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1. Introduction

The IP Security (IPsec) protocol suite consists of several protocols, of which the Encapsulating
Security Payload (ESP) [RFC4303] and the Internet Key Exchange version 2 (IKEv2) [RFC7296] are
most widely used. This document defines four transforms for ESP and IKEv2 based on Russian
cryptographic standard algorithms (often referred to as "GOST" algorithms). These definitions are
based on the recommendations [GOST-ESP] established by the Federal Agency on Technical
Regulating and Metrology (Rosstandart), which describe how Russian cryptographic standard
algorithms are used in ESP and IKEv2. The transforms defined in this document are based on two
block ciphers from Russian cryptographic standard algorithms -- "Kuznyechik" [GOST3412-2015]
[RFC7801] and "Magma" [GOST3412-2015] [RFC8891] in Multilinear Galois Mode (MGM) [GOST-
MGM] [RFC9058]. These transforms provide Authenticated Encryption with Associated Data
(AEAD). An external rekeying mechanism, described in [RFC8645], is also used in these transforms
to limit the load on session keys.

Because the GOST specification includes the definition of both 128-bit ("Kuznyechik") and 64-bit
("Magma") block ciphers, both are included in this document. Implementers should make
themselves aware of the relative security and other cost-benefit implications of the two ciphers.
See Section 5 for more details.

This specification was developed to facilitate implementations that wish to support the GOST
algorithms. This document does not imply IETF endorsement of the cryptographic algorithms
used in this document.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

3. Overview

Russian cryptographic standard algorithms, often referred to as "GOST" algorithms, constitute a
set of cryptographic algorithms of different types -- ciphers, hash functions, digital signatures, etc.
In particular, Russian cryptographic standard [GOST3412-2015] defines two block ciphers --
"Kuznyechik" (also defined in [RFC7801]) and "Magma" (also defined in [RFC8891]). Both ciphers
use a 256-bit key. "Kuznyechik" has a block size of 128 bits, while "Magma" has a 64-bit block.

Multilinear Galois Mode (MGM) is an AEAD mode defined in [GOST-MGM] and [RFC9058]. It is
claimed to provide defense against some attacks on well-known AEAD modes, like Galois/Counter
Mode (GCM).
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[RFC8645] defines mechanisms that can be used to limit the number of times any particular
session key is used. One of these mechanisms, called external rekeying with tree-based
construction (defined in Section 5.2.3 of [RFC8645]), is used in the defined transforms. For the
purpose of deriving subordinate keys, the Key Derivation Function (KDF)
KDF_GOSTR3411_2012_256, defined in Section 4.5 of [RFC7836], is used. This KDF is based on a
Hashed Message Authentication Code (HMAC) construction [RFC2104] with a Russian GOST hash
function defined in Russian cryptographic standard [GOST3411-2012] (also defined in [RFC6986]).

4. Description of Transforms

This document defines four transforms of Type 1 (Encryption Algorithm) for use in ESP and
IKEv2. All of them use MGM as the mode of operation with tree-based external rekeying. The
transforms differ in underlying ciphers and in cryptographic services they provide.

e ENCR_KUZNYECHIK MGM_KTREE (Transform ID 32) is an AEAD transform based on the
"Kuznyechik" algorithm; it provides confidentiality and message authentication and thus can
be used in both ESP and IKEv2.

* ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based on the "Magma"
algorithm; it provides confidentiality and message authentication and thus can be used in
both ESP and IKEv2.

* ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only transform based on
the "Kuznyechik" algorithm; it provides no confidentiality and thus can only be used in ESP,
but not in IKEv2.

* ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform based on the
"Magma" algorithm; it provides no confidentiality and thus can only be used in ESP, but not in
IKEv2.

Note that transforms ENCR_KUZNYECHIK MGM_MAC_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE don't provide any confidentiality, but they are defined as Type
1 (Encryption Algorithm) transforms because of the need to include an Initialization Vector (IV),
which is impossible for Type 3 (Integrity Algorithm) transforms.

4.1. Tree-Based External Rekeying

All four transforms use the same tree-based external rekeying mechanism. The idea is that the
key that is provided for the transform is not directly used to protect messages. Instead, a tree of
keys is derived using this key as a root. This tree may have several levels. The leaf keys are used
for message protection, while intermediate-node keys are used to derive lower-level keys,
including leaf keys. See Section 5.2.3 of [RFC8645] for more details. This construction allows us to
protect a large amount of data, at the same time providing a bound on a number of times any
particular key in the tree is used, thus defending against some side-channel attacks and also
increasing the key lifetime limitations based on combinatorial properties.

The transforms defined in this document use a three-level tree. The leaf key that protects a
message is computed as follows:
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K_msg = KDF (KDF (KDF (K, 11, ox@8e | i1), 12, i2), 13, i3)
where:

KDF (k,1, s) Key Derivation Function KDF_GOSTR3411_2012_256 (defined in Section 4.5 of
[RFC7836]), which accepts three input parameters -- a key (k), a label (1), and a
seed (s) - and provides a new key as output

K the root key for the tree (see Section 4.4)
11,12,13 labels defined as 6-octet ASCII strings without null termination:
11= "levell"
2= "level2"
13= "level3"
i1,12,1i3 parameters that determine which keys out of the tree are used on eachlevel.

Together, they determine a leaf key that is used for message protection; the
length of il is one octet, and i2 and i3 are two-octet integers in network byte
order

| indicates concatenation

This construction allows us to generate up to 28 keys on level 1 and up to 216 keys on levels 2 and
3. So, the total number of possible leaf keys generated from a single Security Association (SA) key

is 240

This specification doesn't impose any requirements on how frequently external rekeying takes
place. It is expected that the sending application will follow its own policy dictating how many
times the keys on each level must be used.

4.2. Initialization Vector Format

Each message protected by the defined transforms MUST contain an IV. The IV has a size of 64 bits
and consists of four fields. The fields i1, i2, and i3 are parameters that determine the particular
leaf key this message was protected with (see Section 4.1). The fourth field is a counter,
representing the message number for this key.

1 2 3
012345678906 12345678960612345678920°1

T S e s T o S S s Sor St ST P S S
| i1 | i2 | i3 |
d-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-F-F-t-F-F-F-F-+-+-+
| i3 (cont) | pnum |
t-t-—t-F-F-F-F-F-F-F-F-F-F-F-F-F-F—F-F-F—F-F-F-F-F-F—F-F-+-+-F+-+-+

Figure 1: IV Format
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where:

i1 (1 octet), 12 (2 octets), i3 (2 octets): parameters that determine the particular key used to
protect this message; 2-octet parameters are integers in network byte order

pnum (3 octets): message counter in network byte order for the leaf key protecting this

224

message; up to messages may be protected using a single leaf key

For any given SA, the IV MUST NOT be used more than once, but there is no requirement that IV be
unpredictable.

4.3. Nonce Format for MGM

MGM requires a per-message nonce (called the Initial Counter Nonce, or ICN in [RFC9058]) that
MUST be unique in the context of any leaf key. The size of the ICN is n-1 bits, where n is the block
size of the underlying cipher. The two ciphers used in the transforms defined in this document
have different block sizes, so two different formats for the ICN are defined.

MGM specification requires that the nonce be n-1 bits in size, where n is the block size of the
underlying cipher. This document defines MGM nonces having n bits (the block size of the
underlying cipher) in size. Since n is always a multiple of 8 bits, this makes MGM nonces having a
whole number of octets. When used inside MGM, the most significant bit of the first octet of the
nonce (represented as an octet string) is dropped, making the effective size of the nonce equal to
n-1 bits. Note that the dropped bit is a part of the "zero" field (see Figures 2 and 3), which is always
set to 0, so no information is lost when it is dropped.

4.3.1. MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher

For transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and
ENCR_KUZNYECHIK_MGM_MAC_KTREE), the ICN consists of a "zero" octet; a 24-bit message
counter; and a 96-bit secret salt, which is fixed for the SA and is not transmitted.

1 2 3
012345678901 23456789012345678901
R et e S e e e T T e e k3
| zero | pnum |
R e e e T T e e e e et et T T T e e T e e e 3
salt

I I

I I

I I

t-t—t-F—t-t-F-t-t-F-t—t-F—F—F-F—F—F-F—F—F-F—F—F-F-F—F-F-F-+-F+-+-+
Figure 2: Nonce Format for Transforms Based on the "Kuznyechik" Cipher

where:

zero (1 octet): settoO
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pnum (3 octets): the counter for the messages protected by the given leaf key; this field MUST be
equal to the pnum field in the IV

salt (12 octets): secret salt. The salt is a string of bits that are formed when the SA is created (see
Section 4.4 for details). The salt does not change during the SA's lifetime and is not transmitted
on the wire. Every SA will have its own salt.

4.3.2. MGM Nonce Format for Transforms Based on the "Magma" Cipher

For transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE), the ICN consists of a "zero" octet; a 24-bit message counter;
and a 32-bit secret salt, which is fixed for the SA and is not transmitted.

