1.4. Differences from OWAMP/TWAMP
OWAMP and TWAMP are two protocols to measure network quality in
terms of RTT, but they have a different goal than Q4S. The main difference is the scope: Q4S is
designed to assist reactive applications, whereas OWAMP/TWAMP is designed to measure just
network delay.

The differences can be summarized in the following points:

OWAMP and TWAMP are not intended for measuring availability of resources (certain
bandwidth availability, for example) but only RTT. However, Q4S is intended for measuring
required bandwidth, packet loss, jitter, and latency in both directions. Available bandwidth
is not measured by Q4S, but bandwidth required for a specific application is.
OWAMP and TWAMP do not have responsivity control (which defines the speed of protocol
reactions under network quality changes) because these protocols are designed to measure

[RFC4656] [RFC5357]

•

•

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 9

network performance, not to assist reactive applications, and do not detect the fluctuations
of quality within certain time intervals to take reactive actions. However, responsivity
control is a key feature of Q4S.
OWAMP and TWAMP are not intended to run in parallel with reactive applications, but the
Q4S protocol's goal is to run in parallel and assist reactive applications in making decisions
based on Q4S-ALERT packets, which may trigger actions.

•

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

(a)

3. Overview of Operation
This section introduces the basic operation of Q4S using simple examples. This section is of a
tutorial nature and does not contain any normative statements.

The first example shows the basic functions of Q4S: communication establishment between a
client and a server, quality requirement negotiations for the requested application, application
start and continuous quality parameter measurements, and finally communication termination.

The client triggers the establishment of the communication by requesting a specific service or
application from the server. This first message must have a special URI , which may
force the use of the Q4S protocol if it is implemented in a standard web browser. This message
consists of a Q4S BEGIN method, which can optionally include a proposal for the communication
quality requirements in an SDP body. This option gives the client a certain negotiation capacity
about quality requirements, but it will be the server who finally decides the stated requirements.

This request is answered by the server with a Q4S 200 OK response letting the client know that it
accepts the request. This response message must contain an SDP body with the following:

The assigned Q4S sess-id.
The quality constraints required by the requested application.
The measurement procedure to use.
"alerting-mode" attribute: There are two different scenarios for sending alerts that trigger
actions either on the network or in the application when measurements identify violated
quality constraints. In both cases, alerts are triggered by the server.

Q4S-aware-network scenario: The network is Q4S aware and reacts by itself to these
alerts. In this scenario, Q4S-ALERT messages are sent by the server to the client, and
network elements inspect and process these alert messages. The alerting mode in this
scenario is called Q4S-aware-network alerting mode.

[RFC3986]

•
•
•
•

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 10

(b) Reactive scenario: As shown in Figure 1, the network is not Q4S aware. In this
scenario, alert notifications are sent to a specific node, called an Actuator, which is in
charge of making decisions regarding what actions to trigger: either to change
application behavior to adapt it to network conditions and/or invoke a network policy
server in order to reconfigure the network and request better quality for application
flows.

The format of messages exchanged between the server stack and the Actuator doesn't
follow Q4S codification rules; their format will be implementation dependent. In this
way, we will call the messages sent from the server stack to the Actuator "notifications"
(e.g., alert notifications) and the messages sent from the Actuator to the server stack in
response to notifications "acknowledges" (e.g., alert acknowledges).

"alert-pause" attribute: The amount of time between consecutive alerts. In the Q4S-aware-
network scenario, the server has to wait this period of time between Q4S-ALERT messages
sent to the client. In the Reactive scenario, the server stack has to wait this period of time
between alert notifications sent to the Actuator. Measurements are not stopped in
Negotiation or Continuity phases during this period of time, but no alerts are sent, even with
violated network quality constraints, in order to leave time for network reconfiguration or
for application adjustments.
"recovery-pause" attribute: The amount of time the Q4S server waits before trying to recover
the initial "qos-level" (Section 7.2.1). After having detected violation of quality constraints
several times, the "qos-level" will have been increased accordingly. If this violation detection
finally stops, the server waits for a period of time (recovery time), and if the situation
persists, it tries to recover to previous "qos-level" values gradually by sending Q4S-
RECOVERY messages to the client in the Q4S-aware-network scenario, or recovery
notifications to the Actuator in the Reactive scenario (Section 7.9).

Figure 1: Reactive Scenario

 +------+ +-----------+
 | App |<----- app flows---------->|Application|
 |Client| +-----------+
 +------+ A
 |
 +------+ +------+ +--------+
 | Q4S |<----Q4S---->| Q4S |<----->|Actuator|
 |Client| |Server| +--------+
 +------+ +------+ |
 V
 +-------------+
 |policy server|
 +-------------+

•

•

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 11

Stage 0:

Stage 1:

(a)

(b)

(c)

It is important to highlight that any Q4S 200 OK response sent by the server to the client at any
time during the life of a quality session may contain an SDP body with new values of quality
constraints required by the application. Depending on the phase and the state of the
measurement procedure within the specific phase, the client will react accordingly to take into
account the new quality constraints in the measurement procedure.

Once the communication has been established (i.e., the Handshake phase is finished), the
protocol will verify that the communication path between the client and the server meets the
quality constraints in both directions, from and to the server (Negotiation phase). This
Negotiation phase requires taking measurements of the quality parameters: latencies, jitter,
bandwidth, and packet loss. This phase is initiated with a client message containing a Q4S READY
method, which will be answered by the server with a Q4S 200 OK response.

Negotiation measurements are achieved in two sequential stages:

latency and jitter measurements

bandwidth and packet loss measurements

Stage 0 measurements are taken through Q4S PING messages sent from both the client and the
server. All Q4S PING requests will be answered by Q4S 200 OK messages to allow for
bidirectional measurements.

Different client and server implementations may send a different number of PING messages for
measuring, although at least 255 messages should be considered to perform the latency
measurement. The Stage 0 measurements only may be considered ended when neither client nor
server receive new PING messages after an implementation-dependent guard time. Only after
Stage 0 has ended, can the client send a "READY 1" message.

After a pre-agreed number of measurements have been performed, determined by the
measurement procedure sent by the server, three scenarios may be possible:

Measurements do not meet the requirements: in this case, the stage 0 is repeated after
sending an alert from the server to the client or from the server stack to the Actuator,
depending on the alerting mode defined in the Handshake phase. Notice that
measurements continue to be taken but no alerts are sent during the "alert-pause" time. In
the Reactive scenario, the Actuator will decide either to forward the alert notification to
the network policy server or to the application, depending on where reconfiguration
actions have to be taken.
Measurements do meet the requirements: in this case, client moves to stage 1 by sending a
new READY message.
At any time during the measurement procedure, the Q4S 200 OK message sent by the
server to the client, in response to a Q4S PING message, contains an SDP body with new
values of quality constraints required by the application. This means the application has

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 12

varied their quality requirements dynamically; therefore, quality thresholds used while
monitoring quality parameters have to be changed to the new constraints. In this case, the
client moves to the beginning of Stage 0 for initiating the negotiation measurements again.

Stage 1 is optional. Its purpose is to measure the availability of application-needed bandwidth. If
the "bandwidth" attribute is set to zero kbps in the SDP, the client can skip stage 1 by sending a
"READY 2" message after completion of stage 0. Stage 1 measurements are achieved through Q4S
BWIDTH messages sent from both the client and the server. Unlike PING messages, Q4S BWIDTH
requests will not be answered.

If Stage 0 and 1 meet the application quality constraints, the application may start. Q4S will enter
the Continuity phase by measuring the network quality parameters through the Q4S PING
message exchange on both connection paths and raising alerts in case of violation.

Once the client wants to terminate the quality session, it sends a Q4S CANCEL message, which
will be acknowledged by the server with another Q4S CANCEL message. Termination of quality
sessions are always initiated by the client because Q4S TCP requests follow the client/server
schema.

Figure 2 depicts the message exchange in a successful scenario.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 13

Both client and server measurements are included in the PING and BWIDTH messages, allowing
both sides of the communication channel to be aware of all measurements in both directions.

The following two examples show the behavior of the Q4S protocol when quality constraints are
violated, and alerts are generated; and, later on, when the violation of quality constraints stops
leading to the execution of the recovery process. The first example (Figure 3) shows the Q4S-
aware-network alerting mode scenario:

Figure 2: Successful Q4S Message Exchange

 +---+
 | |
 | Client Server |
 | |
Handshake | --------- Q4S BEGIN -----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
Negotiation | |
(Stage 0) | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | --------- Q4S PING ------------> |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | <-------- Q4S 200 OK ----------- |
 | ... |
Negotiation | |
(Stage 1) | --------- Q4S READY 1----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S BWITDH ----------> |
 | <-------- Q4S BWIDTH------------ |
 | --------- Q4S BWITDH ----------> |
 | <-------- Q4S BWIDTH------------ |
 | ... |
Continuity | --------- Q4S READY 2 ---------> |
 | <-------- Q4S 200 OK ----------- | app start
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | |
Termination | --------- Q4S CANCEL ----------> | app end
 | <-------- Q4S CANCEL ----------- |
 | |
 +---+

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 14

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 15

 +---+
 | |
 | Client Server |
 | |
Handshake | --------- Q4S BEGIN -----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
Negotiation | |
(Stage 0) | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 | |
 | <-------- Q4S-ALERT ------------ |
 | -------- Q4S-ALERT ------------> |
 | (alert-pause start) |
Repetition | |
of Stage 0 | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | ... |
Negotiation | |
(Stage 1) | --------- Q4S READY 1----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S BWITDH ----------> |
 | <-------- Q4S BWIDTH------------ |
 | ... |
 | |
Continuity | --------- Q4S READY 2 ---------> |
 | <-------- Q4S 200 OK ----------- | app start
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |
 | <-------- Q4S-ALERT ------------ |
 | --------- Q4S-ALERT -----------> |
 | |
 | (alert-pause start) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 16

In this Q4S-aware-network alerting mode scenario, the server may send Q4S alerts to the client at
any time upon detection of violated quality constraints. This alerting exchange must not
interrupt the continuity quality parameter measurements between client and server.

The second example depicted in Figure 4 represents the Reactive scenario, in which alert
notifications are sent from the server stack to the Actuator, which is in charge of deciding to act
over application behavior and/or to invoke a network policy server. The Actuator is an entity
that has a defined set of different quality levels and decides how to act depending on the actions
stated for each of these levels; it can take actions for making adjustments on the application, or it
can send a request to the policy server for acting on the network. The policy server also has a
defined set of different quality levels previously agreed upon between the Application Content
Provider and the ISP. The Reactive alerting mode is the default mode.

Figure 3: Q4S-Aware-Network Alerting Mode

 | <-------- Q4S-ALERT ------------ |
 | --------- Q4S-ALERT -----------> |
 | (alert-pause) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | Fulfilled constraints) |
 | |
 | (recovery-pause start) |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 |(recovery-pause expires & |
 | Fulfilled constraints) |
 | <--------- Q4S-RECOVERY --------- |
 | -------- Q4S-RECOVERY -----------> |
 | |
 | (recovery-pause start) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 | |
Termination | --------- Q4S CANCEL ----------> | app end
 | <-------- Q4S CANCEL ----------- |
 | |
 +---+

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 17

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 18

 +---+
 | |
 | Client Server Actuator |
Handshake | ----- Q4S BEGIN -----> |
 | <---- Q4S 200 OK ----- |
 | |
Negotiation | |
(Stage 0) | ----- Q4S READY 0----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ---- Q4S 200 OK ----> |
 | ... |
 | (alert-pause start) |
 | --alert |
 | notification--> |
 | |
 | <--alert |
 | acknowledge--- |
 | |
Repetition | |
of Stage 0 | ----- Q4S READY 0----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |
 | |
 | --alert |
 | notification--> |
 | |
 | <--alert |
 | acknowledge--- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ... |
Negotiation | |
(Stage 1) | ----- Q4S READY 1----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S BWITDH ----> |
 | <---- Q4S BWIDTH------ |
 | ... |
Continuity | ----- Q4S READY 2 ---> |
 | <---- Q4S 200 OK ----- | app start
 | |
 |(alert-pause expires & |
 | fulfilled constraints) |
 | |
 |(recovery-pause start) |

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 19

At the end of any stage of the Negotiation phase, the server sends an alert notification to the
Actuator if quality constraints are violated. During the period of time defined by the "alert-pause"
attribute, no further alert notifications are sent, but measurements are not interrupted. This way,
both the client and the server will detect network improvements as soon as possible. In a similar
way during the Continuity phase, the server may send alert notifications at any time to the
Actuator upon detection of violated quality constraints. This alerting exchange must not
interrupt the continuity measurements between client and server.

Finally, in the Termination phase, Q4S CANCEL messages sent from the client to the server must
be forwarded from the server to the Actuator in order to release possible assigned resources for
the session.

Figure 4: Reactive Alerting Mode

 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ----- Q4S PING ------> |
 | |
 |(recovery-pause expires & |
 | fulfilled constraints) |
 | |
 | --recovery |
 | notification--> |
 | |
 | <--recovery |
 | acknowledge--- |
 | |
 |(recovery-pause start) |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ----- Q4S 200 OK ----> |
 | ----- Q4S PING ------> |
 | ... |
 | |
Termination | ----- Q4S CANCEL ----> | app end
 | --cancel |
 | notification--> |
 | |
 | <--cancel |
 | acknowledge-- |
 | <---- Q4S CANCEL ----- |
 | |
 +---+

4. Q4S Messages
Q4S is a text-based protocol and uses the UTF-8 charset . A Q4S message is either a
request or a response.

[RFC3629]

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 20

Both request and response messages use the basic format of Internet Message Format .
Both types of messages consist of a start-line, one or more header fields, an empty line indicating
the end of the header fields, and an optional message-body. This document uses ABNF notation

 for the definitions of the syntax of messages.

The start-line, each message-header line, and the empty line be terminated by a carriage-
return line-feed sequence (CRLF). Note that the empty line be present even if the message-
body is not.

Much of Q4S's messages and header field syntax are identical to HTTP/1.1. However, Q4S is not
an extension of HTTP.

[RFC5322]

[RFC5234]

MUST
MUST

 generic-message = start-line CRLF
 *message-header CRLF
 CRLF
 [message-body]
 start-line = Request-Line / Status-Line

Method:

Request-URI:

Q4S-Version:

4.1. Requests
Q4S requests are distinguished by having a Request-Line for a start-line. A Request-Line contains
a method name, a Request-URI, and the protocol version separated by a single space (SP)
character.

The Request-Line ends with CRLF. No CR or LF are allowed except in the end-of-line CRLF
sequence. No linear whitespace (LWSP) is allowed in any of the elements.

This specification defines seven methods: BEGIN for starting and negotiating quality
sessions, READY for synchronization of measurements, PING and BWIDTH for quality
measurements purposes, CANCEL for terminating sessions, Q4S-ALERT for reporting
quality violations, and Q4S-RECOVERY for reporting quality recovery.

The Request-URI is a Q4S URI as described in Section 7.4. The Request-
URI contain unescaped spaces or control characters and be enclosed
in "<>".

Both request and response messages include the version of Q4S in use. To be
compliant with this specification, applications sending Q4S messages include a Q4S-
Version of "Q4S/1.0". The Q4S-Version string is case insensitive, but implementations
send uppercase. Unlike HTTP/1.1, Q4S treats the version number as a literal string. In
practice, this should make no difference.

 Request-Line = Method SP Request-URI SP Q4S-Version CRLF

[RFC3986]
MUST NOT MUST NOT

MUST
MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 21

1xx:

2xx:

3xx:

4xx:

5xx:

6xx:

4.2. Responses
Q4S responses are distinguished from requests by having a Status-Line as their start-line. A
Status-Line consists of the protocol version followed by a numeric Status-Code and its associated
textual phrase, with each element separated by a single SP character. No CR or LF is allowed
except in the final CRLF sequence.

The Status-Code is a 3-digit integer result code that indicates the outcome of an attempt to
understand and satisfy a request. The Reason-Phrase is intended to give a short textual
description of the Status-Code. The Status-Code is intended for use by automata, whereas the
Reason-Phrase is intended for the human user. A client is not required to examine or display the
Reason-Phrase.

While this specification suggests specific wording for the Reason-Phrase, implementations
choose other text, for example, in the language indicated in the Accept-Language header field of
the request.

The first digit of the Status-Code defines the class of response. The last two digits do not have any
categorization role. For this reason, any response with a status code between 100 and 199 is
referred to as a "1xx response", any response with a status code between 200 and 299 as a "2xx
response", and so on. Q4S/1.0 allows following values for the first digit:

Provisional -- request received, continuing to process the request;

Success -- the action was successfully received, understood, and accepted;

Redirection -- further action needs to be taken in order to complete the request;

Request Failure -- the request contains bad syntax or cannot be fulfilled at this server;

Server Error -- the server failed to fulfill an apparently valid request;

Global Failure -- the request cannot be fulfilled at any server.

The status codes are the same as described in HTTP . In the same way as HTTP, Q4S
applications are not required to understand the meaning of all registered status codes, though
such understanding is obviously desirable. However, applications understand the class of
any status code, as indicated by the first digit, and treat any unrecognized response as being
equivalent to the x00 status code of that class.

The Q4S-ALERT, Q4S-RECOVERY, and CANCEL requests do not have to be responded to. However,
after receiving a Q4S-ALERT, Q4S-RECOVERY, or CANCEL request, the server send a Q4S-
ALERT, Q4S-RECOVERY, or CANCEL request to the client.

 Status-Line = Q4S-Version SP Status-Code SP Reason-Phrase CRLF

MAY

[RFC7231]

MUST

SHOULD

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 22

4.3. Header Fields
Q4S header fields are identical to HTTP header fields in both syntax and semantics.

Some header fields only make sense in requests or responses. These are called request header
fields and response header fields, respectively. If a header field appears in a message that does
not match its category (such as a request header field in a response), it be ignored.MUST

Session-Id:

Sequence-Number:

Timestamp:

Stage:

4.3.1. Common Q4S Header Fields

These fields may appear in request and response messages.

the value for this header field is the same sess-id used in SDP (embedded in the SDP
"o=" line) and is assigned by the server. The messages without SDP include this
header field. If a message has an SDP body, this header field is optional. The method of
sess-id allocation is up to the creating tool, but it is suggested that a UTC timestamp be used
to ensure uniqueness.

sequential and cyclic positive integer number assigned to PING and
BWIDTH messages and acknowledged in 200 OK responses.

this optional header field contains the system time (with the best possible
accuracy). It indicates the time in which the PING request was sent. If this header field is
present in PING messages, then the 200 OK response messages include this value.

this is used in the client's READY requests and the server's 200 OK responses during the
Negotiation and Continuity phases in order to synchronize the initiation of the
measurements. Example: Stage: 0

MUST

MUST

User-Agent:

Signature:

4.3.2. Specific Q4S Request Header Fields

In addition to HTTP header fields, these are the specific Q4S request header fields:

this header field contains information about the implementation of the user agent.
This is for statistical purposes, the tracing of protocol violations, and the automated
recognition of user agents for the sake of tailoring responses to avoid particular user agent
limitations. User agents include this field with requests. The field contain
multiple product tokens and comments identifying the agent and any sub-products that
form a significant part of the user agent. By convention, the product tokens are listed in
order of their significance for identifying the application.

this header field contains a digital signature that can be used by the network,
Actuator, or policy server to validate the SDP, preventing security attacks. The Signature is
an optional header field generated by the server according to the pre-agreed security
policies between the Application Content Provider and the ISP. For example, a hash
algorithm and encryption method such as SHA256 and RSA based on

SHOULD MAY

[RFC6234] [RFC8017]

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 23

Measurements:

the server certificate could be used. This certificate is supposed to be delivered by a
Certification Authority (CA) or policy owner to the server. The signature is applied to the
SDP body.

If the Signature header field is not present, other validation mechanisms be
implemented in order to provide assured quality with security and control.

this header field carries the measurements of the quality parameters in PING
and BWIDTH requests. The format is:

Where "l" stands for latency followed by the measured value (in milliseconds) or an empty
space, "j" stands for jitter followed by the measured value (in milliseconds) or an empty
space, "pl" stands for packet loss followed by the measured value (in percentage with two
decimals) or an empty space, and "bw" stands for bandwidth followed by the measured
value (in kbps) or an empty space.

 Signature= RSA (SHA256 (<sdp>), <certificate>)

MAY

 Measurements: "l=" " "|[0..9999] ", j=" " "|[0..9999] ", pl="
 " "|[0.00 .. 100.00] ", bw=" " "|[0..999999]

Expires:

4.3.3. Specific Q4S Response Header Fields

its purpose is to provide a sanity check and allow the server to close inactive sessions.
If the client does not send a new request before the expiration time, the server close
the session. The value be an integer, and the measurement units are milliseconds.

In order to keep the session open, the server send a Q4S alert before the session
expiration (Expires header field), with the same quality levels and an alert cause of "keep-
alive". The purpose of this alert is to avoid TCP sockets, which were opened with READY
message, from being closed, specially in NAT scenarios.

MAY
MUST

MUST

4.4. Bodies
Requests, including new requests defined in extensions to this specification, contain
message bodies unless otherwise noted. The interpretation of the body depends on the request
method.

For response messages, the request method and the response status code determine the type and
interpretation of any message body. All responses include a body.

The Internet media type of the message body be given by the Content-Type header field.

MAY

MAY

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 24

4.4.1. Encoding

The body be compressed. This mechanism is valid for other protocols such as HTTP
and SIP , but a compression/coding scheme will limit the way the request is parsed to
certain logical implementations, thus making the protocol concept more implementation
dependent. In addition, the bandwidth calculation may not be valid if compression is used.
Therefore, the HTTP Accept-Encoding request header field cannot be used in Q4S with values
different from "identity", and if it is present in a request, the server ignore it. In addition,
the response header field Content-Encoding is optional, but if present, the unique permitted
value is "identity".

The body length in bytes be provided by the Content-Length header field. The "chunked"
transfer encoding of HTTP/1.1 be used for Q4S.

Note: The chunked encoding modifies the body of a message in order to transfer it
as a series of chunks, each one with its own size indicator.

MUST NOT
[RFC3261]

MUST

MUST
MUST NOT

5. Q4S Method Definitions
The Method token indicates the method to be performed on the resource identified by the
Request-URI. The method is case sensitive.

The list of methods allowed by a resource can be specified in an Allow header field .
The return code of the response always notifies the client when a method is currently allowed on
a resource, since the set of allowed methods can change dynamically. Any server application

 return the status code 405 (Method Not Allowed) if the method is known, but not
allowed for the requested resource, and 501 (Not Implemented) if the method is unrecognized or
not implemented by the server.

 Method = "BEGIN" | "READY" | "PING" | "BWIDTH" |
 "Q4S-ALERT" | "Q4S-RECOVERY" | "CANCEL" | extension-method

 extension-method = token

[RFC7231]

SHOULD

5.1. BEGIN
The BEGIN method requests information from a resource identified by a Q4S URI. The purpose of
this method is to start the quality session.

This method is used only during the Handshake phase to retrieve the SDP containing the sess-id
and all quality and operation parameters for the desired application to run.

When a BEGIN message is received by the server, any current quality session be canceled,
and a new session should be created.

The response to a Q4S BEGIN request is not cacheable.

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 25

5.2. READY
The READY method is used to synchronize the starting time for the sending of PING and BWIDTH
messages over UDP between clients and servers. Including the Stage header field in this method
is mandatory.

This message is used only in Negotiation and Continuity phases, and only just before making a
measurement. Otherwise (outside of this context), the server ignore this method.MUST

5.3. PING
This message is used during the Negotiation and Continuity phases to measure the RTT and jitter
of a session. The message be sent only over UDP ports.

The fundamental difference between the PING and BWIDTH requests is reflected in the different
measurements achieved with them. PING is a short message, and it be answered in order
to measure RTT and jitter, whereas BWIDTH is a long message and be answered.

PING is a request method that can be originated by either the client or the server. The client
 also answer the server PING messages, assuming a "server role" for these messages during

the measurement process.

Including the Measurements header field in this method is mandatory, and provides updated
measurements values for latency, jitter, and packet loss to the counterpart.

MUST

MUST
MUST NOT

MUST

5.4. BWIDTH
This message is used only during the Negotiation phase to measure the bandwidth and packet
loss of a session. The message be sent only over UDP ports.

BWIDTH is a request method that can be originated by either the client or the server. Both client
and server answer BWIDTH messages.

Including the Measurements header field in this method is mandatory and provides updated
measurements values for bandwidth and packet loss to the counterpart.

MUST

MUST NOT

5.5. Q4S-ALERT
This is the request message that Q4S generates when the measurements indicate that quality
constraints are being violated. It is used during the Negotiation and Continuity phases.

This informative message indicates that the user experience is being degraded and includes the
details of the problem (bandwidth, jitter, packet loss measurements). The Q4S-ALERT message
does not contain any detail on the actions to be taken, which depend on the agreements between
all involved parties.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 26

Unless there is an error condition, an answer to a Q4S-ALERT request is optional and is
formatted as a request Q4S-ALERT message. If there is an error condition, then a response
message is sent. The response to a Q4S-ALERT request is not cacheable.

This method be initiated by the server in both alerting modes. In the Q4S-aware-network
alerting mode, the Q4S-ALERT messages are sent by the server to the client, advising the network
to react by itself. In the Reactive alerting mode, alert notifications are triggered by the server
stack and sent to the Actuator (see Figure 1, "Reactive Scenario").

The way in which the server stack notifies the Actuator is implementation dependent, and the
communication between the Actuator and the network policy server is defined by the protocol
and API that the policy server implements.

MUST

Client----q4s----SERVER STACK--->ACTUATOR-->APP OR POLICY SERVER

5.6. Q4S-RECOVERY
This is the request message that Q4S generates when the measurements indicate that quality
constraints, which had been violated, have been fulfilled during a period of time ("recovery-
pause"). It is used during the Negotiation and Continuity phases.

This informative message indicates that the "qos-level" could be increased gradually until the
initial "qos-level" is recovered (the "qos-level" established at the beginning of the session that was
decreased during violation of constraints. See Section 7.9). The Q4S-RECOVERY message does not
contain any detail on the actions to be taken, which depends on the agreements between all
involved parties.

The answer to a Q4S-RECOVERY request is formatted as a request Q4S-RECOVERY message. A
Q4S-RECOVERY request be answered with a response message unless there is an error
condition. The response to a Q4S-RECOVERY request is not cacheable.

Like the Q4S-ALERT message, the Q4S-RECOVERY method is always initiated by the server in both
alerting modes. In the Q4S-aware-network alerting mode, the Q4S-RECOVERY messages are sent
by the server to the client, advising the network to react by itself. In the Reactive alerting mode,
recovery notifications are triggered by the server stack and sent to the Actuator (see Figure 1,
"Reactive Scenario").

MUST NOT

5.7. CANCEL
The purpose of the CANCEL message is the release of the Q4S Session-Id and the possible
resources assigned to the session. This message could be triggered by the Q4S stack or by the
application using the stack (through an implementation-dependent API).

In the same way as Q4S-ALERT, CANCEL must not be answered with a response message, but
with an answer formatted as a request Q4S-CANCEL message.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 27

In the Reactive scenario, the server stack react to the Q4S CANCEL messages received from
the client by forwarding a cancel notification to the Actuator, in order to release possible
assigned resources for the session (at the application or at the policy server). The Actuator
answer the cancel notification with a cancel acknowledge towards the server stack,
acknowledging the reception.

MUST

MUST

6. Response Codes
Q4S response codes are used for TCP and UDP. However, in UDP, only the response code 200 is
used.

The receiver of an unknown response code must take a generic action for the received error
group (1xx, 2xx, 3xx, 4xx, 5xx, 6xx). In case of an unknown error group, the expected action
should be the same as with the 6xx error group.

6.1. 100 Trying
This response indicates that the request has been received by the next-hop server and that some
unspecified action is being taken on behalf of this request (for example, a database is being
consulted). This response, like all other provisional responses, stops retransmissions of a Q4S-
ALERT during the "alert-pause" time.

6.2. Success 2xx
2xx responses give information about the success of a request.

6.2.1. 200 OK

The request has succeeded.

6.3. Redirection 3xx
3xx responses give information about the user's new location or about alternative services that
might be able to satisfy the request.

The requesting client retry the request at the new address(es) given by the Location
header field.

SHOULD

6.4. Request Failure 4xx
4xx responses are definite failure responses from a particular server. The client
retry the same request without modification (for example, adding appropriate header fields or
SDP values). However, the same request to a different server might be successful.

