
RFC 8982
Registration Data Access Protocol (RDAP) Partial
Response

Abstract
The Registration Data Access Protocol (RDAP) does not include capabilities to request partial
responses. Servers will only return full responses that include all of the information that a client
is authorized to receive. A partial response capability that limits the amount of information
returned, especially in the case of search queries, could bring benefits to both clients and servers.
This document describes an RDAP query extension that allows clients to specify their preference
for obtaining a partial response.

Stream: Internet Engineering Task Force (IETF)
RFC: 8982
Category: Standards Track
Published: February 2021
ISSN: 2070-1721
Authors: M. Loffredo

IIT-CNR/Registro.it
M. Martinelli
IIT-CNR/Registro.it

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8982

Copyright Notice
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Loffredo & Martinelli Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8982
https://www.rfc-editor.org/info/rfc8982
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents
1. Introduction

1.1. Conventions Used in This Document

2. RDAP Path Segment Specification

2.1. Subsetting Metadata

2.1.1. RDAP Conformance

2.1.2. Representing Subsetting Links

3. Dealing with Relationships

4. Basic Field Sets

5. Negative Answers

6. IANA Considerations

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Approaches to Partial Response Implementation

A.1. Specific Issues Raised by RDAP

Acknowledgements

Authors' Addresses

1. Introduction
The use of partial responses in RESTful API design is very common. The rationale is quite
simple: instead of returning objects in API responses with all data fields, only a subset of the
fields in each result object is returned. The benefit is obvious: less data transferred over the
network means less bandwidth usage, faster server responses, less CPU time spent both on the
server and the client, and less memory usage on the client.

[REST]

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 2

Currently, RDAP does not provide a client with any way to request a partial response. Servers can
only provide the client with a full response . Servers cannot limit the amount of
information returned in a response based on a client's preferences, and this creates
inefficiencies.

The protocol described in this specification extends RDAP search capabilities to enable partial
responses through the provisioning of predefined sets of fields that clients can submit to an
RDAP service by adding a new query parameter. The service is implemented using the Hypertext
Transfer Protocol (HTTP) and the conventions described in .

1.1. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

[RFC7483]

[RFC7230] [RFC7480]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

2. RDAP Path Segment Specification
The path segment defined in this section is an extension of search path segments
defined in . This document defines an RDAP query parameter, "fieldSet", whose value is
a non-empty string identifying a server-defined set of fields returned in place of the full
response. The field sets supported by a server are usually described in out-of-band documents
(e.g., RDAP profile) together with other features. Moreover, this document defines in Section 2.1
an in-band mechanism by means of which servers can provide clients with basic information
about the supported field sets.

The following is an example of an RDAP query including the "fieldSet" parameter:

This solution can be implemented by RDAP providers with less effort than field selection and is
easily requested by clients. The considerations that have led to this solution are described in
more detail in Appendix A.

OPTIONAL
[RFC7482]

https://example.com/rdap/domains?name=example*.com&fieldSet=afieldset

2.1. Subsetting Metadata
According to most advanced principles in REST design, collectively known as "Hypermedia as the
Engine of Application State" (HATEOAS) , a client entering a REST application through
an initial URI should use server-provided links to dynamically discover available actions and
access the resources it needs. In this way, the client is not required to have prior knowledge of
the service nor, consequently, to hard-code the URIs of different resources. This allows the server
to make URI changes as the API evolves without breaking clients. Definitively, a REST service
should be as self-descriptive as possible.

[HATEOAS]

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 3

Therefore, servers implementing the query parameter described in this specification
provide additional information in their responses about the available field sets. Such
information is collected in a new JSON data structure named "subsetting_metadata" containing
the following properties:

"currentFieldSet": "String" ()
either the value of the "fieldSet" parameter as specified in the query string, or the field set
applied by default.

"availableFieldSets": "AvailableFieldSet[]" ()
an array of objects, with each element describing an available field set. The AvailableFieldSet
object includes the following members:

"name": "String" ()
the field set name.

"default": "Boolean" ()
indicator of whether the field set is applied by default. An RDAP server define only
one default field set.

