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Abstract
The Registration Data Access Protocol (RDAP) does not include capabilities to request partial
responses. Servers will only return full responses that include all of the information that a client
is authorized to receive. A partial response capability that limits the amount of information
returned, especially in the case of search queries, could bring benefits to both clients and servers.
This document describes an RDAP query extension that allows clients to specify their preference
for obtaining a partial response.
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1. Introduction 
The use of partial responses in RESTful API  design is very common. The rationale is quite
simple: instead of returning objects in API responses with all data fields, only a subset of the
fields in each result object is returned. The benefit is obvious: less data transferred over the
network means less bandwidth usage, faster server responses, less CPU time spent both on the
server and the client, and less memory usage on the client.

[REST]
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Currently, RDAP does not provide a client with any way to request a partial response. Servers can
only provide the client with a full response . Servers cannot limit the amount of
information returned in a response based on a client's preferences, and this creates
inefficiencies.

The protocol described in this specification extends RDAP search capabilities to enable partial
responses through the provisioning of predefined sets of fields that clients can submit to an
RDAP service by adding a new query parameter. The service is implemented using the Hypertext
Transfer Protocol (HTTP)  and the conventions described in .

1.1. Conventions Used in This Document 
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14   when, and only when, they appear in
all capitals, as shown here.

[RFC7483]

[RFC7230] [RFC7480]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. RDAP Path Segment Specification 
The path segment defined in this section is an  extension of search path segments
defined in . This document defines an RDAP query parameter, "fieldSet", whose value is
a non-empty string identifying a server-defined set of fields returned in place of the full
response. The field sets supported by a server are usually described in out-of-band documents
(e.g., RDAP profile) together with other features. Moreover, this document defines in Section 2.1
an in-band mechanism by means of which servers can provide clients with basic information
about the supported field sets.

The following is an example of an RDAP query including the "fieldSet" parameter:

This solution can be implemented by RDAP providers with less effort than field selection and is
easily requested by clients. The considerations that have led to this solution are described in
more detail in Appendix A.

OPTIONAL
[RFC7482]

https://example.com/rdap/domains?name=example*.com&fieldSet=afieldset

2.1. Subsetting Metadata 
According to most advanced principles in REST design, collectively known as "Hypermedia as the
Engine of Application State" (HATEOAS) , a client entering a REST application through
an initial URI should use server-provided links to dynamically discover available actions and
access the resources it needs. In this way, the client is not required to have prior knowledge of
the service nor, consequently, to hard-code the URIs of different resources. This allows the server
to make URI changes as the API evolves without breaking clients. Definitively, a REST service
should be as self-descriptive as possible.

[HATEOAS]
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Therefore, servers implementing the query parameter described in this specification 
provide additional information in their responses about the available field sets. Such
information is collected in a new JSON data structure named "subsetting_metadata" containing
the following properties:

"currentFieldSet": "String" ( ) 
either the value of the "fieldSet" parameter as specified in the query string, or the field set
applied by default. 

"availableFieldSets": "AvailableFieldSet[]" ( ) 
an array of objects, with each element describing an available field set. The AvailableFieldSet
object includes the following members:

"name": "String" ( ) 
the field set name. 

"default": "Boolean" ( ) 
indicator of whether the field set is applied by default. An RDAP server  define only
one default field set. 

"description": "String" ( ) 
a human-readable description of the field set. 

"links": "Link[]" ( ) 
an array of links as described in  containing the query string that applies the
field set (see Section 2.1.2). 

SHOULD

REQUIRED

OPTIONAL

REQUIRED

REQUIRED
MUST

OPTIONAL

OPTIONAL
[RFC8288]

2.1.1. RDAP Conformance 

Servers returning the "subsetting_metadata" section in their responses  include "subsetting"
in the rdapConformance array.

MUST

2.1.2. Representing Subsetting Links 

An RDAP server  use the "links" array of the "subsetting_metadata" element to provide ready-
made references  to the available field sets (Figure 1). The target URI in each link is the
reference to an alternative to the current view of results identified by the context URI.

The "value", "rel", and "href" JSON values  be specified. All other JSON values are .