SHOULD NOT

6.4.1. 400 Bad Request

The request could not be understood due to malformed syntax. The Reason-Phrase
identify the syntax problem in more detail, for example, "Missing Sequence-Number header
field".

SHOULD

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 28

6.4.2. 404 Not Found

The server has definitive information that the user does not exist at the domain specified in the
Request-URI. This status is also returned if the domain in the Request-URI does not match any of
the domains handled by the recipient of the request.

6.4.3. 405 Method Not Allowed

The method specified in the Request-Line is understood, but not allowed for the address
identified by the Request-URI.

The response include an Allow header field containing a list of valid methods for the
indicated address.

MUST

6.4.4. 406 Not Acceptable

The resource identified by the request is only able to generate response entities that have content
characteristics that are not acceptable according to the Accept header field sent in the request.

6.4.5. 408 Request Timeout

The server could not produce a response within a suitable amount of time, and the client
repeat the request without modifications at any later time.

MAY

6.4.6. 413 Request Entity Too Large

The server is refusing to process a request because the request entity-body is larger than the one
that the server is willing or able to process. The server close the connection to prevent the
client from continuing the request.

MAY

6.4.7. 414 Request-URI Too Long

The server is refusing to process the request because the Request-URI is longer than the one that
the server accepts.

6.4.8. 415 Unsupported Media Type

The server is refusing to process the request because the message body of the request is in a
format not supported by the server for the requested method. The server return a list of
acceptable formats using the Accept, Accept-Encoding, or Accept-Language header field,
depending on the specific problem with the content.

MUST

6.4.9. 416 Unsupported URI Scheme

The server cannot process the request because the scheme of the URI in the Request-URI is
unknown to the server.

6.5. Server Failure 5xx
5xx responses are failure responses given when a server itself is having trouble.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 29

6.5.1. 500 Server Internal Error

The server encountered an unexpected condition that prevented it from fulfilling the request.
The client display the specific error condition and retry the request after several
seconds.

MAY MAY

6.5.2. 501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the
appropriate response when a server does not recognize the request method, and it is not capable
of supporting it for any user.

Note that a 405 (Method Not Allowed) is sent when the server recognizes the request method, but
that method is not allowed or supported.

6.5.3. 503 Service Unavailable

The server is temporarily unable to process the request due to a temporary overloading or
maintenance of the server. The server indicate when the client should retry the request in a
Retry-After header field. If no Retry-After is given, the client act as if it had received a 500
(Server Internal Error) response.

A client receiving a 503 (Service Unavailable) attempt to forward the request to an
alternate server. It forward any other requests to that server for the duration
specified in the Retry-After header field, if present.

Servers refuse the connection or drop the request instead of responding with 503 (Service
Unavailable).

MAY
MUST

SHOULD
SHOULD NOT

MAY

6.5.4. 504 Server Time-Out

The server did not receive a timely response from an external server it accessed in attempting to
process the request.

6.5.5. 505 Version Not Supported

The server does not support, or refuses to support, the Q4S protocol version that was used in the
request. The server is indicating that it is unable or unwilling to complete the request using the
same major version as the client, other than with this error message.

In the case that the Q4S version is not supported, this error may be sent by the server in the
Handshake phase just after receiving the first BEGIN message from client.

6.5.6. 513 Message Too Large

The server was unable to process the request because the message length exceeded its
capabilities.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 30

6.6. Global Failures 6xx
6xx responses indicate that a server has definitive information about a particular policy not
satisfied for processing the request.

6.6.1. 600 Session Does Not Exist

The Session-Id is not valid.

6.6.2. 601 Quality Level Not Allowed

The "qos-level" requested is not allowed for the client/server pair.

6.6.3. 603 Session Not Allowed

The session is not allowed due to some policy (the number of sessions allowed for the server is
exceeded, or the time band of the Q4S-ALERT is not allowed for the client/server pair, etc.).

6.6.4. 604 Authorization Not Allowed

The policy server does not authorize the Q4S-ALERT quality session improvement operation due
to an internal or external reason.

7. Protocol
This section describes the measurement procedures, the SDP structure of the Q4S messages, the
different Q4S protocol phases, and the messages exchanged in them.

7.1. Protocol Phases
All elements of the IP network contribute to quality in terms of latency, jitter, bandwidth, and
packet loss. All these elements have their own quality policies in terms of priorities, traffic mode,
etc., and each element has its own way to manage the quality. The purpose of a quality
connection is to establish end-to-end communication with enough quality for the application to
function flawlessly.

To monitor quality constraints of the application, four phases are defined and can be seen in
Figure 5:

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 31

Handshake phase:

Negotiation phase:

Continuity phase:

Termination phase:

in which the server is contacted by the client, and in the answer message,
the quality constraints for the application are communicated in the embedded SDP.

in which the quality of the connection is measured in both directions
(latency, jitter, bandwidth, and packet loss), and Q4S messages may be sent in order to
alert if the measured quality does not meet the constraints. This phase is iterative until
quality constraints are reached, or the session is canceled after a number of measurement
cycles with consistent violation of the quality constraints. The number of measurement
cycles executed depends on the "qos-level", which is incremented in each cycle until a
maximum "qos-level" value is reached. Just after reaching the quality requirements, Q4S
provides a simple optional mechanism using HTTP to start the application.

in which quality is continuously measured. In this phase, the measurements
 avoid disturbing the application by consuming network resources. If quality

constraints are not met, the server stack will notify the Actuator with an alert notification.
If later the quality improves, the server stack will notify the Actuator, in this case with a
recovery notification. After several alert notifications with no quality improvements, the
Q4S stack move to the Termination phase.

in which the Q4S session is terminated. The application may be closed also
or may not start.

Figure 5: Session Lifetime Phases

+---+
| |
| |
| Handshake ---> Negotiation -+--> Continuity ----> Termination |
A	(app start)	(app end)				
	V A V A					
	violated	violated				
	constraints	constraints				
				_______	____	
			+-------+			
+------+ +---------------------+						
+---+

MUST

SHOULD

7.2. SDP Structure
The original goal of SDP was to announce necessary information for the participants and
multicast MBONE (Multicast Backbone) applications. Right now, its use has been extended to the
announcement and the negotiation of multimedia sessions. The purpose of Q4S is not to establish
media stream sessions, but to monitor a quality connection. This connection may be later used to
establish any type of session including media sessions; Q4S does not impose any conditions on
the type of communication requiring quality parameters.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 32

SDP will be used by Q4S to exchange quality constraints and will therefore always have all the
media descriptions ("m=") set to zero.

The SDP embedded in the messages is the container of the quality parameters. As these may vary
depending on the direction of the communication (to and from the client), all quality parameters
need to specify the uplink and downlink values: <uplink> / <downlink> (see Section 7.5.3 for an
example). When one or both of these values are empty, it be understood as needing no
constraint on that parameter and/or that direction.

The uplink direction be considered as being the communication from the client to the
server. The downlink direction be considered as being the communication from the server
to the client.

The SDP information can comprise all or some of the following parameters shown in the
example below. This is an example of an SDP message used by Q4S included in the 200 OK
response to a Q4S BEGIN request.

As quality constraints may be changed by applications at any time during the Q4S session
lifetime, any Q4S 200 OK response sent by the server to the client in the Negotiation and
Continuity phases could also include an SDP body with the new quality requirements stated by
the applications from then on. Therefore, in response to any PING request sent by the client to
the server, the server could send a Q4S 200 OK with an embedded SDP message that specifies
new quality constraints requested by the application.

MUST

MUST
MUST

v=0
o=q4s-UA 53655765 2353687637 IN IP4 192.0.2.33
s=Q4S
i=Q4S parameters
t=0 0
a=qos-level:0/0
a=alerting-mode:Reactive
a=alert-pause:5000
a=public-address:client IP4 198.51.100.51
a=public-address:server IP4 198.51.100.58
a=measurement:procedure default(50/50,75/75,5000,40/80,100/256)
a=latency:40
a=jitter:10/10
a=bandwidth:20/6000
a=packetloss:0.50/0.50
a=flow:app clientListeningPort TCP/10000-20000
a=flow:app clientListeningPort UDP/15000-18000
a=flow:app serverListeningPort TCP/56000
a=flow:app serverListeningPort UDP/56000
a=flow:q4s clientListeningPort UDP/55000
a=flow:q4s clientListeningPort TCP/55001
a=flow:q4s serverListeningPort UDP/56000
a=flow:q4s serverListeningPort TCP/56001

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 33

7.2.1. "qos-level" Attribute

The "qos-level" attribute contains the QoS level for uplink and downlink. Default values are 0 for
both directions. The meaning of each level is out of scope of Q4S, but a higher level
correspond to a better service quality.

Appropriate attribute values: [0..9] "/" [0..9]

The "qos-level" attribute may be changed during the session lifetime, raising or lowering the
value as necessary following the network measurements and the application needs.

SHOULD

Q4S-aware-network:

Reactive:

7.2.2. "alerting-mode" Attribute

The "alerting-mode" attribute specifies the player in charge of triggering Q4S alerts in the case of
constraint violation. There are two possible values:

Appropriate attribute values: <"Q4S-aware-network"|"Reactive">

Q4S-ALERT messages are triggered by the server to the client. In this case,
the network is supposed to be Q4S aware, and reacts by itself to these alerts.

alert notifications are sent by the server stack to the Actuator. In this case, the
network is not Q4S aware, and a specific node (Actuator) is in charge of triggering tuning
mechanisms, either on the network or in the application.

The "alerting-mode" attribute is optional, and if not present, Reactive alerting mode is assumed.

7.2.3. "alert-pause" Attribute

In the Q4S-aware-network scenario, the "alert-pause" attribute specifies the amount of time (in
milliseconds) the server waits between consecutive Q4S-ALERT messages sent to the client. In the
Reactive scenario, the "alert-pause" attribute specifies the amount of time (in milliseconds) the
server stack waits between consecutive alert notifications sent to the Actuator. Measurements
are not stopped in Negotiation or Continuity phases during this period of time, but no Q4S-ALERT
messages or alert notifications are fired, even with violated quality constraints, allowing for
either network reconfigurations or application adjustments.

Appropriate attribute values: [0..60000]

7.2.4. "recovery-pause" Attribute

In the Q4S-aware-network scenario, the "recovery-pause" attribute specifies the amount of time
(in milliseconds) the server waits for initiating the "qos-level" recovery process. Once the
recovery process has started, the "recovery-pause" attribute also states the amount of time (in
milliseconds) between consecutive Q4S-RECOVERY messages sent by the server to the client (in
the Q4S-aware-network scenario) or between recovery notifications sent by the server stack to
the Actuator (in the Reactive scenario).

Appropriate attribute values: [0..60000]

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 34

7.2.5. "public-address" Attributes

This attribute contains the public IP address of the client and the server. The server fills these
attributes with its own public IP address and the public IP address of the first message received
from the client in the Handshake phase.

The purpose of these attributes is to make available the addressing information to the network
policy server or other external entities in charge of processing Q4S-ALERT messages.

Appropriate attribute values: <"client"|"server"> <"IP4"|"IP6"> <value of IP address>

7.2.6. "latency" Attribute

The maximum latency (considered equal for uplink and downlink) tolerance is specified in the
"latency" attribute, expressed in milliseconds. In the Q4S-aware-network scenario, if the latency
constraints are not met, a Q4S-ALERT method will be sent to the client. In the Reactive scenario,
if the latency constraints are not met, an alert notification will be sent to the Actuator. If the
"latency" attribute is not present or has a 0 value, no latency constraints need to be met, and no
measurements be taken.

Appropriate attribute values: [0..9999]

MAY

7.2.7. "jitter" Attribute

The maximum uplink and downlink jitter tolerance is specified in the "jitter" attribute, expressed
in milliseconds. In the Q4S-aware-network scenario, if the jitter constraints are not met, a Q4S-
ALERT method will be sent to the client. In the Reactive scenario, if the latency constraints are
not met, an alert notification will be sent to the Actuator. If the "jitter" attribute is not present or
has a 0 value, no jitter constraints need to be met, and no measurements be taken.

Appropriate attribute values: [0..9999] "/" [0..9999]

MAY

7.2.8. "bandwidth" Attribute

The minimum uplink and downlink bandwidth is specified in the "bandwidth" attribute,
expressed in kbps. In the Q4S-aware-network scenario, if the bandwidth constraints are not met,
a Q4S-ALERT method will be sent to the client. In the Reactive scenario, an alert notification will
be sent to the Actuator. If the "bandwidth" attribute is not present or has a 0 value, no bandwidth
constraints need to be met, and no measurements be taken.

Appropriate attribute values: [0..99999] "/" [0..99999]

MAY

7.2.9. "packetloss" Attribute

The maximum uplink and downlink packet loss tolerance is specified in the "packetloss"
attribute expressed in percentage (two decimal accuracy). In the Q4S-aware-network scenario, if
the packetloss constraints are not met, a Q4S-ALERT method will be sent to the client. In the
Reactive scenario, an alert notification will be sent to the Actuator. If the "packetloss" attribute is
not present or has a 0 value, no packet loss constraints need to be met, and no measurements

 be taken.MAY

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 35

Appropriate attribute values: [0.00 ..100.00] "/"[0.00 ..100.00]

7.2.10. "flow" Attributes

These attributes specify the flows (protocol, destination IP/ports) of data over TCP and UDP ports
to be used in uplink and downlink communications.

Several "flow" attributes can be defined. These flows identify the listening port (client or server),
the protocol (TCP or UDP) with the range of ports that are going to be used
by the application and, of course, by the Q4S protocol (for quality measurements). All defined
flows ("app" and "q4s") will be considered within the same quality profile, which is determined
by the "qos-level" attribute in each direction. This allows us to assume that measurements on
"q4s" flows are the same as experienced by the application, which is using "app" flows.

During Negotiation and Continuity phases, the specified Q4S ports in the "flow:q4s" attributes of
SDP will be used for Q4S messages.

The Q4S flows comprise two UDP flows and two TCP flows (one uplink and one downlink for
each one), whereas application traffic consist of many flows, depending on its nature. The
Handshake phase takes place through the Q4S Contact URI, using the standard Q4S TCP port.
However, the Negotiation and Continuity phases will take place on the Q4S ports (UDP and TCP)
specified in the SDP.

The "clientListeningPort" is a port on which the client listens for server requests and be
used as the origin port of client responses. The "serverListeningPort" is a port on which the
server is listening for incoming messages from the client. The origin port of server responses
may be different than the "serverListeningPort" value.

If "clientListeningPort" is zero ("a=flow:q4s clientListeningPort TCP/0"), the client choose one
randomly per OS standard rules. Client ports inside the SDP must always be matched against
actual received port values on the server side in order to deal with NAT/NAPT devices. If a zero
value or incorrect value is present, the server must set the value to the received origin port in the
next message with SDP (200 OK, ALERT, and CANCEL messages).

[RFC0793] [RFC0768]

MAY

MUST

MAY

Attribute values:
 <"q4s"|"app"> <"serverListeningPort"|"clientListeningPort">
<"UDP"|"TCP"> <0..65535> ["-" [0..65535]]

7.2.11. "measurement" Attributes

These attributes contain the measurement procedure and the results of the quality
measurements.

Measurement parameters are included using the session attribute "measurement". The first
measurement parameter is the procedure. Q4S provides a "default" procedure for
measurements, but others like RTP/RTCP might be used and defined later. This document will
only define and explain the "default" procedure.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 36

In the initial client request, a set of measurement procedures can be sent to the server for
negotiation. One measurement procedure line be included in the SDP message for each
proposed method. The server answer with only one line with the chosen procedure.

For each procedure, a set of values of parameters separated by "," can be included in the same
attribute line. The amount and type of parameters depends on the procedure type.

In the following example, the "default" procedure type is chosen:

In the "default" procedure, the meaning of these parameters is the following:

The first parameter is the interval of time (in milliseconds) between PING requests during
the Negotiation phase. Uplink and downlink values from the client's point of view are
separated by "/". This allows different responsiveness values depending on the control
resources used in each direction.
The second parameter is the time interval (in milliseconds) between PING requests during
the Continuity phase. Uplink and downlink values are separated by "/". This allows two
different responsiveness values depending on the control resources used in each direction.
The third parameter is the time interval to be used to measure bandwidth during the
Negotiation phase.
The fourth parameter indicates the window size for jitter and latency calculations. Uplink
and downlink values are separated by "/".
The fifth parameter indicates the window size for packet loss calculations. Uplink and
downlink values are separated by "/".

There are four more "measurement" attributes:

The "measurement:latency", "measurement:jitter", "measurement:bandwidth", and
"measurement:packetloss" attributes contain the values measured for each of these quality
parameters in uplink and downlink directions. Notice that latency is considered equal for uplink
and downlink directions. Quality parameter values in these "measurement" attributes provide a
snapshot of the quality reached and only be included in Q4S-ALERT messages in the SDP
body such that they can be protected from malicious attacks as these alerts include a signature of
the SDP body in the header. The rest of the messages will include the measured values in the
Measurements header field.

MUST
MUST

 a=measurement:procedure default(50/50,75/75,5000,40/80,100/256)

•

•

•

•

•

a=measurement:latency 45
a=measurement:jitter 3/12
a=measurement:bandwidth 200/9800
a=measurement:packetloss 0.00/1.00

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 37

In the case of the "default" procedure, the valid values are as follows:

a=measurement:procedure default,[0..999]"/" [0..999] "," [0..999]
"/" [0..999] "," [0..9999] "," [0..999]/[0..999] ","
[0..999]/[0..999]

7.2.12. "max-content-length" Attribute

The adaptation of measurement traffic to approximate the actual data streams' characteristics is
convenient to accurately estimate the expected QoS for applications. Particularly, packet size can
have a remarkable effect on bandwidth estimations. Moreover, this can produce problems
depending on the MTU of the end hosts and links along the path.

Therefore, the maximum content length be set in an attribute denoted as "max-content-
length". Its value be given in bytes and include application, transport, network,
or link layer headers, i.e., size of the content length at the application layer. If not set, the value

 be 1000 bytes.

Furthermore, this attribute be used to communicate MTU limits in endpoints, hence
reducing possible bias as a result of network-layer fragmentation.

For instance:

a=max-content-length:1300

MAY
MUST MUST NOT

MUST

MAY

7.3. Measurements
This section describes the way quality parameters are measured as defined by the "default"
procedure. Measurements be taken for any quality parameter with constraints, that is,
specified in the SDP attributes with non-zero values. For absent attributes, measurements be
omitted.

MUST
MAY

7.3.1. Latency

Latency measurements will be performed if the "latency" attribute and/or the
"a=measurement:latency" attribute are present and have non-zero values.

Q4S defines a PING method in order to exchange packets between the client and the server.
Based on this PING exchange, the client and the server are able to calculate the round-trip time
(RTT). The RTT is the sum of downlink latency (normally named "reverse latency") and uplink
latency (normally named "forward latency").

At least 255 samples of RTT be taken by the client and server. As the forward and reverse
latencies are impossible to measure, the client and server will assume that both latencies are
identical (symmetric network assumption). The latency will therefore be calculated as the
statistical median value of all the RTT samples divided by 2.

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 38

7.3.2. Jitter

Jitter measurements will be performed if the "jitter" attribute and/or the "a=measurement:jitter"
attribute are present and have non-zero values.

The jitter can be calculated independently by the client and by the server. The downlink jitter is
calculated by the client taking into account the time interval between PING requests as defined
by the "measurement:procedure" attribute in the first or second parameter depending on the
Q4S protocol phase. The client and the server send these PING requests at the specified
intervals. The client measures the downlink jitter, whereas the server measures the uplink jitter.
Note that PING responses are not taken into account when calculating jitter values.

Every time a PING request is received by an endpoint (either server or client), the corresponding
jitter value is updated with the statistical jitter value, which is the arithmetic mean of the
absolute values of elapsed times calculated on the first 255 packets received.

Each endpoint sends a PING periodically with a fixed interval, and each value of "elapsed time"
(ET) should be very close to this interval. If a PING message is lost, the ET value is doubled.
Identifying lost PING messages, however, is not an issue because all PING messages are labeled
with a Sequence-Number header field. Therefore, the receiver can discard this ET value.

In order to have the first jitter sample, the receiver wait until it receives 3 PING requests,
because each ET is the time between two PINGs, and a jitter measurement needs at least two ET.

The client measures the values of RTT and downlink jitter, and the server measures RTT and
uplink jitter, but all measurements are shared with the counterpart by means of the
Measurements header field of the PING message.

MUST

MUST

7.3.3. Bandwidth

Bandwidth measurements will be performed if the "bandwidth" attribute and/or the
"a=measurement:bandwidth" attribute is present and has non-zero values.

In order to measure the available bandwidth, both the client and the server start sending
BWIDTH messages simultaneously using the UDP control ports exchanged during the Handshake
phase in the SDP message at the needed rate to verify the availability of the bandwidth
constraint in each direction. The messages are sent during the period of time defined in the third
parameter of the SDP "measurement:procedure default" attribute in milliseconds.

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 39

The goal of these measurements is not to identify the available bandwidth of the communication
path, but to determine if the required bandwidth is available, meeting the application's
constraints. Therefore, the requested bandwidth be measured sending only the highest
bitrate required by the bandwidth attribute. This is illustrated in Figure 6.

ALERTS are not expected during bandwidth measurement, but only at the end of the
measurement time.

When measuring bandwidth, all BWIDTH requests sent be 1 kilobyte in length (UDP
payload length by default), they include a Sequence-Number header field with a sequential
number starting at 0, and their content consist of randomly generated values to minimize

Figure 6: Bandwidth and Packet Loss Measurements

a=measurement:procedure default(50/50,75/75,5000,256/256,256/256)

 +--+
 | Rate |
 | A |
 | | | | | | | |
 |downlink rate-|-------------------+ <-- traffic |
 | | | sent by |
 | | | server |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | uplink rate-|-------------------+ <-- traffic |
 | | | sent by |
 | | | client |
 | | | |
 | | | |
 | |---|---|---|---|---|----> time |
 | 0 1 2 3 4 5 (sec.) |
 | |
 +--+

MUST

MUST
MUST

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 40

the effect of compression elements along the path. The Sequence-Number be incremented
by 1 with each BWIDTH packet sent. If any measurement stage needs to be repeated, the
sequence number start at zero again. BWIDTH requests be answered. Examples:

The client send BWIDTH packets to the server to allow the server to measure the uplink
bandwidth. The server send BWIDTH packets to the client to allow the client to measure
the downlink bandwidth.

MUST

MUST MUST NOT

Client message:
=========================
 BWIDTH q4s://www.example.com Q4S/1.0
 User-Agent: q4s-ua-experimental-1.0
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Type: text
 Content-Length: XXXX
 Measurements: l=22, j=10, pl=0.00, bw=3000

 VkZaU1FrNVZNVlZSV0doT1ZrZ (to complete up to "max-content-
 length" bytes UDP payload length)
=========================

MUST
MUST

Server message:
=========================
 BWIDTH q4s://www.example.com Q4S/1.0
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Type: text
 Content-Length: XXXX
 Measurements: l=22, j=7, pl=0.00, bw=200

 ZY0VaT1ZURlZVVmhyUFE9PQ (to complete up to max-content-
 length UDP payload length)
=========================

7.3.4. Packet Loss

Packet loss and bandwidth are measured simultaneously using the BWIDTH packets sent by both
the client and the server. Because the BWIDTH packets contain a Sequence-Number header field
incremented sequentially with each sent packet, lost packets can be easily identified. The lost
packets be counted during the measurement time.MUST

7.4. Handshake Phase
The first phase consists of a Q4S BEGIN method issued from the client to the server as shown in
Figure 7.

The first Q4S message have a special URI , which forces the use of the Q4S
protocol if it is implemented in a standard web browser.

MUST [RFC3986]

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 41

This URI, named "Contact URI", is used to request the start of a session. Its scheme be:

Optionally, the client can send the desired quality parameters enclosed in the body of the
message as an SDP document. The server take them into account when building the answer
message with the final values in the SDP body, following a request/response schema .

If the request is accepted, the server answer it with a Q4S 200 OK message, which
contain an SDP body with the assigned sess-id (embedded in the SDP "o=" line), the IP
addresses to be used, the flow ports to be used, the measurement procedure to be followed, and
information about the required quality constraints. Additionally, the "alerting-mode" and "alert-
pause" time attributes may be included. Q4S responses should use the protocol designator
"Q4S/1.0".

After these two messages are exchanged, the first phase is completed. The quality parameter
thresholds have been sent to the client. The next step is to measure the actual quality of the
communication path between the client and the server and alert if the Service Level Agreement
(SLA) is being violated.

MUST

 "q4s:" "//" host [":" port] [path["?" query]

MAY
[RFC3264]

MUST MUST
[RFC4566]

Figure 7: Handshake Phase

 +--+
 | |
 | Client Server |
 | |
 | ------- Q4S BEGIN ------------> |
 | |
 | <------ Q4S 200 OK ------------ |
 | |
 | |
 +--+

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 42

The following is an example of a client request and a server answer:

The header fields used are explained in Section 4.3.

Client Request:
=========================
BEGIN q4s://www.example.com Q4S/1.0
Content-Type: application/sdp
User-Agent: q4s-ua-experimental-1.0
Content-Length: 142

(SDP not shown)
=========================

Server Answer:
=========================
Q4S/1.0 200 OK
Date: Mon, 10 Jun 2010 10:00:01 GMT
Content-Type: application/sdp
Expires: 3000
Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
Content-Length: 131

(SDP not shown)
=========================

In the Q4S-aware-network scenario:

In the Reactive scenario:

7.5. Negotiation Phase
The Negotiation phase is in charge of measuring the quality parameters and verifying that the
communication paths meet the required quality constraints in both directions as specified in the
SDP body.

The measured parameters will be compared with the quality constraints specified in the SDP
body. If the quality session is compliant with all the quality constraints, the application can start.

If the quality constraints are not met, a higher quality service level will be demanded. Depending
on the scenario, this quality upgrade will be managed as follows:

a Q4S-ALERT method will be triggered by the server to the
client, and the client will answer with the same Q4S-ALERT method. After receiving the
same Q4S-ALERT from the counterpart, no other alerts will be triggered by the server
during the "alert-pause" period of time in order to allow the network to react, but
measurements will continue to be taken to achieve early detection of improved network
quality conditions and a fast application start.

an alert notification will be sent by the server stack to the Actuator,
and the Actuator will answer with an alert acknowledgement. After receiving the alert
acknowledgement from the Actuator, the server stack will not send other alert
notifications during the "alert-pause" period of time in order to allow the Actuator to react

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 43

Stage 0:

Stage 1:

and trigger actions on the application or on the policy server, but measurements will
continue to be taken to achieve early detection of improved network quality conditions
and a fast application start.

In both scenarios stated above, if after several measurement cycles, the network constraints
cannot be met, the quality session is terminated. Concretely when, under all possible actions
taken by Actuator, the quality remains below requirements, the session must be terminated.

The steps to be taken in this phase depend on the measurement procedure exchanged during the
Handshake phase. This document only describes the "default" procedure, but others can be used,
like RTP/RTCP .

Measurements of latency and jitter are made by calculating the differences in the arrival times of
packets and can be achieved with little bandwidth consumption. The bandwidth measurement,
on the other hand, involves higher bandwidth consumption in both directions (uplink and
downlink).

To avoid wasting unnecessary network resources, these two types of measurements will be
performed in two separate stages. If the required latencies and jitters cannot be reached, it
makes no sense to waste network resources measuring bandwidth. In addition, if achieving the
required latency and jitter thresholds implies upgrading the quality session level, the chance of
obtaining compliant bandwidth measurements without retries is higher, saving network traffic
again. Therefore, the "default" procedure determines that the measurements are taken in two
stages:

Measurement of latencies, jitters, and packet loss

Measurement of bandwidths and packet loss

Notice that packet loss can be measured in both stages, as all messages exchanged include a
Sequence-Number header field that allows for easy packet loss detection.

The client starts the Negotiation phase by sending a READY request using the TCP Q4S ports
defined in the SDP. This READY request includes a Stage header field that indicates the
measurement stage.

If either jitter, latency, or both are specified, the Negotiation phase begins with the measurement
of latencies and jitters (stage 0). If none of those attributes is specified, stage 0 is skipped.

[RFC3550]

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 44

7.5.1. Stage 0: Measurement of Latencies and Jitter

The Stage 0 start with a synchronization message exchange initiated with the client's
READY message.

This triggers the exchange of a sequence of PING requests and responses that will lead to the
calculation of RTT (latency), jitter, and packet loss.