"description": "String" ()
a human-readable description of the field set.

"links": "Link[]" ()
an array of links as described in containing the query string that applies the
field set (see Section 2.1.2).

SHOULD

REQUIRED

OPTIONAL

REQUIRED

REQUIRED
MUST

OPTIONAL

OPTIONAL
[RFC8288]

2.1.1. RDAP Conformance

Servers returning the "subsetting_metadata" section in their responses include "subsetting"
in the rdapConformance array.

MUST

2.1.2. Representing Subsetting Links

An RDAP server use the "links" array of the "subsetting_metadata" element to provide ready-
made references to the available field sets (Figure 1). The target URI in each link is the
reference to an alternative to the current view of results identified by the context URI.

The "value", "rel", and "href" JSON values be specified. All other JSON values are .

MAY
[RFC8288]

MUST OPTIONAL

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 4

Figure 1: Example of a "subsetting_metadata" Instance

{
 "rdapConformance": [
 "rdap_level_0",
 "subsetting"
],
 ...
 "subsetting_metadata": {
 "currentFieldSet": "afieldset",
 "availableFieldSets": [
 {
 "name": "anotherfieldset",
 "description": "Contains some fields",
 "default": false,
 "links": [
 {
 "value": "https://example.com/rdap/domains?name=example*.com
 &fieldSet=afieldset",
 "rel": "alternate",
 "href": "https://example.com/rdap/domains?name=example*.com
 &fieldSet=anotherfieldset",
 "title": "Result Subset Link",
 "type": "application/rdap+json"
 }
]
 },
 ...
]
 },
 ...
 "domainSearchResults": [
 ...
]
}

3. Dealing with Relationships
Representation of second-level objects within a field set produces additional considerations.
Since the representation of the topmost returned objects will vary according to the field set in
use, the response may contain no relationships (e.g., for an abbreviated field set) or may contain
associated objects as in a normal RDAP query response. Each field set can indicate the format of
the additional objects to be returned, in the same manner that the format of the topmost objects
is controlled by the field set.

4. Basic Field Sets
This section defines three basic field sets that servers implement to facilitate their
interaction with clients:

MAY

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 5

"id":

"brief":

"full":

The server provides only the key field; "handle" for entities, and "ldhName" for domains
and nameservers. If a returned domain or nameserver is an Internationalized Domain Name
(IDN) , then the "unicodeName" field additionally be included in the response.
This field set could be used when the client wants to obtain a collection of object identifiers
(Figure 2).

The field set contains the fields that can be included in a "short" response. This field set
could be used when the client is asking for a subset of the full response that provides only
basic knowledge of each object.

The field set contains all of the information the server can provide for a particular object.

The "objectClassName" field is implicitly included in each of the above field sets. RDAP providers
 include a "links" field indicating the "self" link relationship. RDAP providers also

add any property providing service information.

Fields included in the "brief" and "full" field set responses take into account the user's
access and authorization levels.

[RFC5890] MUST

SHOULD MAY

MUST

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 6

Figure 2: Example of RDAP Response According to the "id" Field Set

{
 "rdapConformance": [
 "rdap_level_0",
 "subsetting"
],
 ...
 "domainSearchResults": [
 {
 "objectClassName": "domain",
 "ldhName": "example1.com",
 "links": [
 {
 "value": "https://example.com/rdap/domain/example1.com",
 "rel": "self",
 "href": "https://example.com/rdap/domain/example1.com",
 "type": "application/rdap+json"
 }
]
 },
 {
 "objectClassName": "domain",
 "ldhName": "example2.com",
 "links": [
 {
 "value": "https://example.com/rdap/domain/example2.com",
 "rel": "self",
 "href": "https://example.com/rdap/domain/example2.com",
 "type": "application/rdap+json"
 }
]
 },
 ...
]
}

5. Negative Answers
Each request including an empty or unsupported "fieldSet" value produce an HTTP 400
(Bad Request) response code. Optionally, the response include additional information
regarding the supported field sets in the HTTP entity body (Figure 3).