1 2 3
012345678901 23456789012345678901
R e e S S e e e e e e T T e e e
| zero | pnum [
e e st T o e e e e e e e e el T Tl T e el e T
| salt |
dod -ttt -ttt -ttt —F—F—F-F—F-F-F—t-t-t-t-t-t-t -ttt -F-+-+-+

Figure 3: Nonce Format for Transforms Based on the "Magma" Cipher

where:

zero (1 octet): settoO

pnum (3 octets): the counter for the messages protected by the given leaf key; this field MUST be
equal to the pnum field in the IV

salt (4 octets): secret salt. The salt is a string of bits that are formed when the SA is created (see
Section 4.4 for details). The salt does not change during the SA's lifetime and is not transmitted
on the wire. Every SA will have its own salt.

4.4. Keying Material

We'll call a string of bits that is used to initialize the transforms defined in this specification a
"transform key". The transform key is a composite entity consisting of the root key for the tree
and the secret salt.

The transform key for the ENCR_KUZNYECHIK_MGM_KTREE and
ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits (44 octets), of which the
first 256 bits is a root key for the tree (denoted as Kin Section 4.1) and the remaining 96 bits is a
secret salt (see Section 4.3.1).

The transform key for the ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE
transforms consists of 288 bits (36 octets), of which the first 256 bits is a root key for the tree
(denoted as Kin Section 4.1) and the remaining 32 bits is a secret salt (see Section 4.3.2).
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In the case of ESP, the transform keys are extracted from the KEYMAT as defined in Section 2.17 of
[RFC7296]. In the case of IKEv2, the transform keys are either SK_ei or SK_er, which are generated
as defined in Section 2.14 of [RFC7296]. Note that since these transforms provide authenticated
encryption, no additional keys are needed for authentication. This means that, in the case of
IKEv2, the keys SK_ai/SK_ar are not used and MUST be treated as having zero length.

4.5. Integrity Check Value

The length of the authentication tag that MGM can compute is in the range from 32 bits to the
block size of the underlying cipher. Section 4 of [RFC9058] states that the authentication tag
length MUST be fixed for a particular protocol. For transforms based on the "Kuznyechik" cipher
(ENCR_KUZNYECHIK MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE), the resulting
Integrity Check Value (ICV) length is set to 96 bits. For transforms based on the "Magma" cipher
(ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE), the full ICV length is set to
the block size (64 bits).

4.6. Plaintext Padding

The transforms defined in this document don't require any plaintext padding, as specified in
[RFC9058]. This means that only those padding requirements that are imposed by the protocol are
applied (4 bytes for ESP, no padding for IKEv2).

4.7. AAD Construction

4.7.1. ESP AAD

Additional Authenticated Data (AAD) in ESP is constructed differently, depending on the
transform being used and whether the Extended Sequence Number (ESN) is in use or not. The
ENCR_KUZNYECHIK_MGM_KTREE and ENCR_MAGMA_MGM_KTREE transforms provide
confidentiality, so the content of the ESP body is encrypted and the AAD consists of the ESP
Security Parameter Index (SPI) and (E)SN. The AAD is constructed similarly to the AAD in
[RFC4106].

On the other hand, the ENCR_KUZNYECHIK MGM_MAC_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE transforms don't provide confidentiality; they provide only
message authentication. For this purpose, the IV and the part of the ESP packet that is normally
encrypted are included in the AAD. For these transforms, the encryption capability provided by
MGM is not used. The AAD is constructed similarly to the AAD in [RFC4543].

1 2 3
01234567890 12345678906123456789201
t-t-t-t-d-t-t-F-d-t-t-t-Ft-t-t-t-F-t-t—F-F-t-t—F-F-F-t-F-F-+-+-+-+
| SPI |
+-F+-F-F+-+-+-+-+-+-+-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-F+-+-+-+-+-+
| 32-bit Sequence Number |
B e T T e ek e Tk et e S S A S S St A S S S ok ot S T A s

Figure 4: AAD for AEAD Transforms with 32-Bit SN
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1 2 3
01234567890 1234567890612345678901
tot-t-t-t-t-t-t-t-t-t-t-t-F-t-F-t-F-t-F-t-F-t—F-Ft-F-+t—F-+-+-+-+-+
| SPI |
Fot-t—t-t-t-t-t-t-t-t-t-t-t-t-F-t-t-F-F-t-t-t—t-t-F-Ft—F-Ft-F-+-+-+

| 64-bit Extended Sequence Number
I I
+

D e e e e T e Tl o el e e e e e 3
Figure 5: AAD for AEAD Transforms with 64-Bit ESN

1 2 3
01234567890 123456789061234567 8901
—t-t-t-F-t-t-t-F-t-t-F-F-F-t-t-t-F-t-t-F-F-F-t-F-F-F-+t-F-+-+-+-+

SPI |
—+-t-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-F+-+-F+-+-+-F-F-F-F-F-F-F-F-+-+-+
32-bit Sequence Number |
—dt—t—t-t-t-t—t-F-dt-t-F—F-F-t-t—F-F-t-t—F-F-dt-t-F-F-F-t-F—+-+-+-+
IV

Payload Data (variable) ~

B L ek o T S e e e ket ek e e T e e S e S S e S S S D &
Padding (©-255 bytes)

tt-t-t-t—t—t-

| Pad Length

-ttt t-t-t-—t-t-t-t-F-t-t-F-F-t-t-t—F-t-+-+-

Figure 6: AAD for Authentication-Only Transforms with 32-Bit SN

+
+— +

-ttt —F-+-+-
Next Header

+
I
+
I
+
I
I
I T S s ek ek e T T e S e R S e O Tk Sk o SR S
I
I
+
I
+
I
+ —t-t-t—t-t-t-+-

I
I
+
I
I
+
I
+
|
+

1 2 3
01234567890 1234567890612345678901
—+-t-t+-F-F-F-F-F-F-F-F+-F-F-F-F+-F+-F+-F+-+-+-+-+-+-+-F-F-F-F-+-+-+-+

SPI |
—+-t-F-F-F-F-F-F-F-F-F-F-F-F-F+-F-+-+-+-+-+-F-F-F-F-F-F-F-+-+-+-+
64-bit Extended Sequence Number

—t—t—t-F-t-t—F-F-t-t—F—F-F-t-F—F-F-t—F—t-F-F-t—t—F-F-F—F—F-F-+-
IV

+

Payload Data (variable)

T T T T S e Lk L Tk Tor ST S S R S S U SR A A
Padding (©-255 bytes)
Fot—t—t—t—t—t—t-
| Pad Length
et e R T S S e e e s Tt st

Figure 7: AAD for Authentication-Only Transforms with 64-Bit ESN

+

—+-t-t-t-+-+-+-
Next Header

+
I
+
I
I
+
I
I
tot—t—t-F-t-t—F-F-t-t—F-F-F-t—F-F-F-F-F—F-F-t-F—tF-F-F-F-F-+-+
I
I
+
I
+
I
+ ——t—t-t-t-t—+-

I
I
+
I
I
-+
I
|
-+
I
+
I
+

+— +
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4.7.2. IKEv2Z AAD

For IKEv2, the AAD consists of the IKEv2 Header, any unencrypted payloads following it (if
present), and either the Encrypted payload header (Section 3.14 of [RFC7296]) or the Encrypted
Fragment payload (Section 2.5 of [RFC7383]), depending on whether IKE fragmentation is used.
The AAD is constructed similarly to the AAD in [RFC5282].

1 2 3
©1234567890123456789012345671829201
tot-t-t-t-t-t-t-t-t-F-t-F-F -ttt -ttt -F—F-F—F-Ft—F-F—F-+-+-+
~ IKEv2 Header ~
t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-F-t-t-t-t-t-t-t-F-t-F-t-F-+-+-+-+-+
~ Unencrypted IKE Payloads ~
tot-t-t-t-t-t-t-t-t-t-t-F-t-t-F-t—t-F-F-t—t-t—t-t-F-Ft—F-+-+-+-+-+

| Next Payload |C| RESERVED | Payload Length
tot-t-t-t-t-t-t-t-F-F-t-F-F-F-F-t-F-F-F-F—F-F—F-F-F-Ft—F-F—F-+-+-+

Figure 8: AAD for IKEvZ2 in the Case of the Encrypted Payload

1 2 3
01234567890 12345678906123456789201
+-F+-F-F+-F+-+-+-+-+-+-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-F+-+-+-+-+-+
~ IKEv2 Header ~
s T T e e S e e s s T T S S S A S S S ok ok ok T e s
~ Unencrypted IKE Payloads ~
t-t-t-t-t-t-F-F-d-t-t-t-F-t-t-t-F-t-F-F-F-F-t-F-F-F-t-F-F-+-+-+-+

| Next Payload |C| RESERVED | Payload Length
+-F+-F-F+-F+-+-+-+-+-+-+-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-F+-F+-+-+-+-+-+
| Fragment Number | Total Fragments
B e T T e ek e e T T S e S S S s [T Tt e S A A s

Figure 9: AAD for IKEvZ2 in the Case of the Encrypted Fragment Payload

4.8. Using Transforms

When the SA is established, the i1, i2, and i3 parameters are set to 0 by the sender and a leaf key is
calculated. The pnum parameter starts from 0 and is incremented with each message protected
by the same leaf key. When the sender decides that the leaf should be changed, it increments the i3
parameter and generates a new leaf key. The pnum parameter for the new leaf key is reset to 0,
and the process continues. If the sender decides that a third-level key corresponding to i3 is used
enough times, it increments i2, resets i3 to 0, and calculates a new leaf key. The pnum is reset to 0
(as with every new leaf key), and the process continues. A similar procedure is used when a
second-level key needs to be changed.