After receiving a 200 OK, the client must send the first PING message, and the server will wait to
send PINGs until the reception of this first client PING.

The client and server send PING requests to each other. The Sequence-Number header field
of the first PING be set to 0. The client and server will manage their own sequence
numbers.

MUST

Client Request, READY message:
=========================
 READY q4s://www.example.com Q4S/1.0
 Stage: 0
 Session-Id: 53655765
 User-Agent: q4s-ua-experimental-1.0
 Content-Length: 0
=========================

Server Response:
=========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Stage:0
 Content-Length: 0
=========================

MUST
MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 45

The following is an example of the PING request sent from the client and the server's response:

The function of the PING method is similar to the ICMP echo request message . The
server answer as soon as it receives the message.

Both endpoints send Q4S PING messages with the periodicity specified in the first
parameter of SDP "measurement:procedure" attribute, always using the same UDP ports and
incrementing the Sequence-Number with each message.

Figure 8: Simultaneous Exchange of PING Request and Responses

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 0 ---------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | --------- Q4S PING ------------> |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | <-------- Q4S 200 OK ----------- |
 | ... |
 | |
 +--+

Client Request:
=========================
 PING q4s://www.example.com Q4S/1.0
 Session-Id: 53655765
 Sequence-Number: 0
 User-Agent: q4s-ua-experimental-1.0
 Measurements: l=22, j=12, pl=0.20, bw=
 Content-Length: 0
=========================

Server Response:
=========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Length: 0
=========================

[RFC0792]
MUST

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 46

In the following example, the value of the first parameter of the SDP "measurement:procedure"
attribute is 50 milliseconds (from the client to the server) and 60 ms (from the server to the
client):

They wait for a response to send the next PING request. The Sequence-Number header
field value is incremented sequentially and start at zero. If this stage is repeated, the initial
Sequence-Number start at zero again.

All PING requests contain a Measurements header field with the values of the latency,
jitter, and packet loss measured by each entity up to that moment. The client will send its
measurements to the server, and the server will send its measurements to the client. Example:

Where "l" stands for latency, "j" for jitter, "pl" for packet loss, and "bw" for bandwidth. The
bandwidth value is omitted, as it is not measured at this stage.

Optionally the PING request can include a Timestamp header field with the time in which the
message has been sent. In the case that the header field is present, the server include the
header field in the response without changing the value.

A minimum number of PING messages be exchanged in order to be able to measure
latency, jitter, and packet loss with certain accuracy (at least 256 samples are to
get an accurate packet loss measurement). Both the client and the server calculate the respective
measured parameter values. The mechanisms to calculate the different parameters are described
in Section 7.3.

At the end of this stage 0, there are three possibilities:

The latency, jitter, and packetloss constraints are reached in both directions
The latency, jitter, and packetloss constraints are not reached in one or both directions

In the first case, Stage 0 is finished. The client and server are ready for Stage 1: bandwidth and
packet loss measurement. The client moves to stage 1 by sending a READY message that includes
the header field, "Stage: 1".

If the bandwidth constraints are either empty or have a value of zero, the Negotiation phase
 terminate, and both client and server may initiate the Continuity phase. In this case, client

moves to the Continuity phase by sending a READY message that includes the header field,
"Stage: 2".

The second case, in which one or more quality constraints have not been met, is detailed in
Section 7.5.4.

a=measurement:procedure default(50/60,50/50,5000,256/256,256/256)

MUST NOT
MUST

MUST

MUST

 Measurements: l=22, j=13, pl=0.10, bw=

MUST

MUST
RECOMMENDED

•
•

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 47

7.5.2. Stage 1: Measurement of Bandwidth and Packet Loss

This stage begins in a similar way to stage 0, sending a READY request over TCP. The value of the
READY message's Stage header field is 1. The server answers with a Q4S 200 OK message to
synchronize the initiation of the measurements as shown in Figure 9.

Just after receiving the 200 OK, both the client and the server start sending BWIDTH
messages simultaneously using the UDP "q4s" ports. Section 7.3.3 describes the bandwidth
measurement in detail.

At the end of this stage 1, there are three possibilities:

The bandwidth and packetloss constraints are reached in both directions.
The bandwidth and packetloss constraints are not reached in one or both directions.

Figure 9: Starting Bandwidth and Packet Loss Measurement

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 1 -----------> |
 | <-------- Q4S 200 OK ------------- |
 | |
 | --------- Q4S BWIDTH -----------> |
 | <-------- Q4S BWIDTH ------------ |
 | --------- Q4S BWIDTH -----------> |
 | <-------- Q4S BWIDTH ------------ |
 | ... |
 | |
 +--+

Client Request:
=========================
 READY q4s://www.example.com Q4S/1.0
 User-Agent: q4s-ua-experimental-1.0
 Stage: 1
 Session-Id: 53655765
 Content-Length: 0

=========================

Server Response:
=========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Stage: 1
 Content-Length: 0

=========================

MUST

•
•

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 48

In the first case, Stage 1 is finished. The client and server are ready for the Continuity phase. The
client moves to this phase by sending a READY message that includes the header field, "Stage: 2".
The server answer be 200 OK as shown in Figure 10.

If the Trigger-URI header field is present, the client send an HTTP request to this URI.

The second case, with violated network constraints, is explained in Section 7.5.4.

MUST

Figure 10: Trigger the Application Using HTTP URI

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 2 --------------> |
 | <---- Q4S 200 OK with trigger URI----- |
 | |
 | --------- HTTP GET ----------------> |
 | |
 | (Application starts) |
 | |
 +--+

Client Request:
=========================
READY q4s://www.example.com Q4S/1.0
User-Agent: q4s-ua-experimental-1.0
Stage: 2
Session-Id: 53655765
Content-Length: 0

=========================

Server Answer:
=========================
Q4S/1.0 200 OK
Date: Mon, 10 Jun 2010 10:00:01 GMT
Session-Id: 53655765
Trigger-URI: http://www.example.com/app_start
Expires: 3000
Content-Type: application/sdp
Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
Content-Length: 131

(SDP not shown)
=========================

SHOULD

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 49

(a)

7.5.3. Quality Constraints Not Reached

After finishing Stage 1 of the Negotiation phase, the client and the server have each other's
measured parameter values as these have been exchanged in the Measurements header fields of
the PING and BWIDTH messages. If there is one or more parameters that do not comply with the
uplink or downlink application constraints required, both the server and the client are aware of
it.

If there is any quality parameter that does not meet the uplink or downlink quality constraints
specified in the SDP message, two scenarios are possible depending on the specified alerting
mode (if not present, the default value is Reactive alerting mode):

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 50

(b)

Q4S-aware-network alerting mode: the server send a Q4S-ALERT message to the
client including the digital Signature header field, and the client answer with the
same Q4S-ALERT message. The Signature header field contains the signed hash value of
the SDP body in order to protect all the SDP data, and therefore it contain the
"measurement" parameters in the body.

At this point, both the client and server keep on measuring but without sending new Q4S-
ALERT messages during the "alert-pause" milliseconds.

Reactive alerting mode: the server stack send an alert notification to the Actuator,
and the Actuator answer with an acknowledgement to the received alert
notification. The alert notification sent to the Actuator by the server stack doesn't follow
Q4S message style but should have all the information the Actuator will need for the
actions to be taken, which will be implementation dependent.

MUST
MUST

MUST

Server request
=========================
Q4S-ALERT q4s://www.example.com Q4S/1.0
Host: www.example.com
User-Agent: q4s-ua-experimental-1.0
Session-Id: 53655765
Content-Type: application/sdp
Content-Length: 142

v=0
o=q4s-UA 53655765 2353687637 IN IP4 192.0.2.33
s=Q4S
i=Q4S parameters
t=0 0
a=qos-level:1/2
a=alerting-mode: Q4S-aware-network
a=alert-pause:5000
a=public-address:client IP4 198.51.100.51
a=public-address:server IP4 198.51.100.58
a=latency:40
a=jitter:10/10
a=bandwidth:20/6000
a=packetloss:0.50/0.50
a=flow:app downlink TCP/10000-20000
a=flow:app uplink TCP/56000
a=flow:q4s downlink UDP/55000
a=flow:q4s downlink TCP/55001
a=flow:q4s uplink UDP/56000
a=flow:q4s uplink TCP/56001
a=measurement:procedure default(50/50,50/50,5000,256/256,256/256)
a=measurement:latency 30
a=measurement:jitter 6/4
a=measurement:bandwidth 200/4000
a=measurement:packetloss 0.20/0.33
=========================

MUST
MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 51

At this point during Negotiation phase, both the client and server keep on measuring without
sending new alert notifications to the Actuator during the "alert-pause" milliseconds specified in
the SDP. This way, both client and server will detect any improvement in network conditions as
soon as the network reacts. The application can start as soon as the number of measurements
indicated in the "measurement:procedure" attribute indicates that the quality parameters are
met.

The same applies to Continuity phase: the measurement dialog between client and server must
not be interrupted by any possible ALERT message.

7.5.3.1. Actuator Role
The actuator receives notifications of unmet requirements from the Q4S server stack and acts
upon the application or the network policy server, according to logic out of scope of this protocol.

The Actuator logic activates mechanisms at the application level and/or the network level based
on a quality level dictionary, in which the meaning of each level is implementation dependent,
and each level involves different actions based on rules to keep a certain user experience quality.

The type of actions that an Actuator can take at the application level are application dependent
and involve:

Reduction of application functionalities, such as limitation of application speed or
application options.
Reduction of application resources usage, such as reduction of frames per second in a video
application or any other parameter modification in order to adapt to network conditions.

Apart from actions at the application level, the Actuator act at the network level if a
network policy server is available.

MAY

•

•

MAY

7.5.3.2. Policy Server Role
A network policy server may be part of the Reactive scenario, and it is in charge of managing
network quality provision. A network policy server may implement all or some of these features
(but implementation is not exclusive to):

Server validation in terms of quality constraints
Authentication (Signature validation) and security (blocking of malicious clients)
Policy rules (the following rules are only examples):

Maximum quality level allowed for the ACP
Time bands allowed for providing quality sessions
Number of simultaneous quality sessions allowed
Maximum time used by allowed quality sessions
Etc.

If any of the policy rules fail, a Q4S-ALERT message be answered by a 6xx error indicating
the cause.

•
•
•

◦

◦

◦

◦

◦

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 52

7.5.4. "qos-level" Changes

If any constraint was violated, the server trigger a Q4S-ALERT asking for a higher "qos-level"
attribute. The maximum "qos-level" allowed is 9 for both uplink and downlink.

If the "qos-level" has reached the maximum value for the downlink or uplink without matching
the constraints, then a CANCEL request be sent by the client using the TCP port determined
in the Handshake phase in order to release the session. In reaction to the reception of the
CANCEL request, the server send a CANCEL request, too. If no CANCEL request is received,
the expiration time cancels the session on the server side.

MAY

MUST

MUST

Client Request:
=========================
CANCEL q4s://www.example.com Q4S/1.0
User-Agent: q4s-ua-experimental-1.0
Session-Id: 53655765
Content-Type: application/sdp
Content-Length: 142

(SDP not shown)
=========================

Server Request in reaction to Client Request:
=========================
CANCEL q4s://www.example.com Q4S/1.0
Session-Id: 53655765
Expires: 0
Content-Type: application/sdp
Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
Content-Length: 131

(SDP not shown)
=========================

7.6. Continuity Phase
During the Negotiation phase, latency, jitter, bandwidth, and packet loss have been measured.
During the Continuity phase, bandwidth will not be measured again because bandwidth
measurements may disturb application performance.

This phase is supposed to be executed at the same time as the real-time application is being used.

This document only covers the "default" procedure. The continuity operation with the "default"
procedure is based on a sliding window of samples. The number of samples involved in the
sliding window may be different for jitter and latency than for packet loss calculations according

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 53

to the fifth and sixth parameters of the "measurement:procedure" attribute. In the example,
shown in Figure 11, the jitter and latency sliding window comprises 40 samples, whereas the size
of the packet loss sliding window is 100 samples:

In addition, the sizes of these windows are configurable per direction: uplink and downlink
values may differ.

PING requests are sent continuously (in both directions), and when the Sequence-Number
header field reaches the maximum value, the client continues sending PING messages with the
Sequence-Number header field starting again at zero. When the server PING Sequence-Number
header field reaches the maximum value, it does the same, starting again from zero.

On the client side, the measured values of downlink jitter, downlink packet loss, and latency are
calculated using the last samples, discarding older ones, in a sliding window schema.

Only if the server detects that the measured values (downlink or uplink jitter, packet loss, or
latency) are not reaching the quality constraints, a Q4S-ALERT is triggered and sent either to the
client or to the Actuator, depending on the alerting mode, and the "alert-pause" timer is started.

In the Q4S-aware-network alerting mode shown in Figure 12, if the client receives a Q4S-ALERT
message, it answer by sending the Q4S-ALERT request message including the SDP (with its
corresponding digital signature) back to the server.

Both client and server will keep performing measurements, but Q4S-ALERT messages
be sent during "alert-pause" milliseconds. The operations needed to act on the network and the
agents in charge of them are out of scope of this document.

a=measurement:procedure default(50/50,75/75,5000,40/40,100/100)

Figure 11: Sliding Samples Window

 +--+
 | |
 | 55 56 57 . . . 253 254 255 0 1 2 . . . 55 56 |
 | A A |
 | | | |
 | +-----------------------------------+ |
 | |
 +--+

MUST

MUST NOT

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 54

In the Reactive scenario shown in Figure 13, if the server detects that the measured values
(downlink or uplink jitter, packet loss, or latency) are not reaching the quality constraints, an
alert notification is triggered and sent to the Actuator. The Actuator then answer to the
server stack with an alert acknowledgement.

The measurement dialog between the client and the server be interrupted by any
possible ALERT message.

Figure 12: Continuity in Q4S-Aware-Network Alerting Mode

 +--+
 | |
 | Client Server |
 | |
 | ... |
 | ----------- PING ----------> |
 | <--------- 200 OK ---------- |
 | <------- Q4S-ALERT --------- |
 | -------- Q4S-ALERT --------> |
 | <---------- PING ----------- |
 | ---------- 200 OK ---------> |
 | ----------- PING ----------> |
 | <--------- 200 OK ---------- |
 | <---------- PING ----------- |
 | ---------- 200 OK ---------> |
 | ... |
 | |
 +--+

MUST

MUST NOT

Figure 13: Continuity in Reactive Alerting Mode

 +--+
 | |
 | Client Server Actuator |
 | ... |
 | --- PING ----------> |
 | <-- 200 OK---------- |
 | <----- PING -------- |
 | <--- 200 OK -------- ---- alert |
 | notification --> |
 | |
 | --- PING ----------> <--- alert |
 | acknowledge --- |
 | <-- 200 OK---------- |
 | <----- PING -------- |
 | --- 200 OK --------> |
 | ... |
 | |
 +--+

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 55

7.7. Termination Phase
The Termination phase is the endpoint for the established Q4S session that is reached in the
following cases:

A CANCEL message has been received. The client sends a CANCEL message due to the
network's inability to meet the required quality constraints. The client and server
application will be notified by their respective Q4S stacks.
Session expires: if after the Expires time, no client or server activity is detected, that end
cancels the session.
A BEGIN message has been received by the server. The pre-existing Q4S quality session is
canceled, and a new session will be initiated.

The meaning of the Termination phase in terms of the release of resources or accounting is
application dependent and out of scope of the Q4S protocol.

In the Reactive alerting mode, Q4S CANCEL messages received by the Q4S server must cause the
server stack to send cancel notifications to the Actuator in order to release possible assigned
resources for the session.

•

•

•

7.7.1. Sanity Check of Quality Sessions

A session may finish due to several reasons (client shutdown, client CANCEL request, constraints
not reached, etc.), and any session finished release the assigned resources.

In order to release the assigned server resources for the session, the Expires header field
indicates the maximum interval of time without exchanging any Q4S message.

MUST

7.8. Dynamic Constraints and Flows
Depending on the nature of the application, the quality constraints to be reached may evolve,
changing some or all quality constraint values in any direction.

The client be able to deal with this possibility. When the server sends an SDP document
attached to a response (200 OK or Q4S-ALERT, etc.), the client take all the new received
values, overriding any previous value in use.

The dynamic changes on the quality constraints can be a result of two possibilities:

The application communicates to the Q4S server a change in the constraints. In this case, the
application requirements can evolve, and the Q4S server will be aware of them.
The application uses TCP flows. In that case, in order to guarantee a constant throughput, the
nature of TCP behavior forces the use of a composite constraint function, which depends on
RTT, packet loss, and a window control mechanism implemented in each TCP stack.

MUST
MUST

•

•

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 56

TCP throughput can be less than actual bandwidth if the Bandwidth-Delay Product (BDP) is large,
or if the network suffers from a high packet loss rate. In both cases, TCP congestion control
algorithms may result in a suboptimal performance.

Different TCP congestion control implementations like Reno , High Speed TCP ,
CUBIC , Compound TCP (CTCP) , etc., reach different throughputs under the same
network conditions of RTT and packet loss. In all cases, depending on the RTT-measured value,
the Q4S server could dynamically change the packetloss constraints (defined in the SDP) in order
to make it possible to reach a required throughput or vice versa (using
"measurement:packetloss" to change dynamically the latency constraints).

A general guideline for calculating the packet loss constraint and the RTT constraint consists of
approximating the throughput by using a simplified formula, which should take into account the
TCP stack implementation of the receiver, in addition to the RTT and packet loss:

Then, depending on RTT-measured values, set dynamically the packet loss constraint.

It is possible to easily calculate a worst-case boundary for the Reno algorithm, which should
ensure for all algorithms that the target throughput is actually achieved, except that high-speed
algorithms will then have even larger throughput if more bandwidth is available.

For the Reno algorithm, the Mathis formula may be used for the upper bound on the
throughput:

In the absence of packet loss, a practical limit for the TCP throughput is the
receiver_window_size divided by the RTT. However, if the TCP implementation uses a window
scale option, this limit can reach the available bandwidth value.

[RENO] [RFC3649]
[CUBIC] [CTCP]

 Th= Function(RTT, packet loss, ...)

[RENO]

 Th <= (MSS/RTT)*(1 / sqrt{p})

7.9. "qos-level" Upgrade and Downgrade Operation
Each time the server detects a violation of constraints, the alert mechanism is triggered, the
"alert-pause" timer is started, and the "qos-level" is increased. When this happens repeatedly, and
the "qos-level" reaches its maximum value (value 9), the session is canceled. But when the
violation of constraints stops before reaching "qos-level" maximum value, the recovery
mechanism allows for the "qos-level" upgrade gradually.

This downgrade and upgrade of "qos-level" is explained with the following example:

A Q4S session is initiated successfully with "qos-level=0".
During the Continuity phase, violation of constraints is detected; the "qos-level" is increased
to 1, a Q4S-ALERT is sent by the server to the client, and an "alert-pause" timer is started.

1.
2.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 57

The "alert-pause" timer expires, and still a violation of constraints is detected; the "qos-level"
is increased to 2, a Q4S-ALERT is sent by the server to the client, and an "alert-pause" timer is
started.
The "alert-pause" timer expires, but the violation of constraints has stopped; the "recovery-
pause" timer is started.
The "recovery-pause" timer expires, and no violation of constraints has been detected.
Meanwhile, the "qos-level" is decreased to 1, a Q4S-RECOVERY is sent by the server to the
client, and the "recovery-pause" timer is started again.
The "recovery-pause" timer expires again, and no violation of constraints has been detected.
Meanwhile, the "qos-level" is decreased to 0, and a Q4S-RECOVERY is sent by the server to the
client. The "recovery-pause" timer is not started this time as the "qos-level" has reached its
initial value.

When the network configuration allows for the possibility of managing Q4S flows and
application flows independently (either is a network-based QoS or a Q4S-aware network), the
"qos-level" downgrade process could be managed more efficiently using a strategy that allows for
carrying out "qos-level" downgrades excluding application flows from SDP dynamically. The Q4S
flows would be downgraded to allow for measurements on a lower quality level without
interference of the application flows. A Q4S client allow this kind of SDP modification by
the server.

Periodically (every several minutes, depending on the implementation) a Q4S-ALERT could be
triggered, in which the level is downgraded for Q4S flows, excluding application flows from the
embedded SDP of that request.

This mechanism allows the measurement at lower levels of quality while application flows
continue using a higher "qos-level" value.

If the measurements in the lower level meet the quality constraints, then a Q4S-RECOVERY
message to this lower "qos-level" may be triggered, in which the SDP includes the application
flows in addition to the Q4S flows.
If the measurements in the lower level do not meet the constraints, then a new Q4S-ALERT to
the previous "qos-level" be triggered, in which the SDP includes only the Q4S flows.

3.

4.

5.

6.

MUST

•

•
MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 58

This mechanism, illustrated in Figure 14, avoids the risk of disturbing the application while the
measurements are being run in lower levels. However, this optional optimization of resources

 be used carefully.

The chosen period to measure a lower "qos-level" is implementation dependent. Therefore, it is
not included as a "measurement:procedure" parameter. It is to use a large value,
such as 20 minutes.

Figure 14: Possible Evolution of "qos-level"

 +--+
 | |
 | qos-level |
 | A |
 | | | | | |
 | 4| |
 | | |
 | 3| +------+ |
 | | | | |
 | 2| +----+ +----+ +--- |
 | | | | | |
 | 1| +----+ +-----+ |
 | | | |
 | 0+---+---------------------------------> time |
 | |
 +--+

MUST

RECOMMENDED

8. General User Agent Behavior

8.1. Roles in Peer-to-Peer Scenarios
In order to allow peer-to-peer applications, a Q4S User Agent (UA) be able to assume both
the client and server role. The role assumed depends on who sends the first message.

In a communication between two UAs, the UA that first sends the Q4S BEGIN request to start the
Handshake phase shall assume the client role.

If both UAs send the BEGIN request at the same time, they will wait for a random time to restart
again as shown in Figure 15.

Otherwise, an UA may be configured to act only as server (e.g., content provider's side).

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 59

Figure 15: P2P Roles

 +---+
 | |
 | UA(Client) UA(Server) |
 | |
 | -------- Q4S BEGIN -------------> |
 | <------- Q4S BEGIN -------------- |
 | |
 | ------- Q4S BEGIN --------------> |
 | <------ Q4S 200 OK -------------- |
 | |
 | |
 +---+

8.2. Multiple Quality Sessions in Parallel
A Q4S session is intended to be used for an application. This means that for using the application,
the client establish only one Q4S session against the server. Indeed, the relation between
the Session-Id and the application is 1 to 1.

If a user wants to participate in several independent Q4S sessions simultaneously against
different servers (or against the same server), it can execute different Q4S clients to establish
separately different Q4S sessions, but it is because:

The establishment of a new Q4S session may affect other running applications over other
Q4S sessions during bandwidth measurement.
If the Negotiation phase is executed separately before running any application, the
summation of bandwidth requirements could not be met when the applications are running
in parallel.

MUST

NOT RECOMMENDED

•

•

X)

Y)

8.3. General Client Behavior
A Q4S client has different behaviors. We will use letters X, Y, and Z to designate each different
behavior (follow the letters in Figure 16 and their descriptions below).

When it sends messages over TCP (methods BEGIN, READY, Q4S-ALERT, Q4S-RECOVERY, and
CANCEL), it behaves strictly like a state machine that sends requests and waits for responses.
Depending on the response type, it enters into a new state.

When it sends UDP messages (methods PING and BWIDTH), a Q4S client is not strictly a state
machine that sends messages and waits for responses because of the following:

During the measurement of latency, jitter, and packet loss, the PING requests are sent
periodically, not just after receiving the response to the previous request. In addition, the
client answer the PING requests coming from the server, therefore the client assumes
temporarily the role of a server.

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 60

Z) During the bandwidth and packet loss measurement stage, the client does not expect to
receive responses when sending BWIDTH requests to the server. In addition, it receive
and process all server messages in order to achieve the downlink measurement.

The Q4S-ALERT and CANCEL may have a conventional answer if an error is produced, otherwise
the corresponding answer is formatted as a request message.

MUST

Figure 16: Phases and Client Behaviors

 +-----------+------------------------+-----------+-----------+
Handshake	Negotiation	Continuity	Termination
Phase	Phase	Phase	Phase
X ---------> Y --> X --> Z --> X ---> Y --> X ---> X			
	A	A	
	+-----+ +-----+	+-----+	
 +--+-----------+

If no SDP is included:

If SDP is included:

8.3.1. Generating Requests

A valid Q4S request formulated by a client , at a minimum, contain the following header
fields:

the header fields Session-Id and Sequence-Number are mandatory.

the Session-Id is embedded into the SDP, therefore the inclusion of the
Session-Id header field is optional, but if present, must have the same value.
Measurements are embedded into the SDP only for Q4S-ALERT messages in order to be
signed.

At any time, if the server sends new SDP with updated values, the client take it into
account.

MUST

MUST

R)

8.4. General Server Behavior
If a server does not understand a header field in a request (that is, the header field is not defined
in this specification or in any supported extension), the server ignore that header field and
continue processing the message.

The role of the server is changed at Negotiation and Continuity phases, in which the server
send packets to measure jitter, latency, and bandwidth. Therefore, the different behaviors of the
server are (follow the letters in Figure 17 and their descriptions below):

MUST

MUST

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 61

S)

T)

When the client sends messages over TCP (methods BEGIN, READY Q4S-ALERT, Q4S-
RECOVERY, and CANCEL), it behaves strictly like a state machine that receives messages and
sends responses.

When the client begins to send UDP messages (methods PING and BWIDTH), a Q4S server is not
strictly a state machine that receives messages and sends responses because of the following:

During the measurement of latency, jitter, and packet loss, the PING requests are sent
periodically by the client and also by the server. In this case, the server behaves as a server
answering client requests but also behaves temporarily as a client, sending PING requests
toward the client and receiving responses.

During bandwidth and packet loss measurement, the server sends BWIDTH requests to the
client. In addition, it receive and process client messages in order to achieve the uplink
measurement.

The Q4S-ALERT and CANCEL may have a conventional answer if an error is produced, otherwise
the corresponding answer is formatted as a request message.

MUST

Figure 17: Phases and Server Behaviors

 +-----------+------------------------+-----------+-----------+
Handshake	Negotiation	Continuity	Termination
Phase	Phase	Phase	Phase
R ---------> S --> R --> T --> R ---> S --> R ---> R			
	A	A	
	+-----+ +-----+	+-----+	
 +--+-----------+

9. Implementation Recommendations

9.1. Default Client Constraints
To provide a default configuration, it would be good if the client had a configurable set of quality
headers in the implementation settings menu. Otherwise, these quality headers will not be
present in the first message.

Different business models (out of scope of this proposal) may be achieved: depending on who
pays for the quality session, the server can accept certain client parameters sent in the first
message, or force billing parameters on the server side.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 62

9.2. Latency and Jitter Measurements
Different client and server implementations may send a different number of PING messages for
measuring, although at least 255 messages should be considered to perform the latency
measurement. The Stage 0 measurements may be considered ended only when neither the client
nor server receive new PING messages after an implementation-dependent guard time. Only
after, the client can send a "READY 1" message.

In execution systems, where the timers are not accurate, a recommended approach consists of
including the optional Timestamp header field in the PING request with the time in which the
message has been sent. This allows an accurate measurement of the jitter even with no identical
intervals of time between PINGs.

(1)

(2)

9.3. Bandwidth Measurements
In programming languages or operating systems with limited timers or clock resolution, it is
recommended to use an approach based on several intervals to send messages of 1KB (= 8000
bits) in order to reach the required bandwidth consumption, using a rate as close as possible to a
constant rate.

For example, if the resolution is 1 millisecond, and the bandwidth to reach is 11 Mbps, a good
approach consists of sending:

The number of intervals depends on the required bandwidth and accuracy that the programmer
wants to achieve.

Considering messages of 1KB (= 8000 bits), a general approach to determine these intervals is the
following:

Compute target bandwidth / 8000 bits. In the example above, it is 11 Mbps / 8000 = 1375
messages per second.
Divide the number of messages per second by 1000 to determine the number of messages
per millisecond: 1375 / 1000 = 1.375. The integer value is the number of messages per
millisecond (in this case, one). The pending bandwidth is now 375 messages per second.

 1 message of 1KB every 1 millisecond +

 1 message of 1KB every 3 milliseconds +

 1 message of 1KB every 23 milliseconds

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 63

(3)

(4)

To achieve the 375 messages per second, use a submultiple of 1000, which must be less
than 375:

In this case, a message every 3 ms is suitable. The new pending target bandwidth is 375 -
333 = 42 messages per second.