MUST
MAY

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 7

Figure 3: Example of RDAP Error Response Due to an Invalid Field Set Included in the Request

{
 "errorCode": 400,
 "title": "Field set 'unknownfieldset' is not valid",
 "description": [
 "Supported field sets are: 'afieldset', 'anotherfieldset'."
]

}

Extension identifier:
Registry operator:
Published specification:
Contact:
Intended usage:

6. IANA Considerations
IANA has registered the following value in the "RDAP Extensions" registry:

subsetting
Any

RFC 8982
IETF <iesg@ietf.org>

This extension describes a best practice for partial response provisioning.

7. Security Considerations
A search query typically requires more server resources (such as memory, CPU cycles, and
network bandwidth) when compared to a lookup query. This increases the risk of server
resource exhaustion and subsequent denial of service. This risk can be mitigated by supporting
the return of partial responses combined with other strategies (e.g., restricting search
functionality, limiting the rate of search requests, and truncating and paging results).

Support for partial responses gives RDAP operators the ability to implement data access control
policies based on the HTTP authentication mechanisms described in . RDAP operators
can vary the information returned in RDAP responses based on a client's access and
authorization levels. For example:

the list of fields for each set can differ based on the client's access and authorization levels;

the set of available field sets could be restricted based on the client's access and
authorization levels.

Servers can also define different result limits according to the available field sets, so a more
flexible truncation strategy can be implemented. The new query parameter presented in this
document provides RDAP operators with a way to implement a server that reduces inefficiency
risks.

[RFC7481]

•

•

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 8

[RFC2119]

[RFC5890]

[RFC7230]

[RFC7480]

[RFC7481]

[RFC7482]

[RFC7483]

[RFC8174]

[RFC8288]

[CQL]

[HATEOAS]

8. References

8.1. Normative References

, , ,
, , March 1997,
.

,
, , ,

August 2010, .

,
, , , June 2014,

.

,
, , , March 2015,

.

,
, , , March 2015,

.

,
, , , March 2015,

.

,
, , , March 2015,

.

, ,
, , , May 2017,

.

, , , , October 2017,
.

8.2. Informative References

, , , September
2017,

.

, , February 2018,
.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Klensin, J. "Internationalized Domain Names for Applications (IDNA):
Definitions and Document Framework" RFC 5890 DOI 10.17487/RFC5890

<https://www.rfc-editor.org/info/rfc5890>

Fielding, R., Ed. and J. Reschke, Ed. "Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing" RFC 7230 DOI 10.17487/RFC7230
<https://www.rfc-editor.org/info/rfc7230>

Newton, A., Ellacott, B., and N. Kong "HTTP Usage in the Registration Data
Access Protocol (RDAP)" RFC 7480 DOI 10.17487/RFC7480 <https://
www.rfc-editor.org/info/rfc7480>

Hollenbeck, S. and N. Kong "Security Services for the Registration Data Access
Protocol (RDAP)" RFC 7481 DOI 10.17487/RFC7481 <https://
www.rfc-editor.org/info/rfc7481>

Newton, A. and S. Hollenbeck "Registration Data Access Protocol (RDAP) Query
Format" RFC 7482 DOI 10.17487/RFC7482 <https://www.rfc-
editor.org/info/rfc7482>

Newton, A. and S. Hollenbeck "JSON Responses for the Registration Data Access
Protocol (RDAP)" RFC 7483 DOI 10.17487/RFC7483 <https://
www.rfc-editor.org/info/rfc7483>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Nottingham, M. "Web Linking" RFC 8288 DOI 10.17487/RFC8288
<https://www.rfc-editor.org/info/rfc8288>

Whitaker, G. "Catnap Query Language Reference" commit d4f402c
<https://github.com/gregwhitaker/catnap/wiki/Catnap-Query-Language-

Reference>

Jedrzejewski, B. "HATEOAS - a simple explanation" <https://
www.e4developer.com/2018/02/16/hateoas-simple-explanation/>