A combination ofil,i2, i3, and pnum MUST NOT repeat for any particular SA. This means that the
wrapping of these counters is not allowed: when i2, i3, or pnum reaches its respective maximum
value, a procedure for changing a leaf key, described above, is executed, and if all four parameters
reach their maximum values, the IPsec SA becomes unusable.
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There may be other reasons to recalculate leaf keys besides reaching maximum values for the
counters. For example, as described in Section 5, it is RECOMMENDED that the sender count the
number of octets protected by a particular leaf key and generate a new key when some threshold
isreached, and at the latest when reaching the octet limits stated in Section 5 for each of the
ciphers.

The receiver always uses i1, i2, and i3 from the received message. If they differ from the values in
previously received packets, a new leaf key is calculated. The pnum parameter is always used
from the received packet. To improve performance, implementations may cache recently used
leaf keys. When a new leaf key is calculated (based on the values from the received message), the
old key may be kept for some time to improve performance in the case of possible packet
reordering (when packets protected by the old leaf key are delayed and arrive later).

5. Security Considerations

The most important security consideration for MGM is that the nonce MUST NOT repeat for a
given key. For this reason, the transforms defined in this document MUST NOT be used with
manual keying.

Excessive use of the same key can give an attacker advantages in breaking security properties of
the transforms defined in this document. For this reason, the amount of data that any particular
key is used to protect should be limited. This is especially important for algorithms with a 64-bit
block size (like "Magma"), which currently are generally considered insecure after protecting a
relatively small amount of data. For example, Section 3.4 of [SP800-67] limits the number of

blocks that are allowed to be encrypted with the Triple DES cipher to 220 (8 MB of data). This
document defines a rekeying mechanism that allows the mitigation of weak security of a 64-bit
block cipher by frequently changing the encryption key.

For transforms defined in this document, [GOST-ESP] recommends limiting the number of octets
protected with a single K_msg key by the following values:

* 241 octets for transforms based on the "Kuznyechik" cipher
(ENCR_KUZNYECHIK MGM_KTREE and ENCR_KUZNYECHIK MGM_MAC_KTREE)

* 228 gctets for transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and
ENCR_MAGMA_MGM_MAC_KTREE)

These values are based on combinatorial properties and may be further restricted if side-channel
attacks are taken into consideration. Note that the limit for transforms based on the
"Kuznyechik" cipher is unreachable because, due to the construction of the transforms, the

number of protected messages is limited to 224 and each message (either IKEv2 messages or ESP

datagrams) is limited to 216 octets in size, giving 240 octets as the maximum amount of data that
can be protected with a single K_msg.
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Section 4 of [RFC9058] discusses the possibility of truncating authentication tags in MGM as a
trade-off between message expansion and the probability of forgery. This specification truncates
an authentication tag length for transforms based on the "Kuznyechik" cipher to 96 bits. This

decreases message expansion while still providing a very low probability of forgery: 296,

An attacker can send a lot of packets with arbitrarily chosen i1, i2, and i3 parameters. This will 1)
force a recipient to recalculate the leaf key for every received packet if i1, i2, and i3 are different
from these values in previously received packets, thus consuming CPU resources and 2) force a
recipient to make verification attempts (that would fail) on a large amount of data, thus allowing
the attacker a deeper analysis of the underlying cryptographic primitive (see [AEAD-USAGE-
LIMITS]). Implementations MAY initiate rekeying if they deem that they receive too many packets
with an invalid ICV.

Security properties of MGM are discussed in [MGM-SECURITY].

6. IANA Considerations

IANA maintains a registry called "Internet Key Exchange Version 2 (IKEv2) Parameters” with a
subregistry called "Transform Type Values". IANA has added the following four Transform IDs to
the "Transform Type 1 - Encryption Algorithm Transform IDs" subregistry.

Number Name ESP Reference IKEv2 Reference
32 ENCR_KUZNYECHIK_MGM_KTREE RFC 9227 RFC 9227

33 ENCR_MAGMA_MGM_KTREE RFC 9227 RFC 9227

34 ENCR_KUZNYECHIK_ MGM_MAC_KTREE RFC9227 Not allowed

35 ENCR_MAGMA_MGM_MAC_KTREE RFC 9227 Not allowed

Table 1: Transform IDs
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Appendix A. Test Vectors

In the following test vectors, binary data is represented in hexadecimal format. The numbers in
square brackets indicate the size of the corresponding data in decimal format.

1. ENCR_KUZNYECHIK MGM_KTREE (Example 1):
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transform

b6
el
7b

K [32]:

b6
el

salt [12]:

7b

18
bc
67

18
bc

67

i1 = 00,
K_msg [32]:
2f f1 c9 Be
d8 80 bd 52
nonce [16]:

00

IV [8]:

00

00

00

AAD [8]:

51

46

plaintext

45
Pa
65
75

ciphertext [64]:

00
6f
66
76

key [44]:

0c
fa
eb

Oc
fa

e6

i2

00

00

53

14
73
f2

14
73

f2

44

0000

00
00
6b

[64]:

00
Pa
67
77

3c
1d
68
61

18 9d 12 88
c6 d4 ea fd
62 97 b2 24
85 ff e9 17

ESP ICV [12]:

50 b 70 ail
ESP packet [112]:

45
Pa
00
9b
60
7b
ae

00
6f
00
ee
05
9d
4d

00
POa
00
65
aa
eb
ab

70
1d
00
96
07
31
6f

de
7c¢C

7b
00
00

23
08
69
62

b7
31
bf
9c

5a

00
51
18
c6
62
85
50
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2d
61

2d
61

7f

6e
a2

e6

00

00
53
12
ea
b2
e9
70

bd
af

bd
af

06

78

0000,

06
ba

f2
00

Tle
dc

44

95

ce a9
0d 84
2e 45

ce a9
od 84

2e 45

2c
b5

2c
b5

ac
22

ac
22

pnum = 000000

17
3e

f9

b3 74
56 9a

7f 06

ee cc
58 00
6f 70
68 69

4b 23
ac 31
f6 7e
c2 3e

f8 ed

91 4f
00 01
f9 ea
96 ef
2b e3
bf 0b
do 73

2.ENCR_KUZNYECHIK_MGM_KTREE (Example 2):

Smyslov

Informational

d7
ab

78

Oa

71
01

9b

7b
ae

82
27

95

6f

72
02

ee

9d
4d

1b
CE

1b
CG

af

2e

Oa

73
02

65
aa
eb
a5

Oa

4b
ac
f6
c2
f8

5c
38

5¢c
38

7b
a4

45

c5

74
04

96

31
6f
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transform

b6
el
7b

K [32]:

b6
el

salt [12]:

7b

18
bc
67

18
bc

67

i1 = 00,
K_msg [32]:
9a ba c6 57
66 c2 f5 13
nonce [16]:

00

IV [8]:

00

00

00

AAD [8]:

51

46

plaintext

45
Pa
65
75

ciphertext [64]:

00
6f
66
76

key [44]:

0c
fa
eb

Oc
fa

e6

i2

00

01

53

14
73
f2

14
73

f2

44

0001

00
00
6b

[64]:

00
Pa
67
77

78 Ba 2c
a4 fa 61
15 4b 69
ff 72 56

ESP ICV [12]:

c2 2f 87
ESP packet [112]:

45
Pa
01
f3
ac
62
a4

00
6f
00
2d
1d
81
d4

00
POa
00
b4
fc
12
9a

3c
1d
68
61

62
2f
03
ab

40

70
1d
00
doe
4b
7c
4d

78
od

7b
01
00

23
08
69
62

62
66
4d
fo

83

00
51
78
a4
15
ff
c2

67
00
00

48
00
6a
63

32
c2
c2
0b

8e

5¢c
46
Oa
fa
4b
72
2f
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2d
61
7f

2d
61

7f

Qe
e?2

e6
00
00

00
e4
6b
64

15
bf
1d
al

3d

00
53
2c
61
69
56
87

bd
af

bd
af

06

78

0001,

2a
6c

44

95

ce a9
0d 84
2e 45

ce a9
od 84

2e 45

2c
b5

2c
b5

ac
22

ac
22

pnum = 000000

f6
7d

f9

01
00
6e
67

01
e?2
90
5e

91

32
00
32
c2
c2
0b
8e

3.ENCR_MAGMA_MGM_KTREE (Example 1):

Smyslov

1f b8
53 Qe

7f 06

ee b9
67 00
6f 70
68 69

76 32
14 9b
6d 59
6c 71

cc b8

91 40
00 10
15 7b
bf 79
1d ef
al 22
3d fa

Informational

d5
6e

78

Oa

71
01

f3
ac
62
a4

71
7d

95

6f

72
02

2d

81
d4

6f

01
e?2
90
5e
91

1b
CE

1b
CG

62

2e

Oa

73
02

b4

12
9a

5c
38

5¢c
38

36
bc

45

c5

74
04

de

7c¢c
4d
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transform
5b 50
22 83
cf 36