Repeat the same strategy as point 3 to reach the pending bandwidth. In this case, 23 ms is
suitable because of the following:

We can choose 24 ms, but then we need to cover an additional 0.4 messages per second (42 - 41.6
= 0.4), and 43 is a number higher than 42 but very close to it.

In execution systems where the timers are not accurate, a recommended approach consists of
checking at each interval the number of packets that should have been sent at this timestamp
since origin and send the needed number of packets in order to reach the required bandwidth.

The shorter the packets used, the more constant the rate of bandwidth measurement. However,
this may stress the execution system in charge of receiving and processing packets. As a
consequence, some packets may be lost because of stack overflows. To deal with this potential
issue, a larger packet is (2KB or more), taking into account the overhead
produced by the chunks' headers.

 1000 / 2 = 500 > 375

 1000 / 3 = 333 < 375

 1000 / 22 = 45 > 42

 1000 / 23 = 43 > 42

 1000 / 24 = 41.6 < 42

RECOMMENDED

9.4. Packet Loss Measurement Resolution
Depending on the application nature and network conditions, a packet loss resolution less than
1% may be needed. In such cases, there is no limit to the number of samples used for this
calculation. A trade-off between time and resolution should be reached in each case. For
example, in order to have a resolution of 1/10000, the last 10000 samples should be considered in
the packet loss measured value.

The problem of this approach is the reliability of old samples. If the interval used between PING
messages is 50 ms, then to have a resolution of 1/1000, it takes 50 seconds, and a resolution of
1/10000 takes 500 seconds (more than 8 minutes). The reliability of a packet loss calculation
based on a sliding window of 8 minutes depends on how fast network conditions evolve.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 64

9.5. Measurements and Reactions
Q4S can be used as a mechanism to measure and trigger network tuning and application-level
actions (i.e. lowering video bit-rate, reducing multiplayer interaction speed, etc.) in real time in
order to reach the application constraints, addressing measured possible network degradation.

9.6. Instability Treatments
There are two scenarios in which Q4S can be affected by network problems: loss of Q4S packets
and outlier samples.

9.6.1. Loss of Control Packets

Lost UDP packets (PING or BWIDTH messages) don't cause any problems for the Q4S state
machine, but if TCP packets are delivered too late (which we will consider as "lost"), some
undesirable consequences could arise.

Q4S does have protection mechanisms to overcome these situations. Examples:

If a BEGIN packet or its corresponding answer is lost, after a certain timeout, the client
 resend another BEGIN packet, resetting the session

If a READY packet is lost, after a certain timeout, the client resend another READY
packet.
If a Q4S-ALERT request or its corresponding answer is lost, after a certain timeout, the
originator resend another Q4S-ALERT packet.
If a CANCEL request or its corresponding answer is lost, after a certain timeout, the
originator resend another CANCEL packet.

•
SHOULD

• SHOULD

•
SHOULD

•
SHOULD

9.6.2. Outlier Samples

Outlier samples are those jitter or latency values far from the general/average values of most
samples.

Hence, the Q4S default measurement method uses the statistical median formula for latency
calculation, and the outlier samples are neutralized. This is a very common filter for noise or
errors on signal and image processing.

9.7. Scenarios
Q4S could be used in two scenarios:

client to ACP
client to client (peer-to-peer scenario)

•
•

9.7.1. Client to ACP

One server:

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 65

Starting mode:

Prevention mode:

It is the common scenario in which the client contacts the server to establish a Q4S session.

N servers:

In Content Delivery Networks and in general applications where delivery of contents can be
achieved by different delivery nodes, two working mechanisms can be defined:

the end user may run Q4S against several delivery nodes and after some
seconds choose the best one to start the multimedia session.

during a streaming session, the user keeps several Q4S dialogs against
different alternative delivery nodes. In case of congestion, the end user change to the
best alternative delivery node.

MAY

9.7.2. Client to Client

In order to solve the client-to-client scenario, a Q4S register function be implemented. This
allows clients to contact each other for sending the BEGIN message. In this scenario, the Register
server would be used by peers to publish their Q4S-Resource-Server header and their public IP
address to enable the assumption of the server role.

The register function is out of scope of this protocol version because different HTTP mechanisms
can be used, and Q4S force any.

MUST

MUST NOT

10. Security Considerations

10.1. Confidentiality Issues
Because Q4S does not transport any application data, Q4S does not jeopardize the security of
application data. However, other certain considerations may take place, like identity
impersonation and measurements privacy and integrity.

10.2. Integrity of Measurements and Authentication
Identity impersonation could potentially produce anomalous Q4S measurements. If this attack is
based on spoofing of the server IP address, it can be avoided using the digital signature
mechanism included in the SDP. The network can easily validate this digital signature using the
public key of the server certificate.

Integrity of Q4S measurements under any malicious manipulation (such as a Man-in-the-Middle
(MITM) attack) relies on the same mechanism, the SDP signature.

The Signature header field contains the signed hash value of the SDP body in order to protect all
the SDP data, including the measurements. This signature not only protects the integrity of data
but also authenticates the server.

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 66

10.3. Privacy of Measurements
This protocol could be supported over IPsec. Q4S relies on UDP and TCP, and IPsec supports both.
If Q4S is used for application-based QoS, then IPsec is operationally valid; however, if Q4S is used
to trigger network-based actions, then measurements could be incorrect unless the IPsec ports
can be a target of potential action over the network (such as prioritizing IPsec flows to measure
the new, upgraded state of certain application flows).

10.4. Availability Issues
Any loss of connectivity may interrupt the availability of the Q4S service and may result in
higher packet loss measurements, which is just the desired behavior in these situations.

In order to mitigate availability issues caused by malicious attacks (such as DoS and DDoS), a
good practice is to enable the Q4S service only for authenticated users. Q4S can be launched after
the user is authenticated by the application. At this moment, the user's IP address is known, and
the Q4S service may be enabled for this IP address. Otherwise, the Q4S service should appear
unreachable.

10.5. Bandwidth Occupancy Issues
Q4S bandwidth measurement is limited to the application needs. It means that all available
bandwidth is not measured, but only the fraction required by the application. This allows other
applications to use the rest of available bandwidth normally.

However, a malicious Q4S client could restart Q4S sessions just after finishing the Negotiation
phase. The consequence would be to waste bandwidth for nothing.

In order to mitigate this possible anomalous behavior, it is to configure the
server to reject sessions from the same endpoint when this situation is detected.

RECOMMENDED

11. Future Code Point Requirements
If the ideas described in this document are pursued to become a protocol specification, then the
code points described in this document will need to be assigned by IANA.

11.1. Service Port
An assigned port would make possible a future Q4S-aware network capable of reacting by itself
to Q4S alerts. A specific port would simplify the identification of the protocol by network
elements in charge of making possible reactive decisions. Therefore, the need for a port
assignment by IANA may be postponed until there is the need for a future Q4S-aware network.

Service Name: Q4S

Transport Protocol(s): TCP

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 67

[RFC7230]

[RFC7231]

[RFC7232]

[RFC7233]

[RFC7234]

13. References

13.1. Normative References

,
, , , June 2014,

.

,
, , , June 2014,

.

,
, , , June 2014,

.

,
, , , June 2014,

.

,
, , , June 2014,

.

Description:

Reference:

Assignee:
Name: Jose Javier Garcia Aranda

Email: jose_javier.garcia_aranda@nokia.com

Contact:
Name: Jose Javier Garcia Aranda

Email: jose_javier.garcia_aranda@nokia.com

The service associated with this request is in charge of the establishment of new
Q4S sessions, and during the session, manages the handoff to a new protocol phase
(Handshake, Negotiation and Continuity) as well as sends alerts when measurements do
not meet the requirements.

This document. This service does not use IP-layer broadcast, multicast, or anycast
communication.

12. IANA Considerations
This document has no IANA actions.

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" RFC 7230 DOI 10.17487/RFC7230
<https://www.rfc-editor.org/info/rfc7230>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content" RFC 7231 DOI 10.17487/RFC7231 <https://
www.rfc-editor.org/info/rfc7231>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Conditional Requests" RFC 7232 DOI 10.17487/RFC7232 <https://
www.rfc-editor.org/info/rfc7232>

Fielding, R., Ed., Lafon, Y., Ed., and J. Reschke, Ed. "Hypertext Transfer Protocol
(HTTP/1.1): Range Requests" RFC 7233 DOI 10.17487/RFC7233
<https://www.rfc-editor.org/info/rfc7233>

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke, Ed. "Hypertext Transfer
Protocol (HTTP/1.1): Caching" RFC 7234 DOI 10.17487/RFC7234
<https://www.rfc-editor.org/info/rfc7234>

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 68

https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7233
https://www.rfc-editor.org/info/rfc7234

[RFC7235]

[RFC2818]

[RFC2119]

[RFC8174]

[RFC3986]

[RFC3629]

[RFC5322]

[RFC5234]

[RFC6234]

[RFC8017]

[RFC3264]

[RFC4566]

[RFC3550]

,
, , , June 2014,

.

, , , , May 2000,
.

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

,
, , , , January 2005,

.

, , , ,
, November 2003,

.

, , , ,
October 2008, .

,
, , , , January 2008,

.

,
, , , May 2011,

.

,
, , ,

November 2016, .

,
, , , June 2002,

.

, ,
, , July 2006,
.

13.2. Informative References

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Authentication" RFC 7235 DOI 10.17487/RFC7235 <https://www.rfc-
editor.org/info/rfc7235>

Rescorla, E. "HTTP Over TLS" RFC 2818 DOI 10.17487/RFC2818
<https://www.rfc-editor.org/info/rfc2818>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Berners-Lee, T., Fielding, R., and L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986
<https://www.rfc-editor.org/info/rfc3986>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Resnick, P., Ed. "Internet Message Format" RFC 5322 DOI 10.17487/RFC5322
<https://www.rfc-editor.org/info/rfc5322>

Crocker, D., Ed. and P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Eastlake 3rd, D. and T. Hansen "US Secure Hash Algorithms (SHA and SHA-
based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://
www.rfc-editor.org/info/rfc6234>

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch "PKCS #1: RSA
Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Rosenberg, J. and H. Schulzrinne "An Offer/Answer Model with Session
Description Protocol (SDP)" RFC 3264 DOI 10.17487/RFC3264
<https://www.rfc-editor.org/info/rfc3264>

Handley, M., Jacobson, V., and C. Perkins "SDP: Session Description Protocol"
RFC 4566 DOI 10.17487/RFC4566 <https://www.rfc-editor.org/info/
rfc4566>

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 69

https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc2818
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc3264
https://www.rfc-editor.org/info/rfc4566
https://www.rfc-editor.org/info/rfc4566

[RFC0793]

[RFC0792]

[QUIC]

[RFC4656]

[RFC5357]

[RFC3261]

[RFC0768]

[RENO]

[RFC3649]

[CUBIC]

[CTCP]

,
, , , ,

July 2003, .

, , , ,
, September 1981, .

, , , ,
, September 1981, .

,
, , , 9 June

2020, .

,
, , ,

September 2006, .

,
, , ,

October 2008, .

, , ,
, June 2002, .

, , , , ,
August 1980, .

,
,

, , July 1997,
.

, , ,
, December 2003, .

, ,
, , 26 August 2008,

.

,
,

, , 11 November 2008,
.

Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson "RTP: A Transport
Protocol for Real-Time Applications" STD 64 RFC 3550 DOI 10.17487/RFC3550

<https://www.rfc-editor.org/info/rfc3550>

Postel, J. "Transmission Control Protocol" STD 7 RFC 793 DOI 10.17487/
RFC0793 <https://www.rfc-editor.org/info/rfc793>

Postel, J. "Internet Control Message Protocol" STD 5 RFC 792 DOI 10.17487/
RFC0792 <https://www.rfc-editor.org/info/rfc792>

Iyengar, J. and M. Thomson "QUIC: A UDP-Based Multiplexed and Secure
Transport" Work in Progress Internet-Draft, draft-ietf-quic-transport-29

<https://tools.ietf.org/html/draft-ietf-quic-transport-29>

Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M. Zekauskas "A One-way
Active Measurement Protocol (OWAMP)" RFC 4656 DOI 10.17487/RFC4656

<https://www.rfc-editor.org/info/rfc4656>

Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J. Babiarz "A Two-Way
Active Measurement Protocol (TWAMP)" RFC 5357 DOI 10.17487/RFC5357

<https://www.rfc-editor.org/info/rfc5357>

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,
Handley, M., and E. Schooler "SIP: Session Initiation Protocol" RFC 3261 DOI
10.17487/RFC3261 <https://www.rfc-editor.org/info/rfc3261>

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768
<https://www.rfc-editor.org/info/rfc768>

Mathis, M., Semke, J., Mahdavi, J., and T. Ott "The Macroscopic Behavior of the
TCP Congestion Avoidance Algorithm" ACM SIGCOMM Computer
Communication Review, pp. 67-82 DOI 10.1145/263932.264023
<https://doi.org/10.1145/263932.264023>

Floyd, S. "HighSpeed TCP for Large Congestion Windows" RFC 3649 DOI
10.17487/RFC3649 <https://www.rfc-editor.org/info/rfc3649>

Rhee, I., Xu, L., and S. Ha "CUBIC for Fast Long-Distance Networks" Work in
Progress Internet-Draft, draft-rhee-tcpm-cubic-02 <https://
tools.ietf.org/html/draft-rhee-tcpm-cubic-02>

Sridharan, M., Tan, K., Bansal, D., and D. Thaler "Compound TCP: A New TCP
Congestion Control for High-Speed and Long Distance Networks" Work in
Progress Internet-Draft, draft-sridharan-tcpm-ctcp-02
<https://tools.ietf.org/html/draft-sridharan-tcpm-ctcp-02>

Acknowledgements
Many people have made comments and suggestions contributing to this document. In particular,
we would like to thank:

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 70

https://www.rfc-editor.org/info/rfc3550
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc792
https://tools.ietf.org/html/draft-ietf-quic-transport-29
https://www.rfc-editor.org/info/rfc4656
https://www.rfc-editor.org/info/rfc5357
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc768
https://doi.org/10.1145/263932.264023
https://www.rfc-editor.org/info/rfc3649
https://tools.ietf.org/html/draft-rhee-tcpm-cubic-02
https://tools.ietf.org/html/draft-rhee-tcpm-cubic-02
https://tools.ietf.org/html/draft-sridharan-tcpm-ctcp-02

, , , , ,
, and .

Additionally, we want to thank the Spanish Centre for the Development of Industrial Technology
(CDTI) as well as the Spanish Science and Tech Ministry, which funds this initiative through their
innovation programs.

Victor Villagra Sonia Herranz Clara Cubillo Pastor Francisco Duran Pina Michael Scharf Jesus
Soto Viso Federico Guillen

Contributors
Jacobo Perez Lajo
Nokia Spain

 jacobo.perez@nokia.com Email:

Luis Miguel Diaz Vizcaino
Nokia Spain

 Luismi.Diaz@nokia.com Email:

Gonzalo Munoz Fernandez
Nokia Spain

 gonzalo.munoz_fernandez.ext@nokia.com Email:

Manuel Alarcon Granero
Nokia Spain

 manuel.alarcon_granero.ext@nokia.com Email:

Francisco Jose Juan Quintanilla
Nokia Spain

 francisco_jose.juan_quintanilla.ext@nokia.com Email:

Carlos Barcenilla
Universidad Politecnica de Madrid

Juan Quemada
Universidad Politecnica de Madrid

 jquemada@dit.upm.es Email:

Ignacio Maestro
Tecnalia Research & Innovation

 ignacio.maestro@tecnalia.com Email:

Lara Fajardo Ibañez
Optiva Media

 lara.fajardo@optivamedia.com Email:

Pablo López Zapico
Optiva Media

 Pablo.lopez@optivamedia.com Email:

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 71

mailto:jacobo.perez@nokia.com
mailto:Luismi.Diaz@nokia.com
mailto:gonzalo.munoz_fernandez.ext@nokia.com
mailto:manuel.alarcon_granero.ext@nokia.com
mailto:francisco_jose.juan_quintanilla.ext@nokia.com
mailto:jquemada@dit.upm.es
mailto:ignacio.maestro@tecnalia.com
mailto:lara.fajardo@optivamedia.com
mailto:Pablo.lopez@optivamedia.com

David Muelas Recuenco
Universidad Autonoma de Madrid

 dav.muelas@uam.es Email:

Jesus Molina Merchan
Universidad Autonoma de Madrid

 jesus.molina@uam.es Email:

Jorge E. Lopez de Vergara Mendez
Universidad Autonoma de Madrid

 jorge.lopez_vergara@uam.es Email:

Victor Manuel Maroto Ortega
Optiva Media

 victor.maroto@optivamedia.com Email:

Authors' Addresses
Jose Javier Garcia Aranda
Nokia
María Tubau 9

 28050 Madrid
Spain

 +34 91 330 4348 Phone:
 jose_javier.garcia_aranda@nokia.com Email:

Mónica Cortés
Nokia
María Tubau 9

 28050 Madrid
Spain

 monica.cortes_sack@nokia.com Email:

Joaquín Salvachúa
Universidad Politecnica de Madrid
Avenida Complutense 30

 28040 Madrid
Spain

 +34 91 0672134 Phone:
 Joaquin.salvachua@upm.es Email:

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 72

mailto:dav.muelas@uam.es
mailto:jesus.molina@uam.es
mailto:jorge.lopez_vergara@uam.es
mailto:victor.maroto@optivamedia.com
tel:+34%2091%20330%204348
mailto:jose_javier.garcia_aranda@nokia.com
mailto:monica.cortes_sack@nokia.com
tel:+34%2091%200672134
mailto:Joaquin.salvachua@upm.es

Maribel Narganes
Tecnalia Research & Innovation
Parque Científico y Tecnológico de Bizkaia
Astondo Bidea, Edificio 700

 E-48160 Derio Bizkaia
Spain

 +34 946 430 850 Phone:
 maribel.narganes@tecnalia.com Email:

Iñaki Martínez-Sarriegui
Optiva Media
Edificio Europa II,
Calle Musgo 2, 1G,
28023 Madrid
Spain

 +34 91 297 7271 Phone:
 inaki.martinez@optivamedia.com Email:

RFC 8802 The Quality for Service (Q4S) Protocol July 2020

Aranda, et al. Informational Page 73

tel:+34%20946%20430%20850
mailto:maribel.narganes@tecnalia.com
tel:+34%2091%20297%207271
mailto:inaki.martinez@optivamedia.com

	RFC 8802
	The Quality for Service (Q4S) Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Scope
	1.2. Motivation
	1.3. Summary of Features
	1.4. Differences from OWAMP/TWAMP

	2. Terminology
	3. Overview of Operation
	4. Q4S Messages
	4.1. Requests
	4.2. Responses
	4.3. Header Fields
	4.3.1. Common Q4S Header Fields
	4.3.2. Specific Q4S Request Header Fields
	4.3.3. Specific Q4S Response Header Fields

	4.4. Bodies
	4.4.1. Encoding

	5. Q4S Method Definitions
	5.1. BEGIN
	5.2. READY
	5.3. PING
	5.4. BWIDTH
	5.5. Q4S-ALERT
	5.6. Q4S-RECOVERY
	5.7. CANCEL

	6. Response Codes
	6.1. 100 Trying
	6.2. Success 2xx
	6.2.1. 200 OK

	6.3. Redirection 3xx
	6.4. Request Failure 4xx
	6.4.1. 400 Bad Request
	6.4.2. 404 Not Found
	6.4.3. 405 Method Not Allowed
	6.4.4. 406 Not Acceptable
	6.4.5. 408 Request Timeout
	6.4.6. 413 Request Entity Too Large
	6.4.7. 414 Request-URI Too Long
	6.4.8. 415 Unsupported Media Type
	6.4.9. 416 Unsupported URI Scheme

	6.5. Server Failure 5xx
	6.5.1. 500 Server Internal Error
	6.5.2. 501 Not Implemented
	6.5.3. 503 Service Unavailable
	6.5.4. 504 Server Time-Out
	6.5.5. 505 Version Not Supported
	6.5.6. 513 Message Too Large

	6.6. Global Failures 6xx
	6.6.1. 600 Session Does Not Exist
	6.6.2. 601 Quality Level Not Allowed
	6.6.3. 603 Session Not Allowed
	6.6.4. 604 Authorization Not Allowed

	7. Protocol
	7.1. Protocol Phases
	7.2. SDP Structure
	7.2.1. "qos-level" Attribute
	7.2.2. "alerting-mode" Attribute
	7.2.3. "alert-pause" Attribute
	7.2.4. "recovery-pause" Attribute
	7.2.5. "public-address" Attributes
	7.2.6. "latency" Attribute
	7.2.7. "jitter" Attribute
	7.2.8. "bandwidth" Attribute
	7.2.9. "packetloss" Attribute
	7.2.10. "flow" Attributes
	7.2.11. "measurement" Attributes
	7.2.12. "max-content-length" Attribute

	7.3. Measurements
	7.3.1. Latency
	7.3.2. Jitter
	7.3.3. Bandwidth
	7.3.4. Packet Loss

	7.4. Handshake Phase
	7.5. Negotiation Phase
	7.5.1. Stage 0: Measurement of Latencies and Jitter
	7.5.2. Stage 1: Measurement of Bandwidth and Packet Loss
	7.5.3. Quality Constraints Not Reached
	7.5.3.1. Actuator Role
	7.5.3.2. Policy Server Role

	7.5.4. "qos-level" Changes

	7.6. Continuity Phase
	7.7. Termination Phase
	7.7.1. Sanity Check of Quality Sessions

	7.8. Dynamic Constraints and Flows
	7.9. "qos-level" Upgrade and Downgrade Operation

	8. General User Agent Behavior
	8.1. Roles in Peer-to-Peer Scenarios
	8.2. Multiple Quality Sessions in Parallel
	8.3. General Client Behavior
	8.3.1. Generating Requests

	8.4. General Server Behavior

	9. Implementation Recommendations
	9.1. Default Client Constraints
	9.2. Latency and Jitter Measurements
	9.3. Bandwidth Measurements
	9.4. Packet Loss Measurement Resolution
	9.5. Measurements and Reactions
	9.6. Instability Treatments
	9.6.1. Loss of Control Packets
	9.6.2. Outlier Samples

	9.7. Scenarios
	9.7.1. Client to ACP
	9.7.2. Client to Client

	10. Security Considerations
	10.1. Confidentiality Issues
	10.2. Integrity of Measurements and Authentication
	10.3. Privacy of Measurements
	10.4. Availability Issues
	10.5. Bandwidth Occupancy Issues

	11. Future Code Point Requirements
	11.1. Service Port

	12. IANA Considerations
	13. References
	13.1. Normative References
	13.2. Informative References

	Acknowledgements
	Contributors
	Authors' Addresses

 The Quality for Service (Q4S) Protocol

 Nokia

 María Tubau 9
 28050
 Madrid
 Spain

 +34 91 330 4348
 jose_javier.garcia_aranda@nokia.com

 Nokia

 María Tubau 9
 28050
 Madrid
 Spain

 monica.cortes_sack@nokia.com

 Universidad Politecnica de Madrid

 Avenida Complutense 30
 28040
 Madrid
 Spain

 +34 91 0672134
 Joaquin.salvachua@upm.es

 Tecnalia Research & Innovation

 Parque Científico y Tecnológico de Bizkaia
 Astondo Bidea, Edificio 700
 E-48160
 Derio
 Bizkaia
 Spain

 +34 946 430 850
 maribel.narganes@tecnalia.com

 Optiva Media

 Edificio Europa II,
 Calle Musgo 2, 1G,
 28023 Madrid
 Spain

 +34 91 297 7271
 inaki.martinez@optivamedia.com

 quality measurement
 measurement protocol
 latency
 jitter
 bandwidth
 packet-loss

 This memo describes an application-level protocol for the
 communication of end-to-end QoS compliance information based on
 the HyperText Transfer Protocol (HTTP) and the Session
 Description Protocol (SDP). The Quality for Service
 (Q4S) protocol provides a mechanism to negotiate and monitor latency,
 jitter, bandwidth, and packet loss, and to alert whenever one of the
 negotiated conditions is violated.

 Implementation details on the actions to be triggered upon
 reception/detection of QoS alerts exchanged by the protocol are
 out of scope of this document; it is either application dependent (e.g.,
 act to increase quality or reduce bit-rate) or network dependent
 (e.g., change connection's quality profile).

 This protocol specification is the product of research conducted
 over a number of years; it is presented here as a permanent
 record and to offer a foundation for future similar work. It does
 not represent a standard protocol and does not have IETF
 consensus.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any
 other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for
 publication by the RFC Editor are not candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Scope

 . Motivation

 . Summary of Features

 . Differences from OWAMP/TWAMP

 . Terminology

 . Overview of Operation

 . Q4S Messages

 . Requests

 . Responses

 . Header Fields

 . Common Q4S Header Fields

 . Specific Q4S Request Header Fields

 . Specific Q4S Response Header Fields

 . Bodies

 . Encoding

 . Q4S Method Definitions

 . BEGIN

 . READY

 . PING

 . BWIDTH

 . Q4S-ALERT

 . Q4S-RECOVERY

 . CANCEL

 . Response Codes

 . 100 Trying

 . Success 2xx

 . 200 OK

 . Redirection 3xx

 . Request Failure 4xx

 . 400 Bad Request

 . 404 Not Found

 . 405 Method Not Allowed

 . 406 Not Acceptable

 . 408 Request Timeout

 . 413 Request Entity Too Large

 . 414 Request-URI Too Long

 . 415 Unsupported Media Type

 . 416 Unsupported URI Scheme

 . Server Failure 5xx

 . 500 Server Internal Error

 . 501 Not Implemented

 . 503 Service Unavailable

 . 504 Server Time-Out

 . 505 Version Not Supported

 . 513 Message Too Large

 . Global Failures 6xx

 . 600 Session Does Not Exist

 . 601 Quality Level Not Allowed

 . 603 Session Not Allowed

 . 604 Authorization Not Allowed

 . Protocol

 . Protocol Phases

 . SDP Structure

 . "qos-level" Attribute

 . "alerting-mode" Attribute

 . "alert-pause" Attribute

 . "recovery-pause" Attribute

 . "public-address" Attributes

 . "latency" Attribute

 . "jitter" Attribute

 . "bandwidth" Attribute

 . "packetloss" Attribute

 . "flow" Attributes

 . "measurement" Attributes

 . "max-content-length" Attribute

 . Measurements

 . Latency

 . Jitter

 . Bandwidth

 . Packet Loss

 . Handshake Phase

 . Negotiation Phase

 . Stage 0: Measurement of Latencies and Jitter

 . Stage 1: Measurement of Bandwidth and Packet Loss

 . Quality Constraints Not Reached

 . Actuator Role

 . Policy Server Role

 . "qos-level" Changes

 . Continuity Phase

 . Termination Phase

 . Sanity Check of Quality Sessions

 . Dynamic Constraints and Flows

 . "qos-level" Upgrade and Downgrade Operation

 . General User Agent Behavior

 . Roles in Peer-to-Peer Scenarios

 . Multiple Quality Sessions in Parallel

 . General Client Behavior

 . Generating Requests

 . General Server Behavior

 . Implementation Recommendations

 . Default Client Constraints

 . Latency and Jitter Measurements

 . Bandwidth Measurements

 . Packet Loss Measurement Resolution

 . Measurements and Reactions

 . Instability Treatments

 . Loss of Control Packets

 . Outlier Samples

 . Scenarios

 . Client to ACP

 . Client to Client

 . Security Considerations

 . Confidentiality Issues

 . Integrity of Measurements and Authentication

 . Privacy of Measurements

 . Availability Issues

 . Bandwidth Occupancy Issues

 . Future Code Point Requirements

 . Service Port

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Contributors

 Authors' Addresses

 Introduction

 The World Wide Web (WWW) is a distributed hypermedia system
 that has gained widespread acceptance among Internet users.
 Although WWW browsers support other, preexisting Internet
 application protocols, the primary protocol used between WWW
 clients and servers became the HyperText Transfer Protocol (HTTP)
 (, ,
 , ,
 , and).
 Since then, HTTP over TLS (known as HTTPS
 and described in) has become an imperative for
 providing secure and authenticated WWW access. The mechanisms
 described in this document are equally applicable to HTTP and
 HTTPS.

 The ease of use of the Web has prompted its widespread employment
 as a client/server architecture for many applications. Many of
 such applications require the client and the server to be able to
 communicate with each other and exchange information with certain
 quality constraints.