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 9

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5890
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7480
https://www.rfc-editor.org/info/rfc7480
https://www.rfc-editor.org/info/rfc7481
https://www.rfc-editor.org/info/rfc7481
https://www.rfc-editor.org/info/rfc7482
https://www.rfc-editor.org/info/rfc7482
https://www.rfc-editor.org/info/rfc7483
https://www.rfc-editor.org/info/rfc7483
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8288
https://github.com/gregwhitaker/catnap/wiki/Catnap-Query-Language-Reference
https://github.com/gregwhitaker/catnap/wiki/Catnap-Query-Language-Reference
https://www.e4developer.com/2018/02/16/hateoas-simple-explanation/
https://www.e4developer.com/2018/02/16/hateoas-simple-explanation/

[REST] ,
, , 2000,

.

Fielding, R. "Architectural Styles and the Design of Network-based Software
Architectures" Ph.D. Dissertation, University of California, Irvine <https://
www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf>

Appendix A. Approaches to Partial Response Implementation
Looking at the implementation experiences of partial responses offered by data providers on the
web, two approaches are observed:

the client explicitly describes the data fields to be returned;

the client describes a name identifying a server-defined set of data fields.

The former is more flexible than the latter because clients can specify all the data fields they
need. However, it has some drawbacks:

Fields have to be declared according to a given syntax. This is a simple task when the data
structure of the object is flat, but it is much more difficult when the object has a tree
structure like that of a JSON object. The presence of arrays and deep nested objects
complicate both the syntax definition of the query and, consequently, the processing
required on the server side.

Clients need to recognize the returned data structure to avoid cases when the requested
fields are invalid.

The request of some fields might not match the client's access and authorization levels.
Clients might request unauthorized fields, and servers have to define a strategy for
responding such as always returning an error response or returning a response that ignores
the unauthorized fields.

•

•

•

•

•

A.1. Specific Issues Raised by RDAP
In addition to those listed above, RDAP responses raise some specific issues:

Relevant entity object information is included in a jCard, but such information cannot be
easily selected because it is split into the items of a jagged array.

RDAP responses contain some properties providing service information (e.g.,
rdapConformance, links, notices, remarks, etc.), which are not normally selected but are just
as important. They could be returned anyway but, in this case, the server would provide
unrequested data.

It is possible to address these issues. For example, the Catnap Query Language is a
comprehensive expression language that can be used to customize the JSON response of a
RESTful web service. Application of CQL to RDAP responses would explicitly identify the output
fields that would be acceptable when a few fields are requested but it would become very

•

•

[CQL]

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 10

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

Acknowledgements
The authors would like to acknowledge , , ,

, , , , , , and
 for their contribution to this document.

complicated when processing a larger number of fields. In the following, two CQL expressions
for a domain search query are shown (Figure 4). In the first, only objectClassName and ldhName
are requested. In the second, the fields of a possible WHOIS-like response are listed.

The field set approach seems to facilitate RDAP interoperability. Servers can define basic field
sets that, if known to clients, can increase the probability of obtaining a valid response. The
usage of field sets makes the query string less complex. Moreover, the definition of predefined
sets of fields makes it easier to establish result limits.

Finally, considering that there is no real need for RDAP users to have the maximum flexibility in
defining all the possible sets of logically connected fields (e.g., users interested in domains
usually need to know the status, the creation date, and the expiry date of each domain), the field
set approach is preferred.

Figure 4: Examples of CQL Expressions for a Domain Search Query

https://example.com/rdap/domains?name=example*.com
 &fields=domainSearchResults(objectClassName,ldhName)

https://example.com/rdap/domains?name=example*.com
 &fields=domainSearchResults(objectClassName,ldhName,
 unicodeName,
 status,
 events(eventAction,eventDate),
 entities(objectClassName,handle,roles),
 nameservers(objectClassName,ldhName))

Scott Hollenbeck Tom Harrison Karl Heinz Wolf Jasdip
Singh Patrick Mevzek Benjamin Kaduk Roman Danyliw Murray Kucherawy Erik Kline
Robert Wilton

