Stream: Independent Submission

RFC: 9227
Category: Informational
Published: March 2022
ISSN: 2070-1721
Author: V. Smyslov
ELVIS-PLUS

RFC 9227

Using GOST Ciphers in the Encapsulating Security
Payload (ESP) and Internet Key Exchange Version 2
(IKEv2) Protocols

Abstract

This document defines a set of encryption transforms for use in the Encapsulating Security
Payload (ESP) and in the Internet Key Exchange version 2 (IKEv2) protocols, which are parts of
the IP Security (IPsec) protocol suite. The transforms are based on the GOST R 34.12-2015 block
ciphers (which are named "Magma" and "Kuznyechik") in Multilinear Galois Mode (MGM) and
the external rekeying approach.

This specification was developed to facilitate implementations that wish to support the GOST
algorithms. This document does not imply IETF endorsement of the cryptographic algorithms
used in this document.

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational
purposes.

This is a contribution to the RFC Series, independently of any other RFC stream. The RFC Editor
has chosen to publish this document at its discretion and makes no statement about its value for
implementation or deployment. Documents approved for publication by the RFC Editor are not
candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9227.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Smyslov Informational Page 1

https://www.rfc-editor.org/rfc/rfc9227
https://www.rfc-editor.org/info/rfc9227

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document.

Table of Contents
. Introduction
. Requirements Language

. Overview

BNow N e

. Description of Transforms
4.1. Tree-Based External Rekeying
4.2. Initialization Vector Format
4.3. Nonce Format for MGM
4.3.1. MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher

4.3.2. MGM Nonce Format for Transforms Based on the "Magma" Cipher

4.4. Keying Material
4.5. Integrity Check Value
4.6. Plaintext Padding
4.7. AAD Construction
4.7.1. ESP AAD
4.7.2. IKEv2 AAD
4.8. Using Transforms
5. Security Considerations
6. IANA Considerations
7. References
7.1. Normative References
7.2. Informative References
Appendix A. Test Vectors
Acknowledgments

Author's Address

Smyslov Informational Page 2

https://trustee.ietf.org/license-info

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

1. Introduction

The IP Security (IPsec) protocol suite consists of several protocols, of which the Encapsulating
Security Payload (ESP) [RFC4303] and the Internet Key Exchange version 2 (IKEv2) [RFC7296] are
most widely used. This document defines four transforms for ESP and IKEv2 based on Russian
cryptographic standard algorithms (often referred to as "GOST" algorithms). These definitions are
based on the recommendations [GOST-ESP] established by the Federal Agency on Technical
Regulating and Metrology (Rosstandart), which describe how Russian cryptographic standard
algorithms are used in ESP and IKEv2. The transforms defined in this document are based on two
block ciphers from Russian cryptographic standard algorithms -- "Kuznyechik" [GOST3412-2015]
[RFC7801] and "Magma" [GOST3412-2015] [RFC8891] in Multilinear Galois Mode (MGM) [GOST-
MGM] [RFC9058]. These transforms provide Authenticated Encryption with Associated Data
(AEAD). An external rekeying mechanism, described in [RFC8645], is also used in these transforms
to limit the load on session keys.

Because the GOST specification includes the definition of both 128-bit ("Kuznyechik") and 64-bit
("Magma") block ciphers, both are included in this document. Implementers should make
themselves aware of the relative security and other cost-benefit implications of the two ciphers.
See Section 5 for more details.

This specification was developed to facilitate implementations that wish to support the GOST
algorithms. This document does not imply IETF endorsement of the cryptographic algorithms
used in this document.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Overview

Russian cryptographic standard algorithms, often referred to as "GOST" algorithms, constitute a
set of cryptographic algorithms of different types -- ciphers, hash functions, digital signatures, etc.
In particular, Russian cryptographic standard [GOST3412-2015] defines two block ciphers --
"Kuznyechik" (also defined in [RFC7801]) and "Magma" (also defined in [RFC8891]). Both ciphers
use a 256-bit key. "Kuznyechik" has a block size of 128 bits, while "Magma" has a 64-bit block.

Multilinear Galois Mode (MGM) is an AEAD mode defined in [GOST-MGM] and [RFC9058]. It is
claimed to provide defense against some attacks on well-known AEAD modes, like Galois/Counter
Mode (GCM).

Smyslov Informational Page 3

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

[RFC8645] defines mechanisms that can be used to limit the number of times any particular
session key is used. One of these mechanisms, called external rekeying with tree-based
construction (defined in Section 5.2.3 of [RFC8645]), is used in the defined transforms. For the
purpose of deriving subordinate keys, the Key Derivation Function (KDF)
KDF_GOSTR3411_2012_256, defined in Section 4.5 of [RFC7836], is used. This KDF is based on a
Hashed Message Authentication Code (HMAC) construction [RFC2104] with a Russian GOST hash
function defined in Russian cryptographic standard [GOST3411-2012] (also defined in [RFC6986]).

4. Description of Transforms

This document defines four transforms of Type 1 (Encryption Algorithm) for use in ESP and
IKEv2. All of them use MGM as the mode of operation with tree-based external rekeying. The
transforms differ in underlying ciphers and in cryptographic services they provide.

e ENCR_KUZNYECHIK MGM_KTREE (Transform ID 32) is an AEAD transform based on the
"Kuznyechik" algorithm; it provides confidentiality and message authentication and thus can
be used in both ESP and IKEv2.

* ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based on the "Magma"
algorithm; it provides confidentiality and message authentication and thus can be used in
both ESP and IKEv2.

* ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only transform based on
the "Kuznyechik" algorithm; it provides no confidentiality and thus can only be used in ESP,
but not in IKEv2.

* ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform based on the
"Magma" algorithm; it provides no confidentiality and thus can only be used in ESP, but not in
IKEv2.

Note that transforms ENCR_KUZNYECHIK MGM_MAC_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE don't provide any confidentiality, but they are defined as Type
1 (Encryption Algorithm) transforms because of the need to include an Initialization Vector (IV),
which is impossible for Type 3 (Integrity Algorithm) transforms.

4.1. Tree-Based External Rekeying

All four transforms use the same tree-based external rekeying mechanism. The idea is that the
key that is provided for the transform is not directly used to protect messages. Instead, a tree of
keys is derived using this key as a root. This tree may have several levels. The leaf keys are used
for message protection, while intermediate-node keys are used to derive lower-level keys,
including leaf keys. See Section 5.2.3 of [RFC8645] for more details. This construction allows us to
protect a large amount of data, at the same time providing a bound on a number of times any
particular key in the tree is used, thus defending against some side-channel attacks and also
increasing the key lifetime limitations based on combinatorial properties.

The transforms defined in this document use a three-level tree. The leaf key that protects a
message is computed as follows:

Smyslov Informational Page 4

https://www.rfc-editor.org/rfc/rfc8645#section-5.2.3
https://www.rfc-editor.org/rfc/rfc7836#section-4.5
https://www.rfc-editor.org/rfc/rfc8645#section-5.2.3

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

K_msg = KDF (KDF (KDF (K, 11, ox@8e | i1), 12, i2), 13, i3)
where:

KDF (k,1, s) Key Derivation Function KDF_GOSTR3411_2012_256 (defined in Section 4.5 of
[RFC7836]), which accepts three input parameters -- a key (k), a label (1), and a
seed (s) - and provides a new key as output

K the root key for the tree (see Section 4.4)
11,12,13 labels defined as 6-octet ASCII strings without null termination:
11= "levell"
2= "level2"
13= "level3"
i1,12,1i3 parameters that determine which keys out of the tree are used on eachlevel.

Together, they determine a leaf key that is used for message protection; the
length of il is one octet, and i2 and i3 are two-octet integers in network byte
order

| indicates concatenation

This construction allows us to generate up to 28 keys on level 1 and up to 216 keys on levels 2 and
3. So, the total number of possible leaf keys generated from a single Security Association (SA) key

is 240

This specification doesn't impose any requirements on how frequently external rekeying takes
place. It is expected that the sending application will follow its own policy dictating how many
times the keys on each level must be used.

4.2. Initialization Vector Format

Each message protected by the defined transforms MUST contain an IV. The IV has a size of 64 bits
and consists of four fields. The fields i1, i2, and i3 are parameters that determine the particular
leaf key this message was protected with (see Section 4.1). The fourth field is a counter,
representing the message number for this key.

1 2 3
012345678906 12345678960612345678920°1

T S e s T o S S s Sor St ST P S S
| i1 | i2 | i3 |
d-t-F-F-t-F-F-F-F-+-+-+
| i3 (cont) | pnum |
t-t-—t-F-F-F-F-F-F-F-F-F-F-F-F-F-F—F-F-F—F-F-F-F-F-F—F-F-+-+-F+-+-+

Figure 1: IV Format

Smyslov Informational Page 5

https://www.rfc-editor.org/rfc/rfc7836#section-4.5

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

where:

i1 (1 octet), 12 (2 octets), i3 (2 octets): parameters that determine the particular key used to
protect this message; 2-octet parameters are integers in network byte order

pnum (3 octets): message counter in network byte order for the leaf key protecting this

224

message; up to messages may be protected using a single leaf key

For any given SA, the IV MUST NOT be used more than once, but there is no requirement that IV be
unpredictable.

4.3. Nonce Format for MGM

MGM requires a per-message nonce (called the Initial Counter Nonce, or ICN in [RFC9058]) that
MUST be unique in the context of any leaf key. The size of the ICN is n-1 bits, where n is the block
size of the underlying cipher. The two ciphers used in the transforms defined in this document
have different block sizes, so two different formats for the ICN are defined.

MGM specification requires that the nonce be n-1 bits in size, where n is the block size of the
underlying cipher. This document defines MGM nonces having n bits (the block size of the
underlying cipher) in size. Since n is always a multiple of 8 bits, this makes MGM nonces having a
whole number of octets. When used inside MGM, the most significant bit of the first octet of the
nonce (represented as an octet string) is dropped, making the effective size of the nonce equal to
n-1 bits. Note that the dropped bit is a part of the "zero" field (see Figures 2 and 3), which is always
set to 0, so no information is lost when it is dropped.

4.3.1. MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher

For transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and
ENCR_KUZNYECHIK_MGM_MAC_KTREE), the ICN consists of a "zero" octet; a 24-bit message
counter; and a 96-bit secret salt, which is fixed for the SA and is not transmitted.

1 2 3
012345678901 23456789012345678901
R et e S e e e T T e e k3
| zero | pnum |
R e e e T T e e e e et et T T T e e T e e e 3
salt

I I

I I

I I

t-t—t-F—t-t-F-t-t-F-t—t-F—F—F-F—F—F-F—F—F-F—F—F-F-F—F-F-F-+-F+-+-+
Figure 2: Nonce Format for Transforms Based on the "Kuznyechik" Cipher

where:

zero (1 octet): settoO

Smyslov Informational Page 6

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

pnum (3 octets): the counter for the messages protected by the given leaf key; this field MUST be
equal to the pnum field in the IV

salt (12 octets): secret salt. The salt is a string of bits that are formed when the SA is created (see
Section 4.4 for details). The salt does not change during the SA's lifetime and is not transmitted
on the wire. Every SA will have its own salt.

