
RFC 9485

I-Regexp: An Interoperable Regular Expression

Format

Abstract

This document specifies I-Regexp, a flavor of regular expression that is limited in scope with the

goal of interoperation across many different regular expression libraries.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9485

Standards Track

October 2023

2070-1721

 C. Bormann

Universität Bremen TZI

T. Bray

Textuality

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9485

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Bormann & Bray Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9485
https://www.rfc-editor.org/info/rfc9485
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Terminology

2. Objectives

3. I-Regexp Syntax

3.1. Checking Implementations

4. I-Regexp Semantics

5. Mapping I-Regexp to Regexp Dialects

5.1. Multi-Character Escapes

5.2. XSD Regexps

5.3. ECMAScript Regexps

5.4. PCRE, RE2, and Ruby Regexps

6. Motivation and Background

6.1. Implementing I-Regexp

7. IANA Considerations

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Acknowledgements

Authors' Addresses

2

3

3

3

5

5

5

5

6

6

6

6

7

7

7

8

8

9

9

10

1. Introduction

This specification describes an interoperable regular expression (abbreviated as "regexp") flavor,

I-Regexp.

I-Regexp does not provide advanced regular expression features such as capture groups,

lookahead, or backreferences. It supports only a Boolean matching capability, i.e., testing

whether a given regular expression matches a given piece of text.

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 2

I-Regexp supports the entire repertoire of Unicode characters (Unicode scalar values); both the I-

Regexp strings themselves and the strings they are matched against are sequences of Unicode

scalar values (often represented in UTF-8 encoding form for interchange).

I-Regexp is a subset of XML Schema Definition (XSD) regular expressions .

This document includes guidance for converting I-Regexps for use with several well-known

regular expression idioms.

The development of I-Regexp was motivated by the work of the JSONPath Working Group (WG).

The WG wanted to include support for the use of regular expressions in JSONPath filters in its

specification , but was unable to find a useful specification for regular

expressions that would be interoperable across the popular libraries.

[STD63]

[XSD-2]

[JSONPATH-BASE]

1.1. Terminology

This document uses the abbreviation "regexp" for what is usually called a "regular expression" in

programming. The term "I-Regexp" is used as a noun meaning a character string (sequence of

Unicode scalar values) that conforms to the requirements in this specification; the plural is "I-

Regexps".

This specification uses Unicode terminology; a good entry point is provided by

.

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

The grammatical rules in this document are to be interpreted as ABNF, as described in

and , where the "characters" of are Unicode scalar values.

[UNICODE-

GLOSSARY]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[RFC5234]

[RFC7405] Section 2.3 of [RFC5234]

2. Objectives

I-Regexps should handle the vast majority of practical cases where a matching regexp is needed

in a data-model specification or a query-language expression.

At the time of writing, an editor of this document conducted a survey of the regexp syntax used

in recently published RFCs. All examples found there should be covered by I-Regexps, both

syntactically and with their intended semantics. The exception is the use of multi-character

escapes, for which workaround guidance is provided in Section 5.

3. I-Regexp Syntax

An I-Regexp conform to the ABNF specification in Figure 1.MUST

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 3

https://rfc-editor.org/rfc/rfc5234#section-2.3

As an additional restriction, charClassExpr is not allowed to match [^], which, according to this

grammar, would parse as a positive character class containing the single character ^.

This is essentially an XSD regexp without:

character class subtraction,

multi-character escapes such as \s, \S, and \w, and

Unicode blocks.

Figure 1: I-Regexp Syntax in ABNF

i-regexp = branch *("|" branch)
branch = *piece
piece = atom [quantifier]
quantifier = ("*" / "+" / "?") / range-quantifier
range-quantifier = "{" QuantExact ["," [QuantExact]] "}"
QuantExact = 1*%x30-39 ; '0'-'9'