Authors' Addresses
Mario Loffredo
IIT-CNR/Registro.it
Via Moruzzi,1

 56124 Pisa
Italy

 mario.loffredo@iit.cnr.it Email:
 https://www.iit.cnr.it URI:

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 11

mailto:mario.loffredo@iit.cnr.it
https://www.iit.cnr.it

Maurizio Martinelli
IIT-CNR/Registro.it
Via Moruzzi,1

 56124 Pisa
Italy

 maurizio.martinelli@iit.cnr.it Email:
 https://www.iit.cnr.it URI:

RFC 8982 RDAP Partial Response February 2021

Loffredo & Martinelli Standards Track Page 12

mailto:maurizio.martinelli@iit.cnr.it
https://www.iit.cnr.it

	RFC 8982
	Registration Data Access Protocol (RDAP) Partial Response
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions Used in This Document

	2. RDAP Path Segment Specification
	2.1. Subsetting Metadata
	2.1.1. RDAP Conformance
	2.1.2. Representing Subsetting Links

	3. Dealing with Relationships
	4. Basic Field Sets
	5. Negative Answers
	6. IANA Considerations
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Approaches to Partial Response Implementation
	A.1. Specific Issues Raised by RDAP
	Acknowledgements
	Authors' Addresses

 Registration Data Access Protocol (RDAP) Partial Response

 IIT-CNR/Registro.it

 Via Moruzzi,1
 Pisa
 IT
 56124

 mario.loffredo@iit.cnr.it
 https://www.iit.cnr.it

 IIT-CNR/Registro.it

 Via Moruzzi,1
 Pisa
 IT
 56124

 maurizio.martinelli@iit.cnr.it
 https://www.iit.cnr.it

 Applications and Real-Time
 Registration Protocols Extensions
 RDAP
 Partial response

 The Registration Data Access Protocol (RDAP) does not include capabilities to request partial responses. Servers will only return full responses that include all of the information that a client is authorized to receive. A partial response capability that limits the amount of information returned, especially in the case of search queries, could bring benefits to both clients and servers. This document describes an RDAP query extension that allows clients to specify their preference for obtaining a partial response.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Conventions Used in This Document

 . RDAP Path Segment Specification

 . Subsetting Metadata

 . RDAP Conformance

 . Representing Subsetting Links

 . Dealing with Relationships

 . Basic Field Sets

 . Negative Answers

 . IANA Considerations

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . Approaches to Partial Response Implementation

 . Specific Issues Raised by RDAP

 Acknowledgements

 Authors' Addresses

 Introduction
 The use of partial responses in RESTful API design is very common. The rationale is quite simple:
 instead of returning objects in API responses with all data fields, only
 a subset of the fields in each result object is returned. The benefit
 is obvious: less data transferred over the network means less bandwidth
 usage, faster server responses, less CPU time spent both on the server
 and the client, and less memory usage on the client.
 Currently, RDAP does not provide a client with any way to request a
 partial response. Servers can only provide the client with a full
 response . Servers cannot limit the amount of
 information returned in a response based on a client's preferences, and
 this creates inefficiencies.
 The protocol described in this specification extends RDAP search
 capabilities to enable partial responses through the provisioning of
 predefined sets of fields that clients can submit to an RDAP service by
 adding a new query parameter. The service is implemented using the
 Hypertext Transfer Protocol (HTTP) and the
 conventions described in .

 Conventions Used in This Document

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are
 to be interpreted as described in BCP 14
 when, and only when, they appear in all capitals,
 as shown here.

 RDAP Path Segment Specification
 The path segment defined in this section is an
 OPTIONAL extension of search path segments defined in
 . This document defines an RDAP query
 parameter, "fieldSet", whose value is a non-empty string identifying a
 server-defined set of fields returned in place of the full response.
 The field sets supported by a server are usually described in
 out-of-band documents (e.g., RDAP profile) together with other features.
 Moreover, this document defines in an in-band mechanism by means of
 which servers can provide clients with basic information about the
 supported field sets.
 The following is an example of an RDAP query including the "fieldSet" parameter:

https://example.com/rdap/domains?name=example*.com&fieldSet=afieldset

 This solution can be implemented by RDAP providers with less effort
 than field selection and is easily requested by clients. The
 considerations that have led to this solution are described in more
 detail in .