4.3.2. MGM Nonce Format for Transforms Based on the "Magma" Cipher

For transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE), the ICN consists of a "zero" octet; a 24-bit message counter;
and a 32-bit secret salt, which is fixed for the SA and is not transmitted.

1 2 3
012345678901 23456789012345678901
R e e S S e e e e e e T T e e e
| zero | pnum [
e e st T o e e e e e e e e el T Tl T e el e T
| salt |
dod -ttt -ttt -ttt —F—F—F-F—F-F-F—t-t-t-t-t-t-t -ttt -F-+-+-+

Figure 3: Nonce Format for Transforms Based on the "Magma" Cipher

where:

zero (1 octet): settoO

pnum (3 octets): the counter for the messages protected by the given leaf key; this field MUST be
equal to the pnum field in the IV

salt (4 octets): secret salt. The salt is a string of bits that are formed when the SA is created (see
Section 4.4 for details). The salt does not change during the SA's lifetime and is not transmitted
on the wire. Every SA will have its own salt.

4.4. Keying Material

We'll call a string of bits that is used to initialize the transforms defined in this specification a
"transform key". The transform key is a composite entity consisting of the root key for the tree
and the secret salt.

The transform key for the ENCR_KUZNYECHIK_MGM_KTREE and
ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits (44 octets), of which the
first 256 bits is a root key for the tree (denoted as Kin Section 4.1) and the remaining 96 bits is a
secret salt (see Section 4.3.1).

The transform key for the ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE
transforms consists of 288 bits (36 octets), of which the first 256 bits is a root key for the tree
(denoted as Kin Section 4.1) and the remaining 32 bits is a secret salt (see Section 4.3.2).

Smyslov Informational Page 7

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

In the case of ESP, the transform keys are extracted from the KEYMAT as defined in Section 2.17 of
[RFC7296]. In the case of IKEv2, the transform keys are either SK_ei or SK_er, which are generated
as defined in Section 2.14 of [RFC7296]. Note that since these transforms provide authenticated
encryption, no additional keys are needed for authentication. This means that, in the case of
IKEv2, the keys SK_ai/SK_ar are not used and MUST be treated as having zero length.

4.5. Integrity Check Value

The length of the authentication tag that MGM can compute is in the range from 32 bits to the
block size of the underlying cipher. Section 4 of [RFC9058] states that the authentication tag
length MUST be fixed for a particular protocol. For transforms based on the "Kuznyechik" cipher
(ENCR_KUZNYECHIK MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE), the resulting
Integrity Check Value (ICV) length is set to 96 bits. For transforms based on the "Magma" cipher
(ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE), the full ICV length is set to
the block size (64 bits).

4.6. Plaintext Padding

The transforms defined in this document don't require any plaintext padding, as specified in
[RFC9058]. This means that only those padding requirements that are imposed by the protocol are
applied (4 bytes for ESP, no padding for IKEv2).

4.7. AAD Construction

4.7.1. ESP AAD

Additional Authenticated Data (AAD) in ESP is constructed differently, depending on the
transform being used and whether the Extended Sequence Number (ESN) is in use or not. The
ENCR_KUZNYECHIK_MGM_KTREE and ENCR_MAGMA_MGM_KTREE transforms provide
confidentiality, so the content of the ESP body is encrypted and the AAD consists of the ESP
Security Parameter Index (SPI) and (E)SN. The AAD is constructed similarly to the AAD in
[RFC4106].

On the other hand, the ENCR_KUZNYECHIK MGM_MAC_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE transforms don't provide confidentiality; they provide only
message authentication. For this purpose, the IV and the part of the ESP packet that is normally
encrypted are included in the AAD. For these transforms, the encryption capability provided by
MGM is not used. The AAD is constructed similarly to the AAD in [RFC4543].

1 2 3
01234567890 12345678906123456789201
t-t-t-t-d-t-t-F-d-t-t-t-Ft-t-t-t-F-t-t—F-F-t-t—F-F-F-t-F-F-+-+-+-+
| SPI |
+-F+-F-F+-+-+-+-+-+-+-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-F+-+-+-+-+-+
| 32-bit Sequence Number |
B e T T e ek e Tk et e S S A S S St A S S S ok ot S T A s

Figure 4: AAD for AEAD Transforms with 32-Bit SN

Smyslov Informational Page 8

https://www.rfc-editor.org/rfc/rfc7296#section-2.17
https://www.rfc-editor.org/rfc/rfc7296#section-2.14
https://www.rfc-editor.org/rfc/rfc9058#section-4

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

1 2 3
01234567890 1234567890612345678901
tot-t-t-t-t-t-t-t-t-t-t-t-F-t-F-t-F-t-F-t-F-t—F-Ft-F-+t—F-+-+-+-+-+
| SPI |
Fot-t—t-t-t-t-t-t-t-t-t-t-t-t-F-t-t-F-F-t-t-t—t-t-F-Ft—F-Ft-F-+-+-+

| 64-bit Extended Sequence Number
I I
+

D e e e e T e Tl o el e e e e e 3
Figure 5: AAD for AEAD Transforms with 64-Bit ESN

1 2 3
01234567890 123456789061234567 8901
—t-t-t-F-t-t-t-F-t-t-F-F-F-t-t-t-F-t-t-F-F-F-t-F-F-F-+t-F-+-+-+-+

SPI |
—+-t-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-F+-+-F+-+-+-F-F-F-F-F-F-F-F-+-+-+
32-bit Sequence Number |
—dt—t—t-t-t-t—t-F-dt-t-F—F-F-t-t—F-F-t-t—F-F-dt-t-F-F-F-t-F—+-+-+-+
IV

Payload Data (variable) ~

B L ek o T S e e e ket ek e e T e e S e S S e S S S D &
Padding (©-255 bytes)

tt-t-t-t—t—t-

| Pad Length

-ttt t-t-t-—t-t-t-t-F-t-t-F-F-t-t-t—F-t-+-+-

Figure 6: AAD for Authentication-Only Transforms with 32-Bit SN

+
+— +

-ttt —F-+-+-
Next Header

+
I
+
I
+
I
I
I T S s ek ek e T T e S e R S e O Tk Sk o SR S
I
I
+
I
+
I
+ —t-t-t—t-t-t-+-

I
I
+
I
I
+
I
+
|
+

1 2 3
01234567890 1234567890612345678901
—+-t-t+-F-F-F-F-F-F-F-F+-F-F-F-F+-F+-F+-F+-+-+-+-+-+-+-F-F-F-F-+-+-+-+

SPI |
—+-t-F-F-F-F-F-F-F-F-F-F-F-F-F+-F-+-+-+-+-+-F-F-F-F-F-F-F-+-+-+-+
64-bit Extended Sequence Number

—t—t—t-F-t-t—F-F-t-t—F—F-F-t-F—F-F-t—F—t-F-F-t—t—F-F-F—F—F-F-+-
IV

+

Payload Data (variable)

T T T T S e Lk L Tk Tor ST S S R S S U SR A A
Padding (©-255 bytes)
Fot—t—t—t—t—t—t-
| Pad Length
et e R T S S e e e s Tt st

Figure 7: AAD for Authentication-Only Transforms with 64-Bit ESN

+

—+-t-t-t-+-+-+-
Next Header

+
I
+
I
I
+
I
I
tot—t—t-F-t-t—F-F-t-t—F-F-F-t—F-F-F-F-F—F-F-t-F—tF-F-F-F-F-+-+
I
I
+
I
+
I
+ ——t—t-t-t-t—+-

I
I
+
I
I
-+
I
|
-+
I
+
I
+

+— +

Smyslov Informational Page 9

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

4.7.2. IKEv2Z AAD

For IKEv2, the AAD consists of the IKEv2 Header, any unencrypted payloads following it (if
present), and either the Encrypted payload header (Section 3.14 of [RFC7296]) or the Encrypted
Fragment payload (Section 2.5 of [RFC7383]), depending on whether IKE fragmentation is used.
The AAD is constructed similarly to the AAD in [RFC5282].

1 2 3
©1234567890123456789012345671829201
tot-t-t-t-t-t-t-t-t-F-t-F-F -ttt -ttt -F—F-F—F-Ft—F-F—F-+-+-+
~ IKEv2 Header ~
t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-F-t-t-t-t-t-t-t-F-t-F-t-F-+-+-+-+-+
~ Unencrypted IKE Payloads ~
tot-t-t-t-t-t-t-t-t-t-t-F-t-t-F-t—t-F-F-t—t-t—t-t-F-Ft—F-+-+-+-+-+

| Next Payload |C| RESERVED | Payload Length
tot-t-t-t-t-t-t-t-F-F-t-F-F-F-F-t-F-F-F-F—F-F—F-F-F-Ft—F-F—F-+-+-+

Figure 8: AAD for IKEvZ2 in the Case of the Encrypted Payload

1 2 3
01234567890 12345678906123456789201
+-F+-F-F+-F+-+-+-+-+-+-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-F+-+-+-+-+-+
~ IKEv2 Header ~
s T T e e S e e s s T T S S S A S S S ok ok ok T e s
~ Unencrypted IKE Payloads ~
t-t-t-t-t-t-F-F-d-t-t-t-F-t-t-t-F-t-F-F-F-F-t-F-F-F-t-F-F-+-+-+-+

| Next Payload |C| RESERVED | Payload Length
+-F+-F-F+-F+-+-+-+-+-+-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-F+-+-+-+-+-+
| Fragment Number | Total Fragments
B e T T e ek e e T T S e S S S s [T Tt e S A A s

Figure 9: AAD for IKEvZ2 in the Case of the Encrypted Fragment Payload

4.8. Using Transforms

When the SA is established, the i1, i2, and i3 parameters are set to 0 by the sender and a leaf key is
calculated. The pnum parameter starts from 0 and is incremented with each message protected
by the same leaf key. When the sender decides that the leaf should be changed, it increments the i3
parameter and generates a new leaf key. The pnum parameter for the new leaf key is reset to 0,
and the process continues. If the sender decides that a third-level key corresponding to i3 is used
enough times, it increments i2, resets i3 to 0, and calculates a new leaf key. The pnum is reset to 0
(as with every new leaf key), and the process continues. A similar procedure is used when a
second-level key needs to be changed.

A combination ofil,i2, i3, and pnum MUST NOT repeat for any particular SA. This means that the
wrapping of these counters is not allowed: when i2, i3, or pnum reaches its respective maximum
value, a procedure for changing a leaf key, described above, is executed, and if all four parameters
reach their maximum values, the IPsec SA becomes unusable.

Smyslov Informational Page 10

https://www.rfc-editor.org/rfc/rfc7296#section-3.14
https://www.rfc-editor.org/rfc/rfc7383#section-2.5

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

There may be other reasons to recalculate leaf keys besides reaching maximum values for the
counters. For example, as described in Section 5, it is RECOMMENDED that the sender count the
number of octets protected by a particular leaf key and generate a new key when some threshold
isreached, and at the latest when reaching the octet limits stated in Section 5 for each of the
ciphers.