K [32]:
5b 50
22 83

salt [4]:
cf 36

i1 = 00,

i2 =

key [36]:
bf 33 78
ef 58 9b
63 12

bf 33 78
ef 58 9b

63 12
0000,

K_msg [32]:

25 65
5e 9d

nonce [8]:

00 00
IV [8]:
00 00
AAD [8]:
c8 c2
plaintext
45 00
fa 6f
65 66
75 76

21 e2 70
41 02 7d

00 00 cf
00 00 00

b2 8d 00
[64]:

00 3c 24
Pa 1d 08
67 68 69
77 61 62

ciphertext [64]:

fa 08
d8 6f
f5 d2
32 43
ESP
5f 4a
ESP
45 00
fa 6f
00 00
4a 91
91 50
99 ac
15 52

40 33 2c
8e 61 04
42 69 49
e2 3b a4

IcV [8]:

fa 8b 02

packet [108]:

00 6Cc 00
fa 1d c8
00 00 fa
7e Oc d8
3f 4a f5
ee 9e 32
cc e8 5f

87
e6

87
eb

i3

b7
4b

36
00
00

2d
00
6a
63

4f
03
d3
d1

94

62
c2
08
6f
d2
43
4a
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02
f4

02
f4

63
00
00

00
de
6b
64

3f
87
5a
1e

of

00
b2
40
8e
42
e2
fa

38 3
6a 89

38 f3
6a 89

0000,

16 4d

00 ff
8d 00
33 2c
61 04
69 49
3b a4
8b 02

ca
4a

ca
4a

pnum =

fc
2b

01

6e
67

4d

le
91

4.ENCR_MAGMA_MGM_KTREE (Example 2):

Smyslov

74 of d1 24
a3 5d 5f 06

74 of d1 24
a3 5d 5f 06

26 eb
1c c9

ed d4
6d 00
6f 70
68 69

8c 2c
df bd
fe fc
a7 19

91 3e
00 01
3f c9
87 64
5a 22
le 84
of 5c

Informational

bf
01

Oa

71
01

4a

99
18

000000

0c
dc

6f

72
02

91

ac
52

ba
b2

ba
b2

ca
de

Oa

73
02

7e

ee
ccC

Oa
00
8c

Qe
a7

6c
03

6¢c
03

76

c5

74
04

0c
4a
9e
e8

c5
00
2c

fc
19
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transform
5b 50
22 83
cf 36

K [32]:
5b 50
22 83

salt [4]:
cf 36

i1 = 00,

i2 =

key [36]:
bf 33 78
ef 58 9b
63 12

bf 33 78
ef 58 9b

63 12
0001,

K_msg [32]:

20 e0
39 24

nonce [8]:

00 00
IV [8]:
00 00
AAD [8]:
c8 c2
plaintext
45 00
fa 6f
65 66
75 76

46 d4 09
4f Be 29

00 00 cf
01 00 061

b2 8d 00
[64]:

00 3c 24
Pa 1d 08
67 68 69
77 61 62

ciphertext [64]:

ESP

ESP

7a 71 48
25 a7 f3
1d c7 59
4b 93 78
IcV [8]:
dd 5d 50

41
5d
f6
bd

9a

ab
b9
56
08

fd

packet [108]:

45 00 00
fa 6f 0a
01 00 00
26 91 40
9b 88 db
d7 7a 07
bf fe ail

6¢c
1d
00
a8
72
1d
dd

00
c8
7a
25
1d
4b
dd

GOST Ciphers in ESP and IKEv2

87 02
e6 f4

87 02
e6 f4

i3 =

83 9b
ef 1e

36 63
06 00
00 00

40 00
00 cf
6a 6b
63 64

34 b7
e4 37
b5 b3
97 6¢C

b8 09

71 00
c2 b2
71 48
a7 f3
c7 59
93 78
5d 50

38 3
6a 89

38 f3
6a 89

0001,

23 fo
6f 2e

00 ff
8d 00
41 a5
5d b9
f6 56
bd 68
9a fd

ca
4a

ca
4a

pnum =

66
5d

01

6e
67

6a
6¢c
b1
9a

32
00
34
e4
b5
97
b8

74 of d1 24
a3 5d 5f 06

74 of d1 24
a3 5d 5f 06

a5 Qa
2e 13

ed c1
7c 006
6f 70
68 69

8e ab
99 9c
4d 6b
01 91

91 2f
00 10
b7 58
37 1f
b3 ea
6¢c 33
09 98

7a
B8

Oa

93
e7
b6
ed

5.ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 1):

Smyslov

Informational

000000

06
f5

6f

72
02

91

7a
fe

6f
00
6a
6¢c
b1
9a

ba
b2

ba
b2

5b
da

Oa

73
02

40

07
al

Oa
01
8e

4d
01

6c
03

6¢c
03

4a

c5
00
ab
9c
6b
91
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transform

98
88
6cC
K [32]:
98
88
salt [1
6¢c

bd
cc
51

bd
cc

2]:

51

i1 = 00,
K_msg [32]:
98 f1 03 01
8b ac b5 7e
nonce [16]:

00
IV [8]:
00

00

00

AAD [80]:

3d
45
[F]
65
75

ac

plaintext
ciphertext [0]:

ESP ICV [12]:

key [44]:

34
23
cb

34
23

cb

i2

00

00

92
00
[F]
67
77

ce
92
ac

ce
92

ac

0000,

00
00

6a
3c
1d
68
61

[0]:

3b
63
93

3b
63

93
81
00

6¢c

ca c5 8c e5 e8
ESP packet [112]:

45
Oa
00
Oa
61
71
01

00
Oa
00
Oa
63
73
02

70
1d
00
c5
64
74
04

el
dc
c4

el
dc

c4

i3

[F]
35

51
00

00
1
00
6a
63

8b

01
ac
00
6f
66
76
c5

GOST Ciphers in ESP and IKEv2

04
ea

34
04

ea

99

0000,

1c

ac
00

01
00
5¢c
6c

f3

00
6a
3c
1d
68
61
e5

da
c8

93

2d

ff
00
0c
08
69
62
e8

62

87 c@

06

48

64 3f e7 57

79 1d

87 co

06

48

64 3f e7 57

79 1d

pnum = 000000

dd
31

c4

00
01
00
6e
67

el bd
e3 e4

5b ea

00 00
05 11
03 00
6f 70
68 69

fo 4d

91 9b
00 01
00 00
48 5c
6b 6¢C
64 65
4b 3

85
fo

99

6. ENCR_KUZNYECHIK_ MGM_MAC_KTREE (Example 2):

Smyslov

Informational

ao
a2

62

83
b2

83
b2

8f
0c

79

f4
be

f4
be
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transform

98
88
6cC
K [32]:
98
88
salt [1
6¢c

bd
cc
51

bd
cc

2]:

51

i1 = 00,
K_msg [32]:
02 c5 41 87
a8 al 8c b2
nonce [16]:

00
IV [8]:
00

00

00

AAD [80]:

3d
45
[F]
65
75

ac

plaintext
ciphertext [0]:

ESP ICV [12]:

key [44]:

34
23
cb

34
23

cb

i2

00

00

92
00
[F]
67
77

ce
92
ac

ce
92

ac

0000,

00
00

6a
3c
1d
68
61

[0]:

3b
63
93

3b
63

93
7c
63

6¢c

ba bc 67 ec 72
ESP packet [112]:

45
Oa
01
Oa
61
71
01

00
Oa
00
Oa
63
73
02

70
1d
00
c5
64
74
04

el
dc
c4

el
dc

c4

i3

c6
99

51
00

00
fb
00
6a
63

a8

06
ac
00
6f
66
76
bc

GOST Ciphers in ESP and IKEv2

04
ea

34
04

ea

99

0001,

f3

ac
00

06
00
5¢c
6c

1a

00
6a
3c
1d
68
61
ec

f1

93

89

ff
00
0c
08
69
62
72

62

87 c@
79 1d

87 co

79 1d

06 48
64 3f e7 57

06 48
64 3f e7 57

pnum = 000000

35
81

c4

00
01
00
6e
67

91 9a
4f 52

5b ea

00 00
05 07
08 00
6f 70
68 69

fe 91

91 96
00 06
00 00
43 5c
6b 6¢C
64 65
c3 1a

7.ENCR_MAGMA MGM_MAC_KTREE (Example 1):
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75
91

99

13
01

62

83
b2

83
b2

f4
be

f4
be
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transform
do 65
2c 1c
88 79
K [32]:
do 65
2c 1c
salt [4]:
88 79
i1 = 00,

key [36]:

b5
07
8f

b5
07

8f

i2

K_msg [32]:

4c 61
ea f2

nonce [8]:

00 00
IV [8]:
00 00
AAD [80]:
3e 40
45 00
Qa 6f
65 66
75 76
plaintext

45 00
fa 6f
00 00
fa 6f
61 62
71 72
01 02

45
3e

00

00

69
00
[F]
67
77

30
6d
29

30
6d

29

0000,

99
da

00
00

9c
3c
1d
68
61

[0]:
ciphertext [0]:
ESP ICV [8]:
4d d4 25 8a 25
ESP packet [108]:

00
Oa
00
Oa
63
73
02

6c
1d
00
c5
64
74
04

fa
fa

fa
fa

ao
f8

88

00
3e
45
[F]
65
75
4d

GOST Ciphers in ESP and IKEv2

20 b8
da 69

20 b8
da 69

i3 =

ab 67
7e 38

79 8f
06 00

00 00
08 00
00 36
6a 6b
63 64

35 95

13 00
40 69
00 00
6f Oa
66 67
76 77
d4 25

24
75

24
75

c7
74

c7
74

0000,

f1

29
00

01
00
5¢c
6c

df

00
9c
3c
1d
68
61
8a

94

ff
00
Qe
08
69
62
25

57 @c 1d 86 2a
4a 07 a8 85 7d

57 B¢ 1d 86 2a
4a 07 a8 85 7d

pnum = 000000

87
86

00
01
00
6e
67

24 0Oa
1c 68

00 00
03 fa
15 00
6f 70
68 69

91 8d
00 01
00 00
36 5c
6b 6¢C
64 65
95 df

8. ENCR_MAGMA_MGM_MAC_KTREE (Example 2):
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el
3b

00
Oa
61

01

00
a4

e3
bd

e3
bd

el

39
30

39
30

b7
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transform
do 65
2c 1c
88 79
K [32]:
do 65
2c 1c
salt [4]:
88 79
i1 = 00,

key [36]:

b5 30
07 6d
8f 29

b5 30
07 6d

8f 29

K_msg [32]:

b4 f3
ed4 36

nonce [8]:

00 00
IV [8]:
00 00
AAD [80]:
3e 40
45 00
Qa 6f
65 66
75 76
plaintext

f9 od
32 b6

00 00
06 00

69 9c
00 3c
fa 1d
67 68
77 61
[0]:

ciphertext [0]:
ESP ICV [8]:

84 84 a9 23 30
ESP packet [108]:

45 00
fa 6f
01 00
fa 6f
61 62
71 72
01 02

00 6cC
fa 1d
00 00
Ba c5
63 64
73 74
02 04

fa
fa

fa
fa

i2 = 0000,

c4
79

88

00
3e
45
[F]
65
75
84

Acknowledgments

20
da

20
da

i3

87
19

79
00

00
13
00
6a
63

18
40
00
6f
66
76
84
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b8
69

b8
69

00
00
00
31

64

24
75

24
75

c7
74

c7
74

0001,

b8
2e

29
00

06
00
5¢c
6c

96

00
9c
3c
1d
68
61
23

c4

ff
00
Qe

69
62
30

57 @c 1d 86 2a
4a 07 a8 85 7d

57 B¢ 1d 86 2a
4a 07 a8 85 7d

pnum = 000000

af
96

00
01
00
6e
67

do eb
09 ea

00 00
03 ef
1a 00
6f 70
68 69

91 88
00 06
00 00
31 5c¢
6b 6¢C
64 65
b1 96

45
fo

49
b8

e3
bd

e3

bd

f2
e?2

39
30

39
30

fo
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       Introduction
        The IP Security (IPsec) protocol suite consists of several protocols, of which 
            the Encapsulating Security Payload (ESP)   and 
            the Internet Key Exchange version 2 (IKEv2)   are most widely used.
            This document defines four transforms for ESP and IKEv2 based on Russian cryptographic standard algorithms (often referred to as "GOST" algorithms).
            These definitions are based on the recommendations   established by the Federal Agency on Technical Regulating and Metrology (Rosstandart),
            which describe how Russian cryptographic standard algorithms are used in ESP and IKEv2. The transforms defined in this document are based 
            on two block ciphers from Russian cryptographic standard algorithms -- 
            "Kuznyechik"     
            and "Magma"    
            in Multilinear Galois Mode (MGM)    . These transforms 
            provide Authenticated Encryption with Associated Data (AEAD). An external rekeying mechanism, described in  ,
            is also used in these transforms to limit the load on session keys. 
      
        Because the GOST specification includes the definition of both 128-bit ("Kuznyechik") and 64-bit ("Magma") 
            block ciphers, both are included in this document. Implementers should make themselves aware of the relative security 
            and other cost-benefit implications of the two ciphers. See   for more details.
      
        This specification was developed to facilitate implementations that wish to support the GOST algorithms.  
            This document does not imply IETF endorsement of the cryptographic algorithms used in this document.
      
    
     
       Requirements Language
       The key words " MUST", " MUST NOT",
       " REQUIRED", " SHALL",
       " SHALL NOT", " SHOULD",
       " SHOULD NOT",
       " RECOMMENDED", " NOT RECOMMENDED",
       " MAY", and " OPTIONAL" in this document
       are to be interpreted as described in BCP 14
           when, and only
       when, they appear in all capitals, as shown here.
    
     
       Overview
        Russian cryptographic standard algorithms, often referred to as "GOST" algorithms,
            constitute a set of cryptographic algorithms of different types -- ciphers, hash functions, digital
            signatures, etc. In particular, Russian cryptographic standard   
            defines two block ciphers -- "Kuznyechik" (also defined in  )
            and "Magma" (also defined in  ). Both 
            ciphers use a 256-bit key. "Kuznyechik" has a block size of 128 bits, while "Magma"
            has a 64-bit block.
      
        Multilinear Galois Mode (MGM) is an AEAD mode defined in   and  . 
            It is claimed to provide defense against some attacks on well-known AEAD modes, like Galois/Counter Mode (GCM).
      
          defines mechanisms that can be used
            to limit the number of times any particular session key is used. One of these mechanisms,
            called external rekeying with tree-based construction (defined in  ),
            is used in the defined transforms. For the purpose of deriving subordinate keys,
            the Key Derivation Function (KDF) KDF_GOSTR3411_2012_256, defined in  ,
 is used. This KDF is based on a Hashed Message Authentication Code (HMAC) construction   with 
            a Russian GOST hash function defined in Russian cryptographic standard   (also defined
            in  ).
      
    
     
       Description of Transforms
        This document defines four transforms of Type 1 (Encryption Algorithm) for use in ESP and IKEv2. All of them use MGM as the mode of operation with tree-based 
            external rekeying. The transforms differ in underlying ciphers and in cryptographic services they provide.
      
       
         ENCR_KUZNYECHIK_MGM_KTREE (Transform ID 32) is an AEAD transform based on the "Kuznyechik" algorithm; it provides 
                confidentiality and message authentication and thus can be used in both ESP and IKEv2.
         ENCR_MAGMA_MGM_KTREE (Transform ID 33) is an AEAD transform based on the "Magma" algorithm; it provides 
                confidentiality and message authentication and thus can be used in both ESP and IKEv2.
         ENCR_KUZNYECHIK_MGM_MAC_KTREE (Transform ID 34) is a MAC-only transform based on the "Kuznyechik" algorithm; it provides 
                no confidentiality and thus can only be used in ESP, but not in IKEv2.
         ENCR_MAGMA_MGM_MAC_KTREE (Transform ID 35) is a MAC-only transform based on the "Magma" algorithm; it provides 
                no confidentiality and thus can only be used in ESP, but not in IKEv2.
      
       
            Note that transforms ENCR_KUZNYECHIK_MGM_MAC_KTREE and ENCR_MAGMA_MGM_MAC_KTREE don't provide any confidentiality,
            but they are defined as Type 1 (Encryption Algorithm) transforms because of the need to include an Initialization Vector (IV),
            which is impossible for Type 3 (Integrity Algorithm) transforms.
      
       
         Tree-Based External Rekeying
          All four transforms use the same tree-based external rekeying mechanism. The idea is that
                the key that is provided for the transform is not directly used to protect messages. Instead, a tree of keys is derived using this key as a root.
                This tree may have several levels. The leaf keys are used for message protection, while intermediate-node keys are used to derive
                lower-level keys, including leaf keys.
 See   for more details.
                This construction allows us to protect a large amount of data, at the same time providing a bound on a number of times any particular key 
                in the tree is used, thus defending against some side-channel attacks and also increasing the key lifetime limitations based on combinatorial properties.
        
          The transforms defined in this document use a three-level tree. The leaf key that protects a message is computed
                as follows:

        
         
K_msg = KDF (KDF (KDF (K, l1, 0x00 | i1), l2, i2), l3, i3)
                  
         

                where:
        
         
           KDF (k, l, s)
           Key Derivation Function KDF_GOSTR3411_2012_256 (defined in  ), which 
                    accepts three input parameters -- a key (k), a label (l), and a seed (s) -- and provides a new key as output
                    
           K
           the root key for the tree (see  )
                    
           l1, l2, l3
           
             labels defined as 6-octet ASCII strings without null termination:
            
             
               l1 =
               "level1"
               l2 = 
               "level2"
               l3 = 
               "level3"
            
          
           i1, i2, i3
           parameters that determine which keys out of the tree are used on each level.
                    Together, they determine a leaf key that is used for message protection; the length of i1 is one octet, and 
                    i2 and i3 are two-octet integers in network byte order
                    
           |
           indicates concatenation
                    
        
         
                This construction allows us to generate up to 2 8 keys on level 1 and up to 2 16 keys on levels 2 and 3. 
                So, the total number of possible leaf keys generated from a single Security Association (SA) key is 2 40.
        
         This specification doesn't impose any requirements on how frequently external rekeying takes place.
                It is expected that the sending application will follow its own policy dictating how many times the keys on each level must be used.
        