 Subsetting Metadata
 According to most advanced principles in REST design, collectively
 known as "Hypermedia as the Engine of Application State" (HATEOAS)
 , a client entering a REST application through
 an initial URI should use server-provided links to dynamically
 discover available actions and access the resources it needs. In this
 way, the client is not required to have prior knowledge of the service
 nor, consequently, to hard-code the URIs of different resources. This
 allows the server to make URI changes as the API evolves without
 breaking clients. Definitively, a REST service should be as
 self-descriptive as possible.
 Therefore, servers implementing the query parameter described in
 this specification SHOULD provide additional
 information in their responses about the available field sets. Such
 information is collected in a new JSON data structure named
 "subsetting_metadata" containing the following properties:

 "currentFieldSet": "String" (REQUIRED)

 either the value of the "fieldSet" parameter as specified in the query
string, or the field set applied by default.

 "availableFieldSets": "AvailableFieldSet[]" (OPTIONAL)

 an array of objects, with each element describing an available field set.
The AvailableFieldSet object includes the following members:

 "name": "String" (REQUIRED)

 the field set name.

 "default": "Boolean" (REQUIRED)

 indicator of whether the field set is applied by
default. An RDAP server MUST define only one default field set.

 "description": "String" (OPTIONAL)

 a human-readable description of the field set.

 "links": "Link[]" (OPTIONAL)

 an array of links as described in containing the
query string that applies the field set (see).

 RDAP Conformance
 Servers returning the "subsetting_metadata" section in their responses MUST include "subsetting" in the rdapConformance array.

 Representing Subsetting Links
 An RDAP server MAY use the "links" array of the "subsetting_metadata" element to provide ready-made references to the available field sets (). The target URI in each link is the reference to an alternative to the current view of results identified by the context URI.
 The "value", "rel", and "href" JSON values MUST be specified. All other JSON values are OPTIONAL.

 Example of a "subsetting_metadata" Instance

{
 "rdapConformance": [
 "rdap_level_0",
 "subsetting"
],
 ...
 "subsetting_metadata": {
 "currentFieldSet": "afieldset",
 "availableFieldSets": [
 {
 "name": "anotherfieldset",
 "description": "Contains some fields",
 "default": false,
 "links": [
 {
 "value": "https://example.com/rdap/domains?name=example*.com
 &fieldSet=afieldset",
 "rel": "alternate",
 "href": "https://example.com/rdap/domains?name=example*.com
 &fieldSet=anotherfieldset",
 "title": "Result Subset Link",
 "type": "application/rdap+json"
 }
]
 },
 ...
]
 },
 ...
 "domainSearchResults": [
 ...
]
}

 Dealing with Relationships
 Representation of second-level objects within a field set produces additional considerations. Since the representation of the topmost returned objects will vary according to the field set in use, the response may contain no relationships (e.g., for an abbreviated field set) or may contain associated objects as in a normal RDAP query response. Each field set can indicate the format of the additional objects to be returned, in the same manner that the format of the topmost objects is controlled by the field set.

 Basic Field Sets
 This section defines three basic field sets that servers
 MAY implement to facilitate their interaction with
 clients:

 "id":

 The server provides only the key field; "handle" for entities, and "ldhName" for domains
and nameservers. If a returned domain or nameserver is an Internationalized Domain Name (IDN) , then the "unicodeName" field MUST additionally be included in the
response. This field set could be used when the client wants to obtain a collection of object
identifiers ().

 "brief":

 The field set contains the fields that can be included in a "short" response.
This field set could be used when the client is asking for a subset of the full response that provides
only basic knowledge of each object.

 "full":

 The field set contains all of the information the server can provide for a
particular object.

 The "objectClassName" field is implicitly included in each of the above field sets. RDAP providers SHOULD include a "links" field indicating the "self" link relationship. RDAP providers MAY also add any property providing service information.
 Fields included in the "brief" and "full" field set responses MUST take into account the user's access and authorization levels.