The receiver always uses i1, i2, and i3 from the received message. If they differ from the values in
previously received packets, a new leaf key is calculated. The pnum parameter is always used
from the received packet. To improve performance, implementations may cache recently used
leaf keys. When a new leaf key is calculated (based on the values from the received message), the
old key may be kept for some time to improve performance in the case of possible packet
reordering (when packets protected by the old leaf key are delayed and arrive later).

5. Security Considerations

The most important security consideration for MGM is that the nonce MUST NOT repeat for a
given key. For this reason, the transforms defined in this document MUST NOT be used with
manual keying.

Excessive use of the same key can give an attacker advantages in breaking security properties of
the transforms defined in this document. For this reason, the amount of data that any particular
key is used to protect should be limited. This is especially important for algorithms with a 64-bit
block size (like "Magma"), which currently are generally considered insecure after protecting a
relatively small amount of data. For example, Section 3.4 of [SP800-67] limits the number of

blocks that are allowed to be encrypted with the Triple DES cipher to 220 (8 MB of data). This
document defines a rekeying mechanism that allows the mitigation of weak security of a 64-bit
block cipher by frequently changing the encryption key.

For transforms defined in this document, [GOST-ESP] recommends limiting the number of octets
protected with a single K_msg key by the following values:

* 241 octets for transforms based on the "Kuznyechik" cipher
(ENCR_KUZNYECHIK MGM_KTREE and ENCR_KUZNYECHIK MGM_MAC_KTREE)

* 228 gctets for transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE)

These values are based on combinatorial properties and may be further restricted if side-channel
attacks are taken into consideration. Note that the limit for transforms based on the
"Kuznyechik" cipher is unreachable because, due to the construction of the transforms, the

number of protected messages is limited to 224 and each message (either IKEv2 messages or ESP

datagrams) is limited to 216 octets in size, giving 240 octets as the maximum amount of data that
can be protected with a single K_msg.

Smyslov Informational Page 11

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

Section 4 of [RFC9058] discusses the possibility of truncating authentication tags in MGM as a
trade-off between message expansion and the probability of forgery. This specification truncates
an authentication tag length for transforms based on the "Kuznyechik" cipher to 96 bits. This

decreases message expansion while still providing a very low probability of forgery: 296,

An attacker can send a lot of packets with arbitrarily chosen i1, i2, and i3 parameters. This will 1)
force a recipient to recalculate the leaf key for every received packet if i1, i2, and i3 are different
from these values in previously received packets, thus consuming CPU resources and 2) force a
recipient to make verification attempts (that would fail) on a large amount of data, thus allowing
the attacker a deeper analysis of the underlying cryptographic primitive (see [AEAD-USAGE-
LIMITS]). Implementations MAY initiate rekeying if they deem that they receive too many packets
with an invalid ICV.

Security properties of MGM are discussed in [MGM-SECURITY].

6. IANA Considerations

IANA maintains a registry called "Internet Key Exchange Version 2 (IKEv2) Parameters” with a
subregistry called "Transform Type Values". IANA has added the following four Transform IDs to
the "Transform Type 1 - Encryption Algorithm Transform IDs" subregistry.

Number Name ESP Reference IKEv2 Reference
32 ENCR_KUZNYECHIK_MGM_KTREE RFC 9227 RFC 9227

33 ENCR_MAGMA_MGM_KTREE RFC 9227 RFC 9227

34 ENCR_KUZNYECHIK_ MGM_MAC_KTREE RFC9227 Not allowed

35 ENCR_MAGMA_MGM_MAC_KTREE RFC 9227 Not allowed

Table 1: Transform IDs

7. References

7.1. Normative References

[RFC2119] Bradner,S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14,
RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

[RFC4303] Kent,S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/
RF(C4303, December 2005, <https://www.rfc-editor.org/info/rfc4303>.

Smyslov Informational Page 12

https://www.rfc-editor.org/rfc/rfc9058#section-4
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc4303

RFC 9227 GOST Ciphers in ESP and IKEv2 March 2022

[RFC7296] Kaufman, C., Hoffman, P, Nir, Y,, Eronen, P, and T. Kivinen, "Internet Key
Exchange Protocol Version 2 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296,
October 2014, <https://www.rfc-editor.org/info/rfc7296>.

[RFC7383] Smyslov, V., "Internet Key Exchange Protocol Version 2 (IKEv2) Message
Fragmentation”, RFC 7383, DOI 10.17487/RFC7383, November 2014, <https://
www.rfc-editor.org/info/rfc7383>.

[RFC6986] Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012: Hash Function", RFC 6986,
DOI 10.17487/RFC6986, August 2013, <https://www.rfc-editor.org/info/rfc6986>.

[RFC7801] Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher "Kuznyechik"', RFC 7801, DOI
10.17487/RFC7801, March 2016, <https://www.rfc-editor.org/info/rfc7801>.

[RFC8891] Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015: Block Cipher "Magma"",
RFC 8891, DOI 10.17487/RFC8891, September 2020, <https://www.rfc-editor.org/
info/rfc8891>.

[RFC9058] Smyshlyaev,S., Ed., Nozdrunov, V., Shishkin, V., and E. Griboedova, "Multilinear
Galois Mode (MGM)", RFC 9058, DOI 10.17487/RFC9058, June 2021, <https://
www.rfc-editor.org/info/rfc9058>.

[RFC7836] Smyshlyaev,S., Ed., Alekseev, E., Oshkin, I., Popov, V., Leontiev, S., Podobaev, V.,
and D. Belyavsky, "Guidelines on the Cryptographic Algorithms to Accompany
the Usage of Standards GOST R 34.10-2012 and GOST R 34.11-2012", RFC 7836, DOI
10.17487/RFC7836, March 2016, <https://www.rfc-editor.org/info/rfc7836>.

7.2. Informative References

[GOST3411-2012] Federal Agency on Technical Regulating and Metrology, "Information
technology. Cryptographic data security. Hash function", GOST R 34.11-2012,
August 2012. (In Russian)

[GOST3412-2015] Federal Agency on Technical Regulating and Metrology, "Information
technology. Cryptographic data security. Block ciphers", GOST R 34.12-2015, June
2015. (In Russian)

[GOST-MGM] Federal Agency on Technical Regulating and Metrology, "Information
technology. Cryptographic information security. Block Cipher Modes
Implementing Authenticated Encryption", R 1323565.1.026-2019, September 2019.
(In Russian)

[GOST-ESP] Federal Agency on Technical Regulating and Metrology, "Information
technology. Cryptographic information protection. The use of Russian
cryptographic algorithms in the ESP information protection protocol”, R
1323565.1.035-2021, January 2021. (In Russian)

[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-Hashing for Message
Authentication", RFC 2104, DOI 10.17487/RFC2104, February 1997, <https://
www.rfc-editor.org/info/rfc2104>.

Smyslov Informational Page 13

https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc6986
https://www.rfc-editor.org/info/rfc7801
https://www.rfc-editor.org/info/rfc8891
https://www.rfc-editor.org/info/rfc8891
https://www.rfc-editor.org/info/rfc9058
https://www.rfc-editor.org/info/rfc9058
https://www.rfc-editor.org/info/rfc7836
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104

RFC9227

[RFC4106]

[RFC4543]

[RFC5282]

[RFC8645]

GOST Ciphers in ESP and IKEv2 March 2022

Viega, J.and D. McGrew, "The Use of Galois/Counter Mode (GCM) in IPsec
Encapsulating Security Payload (ESP)", RFC 4106, DOI 10.17487/RFC4106, June
2005, <https://www.rfc-editor.org/info/rfc4106>.

McGrew, D. and J. Viega, "The Use of Galois Message Authentication Code (GMAC)
in IPsec ESP and AH", RFC 4543, DOI 10.17487/RF(C4543, May 2006, <https://
www.rfc-editor.org/info/rfc4543>.

Black, D. and D. McGrew, "Using Authenticated Encryption Algorithms with the
Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol"”, RFC
5282, DOI 10.17487/RFC5282, August 2008, <https://www.rfc-editor.org/info/
rfc5282>.

Smyshlyaev, S., Ed., "Re-keying Mechanisms for Symmetric Keys", RFC 8645, DOI
10.17487/RFC8645, August 2019, <https://www.rfc-editor.org/info/rfc8645>.

[MGM-SECURITY] Akhmetzyanova, L., Alekseev, E., Karpunin, G.,and V. Nozdrunov, "Security

[SP800-67]

of Multilinear Galois Mode (MGM)", 2019, <https://eprint.iacr.org/2019/123.pdf>.

National Institute of Standards and Technology, "Recommendation for the
Triple Data Encryption Algorithm (TDEA) Block Cipher", DOI 10.6028/NIST.SP.
800-67r2, November 2017, <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-67r2.pdf>.

[AEAD-USAGE-LIMITS] Ginther, F, Thomson, M., and C. A. Wood, "Usage Limits on AEAD

Algorithms", Work in Progress, Internet-Draft, draft-irtf-cfrg-aead-limits-04, 7

March 2022, <https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-04>.

Appendix A. Test Vectors

In the following test vectors, binary data is represented in hexadecimal format. The numbers in
square brackets indicate the size of the corresponding data in decimal format.