MAY
[RFC8288]

MUST OPTIONAL
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Figure 1: Example of a "subsetting_metadata" Instance 

{
  "rdapConformance": [
    "rdap_level_0",
    "subsetting"
  ],
  ...
  "subsetting_metadata": {
    "currentFieldSet": "afieldset",
    "availableFieldSets": [
      {
      "name": "anotherfieldset",
      "description": "Contains some fields",
      "default": false,
      "links": [
        {
        "value": "https://example.com/rdap/domains?name=example*.com
                  &fieldSet=afieldset",
        "rel": "alternate",
        "href": "https://example.com/rdap/domains?name=example*.com
                 &fieldSet=anotherfieldset",
        "title": "Result Subset Link",
        "type": "application/rdap+json"
        }
      ]
      },
    ...
    ]
  },
  ...
  "domainSearchResults": [
    ...
  ]
}

3. Dealing with Relationships 
Representation of second-level objects within a field set produces additional considerations.
Since the representation of the topmost returned objects will vary according to the field set in
use, the response may contain no relationships (e.g., for an abbreviated field set) or may contain
associated objects as in a normal RDAP query response. Each field set can indicate the format of
the additional objects to be returned, in the same manner that the format of the topmost objects
is controlled by the field set.

4. Basic Field Sets 
This section defines three basic field sets that servers  implement to facilitate their
interaction with clients:

MAY
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"id":

"brief":

"full":

The server provides only the key field; "handle" for entities, and "ldhName" for domains
and nameservers. If a returned domain or nameserver is an Internationalized Domain Name
(IDN) , then the "unicodeName" field  additionally be included in the response.
This field set could be used when the client wants to obtain a collection of object identifiers
(Figure 2). 

The field set contains the fields that can be included in a "short" response. This field set
could be used when the client is asking for a subset of the full response that provides only
basic knowledge of each object. 

The field set contains all of the information the server can provide for a particular object.

The "objectClassName" field is implicitly included in each of the above field sets. RDAP providers 
 include a "links" field indicating the "self" link relationship. RDAP providers  also

add any property providing service information.

Fields included in the "brief" and "full" field set responses  take into account the user's
access and authorization levels.

[RFC5890] MUST

SHOULD MAY

MUST
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Figure 2: Example of RDAP Response According to the "id" Field Set 

{
  "rdapConformance": [
    "rdap_level_0",
    "subsetting"
  ],
  ...
  "domainSearchResults": [
    {
      "objectClassName": "domain",
      "ldhName": "example1.com",
      "links": [
        {
        "value": "https://example.com/rdap/domain/example1.com",
        "rel": "self",
        "href": "https://example.com/rdap/domain/example1.com",
        "type": "application/rdap+json"
        }
      ]
    },
    {
      "objectClassName": "domain",
      "ldhName": "example2.com",
      "links": [
        {
        "value": "https://example.com/rdap/domain/example2.com",
        "rel": "self",
        "href": "https://example.com/rdap/domain/example2.com",
        "type": "application/rdap+json"
        }
      ]
    },
    ...
  ]
}

5. Negative Answers 
Each request including an empty or unsupported "fieldSet" value  produce an HTTP 400
(Bad Request) response code. Optionally, the response  include additional information
regarding the supported field sets in the HTTP entity body (Figure 3).

MUST
MAY
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Figure 3: Example of RDAP Error Response Due to an Invalid Field Set Included in the Request 

{
    "errorCode": 400,
    "title": "Field set 'unknownfieldset' is not valid",
    "description": [
        "Supported field sets are: 'afieldset', 'anotherfieldset'."
    ]

}

Extension identifier:
Registry operator:
Published specification:
Contact:
Intended usage:

6. IANA Considerations 
IANA has registered the following value in the "RDAP Extensions" registry:

subsetting 
Any 

RFC 8982 
IETF <iesg@ietf.org> 

This extension describes a best practice for partial response provisioning. 

7. Security Considerations 
A search query typically requires more server resources (such as memory, CPU cycles, and
network bandwidth) when compared to a lookup query. This increases the risk of server
resource exhaustion and subsequent denial of service. This risk can be mitigated by supporting
the return of partial responses combined with other strategies (e.g., restricting search
functionality, limiting the rate of search requests, and truncating and paging results).

Support for partial responses gives RDAP operators the ability to implement data access control
policies based on the HTTP authentication mechanisms described in . RDAP operators
can vary the information returned in RDAP responses based on a client's access and
authorization levels. For example:

the list of fields for each set can differ based on the client's access and authorization levels;

the set of available field sets could be restricted based on the client's access and
authorization levels. 