 Example of RDAP Response According to the "id" Field Set

{
 "rdapConformance": [
 "rdap_level_0",
 "subsetting"
],
 ...
 "domainSearchResults": [
 {
 "objectClassName": "domain",
 "ldhName": "example1.com",
 "links": [
 {
 "value": "https://example.com/rdap/domain/example1.com",
 "rel": "self",
 "href": "https://example.com/rdap/domain/example1.com",
 "type": "application/rdap+json"
 }
]
 },
 {
 "objectClassName": "domain",
 "ldhName": "example2.com",
 "links": [
 {
 "value": "https://example.com/rdap/domain/example2.com",
 "rel": "self",
 "href": "https://example.com/rdap/domain/example2.com",
 "type": "application/rdap+json"
 }
]
 },
 ...
]
}

 Negative Answers
 Each request including an empty or unsupported "fieldSet" value MUST produce an HTTP 400 (Bad Request) response code. Optionally, the response MAY include additional information regarding the supported field sets in the HTTP entity body ().

 Example of RDAP Error Response Due to an Invalid Field Set Included in the Request

{
 "errorCode": 400,
 "title": "Field set 'unknownfieldset' is not valid",
 "description": [
 "Supported field sets are: 'afieldset', 'anotherfieldset'."
]

}

 IANA Considerations
 IANA has registered the following value in the "RDAP Extensions" registry:

 Extension identifier:

 subsetting

 Registry operator:

 Any

 Published specification:

 RFC 8982

 Contact:

 IETF <iesg@ietf.org>

 Intended usage:

 This extension describes a best practice for partial response provisioning.

 Security Considerations
 A search query typically requires more server resources (such as memory, CPU cycles, and network bandwidth) when compared to a lookup query. This increases the risk of server resource exhaustion and subsequent denial of service. This risk can be mitigated by supporting the return of partial responses combined with other strategies (e.g., restricting search functionality, limiting the rate of search requests, and truncating and paging results).
 Support for partial responses gives RDAP operators the ability to implement data access control policies based on the HTTP authentication mechanisms described in . RDAP operators can vary the information returned in RDAP responses based on a client's access and authorization levels. For example:

 the list of fields for each set can differ based on the client's access and authorization levels;

 the set of available field sets could be restricted based on the client's access and authorization levels.

 Servers can also define different result limits according to the available field sets, so a more flexible truncation strategy can be implemented. The new query parameter presented in this document provides RDAP operators with a way to implement a server that reduces inefficiency risks.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework

 This document is one of a collection that, together, describe the protocol and usage context for a revision of Internationalized Domain Names for Applications (IDNA), superseding the earlier version. It describes the document collection and provides definitions and other material that are common to the set. [STANDARDS-TRACK]

 Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document provides an overview of HTTP architecture and its associated terminology, defines the "http" and "https" Uniform Resource Identifier (URI) schemes, defines the HTTP/1.1 message syntax and parsing requirements, and describes related security concerns for implementations.

 HTTP Usage in the Registration Data Access Protocol (RDAP)

 This document is one of a collection that together describes the Registration Data Access Protocol (RDAP). It describes how RDAP is transported using the Hypertext Transfer Protocol (HTTP). RDAP is a successor protocol to the very old WHOIS protocol. The purpose of this document is to clarify the use of standard HTTP mechanisms for this application.

 Security Services for the Registration Data Access Protocol (RDAP)

 The Registration Data Access Protocol (RDAP) provides "RESTful" web services to retrieve registration metadata from Domain Name and Regional Internet Registries. This document describes information security services, including access control, authentication, authorization, availability, data confidentiality, and data integrity for RDAP.

 Registration Data Access Protocol (RDAP) Query Format

 This document describes uniform patterns to construct HTTP URLs that may be used to retrieve registration information from registries (including both Regional Internet Registries (RIRs) and Domain Name Registries (DNRs)) using "RESTful" web access patterns. These uniform patterns define the query syntax for the Registration Data Access Protocol (RDAP).