1. ENCR_KUZNYECHIK MGM_KTREE (Example 1):

Smyslov

Informational Page 14

https://www.rfc-editor.org/info/rfc4106
https://www.rfc-editor.org/info/rfc4543
https://www.rfc-editor.org/info/rfc4543
https://www.rfc-editor.org/info/rfc5282
https://www.rfc-editor.org/info/rfc5282
https://www.rfc-editor.org/info/rfc8645
https://eprint.iacr.org/2019/123.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aead-limits-04

RFC9227

transform

b6
el
7b

K [32]:

b6
el

salt [12]:

7b

18
bc
67

18
bc

67

i1 = 00,
K_msg [32]:
2f f1 c9 Be
d8 80 bd 52
nonce [16]:

00

IV [8]:

00

00

00

AAD [8]:

51

46

plaintext

45
Pa
65
75

ciphertext [64]:

00
6f
66
76

key [44]:

0c
fa
eb

Oc
fa

e6

i2

00

00

53

14
73
f2

14
73

f2

44

0000

00
00
6b

[64]:

00
Pa
67
77

3c
1d
68
61

18 9d 12 88
c6 d4 ea fd
62 97 b2 24
85 ff e9 17

ESP ICV [12]:

50 b 70 ail
ESP packet [112]:

45
Pa
00
9b
60
7b
ae

00
6f
00
ee
05
9d
4d

00
POa
00
65
aa
eb
ab

70
1d
00
96
07
31
6f

de
7c¢C

7b
00
00

23
08
69
62

b7
31
bf
9c

5a

00
51
18
c6
62
85
50

GOST Ciphers in ESP and IKEv2

2d
61

2d
61

7f

6e
a2

e6

00

00
53
12
ea
b2
e9
70

bd
af

bd
af

06

78

0000,

06
ba

f2
00

Tle
dc

44

95

ce a9
0d 84
2e 45

ce a9
od 84

2e 45

2c
b5

2c
b5

ac
22

ac
22

pnum = 000000

17
3e

f9

b3 74
56 9a

7f 06

ee cc
58 00
6f 70
68 69

4b 23
ac 31
f6 7e
c2 3e

f8 ed

91 4f
00 01
f9 ea
96 ef
2b e3
bf 0b
do 73

2.ENCR_KUZNYECHIK_MGM_KTREE (Example 2):

Smyslov

Informational

d7
ab

78

Oa

71
01

9b

7b
ae

82
27

95

6f

72
02

ee

9d
4d

1b
CE

1b
CG

af

2e

Oa

73
02

65
aa
eb
a5

Oa

4b
ac
f6
c2
f8

5c
38

5¢c
38

7b
a4

45

c5

74
04

96

31
6f

March 2022

Page 15

RFC9227

transform

b6
el
7b

K [32]:

b6
el

salt [12]:

7b

18
bc
67

18
bc

67

i1 = 00,
K_msg [32]:
9a ba c6 57
66 c2 f5 13
nonce [16]:

00

IV [8]:

00

00

00

AAD [8]:

51

46

plaintext

45
Pa
65
75

ciphertext [64]:

00
6f
66
76

key [44]:

0c
fa
eb

Oc
fa

e6

i2

00

01

53

14
73
f2

14
73

f2

44

0001

00
00
6b

[64]:

00
Pa
67
77

78 Ba 2c
a4 fa 61
15 4b 69
ff 72 56

ESP ICV [12]:

c2 2f 87
ESP packet [112]:

45
Pa
01
f3
ac
62
a4

00
6f
00
2d
1d
81
d4

00
POa
00
b4
fc
12
9a

3c
1d
68
61

62
2f
03
ab

40

70
1d
00
doe
4b
7c
4d

78
od

7b
01
00

23
08
69
62

62
66
4d
fo

83

00
51
78
a4
15
ff
c2

67
00
00

48
00
6a
63

32
c2
c2
0b

8e

5¢c
46
Oa
fa
4b
72
2f

GOST Ciphers in ESP and IKEv2

2d
61
7f

2d
61

7f

Qe
e?2

e6
00
00

00
e4
6b
64

15
bf
1d
al

3d

00
53
2c
61
69
56
87

bd
af

bd
af

06

78

0001,

2a
6c

44

95

ce a9
0d 84
2e 45

ce a9
od 84

2e 45

2c
b5

2c
b5

ac
22

ac
22

pnum = 000000

f6
7d

f9

01
00
6e
67

01
e?2
90
5e

91

32
00
32
c2
c2
0b
8e

3.ENCR_MAGMA_MGM_KTREE (Example 1):

Smyslov

1f b8
53 Qe

7f 06

ee b9
67 00
6f 70
68 69

76 32
14 9b
6d 59
6c 71

cc b8

91 40
00 10
15 7b
bf 79
1d ef
al 22
3d fa

Informational

d5
6e

78

Oa

71
01

f3
ac
62
a4

71
7d

95

6f

72
02

2d

81
d4

6f

01
e?2
90
5e
91

1b
CE

1b
CG

62

2e

Oa

73
02

b4

12
9a

5c
38

5¢c
38

36
bc

45

c5

74
04

de

7c¢c
4d

March 2022

Page 16

RFC9227

transform
5b 50
22 83
cf 36

K [32]:
5b 50
22 83

salt [4]:
cf 36

i1 = 00,

i2 =

key [36]:
bf 33 78
ef 58 9b
63 12

bf 33 78
ef 58 9b

63 12
0000,

K_msg [32]:

25 65
5e 9d

nonce [8]:

00 00
IV [8]:
00 00
AAD [8]:
c8 c2
plaintext
45 00
fa 6f
65 66
75 76

21 e2 70
41 02 7d

00 00 cf
00 00 00

b2 8d 00
[64]:

00 3c 24
Pa 1d 08
67 68 69
77 61 62

ciphertext [64]:

fa 08
d8 6f
f5 d2
32 43
ESP
5f 4a
ESP
45 00
fa 6f
00 00
4a 91
91 50
99 ac
15 52

40 33 2c
8e 61 04
42 69 49
e2 3b a4

IcV [8]:

fa 8b 02

packet [108]:

00 6Cc 00
fa 1d c8
00 00 fa
7e Oc d8
3f 4a f5
ee 9e 32
cc e8 5f

87
e6

87
eb

i3

b7
4b

36
00
00

2d
00
6a
63

4f
03
d3
d1

94

62
c2
08
6f
d2
43
4a

GOST Ciphers in ESP and IKEv2

02
f4

02
f4

63
00
00

00
de
6b
64

3f
87
5a
1e

of

00
b2
40
8e
42
e2
fa

38 3
6a 89

38 f3
6a 89

0000,

16 4d

00 ff
8d 00
33 2c
61 04
69 49
3b a4
8b 02

ca
4a

ca
4a

pnum =

fc
2b

01

6e
67

4d

le
91

4.ENCR_MAGMA_MGM_KTREE (Example 2):

Smyslov

74 of d1 24
a3 5d 5f 06

74 of d1 24
a3 5d 5f 06

26 eb
1c c9

ed d4
6d 00
6f 70
68 69

8c 2c
df bd
fe fc
a7 19

91 3e
00 01
3f c9
87 64
5a 22
le 84
of 5c

Informational

bf
01

Oa

71
01

4a

99
18

000000

0c
dc

6f

72
02

91

ac
52

ba
b2

ba
b2

ca
de

Oa

73
02

7e

ee
ccC

Oa
00
8c

Qe
a7

6c
03

6¢c
03

76

c5

74
04

0c
4a
9e
e8

c5
00
2c

fc
19

March 2022

Page 17

RFC9227

transform
5b 50
22 83
cf 36

K [32]:
5b 50
22 83

salt [4]:
cf 36

i1 = 00,

i2 =

key [36]:
bf 33 78
ef 58 9b
63 12

bf 33 78
ef 58 9b

63 12
0001,

K_msg [32]:

20 e0
39 24

nonce [8]:

00 00
IV [8]:
00 00
AAD [8]:
c8 c2
plaintext
45 00
fa 6f
65 66
75 76

46 d4 09
4f Be 29

00 00 cf
01 00 061

b2 8d 00
[64]:

00 3c 24
Pa 1d 08
67 68 69
77 61 62

ciphertext [64]:

ESP

ESP

7a 71 48
25 a7 f3
1d c7 59
4b 93 78
IcV [8]:
dd 5d 50

41
5d
f6
bd

9a

ab
b9
56
08

fd

packet [108]:

45 00 00
fa 6f 0a
01 00 00
26 91 40
9b 88 db
d7 7a 07
bf fe ail

6¢c
1d
00
a8
72
1d
dd

00
c8
7a
25
1d
4b
dd

GOST Ciphers in ESP and IKEv2

87 02
e6 f4

87 02
e6 f4

i3 =

83 9b
ef 1e

36 63
06 00
00 00

40 00
00 cf
6a 6b
63 64

34 b7
e4 37
b5 b3
97 6¢C

b8 09

71 00
c2 b2
71 48
a7 f3
c7 59
93 78
5d 50

38 3
6a 89

38 f3
6a 89

0001,

23 fo
6f 2e

00 ff
8d 00
41 a5
5d b9
f6 56
bd 68
9a fd

ca
4a

ca
4a

pnum =

66
5d

01

6e
67

6a
6¢c
b1
9a

32
00
34
e4
b5
97
b8

74 of d1 24
a3 5d 5f 06

74 of d1 24
a3 5d 5f 06

a5 Qa
2e 13

ed c1
7c 006
6f 70
68 69

8e ab
99 9c
4d 6b
01 91

91 2f
00 10
b7 58
37 1f
b3 ea
6¢c 33
09 98

7a
B8

Oa

93
e7
b6
ed

5.ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 1):

Smyslov

Informational

000000

06
f5

6f

72
02

91

7a
fe

6f
00
6a
6¢c
b1
9a

ba
b2

ba
b2

5b
da

Oa

73
02

40

07
al

Oa
01
8e

4d
01

6c
03

6¢c
03

4a

c5
00
ab
9c
6b
91

March 2022

Page 18

RFC9227

transform

98
88
6cC
K [32]:
98
88
salt [1
6¢c

bd
cc
51

bd
cc

2]:

51

i1 = 00,
K_msg [32]:
98 f1 03 01
8b ac b5 7e
nonce [16]:

00
IV [8]:
00

00

00

AAD [80]:

3d
45
[F]
65
75

ac

plaintext
ciphertext [0]:

ESP ICV [12]:

key [44]:

34
23
cb

34
23

cb

i2

00

00

92
00
[F]
67
77

ce
92
ac

ce
92

ac

0000,

00
00

6a
3c
1d
68
61

[0]:

3b
63
93

3b
63

93
81
00

6¢c

ca c5 8c e5 e8
ESP packet [112]:

45
Oa
00
Oa
61
71
01

00
Oa
00
Oa
63
73
02

70
1d
00
c5
64
74
04

el
dc
c4

el
dc

c4

i3

[F]
35

51
00

00
1
00
6a
63

8b

01
ac
00
6f
66
76
c5

GOST Ciphers in ESP and IKEv2

04
ea

34
04

ea

99

0000,

1c

ac
00

01
00
5¢c
6c

f3

00
6a
3c
1d
68
61
e5

da
c8

93

2d

ff
00
0c
08
69
62
e8

62

87 c@

06

48

64 3f e7 57

79 1d

87 co

06

48

64 3f e7 57

79 1d

pnum = 000000

dd
31

c4

00
01
00
6e
67

el bd
e3 e4

5b ea

00 00
05 11
03 00
6f 70
68 69

fo 4d

91 9b
00 01
00 00
48 5c
6b 6¢C
64 65
4b 3

85
fo

99

6. ENCR_KUZNYECHIK_ MGM_MAC_KTREE (Example 2):

Smyslov

Informational

ao
a2

62

83
b2

83
b2

8f
0c

79

f4
be

f4
be

March 2022

Page 19

RFC9227

transform

98
88
6cC
K [32]:
98
88
salt [1
6¢c

bd
cc
51

bd
cc

2]:

51

i1 = 00,
K_msg [32]:
02 c5 41 87
a8 al 8c b2
nonce [16]:

00
IV [8]:
00

00

00

AAD [80]:

3d
45
[F]
65
75

ac

plaintext
ciphertext [0]:

ESP ICV [12]:

key [44]:

34
23
cb

34
23

cb

i2

00

00

92
00
[F]
67
77

ce
92
ac

ce
92

ac

0000,

00
00

6a
3c
1d
68
61

[0]:

3b
63
93

3b
63

93
7c
63

6¢c

ba bc 67 ec 72
ESP packet [112]:

45
Oa
01
Oa
61
71
01

00
Oa
00
Oa
63
73
02

70
1d
00
c5
64
74
04

el
dc
c4

el
dc

c4

i3

c6
99

51
00

00
fb
00
6a
63

a8

06
ac
00
6f
66
76
bc

GOST Ciphers in ESP and IKEv2

04
ea

34
04

ea

99

0001,

f3

ac
00

06
00
5¢c
6c

1a

00
6a
3c
1d
68
61
ec

f1

93

89

ff
00
0c
08
69
62
72

62

87 c@
79 1d

87 co

79 1d

06 48
64 3f e7 57

06 48
64 3f e7 57

pnum = 000000

35
81

c4

00
01
00
6e
67

91 9a
4f 52

5b ea

00 00
05 07
08 00
6f 70
68 69

fe 91

91 96
00 06
00 00
43 5c
6b 6¢C
64 65
c3 1a

7.ENCR_MAGMA MGM_MAC_KTREE (Example 1):

Smyslov

Informational

75
91

99

13
01

62

83
b2

83
b2

f4
be

f4
be

March 2022

Page 20

RFC9227

transform
do 65
2c 1c
88 79
K [32]:
do 65
2c 1c
salt [4]:
88 79
i1 = 00,

key [36]:

b5
07
8f

b5
07

8f

i2

K_msg [32]:

4c 61
ea f2

nonce [8]:

00 00
IV [8]:
00 00
AAD [80]:
3e 40
45 00
Qa 6f
65 66
75 76
plaintext

45 00
fa 6f
00 00
fa 6f
61 62
71 72
01 02

45
3e

00

00

69
00
[F]
67
77

30
6d
29

30
6d

29

0000,

99
da

00
00

9c
3c
1d
68
61

[0]:
ciphertext [0]:
ESP ICV [8]:
4d d4 25 8a 25
ESP packet [108]:

00
Oa
00
Oa
63
73
02

6c
1d
00
c5
64
74
04

fa
fa

fa
fa

ao
f8

88

00
3e
45
[F]
65
75
4d

GOST Ciphers in ESP and IKEv2

20 b8
da 69

20 b8
da 69

i3 =

ab 67
7e 38

79 8f
06 00

00 00
08 00
00 36
6a 6b
63 64

35 95

13 00
40 69
00 00
6f Oa
66 67
76 77
d4 25

24
75

24
75

c7
74

c7
74

0000,

f1

29
00

01
00
5¢c
6c

df

00
9c
3c
1d
68
61
8a

94

ff
00
Qe
08
69
62
25

57 @c 1d 86 2a
4a 07 a8 85 7d

57 B¢ 1d 86 2a
4a 07 a8 85 7d

pnum = 000000

87
86

00
01
00
6e
67

24 0Oa
1c 68

00 00
03 fa
15 00
6f 70
68 69

91 8d
00 01
00 00
36 5c
6b 6¢C
64 65
95 df

8. ENCR_MAGMA_MGM_MAC_KTREE (Example 2):

Smyslov

Informational

el
3b

00
Oa
61

01

00
a4

e3
bd

e3
bd

el

39
30

39
30

b7

March 2022

Page 21

RFC9227

transform
do 65
2c 1c
88 79
K [32]:
do 65
2c 1c
salt [4]:
88 79
i1 = 00,

key [36]:

b5 30
07 6d
8f 29

b5 30
07 6d

8f 29

K_msg [32]:

b4 f3
ed4 36

nonce [8]:

00 00
IV [8]:
00 00
AAD [80]:
3e 40
45 00
Qa 6f
65 66
75 76
plaintext

f9 od
32 b6

00 00
06 00

69 9c
00 3c
fa 1d
67 68
77 61
[0]:

ciphertext [0]:
ESP ICV [8]:

84 84 a9 23 30
ESP packet [108]:

45 00
fa 6f
01 00
fa 6f
61 62
71 72
01 02

00 6cC
fa 1d
00 00
Ba c5
63 64
73 74
02 04

fa
fa

fa
fa

i2 = 0000,

c4
79

88

00
3e
45
[F]
65
75
84

Acknowledgments

20
da

20
da

i3

87
19

79
00

00
13
00
6a
63

18
40
00
6f
66
76
84

GOST Ciphers in ESP and IKEv2

b8
69

b8
69

00
00
00
31

64

24
75

24
75

c7
74

c7
74

0001,

b8
2e

29
00

06
00
5¢c
6c

96

00
9c
3c
1d
68
61
23

c4

ff
00
Qe

69
62
30

57 @c 1d 86 2a
4a 07 a8 85 7d

57 B¢ 1d 86 2a
4a 07 a8 85 7d

pnum = 000000

af
96

00
01
00
6e
67

do eb
09 ea

00 00
03 ef
1a 00
6f 70
68 69

91 88
00 06
00 00
31 5c¢
6b 6¢C
64 65
b1 96

45
fo

49
b8

e3
bd

e3

bd

f2
e?2

39
30

39
30

fo

March 2022

The author wants to thank Adrian Farrel, Russ Housley, Yaron Sheffer, and Stanislav Smyshlyaev

for valuable input during the publication process for this document.

Author's Address

Valery Smyslov
ELVIS-PLUS
PO Box 81

Moscow (Zelenograd)

124460

Russian Federation
Phone: +7 495 276 0211
Emalil: svan@elvis.ru

Smyslov

Informational

Page 22

tel:+7%20495%20276%200211
mailto:svan@elvis.ru

	RFC 9227
	Using GOST Ciphers in the Encapsulating Security Payload (ESP) and Internet Key Exchange Version 2 (IKEv2) Protocols
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Overview
	4. Description of Transforms
	4.1. Tree-Based External Rekeying
	4.2. Initialization Vector Format
	4.3. Nonce Format for MGM
	4.3.1. MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher
	4.3.2. MGM Nonce Format for Transforms Based on the "Magma" Cipher

	4.4. Keying Material
	4.5. Integrity Check Value
	4.6. Plaintext Padding
	4.7. AAD Construction
	4.7.1. ESP AAD
	4.7.2. IKEv2 AAD

	4.8. Using Transforms

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. Test Vectors
	Acknowledgments
	Author's Address

 Using GOST Ciphers in the Encapsulating Security Payload (ESP) and Internet Key Exchange Version 2 (IKEv2) Protocols

 ELVIS-PLUS

 PO Box 81
 Moscow (Zelenograd)
 124460
 Russian Federation

 +7 495 276 0211
 svan@elvis.ru

 AEAD
 MGM

 This document defines a set of encryption transforms for use in the Encapsulating Security Payload (ESP)
 and in the Internet Key Exchange version 2 (IKEv2) protocols, which are parts of the IP Security (IPsec) protocol suite.
 The transforms are based on the GOST R 34.12-2015 block ciphers (which are named "Magma" and "Kuznyechik")
 in Multilinear Galois Mode (MGM) and the external rekeying approach.

 This specification was developed to facilitate implementations that wish to support the GOST algorithms.
 This document does not imply IETF endorsement of the cryptographic algorithms used in this document.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This is a contribution to the RFC Series, independently of any
 other RFC stream. The RFC Editor has chosen to publish this
 document at its discretion and makes no statement about its value
 for implementation or deployment. Documents approved for
 publication by the RFC Editor are not candidates for any level of
 Internet Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

 Table of Contents

 . Introduction

 . Requirements Language

 . Overview

 . Description of Transforms

 . Tree-Based External Rekeying

 . Initialization Vector Format

 . Nonce Format for MGM

 . MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher

 . MGM Nonce Format for Transforms Based on the "Magma" Cipher

 . Keying Material

 . Integrity Check Value

 . Plaintext Padding

 . AAD Construction

 . ESP AAD

 . IKEv2 AAD

 . Using Transforms

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Test Vectors

 Acknowledgments

 Author's Address

 Introduction
 The IP Security (IPsec) protocol suite consists of several protocols, of which
 the Encapsulating Security Payload (ESP) and
 the Internet Key Exchange version 2 (IKEv2) are most widely used.
 This document defines four transforms for ESP and IKEv2 based on Russian cryptographic standard algorithms (often referred to as "GOST" algorithms).
 These definitions are based on the recommendations established by the Federal Agency on Technical Regulating and Metrology (Rosstandart),
 which describe how Russian cryptographic standard algorithms are used in ESP and IKEv2. The transforms defined in this document are based
 on two block ciphers from Russian cryptographic standard algorithms --
 "Kuznyechik"
 and "Magma"
 in Multilinear Galois Mode (MGM) . These transforms
 provide Authenticated Encryption with Associated Data (AEAD). An external rekeying mechanism, described in ,
 is also used in these transforms to limit the load on session keys.

 Because the GOST specification includes the definition of both 128-bit ("Kuznyechik") and 64-bit ("Magma")
 block ciphers, both are included in this document. Implementers should make themselves aware of the relative security
 and other cost-benefit implications of the two ciphers. See for more details.

 This specification was developed to facilitate implementations that wish to support the GOST algorithms.
 This document does not imply IETF endorsement of the cryptographic algorithms used in this document.

 Requirements Language
 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL",
 " SHALL NOT", " SHOULD",
 " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document
 are to be interpreted as described in BCP 14
 when, and only
 when, they appear in all capitals, as shown here.

 Overview
 Russian cryptographic standard algorithms, often referred to as "GOST" algorithms,
 constitute a set of cryptographic algorithms of different types -- ciphers, hash functions, digital
 signatures, etc. In particular, Russian cryptographic standard
 defines two block ciphers -- "Kuznyechik" (also defined in)
 and "Magma" (also defined in). Both
 ciphers use a 256-bit key. "Kuznyechik" has a block size of 128 bits, while "Magma"
 has a 64-bit block.

 Multilinear Galois Mode (MGM) is an AEAD mode defined in and .
 It is claimed to provide defense against some attacks on well-known AEAD modes, like Galois/Counter Mode (GCM).

 defines mechanisms that can be used
 to limit the number of times any particular session key is used. One of these mechanisms,
 called external rekeying with tree-based construction (defined in),
 is used in the defined transforms. For the purpose of deriving subordinate keys,
 the Key Derivation Function (KDF) KDF_GOSTR3411_2012_256, defined in ,
 is used. This KDF is based on a Hashed Message Authentication Code (HMAC) construction with
 a Russian GOST hash function defined in Russian cryptographic standard (also defined
 in).

 Description of Transforms
 This document defines four transforms of Type 1 (Encryption Algorithm) for use in ESP and IKEv2. All of them use MGM as the mode of operation with tree-based
 external rekeying. The transforms differ in underlying ciphers and in cryptographic services they provide.

 ENCR_KUZNYECHIK_MGM_KTREE (Transform ID 32) is an AEAD transform based on the "Kuznyechik" algorithm; it provides
 confidentiality and message authentication and thus can be used in both ESP and IKEv2.
 ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based on the "Magma" algorithm; it provides
 confidentiality and message authentication and thus can be used in both ESP and IKEv2.
 ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only transform based on the "Kuznyechik" algorithm; it provides
 no confidentiality and thus can only be used in ESP, but not in IKEv2.
 ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform based on the "Magma" algorithm; it provides
 no confidentiality and thus can only be used in ESP, but not in IKEv2.