 Quality in communications at the application level consists of
 four measurable parameters:

 Latency:
 The time a message takes to travel from source to
 destination. It may be approximated as RTT/2 (round-trip
 time), assuming the networks are symmetrical. In this context,
 we will consider the statistical median formula.
 Jitter:
 Latency variation. There are some formulas to
 calculate jitter, and in this context, we will consider the
 arithmetic mean formula.
 Bandwidth:
 Bit rate of communication. To ensure quality, a
 protocol must ensure the availability of the bandwidth needed
 by the application.
 Packet loss:
 The percentage of packet loss is closely related
 to bandwidth and jitter. Packet loss affects bandwidth because a high
 packet loss sometimes implies retransmissions that also
 consumes extra bandwidth, other times the retransmissions are
 not achieved (for example, in video streaming over UDP), and
 the information received is less than the required bandwidth.
 In terms of jitter, a packet loss sometimes is seen by the
 destination as a larger time between arrivals, causing a
 jitter growth.

 Any other communication parameter, such as throughput, is not a
 network parameter because it depends on protocol window size and
 other implementation-dependent aspects.

 The Q4S protocol provides a mechanism for
 quality monitoring based on an HTTP syntax and the Session
 Description Protocol (SDP) in order to be easily integrated in the
 WWW, but it may be used by any type of application, not only those
 based on HTTP. Quality requirements may be needed by any type of
 application that communicates using any kind of protocol,
 especially those with real-time constraints. Depending on the
 nature of each application, the constraints may be different,
 leading to different parameter thresholds that need to be met.

 Q4S is an application-level client/server protocol that
 continuously measures session quality for a given flow (or set of
 flows), end-to-end (e2e) and in real time; raising alerts if
 quality parameters are below a given negotiated threshold and
 sending recoveries when quality parameters are restored. Q4S
 describes when these notifications, alerts, and recoveries need to
 be sent and the entity receiving them. The actions undertaken by
 the receiver of the alert are out of scope of the protocol.

 Q4S is session-independent from the application flows to minimize
 the impact on them. To perform the measurements, two control flows
 are created on both communication paths (forward and reverse
 directions).

 This protocol specification is the product of research conducted
 over a number of years and is presented here as a permanent
 record and to offer a foundation for future similar work. It does
 not represent a standard protocol and does not have IETF
 consensus.

 Scope

 The purpose of Q4S is to measure end-to-end network quality in
 real time. Q4S does not transport any application data. This means
 that Q4S is designed to be used jointly with other transport
 protocols such as Real-time Transport Protocol (RTP) ,
 Transmission Control Protocol (TCP) ,
 QUIC ,
 HTTP , etc.

 Some existent transport protocols are focused on real-time media
 transport and certain connection metrics are available, which is
 the case of RTP and RTP Control Protocol (RTCP) . Other
 protocols such as QUIC provide low connection latencies as well as
 advanced congestion control. These protocols transport data
 efficiently and provide a lot of functionalities. However, there are
 currently no other quality measurement protocols offering the same
 level of function as Q4S. See for a discussion of the
 IETF's quality measurement protocols, One-Way Active Measurement Protocol (OWAMP) and
 Two-Way Active Measurement Protocol (TWAMP).

 Q4S enables applications to become reactive under e2e network
 quality changes. To achieve it, an independent Q4S stack
 application must run in parallel with the target application. Then, Q4S
 metrics may be used to trigger actions on the target application, such
 as speed adaptation to latency in multiuser games, bitrate control
 at streaming services, intelligent commutation of delivery node at
 Content Delivery Networks, and whatever the target application allows.

 Motivation

 Monitoring quality of service (QoS) in computer networks is useful
 for several reasons:

 It enables real-time services and applications to verify whether
 network resources achieve a certain QoS level. This helps
 real-time services and applications to run over the
 Internet, allowing the existence of Application Content
 Providers (ACPs), which offer guaranteed real-time services to
 the end users.
 Real-time monitoring allows applications to adapt themselves
 to network conditions (application-based QoS) and/or request
 more network quality from the Internet Service Provider (ISP)
 (if the ISP offers this possibility).
 Monitoring may also be required by peer-to-peer (P2P) real-time
 applications for which Q4S can be used.
 Monitoring enables ISPs to offer QoS to any ACP or end user application
 in an accountable way.

 Monitoring enables e2e negotiation of QoS parameters, independently of
 the ISPs of both endpoints.

 A protocol to monitor QoS must address the following issues:

 Must be ready to be used in conjunction with current standard
 protocols and applications, without forcing a change on them.
 Must have a formal and compact way to specify quality
 constraints desired by the application to run.
 Must have measurement mechanisms that avoid application
 disruption and minimize network resources consumption.
 Must have specific messages to alert about the violation of
 quality constraints in different directions (forward and
 reverse) because network routing may not be symmetrical, and
 of course, quality constraints may not be symmetrical.
 After having alerted about the violation of quality
 constraints, must have specific messages to inform about
 the recovery of quality constraints in corresponding directions
 (forward and reverse).
 Must protect the data (constraints, measurements, QoS levels
 demanded from the network) in order to avoid the injection of
 malicious data in the measurements.

 Summary of Features

 The Quality for Service (Q4S) protocol is a message-oriented
 communication protocol that can be used in conjunction with any
 other application-level protocol. Q4S is a measurement protocol.
 Any action taken derived from its measurements are out of scope of
 the protocol. These actions depend on the application provider and may
 be application-level adaptive reactions, may involve requests to
 the ISP, or whatever the application provider decides.

 The benefits in quality measurements provided by Q4S can be used
 by any type of application that uses any type of protocol for data
 transport. It provides a quality monitoring scheme for any
 communication that takes place between the client and the server,
 not only for the Q4S communication itself.

 Q4S does not establish multimedia sessions, and it does not
 transport application data. It monitors the fulfillment of the
 quality requirements of the communication between the client and
 the server; therefore, it does not impose any restrictions on the
 type of application, protocol, or usage of the
 monitored quality connection.

 Some applications may vary their quality requirements dynamically
 for any given quality parameter. Q4S is able to adapt to the
 changing application needs, modifying the parameter thresholds to
 the new values and monitoring the network quality according to the
 new quality constraints. It will raise alerts if the new
 constraints are violated.

 The Q4S session lifetime is composed of four phases with different
 purposes: Handshake, Negotiation, Continuity, and Termination.
 Negotiation and Continuity phases perform network parameter
 measurements per a negotiated measurement procedure. Different
 measurement procedures could be used inside Q4S, although one
 default measurement mechanism is needed for compatibility reasons
 and is the one defined in this document. Basically, Q4S defines
 how to transport application quality requirements and measurement
 results between a client and server and how to provide monitoring and
 alerting, too.

 Q4S must be executed just before starting a client-server
 application that needs a quality connection in terms of latency,
 jitter, bandwidth, and/or packet loss. Once the client and server have
 succeeded in establishing communication under quality constraints,
 the application can start, and Q4S continues measuring and
 alerting if necessary.

 The quality parameters can be suggested by the client in the first
 message of the Handshake phase, but it is the server that accepts
 these parameter values or forces others. The server is in charge
 of deciding the final values of quality connection.

 Differences from OWAMP/TWAMP

 OWAMP and
 TWAMP are two protocols
 to measure network quality in terms of RTT, but they have a different
 goal than Q4S. The main difference is the scope: Q4S is designed
 to assist reactive applications, whereas OWAMP/TWAMP is designed
 to measure just network delay.

 The differences can be summarized in the following points:

 OWAMP and TWAMP are not intended for measuring availability of
 resources (certain bandwidth availability, for example) but
 only RTT. However, Q4S is intended for measuring required
 bandwidth, packet loss, jitter, and latency in both
 directions. Available bandwidth is not measured by Q4S, but
 bandwidth required for a specific application is.
 OWAMP and TWAMP do not have responsivity control (which
 defines the speed of protocol reactions under network quality
 changes) because these protocols are designed to measure
 network performance, not to assist reactive applications, and
 do not detect the fluctuations of quality within certain time
 intervals to take reactive actions. However, responsivity
 control is a key feature of Q4S.
 OWAMP and TWAMP are not intended to run in parallel with reactive
 applications, but the Q4S protocol's goal is to run in parallel and assist
 reactive applications in making decisions based on Q4S-ALERT
 packets, which may trigger actions.

 Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 Overview of Operation

 This section introduces the basic operation of Q4S using simple
 examples. This section is of a tutorial nature and does not contain
 any normative statements.

 The first example shows the basic functions of Q4S:
 communication establishment between a client and a server, quality
 requirement negotiations for the requested application,
 application start and continuous quality parameter measurements,
 and finally communication termination.

 The client triggers the establishment of the communication by
 requesting a specific service or application from the server. This
 first message must have a special URI , which may
 force the use of the Q4S protocol if it is implemented in a
 standard web browser. This message consists of a Q4S BEGIN method,
 which can optionally include a proposal for the communication
 quality requirements in an SDP body. This option gives the client
 a certain negotiation capacity about quality requirements, but it
 will be the server who finally decides the stated
 requirements.

 This request is answered by the server with a Q4S 200 OK response
 letting the client know that it accepts the request. This response
 message must contain an SDP body with the following:

 The assigned Q4S sess-id.
 The quality constraints required by the requested application.
 The measurement procedure to use.

 "alerting-mode" attribute: There are two different scenarios for
 sending alerts that trigger actions either on the network or
 in the application when measurements identify violated
 quality constraints. In both cases, alerts are triggered by
 the server.

 Q4S-aware-network scenario: The network is Q4S aware
 and reacts by itself to these alerts. In this scenario,
 Q4S-ALERT messages are sent by the server to the client,
 and network elements inspect and process these alert
 messages. The alerting mode in this scenario is called
 Q4S-aware-network alerting mode.

 Reactive scenario: As shown in
 , the network
 is not Q4S aware. In this scenario, alert notifications
 are sent to a specific node, called an Actuator, which is
 in charge of making decisions regarding what actions to
 trigger: either to change application behavior to adapt
 it to network conditions and/or invoke a network policy
 server in order to reconfigure the network and request
 better quality for application flows.

 Reactive Scenario

 +------+ +-----------+
 | App |<----- app flows---------->|Application|
 |Client| +-----------+
 +------+ A
 |
 +------+ +------+ +--------+
 | Q4S |<----Q4S---->| Q4S |<----->|Actuator|
 |Client| |Server| +--------+
 +------+ +------+ |
 V
 +-------------+
 |policy server|
 +-------------+

 The format of messages exchanged between the server stack and
 the Actuator doesn't follow Q4S codification rules;
 their format will be implementation dependent. In this way,
 we will call the messages sent from the server stack to the
 Actuator "notifications" (e.g., alert notifications) and the
 messages sent from the Actuator to the server stack in
 response to notifications "acknowledges" (e.g., alert
 acknowledges).

 "alert-pause" attribute: The amount of time between consecutive alerts.
 In the Q4S-aware-network scenario, the server has to wait
 this period of time between Q4S-ALERT messages sent to the
 client. In the Reactive scenario, the server stack has to
 wait this period of time between alert notifications sent to
 the Actuator. Measurements are not stopped in Negotiation or
 Continuity phases during this period of time, but no alerts
 are sent, even with violated network quality constraints, in
 order to leave time for network reconfiguration or for
 application adjustments.
 "recovery-pause" attribute: The amount of time the Q4S server waits
 before trying to recover the initial "qos-level" ().
 After having
 detected violation of quality constraints several times, the
 "qos-level" will have been increased accordingly. If this
 violation detection finally stops, the server waits for a
 period of time (recovery time), and if the situation persists,
 it tries to recover to previous "qos-level" values gradually by
 sending Q4S-RECOVERY messages to the client in the Q4S-aware-network scenario, or recovery notifications to the
 Actuator in the Reactive scenario ().

 It is important to highlight that any Q4S 200 OK response sent by
 the server to the client at any time during the life of a quality
 session may contain an SDP body with new values of quality
 constraints required by the application. Depending on the phase
 and the state of the measurement procedure within the specific
 phase, the client will react accordingly to take into
 account the new quality constraints in the measurement procedure.

 Once the communication has been established (i.e., the Handshake phase is
 finished), the protocol will verify that the communication path
 between the client and the server meets the quality constraints in
 both directions, from and to the server (Negotiation phase). This
 Negotiation phase requires taking measurements of the quality
 parameters: latencies, jitter, bandwidth, and packet loss. This
 phase is initiated with a client message containing a Q4S READY
 method, which will be answered by the server with a Q4S 200 OK
 response.

 Negotiation measurements are achieved in two sequential stages:

 Stage 0:
 latency and jitter measurements
 Stage 1:
 bandwidth and packet loss measurements

 Stage 0 measurements are taken through Q4S PING messages
 sent from both the client and the server. All Q4S PING
 requests will be answered by Q4S 200 OK messages to allow for
 bidirectional measurements.

 Different client and server implementations may send a different
 number of PING messages for measuring, although at least 255
 messages should be considered to perform the latency measurement.
 The Stage 0 measurements only may be considered ended when neither
 client nor server receive new PING messages after an
 implementation-dependent guard time. Only after Stage 0 has ended, can the client send a
 "READY 1" message.

 After a pre-agreed number of measurements have been performed,
 determined by the measurement procedure sent by the server, three
 scenarios may be possible:

 Measurements do not meet the
 requirements: in this case, the
	stage 0 is repeated after sending an alert from the server to
 the client or from the server stack to the Actuator, depending
 on the alerting mode defined in the Handshake phase. Notice
 that measurements continue to be taken but no alerts are sent
 during the "alert-pause" time. In the Reactive scenario, the
 Actuator will decide either to forward the alert notification
 to the network policy server or to the application, depending
 on where reconfiguration actions have to be taken.
	
 Measurements do meet the requirements: in this case, client
	moves to stage 1 by sending a new READY message.
	
 At any time during the measurement procedure, the Q4S 200 OK
	message sent by the server to the client, in response to a Q4S
 PING message, contains an SDP body with new values of quality
 constraints required by the application. This means the
 application has varied their quality requirements dynamically;
 therefore, quality thresholds used while monitoring quality
 parameters have to be changed to the new constraints. In this
 case, the client moves to the beginning of Stage 0 for
 initiating the negotiation measurements again.
	

 Stage 1 is optional. Its purpose is to measure the availability of
 application-needed bandwidth. If the "bandwidth" attribute is
 set to zero kbps in the SDP, the client can skip stage 1 by
 sending a "READY 2" message after completion of stage 0. Stage 1
 measurements are achieved through Q4S BWIDTH messages sent
 from both the client and the server. Unlike PING messages, Q4S BWIDTH
 requests will not be answered.

 If Stage 0 and 1 meet the application quality constraints, the
 application may start. Q4S will enter the Continuity phase
 by measuring the network quality parameters through the Q4S PING
 message exchange on both connection paths and raising alerts in
 case of violation.

 Once the client wants to terminate the quality session, it sends a
 Q4S CANCEL message, which will be acknowledged by the server with
 another Q4S CANCEL message. Termination of quality sessions are
 always initiated by the client because Q4S TCP requests follow the
 client/server schema.

 depicts the message exchange in a successful scenario.

 Successful Q4S Message Exchange

 +---+
 | |
 | Client Server |
 | |
Handshake | --------- Q4S BEGIN -----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
Negotiation | |
(Stage 0) | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | --------- Q4S PING ------------> |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | <-------- Q4S 200 OK ----------- |
 | ... |
Negotiation | |
(Stage 1) | --------- Q4S READY 1----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S BWITDH ----------> |
 | <-------- Q4S BWIDTH------------ |
 | --------- Q4S BWITDH ----------> |
 | <-------- Q4S BWIDTH------------ |
 | ... |
Continuity | --------- Q4S READY 2 ---------> |
 | <-------- Q4S 200 OK ----------- | app start
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | |
Termination | --------- Q4S CANCEL ----------> | app end
 | <-------- Q4S CANCEL ----------- |
 | |
 +---+

 Both client and server measurements are included in the PING and BWIDTH
 messages, allowing both sides of the communication channel to be aware
 of all measurements in both directions.

 The following two examples show the behavior of the Q4S protocol
 when quality constraints are violated, and alerts are generated; and,
 later on, when the violation of quality constraints stops leading to the
 execution of the recovery process. The first example
 ()
 shows the Q4S-aware-network alerting mode scenario:

 Q4S-Aware-Network Alerting Mode

 +---+
 | |
 | Client Server |
 | |
Handshake | --------- Q4S BEGIN -----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
Negotiation | |
(Stage 0) | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 | |
 | <-------- Q4S-ALERT ------------ |
 | -------- Q4S-ALERT ------------> |
 | (alert-pause start) |
Repetition | |
of Stage 0 | --------- Q4S READY 0----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | ... |
Negotiation | |
(Stage 1) | --------- Q4S READY 1----------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S BWITDH ----------> |
 | <-------- Q4S BWIDTH------------ |
 | ... |
 | |
Continuity | --------- Q4S READY 2 ---------> |
 | <-------- Q4S 200 OK ----------- | app start
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |
 | <-------- Q4S-ALERT ------------ |
 | --------- Q4S-ALERT -----------> |
 | |
 | (alert-pause start) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |
 | <-------- Q4S-ALERT ------------ |
 | --------- Q4S-ALERT -----------> |
 | (alert-pause) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 |(alert-pause expires & |
 | Fulfilled constraints) |
 | |
 | (recovery-pause start) |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 |(recovery-pause expires & |
 | Fulfilled constraints) |
 | <--------- Q4S-RECOVERY --------- |
 | -------- Q4S-RECOVERY -----------> |
 | |
 | (recovery-pause start) |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | ... |
 | |
Termination | --------- Q4S CANCEL ----------> | app end
 | <-------- Q4S CANCEL ----------- |
 | |
 +---+

 In this Q4S-aware-network alerting mode scenario, the server may
 send Q4S alerts to the client at any time upon detection of violated
 quality constraints. This alerting exchange must not interrupt the
 continuity quality parameter measurements between client and
 server.

 The second example depicted in represents the
 Reactive scenario, in which alert notifications are sent from the
 server stack to the Actuator, which is in charge of deciding
 to act over application behavior and/or to invoke a network policy
 server. The Actuator is an entity that has a defined set of
 different quality levels and decides how to act depending on the
 actions stated for each of these levels; it can take actions for
 making adjustments on the application, or it can send a request to
 the policy server for acting on the network. The policy server
 also has a defined set of different quality levels previously agreed
 upon between the Application Content Provider and the ISP. The
 Reactive alerting mode is the default mode.

 Reactive Alerting Mode

 +---+
 | |
 | Client Server Actuator |
Handshake | ----- Q4S BEGIN -----> |
 | <---- Q4S 200 OK ----- |
 | |
Negotiation | |
(Stage 0) | ----- Q4S READY 0----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ---- Q4S 200 OK ----> |
 | ... |
 | (alert-pause start) |
 | --alert |
 | notification--> |
 | |
 | <--alert |
 | acknowledge--- |
 | |
Repetition | |
of Stage 0 | ----- Q4S READY 0----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ... |
 |(alert-pause expires & |
 | violated constraints) |
 | |
 | --alert |
 | notification--> |
 | |
 | <--alert |
 | acknowledge--- |
 | |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ... |
Negotiation | |
(Stage 1) | ----- Q4S READY 1----> |
 | <---- Q4S 200 OK ----- |
 | |
 | ----- Q4S BWITDH ----> |
 | <---- Q4S BWIDTH------ |
 | ... |
Continuity | ----- Q4S READY 2 ---> |
 | <---- Q4S 200 OK ----- | app start
 | |
 |(alert-pause expires & |
 | fulfilled constraints) |
 | |
 |(recovery-pause start) |
 | ----- Q4S PING ------> |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ----- Q4S PING ------> |
 | |
 |(recovery-pause expires & |
 | fulfilled constraints) |
 | |
 | --recovery |
 | notification--> |
 | |
 | <--recovery |
 | acknowledge--- |
 | |
 |(recovery-pause start) |
 | <---- Q4S 200 OK ----- |
 | <---- Q4S PING ------- |
 | ----- Q4S 200 OK ----> |
 | ----- Q4S PING ------> |
 | ... |
 | |
Termination | ----- Q4S CANCEL ----> | app end
 | --cancel |
 | notification--> |
 | |
 | <--cancel |
 | acknowledge-- |
 | <---- Q4S CANCEL ----- |
 | |
 +---+

 At the end of any stage of the Negotiation phase, the server sends an
 alert notification to the Actuator if quality constraints are
 violated. During the period of time defined by the "alert-pause"
 attribute, no further alert notifications are sent, but
 measurements are not interrupted. This way, both the client and
 the server will detect network improvements as soon as possible.
 In a similar way during the Continuity phase, the server may send
 alert notifications at any time to the Actuator upon detection of
 violated quality constraints. This alerting exchange must not
 interrupt the continuity measurements between client and server.

 Finally, in the Termination phase, Q4S CANCEL messages sent from
 the client to the server must be forwarded from the server to the
 Actuator in order to release possible assigned resources for the
 session.

 Q4S Messages

 Q4S is a text-based protocol and uses the UTF-8 charset
 . A Q4S message is either a request or a response.

 Both request and response messages use the basic format of
 Internet Message Format . Both types of messages
 consist of a start-line, one or more header fields, an empty line
 indicating the end of the header fields, and an optional message-body.
 This document uses ABNF notation
 for the definitions of the syntax of messages.

 The start-line, each message-header line, and the empty line MUST
 be terminated by a carriage-return line-feed sequence (CRLF).
 Note that the empty line MUST be present even if the message-body
 is not.

 generic-message = start-line CRLF
 *message-header CRLF
 CRLF
 [message-body]
 start-line = Request-Line / Status-Line

 Much of Q4S's messages and header field syntax are identical to
 HTTP/1.1. However, Q4S is not an extension of HTTP.

 Requests

 Q4S requests are distinguished by having a Request-Line for a
 start-line. A Request-Line contains a method name, a Request-URI,
 and the protocol version separated by a single space (SP)
 character.

 The Request-Line ends with CRLF. No CR or LF are allowed except in
 the end-of-line CRLF sequence. No linear whitespace (LWSP) is allowed
 in any of the elements.

 Request-Line = Method SP Request-URI SP Q4S-Version CRLF

 Method:

	This specification defines seven methods: BEGIN for
	starting and negotiating quality sessions, READY for
 synchronization of measurements, PING and BWIDTH for
 quality measurements purposes, CANCEL for terminating
 sessions, Q4S-ALERT for reporting quality violations, and
 Q4S-RECOVERY for reporting quality recovery.
	
 Request-URI:

	The Request-URI is a Q4S URI as described
	in . The Request-URI MUST NOT contain unescaped spaces
 or control characters and MUST NOT be enclosed in "<>".
	
 Q4S-Version:

	Both request and response messages include the
	version of Q4S in use. To be compliant with this
 specification, applications sending Q4S messages MUST
 include a Q4S-Version of "Q4S/1.0". The Q4S-Version string
 is case insensitive, but implementations MUST
 send uppercase. Unlike HTTP/1.1, Q4S treats the version number as a
 literal string. In practice, this should make no difference.
	

 Responses

 Q4S responses are distinguished from requests by having a Status-Line as their start-line. A Status-Line consists of the protocol
 version followed by a numeric Status-Code and its associated
 textual phrase, with each element separated by a single SP
 character. No CR or LF is allowed except in the final CRLF
 sequence.

 Status-Line = Q4S-Version SP Status-Code SP Reason-Phrase CRLF

 The Status-Code is a 3-digit integer result code that indicates
 the outcome of an attempt to understand and satisfy a request. The
 Reason-Phrase is intended to give a short textual description of
 the Status-Code. The Status-Code is intended for use by automata,
 whereas the Reason-Phrase is intended for the human user. A client
 is not required to examine or display the Reason-Phrase.

 While this specification suggests specific wording for the
 Reason-Phrase, implementations MAY choose other text, for example, in the
 language indicated in the Accept-Language header field of the
 request.

 The first digit of the Status-Code defines the class of response.
 The last two digits do not have any categorization role. For this
 reason, any response with a status code between 100 and 199 is
 referred to as a "1xx response", any response with a status code
 between 200 and 299 as a "2xx response", and so on. Q4S/1.0
 allows following values for the first digit:

 1xx:

	Provisional -- request received, continuing to process the request;
	
 2xx:

	Success -- the action was successfully received, understood, and accepted;
	
 3xx:

	Redirection -- further action needs to be taken in order to complete the request;
	
 4xx:

	Request Failure -- the request contains bad syntax or cannot be fulfilled at this server;
	
 5xx:

 Server Error -- the server failed to fulfill an apparently valid request;
	
 6xx:

 Global Failure -- the request cannot be fulfilled at any server.
	

 The status codes are the same as described in HTTP . In
 the same way as HTTP, Q4S applications are not required to
 understand the meaning of all registered status codes, though such
 understanding is obviously desirable. However, applications MUST
 understand the class of any status code, as indicated by the first
 digit, and treat any unrecognized response as being equivalent to
 the x00 status code of that class.

 The Q4S-ALERT, Q4S-RECOVERY, and CANCEL requests do not have to be
 responded to. However, after receiving a Q4S-ALERT, Q4S-RECOVERY, or
 CANCEL request, the server SHOULD send a Q4S-ALERT, Q4S-RECOVERY,
 or CANCEL request to the client.

 Header Fields

 Q4S header fields are identical to HTTP header fields in both
 syntax and semantics.

 Some header fields only make sense in requests or responses. These
 are called request header fields and response header fields,
 respectively. If a header field appears in a message that does not match
 its category (such as a request header field in a response), it
 MUST be ignored.

 Common Q4S Header Fields
 These fields may appear in request and response messages.

 Session-Id:
 the value for this header field is the same sess-id
 used in SDP (embedded in the SDP "o=" line) and is assigned
 by the server. The messages without SDP MUST include this
 header field. If a message has an SDP body, this header field is
 optional. The method of sess-id allocation is up to the
 creating tool, but it is suggested that a UTC timestamp be
 used to ensure uniqueness.
 Sequence-Number:
 sequential and cyclic positive integer
 number assigned to PING and BWIDTH messages and acknowledged
 in 200 OK responses.
 Timestamp:
 this optional header field contains the system time
 (with the best possible accuracy). It indicates the time in
 which the PING request was sent. If this header field is present in
 PING messages, then the 200 OK response messages MUST include
 this value.
 Stage:
 this is used in the client's READY requests and the server's
 200 OK responses during the Negotiation and Continuity phases
 in order to synchronize the initiation of the measurements.
 Example: Stage: 0

 Specific Q4S Request Header Fields

 In addition to HTTP header fields, these are the specific Q4S
 request header fields:

 User-Agent:
 this header field contains information about the
 implementation of the user agent. This is for statistical
 purposes, the tracing of protocol violations, and the
 automated recognition of user agents for the sake of
 tailoring responses to avoid particular user agent
 limitations. User agents SHOULD include this field with
 requests. The field MAY contain multiple product tokens and
 comments identifying the agent and any sub-products that
 form a significant part of the user agent. By convention, the
 product tokens are listed in order of their significance for
 identifying the application.
 Signature:

 this header field contains a digital signature that can
 be used by the network, Actuator, or policy server to validate
 the SDP, preventing security attacks. The Signature is an
 optional header field generated by the server according to the
 pre-agreed security policies between the Application Content
 Provider and the ISP. For example, a hash algorithm and
 encryption method such as SHA256
 and RSA based on the server certificate could be used.
 This certificate is supposed to be delivered by a
 Certification Authority (CA) or policy owner to the server.
 The signature is applied to the SDP body.

 Signature= RSA (SHA256 (<sdp>), <certificate>)

 If the Signature header field is not present, other validation mechanisms
 MAY be implemented in order to provide assured quality with
 security and control.

 Measurements:

 this header field carries the measurements of the
 quality parameters in PING and BWIDTH requests. The format
 is:

 Measurements: "l=" " "|[0..9999] ", j=" " "|[0..9999] ", pl="
 " "|[0.00 .. 100.00] ", bw=" " "|[0..999999]

 Where "l" stands for latency followed by the measured value
 (in milliseconds) or an empty space, "j" stands for jitter
 followed by the measured value (in milliseconds) or an empty
 space, "pl" stands for packet loss followed by the measured
 value (in percentage with two decimals) or an empty space,
 and "bw" stands for bandwidth followed by the measured value
 (in kbps) or an empty space.