 JSON Responses for the Registration Data Access Protocol (RDAP)

 This document describes JSON data structures representing registration information maintained by Regional Internet Registries (RIRs) and Domain Name Registries (DNRs). These data structures are used to form Registration Data Access Protocol (RDAP) query responses.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Web Linking

 This specification defines a model for the relationships between resources on the Web ("links") and the type of those relationships ("link relation types").
 It also defines the serialisation of such links in HTTP headers with the Link header field.

 Informative References

 Catnap Query Language Reference

		

 commit d4f402c

 HATEOAS - a simple explanation

		

 Architectural Styles and the Design of Network-based Software Architectures

 Ph.D. Dissertation, University of California, Irvine

 Approaches to Partial Response Implementation
 Looking at the implementation experiences of partial responses offered by data providers on the web, two approaches are observed:

 the client explicitly describes the data fields to be returned;

 the client describes a name identifying a server-defined set of data fields.

 The former is more flexible than the latter because clients can specify all the data fields they need. However, it has some drawbacks:

 Fields have to be declared according to a given syntax. This is
 a simple task when the data structure of the object is flat, but it
 is much more difficult when the object has a tree structure like
 that of a JSON object. The presence of arrays and deep nested
 objects complicate both the syntax definition of the query and,
 consequently, the processing required on the server side.

 Clients need to recognize the returned data structure to avoid
 cases when the requested fields are invalid.

 The request of some fields might not match the client's access and
 authorization levels. Clients might request unauthorized fields, and
 servers have to define a strategy for responding such as always
 returning an error response or returning a response that ignores the
 unauthorized fields.

 Specific Issues Raised by RDAP
 In addition to those listed above, RDAP responses raise some specific issues:

 Relevant entity object information is included in a jCard, but
 such information cannot be easily selected because it is split
 into the items of a jagged array.

 RDAP responses contain some properties providing service
 information (e.g., rdapConformance, links, notices, remarks, etc.),
 which are not normally selected but are just as important.
 They could be returned anyway but, in this case, the server would
 provide unrequested data.

 It is possible to address these issues. For example, the Catnap
 Query Language is a comprehensive expression
 language that can be used to customize the JSON response of a RESTful
 web service. Application of CQL to RDAP responses would explicitly
 identify the output fields that would be acceptable when a few fields
 are requested but it would become very complicated when processing a
 larger number of fields. In the following, two CQL expressions for a
 domain search query are shown (). In the
 first, only objectClassName and ldhName are requested. In the second,
 the fields of a possible WHOIS-like response are listed.

 Examples of CQL Expressions for a Domain Search Query

https://example.com/rdap/domains?name=example*.com
 &fields=domainSearchResults(objectClassName,ldhName)

https://example.com/rdap/domains?name=example*.com
 &fields=domainSearchResults(objectClassName,ldhName,
 unicodeName,
 status,
 events(eventAction,eventDate),
 entities(objectClassName,handle,roles),
 nameservers(objectClassName,ldhName))

 The field set approach seems to facilitate RDAP interoperability.
 Servers can define basic field sets that, if known to clients, can
 increase the probability of obtaining a valid response. The usage of
 field sets makes the query string less complex. Moreover, the
 definition of predefined sets of fields makes it easier to establish
 result limits.
 Finally, considering that there is no real need for RDAP users to
 have the maximum flexibility in defining all the possible sets of
 logically connected fields (e.g., users interested in domains usually
 need to know the status, the creation date, and the expiry date of
 each domain), the field set approach is preferred.

 Acknowledgements
 The authors would like to acknowledge , , , , , , , , , and for their contribution to this document.

 Authors' Addresses

 IIT-CNR/Registro.it

 Via Moruzzi,1
 Pisa
 IT
 56124

 mario.loffredo@iit.cnr.it
 https://www.iit.cnr.it

 IIT-CNR/Registro.it

 Via Moruzzi,1
 Pisa
 IT
 56124

 maurizio.martinelli@iit.cnr.it
 https://www.iit.cnr.it