 Note that transforms ENCR_KUZNYECHIK_MGM_MAC_KTREE and ENCR_MAGMA_MGM_MAC_KTREE don't provide any confidentiality,
 but they are defined as Type 1 (Encryption Algorithm) transforms because of the need to include an Initialization Vector (IV),
 which is impossible for Type 3 (Integrity Algorithm) transforms.

 Tree-Based External Rekeying
 All four transforms use the same tree-based external rekeying mechanism. The idea is that
 the key that is provided for the transform is not directly used to protect messages. Instead, a tree of keys is derived using this key as a root.
 This tree may have several levels. The leaf keys are used for message protection, while intermediate-node keys are used to derive
 lower-level keys, including leaf keys.
 See for more details.
 This construction allows us to protect a large amount of data, at the same time providing a bound on a number of times any particular key
 in the tree is used, thus defending against some side-channel attacks and also increasing the key lifetime limitations based on combinatorial properties.

 The transforms defined in this document use a three-level tree. The leaf key that protects a message is computed
 as follows:

K_msg = KDF (KDF (KDF (K, l1, 0x00 | i1), l2, i2), l3, i3)

 where:

 KDF (k, l, s)
 Key Derivation Function KDF_GOSTR3411_2012_256 (defined in), which
 accepts three input parameters -- a key (k), a label (l), and a seed (s) -- and provides a new key as output

 K
 the root key for the tree (see)

 l1, l2, l3

 labels defined as 6-octet ASCII strings without null termination:

 l1 =
 "level1"
 l2 =
 "level2"
 l3 =
 "level3"

 i1, i2, i3
 parameters that determine which keys out of the tree are used on each level.
 Together, they determine a leaf key that is used for message protection; the length of i1 is one octet, and
 i2 and i3 are two-octet integers in network byte order

 |
 indicates concatenation

 This construction allows us to generate up to 2 8 keys on level 1 and up to 2 16 keys on levels 2 and 3.
 So, the total number of possible leaf keys generated from a single Security Association (SA) key is 2 40.

 This specification doesn't impose any requirements on how frequently external rekeying takes place.
 It is expected that the sending application will follow its own policy dictating how many times the keys on each level must be used.

 Initialization Vector Format
 Each message protected by the defined transforms MUST contain an IV.
 The IV has a size of 64 bits and consists of four fields. The fields i1, i2, and i3 are
 parameters that determine the particular leaf key this message was protected with (see).
 The fourth field is a counter, representing the message number for this key.

 IV Format

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| i1 | i2 | i3 |
+-+
| i3 (cont) | pnum |
+-+

 where:

 i1 (1 octet), i2 (2 octets), i3 (2 octets):
 parameters that determine the particular key used to protect this message;
 2-octet parameters are integers in network byte order
 pnum (3 octets):
 message counter in network byte order for the leaf key protecting this message; up to 2 24 messages may be protected using
 a single leaf key

 For any given SA, the IV MUST NOT be used more than once, but there is no requirement that IV be unpredictable.

 Nonce Format for MGM
 MGM requires a per-message nonce (called the Initial Counter Nonce, or ICN in)
 that MUST be unique in the context of any leaf key. The size of the ICN
 is n-1 bits, where n is the block size of the underlying cipher. The two ciphers used in the
 transforms defined in this document have different block sizes, so two different formats for the ICN are defined.

 MGM specification requires that the nonce be n-1 bits in size, where n is the block size of the underlying cipher.
 This document defines MGM nonces having n bits (the block size of the underlying cipher) in size.
 Since n is always a multiple of 8 bits, this makes MGM nonces having a whole number of octets.
 When used inside MGM, the most significant bit of the first octet of the nonce (represented as an octet string) is
 dropped, making the effective size of the nonce equal to n-1 bits. Note that the dropped bit is a part of the "zero" field
 (see Figures and), which is always set to 0,
 so no information is lost when it is dropped.

 MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher
 For transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE),
 the ICN consists of a "zero" octet; a 24-bit message counter; and a 96-bit secret salt, which is fixed for the SA and is not transmitted.

 Nonce Format for Transforms Based on the "Kuznyechik" Cipher

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| zero | pnum |
+-+
| |
| salt |
| |
+-+

 where:

 zero (1 octet):
 set to 0
 pnum (3 octets):
 the counter for the messages protected by the given leaf key; this field MUST be equal to the pnum field in the IV
 salt (12 octets):
 secret salt. The salt is a string of bits that are formed when the SA is created (see for details). The salt does not change during the SA's lifetime and is not transmitted on the wire. Every SA will have its own salt.

 MGM Nonce Format for Transforms Based on the "Magma" Cipher
 For transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE),
 the ICN consists of a "zero" octet; a 24-bit message counter; and a 32-bit secret salt, which is fixed for the SA and is not transmitted.

 Nonce Format for Transforms Based on the "Magma" Cipher

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| zero | pnum |
+-+
| salt |
+-+

 where:

 zero (1 octet):
 set to 0
 pnum (3 octets):
 the counter for the messages protected by the given leaf key; this field MUST be equal to the pnum field in the IV
 salt (4 octets):
 secret salt. The salt is a string of bits that are formed when the SA is created (see for details). The salt does not change during the SA's lifetime and is not transmitted on the wire. Every SA will have its own salt.

 Keying Material
 We'll call a string of bits that is used to initialize the transforms
 defined in this specification a "transform key". The transform key is a composite entity consisting of the root key for the tree and the secret salt.

 The transform key for the ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits (44 octets), of which
 the first 256 bits is a root key for the tree (denoted as K in) and the remaining
 96 bits is a secret salt (see).

 The transform key for the ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE transforms consists of 288 bits (36 octets), of which
 the first 256 bits is a root key for the tree (denoted as K in) and the remaining
 32 bits is a secret salt (see).

 In the case of ESP, the transform keys are extracted from the KEYMAT as defined in .
 In the case of IKEv2, the transform keys are either SK_ei or SK_er, which are generated as defined in .
 Note that since these transforms provide authenticated encryption, no additional keys are needed
 for authentication. This means that, in the case of IKEv2, the keys SK_ai/SK_ar are not used and MUST be treated as
 having zero length.

 Integrity Check Value
 The length of the authentication tag that MGM can compute is in the range from 32 bits to the block size of the underlying cipher.
 states that the authentication tag length MUST be fixed for a particular protocol.
 For transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE), the resulting
 Integrity Check Value (ICV) length is set to 96 bits. For transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE),
 the full ICV length is set to the block size (64 bits).

 Plaintext Padding
 The transforms defined in this document don't require any plaintext padding,
 as specified in . This means that only those
 padding requirements that are imposed by the protocol are applied (4 bytes for ESP,
 no padding for IKEv2).

 AAD Construction

 ESP AAD
 Additional Authenticated Data (AAD) in ESP is constructed differently, depending on the
 transform being used and whether the Extended Sequence Number (ESN) is in use or not.
 The ENCR_KUZNYECHIK_MGM_KTREE and ENCR_MAGMA_MGM_KTREE transforms
 provide confidentiality, so the content of the ESP body is encrypted and the AAD
 consists of the ESP Security Parameter Index (SPI) and (E)SN.
 The AAD is constructed similarly to the AAD in .

 On the other hand, the ENCR_KUZNYECHIK_MGM_MAC_KTREE and ENCR_MAGMA_MGM_MAC_KTREE transforms
 don't provide confidentiality; they provide only message authentication.
 For this purpose, the IV and the part of the ESP packet that is normally encrypted are included
 in the AAD. For these transforms, the encryption capability provided by MGM
 is not used. The AAD is constructed similarly to the AAD in .

 AAD for AEAD Transforms with 32-Bit SN

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| SPI |
+-+
| 32-bit Sequence Number |
+-+

 AAD for AEAD Transforms with 64-Bit ESN

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| SPI |
+-+
| 64-bit Extended Sequence Number |
| |
+-+

 AAD for Authentication-Only Transforms with 32-Bit SN

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| SPI |
+-+
| 32-bit Sequence Number |
+-+
| IV |
| |
+-+
| |
~ Payload Data (variable) ~
| |
+-+
| Padding (0-255 bytes) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Pad Length | Next Header |
+-+

 AAD for Authentication-Only Transforms with 64-Bit ESN

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| SPI |
+-+
| 64-bit Extended Sequence Number |
| |
+-+
| IV |
| |
+-+
| |
~ Payload Data (variable) ~
| |
+-+
| Padding (0-255 bytes) |
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| | Pad Length | Next Header |
+-+

 IKEv2 AAD
 For IKEv2, the AAD consists of the IKEv2 Header,
 any unencrypted payloads following it (if present), and either the Encrypted payload header ()
 or the Encrypted Fragment payload (), depending on whether IKE fragmentation is used.
 The AAD is constructed
 similarly to the AAD in .

 AAD for IKEv2 in the Case of the Encrypted Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
~ IKEv2 Header ~
+-+
~ Unencrypted IKE Payloads ~
+-+
| Next Payload |C| RESERVED | Payload Length |
+-+

 AAD for IKEv2 in the Case of the Encrypted Fragment Payload

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
~ IKEv2 Header ~
+-+
~ Unencrypted IKE Payloads ~
+-+
| Next Payload |C| RESERVED | Payload Length |
+-+
| Fragment Number | Total Fragments |
+-+

 Using Transforms
 When the SA is established, the i1, i2, and i3 parameters are set to 0 by the sender and a leaf key is calculated.
 The pnum parameter starts from 0 and is incremented with each message protected by the same leaf key.
 When the sender decides that the leaf should be changed, it increments the i3 parameter and generates a new leaf key.
 The pnum parameter for the new leaf key is reset to 0, and the process continues. If the sender decides
 that a third-level key corresponding to i3 is used enough times, it increments i2, resets i3 to 0,
 and calculates a new leaf key. The pnum is reset to 0 (as with every new leaf key), and the process continues.
 A similar procedure is used when a second-level key needs to be changed.

 A combination of i1, i2, i3, and pnum MUST NOT repeat for any particular SA.
 This means that the wrapping of these counters is not allowed: when i2, i3, or pnum reaches its respective maximum value,
 a procedure for changing a leaf key, described above, is executed, and if all four parameters reach their maximum values,
 the IPsec SA becomes unusable.

 There may be other reasons to recalculate leaf keys besides reaching maximum values for the counters.
 For example, as described in , it is RECOMMENDED that the sender count the number of
 octets protected by a particular leaf key and generate a new key when some threshold is reached, and at the latest when
 reaching the octet limits stated in for each of the ciphers.