Servers can also define different result limits according to the available field sets, so a more
flexible truncation strategy can be implemented. The new query parameter presented in this
document provides RDAP operators with a way to implement a server that reduces inefficiency
risks.

[RFC7481]

• 

• 
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Appendix A. Approaches to Partial Response Implementation 
Looking at the implementation experiences of partial responses offered by data providers on the
web, two approaches are observed:

the client explicitly describes the data fields to be returned;

the client describes a name identifying a server-defined set of data fields. 

The former is more flexible than the latter because clients can specify all the data fields they
need. However, it has some drawbacks:

Fields have to be declared according to a given syntax. This is a simple task when the data
structure of the object is flat, but it is much more difficult when the object has a tree
structure like that of a JSON object. The presence of arrays and deep nested objects
complicate both the syntax definition of the query and, consequently, the processing
required on the server side.

Clients need to recognize the returned data structure to avoid cases when the requested
fields are invalid.

The request of some fields might not match the client's access and authorization levels.
Clients might request unauthorized fields, and servers have to define a strategy for
responding such as always returning an error response or returning a response that ignores
the unauthorized fields. 

• 

• 

• 

• 

• 

A.1. Specific Issues Raised by RDAP 
In addition to those listed above, RDAP responses raise some specific issues:

Relevant entity object information is included in a jCard, but such information cannot be
easily selected because it is split into the items of a jagged array.

RDAP responses contain some properties providing service information (e.g.,
rdapConformance, links, notices, remarks, etc.), which are not normally selected but are just
as important. They could be returned anyway but, in this case, the server would provide
unrequested data. 

It is possible to address these issues. For example, the Catnap Query Language  is a
comprehensive expression language that can be used to customize the JSON response of a
RESTful web service. Application of CQL to RDAP responses would explicitly identify the output
fields that would be acceptable when a few fields are requested but it would become very

• 

• 

[CQL]
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complicated when processing a larger number of fields. In the following, two CQL expressions
for a domain search query are shown (Figure 4). In the first, only objectClassName and ldhName
are requested. In the second, the fields of a possible WHOIS-like response are listed.

The field set approach seems to facilitate RDAP interoperability. Servers can define basic field
sets that, if known to clients, can increase the probability of obtaining a valid response. The
usage of field sets makes the query string less complex. Moreover, the definition of predefined
sets of fields makes it easier to establish result limits.

Finally, considering that there is no real need for RDAP users to have the maximum flexibility in
defining all the possible sets of logically connected fields (e.g., users interested in domains
usually need to know the status, the creation date, and the expiry date of each domain), the field
set approach is preferred.

Figure 4: Examples of CQL Expressions for a Domain Search Query 

https://example.com/rdap/domains?name=example*.com
        &fields=domainSearchResults(objectClassName,ldhName)

https://example.com/rdap/domains?name=example*.com
        &fields=domainSearchResults(objectClassName,ldhName,
                unicodeName,
                status,
                events(eventAction,eventDate),
                entities(objectClassName,handle,roles),
                nameservers(objectClassName,ldhName))
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      response  .  Servers cannot limit the amount of
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      this creates inefficiencies.
       The protocol described in this specification extends RDAP search
      capabilities to enable partial responses through the provisioning of
      predefined sets of fields that clients can submit to an RDAP service by
      adding a new query parameter.  The service is implemented using the
      Hypertext Transfer Protocol (HTTP)   and the
      conventions described in  .
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       This solution can be implemented by RDAP providers with less effort
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      considerations that have led to this solution are described in more
      detail in  .
       
         Subsetting Metadata
         According to most advanced principles in REST design, collectively
        known as "Hypermedia as the Engine of Application State" (HATEOAS)
         , a client entering a REST application through
        an initial URI should use server-provided links to dynamically
        discover available actions and access the resources it needs.  In this
        way, the client is not required to have prior knowledge of the service
        nor, consequently, to hard-code the URIs of different resources.  This
        allows the server to make URI changes as the API evolves without
        breaking clients.  Definitively, a REST service should be as
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         Therefore, servers implementing the query parameter described in
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        "subsetting_metadata" containing the following properties:
         
           "currentFieldSet": "String" ( REQUIRED)

           either the value of the "fieldSet" parameter as specified in the query
string, or the field set applied by default.

           "availableFieldSets": "AvailableFieldSet[]"  ( OPTIONAL)

           
             an array of objects, with each element describing an available field set.
The AvailableFieldSet object includes the following members:
             
               "name": "String" ( REQUIRED)

               the field set name.