      
       
         Initialization Vector Format
          Each message protected by the defined transforms  MUST contain an IV.
                The IV has a size of 64 bits and consists of four fields. The fields i1, i2, and i3 are
                parameters that determine the particular leaf key this message was protected with (see  ).
                The fourth field is a counter, representing the message number for this key.

        
         
           IV Format
           
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      i1       |               i2              |      i3       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   i3 (cont)   |                     pnum                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                  
        
         
                where:
        
         
           i1 (1 octet), i2 (2 octets), i3 (2 octets):
           parameters that  determine the particular key used to protect this message;
                    2-octet parameters are integers in network byte order
           pnum (3 octets):
           message counter in network byte order for the leaf key protecting this message; up to 2 24 messages may be protected using 
                    a single leaf key
        
         
                For any given SA, the IV  MUST NOT be used more than once, but there is no requirement that IV be unpredictable.
        
      
       
         Nonce Format for MGM
          MGM requires a per-message nonce (called the Initial Counter Nonce, or ICN in  ) 
                that  MUST be unique in the context of any leaf key. The size of the ICN
                is n-1 bits, where n is the block size of the underlying cipher. The two ciphers used in the 
                transforms defined in this document have different block sizes, so two different formats for the ICN are defined.
        
          MGM specification requires that the nonce be n-1 bits in size, where n is the block size of the underlying cipher. 
                This document defines MGM nonces having n bits (the block size of the underlying cipher) in size.
                Since n is always a multiple of 8 bits, this makes MGM nonces having a whole number of octets.
                When used inside MGM, the most significant bit of the first octet of the nonce (represented as an octet string) is 
                dropped, making the effective size of the nonce equal to n-1 bits. Note that the dropped bit is a part of the "zero" field
                (see Figures   and  ), which is always set to 0, 
                so no information is lost when it is dropped.
        
         
           MGM Nonce Format for Transforms Based on the "Kuznyechik" Cipher
            For transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE),
                    the ICN consists of a "zero" octet; a 24-bit message counter; and a 96-bit secret salt, which is fixed for the SA and is not transmitted. 
          
           
             Nonce Format for Transforms Based on the "Kuznyechik" Cipher
             
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     zero      |                     pnum                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
|                             salt                              |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                      
          
           
                    where:
          
           
             zero (1 octet):
             set to 0
             pnum (3 octets):
             the counter for the messages protected by the given leaf key; this field  MUST be equal to the pnum field in the IV
             salt (12 octets):
             secret salt. The salt is a string of bits that are formed when the SA is created (see   for details).  The salt does not change during the SA's lifetime and is not transmitted on the wire.  Every SA will have its own salt.
          
        
         
           MGM Nonce Format for Transforms Based on the "Magma" Cipher
            For transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE),
                    the ICN consists of a "zero" octet; a 24-bit message counter; and a 32-bit secret salt, which is fixed for the SA and is not transmitted. 

          
           
             Nonce Format for Transforms Based on the "Magma" Cipher
             
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     zero      |                     pnum                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             salt                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    
          
           
    
                    where:
          
           
             zero (1 octet):
             set to 0
             pnum (3 octets):
             the counter for the messages protected by the given leaf key; this field  MUST be equal to the pnum field in the IV
             salt (4 octets):
             secret salt. The salt is a string of bits that are formed when the SA is created (see   for details).  The salt does not change during the SA's lifetime and is not transmitted on the wire.  Every SA will have its own salt.
          
        
      
       
         Keying Material
         We'll call a string of bits that is used to initialize the transforms
   defined in this specification a "transform key". The transform key is a composite entity consisting of the root key for the tree and the secret salt.
        
         The transform key for the ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE transforms consists of 352 bits (44 octets), of which
                the first 256 bits is a root key for the tree (denoted as K in  ) and the remaining
                96 bits is a secret salt (see  ).
        
         The transform key for the ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE transforms consists of 288 bits (36 octets), of which
                the first 256 bits is a root key for the tree (denoted as K in  ) and the remaining
                32 bits is a secret salt (see  ).
        
         In the case of ESP, the transform keys are extracted from the KEYMAT as defined in  .
                In the case of IKEv2, the transform keys are either SK_ei or SK_er, which are generated as defined in  .
                Note that since these transforms provide authenticated encryption, no additional keys are needed
                for authentication. This means that, in the case of IKEv2, the keys SK_ai/SK_ar are not used and  MUST be treated as 
                having zero length.
      
       
         Integrity Check Value
          The length of the authentication tag  that MGM can compute is in the range from 32 bits to the block size of the underlying cipher.
                  states that the authentication tag length  MUST be fixed for a particular protocol.
                For transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE), the resulting 
                Integrity Check Value (ICV) length is set to 96 bits. For transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE),
                the full ICV length is set to the block size (64 bits).
        
      
       
         Plaintext Padding
         The transforms defined in this document don't require any plaintext padding,
                as specified in  . This means that only those
                padding requirements that are imposed by the protocol are applied (4 bytes for ESP,
                no padding for IKEv2). 
        
      
       
         AAD Construction
         
           ESP AAD
            Additional Authenticated Data (AAD) in ESP is constructed differently, depending on the 
                    transform being used and whether the Extended Sequence Number (ESN) is in use or not.
                    The ENCR_KUZNYECHIK_MGM_KTREE and ENCR_MAGMA_MGM_KTREE transforms
                    provide confidentiality, so the content of the ESP body is encrypted and the AAD
                    consists of the ESP Security Parameter Index (SPI) and (E)SN.
 The AAD is constructed similarly to the AAD in  .
          
            On the other hand, the ENCR_KUZNYECHIK_MGM_MAC_KTREE and ENCR_MAGMA_MGM_MAC_KTREE transforms
                    don't provide confidentiality; they provide only message authentication.
                    For this purpose, the IV and the part of the ESP packet that is normally encrypted are included
                    in the AAD. For these transforms, the encryption capability provided by MGM
                    is not used. The AAD is constructed similarly to the AAD in  .

          
           
             AAD for AEAD Transforms with 32-Bit SN
             
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               SPI                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     32-bit Sequence Number                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    
          
           
             AAD for AEAD Transforms with 64-Bit ESN
             
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               SPI                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 64-bit Extended Sequence Number               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    
          
           
             AAD for Authentication-Only Transforms with 32-Bit SN
             
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               SPI                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     32-bit Sequence Number                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               IV                              |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
~                     Payload Data (variable)                   ~
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Padding (0-255 bytes)                      |
+                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               |  Pad Length   | Next Header   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    
          
           
             AAD for Authentication-Only Transforms with 64-Bit ESN
             
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               SPI                             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                 64-bit Extended Sequence Number               |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               IV                              |
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                                                               |
~                     Payload Data (variable)                   ~
|                                                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Padding (0-255 bytes)                      |
+                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               |  Pad Length   | Next Header   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    
          
        
         
           IKEv2 AAD
            For IKEv2, the AAD consists of the IKEv2 Header, 
                    any unencrypted payloads following it (if present), and either the Encrypted payload header ( )
                    or the Encrypted Fragment payload ( ), depending on whether IKE fragmentation is used.
 The AAD is constructed
                    similarly to the AAD in  .

          
           
             AAD for IKEv2 in the Case of the Encrypted Payload
             
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                         IKEv2 Header                          ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                   Unencrypted IKE Payloads                    ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Payload  |C|  RESERVED   |         Payload Length        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    
          
           
             AAD for IKEv2 in the Case of the Encrypted Fragment Payload
             
                     1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                         IKEv2 Header                          ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~                   Unencrypted IKE Payloads                    ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Next Payload  |C|  RESERVED   |         Payload Length        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|        Fragment Number        |        Total Fragments        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                    
          
        
      
       
         Using Transforms
         When the SA is established, the i1, i2, and i3 parameters are set to 0 by the sender and a leaf key is calculated.
                The pnum parameter starts from 0 and is incremented with each message protected by the same leaf key.
                When the sender decides that the leaf should be changed, it increments the i3 parameter and generates a new leaf key.
                The pnum parameter for the new leaf key is reset to 0, and the process continues. If the sender decides
                that a third-level key corresponding to i3 is used enough times, it increments i2, resets i3 to 0,
                and calculates a new leaf key. The pnum is reset to 0 (as with every new leaf key), and the process continues.
                A similar procedure is used when a second-level key needs to be changed.
        
         A combination of i1, i2, i3, and pnum  MUST NOT repeat for any particular SA. 
                This means that the wrapping of these counters is not allowed: when i2, i3, or pnum reaches its respective maximum value, 
                a procedure for changing a leaf key, described above, is executed, and if all four parameters reach their maximum values, 
                the IPsec SA becomes unusable.
        
         There may be other reasons to recalculate leaf keys besides reaching maximum values for the counters. 
                For example, as described in  , it is  RECOMMENDED that the sender count the number of
                octets protected by a particular leaf key and generate a new key when some threshold is reached, and at the latest when 
                reaching the octet limits stated in   for each of the ciphers.
        