 The receiver always uses i1, i2, and i3 from the received message. If they differ from the values in previously received packets,
 a new leaf key is calculated. The pnum parameter is always used from the
 received packet. To improve performance, implementations may cache recently used leaf keys.
 When a new leaf key is calculated (based on the values from the received message),
 the old key may be kept for some time to improve performance in the case of possible packet reordering
 (when packets protected by the old leaf key are delayed and arrive later).

 Security Considerations
 The most important security consideration for MGM is that the nonce MUST NOT repeat
 for a given key. For this reason, the transforms defined in this document MUST NOT be used with manual keying.

 Excessive use of the same key can give an attacker advantages in breaking security properties of the
 transforms defined in this document. For this reason, the amount of data that any particular key is used to protect
 should be limited. This is especially important for algorithms with a 64-bit block size (like "Magma"),
 which currently are generally considered insecure after protecting a relatively
 small amount of data. For example, Section 3.4 of limits the number of blocks
 that are allowed to be encrypted with the Triple DES cipher to 2 20 (8 MB of data).
 This document defines a rekeying mechanism that allows the mitigation of weak security of a 64-bit block cipher
 by frequently changing the encryption key.

 For transforms defined in this document, recommends
 limiting the number of octets protected with a single K_msg key by the following values:

 2 41 octets for transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE)
 2 28 octets for transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE)

 These values are based on combinatorial properties and may be further restricted if side-channel attacks are taken into consideration.
 Note that the limit for transforms based on the "Kuznyechik" cipher is unreachable because, due to the construction of the transforms,
 the number of protected messages is limited to 2 24 and each message (either IKEv2 messages or ESP datagrams) is limited to 2 16 octets in size,
 giving 2 40 octets as the maximum amount of data that can be protected with a single K_msg.

 discusses the possibility of truncating authentication tags in MGM
 as a trade-off between message expansion and the probability of forgery. This specification truncates an authentication
 tag length for transforms based on the "Kuznyechik" cipher to 96 bits. This decreases message expansion while still providing a very low probability of forgery: 2 -96.

 An attacker can send a lot of packets with arbitrarily chosen i1, i2, and i3 parameters. This will
 1) force a recipient to recalculate the leaf key for every received packet if i1, i2, and i3 are different from these values in previously received packets,
 thus consuming CPU resources and 2) force a recipient to make verification attempts (that would fail) on a large amount of data,
 thus allowing the attacker a deeper analysis of the underlying cryptographic primitive (see).
 Implementations MAY initiate rekeying if they deem that they receive too many packets with an invalid ICV.

 Security properties of MGM are discussed in .

 IANA Considerations
 IANA maintains a registry called "Internet Key Exchange Version 2 (IKEv2) Parameters" with a subregistry called "Transform Type Values".
 IANA has added the following four Transform IDs to the "Transform Type 1 - Encryption Algorithm Transform IDs" subregistry.

 Transform IDs

 Number
 Name
 ESP Reference
 IKEv2 Reference

 32
 ENCR_KUZNYECHIK_MGM_KTREE
 RFC 9227
 RFC 9227

 33
 ENCR_MAGMA_MGM_KTREE
 RFC 9227
 RFC 9227

 34
 ENCR_KUZNYECHIK_MGM_MAC_KTREE
 RFC 9227
 Not allowed

 35
 ENCR_MAGMA_MGM_MAC_KTREE
 RFC 9227
 Not allowed

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 IP Encapsulating Security Payload (ESP)

 This document describes an updated version of the Encapsulating Security Payload (ESP) protocol, which is designed to provide a mix of security services in IPv4 and IPv6. ESP is used to provide confidentiality, data origin authentication, connectionless integrity, an anti-replay service (a form of partial sequence integrity), and limited traffic flow confidentiality. This document obsoletes RFC 2406 (November 1998). [STANDARDS-TRACK]

 Internet Key Exchange Protocol Version 2 (IKEv2)

 This document describes version 2 of the Internet Key Exchange (IKE) protocol. IKE is a component of IPsec used for performing mutual authentication and establishing and maintaining Security Associations (SAs). This document obsoletes RFC 5996, and includes all of the errata for it. It advances IKEv2 to be an Internet Standard.

 Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation

 This document describes a way to avoid IP fragmentation of large Internet Key Exchange Protocol version 2 (IKEv2) messages. This allows IKEv2 messages to traverse network devices that do not allow IP fragments to pass through.

 GOST R 34.11-2012: Hash Function

 This document is intended to be a source of information about the Russian Federal standard hash function (GOST R 34.11-2012), which is one of the Russian cryptographic standard algorithms (called GOST algorithms). This document updates RFC 5831.

 GOST R 34.12-2015: Block Cipher "Kuznyechik"

 This document is intended to be a source of information about the Russian Federal standard GOST R 34.12-2015 describing the block cipher with a block length of n=128 bits and a key length of k=256 bits, which is also referred to as "Kuznyechik". This algorithm is one of the set of Russian cryptographic standard algorithms (called GOST algorithms).

 GOST R 34.12-2015: Block Cipher "Magma"

 In addition to a new cipher with a block length of n=128 bits (referred to as "Kuznyechik" and described in RFC 7801), Russian Federal standard GOST R 34.12-2015 includes an updated version of the block cipher with a block length of n=64 bits and key length of k=256 bits, which is also referred to as "Magma". The algorithm is an updated version of an older block cipher with a block length of n=64 bits described in GOST 28147-89 (RFC 5830). This document is intended to be a source of information about the updated version of the 64-bit cipher. It may facilitate the use of the block cipher in Internet applications by providing information for developers and users of the GOST 64-bit cipher with the revised version of the cipher for encryption and decryption.

 Multilinear Galois Mode (MGM)

 Multilinear Galois Mode (MGM) is an Authenticated Encryption with Associated Data (AEAD) block cipher mode based on the Encrypt-then-MAC (EtM) principle. MGM is defined for use with 64-bit and 128-bit block ciphers.
 MGM has been standardized in Russia. It is used as an AEAD mode for the GOST block cipher algorithms in many protocols, e.g., TLS 1.3 and IPsec. This document provides a reference for MGM to enable review of the mechanisms in use and to make MGM available for use with any block cipher.

 Guidelines on the Cryptographic Algorithms to Accompany the Usage of Standards GOST R 34.10-2012 and GOST R 34.11-2012

 The purpose of this document is to make the specifications of the cryptographic algorithms defined by the Russian national standards GOST R 34.10-2012 and GOST R 34.11-2012 available to the Internet community for their implementation in the cryptographic protocols based on the accompanying algorithms.
 These specifications define the pseudorandom functions, the key agreement algorithm based on the Diffie-Hellman algorithm and a hash function, the parameters of elliptic curves, the key derivation functions, and the key export functions.

 Informative References

 Information technology. Cryptographic data security. Hash function

 Federal Agency on Technical Regulating and Metrology

 (In Russian)

 Information technology. Cryptographic data security. Block ciphers

 Federal Agency on Technical Regulating and Metrology

 (In Russian)

 Information technology. Cryptographic information security. Block Cipher Modes Implementing Authenticated Encryption

 Federal Agency on Technical Regulating and Metrology

 (In Russian)

 Information technology. Cryptographic information protection. The use of Russian cryptographic algorithms in the ESP information protection protocol

 Federal Agency on Technical Regulating and Metrology

 (In Russian)

 HMAC: Keyed-Hashing for Message Authentication

 This document describes HMAC, a mechanism for message authentication using cryptographic hash functions. HMAC can be used with any iterative cryptographic hash function, e.g., MD5, SHA-1, in combination with a secret shared key. The cryptographic strength of HMAC depends on the properties of the underlying hash function. This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind

 The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload (ESP)

 This memo describes the use of the Advanced Encryption Standard (AES) in Galois/Counter Mode (GCM) as an IPsec Encapsulating Security Payload (ESP) mechanism to provide confidentiality and data origin authentication. This method can be efficiently implemented in hardware for speeds of 10 gigabits per second and above, and is also well-suited to software implementations. [STANDARDS-TRACK]

 The Use of Galois Message Authentication Code (GMAC) in IPsec ESP and AH

 This memo describes the use of the Advanced Encryption Standard (AES) Galois Message Authentication Code (GMAC) as a mechanism to provide data origin authentication, but not confidentiality, within the IPsec Encapsulating Security Payload (ESP) and Authentication Header (AH). GMAC is based on the Galois/Counter Mode (GCM) of operation, and can be efficiently implemented in hardware for speeds of 10 gigabits per second and above, and is also well-suited to software implementations. [STANDARDS-TRACK]

 Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol

 An authenticated encryption algorithm combines encryption and integrity into a single operation; such algorithms may also be referred to as combined modes of an encryption cipher or as combined mode algorithms. This document describes the use of authenticated encryption algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) protocol.
 The use of two specific authenticated encryption algorithms with the IKEv2 Encrypted Payload is also described; these two algorithms are the Advanced Encryption Standard (AES) in Galois/Counter Mode (AES GCM) and AES in Counter with CBC-MAC Mode (AES CCM). Additional documents may describe the use of other authenticated encryption algorithms with the IKEv2 Encrypted Payload. [STANDARDS-TRACK]

 Re-keying Mechanisms for Symmetric Keys

 A certain maximum amount of data can be safely encrypted when encryption is performed under a single key. This amount is called the "key lifetime". This specification describes a variety of methods for increasing the lifetime of symmetric keys. It provides two types of re-keying mechanisms based on hash functions and block ciphers that can be used with modes of operations such as CTR, GCM, CBC, CFB, and OMAC.
 This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.

 Security of Multilinear Galois Mode (MGM)

 Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher

 National Institute of Standards and Technology

 Usage Limits on AEAD Algorithms

 ETH Zurich

 Mozilla

 Cloudflare

 Work in Progress

 Test Vectors
 In the following test vectors, binary data is represented in hexadecimal format.
 The numbers in square brackets indicate the size of the corresponding data in decimal format.