 Specific Q4S Response Header Fields

 Expires:

 its purpose is to provide a sanity check and allow
 the server to close inactive sessions. If the client does not
 send a new request before the expiration time, the server MAY
 close the session. The value MUST be an integer, and the
 measurement units are milliseconds.

	In order to keep the session open, the server MUST send a Q4S
 alert before the session expiration (Expires header field), with
 the same quality levels and an alert cause of "keep-alive".
 The purpose of this alert is to avoid TCP sockets, which were
 opened with READY message, from being closed, specially in
 NAT scenarios.

 Bodies

 Requests, including new requests defined in extensions to this
 specification, MAY contain message bodies unless otherwise noted.
 The interpretation of the body depends on the request method.

 For response messages, the request method and the response status
 code determine the type and interpretation of any message body.
 All responses MAY include a body.

 The Internet media type of the message body MUST be given by the
 Content-Type header field.

 Encoding

 The body MUST NOT be compressed. This mechanism is valid for
 other protocols such as HTTP and SIP ,
 but a compression/coding scheme will limit the way the request
 is parsed to certain logical implementations, thus making
 the protocol concept more implementation dependent. In addition, the
 bandwidth calculation may not be valid if compression is used.
 Therefore, the HTTP Accept-Encoding request header field cannot be
 used in Q4S with values different from "identity", and if it is
 present in a request, the server MUST ignore it. In addition, the
 response header field Content-Encoding is optional, but if present,
 the unique permitted value is "identity".

 The body length in bytes MUST be provided by the Content-Length
 header field. The "chunked" transfer encoding of HTTP/1.1 MUST NOT
 be used for Q4S.

 Note: The chunked encoding modifies the body of a
 message in order to transfer it as a series of chunks, each one
 with its own size indicator.

 Q4S Method Definitions

 The Method token indicates the method to be performed on the
 resource identified by the Request-URI. The method is case sensitive.

 Method = "BEGIN" | "READY" | "PING" | "BWIDTH" |
 "Q4S-ALERT" | "Q4S-RECOVERY" | "CANCEL" | extension-method

 extension-method = token

 The list of methods allowed by a resource can be specified in an
 Allow header field . The return code of the
 response always notifies the client when a method is currently
 allowed on a resource, since the set of allowed methods can change
 dynamically. Any server application SHOULD return the status code
 405 (Method Not Allowed) if the method is known, but not allowed
 for the requested resource, and 501 (Not Implemented) if the
 method is unrecognized or not implemented by the server.

 BEGIN

 The BEGIN method requests information from a resource identified
 by a Q4S URI. The purpose of this method is to start the
 quality session.

 This method is used only during the Handshake phase to retrieve
 the SDP containing the sess-id and all quality and operation
 parameters for the desired application to run.

 When a BEGIN message is received by the server, any current
 quality session MUST be canceled, and a new session should be
 created.

 The response to a Q4S BEGIN request is not cacheable.

 READY

 The READY method is used to synchronize the starting time for the
 sending of PING and BWIDTH messages over UDP between clients and
 servers. Including the Stage header field in this method is mandatory.

 This message is used only in Negotiation and Continuity phases,
 and only just before making a measurement. Otherwise (outside of this
 context), the server MUST ignore this method.

 PING

 This message is used during the Negotiation and Continuity phases
 to measure the RTT and jitter of a session. The message MUST be
 sent only over UDP ports.

 The fundamental difference between the PING and BWIDTH requests is
 reflected in the different measurements achieved with them. PING
 is a short message, and it MUST be answered in order to measure RTT
 and jitter, whereas BWIDTH is a long message and MUST NOT be
 answered.

 PING is a request method that can be originated by either the client or
 the server. The client MUST also answer the server PING messages,
 assuming a "server role" for these messages during the measurement
 process.

 Including the Measurements header field in this method is mandatory, and
 provides updated measurements values for latency, jitter, and
 packet loss to the counterpart.

 BWIDTH

 This message is used only during the Negotiation phase to measure
 the bandwidth and packet loss of a session. The message MUST be
 sent only over UDP ports.

 BWIDTH is a request method that can be originated by either the client
 or the server. Both client and server MUST NOT answer
 BWIDTH messages.

 Including the Measurements header field in this method is mandatory and
 provides updated measurements values for bandwidth and packet loss
 to the counterpart.

 Q4S-ALERT

 This is the request message that Q4S generates when the
 measurements indicate that quality constraints are being violated.
 It is used during the Negotiation and Continuity phases.

 This informative message indicates that the user experience is
 being degraded and includes the details of the problem (bandwidth,
 jitter, packet loss measurements). The Q4S-ALERT message does not
 contain any detail on the actions to be taken, which depend on
 the agreements between all involved parties.

 Unless there is an error condition, an answer to a Q4S-ALERT
 request is optional and is formatted as a request Q4S-ALERT message.
 If there is an error condition, then a response message is sent.
 The response to a Q4S-ALERT request is not cacheable.

 This method MUST be initiated by the server in both alerting
 modes. In the Q4S-aware-network alerting mode, the Q4S-ALERT messages
 are sent by the server to the client, advising the
 network to react by itself. In the Reactive alerting mode, alert
 notifications are triggered by the server stack and sent to the
 Actuator (see , "Reactive Scenario").

Client----q4s----SERVER STACK--->ACTUATOR-->APP OR POLICY SERVER

 The way in which the server stack notifies the Actuator is
 implementation dependent, and the communication between the
 Actuator and the network policy server is defined by the protocol
 and API that the policy server implements.

 Q4S-RECOVERY

 This is the request message that Q4S generates when the
 measurements indicate that quality constraints, which had been violated,
 have been fulfilled during a period of time
 ("recovery-pause"). It is used during the Negotiation and Continuity
 phases.

 This informative message indicates that the "qos-level" could be
 increased gradually until the initial "qos-level" is recovered (the
 "qos-level" established at the beginning of the session that was
 decreased during violation of constraints. See).
 The Q4S-RECOVERY
 message does not contain any detail on the actions to be taken,
 which depends on the agreements between all involved parties.

 The answer to a Q4S-RECOVERY request is formatted as a request
 Q4S-RECOVERY message. A Q4S-RECOVERY request MUST NOT be answered
 with a response message unless there is an error condition.
 The response to a Q4S-RECOVERY request is not cacheable.

 Like the Q4S-ALERT message, the Q4S-RECOVERY method is always
 initiated by the server in both alerting modes. In the
 Q4S-aware-network alerting mode, the Q4S-RECOVERY messages are sent by the
 server to the client, advising the network to react by
 itself. In the Reactive alerting mode, recovery notifications are
 triggered by the server stack and sent to the Actuator (see ,
 "Reactive Scenario").

 CANCEL

 The purpose of the CANCEL message is the release of the Q4S
 Session-Id and the possible resources assigned to the session. This
 message could be triggered by the Q4S stack or by the application
 using the stack (through an implementation-dependent API).

 In the same way as Q4S-ALERT, CANCEL must not be answered with a
 response message, but with an answer formatted as a request Q4S-CANCEL message.

 In the Reactive scenario, the server stack MUST react to the Q4S
 CANCEL messages received from the client by forwarding a cancel
 notification to the Actuator, in order to release possible
 assigned resources for the session (at the application or at the policy
 server). The Actuator MUST answer the cancel notification with a
 cancel acknowledge towards the server stack, acknowledging the
 reception.

 Response Codes

 Q4S response codes are used for TCP and UDP. However, in UDP, only
 the response code 200 is used.

 The receiver of an unknown response code must take a generic
 action for the received error group (1xx, 2xx, 3xx, 4xx, 5xx,
 6xx). In case of an unknown error group, the expected action should
 be the same as with the 6xx error group.

 100 Trying

 This response indicates that the request has been received by the
 next-hop server and that some unspecified action is being taken on
 behalf of this request (for example, a database is being
 consulted). This response, like all other provisional responses,
 stops retransmissions of a Q4S-ALERT during the "alert-pause" time.

 Success 2xx

 2xx responses give information about the success of a request.

 200 OK

 The request has succeeded.

 Redirection 3xx

 3xx responses give information about the user's new location or
 about alternative services that might be able to satisfy the
 request.

 The requesting client SHOULD retry the request at the new
 address(es) given by the Location header field.

 Request Failure 4xx

 4xx responses are definite failure responses from a particular
 server. The client SHOULD NOT retry the same request without
 modification (for example, adding appropriate header fields or SDP
 values). However, the same request to a different server might be
 successful.

 400 Bad Request

 The request could not be understood due to malformed syntax. The
 Reason-Phrase SHOULD identify the syntax problem in more detail,
 for example, "Missing Sequence-Number header field".

 404 Not Found

 The server has definitive information that the user does not exist
 at the domain specified in the Request-URI. This status is also
 returned if the domain in the Request-URI does not match any of
 the domains handled by the recipient of the request.

 405 Method Not Allowed

 The method specified in the Request-Line is understood, but not
 allowed for the address identified by the Request-URI.

 The response MUST include an Allow header field containing a list
 of valid methods for the indicated address.

 406 Not Acceptable

 The resource identified by the request is only able to generate
 response entities that have content characteristics that are not acceptable
 according to the Accept header field sent in the request.

 408 Request Timeout

 The server could not produce a response within a suitable amount
 of time, and the client MAY repeat the request without
 modifications at any later time.

 413 Request Entity Too Large

 The server is refusing to process a request because the request
 entity-body is larger than the one that the server is willing or
 able to process. The server MAY close the connection to prevent
 the client from continuing the request.

 414 Request-URI Too Long

 The server is refusing to process the request because the Request-URI is longer than the one that the server accepts.

 415 Unsupported Media Type

 The server is refusing to process the request because the message
 body of the request is in a format not supported by the server for
 the requested method. The server MUST return a list of acceptable
 formats using the Accept, Accept-Encoding, or Accept-Language
 header field, depending on the specific problem with the content.

 416 Unsupported URI Scheme

 The server cannot process the request because the scheme of the
 URI in the Request-URI is unknown to the server.

 Server Failure 5xx

 5xx responses are failure responses given when a server itself is
 having trouble.

 500 Server Internal Error

 The server encountered an unexpected condition that prevented it
 from fulfilling the request. The client MAY display the specific
 error condition and MAY retry the request after several seconds.

 501 Not Implemented

 The server does not support the functionality required to fulfill
 the request. This is the appropriate response when a server does
 not recognize the request method, and it is not capable of
 supporting it for any user.

 Note that a 405 (Method Not Allowed) is sent when the server
 recognizes the request method, but that method is not allowed or
 supported.

 503 Service Unavailable

 The server is temporarily unable to process the request due to a
 temporary overloading or maintenance of the server. The server MAY
 indicate when the client should retry the request in a Retry-After
 header field. If no Retry-After is given, the client MUST act as
 if it had received a 500 (Server Internal Error) response.

 A client receiving a 503 (Service Unavailable) SHOULD attempt to
 forward the request to an alternate server. It SHOULD NOT forward
 any other requests to that server for the duration specified in
 the Retry-After header field, if present.

 Servers MAY refuse the connection or drop the request instead of
 responding with 503 (Service Unavailable).

 504 Server Time-Out

 The server did not receive a timely response from an external
 server it accessed in attempting to process the request.

 505 Version Not Supported

 The server does not support, or refuses to support, the Q4S
 protocol version that was used in the request. The server is
 indicating that it is unable or unwilling to complete the request
 using the same major version as the client, other than with this
 error message.

 In the case that the Q4S version is not supported, this error may be
 sent by the server in the Handshake phase just after receiving the
 first BEGIN message from client.

 513 Message Too Large

 The server was unable to process the request because the message
 length exceeded its capabilities.

 Global Failures 6xx

 6xx responses indicate that a server has definitive information
 about a particular policy not satisfied for processing the
 request.

 600 Session Does Not Exist

 The Session-Id is not valid.

 601 Quality Level Not Allowed

 The "qos-level" requested is not allowed for the client/server pair.

 603 Session Not Allowed

 The session is not allowed due to some policy (the number of sessions
 allowed for the server is exceeded, or the time band of the Q4S-ALERT
 is not allowed for the client/server pair, etc.).

 604 Authorization Not Allowed

 The policy server does not authorize the Q4S-ALERT quality session
 improvement operation due to an internal or external reason.

 Protocol

 This section describes the measurement procedures, the SDP
 structure of the Q4S messages, the different Q4S protocol phases,
 and the messages exchanged in them.

 Protocol Phases

 All elements of the IP network contribute to quality in
 terms of latency, jitter, bandwidth, and packet loss. All these
 elements have their own quality policies in terms of priorities,
 traffic mode, etc., and each element has its own way to manage the
 quality. The purpose of a quality connection is to establish
 end-to-end communication with enough quality for the application
 to function flawlessly.

 To monitor quality constraints of the application, four phases are
 defined and can be seen in :

 Session Lifetime Phases

+---+
| |
| |
| Handshake ---> Negotiation -+--> Continuity ----> Termination |
A	(app start)	(app end)				
	V A V A					
	violated	violated				
	constraints	constraints				
				_______	____	
			+-------+			
+------+ +---------------------+						
+---+

 Handshake phase:
 in which the server is contacted by the
 client, and in the answer message, the quality constraints for
 the application are communicated in the embedded SDP.
 Negotiation phase:
 in which the quality of the connection is
 measured in both directions (latency, jitter, bandwidth, and
 packet loss), and Q4S messages may be sent in order to alert
 if the measured quality does not meet the constraints. This
 phase is iterative until quality constraints are reached, or
 the session is canceled after a number of measurement cycles
 with consistent violation of the quality constraints. The
 number of measurement cycles executed depends on the "qos-level",
 which is incremented in each cycle until a maximum "qos-level" value
 is reached. Just after reaching the quality
 requirements, Q4S provides a simple optional mechanism using
 HTTP to start the application.
 Continuity phase:
 in which quality is continuously measured.
 In this phase, the measurements MUST avoid disturbing the
 application by consuming network resources. If quality
 constraints are not met, the server stack will notify the
 Actuator with an alert notification. If later the quality
 improves, the server stack will notify the Actuator, in this
 case with a recovery notification. After several alert
 notifications with no quality improvements, the Q4S stack
 SHOULD move to the Termination phase.
 Termination phase:
 in which the Q4S session is terminated.
 The application may be closed also or may not start.

 SDP Structure

 The original goal of SDP was to announce necessary information for
 the participants and multicast MBONE (Multicast Backbone)
 applications. Right now, its use has been extended to the
 announcement and the negotiation of multimedia sessions. The
 purpose of Q4S is not to establish media stream sessions, but to
 monitor a quality connection. This connection may be later used to
 establish any type of session including media sessions; Q4S does
 not impose any conditions on the type of communication requiring
 quality parameters.

 SDP will be used by Q4S to exchange quality constraints and will
 therefore always have all the media descriptions ("m=") set to zero.

 The SDP embedded in the messages is the container of the quality
 parameters. As these may vary depending on the direction of the
 communication (to and from the client), all quality parameters need
 to specify the uplink and downlink values: <uplink> / <downlink>
 (see for an example).
 When one or both of these values are empty, it MUST be understood
 as needing no constraint on that parameter and/or that direction.

 The uplink direction MUST be considered as being the communication
 from the client to the server. The downlink direction MUST be
 considered as being the communication from the server to the
 client.

 The SDP information can comprise all or some of the following
 parameters shown in the example below. This is an example of an
 SDP message used by Q4S included in the 200 OK response to a Q4S
 BEGIN request.

v=0
o=q4s-UA 53655765 2353687637 IN IP4 192.0.2.33
s=Q4S
i=Q4S parameters
t=0 0
a=qos-level:0/0
a=alerting-mode:Reactive
a=alert-pause:5000
a=public-address:client IP4 198.51.100.51
a=public-address:server IP4 198.51.100.58
a=measurement:procedure default(50/50,75/75,5000,40/80,100/256)
a=latency:40
a=jitter:10/10
a=bandwidth:20/6000
a=packetloss:0.50/0.50
a=flow:app clientListeningPort TCP/10000-20000
a=flow:app clientListeningPort UDP/15000-18000
a=flow:app serverListeningPort TCP/56000
a=flow:app serverListeningPort UDP/56000
a=flow:q4s clientListeningPort UDP/55000
a=flow:q4s clientListeningPort TCP/55001
a=flow:q4s serverListeningPort UDP/56000
a=flow:q4s serverListeningPort TCP/56001

 As quality constraints may be changed by applications at any time
 during the Q4S session lifetime, any Q4S 200 OK response sent by
 the server to the client in the Negotiation and Continuity phases
 could also include an SDP body with the new quality requirements
 stated by the applications from then on. Therefore, in response to
 any PING request sent by the client to the server, the server
 could send a Q4S 200 OK with an embedded SDP message that
 specifies new quality constraints requested by the application.

 "qos-level" Attribute

 The "qos-level" attribute contains the QoS level for uplink and
 downlink. Default values are 0 for both directions. The meaning of
 each level is out of scope of Q4S, but a higher level SHOULD
 correspond to a better service quality.

 Appropriate attribute values: [0..9] "/" [0..9]

 The "qos-level" attribute may be changed during the session
 lifetime, raising or lowering the value as necessary following the
 network measurements and the application needs.

 "alerting-mode" Attribute

 The "alerting-mode" attribute specifies the player in charge of
 triggering Q4S alerts in the case of constraint violation. There are
 two possible values:

 Appropriate attribute values: <"Q4S-aware-network"|"Reactive">

 Q4S-aware-network:
 Q4S-ALERT messages are triggered by the
	server to the client. In this case, the network is supposed to
 be Q4S aware, and reacts by itself to these alerts.
 Reactive:
 alert notifications are sent by the server stack to
	the Actuator. In this case, the network is not Q4S aware, and a
 specific node (Actuator) is in charge of triggering tuning
 mechanisms, either on the network or in the application.
	

 The "alerting-mode" attribute is optional, and if not present,
 Reactive alerting mode is assumed.

 "alert-pause" Attribute

 In the Q4S-aware-network scenario, the "alert-pause" attribute
 specifies the amount of time (in milliseconds) the server waits
 between consecutive Q4S-ALERT messages sent to the client. In the
 Reactive scenario, the "alert-pause" attribute specifies the
 amount of time (in milliseconds) the server stack waits between
 consecutive alert notifications sent to the Actuator. Measurements
 are not stopped in Negotiation or Continuity phases during this
 period of time, but no Q4S-ALERT messages or alert notifications
 are fired, even with violated quality constraints, allowing for either
 network reconfigurations or application adjustments.

 Appropriate attribute values: [0..60000]

 "recovery-pause" Attribute

 In the Q4S-aware-network scenario, the "recovery-pause" attribute
 specifies the amount of time (in milliseconds) the server waits
 for initiating the "qos-level" recovery process. Once the recovery
 process has started, the "recovery-pause" attribute also states
 the amount of time (in milliseconds) between consecutive Q4S-RECOVERY
 messages sent by the server to the client (in the Q4S-aware-network scenario) or between recovery notifications sent by
 the server stack to the Actuator (in the Reactive scenario).

 Appropriate attribute values: [0..60000]

 "public-address" Attributes

 This attribute contains the public IP address of the client and
 the server. The server fills these attributes with its own public
 IP address and the public IP address of the first message received
 from the client in the Handshake phase.

 The purpose of these attributes is to make available the
 addressing information to the network policy server or other external
 entities in charge of processing Q4S-ALERT messages.

 Appropriate attribute values: <"client"|"server"> <"IP4"|"IP6">
 <value of IP address>

 "latency" Attribute

 The maximum latency (considered equal for uplink and downlink)
 tolerance is specified in the "latency" attribute, expressed in
 milliseconds. In the Q4S-aware-network scenario, if the latency
 constraints are not met, a Q4S-ALERT method will be sent to the
 client. In the Reactive scenario, if the latency constraints are
 not met, an alert notification will be sent to the Actuator. If
 the "latency" attribute is not present or has a 0 value, no
 latency constraints need to be met, and no measurements MAY be
 taken.

 Appropriate attribute values: [0..9999]

 "jitter" Attribute

 The maximum uplink and downlink jitter tolerance is specified in
 the "jitter" attribute, expressed in milliseconds. In the Q4S-aware-network scenario, if the jitter constraints are not met, a
 Q4S-ALERT method will be sent to the client. In the Reactive
 scenario, if the latency constraints are not met, an alert
 notification will be sent to the Actuator. If the "jitter" attribute
 is not present or has a 0 value, no jitter constraints need to be
 met, and no measurements MAY be taken.

 Appropriate attribute values: [0..9999] "/" [0..9999]

 "bandwidth" Attribute

 The minimum uplink and downlink bandwidth is specified in the
 "bandwidth" attribute, expressed in kbps. In the Q4S-aware-network
 scenario, if the bandwidth constraints are not met, a Q4S-ALERT
 method will be sent to the client. In the Reactive scenario, an
 alert notification will be sent to the Actuator. If the "bandwidth"
 attribute is not present or has a 0 value, no bandwidth
 constraints need to be met, and no measurements MAY be taken.

 Appropriate attribute values: [0..99999] "/" [0..99999]

 "packetloss" Attribute

 The maximum uplink and downlink packet loss tolerance is
 specified in the "packetloss" attribute expressed in percentage
 (two decimal accuracy). In the Q4S-aware-network scenario, if the
 packetloss constraints are not met, a Q4S-ALERT method will be
 sent to the client. In the Reactive scenario, an alert
 notification will be sent to the Actuator. If the "packetloss"
 attribute is not present or has a 0 value, no packet loss
 constraints need to be met, and no measurements MAY be taken.

 Appropriate attribute values: [0.00 ..100.00] "/"[0.00 ..100.00]

 "flow" Attributes

 These attributes specify the flows (protocol, destination
 IP/ports) of data over TCP and UDP ports to be used in uplink and
 downlink communications.

 Several "flow" attributes can be defined. These flows identify the
 listening port (client or server), the protocol (TCP
 or UDP)
 with the range of ports that are going
 to be used by the application and, of course, by the Q4S protocol
 (for quality measurements). All defined flows ("app" and "q4s") will
 be considered within the same quality profile, which is determined
 by the "qos-level" attribute in each direction. This allows us to
 assume that measurements on "q4s" flows are the same as experienced by
 the application, which is using "app" flows.

 During Negotiation and Continuity phases, the specified Q4S ports
 in the "flow:q4s" attributes of SDP will be used for Q4S messages.

 The Q4S flows comprise two UDP flows and two TCP flows (one uplink
 and one downlink for each one), whereas application traffic MAY
 consist of many flows, depending on its nature. The Handshake
 phase takes place through the Q4S Contact URI, using the standard
 Q4S TCP port. However, the Negotiation and Continuity phases will
 take place on the Q4S ports (UDP and TCP) specified in
 the SDP.

 The "clientListeningPort" is a port on which the client listens
 for server requests and MUST be used as the origin port of client
 responses. The "serverListeningPort" is a port on which the server is
 listening for incoming messages from the client. The origin port
 of server responses may be different than the "serverListeningPort"
 value.

 If "clientListeningPort" is zero ("a=flow:q4s clientListeningPort
 TCP/0"), the client MAY choose one randomly per OS standard
 rules. Client ports inside the SDP must always be matched against
 actual received port values on the server side in order to deal
 with NAT/NAPT devices. If a zero value or incorrect value is
 present, the server must set the value to the received origin port in
 the next message with SDP (200 OK, ALERT, and CANCEL messages).

Attribute values:
 <"q4s"|"app"> <"serverListeningPort"|"clientListeningPort">
<"UDP"|"TCP"> <0..65535> ["-" [0..65535]]

 "measurement" Attributes

 These attributes contain the measurement procedure and the results
 of the quality measurements.

 Measurement parameters are included using the session attribute
 "measurement". The first measurement parameter is the procedure.
 Q4S provides a "default" procedure for measurements, but others
 like RTP/RTCP might be used and defined later. This document will
 only define and explain the "default" procedure.

 In the initial client request, a set of measurement procedures can
 be sent to the server for negotiation. One measurement procedure
 line MUST be included in the SDP message for each proposed method.
 The server MUST answer with only one line with the chosen
 procedure.

 For each procedure, a set of values of parameters separated by ","
 can be included in the same attribute line. The amount and type of
 parameters depends on the procedure type.

 In the following example, the "default" procedure type is chosen:

 a=measurement:procedure default(50/50,75/75,5000,40/80,100/256)

 In the "default" procedure, the meaning of these parameters is
the following:

 The first parameter is the interval of time (in milliseconds)
 between PING requests during the Negotiation phase. Uplink
 and downlink values from the client's point of view are
 separated by "/". This allows different responsiveness
 values depending on the control resources used in each
 direction.
 The second parameter is the time interval (in milliseconds)
 between PING requests during the Continuity phase. Uplink and
 downlink values are separated by "/". This allows two
 different responsiveness values depending on the control
 resources used in each direction.
 The third parameter is the time interval to be used to
 measure bandwidth during the Negotiation phase.
 The fourth parameter indicates the window size for jitter and
 latency calculations. Uplink and downlink values are
 separated by "/".
 The fifth parameter indicates the window size for packet loss
 calculations. Uplink and downlink values are separated by
 "/".

 There are four more "measurement" attributes:

a=measurement:latency 45
a=measurement:jitter 3/12
a=measurement:bandwidth 200/9800
a=measurement:packetloss 0.00/1.00

 The "measurement:latency", "measurement:jitter", "measurement:bandwidth", and "measurement:packetloss"
 attributes contain the values measured for each of these quality
 parameters in uplink and downlink directions. Notice that latency
 is considered equal for uplink and downlink directions. Quality
 parameter values in these "measurement" attributes provide a
 snapshot of the quality reached and MUST only be
 included in Q4S-ALERT messages in the SDP body such that they can be protected
 from malicious attacks as these alerts include a signature of the
 SDP body in the header. The rest of the messages will include the
 measured values in the Measurements header field.

 In the case of the "default" procedure, the valid values are as follows:

a=measurement:procedure default,[0..999]"/" [0..999] "," [0..999]
"/" [0..999] "," [0..9999] "," [0..999]/[0..999] ","
[0..999]/[0..999]

 "max-content-length" Attribute

 The adaptation of measurement traffic to approximate the actual
 data streams' characteristics is convenient to accurately estimate
 the expected QoS for applications. Particularly, packet size can
 have a remarkable effect on bandwidth estimations. Moreover, this
 can produce problems depending on the MTU of the end hosts and
 links along the path.

 Therefore, the maximum content length MAY be set in an attribute
 denoted as "max-content-length". Its value MUST be given in bytes
 and MUST NOT include application, transport, network, or link layer
 headers, i.e., size of the content length at the application
 layer. If not set, the value MUST be 1000 bytes.

 Furthermore, this attribute MAY be used to communicate MTU limits
 in endpoints, hence reducing possible bias as a result of
 network-layer fragmentation.

 For instance:

 a=max-content-length:1300

 Measurements

 This section describes the way quality parameters are measured as
 defined by the "default" procedure. Measurements MUST be taken for
 any quality parameter with constraints, that is, specified in the
 SDP attributes with non-zero values. For absent attributes,
 measurements MAY be omitted.

 Latency

 Latency measurements will be performed if the "latency" attribute
 and/or the "a=measurement:latency" attribute are present and have non-zero values.

 Q4S defines a PING method in order to exchange packets between the
 client and the server. Based on this PING exchange, the client and
 the server are able to calculate the round-trip time (RTT). The
 RTT is the sum of downlink latency (normally named "reverse latency") and uplink latency (normally named "forward latency").

 At least 255 samples of RTT MUST be taken by the client and
 server. As the forward and reverse latencies are impossible to
 measure, the client and server will assume that both latencies are
 identical (symmetric network assumption). The latency will
 therefore be calculated as the statistical median value of all the
 RTT samples divided by 2.

 Jitter

 Jitter measurements will be performed if the "jitter" attribute
 and/or the "a=measurement:jitter" attribute are present and have non-zero values.

 The jitter can be calculated independently by the client and by
 the server. The downlink jitter is calculated by the client taking
 into account the time interval between PING requests as defined by
 the "measurement:procedure" attribute in the first or second
 parameter depending on the Q4S protocol phase. The client and the
 server MUST send these PING requests at the specified intervals.
 The client measures the downlink jitter, whereas the server
 measures the uplink jitter. Note that PING responses are not taken
 into account when calculating jitter values.

 Every time a PING request is received by an endpoint
 (either server or client), the corresponding jitter value is
 updated with the statistical jitter value, which is
 the arithmetic mean of the absolute values of elapsed times
 calculated on the first 255 packets received.