         The receiver always uses i1, i2, and i3 from the received message. If they differ from the values in previously received packets,
                a new leaf key is calculated. The pnum parameter is always used from the 
                received packet. To improve performance, implementations may cache recently used leaf keys.
                When a new leaf key is calculated (based on the values from the received message),
                the old key may be kept for some time to improve performance in the case of possible packet reordering
                (when packets protected by the old leaf key are delayed and arrive later).
        
      
    
     
       Security Considerations
        The most important security consideration for MGM is that the nonce  MUST NOT repeat
            for a given key. For this reason, the transforms defined in this document  MUST NOT be used with manual keying.
      
        Excessive use of the same key can give an attacker advantages in breaking security properties of the 
            transforms defined in this document. For this reason, the amount of data that any particular key is used to protect
            should be limited. This is especially important for algorithms with a 64-bit block size (like "Magma"),
            which currently are generally considered insecure after protecting a relatively
            small amount of data. For example, Section 3.4 of   limits the number of blocks 
            that are allowed to be encrypted with the Triple DES cipher to 2 20 (8 MB of data).
            This document defines a rekeying mechanism that allows the mitigation of  weak security of a 64-bit block cipher
            by frequently changing the encryption key. 
      
        For transforms defined in this document,   recommends
            limiting the number of octets protected with a single K_msg key by the following values:
      
       
         2 41 octets for transforms based on the "Kuznyechik" cipher (ENCR_KUZNYECHIK_MGM_KTREE and ENCR_KUZNYECHIK_MGM_MAC_KTREE)
         2 28 octets for transforms based on the "Magma" cipher (ENCR_MAGMA_MGM_KTREE and ENCR_MAGMA_MGM_MAC_KTREE)
      
       
            These values are based on combinatorial properties and may be further restricted if side-channel attacks are taken into consideration.
            Note that the limit for transforms based on the "Kuznyechik" cipher is unreachable because, due to the construction of the transforms,
            the number of protected messages is limited to 2 24 and each message (either IKEv2 messages or ESP datagrams) is limited to 2 16 octets in size,
            giving 2 40 octets as the maximum amount of data that can be protected with a single K_msg.
      
         discusses the possibility of truncating authentication tags in MGM 
            as a trade-off between message expansion and the probability of forgery. This specification truncates an authentication
            tag length for transforms based on the "Kuznyechik" cipher to 96 bits. This decreases message expansion while still providing a very low probability of forgery: 2 -96.
      
       An attacker can send a lot of packets with arbitrarily chosen i1, i2, and i3 parameters. This will 
            1) force a recipient to recalculate the leaf key for every received packet if i1, i2, and i3 are different from these values in previously received packets,
            thus consuming CPU resources and 2) force a recipient to make verification attempts (that would fail) on a large amount of data, 
            thus allowing the attacker a deeper analysis of the underlying cryptographic primitive (see  ).
            Implementations  MAY initiate rekeying if they deem that they receive too many packets with an invalid ICV.
      
        Security properties of MGM are discussed in  . 
      
    
     
       IANA Considerations
        IANA maintains a registry called "Internet Key Exchange Version 2 (IKEv2) Parameters" with a subregistry called "Transform Type Values".
            IANA has added the following four Transform IDs to the "Transform Type 1 - Encryption Algorithm Transform IDs" subregistry.
      
       
         Transform IDs
         
           
             Number
             Name
             ESP Reference
             IKEv2 Reference
          
        
         
           
             32
             ENCR_KUZNYECHIK_MGM_KTREE
             RFC 9227
             RFC 9227
          
           
             33
             ENCR_MAGMA_MGM_KTREE
             RFC 9227
             RFC 9227
          
           
             34
             ENCR_KUZNYECHIK_MGM_MAC_KTREE
             RFC 9227
             Not allowed
          
           
             35
             ENCR_MAGMA_MGM_MAC_KTREE
             RFC 9227
             Not allowed
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       Test Vectors
        In the following test vectors, binary data is represented in hexadecimal format.
            The numbers in square brackets indicate the size of the corresponding data in decimal format.
      
        
           ENCR_KUZNYECHIK_MGM_KTREE (Example 1):
          
           
transform key [44]:
    b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
    e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
    7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
K [32]:
    b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
    e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
salt [12]:
    7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
    2f f1 c9 0e de 78 6e 06 1e 17 b3 74 d7 82 af 7b
    d8 80 bd 52 7c 66 a2 ba dc 3e 56 9a ab 27 1d a4
nonce [16]:
    00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
IV [8]:
    00 00 00 00 00 00 00 00
AAD [8]:
    51 46 53 6b 00 00 00 01
plaintext [64]:
    45 00 00 3c 23 35 00 00 7f 01 ee cc 0a 6f 0a c5
    0a 6f 0a 1d 08 00 f3 5b 02 00 58 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
    18 9d 12 88 b7 18 f9 ea be 55 4b 23 9b ee 65 96
    c6 d4 ea fd 31 64 96 ef 90 1c ac 31 60 05 aa 07
    62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e 7b 9d eb 31
    85 ff e9 17 9c a9 bf 0b db af c2 3e ae 4d a5 6f
ESP ICV [12]:
    50 b0 70 a1 5a 2b d9 73 86 89 f8 ed
ESP packet [112]:
    45 00 00 70 00 4d 00 00 ff 32 91 4f 0a 6f 0a c5
    0a 6f 0a 1d 51 46 53 6b 00 00 00 01 00 00 00 00
    00 00 00 00 18 9d 12 88 b7 18 f9 ea be 55 4b 23
    9b ee 65 96 c6 d4 ea fd 31 64 96 ef 90 1c ac 31
    60 05 aa 07 62 97 b2 24 bf 6d 2b e3 5f d6 f6 7e
    7b 9d eb 31 85 ff e9 17 9c a9 bf 0b db af c2 3e
    ae 4d a5 6f 50 b0 70 a1 5a 2b d9 73 86 89 f8 ed

        
         
           ENCR_KUZNYECHIK_MGM_KTREE (Example 2):
          
           
transform key [44]:
    b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
    e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
    7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
K [32]:
    b6 18 0c 14 5c 51 2d bd 69 d9 ce a9 2c ac 1b 5c
    e1 bc fa 73 79 2d 61 af 0b 44 0d 84 b5 22 cc 38
salt [12]:
    7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
K_msg [32]:
    9a ba c6 57 78 18 0e 6f 2a f6 1f b8 d5 71 62 36
    66 c2 f5 13 0d 54 e2 11 6c 7d 53 0e 6e 7d 48 bc
nonce [16]:
    00 00 00 00 7b 67 e6 f2 44 f9 7f 06 78 95 2e 45
IV [8]:
    00 00 01 00 01 00 00 00
AAD [8]:
    51 46 53 6b 00 00 00 10
plaintext [64]:
    45 00 00 3c 23 48 00 00 7f 01 ee b9 0a 6f 0a c5
    0a 6f 0a 1d 08 00 e4 5b 02 00 67 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
    78 0a 2c 62 62 32 15 7b fe 01 76 32 f3 2d b4 d0
    a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b ac 1d fc 4b
    15 4b 69 03 4d c2 1d ef 20 90 6d 59 62 81 12 7c
    ff 72 56 ab f0 0b a1 22 bb 5e 6c 71 a4 d4 9a 4d
ESP ICV [12]:
    c2 2f 87 40 83 8e 3d fa ce 91 cc b8
ESP packet [112]:
    45 00 00 70 00 5c 00 00 ff 32 91 40 0a 6f 0a c5
    0a 6f 0a 1d 51 46 53 6b 00 00 00 10 00 00 01 00
    01 00 00 00 78 0a 2c 62 62 32 15 7b fe 01 76 32
    f3 2d b4 d0 a4 fa 61 2f 66 c2 bf 79 d5 e2 14 9b
    ac 1d fc 4b 15 4b 69 03 4d c2 1d ef 20 90 6d 59
    62 81 12 7c ff 72 56 ab f0 0b a1 22 bb 5e 6c 71
    a4 d4 9a 4d c2 2f 87 40 83 8e 3d fa ce 91 cc b8

        
         
           ENCR_MAGMA_MGM_KTREE (Example 1):
          
           
transform key [36]:
    5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
    22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
    cf 36 63 12
K [32]:
    5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
    22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
salt [4]:
    cf 36 63 12
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
    25 65 21 e2 70 b7 4a 16 4d fc 26 e6 bf 0c ca 76
    5e 9d 41 02 7d 4b 7b 19 76 2b 1c c9 01 dc de 7f
nonce [8]:
    00 00 00 00 cf 36 63 12
IV [8]:
    00 00 00 00 00 00 00 00
AAD [8]:
    c8 c2 b2 8d 00 00 00 01
plaintext [64]:
    45 00 00 3c 24 2d 00 00 7f 01 ed d4 0a 6f 0a c5
    0a 6f 0a 1d 08 00 de 5b 02 00 6d 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
    fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c 4a 91 7e 0c
    d8 6f 8e 61 04 03 87 64 6b b9 df bd 91 50 3f 4a
    f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc 99 ac ee 9e
    32 43 e2 3b a4 d1 1e 84 5c 91 a7 19 15 52 cc e8
ESP ICV [8]:
    5f 4a fa 8b 02 94 0f 5c
ESP packet [108]:
    45 00 00 6c 00 62 00 00 ff 32 91 3e 0a 6f 0a c5
    0a 6f 0a 1d c8 c2 b2 8d 00 00 00 01 00 00 00 00
    00 00 00 00 fa 08 40 33 2c 4f 3f c9 64 4d 8c 2c
    4a 91 7e 0c d8 6f 8e 61 04 03 87 64 6b b9 df bd
    91 50 3f 4a f5 d2 42 69 49 d3 5a 22 9e 1e 0e fc
    99 ac ee 9e 32 43 e2 3b a4 d1 1e 84 5c 91 a7 19
    15 52 cc e8 5f 4a fa 8b 02 94 0f 5c