 ENCR_KUZNYECHIK_MGM_KTREE (Example 1):

transform key [44]:
 b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
 e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
K [32]:
 b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
 e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
salt [12]:
 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
 2f f1 c9 0e de 78 6e 06 1e 17 b3 74 d7 82 af 7b
 d8 80 bd 52 7c 66 a2 ba dc 3e 56 9a ab 27 1d a4
nonce [16]:
 00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
IV [8]:
 00 00 00 00 00 00 00 00
AAD [8]:
 51 46 53 6b 00 00 00 01
plaintext [64]:
 45 00 00 3c 23 35 00 00 7f 01 ee cc 0a 6f 0a c5
 0a 6f 0a 1d 08 00 f3 5b 02 00 58 00 61 62 63 64
 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
 18 9d 12 88 b7 18 f9 ea be 55 4b 23 9b ee 65 96
 c6 d4 ea fd 31 64 96 ef 90 1c ac 31 60 05 aa 07
 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e 7b 9d eb 31
 85 ff e9 17 9c a9 bf 0b db af c2 3e ae 4d a5 6f
ESP ICV [12]:
 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
ESP packet [112]:
 45 00 00 70 00 4d 00 00 ff 32 91 4f 0a 6f 0a c5
 0a 6f 0a 1d 51 46 53 6b 00 00 00 01 00 00 00 00
 00 00 00 00 18 9d 12 88 b7 18 f9 ea be 55 4b 23
 9b ee 65 96 c6 d4 ea fd 31 64 96 ef 90 1c ac 31
 60 05 aa 07 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e
 7b 9d eb 31 85 ff e9 17 9c a9 bf 0b db af c2 3e
 ae 4d a5 6f 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed

 ENCR_KUZNYECHIK_MGM_KTREE (Example 2):

transform key [44]:
 b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
 e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
K [32]:
 b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
 e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
salt [12]:
 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
K_msg [32]:
 9a ba c6 57 78 18 0e 6f 2a f6 1f b8 d5 71 62 36
 66 c2 f5 13 0d 54 e2 11 6c 7d 53 0e 6e 7d 48 bc
nonce [16]:
 00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
IV [8]:
 00 00 01 00 01 00 00 00
AAD [8]:
 51 46 53 6b 00 00 00 10
plaintext [64]:
 45 00 00 3c 23 48 00 00 7f 01 ee b9 0a 6f 0a c5
 0a 6f 0a 1d 08 00 e4 5b 02 00 67 00 61 62 63 64
 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
 78 0a 2c 62 62 32 15 7b fe 01 76 32 f3 2d b4 d0
 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b ac 1d fc 4b
 15 4b 69 03 4d c2 1d ef 20 90 6d 59 62 81 12 7c
 ff 72 56 ab f0 0b a1 22 bb 5e 6c 71 a4 d4 9a 4d
ESP ICV [12]:
 c2 2f 87 40 83 8e 3d fa ce 91 cc b8
ESP packet [112]:
 45 00 00 70 00 5c 00 00 ff 32 91 40 0a 6f 0a c5
 0a 6f 0a 1d 51 46 53 6b 00 00 00 10 00 00 01 00
 01 00 00 00 78 0a 2c 62 62 32 15 7b fe 01 76 32
 f3 2d b4 d0 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b
 ac 1d fc 4b 15 4b 69 03 4d c2 1d ef 20 90 6d 59
 62 81 12 7c ff 72 56 ab f0 0b a1 22 bb 5e 6c 71
 a4 d4 9a 4d c2 2f 87 40 83 8e 3d fa ce 91 cc b8

 ENCR_MAGMA_MGM_KTREE (Example 1):

transform key [36]:
 5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
 22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
 cf 36 63 12
K [32]:
 5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
 22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
salt [4]:
 cf 36 63 12
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
 25 65 21 e2 70 b7 4a 16 4d fc 26 e6 bf 0c ca 76
 5e 9d 41 02 7d 4b 7b 19 76 2b 1c c9 01 dc de 7f
nonce [8]:
 00 00 00 00 cf 36 63 12
IV [8]:
 00 00 00 00 00 00 00 00
AAD [8]:
 c8 c2 b2 8d 00 00 00 01
plaintext [64]:
 45 00 00 3c 24 2d 00 00 7f 01 ed d4 0a 6f 0a c5
 0a 6f 0a 1d 08 00 de 5b 02 00 6d 00 61 62 63 64
 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
 fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c 4a 91 7e 0c
 d8 6f 8e 61 04 03 87 64 6b b9 df bd 91 50 3f 4a
 f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc 99 ac ee 9e
 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19 15 52 cc e8
ESP ICV [8]:
 5f 4a fa 8b 02 94 0f 5c
ESP packet [108]:
 45 00 00 6c 00 62 00 00 ff 32 91 3e 0a 6f 0a c5
 0a 6f 0a 1d c8 c2 b2 8d 00 00 00 01 00 00 00 00
 00 00 00 00 fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c
 4a 91 7e 0c d8 6f 8e 61 04 03 87 64 6b b9 df bd
 91 50 3f 4a f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc
 99 ac ee 9e 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19
 15 52 cc e8 5f 4a fa 8b 02 94 0f 5c

 ENCR_MAGMA_MGM_KTREE (Example 2):

transform key [36]:
 5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
 22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
 cf 36 63 12
K [32]:
 5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
 22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
salt [4]:
 cf 36 63 12
i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
K_msg [32]:
 20 e0 46 d4 09 83 9b 23 f0 66 a5 0a 7a 06 5b 4a
 39 24 4f 0e 29 ef 1e 6f 2e 5d 2e 13 55 f5 da 08
nonce [8]:
 00 00 00 00 cf 36 63 12
IV [8]:
 00 00 01 00 01 00 00 00
AAD [8]:
 c8 c2 b2 8d 00 00 00 10
plaintext [64]:
 45 00 00 3c 24 40 00 00 7f 01 ed c1 0a 6f 0a c5
 0a 6f 0a 1d 08 00 cf 5b 02 00 7c 00 61 62 63 64
 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
 7a 71 48 41 a5 34 b7 58 93 6a 8e ab 26 91 40 a8
 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c 9b 88 db 72
 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b d7 7a 07 1d
 4b 93 78 bd 08 97 6c 33 ed 9a 01 91 bf fe a1 dd
ESP ICV [8]:
 dd 5d 50 9a fd b8 09 98
ESP packet [108]:
 45 00 00 6c 00 71 00 00 ff 32 91 2f 0a 6f 0a c5
 0a 6f 0a 1d c8 c2 b2 8d 00 00 00 10 00 00 01 00
 01 00 00 00 7a 71 48 41 a5 34 b7 58 93 6a 8e ab
 26 91 40 a8 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c
 9b 88 db 72 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b
 d7 7a 07 1d 4b 93 78 bd 08 97 6c 33 ed 9a 01 91
 bf fe a1 dd dd 5d 50 9a fd b8 09 98

 ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 1):

transform key [44]:
 98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
 88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
K [32]:
 98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
 88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
salt [12]:
 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
 98 f1 03 01 81 0a 04 1c da dd e1 bd 85 a0 8f 21
 8b ac b5 7e 00 35 e2 22 c8 31 e3 e4 f0 a2 0c 8f
nonce [16]:
 00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
IV [8]:
 00 00 00 00 00 00 00 00
AAD [80]:
 3d ac 92 6a 00 00 00 01 00 00 00 00 00 00 00 00
 45 00 00 3c 0c f1 00 00 7f 01 05 11 0a 6f 0a c5
 0a 6f 0a 1d 08 00 48 5c 02 00 03 00 61 62 63 64
 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [12]:
 ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
ESP packet [112]:
 45 00 00 70 00 01 00 00 ff 32 91 9b 0a 6f 0a c5
 0a 6f 0a 1d 3d ac 92 6a 00 00 00 01 00 00 00 00
 00 00 00 00 45 00 00 3c 0c f1 00 00 7f 01 05 11
 0a 6f 0a c5 0a 6f 0a 1d 08 00 48 5c 02 00 03 00
 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
 01 02 02 04 ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d

 ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 2):

transform key [44]:
 98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
 88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
K [32]:
 98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
 88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
salt [12]:
 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
K_msg [32]:
 02 c5 41 87 7c c6 23 f3 f1 35 91 9a 75 13 b6 f8
 a8 a1 8c b2 63 99 86 2f 50 81 4f 52 91 01 67 84
nonce [16]:
 00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
IV [8]:
 00 00 00 00 01 00 00 00
AAD [80]:
 3d ac 92 6a 00 00 00 06 00 00 00 00 01 00 00 00
 45 00 00 3c 0c fb 00 00 7f 01 05 07 0a 6f 0a c5
 0a 6f 0a 1d 08 00 43 5c 02 00 08 00 61 62 63 64
 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [12]:
 ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
ESP packet [112]:
 45 00 00 70 00 06 00 00 ff 32 91 96 0a 6f 0a c5
 0a 6f 0a 1d 3d ac 92 6a 00 00 00 06 00 00 00 00
 01 00 00 00 45 00 00 3c 0c fb 00 00 7f 01 05 07
 0a 6f 0a c5 0a 6f 0a 1d 08 00 43 5c 02 00 08 00
 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
 01 02 02 04 ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91

 ENCR_MAGMA_MGM_MAC_KTREE (Example 1):

transform key [36]:
 d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
 2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
 88 79 8f 29
K [32]:
 d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
 2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
salt [4]:
 88 79 8f 29
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
 4c 61 45 99 a0 a0 67 f1 94 87 24 0a e1 00 e1 b7
 ea f2 3e da f8 7e 38 73 50 86 1c 68 3b a4 04 46
nonce [8]:
 00 00 00 00 88 79 8f 29
IV [8]:
 00 00 00 00 00 00 00 00
AAD [80]:
 3e 40 69 9c 00 00 00 01 00 00 00 00 00 00 00 00
 45 00 00 3c 0e 08 00 00 7f 01 03 fa 0a 6f 0a c5
 0a 6f 0a 1d 08 00 36 5c 02 00 15 00 61 62 63 64
 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [8]:
 4d d4 25 8a 25 35 95 df
ESP packet [108]:
 45 00 00 6c 00 13 00 00 ff 32 91 8d 0a 6f 0a c5
 0a 6f 0a 1d 3e 40 69 9c 00 00 00 01 00 00 00 00
 00 00 00 00 45 00 00 3c 0e 08 00 00 7f 01 03 fa
 0a 6f 0a c5 0a 6f 0a 1d 08 00 36 5c 02 00 15 00
 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
 01 02 02 04 4d d4 25 8a 25 35 95 df

 ENCR_MAGMA_MGM_MAC_KTREE (Example 2):

transform key [36]:
 d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
 2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
 88 79 8f 29
K [32]:
 d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
 2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
salt [4]:
 88 79 8f 29
i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
K_msg [32]:
 b4 f3 f9 0d c4 87 fa b8 c4 af d0 eb 45 49 f2 f0
 e4 36 32 b6 79 19 37 2e 1e 96 09 ea f0 b8 e2 28
nonce [8]:
 00 00 00 00 88 79 8f 29
IV [8]:
 00 00 00 00 01 00 00 00
AAD [80]:
 3e 40 69 9c 00 00 00 06 00 00 00 00 01 00 00 00
 45 00 00 3c 0e 13 00 00 7f 01 03 ef 0a 6f 0a c5
 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00 61 62 63 64
 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
 75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [8]:
 84 84 a9 23 30 a0 b1 96
ESP packet [108]:
 45 00 00 6c 00 18 00 00 ff 32 91 88 0a 6f 0a c5
 0a 6f 0a 1d 3e 40 69 9c 00 00 00 06 00 00 00 00
 01 00 00 00 45 00 00 3c 0e 13 00 00 7f 01 03 ef
 0a 6f 0a c5 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00
 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
 01 02 02 04 84 84 a9 23 30 a0 b1 96

 Acknowledgments
 The author wants to thank , , , and for valuable input during the
 publication process for this document.

 Author's Address

 ELVIS-PLUS

 PO Box 81
 Moscow (Zelenograd)
 124460
 Russian Federation

 +7 495 276 0211
 svan@elvis.ru