               "default": "Boolean" ( REQUIRED)

               indicator of whether the field set is applied by      
default.  An RDAP server  MUST define only one default field set.

               "description": "String"  ( OPTIONAL)

               a human-readable description of the field set.

               "links": "Link[]" ( OPTIONAL)

               an array of links as described in   containing the
query string that applies the field set (see  ).

            
          
        
         
           RDAP Conformance
           Servers returning the "subsetting_metadata" section in their responses  MUST include "subsetting" in the rdapConformance array.
        
         
           Representing Subsetting Links
           An RDAP server  MAY use the "links" array of the "subsetting_metadata" element to provide ready-made references   to the available field sets ( ).  The target URI in each link is the reference to an alternative to the current view of results identified by the context URI.
           The "value", "rel", and "href" JSON values  MUST be specified.  All other JSON values are  OPTIONAL.
           
             Example of a "subsetting_metadata" Instance
             
{
  "rdapConformance": [
    "rdap_level_0",
    "subsetting"
  ],
  ...
  "subsetting_metadata": {
    "currentFieldSet": "afieldset",
    "availableFieldSets": [
      {
      "name": "anotherfieldset",
      "description": "Contains some fields",
      "default": false,
      "links": [
        {
        "value": "https://example.com/rdap/domains?name=example*.com
                  &fieldSet=afieldset",
        "rel": "alternate",
        "href": "https://example.com/rdap/domains?name=example*.com
                 &fieldSet=anotherfieldset",
        "title": "Result Subset Link",
        "type": "application/rdap+json"
        }
      ]
      },
    ...
    ]
  },
  ...
  "domainSearchResults": [
    ...
  ]
}

          
        
      
    
     
       Dealing with Relationships
       Representation of second-level objects within a field set produces additional considerations.  Since the representation of the topmost returned objects will vary according to the field set in use, the response may contain no relationships (e.g., for an abbreviated field set) or may contain associated objects as in a normal RDAP query response.  Each field set can indicate the format of the additional objects to be returned, in the same manner that the format of the topmost objects is controlled by the field set.
    
     
       Basic Field Sets
       This section defines three basic field sets that servers
       MAY implement to facilitate their interaction with
      clients:
       
         "id":

         The server provides only the key field; "handle" for entities, and "ldhName" for domains   
and nameservers.  If a returned domain or nameserver is an Internationalized Domain Name (IDN)  , then the "unicodeName" field  MUST additionally be included in the      
response.  This field set could be used when the client wants to obtain a collection of object            
identifiers ( ).

         "brief":

         The field set contains the fields that can be included in a "short" response.       
This field set could be used when the client is asking for a subset of the full response that provides   
only basic knowledge of each object.

         "full":

         The field set contains all of the information the server can provide for a
particular object.

      
       The "objectClassName" field is implicitly included in each of the above field sets.  RDAP providers  SHOULD include a "links" field indicating the "self" link relationship.  RDAP providers  MAY also add any property providing service information.
       Fields included in the "brief" and "full" field set responses  MUST take into account the user's access and authorization levels.
       
         Example of RDAP Response According to the "id" Field Set
         
{
  "rdapConformance": [
    "rdap_level_0",
    "subsetting"
  ],
  ...
  "domainSearchResults": [
    {
      "objectClassName": "domain",
      "ldhName": "example1.com",
      "links": [
        {
        "value": "https://example.com/rdap/domain/example1.com",
        "rel": "self",
        "href": "https://example.com/rdap/domain/example1.com",
        "type": "application/rdap+json"
        }
      ]
    },
    {
      "objectClassName": "domain",
      "ldhName": "example2.com",
      "links": [
        {
        "value": "https://example.com/rdap/domain/example2.com",
        "rel": "self",
        "href": "https://example.com/rdap/domain/example2.com",
        "type": "application/rdap+json"
        }
      ]
    },
    ...
  ]
}

      
    
     
       Negative Answers
       Each request including an empty or unsupported "fieldSet" value  MUST produce an HTTP 400 (Bad Request) response code.  Optionally, the response  MAY include additional information regarding the supported field sets in the HTTP entity body ( ).
       