 Each endpoint sends a PING periodically with a fixed interval,
 and each value of "elapsed time" (ET) should be very close to this
 interval. If a PING message is lost, the ET value is
 doubled. Identifying lost PING messages, however, is not an issue
 because all PING messages are labeled with a Sequence-Number
 header field. Therefore, the receiver can discard this ET
 value.

 In order to have the first jitter sample, the receiver MUST wait
 until it receives 3 PING requests, because each ET is the time
 between two PINGs, and a jitter measurement needs at least two ET.

 The client measures the values of RTT and downlink jitter, and the
 server measures RTT and uplink jitter, but all measurements are
 shared with the counterpart by means of the Measurements header field of
 the PING message.

 Bandwidth

 Bandwidth measurements will be performed if the "bandwidth"
 attribute and/or the "a=measurement:bandwidth" attribute is present
 and has non-zero values.

 In order to measure the available bandwidth, both the client and
 the server MUST start sending BWIDTH messages simultaneously using
 the UDP control ports exchanged during the Handshake phase in the
 SDP message at the needed rate to verify the availability of the
 bandwidth constraint in each direction. The messages are sent
 during the period of time defined in the third parameter of the
 SDP "measurement:procedure default" attribute in milliseconds.

 Bandwidth and Packet Loss Measurements

a=measurement:procedure default(50/50,75/75,5000,256/256,256/256)

 +--+
 | Rate |
 | A |
 | | | | | | | |
 |downlink rate-|-------------------+ <-- traffic |
 | | | sent by |
 | | | server |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | | | |
 | uplink rate-|-------------------+ <-- traffic |
 | | | sent by |
 | | | client |
 | | | |
 | | | |
 | |---|---|---|---|---|----> time |
 | 0 1 2 3 4 5 (sec.) |
 | |
 +--+

 The goal of these measurements is not to identify the available
 bandwidth of the communication path, but to determine if the
 required bandwidth is available, meeting the application's
 constraints. Therefore, the requested bandwidth MUST be measured
 sending only the highest bitrate required by the bandwidth
 attribute. This is illustrated in .

 ALERTS are not expected during bandwidth measurement, but
 only at the end of the measurement time.

 When measuring bandwidth, all BWIDTH requests sent MUST be 1
 kilobyte in length (UDP payload length by default), they MUST
 include a Sequence-Number header field with a sequential number starting
 at 0, and their content MUST consist of randomly generated values
 to minimize the effect of compression elements along the path. The
 Sequence-Number MUST be incremented by 1 with each BWIDTH packet
 sent. If any measurement stage needs to be repeated, the sequence
 number MUST start at zero again. BWIDTH requests MUST NOT be
 answered. Examples:

Client message:
=========================
 BWIDTH q4s://www.example.com Q4S/1.0
 User-Agent: q4s-ua-experimental-1.0
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Type: text
 Content-Length: XXXX
 Measurements: l=22, j=10, pl=0.00, bw=3000

 VkZaU1FrNVZNVlZSV0doT1ZrZ (to complete up to "max-content-
 length" bytes UDP payload length)
=========================

 The client MUST send BWIDTH packets to the server to allow the
 server to measure the uplink bandwidth. The server MUST send
 BWIDTH packets to the client to allow the client to measure the
 downlink bandwidth.

Server message:
=========================
 BWIDTH q4s://www.example.com Q4S/1.0
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Type: text
 Content-Length: XXXX
 Measurements: l=22, j=7, pl=0.00, bw=200

 ZY0VaT1ZURlZVVmhyUFE9PQ (to complete up to max-content-
 length UDP payload length)
=========================

 Packet Loss

 Packet loss and bandwidth are measured simultaneously using the
 BWIDTH packets sent by both the client and the server. Because the
 BWIDTH packets contain a Sequence-Number header field incremented
 sequentially with each sent packet, lost packets can be easily
 identified. The lost packets MUST be counted during the
 measurement time.

 Handshake Phase

 The first phase consists of a Q4S BEGIN method issued from the
 client to the server as shown in .

 The first Q4S message MUST have a special URI ,
 which forces the use of the Q4S protocol if it is implemented in a
 standard web browser.

 This URI, named "Contact URI", is used to request the start of a
 session. Its scheme MUST be:

 "q4s:" "//" host [":" port] [path["?" query]

 Optionally, the client can send the desired quality parameters
 enclosed in the body of the message as an SDP document. The server
 MAY take them into account when building the answer message with
 the final values in the SDP body, following a request/response
 schema .

 If the request is accepted, the server MUST answer it with a Q4S
 200 OK message, which MUST contain an SDP body
 with the assigned sess-id (embedded in the SDP "o=" line),
 the IP addresses to be used, the flow ports to be used, the
 measurement procedure to be followed, and information about the
 required quality constraints. Additionally, the "alerting-mode" and
 "alert-pause" time attributes may be included. Q4S responses should
 use the protocol designator "Q4S/1.0".

 After these two messages are exchanged, the first phase is
 completed. The quality parameter thresholds have been sent to the
 client. The next step is to measure the actual quality of the
 communication path between the client and the server and alert if
 the Service Level Agreement (SLA) is being violated.

 Handshake Phase

 +--+
 | |
 | Client Server |
 | |
 | ------- Q4S BEGIN ------------> |
 | |
 | <------ Q4S 200 OK ------------ |
 | |
 | |
 +--+

 The following is an example of a client request and a server answer:

Client Request:
=========================
BEGIN q4s://www.example.com Q4S/1.0
Content-Type: application/sdp
User-Agent: q4s-ua-experimental-1.0
Content-Length: 142

(SDP not shown)
=========================

Server Answer:
=========================
Q4S/1.0 200 OK
Date: Mon, 10 Jun 2010 10:00:01 GMT
Content-Type: application/sdp
Expires: 3000
Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
Content-Length: 131

(SDP not shown)
=========================

 The header fields used are explained in .

 Negotiation Phase

 The Negotiation phase is in charge of measuring the quality
 parameters and verifying that the communication paths meet the
 required quality constraints in both directions as specified in
 the SDP body.

 The measured parameters will be compared with the quality
 constraints specified in the SDP body. If the quality session is
 compliant with all the quality constraints, the application can
 start.
 If the quality constraints are not met, a higher quality
 service level will be demanded. Depending on the scenario,
 this quality upgrade will be managed as follows:

 In the Q4S-aware-network scenario:
 a Q4S-ALERT method will be triggered
 by the server to the client, and the client will answer with
 the same Q4S-ALERT method. After receiving the same Q4S-ALERT
 from the counterpart, no other alerts will be triggered by
 the server during the "alert-pause" period of time in order
 to allow the network to react, but measurements will continue
 to be taken to achieve early detection of improved network
 quality conditions and a fast application start.
 In the Reactive scenario:
 an alert notification will be sent
 by the server stack to the Actuator, and the Actuator will
 answer with an alert acknowledgement. After receiving the
 alert acknowledgement from the Actuator, the server stack
 will not send other alert notifications during the "alert-pause"
 period of time in order to allow the Actuator to
 react and trigger actions on the application or on the policy
 server, but measurements will continue to be taken to achieve
 early detection of improved network quality conditions and a
 fast application start.

 In both scenarios stated above, if after several measurement
 cycles, the network constraints cannot be met, the quality session
 is terminated. Concretely when, under all possible actions taken by
 Actuator, the quality remains below requirements, the session must
 be terminated.

 The steps to be taken in this phase depend on the measurement
 procedure exchanged during the Handshake phase. This document only
 describes the "default" procedure, but others can be used, like
 RTP/RTCP .

 Measurements of latency and jitter are made by calculating the
 differences in the arrival times of packets and can be achieved with
 little bandwidth consumption. The bandwidth measurement, on the
 other hand, involves higher bandwidth consumption in both
 directions (uplink and downlink).

 To avoid wasting unnecessary network resources, these two types of
 measurements will be performed in two separate stages. If the
 required latencies and jitters cannot be reached, it makes no
 sense to waste network resources measuring bandwidth. In addition,
 if achieving the required latency and jitter thresholds implies
 upgrading the quality session level, the chance of obtaining
 compliant bandwidth measurements without retries is higher, saving
 network traffic again. Therefore, the "default" procedure
 determines that the measurements are taken in two stages:

 Stage 0:
 Measurement of latencies, jitters, and packet loss
 Stage 1:
 Measurement of bandwidths and packet loss

 Notice that packet loss can be measured in both stages, as all
 messages exchanged include a Sequence-Number header field that allows
 for easy packet loss detection.

 The client starts the Negotiation phase by sending a READY request
 using the TCP Q4S ports defined in the SDP. This READY request
 includes a Stage header field that indicates the measurement stage.

 If either jitter, latency, or both are specified, the Negotiation
 phase begins with the measurement of latencies and jitters (stage
 0). If none of those attributes is specified, stage 0 is skipped.

 Stage 0: Measurement of Latencies and Jitter

 The Stage 0 MUST start with a synchronization message exchange
 initiated with the client's READY message.

Client Request, READY message:
=========================
 READY q4s://www.example.com Q4S/1.0
 Stage: 0
 Session-Id: 53655765
 User-Agent: q4s-ua-experimental-1.0
 Content-Length: 0
=========================

Server Response:
=========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Stage:0
 Content-Length: 0
=========================

 This triggers the exchange of a sequence of PING requests and
 responses that will lead to the calculation of RTT (latency),
 jitter, and packet loss.

 After receiving a 200 OK, the client must send the first PING
 message, and the server will wait to send PINGs until the reception
 of this first client PING.

 The client and server MUST send PING requests to each other. The
 Sequence-Number header field of the first PING MUST be set to 0. The client
 and server will manage their own sequence numbers.

 Simultaneous Exchange of PING Request and Responses

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 0 ---------> |
 | <-------- Q4S 200 OK ----------- |
 | |
 | --------- Q4S PING ------------> |
 | <-------- Q4S 200 OK ----------- |
 | <-------- Q4S PING ------------- |
 | -------- Q4S 200 OK ----------> |
 | --------- Q4S PING ------------> |
 | <-------- Q4S PING ------------- |
 | --------- Q4S 200 OK ----------> |
 | <-------- Q4S 200 OK ----------- |
 | ... |
 | |
 +--+

 The following is
 an example of the PING request sent from the client
 and the server's response:

Client Request:
=========================
 PING q4s://www.example.com Q4S/1.0
 Session-Id: 53655765
 Sequence-Number: 0
 User-Agent: q4s-ua-experimental-1.0
 Measurements: l=22, j=12, pl=0.20, bw=
 Content-Length: 0
=========================

Server Response:
=========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Sequence-Number: 0
 Content-Length: 0
=========================

 The function of the PING method is similar to the ICMP echo
 request message .
 The server MUST answer as soon as it receives the
 message.

 Both endpoints MUST send Q4S PING messages with the periodicity
 specified in the first parameter of SDP "measurement:procedure"
 attribute, always using the same UDP ports and incrementing the
 Sequence-Number with each message.

 In the following example, the value of the first parameter of the SDP "measurement:procedure" attribute
 is 50 milliseconds (from the client to the server) and
 60 ms (from the server to the client):

a=measurement:procedure default(50/60,50/50,5000,256/256,256/256)

 They MUST NOT wait for a response to send the next PING request.
 The Sequence-Number header field value is incremented sequentially and
 MUST start at zero. If this stage is repeated, the initial
 Sequence-Number MUST start at zero again.

 All PING requests MUST contain a Measurements header field with the
 values of the latency, jitter, and packet loss measured by each
 entity up to that moment. The client will send its measurements to
 the server, and the server will send its measurements to the client. Example:

 Measurements: l=22, j=13, pl=0.10, bw=

 Where "l" stands for latency, "j" for jitter, "pl" for packet loss, and "bw"
 for bandwidth. The bandwidth value is omitted, as it is not
 measured at this stage.

 Optionally the PING request can include a Timestamp header field with
 the time in which the message has been sent. In the case that the header field is
 present, the server MUST include the header field in the response
 without changing the value.

 A minimum number of PING messages MUST be exchanged in order to be
 able to measure latency, jitter, and packet loss with certain
 accuracy (at least 256 samples are RECOMMENDED to get an accurate
 packet loss measurement). Both the client and the server calculate
 the respective measured parameter values. The mechanisms to
 calculate the different parameters are described in .

 At the end of this stage 0, there are three possibilities:

 The latency, jitter, and packetloss constraints are reached
 in both directions
 The latency, jitter, and packetloss constraints are not
 reached in one or both directions

 In the first case, Stage 0 is finished. The client and server are
 ready for Stage 1: bandwidth and packet loss measurement. The
 client moves to stage 1 by sending a READY message that includes the
 header field, "Stage: 1".

 If the bandwidth constraints are either empty or have a value of zero, the
 Negotiation phase MUST terminate, and both client and server may
 initiate the Continuity phase. In this case, client moves to the
 Continuity phase by sending a READY message that includes the header field,
 "Stage: 2".

 The second case, in which one or more quality constraints have not
 been met, is detailed in .

 Stage 1: Measurement of Bandwidth and Packet Loss

 This stage begins in a similar way to stage 0, sending a READY
 request over TCP. The value of the READY message's Stage header field is 1.
 The server answers with a Q4S 200 OK message to synchronize the
 initiation of the measurements as shown in
 .

 Starting Bandwidth and Packet Loss Measurement

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 1 -----------> |
 | <-------- Q4S 200 OK ------------- |
 | |
 | --------- Q4S BWIDTH -----------> |
 | <-------- Q4S BWIDTH ------------ |
 | --------- Q4S BWIDTH -----------> |
 | <-------- Q4S BWIDTH ------------ |
 | ... |
 | |
 +--+

Client Request:
=========================
 READY q4s://www.example.com Q4S/1.0
 User-Agent: q4s-ua-experimental-1.0
 Stage: 1
 Session-Id: 53655765
 Content-Length: 0

=========================

Server Response:
=========================
 Q4S/1.0 200 OK
 Session-Id: 53655765
 Stage: 1
 Content-Length: 0

=========================

 Just after receiving the 200 OK, both the client and the server
 MUST start sending BWIDTH messages simultaneously using the UDP
 "q4s" ports. describes the bandwidth measurement in
 detail.

 At the end of this stage 1, there are three possibilities:

 The bandwidth and packetloss constraints are reached in both
 directions.
 The bandwidth and packetloss constraints are not reached in
 one or both directions.

 In the first case, Stage 1 is finished. The client and server are
 ready for the Continuity phase. The client moves to this phase by
 sending a READY message that includes the header field, "Stage: 2". The
 server answer MUST be 200 OK as shown in
 .

 Trigger the Application Using HTTP URI

 +--+
 | |
 | Client Server |
 | |
 | --------- Q4S READY 2 --------------> |
 | <---- Q4S 200 OK with trigger URI----- |
 | |
 | --------- HTTP GET ----------------> |
 | |
 | (Application starts) |
 | |
 +--+

Client Request:
=========================
READY q4s://www.example.com Q4S/1.0
User-Agent: q4s-ua-experimental-1.0
Stage: 2
Session-Id: 53655765
Content-Length: 0

=========================

Server Answer:
=========================
Q4S/1.0 200 OK
Date: Mon, 10 Jun 2010 10:00:01 GMT
Session-Id: 53655765
Trigger-URI: http://www.example.com/app_start
Expires: 3000
Content-Type: application/sdp
Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
Content-Length: 131

(SDP not shown)
=========================

 If the Trigger-URI header field is present, the client SHOULD send an
 HTTP request to this URI.

 The second case, with violated network constraints, is explained in
 .

 Quality Constraints Not Reached

 After finishing Stage 1 of the Negotiation phase, the client and
 the server have each other's measured parameter values as these have
 been exchanged in the Measurements header fields of the PING and
 BWIDTH messages. If there is one or more parameters that do not
 comply with the uplink or downlink application constraints
 required, both the server and the client are aware of it.

 If there is any quality parameter that does not meet the uplink or
 downlink quality constraints specified in the SDP message, two
 scenarios are possible depending on the specified alerting mode
 (if not present, the default value is Reactive alerting mode):

 Q4S-aware-network alerting mode: the server MUST send a
 Q4S-ALERT message to the client including the digital Signature
 header field, and the client MUST answer with the same Q4S-ALERT
 message. The Signature header field contains the signed hash value of
 the SDP body in order to protect all the SDP data, and
 therefore it MUST contain the "measurement" parameters in the
 body.

Server request
=========================
Q4S-ALERT q4s://www.example.com Q4S/1.0
Host: www.example.com
User-Agent: q4s-ua-experimental-1.0
Session-Id: 53655765
Content-Type: application/sdp
Content-Length: 142

v=0
o=q4s-UA 53655765 2353687637 IN IP4 192.0.2.33
s=Q4S
i=Q4S parameters
t=0 0
a=qos-level:1/2
a=alerting-mode: Q4S-aware-network
a=alert-pause:5000
a=public-address:client IP4 198.51.100.51
a=public-address:server IP4 198.51.100.58
a=latency:40
a=jitter:10/10
a=bandwidth:20/6000
a=packetloss:0.50/0.50
a=flow:app downlink TCP/10000-20000
a=flow:app uplink TCP/56000
a=flow:q4s downlink UDP/55000
a=flow:q4s downlink TCP/55001
a=flow:q4s uplink UDP/56000
a=flow:q4s uplink TCP/56001
a=measurement:procedure default(50/50,50/50,5000,256/256,256/256)
a=measurement:latency 30
a=measurement:jitter 6/4
a=measurement:bandwidth 200/4000
a=measurement:packetloss 0.20/0.33
=========================

 At this point, both the client and server keep on measuring but
 without sending new Q4S-ALERT messages during the "alert-pause"
 milliseconds.

 Reactive alerting mode: the server stack MUST send an alert
 notification to the Actuator, and the Actuator MUST answer with
 an acknowledgement to the received alert notification. The
 alert notification sent to the Actuator by the server stack
 doesn't follow Q4S message style but should have all the
 information the Actuator will need for the actions to be taken,
 which will be implementation dependent.
	

 At this point during Negotiation phase, both the client and server
 keep on measuring without sending new alert notifications to the
 Actuator during the "alert-pause" milliseconds specified in the
 SDP. This way, both client and server will detect any improvement
 in network conditions as soon as the network reacts. The
 application can start as soon as the number of measurements
 indicated in the "measurement:procedure" attribute indicates that
 the quality parameters are met.

 The same applies to Continuity phase: the measurement dialog between
 client and server must not be interrupted by any possible ALERT
 message.

 Actuator Role

 The actuator receives notifications of unmet requirements from the Q4S
 server stack and acts upon the application or the network policy
 server, according to logic out of scope of this protocol.

 The Actuator logic activates mechanisms at the application level
 and/or the network level based on a quality level dictionary, in which
 the meaning of each level is implementation dependent, and each level
 involves different actions based on rules to keep a certain user
 experience quality.

 The type of actions that an Actuator can take at the application level
 are application dependent and MAY involve:

 Reduction of application functionalities, such as limitation
 of application speed or application options.
 Reduction of application resources usage, such as reduction
 of frames per second in a video application or any other parameter
 modification in order to adapt to network conditions.

 Apart from actions at the application level, the Actuator MAY act at
 the network level if a network policy server is available.

 Policy Server Role

 A network policy server may be part of the Reactive scenario, and
 it is in charge of managing network quality provision. A network
 policy server may implement all or some of these features (but implementation is not
 exclusive to):

 Server validation in terms of quality constraints
 Authentication (Signature validation) and security (blocking of
 malicious clients)

 Policy rules (the following rules are only examples):

 Maximum quality level allowed for the ACP
 Time bands allowed for providing quality sessions
 Number of simultaneous quality sessions allowed
 Maximum time used by allowed quality sessions
 Etc.

 If any of the policy rules fail, a Q4S-ALERT message MUST be
 answered by a 6xx error indicating the cause.

 "qos-level" Changes

 If any constraint was violated, the server MAY trigger a Q4S-ALERT
 asking for a higher "qos-level" attribute. The maximum "qos-level"
 allowed is 9 for both uplink and downlink.

 If the "qos-level" has reached the maximum value for the downlink or
 uplink without matching the constraints, then a CANCEL request
 MUST be sent by the client using the TCP port determined in the
 Handshake phase in order to release the session. In reaction to
 the reception of the CANCEL request, the server MUST send a CANCEL
 request, too. If no CANCEL request is received, the expiration time
 cancels the session on the server side.

Client Request:
=========================
CANCEL q4s://www.example.com Q4S/1.0
User-Agent: q4s-ua-experimental-1.0
Session-Id: 53655765
Content-Type: application/sdp
Content-Length: 142

(SDP not shown)
=========================

Server Request in reaction to Client Request:
=========================
CANCEL q4s://www.example.com Q4S/1.0
Session-Id: 53655765
Expires: 0
Content-Type: application/sdp
Signature: 6ec1ba40e2adf2d783de530ae254acd4f3477ac4
Content-Length: 131

(SDP not shown)
=========================

 Continuity Phase

 During the Negotiation phase, latency, jitter, bandwidth, and
 packet loss have been measured. During the Continuity phase,
 bandwidth will not be measured again because bandwidth
 measurements may disturb application performance.

 This phase is supposed to be executed at the same time as the
 real-time application is being used.

 This document only covers the "default" procedure. The continuity
 operation with the "default" procedure is based on a sliding window of
 samples. The number of samples involved in the sliding window may
 be different for jitter and latency than for packet loss
 calculations according to the fifth and sixth parameters of the
 "measurement:procedure" attribute. In the example, shown in
 ,
 the jitter and latency sliding window comprises 40 samples,
 whereas the size of the packet loss sliding window is 100 samples:

a=measurement:procedure default(50/50,75/75,5000,40/40,100/100)

 In addition, the sizes of these windows are configurable per
 direction: uplink and downlink values may differ.

 PING requests are sent continuously (in both directions), and when
 the Sequence-Number header field reaches the maximum value, the client
 continues sending PING messages with the Sequence-Number header field
 starting again at zero. When the server PING Sequence-Number
 header field reaches the maximum value, it does the same, starting again
 from zero.

 On the client side, the measured values of downlink jitter,
 downlink packet loss, and latency are calculated using the last
 samples, discarding older ones, in a sliding window schema.

 Sliding Samples Window

 +--+
 | |
 | 55 56 57 . . . 253 254 255 0 1 2 . . . 55 56 |
 | A A |
 | | | |
 | +-----------------------------------+ |
 | |
 +--+

 Only if the server detects that the measured values (downlink or
 uplink jitter, packet loss, or latency) are not reaching the
 quality constraints, a Q4S-ALERT is triggered and sent either to
 the client or to the Actuator, depending on the alerting mode, and
 the "alert-pause" timer is started.

 In the Q4S-aware-network alerting mode shown in
 ,
 if the
 client receives a Q4S-ALERT message, it MUST answer by sending the
 Q4S-ALERT request message including the SDP
 (with its corresponding digital signature) back to the server.

 Both client and server will keep performing measurements,
 but Q4S-ALERT messages MUST NOT be sent during
 "alert-pause" milliseconds.
 The operations needed to act on the network and the
 agents in charge of them are out of scope of this document.

 Continuity in Q4S-Aware-Network Alerting Mode

 +--+
 | |
 | Client Server |
 | |
 | ... |
 | ----------- PING ----------> |
 | <--------- 200 OK ---------- |
 | <------- Q4S-ALERT --------- |
 | -------- Q4S-ALERT --------> |
 | <---------- PING ----------- |
 | ---------- 200 OK ---------> |
 | ----------- PING ----------> |
 | <--------- 200 OK ---------- |
 | <---------- PING ----------- |
 | ---------- 200 OK ---------> |
 | ... |
 | |
 +--+

 In the Reactive scenario shown in ,
 if the server detects
 that the measured values (downlink or uplink jitter, packet loss,
 or latency) are not reaching the quality constraints, an alert
 notification is triggered and sent to the Actuator. The Actuator
 MUST then answer to the server stack with an alert acknowledgement.

 The measurement dialog between the client and the server MUST NOT
 be interrupted by any possible ALERT message.

 Continuity in Reactive Alerting Mode

 +--+
 | |
 | Client Server Actuator |
 | ... |
 | --- PING ----------> |
 | <-- 200 OK---------- |
 | <----- PING -------- |
 | <--- 200 OK -------- ---- alert |
 | notification --> |
 | |
 | --- PING ----------> <--- alert |
 | acknowledge --- |
 | <-- 200 OK---------- |
 | <----- PING -------- |
 | --- 200 OK --------> |
 | ... |
 | |
 +--+

 Termination Phase

 The Termination phase is the endpoint for the established Q4S
 session that is reached in the following cases:

 A CANCEL message has been received. The client sends a
 CANCEL message due to the network's inability to
 meet the required quality constraints. The client and server
 application will be notified by their respective Q4S stacks.
 Session expires: if after the Expires time, no client or
 server activity is detected, that end cancels the session.
 A BEGIN message has been received by the server.
 The pre-existing Q4S quality session is canceled, and a new session
 will be initiated.

 The meaning of the Termination phase in terms of the release of resources
 or accounting is application dependent and out of scope of the Q4S
 protocol.

 In the Reactive alerting mode, Q4S CANCEL messages received by the Q4S
 server must cause the server stack to send cancel notifications
 to the Actuator in order to release possible
 assigned resources for the session.

 Sanity Check of Quality Sessions

 A session may finish due to several reasons (client shutdown,
 client CANCEL request, constraints not reached, etc.), and any
 session finished MUST release the assigned resources.

 In order to release the assigned server resources for the session,
 the Expires header field indicates the maximum interval of time
 without exchanging any Q4S message.

 Dynamic Constraints and Flows

 Depending on the nature of the application, the quality
 constraints to be reached may evolve, changing some or all quality
 constraint values in any direction.

 The client MUST be able to deal with this possibility. When the
 server sends an SDP document attached to a response (200 OK or
 Q4S-ALERT, etc.), the client MUST take all the new received values,
 overriding any previous value in use.

 The dynamic changes on the quality constraints can be a result
 of two possibilities:

 The application communicates to the Q4S server a change in
 the constraints. In this case, the application requirements
 can evolve, and the Q4S server will be aware of them.
 The application uses TCP flows. In that case, in order to
 guarantee a constant throughput, the nature of TCP behavior
 forces the use of a composite constraint function, which
 depends on RTT, packet loss, and a window control mechanism
 implemented in each TCP stack.

 TCP throughput can be less than actual bandwidth if the
 Bandwidth-Delay Product (BDP) is large, or if the network suffers
 from a high packet loss rate. In both cases, TCP congestion
 control algorithms may result in a suboptimal performance.

 Different TCP congestion control implementations like Reno ,
 High Speed TCP ,
 CUBIC ,
 Compound TCP (CTCP) ,
 etc., reach different throughputs under the same network
 conditions of RTT and packet loss. In all cases, depending on the
 RTT-measured value, the Q4S server could dynamically change the
 packetloss constraints (defined in the SDP) in order to make it possible
 to reach a required throughput or vice versa (using "measurement:packetloss"
 to change dynamically the latency constraints).

 A general guideline for calculating the packet loss constraint and the RTT
 constraint consists of approximating the throughput by using a
 simplified formula, which should take into account the TCP stack
 implementation of the receiver, in addition to the RTT and packet
 loss:

 Th= Function(RTT, packet loss, ...)

 Then, depending on RTT-measured values, set dynamically the
 packet loss constraint.

 It is possible to easily calculate a worst-case boundary for the
 Reno algorithm, which should ensure for all algorithms that the
 target throughput is actually achieved, except that high-speed
 algorithms will then have even larger throughput if more
 bandwidth is available.

 For the Reno algorithm, the Mathis formula may be used for
 the upper bound on the throughput:

 Th <= (MSS/RTT)*(1 / sqrt{p})

 In the absence of packet loss, a practical limit for the TCP
 throughput is the receiver_window_size divided by the RTT.
 However, if the TCP implementation uses a window scale
 option, this limit can reach the available bandwidth value.

 "qos-level" Upgrade and Downgrade Operation

 Each time the server detects a violation of constraints, the alert
 mechanism is triggered, the "alert-pause" timer is started, and the
 "qos-level" is increased. When this happens repeatedly, and the
 "qos-level" reaches its maximum value (value 9), the session is
 canceled. But when the violation of constraints stops before
 reaching "qos-level" maximum value, the recovery mechanism allows
 for the "qos-level" upgrade gradually.