        
         
           ENCR_MAGMA_MGM_KTREE (Example 2):
          
           
transform key [36]:
    5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
    22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
    cf 36 63 12
K [32]:
    5b 50 bf 33 78 87 02 38 f3 ca 74 0f d1 24 ba 6c
    22 83 ef 58 9b e6 f4 6a 89 4a a3 5d 5f 06 b2 03
salt [4]:
    cf 36 63 12
i1 = 00, i2 = 0001, i3 = 0001, pnum = 000000
K_msg [32]:
    20 e0 46 d4 09 83 9b 23 f0 66 a5 0a 7a 06 5b 4a
    39 24 4f 0e 29 ef 1e 6f 2e 5d 2e 13 55 f5 da 08
nonce [8]:
    00 00 00 00 cf 36 63 12
IV [8]:
    00 00 01 00 01 00 00 00
AAD [8]:
    c8 c2 b2 8d 00 00 00 10
plaintext [64]:
    45 00 00 3c 24 40 00 00 7f 01 ed c1 0a 6f 0a c5
    0a 6f 0a 1d 08 00 cf 5b 02 00 7c 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
ciphertext [64]:
    7a 71 48 41 a5 34 b7 58 93 6a 8e ab 26 91 40 a8
    25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c 9b 88 db 72
    1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b d7 7a 07 1d
    4b 93 78 bd 08 97 6c 33 ed 9a 01 91 bf fe a1 dd
ESP ICV [8]:
    dd 5d 50 9a fd b8 09 98
ESP packet [108]:
    45 00 00 6c 00 71 00 00 ff 32 91 2f 0a 6f 0a c5
    0a 6f 0a 1d c8 c2 b2 8d 00 00 00 10 00 00 01 00
    01 00 00 00 7a 71 48 41 a5 34 b7 58 93 6a 8e ab
    26 91 40 a8 25 a7 f3 5d b9 e4 37 1f e7 6c 99 9c
    9b 88 db 72 1d c7 59 f6 56 b5 b3 ea b6 b1 4d 6b
    d7 7a 07 1d 4b 93 78 bd 08 97 6c 33 ed 9a 01 91
    bf fe a1 dd dd 5d 50 9a fd b8 09 98

        
         
           ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 1):
          
           
transform key [44]:
    98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
    88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
    6c 51 cb ac 93 c4 5b ea 99 62 79 1d
K [32]:
    98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
    88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
salt [12]:
    6c 51 cb ac 93 c4 5b ea 99 62 79 1d
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
    98 f1 03 01 81 0a 04 1c da dd e1 bd 85 a0 8f 21
    8b ac b5 7e 00 35 e2 22 c8 31 e3 e4 f0 a2 0c 8f
nonce [16]:
    00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
IV [8]:
    00 00 00 00 00 00 00 00
AAD [80]:
    3d ac 92 6a 00 00 00 01 00 00 00 00 00 00 00 00
    45 00 00 3c 0c f1 00 00 7f 01 05 11 0a 6f 0a c5
    0a 6f 0a 1d 08 00 48 5c 02 00 03 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [12]:
    ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d
ESP packet [112]:
    45 00 00 70 00 01 00 00 ff 32 91 9b 0a 6f 0a c5
    0a 6f 0a 1d 3d ac 92 6a 00 00 00 01 00 00 00 00
    00 00 00 00 45 00 00 3c 0c f1 00 00 7f 01 05 11
    0a 6f 0a c5 0a 6f 0a 1d 08 00 48 5c 02 00 03 00
    61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
    71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
    01 02 02 04 ca c5 8c e5 e8 8b 4b f3 2d 6c f0 4d

        
         
           ENCR_KUZNYECHIK_MGM_MAC_KTREE (Example 2):
          
           
transform key [44]:
    98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
    88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
    6c 51 cb ac 93 c4 5b ea 99 62 79 1d
K [32]:
    98 bd 34 ce 3b e1 9a 34 65 e4 87 c0 06 48 83 f4
    88 cc 23 92 63 dc 32 04 91 9b 64 3f e7 57 b2 be
salt [12]:
    6c 51 cb ac 93 c4 5b ea 99 62 79 1d
i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
K_msg [32]:
    02 c5 41 87 7c c6 23 f3 f1 35 91 9a 75 13 b6 f8
    a8 a1 8c b2 63 99 86 2f 50 81 4f 52 91 01 67 84
nonce [16]:
    00 00 00 00 6c 51 cb ac 93 c4 5b ea 99 62 79 1d
IV [8]:
    00 00 00 00 01 00 00 00
AAD [80]:
    3d ac 92 6a 00 00 00 06 00 00 00 00 01 00 00 00
    45 00 00 3c 0c fb 00 00 7f 01 05 07 0a 6f 0a c5
    0a 6f 0a 1d 08 00 43 5c 02 00 08 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [12]:
    ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91
ESP packet [112]:
    45 00 00 70 00 06 00 00 ff 32 91 96 0a 6f 0a c5
    0a 6f 0a 1d 3d ac 92 6a 00 00 00 06 00 00 00 00
    01 00 00 00 45 00 00 3c 0c fb 00 00 7f 01 05 07
    0a 6f 0a c5 0a 6f 0a 1d 08 00 43 5c 02 00 08 00
    61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
    71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
    01 02 02 04 ba bc 67 ec 72 a8 c3 1a 89 b4 0e 91

        
         
           ENCR_MAGMA_MGM_MAC_KTREE (Example 1):
          
           
transform key [36]:
    d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
    2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
    88 79 8f 29
K [32]:
    d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
    2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
salt [4]:
    88 79 8f 29
i1 = 00, i2 = 0000, i3 = 0000, pnum = 000000
K_msg [32]:
    4c 61 45 99 a0 a0 67 f1 94 87 24 0a e1 00 e1 b7
    ea f2 3e da f8 7e 38 73 50 86 1c 68 3b a4 04 46
nonce [8]:
    00 00 00 00 88 79 8f 29
IV [8]:
    00 00 00 00 00 00 00 00
AAD [80]:
    3e 40 69 9c 00 00 00 01 00 00 00 00 00 00 00 00
    45 00 00 3c 0e 08 00 00 7f 01 03 fa 0a 6f 0a c5
    0a 6f 0a 1d 08 00 36 5c 02 00 15 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [8]:
    4d d4 25 8a 25 35 95 df
ESP packet [108]:
    45 00 00 6c 00 13 00 00 ff 32 91 8d 0a 6f 0a c5
    0a 6f 0a 1d 3e 40 69 9c 00 00 00 01 00 00 00 00
    00 00 00 00 45 00 00 3c 0e 08 00 00 7f 01 03 fa
    0a 6f 0a c5 0a 6f 0a 1d 08 00 36 5c 02 00 15 00
    61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
    71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
    01 02 02 04 4d d4 25 8a 25 35 95 df

        
         
           ENCR_MAGMA_MGM_MAC_KTREE (Example 2):
          
           
transform key [36]:
    d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
    2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
    88 79 8f 29
K [32]:
    d0 65 b5 30 fa 20 b8 24 c7 57 0c 1d 86 2a e3 39
    2c 1c 07 6d fa da 69 75 74 4a 07 a8 85 7d bd 30
salt [4]:
    88 79 8f 29
i1 = 00, i2 = 0000, i3 = 0001, pnum = 000000
K_msg [32]:
    b4 f3 f9 0d c4 87 fa b8 c4 af d0 eb 45 49 f2 f0
    e4 36 32 b6 79 19 37 2e 1e 96 09 ea f0 b8 e2 28
nonce [8]:
    00 00 00 00 88 79 8f 29
IV [8]:
    00 00 00 00 01 00 00 00
AAD [80]:
    3e 40 69 9c 00 00 00 06 00 00 00 00 01 00 00 00
    45 00 00 3c 0e 13 00 00 7f 01 03 ef 0a 6f 0a c5
    0a 6f 0a 1d 08 00 31 5c 02 00 1a 00 61 62 63 64
    65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74
    75 76 77 61 62 63 64 65 66 67 68 69 01 02 02 04
plaintext [0]:
ciphertext [0]:
ESP ICV [8]:
    84 84 a9 23 30 a0 b1 96
ESP packet [108]:
    45 00 00 6c 00 18 00 00 ff 32 91 88 0a 6f 0a c5
    0a 6f 0a 1d 3e 40 69 9c 00 00 00 06 00 00 00 00
    01 00 00 00 45 00 00 3c 0e 13 00 00 7f 01 03 ef
    0a 6f 0a c5 0a 6f 0a 1d 08 00 31 5c 02 00 1a 00
    61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70
    71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
    01 02 02 04 84 84 a9 23 30 a0 b1 96
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