         Example of RDAP Error Response Due to an Invalid Field Set Included in the Request
         
{
    "errorCode": 400,
    "title": "Field set 'unknownfieldset' is not valid",
    "description": [
        "Supported field sets are: 'afieldset', 'anotherfieldset'."
    ]

}

      
    
     
       IANA Considerations
       IANA has registered the following value in the "RDAP Extensions" registry:
       
         Extension identifier:

         subsetting

         Registry operator:

         Any

         Published specification:

         RFC 8982

         Contact:

         IETF <iesg@ietf.org>

         Intended usage:

         This extension describes a best practice for partial response provisioning.

      
    
     
       Security Considerations
       A search query typically requires more server resources (such as memory, CPU cycles, and network bandwidth) when compared to a lookup query.  This increases the risk of server resource exhaustion and subsequent denial of service.  This risk can be mitigated by supporting the return of partial responses combined with other strategies (e.g., restricting search functionality, limiting the rate of search requests, and truncating and paging results).
       Support for partial responses gives RDAP operators the ability to implement data access control policies based on the HTTP authentication mechanisms described in  .  RDAP operators can vary the information returned in RDAP responses based on a client's access and authorization levels.  For example:
       
         
           the list of fields for each set can differ based on the client's access and authorization levels;
           
        
         the set of available field sets could be restricted based on the client's access and authorization levels.
      
       Servers can also define different result limits according to the available field sets, so a more flexible truncation strategy can be implemented.  The new query parameter presented in this document provides RDAP operators with a way to implement a server that reduces inefficiency risks.
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       Approaches to Partial Response Implementation
       Looking at the implementation experiences of partial responses offered by data providers on the web, two approaches are observed:
       
         
           the client explicitly describes the data fields to be returned;
           
        
         the client describes a name identifying a server-defined set of data fields.
      
       The former is more flexible than the latter because clients can specify all the data fields they need.  However, it has some drawbacks:
       
         
           Fields have to be declared according to a given syntax.  This is
          a simple task when the data structure of the object is flat, but it
          is much more difficult when the object has a tree structure like
          that of a JSON object.  The presence of arrays and deep nested
          objects complicate both the syntax definition of the query and,
          consequently, the processing required on the server side.
           
        
         
           Clients need to recognize the returned data structure to avoid
          cases when the requested fields are invalid.
           
        
         The request of some fields might not match the client's access and
        authorization levels.  Clients might request unauthorized fields, and
        servers have to define a strategy for responding such as always
        returning an error response or returning a response that ignores the
        unauthorized fields.
      
       
         Specific Issues Raised by RDAP
         In addition to those listed above, RDAP responses raise some specific issues:
         
           
             Relevant entity object information is included in a jCard, but
            such information cannot be easily selected because it is split
            into the items of a jagged array.
             
          
           RDAP responses contain some properties providing service
          information (e.g., rdapConformance, links, notices, remarks, etc.),
          which are not normally selected but are just as important.
          They could be returned anyway but, in this case, the server would
          provide unrequested data.
        
         It is possible to address these issues.  For example, the Catnap
        Query Language   is a comprehensive expression
        language that can be used to customize the JSON response of a RESTful
        web service.  Application of CQL to RDAP responses would explicitly
        identify the output fields that would be acceptable when a few fields
        are requested but it would become very complicated when processing a
        larger number of fields.  In the following, two CQL expressions for a
        domain search query are shown ( ).  In the
        first, only objectClassName and ldhName are requested.  In the second,
        the fields of a possible WHOIS-like response are listed.
         
           Examples of CQL Expressions for a Domain Search Query
           
https://example.com/rdap/domains?name=example*.com
        &fields=domainSearchResults(objectClassName,ldhName)

https://example.com/rdap/domains?name=example*.com
        &fields=domainSearchResults(objectClassName,ldhName,
                unicodeName,
                status,
                events(eventAction,eventDate),
                entities(objectClassName,handle,roles),
                nameservers(objectClassName,ldhName))


        
         The field set approach seems to facilitate RDAP interoperability.
        Servers can define basic field sets that, if known to clients, can
        increase the probability of obtaining a valid response.  The usage of
        field sets makes the query string less complex.  Moreover, the
        definition of predefined sets of fields makes it easier to establish
        result limits.
         Finally, considering that there is no real need for RDAP users to
        have the maximum flexibility in defining all the possible sets of
        logically connected fields (e.g., users interested in domains usually
        need to know the status, the creation date, and the expiry date of
        each domain), the field set approach is preferred.
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