 This downgrade and upgrade of "qos-level" is explained
 with the following example:

 A Q4S session is initiated successfully with "qos-level=0".
 During the Continuity phase, violation of constraints is
 detected; the "qos-level" is increased to 1, a Q4S-ALERT is sent by
 the server to the client, and an "alert-pause" timer is started.
 The "alert-pause" timer expires, and still a violation of constraints
 is detected; the "qos-level" is increased to 2, a Q4S-ALERT is sent
 by the server to the client, and an "alert-pause" timer is started.
 The "alert-pause" timer expires, but the violation of constraints has
 stopped; the "recovery-pause" timer is started.
 The "recovery-pause" timer expires, and no violation of
 constraints has been detected. Meanwhile, the "qos-level" is
 decreased to 1, a Q4S-RECOVERY is sent by the server to the
 client, and the "recovery-pause" timer is started again.
 The "recovery-pause" timer expires again, and no violation of
 constraints has been detected. Meanwhile, the "qos-level" is
 decreased to 0, and a Q4S-RECOVERY is sent by the server to
 the client. The "recovery-pause" timer is not started this time as
 the "qos-level" has reached its initial value.

 When the network configuration allows for the possibility of
 managing Q4S flows and application flows independently (either is
 a network-based QoS or a Q4S-aware network), the "qos-level"
 downgrade process could be managed more efficiently using a
 strategy that allows for carrying out "qos-level" downgrades
 excluding application flows from SDP dynamically. The Q4S flows would be
 downgraded to allow for measurements on a lower quality level
 without interference of the application flows. A Q4S client MUST
 allow this kind of SDP modification by the server.

 Periodically (every several minutes, depending on the
 implementation) a Q4S-ALERT could be triggered, in which the level
 is downgraded for Q4S flows, excluding application flows from the
 embedded SDP of that request.

 This mechanism allows the measurement at lower levels of quality while
 application flows continue using a higher "qos-level" value.

 If the measurements in the lower level meet the quality
 constraints, then a Q4S-RECOVERY message to this lower "qos-level" may be triggered, in which the SDP includes the
 application flows in addition to the Q4S flows.
 If the measurements in the lower level do not meet the
 constraints, then a new Q4S-ALERT to the previous "qos-level"
 MUST be triggered, in which the SDP includes only the Q4S
 flows.

 Possible Evolution of "qos-level"

 +--+
 | |
 | qos-level |
 | A |
 | | | | | |
 | 4| |
 | | |
 | 3| +------+ |
 | | | | |
 | 2| +----+ +----+ +--- |
 | | | | | |
 | 1| +----+ +-----+ |
 | | | |
 | 0+---+---------------------------------> time |
 | |
 +--+

 This mechanism, illustrated in , avoids the risk of
 disturbing the application while the measurements are being run
 in lower levels. However, this optional optimization of resources
 MUST be used carefully.

 The chosen period to measure a lower "qos-level" is implementation
 dependent. Therefore, it is not included as a "measurement:procedure" parameter.
 It is RECOMMENDED to use a large value, such
 as 20 minutes.

 General User Agent Behavior

 Roles in Peer-to-Peer Scenarios

 In order to allow peer-to-peer applications, a Q4S User Agent (UA)
 MUST be able to assume both the client and server role. The role
 assumed depends on who sends the first message.

 In a communication between two UAs, the UA that first sends the Q4S
 BEGIN request to start the Handshake phase shall assume the client role.

 If both UAs send the BEGIN request at the same time, they will
 wait for a random time to restart again as shown in .

 Otherwise, an UA may be configured to act only as server (e.g.,
 content provider's side).

 P2P Roles

 +---+
 | |
 | UA(Client) UA(Server) |
 | |
 | -------- Q4S BEGIN -------------> |
 | <------- Q4S BEGIN -------------- |
 | |
 | ------- Q4S BEGIN --------------> |
 | <------ Q4S 200 OK -------------- |
 | |
 | |
 +---+

 Multiple Quality Sessions in Parallel

 A Q4S session is intended to be used for an application. This means
 that for using the application, the client MUST establish only one
 Q4S session against the server. Indeed, the relation between
 the Session-Id and the application is 1 to 1.

 If a user wants to participate in several independent Q4S sessions
 simultaneously against different servers (or against the same
 server), it can execute different Q4S clients to establish
 separately different Q4S sessions, but it is NOT RECOMMENDED
 because:

 The establishment of a new Q4S session may affect other
 running applications over other Q4S sessions during bandwidth
 measurement.
 If the Negotiation phase is executed separately before
 running any application, the summation of bandwidth
 requirements could not be met when the applications are
 running in parallel.

 General Client Behavior

 A Q4S client has different behaviors. We will use letters X, Y, and Z to
 designate each different behavior (follow the letters in
 and their descriptions below).

 X)
 When it sends messages over TCP (methods BEGIN, READY,
 Q4S-ALERT, Q4S-RECOVERY, and CANCEL), it behaves strictly like a state
 machine that sends requests and waits for responses. Depending
 on the response type, it enters into a new state.

 When it sends UDP messages (methods PING and BWIDTH), a Q4S client
 is not strictly a state machine that sends messages and waits for
 responses because of the following:

 Y)
 During the measurement of latency, jitter, and packet loss, the PING
 requests are sent periodically, not just after receiving the response
 to the previous request. In addition, the client MUST answer the
 PING requests coming from the server, therefore the client
 assumes temporarily the role of a server.

 Z)
 During the bandwidth and packet loss measurement stage, the client
 does not expect to receive responses when sending BWIDTH
 requests to the server. In addition, it MUST receive and process
 all server messages in order to achieve the downlink
 measurement.

 The Q4S-ALERT and CANCEL may have a conventional answer if an
 error is produced, otherwise the corresponding answer is formatted
 as a request message.

 Phases and Client Behaviors

 +-----------+------------------------+-----------+-----------+
Handshake	Negotiation	Continuity	Termination
Phase	Phase	Phase	Phase
X ---------> Y --> X --> Z --> X ---> Y --> X ---> X			
	A	A	
	+-----+ +-----+	+-----+	
 +--+-----------+

 Generating Requests

 A valid Q4S request formulated by a client MUST, at a minimum,
 contain the following header fields:

 If no SDP is included:
 the header fields Session-Id and Sequence-Number are mandatory.
 If SDP is included:
 the Session-Id is embedded into the SDP,
 therefore the inclusion of the Session-Id header field is optional, but
 if present, must have the same value. Measurements are
 embedded into the SDP only for Q4S-ALERT messages in order to
 be signed.

 At any time, if the server sends new SDP with updated values,
 the client MUST take it into account.

 General Server Behavior

 If a server does not understand a header field in a request (that
 is, the header field is not defined in this specification or in
 any supported extension), the server MUST ignore that header field
 and continue processing the message.

 The role of the server is changed at Negotiation and Continuity
 phases, in which the server MUST send packets to measure jitter,
 latency, and bandwidth. Therefore, the different behaviors of
 the server are (follow the letters in
and their descriptions below):

 R)

 When the client sends messages over TCP (methods BEGIN,
 READY Q4S-ALERT, Q4S-RECOVERY, and CANCEL), it behaves strictly
 like a state machine that receives messages and sends
 responses.

 When the client begins to send UDP messages (methods PING and
 BWIDTH), a Q4S server is not strictly a state machine that
 receives messages and sends responses because of the following:

 S)

 During the measurement of latency, jitter, and packet loss, the PING
 requests are sent periodically by the client and also by the
 server. In this case, the server behaves as a server answering
 client requests but also behaves temporarily as a client,
 sending PING requests toward the client and receiving
 responses.

 T)

 During bandwidth and packet loss measurement, the server sends
 BWIDTH requests to the client. In addition, it MUST receive and
 process client messages in order to achieve the uplink
 measurement.

 The Q4S-ALERT and CANCEL may have a conventional answer if an
 error is produced, otherwise the corresponding answer is formatted
 as a request message.

 Phases and Server Behaviors

 +-----------+------------------------+-----------+-----------+
Handshake	Negotiation	Continuity	Termination
Phase	Phase	Phase	Phase
R ---------> S --> R --> T --> R ---> S --> R ---> R			
	A	A	
	+-----+ +-----+	+-----+	
 +--+-----------+

 Implementation Recommendations

 Default Client Constraints

 To provide a default configuration, it would be good if the
 client had a configurable set of quality headers in the
 implementation settings menu. Otherwise, these quality headers will
 not be present in the first message.

 Different business models (out of scope of this proposal) may be
 achieved: depending on who pays for the quality session, the
 server can accept certain client parameters sent in the first
 message, or force billing parameters on the server side.

 Latency and Jitter Measurements

 Different client and server implementations may send a different
 number of PING messages for measuring, although at least 255
 messages should be considered to perform the latency measurement.
 The Stage 0 measurements may be considered ended only when neither
 the client nor server receive new PING messages after an
 implementation-dependent guard time. Only after, the client can send a
 "READY 1" message.

 In execution systems, where the timers are not accurate, a
 recommended approach consists of including the optional Timestamp header field
 in the PING request with the time in which the message
 has been sent. This allows an accurate measurement of the jitter
 even with no identical intervals of time between PINGs.

 Bandwidth Measurements

 In programming languages or operating systems with limited timers
 or clock resolution, it is recommended to use an approach based on
 several intervals to send messages of 1KB (= 8000 bits) in order
 to reach the required bandwidth consumption, using a rate as close
 as possible to a constant rate.

 For example, if the resolution is 1 millisecond, and the bandwidth
 to reach is 11 Mbps, a good approach consists of sending:

 1 message of 1KB every 1 millisecond +

 1 message of 1KB every 3 milliseconds +

 1 message of 1KB every 23 milliseconds

 The number of intervals depends on the required bandwidth and accuracy
 that the programmer wants to achieve.

 Considering messages of 1KB (= 8000 bits), a general approach to
 determine these intervals is the following:

 Compute target bandwidth / 8000 bits. In the example above, it is
 11 Mbps / 8000 = 1375 messages per second.
	
 Divide the number of messages per second by 1000 to determine
 	the number of messages per millisecond: 1375 / 1000 = 1.375. The
 integer value is the number of messages per millisecond (in this
 case, one). The pending bandwidth is now 375 messages per second.
	

 To achieve the 375 messages per second, use a submultiple of
	1000, which must be less than 375:

 1000 / 2 = 500 > 375

 1000 / 3 = 333 < 375

 In this case, a message every 3 ms is suitable. The new pending
 target bandwidth is 375 - 333 = 42 messages per second.

 Repeat the same strategy as point 3 to reach the pending
 	 bandwidth. In this case, 23 ms is suitable because of the following:

 1000 / 22 = 45 > 42

 1000 / 23 = 43 > 42

 1000 / 24 = 41.6 < 42

 We can choose 24 ms, but then we need to cover an additional 0.4
 messages per second (42 - 41.6 = 0.4), and 43 is a number higher than
 42 but very close to it.

 In execution systems where the timers are not accurate, a
 recommended approach consists of checking at each interval the
 number of packets that should have been sent at this timestamp
 since origin and send the needed number of packets in order to
 reach the required bandwidth.

 The shorter the packets used, the more constant the rate of
 bandwidth measurement. However, this may stress the execution
 system in charge of receiving and processing packets. As a
 consequence, some packets may be lost because of stack overflows.
 To deal with this potential issue, a larger packet is RECOMMENDED
 (2KB or more), taking into account the overhead produced by the
 chunks' headers.

 Packet Loss Measurement Resolution

 Depending on the application nature and network conditions, a packet
 loss resolution less than 1% may be needed. In such cases, there
 is no limit to the number of samples used for this calculation. A
 trade-off between time and resolution should be reached in each
 case. For example, in order to have a resolution of 1/10000, the
 last 10000 samples should be considered in the packet loss
 measured value.

 The problem of this approach is the reliability of old samples. If
 the interval used between PING messages is 50 ms, then to have a
 resolution of 1/1000, it takes 50 seconds, and a resolution of
 1/10000 takes 500 seconds (more than 8 minutes). The reliability
 of a packet loss calculation based on a sliding window of 8
 minutes depends on how fast network conditions evolve.

 Measurements and Reactions

 Q4S can be used as a mechanism to measure and trigger network
 tuning and application-level actions (i.e. lowering video bit-rate,
 reducing multiplayer interaction speed, etc.) in real time in
 order to reach the application constraints, addressing measured
 possible network degradation.

 Instability Treatments

 There are two scenarios in which Q4S can be affected by network
 problems: loss of Q4S packets and outlier samples.

 Loss of Control Packets

 Lost UDP packets (PING or BWIDTH messages) don't cause any
 problems for the Q4S state machine, but if TCP packets are
 delivered too late (which we will consider as "lost"), some
 undesirable consequences could arise.

 Q4S does have protection mechanisms to overcome these situations.
 Examples:

 If a BEGIN packet or its corresponding answer is lost, after
 a certain timeout, the client SHOULD resend another BEGIN
 packet, resetting the session
 If a READY packet is lost, after a certain timeout, the
 client SHOULD resend another READY packet.
 If a Q4S-ALERT request or its corresponding answer is lost,
 after a certain timeout, the originator SHOULD resend another
 Q4S-ALERT packet.
 If a CANCEL request or its corresponding answer is lost,
 after a certain timeout, the originator SHOULD resend another
 CANCEL packet.

 Outlier Samples

 Outlier samples are those jitter or latency values far from the
 general/average values of most samples.

 Hence, the Q4S default measurement method uses the statistical median
 formula for latency calculation, and the outlier samples are
 neutralized. This is a very common filter for noise or errors
 on signal and image processing.

 Scenarios

 Q4S could be used in two scenarios:

 client to ACP
 client to client (peer-to-peer scenario)

 Client to ACP

 One server:

 It is the common scenario in which the client contacts the server to
 establish a Q4S session.

 N servers:

 In Content Delivery Networks and in general applications where
 delivery of contents can be achieved by different delivery nodes,
 two working mechanisms can be defined:

 Starting mode:
 the end user may run Q4S against several delivery
 nodes and after some seconds choose the best one to start the
 multimedia session.
 Prevention mode:
 during a streaming session, the user keeps several
 Q4S dialogs against different alternative delivery nodes. In
 case of congestion, the end user MAY change to the best
 alternative delivery node.

 Client to Client

 In order to solve the client-to-client scenario, a Q4S register
 function MUST be implemented. This allows clients to contact each
 other for sending the BEGIN message. In this scenario, the
 Register server would be used by peers to publish their Q4S-Resource-Server header and their public IP address to
 enable the assumption of the server role.

 The register function is out of scope of this protocol version
 because different HTTP mechanisms can be used, and Q4S MUST NOT
 force any.

 Security Considerations

 Confidentiality Issues

 Because Q4S does not transport any application data, Q4S does not
 jeopardize the security of application data. However, other
 certain considerations may take place, like identity impersonation
 and measurements privacy and integrity.

 Integrity of Measurements and Authentication

 Identity impersonation could potentially produce anomalous Q4S
 measurements. If this attack is based on spoofing of the server IP
 address, it can be avoided using the digital signature mechanism
 included in the SDP. The network can easily validate this digital
 signature using the public key of the server certificate.

 Integrity of Q4S measurements under any malicious manipulation
 (such as a Man-in-the-Middle (MITM) attack) relies on the same
 mechanism, the SDP signature.

 The Signature header field contains the signed hash value of the SDP
 body in order to protect all the SDP data, including the
 measurements. This signature not only protects the integrity of
 data but also authenticates the server.

 Privacy of Measurements

 This protocol could be supported over IPsec. Q4S relies on UDP and
 TCP, and IPsec supports both. If Q4S is used for application-based
 QoS, then IPsec is operationally valid; however, if Q4S is used to
 trigger network-based actions, then measurements could be incorrect
 unless the IPsec ports can be a target of potential action over the
 network (such as prioritizing IPsec flows to measure the new, upgraded
 state of certain application flows).

 Availability Issues

 Any loss of connectivity may interrupt the availability of the Q4S
 service and may result in higher packet loss measurements, which is
 just the desired behavior in these situations.

 In order to mitigate availability issues caused by malicious
 attacks (such as DoS and DDoS), a good practice is to enable the Q4S
 service only for authenticated users. Q4S can be launched after the
 user is authenticated by the application. At this moment, the user's IP
 address is known, and the Q4S service may be enabled for this IP
 address. Otherwise, the Q4S service should appear unreachable.

 Bandwidth Occupancy Issues

 Q4S bandwidth measurement is limited to the application needs. It
 means that all available bandwidth is not measured, but only the
 fraction required by the application. This allows other
 applications to use the rest of available bandwidth normally.

 However, a malicious Q4S client could restart Q4S sessions just
 after finishing the Negotiation phase. The consequence would be to
 waste bandwidth for nothing.

 In order to mitigate this possible anomalous behavior, it is
 RECOMMENDED to configure the server to reject sessions from the
 same endpoint when this situation is detected.

 Future Code Point Requirements

 If the ideas described in this document are pursued to become a
 protocol specification, then the code points described in this
 document will need to be assigned by IANA.

 Service Port

 An assigned port would make possible a future Q4S-aware
 network capable of reacting by itself to Q4S alerts. A
 specific port would simplify the identification of the protocol by
 network elements in charge of making possible reactive decisions.
 Therefore, the need for a port assignment by IANA may be postponed until there is the
 need for a future Q4S-aware network.

 Service Name: Q4S

 Transport Protocol(s): TCP

 Assignee:

	Name: Jose Javier Garcia Aranda

	Email: jose_javier.garcia_aranda@nokia.com

 Contact:

	Name: Jose Javier Garcia Aranda

	Email: jose_javier.garcia_aranda@nokia.com

 Description:

 The service associated with this request is in
 charge of the establishment of new Q4S sessions, and during the
 session, manages the handoff to a new protocol phase (Handshake,
 Negotiation and Continuity) as well as sends alerts when
 measurements do not meet the requirements.
 Reference:

 This document. This service does not use IP-layer
 broadcast, multicast, or anycast communication.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document provides an overview of HTTP architecture and its associated terminology, defines the "http" and "https" Uniform Resource Identifier (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements, and describes related security concerns for implementations.

 Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

 The Hypertext Transfer Protocol (HTTP) is a stateless \%application- level protocol for distributed, collaborative, hypertext information systems. This document defines the semantics of HTTP/1.1 messages, as expressed by request methods, request header fields, response status codes, and response header fields, along with the payload of messages (metadata and body content) and mechanisms for content negotiation.

 Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests

 The Hypertext Transfer Protocol (HTTP) is a stateless application- level protocol for distributed, collaborative, hypertext information systems. This document defines HTTP/1.1 conditional requests, including metadata header fields for indicating state changes, request header fields for making preconditions on such state, and rules for constructing the responses to a conditional request when one or more preconditions evaluate to false.

 Hypertext Transfer Protocol (HTTP/1.1): Range Requests

 The Hypertext Transfer Protocol (HTTP) is a stateless application- level protocol for distributed, collaborative, hypertext information systems. This document defines range requests and the rules for constructing and combining responses to those requests.

 Hypertext Transfer Protocol (HTTP/1.1): Caching

 The Hypertext Transfer Protocol (HTTP) is a stateless \%application- level protocol for distributed, collaborative, hypertext information systems. This document defines HTTP caches and the associated header fields that control cache behavior or indicate cacheable response messages.

 Hypertext Transfer Protocol (HTTP/1.1): Authentication

 The Hypertext Transfer Protocol (HTTP) is a stateless application- level protocol for distributed, collaborative, hypermedia information systems. This document defines the HTTP Authentication framework.

 HTTP Over TLS

 This memo describes how to use Transport Layer Security (TLS) to secure Hypertext Transfer Protocol (HTTP) connections over the Internet. This memo provides information for the Internet community.

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 Internet Message Format

 This document specifies the Internet Message Format (IMF), a syntax for text messages that are sent between computer users, within the framework of "electronic mail" messages. This specification is a revision of Request For Comments (RFC) 2822, which itself superseded Request For Comments (RFC) 822, "Standard for the Format of ARPA Internet Text Messages", updating it to reflect current practice and incorporating incremental changes that were specified in other RFCs. [STANDARDS-TRACK]

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)

 Federal Information Processing Standard, FIPS

 PKCS #1: RSA Cryptography Specifications Version 2.2

 This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm, covering cryptographic primitives, encryption schemes, signature schemes with appendix, and ASN.1 syntax for representing keys and for identifying the schemes.
 This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.
 This document also obsoletes RFC 3447.

 An Offer/Answer Model with Session Description Protocol (SDP)

 This document defines a mechanism by which two entities can make use of the Session Description Protocol (SDP) to arrive at a common view of a multimedia session between them. In the model, one participant offers the other a description of the desired session from their perspective, and the other participant answers with the desired session from their perspective. This offer/answer model is most useful in unicast sessions where information from both participants is needed for the complete view of the session. The offer/answer model is used by protocols like the Session Initiation Protocol (SIP). [STANDARDS-TRACK]

 SDP: Session Description Protocol

 This memo defines the Session Description Protocol (SDP). SDP is intended for describing multimedia sessions for the purposes of session announcement, session invitation, and other forms of multimedia session initiation. [STANDARDS-TRACK]

 Informative References

 RTP: A Transport Protocol for Real-Time Applications

 This memorandum describes RTP, the real-time transport protocol. RTP provides end-to-end network transport functions suitable for applications transmitting real-time data, such as audio, video or simulation data, over multicast or unicast network services. RTP does not address resource reservation and does not guarantee quality-of- service for real-time services. The data transport is augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to large multicast networks, and to provide minimal control and identification functionality. RTP and RTCP are designed to be independent of the underlying transport and network layers. The protocol supports the use of RTP-level translators and mixers. Most of the text in this memorandum is identical to RFC 1889 which it obsoletes. There are no changes in the packet formats on the wire, only changes to the rules and algorithms governing how the protocol is used. The biggest change is an enhancement to the scalable timer algorithm for calculating when to send RTCP packets in order to minimize transmission in excess of the intended rate when many participants join a session simultaneously. [STANDARDS-TRACK]

 Transmission Control Protocol

 Internet Control Message Protocol

 QUIC: A UDP-Based Multiplexed and Secure Transport

 This document defines the core of the QUIC transport protocol. Accompanying documents describe QUIC's loss detection and congestion control and the use of TLS for key negotiation. Note to Readers Discussion of this draft takes place on the QUIC working group mailing list (quic@ietf.org (mailto:quic@ietf.org)), which is archived at https://mailarchive.ietf.org/arch/search/?email_list=quic Working Group information can be found at https://github.com/quicwg; source code and issues list for this draft can be found at https://github.com/quicwg/base-drafts/labels/-transport.

 Work in Progress

 A One-way Active Measurement Protocol (OWAMP)

 The One-Way Active Measurement Protocol (OWAMP) measures unidirectional characteristics such as one-way delay and one-way loss. High-precision measurement of these one-way IP performance metrics became possible with wider availability of good time sources (such as GPS and CDMA). OWAMP enables the interoperability of these measurements. [STANDARDS-TRACK]

 A Two-Way Active Measurement Protocol (TWAMP)

 The One-way Active Measurement Protocol (OWAMP), specified in RFC 4656, provides a common protocol for measuring one-way metrics between network devices. OWAMP can be used bi-directionally to measure one-way metrics in both directions between two network elements. However, it does not accommodate round-trip or two-way measurements. This memo specifies a Two-Way Active Measurement Protocol (TWAMP), based on the OWAMP, that adds two-way or round-trip measurement capabilities. The TWAMP measurement architecture is usually comprised of two hosts with specific roles, and this allows for some protocol simplifications, making it an attractive alternative in some circumstances. [STANDARDS-TRACK]

 SIP: Session Initiation Protocol

 This document describes Session Initiation Protocol (SIP), an application-layer control (signaling) protocol for creating, modifying, and terminating sessions with one or more participants. These sessions include Internet telephone calls, multimedia distribution, and multimedia conferences. [STANDARDS-TRACK]

 User Datagram Protocol

 The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm

	

	

	

	

 ACM SIGCOMM Computer Communication Review, pp. 67-82

 HighSpeed TCP for Large Congestion Windows

 The proposals in this document are experimental. While they may be deployed in the current Internet, they do not represent a consensus that this is the best method for high-speed congestion control. In particular, we note that alternative experimental proposals are likely to be forthcoming, and it is not well understood how the proposals in this document will interact with such alternative proposals. This document proposes HighSpeed TCP, a modification to TCP's congestion control mechanism for use with TCP connections with large congestion windows. The congestion control mechanisms of the current Standard TCP constrains the congestion windows that can be achieved by TCP in realistic environments. For example, for a Standard TCP connection with 1500-byte packets and a 100 ms round-trip time, achieving a steady-state throughput of 10 Gbps would require an average congestion window of 83,333 segments, and a packet drop rate of at most one congestion event every 5,000,000,000 packets (or equivalently, at most one congestion event every 1 2/3 hours). This is widely acknowledged as an unrealistic constraint. To address his limitation of TCP, this document proposes HighSpeed TCP, and solicits experimentation and feedback from the wider community.

 CUBIC for Fast Long-Distance Networks

 CUBIC is an extension to the current TCP standards. The protocol differs from the current TCP standards only in the congestion window adjustment function in the sender side. In particular, it uses a cubic function instead of a linear window increase of the current TCP standards to improve scalability and stability under fast and long distance networks. BIC-TCP, a predecessor of CUBIC, has been a default TCP adopted by Linux since year 2005 and has already been deployed globally and in use for several years by the Internet community at large. CUBIC is using a similar window growth function as BIC-TCP and is designed to be less aggressive and fairer to TCP in bandwidth usage than BIC-TCP while maintaining the strengths of BIC- TCP such as stability, window scalability and RTT fairness. Through extensive testing in various Internet scenarios, we believe that CUBIC is safe for deployment and testing in the global Internet. The intent of this document is to provide the protocol specification of CUBIC for a third party implementation and solicit the community feedback through experimentation on the performance of CUBIC. We expect this document to be eventually published as an experimental RFC.

 Work in Progress

 Compound TCP: A New TCP Congestion Control for High-Speed and Long Distance Networks

 Compound TCP (CTCP) is a modification to TCP's congestion control mechanism for use with TCP connections with large congestion windows. This document describes the Compound TCP algorithm in detail, and solicits experimentation and feedback from the wider community. The key idea behind CTCP is to add a scalable delay-based component to the standard TCP's loss-based congestion control. The sending rate of CTCP is controlled by both loss and delay components. The delay-based component has a scalable window increasing rule that not only efficiently uses the link capacity, but on sensing queue build up, proactively reduces the sending rate.

 Work in Progress

 Acknowledgements

 Many people have made comments and suggestions contributing to
 this document. In particular, we would like to thank:

 , ,
 , ,
 , , and
 .

 Additionally, we want to thank the Spanish Centre for the
 Development of Industrial Technology (CDTI) as well as the Spanish
 Science and Tech Ministry, which funds this initiative through
 their innovation programs.

 Contributors

 Nokia Spain

 jacobo.perez@nokia.com

 Nokia Spain

 Luismi.Diaz@nokia.com

 Nokia Spain

 gonzalo.munoz_fernandez.ext@nokia.com

 Nokia Spain

 manuel.alarcon_granero.ext@nokia.com

 Nokia Spain

 francisco_jose.juan_quintanilla.ext@nokia.com

 Universidad Politecnica de Madrid

 Universidad Politecnica de Madrid

 jquemada@dit.upm.es

 Tecnalia Research & Innovation

 ignacio.maestro@tecnalia.com

 Optiva Media

 lara.fajardo@optivamedia.com

 Optiva Media

 Pablo.lopez@optivamedia.com

 Universidad Autonoma de Madrid

 dav.muelas@uam.es

 Universidad Autonoma de Madrid

 jesus.molina@uam.es

 Universidad Autonoma de Madrid

 jorge.lopez_vergara@uam.es

 Optiva Media

 victor.maroto@optivamedia.com

 Authors' Addresses

 Nokia

 María Tubau 9
 28050
 Madrid
 Spain

 +34 91 330 4348
 jose_javier.garcia_aranda@nokia.com

 Nokia

 María Tubau 9
 28050
 Madrid
 Spain

 monica.cortes_sack@nokia.com

 Universidad Politecnica de Madrid

 Avenida Complutense 30
 28040
 Madrid
 Spain

 +34 91 0672134
 Joaquin.salvachua@upm.es

 Tecnalia Research & Innovation

 Parque Científico y Tecnológico de Bizkaia
 Astondo Bidea, Edificio 700
 E-48160
 Derio
 Bizkaia
 Spain

 +34 946 430 850
 maribel.narganes@tecnalia.com

 Optiva Media

 Edificio Europa II,
 Calle Musgo 2, 1G,
 28023 Madrid
 Spain

 +34 91 297 7271
 inaki.martinez@optivamedia.com