atom = NormalChar / charClass / ("(" i-regexp ")")
NormalChar = (%x00-27 / "," / "-" / %x2F-3E ; '/'-'>'
 / %x40-5A ; '@'-'Z'
 / %x5E-7A ; '^'-'z'
 / %x7E-D7FF ; skip surrogate code points
 / %xE000-10FFFF)
charClass = "." / SingleCharEsc / charClassEsc / charClassExpr
SingleCharEsc = "\" (%x28-2B ; '('-'+'
 / "-" / "." / "?" / %x5B-5E ; '['-'^'
 / %s"n" / %s"r" / %s"t" / %x7B-7D ; '{'-'}'
)
charClassEsc = catEsc / complEsc
charClassExpr = "[" ["^"] ("-" / CCE1) *CCE1 ["-"] "]"
CCE1 = (CCchar ["-" CCchar]) / charClassEsc
CCchar = (%x00-2C / %x2E-5A ; '.'-'Z'
 / %x5E-D7FF ; skip surrogate code points
 / %xE000-10FFFF) / SingleCharEsc
catEsc = %s"\p{" charProp "}"
complEsc = %s"\P{" charProp "}"
charProp = IsCategory
IsCategory = Letters / Marks / Numbers / Punctuation / Separators /
 Symbols / Others
Letters = %s"L" [(%s"l" / %s"m" / %s"o" / %s"t" / %s"u")]
Marks = %s"M" [(%s"c" / %s"e" / %s"n")]
Numbers = %s"N" [(%s"d" / %s"l" / %s"o")]
Punctuation = %s"P" [(%x63-66 ; 'c'-'f'
 / %s"i" / %s"o" / %s"s")]
Separators = %s"Z" [(%s"l" / %s"p" / %s"s")]
Symbols = %s"S" [(%s"c" / %s"k" / %s"m" / %s"o")]
Others = %s"C" [(%s"c" / %s"f" / %s"n" / %s"o")]

•

•

•

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 4

An I-Regexp implementation be a complete implementation of this limited subset. In

particular, full support for the Unicode functionality defined in this specification is .

The implementation:

 limit itself to 7- or 8-bit character sets such as ASCII, and

 support the Unicode character property set in character classes.

MUST

REQUIRED

• MUST NOT

• MUST

3.1. Checking Implementations

A checking I-Regexp implementation is one that checks a supplied regexp for compliance with

this specification and reports any problems. Checking implementations give their users

confidence that they didn't accidentally insert syntax that is not interoperable, so checking is

. Exceptions to this rule may be made for low-effort implementations that map I-

Regexp to another regexp library by simple steps such as performing the mapping operations

discussed in Section 5. Here, the effort needed to do full checking might dwarf the rest of the

implementation effort. Implementations document whether or not they are checking.

Specifications that employ I-Regexp may want to define in which cases their implementations

can work with a non-checking I-Regexp implementation and when full checking is needed,

possibly in the process of defining their own implementation classes.

RECOMMENDED

SHOULD

4. I-Regexp Semantics

This syntax is a subset of that of . Implementations that interpret I-Regexps yield

Boolean results as specified in . (See also Section 5.2.)

[XSD-2] MUST

[XSD-2]

5. Mapping I-Regexp to Regexp Dialects

The material in this section is not normative; it is provided as guidance to developers who want

to use I-Regexps in the context of other regular expression dialects.

5.1. Multi-Character Escapes

I-Regexp does not support common multi-character escapes (MCEs) and character classes built

around them. These can usually be replaced as shown by the examples in Table 1.

MCE/class: Replace with:

\S [^ \t\n\r]

[\S] [^\t\n\r]

\d [0-9]

Table 1: Example Substitutes for Multi-

Character Escapes

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 5

Note that the semantics of \d in XSD regular expressions is that of \p{Nd}; however, this would

include all Unicode characters that are digits in various writing systems, which is almost

certainly not what is required in IETF publications.

The construct \p{IsBasicLatin} is essentially a reference to legacy ASCII; it can be replaced by

the character class [\u0000-\u007f].

5.2. XSD Regexps

Any I-Regexp is also an XSD regexp , so the mapping is an identity function.

Note that a few errata for have been fixed in ; therefore, it is also included in

the . XSD 1.1 is less widely implemented than XSD 1.0, and

implementations of XSD 1.0 are likely to include these bugfixes; for the intents and purposes of

this specification, an implementation of XSD 1.0 regexps is equivalent to an implementation of

XSD 1.1 regexps.

[XSD-2]

[XSD-2] [XSD-1.1-2]

Normative References (Section 9.1)

5.3. ECMAScript Regexps

Perform the following steps on an I-Regexp to obtain an ECMAScript regexp :

For any unescaped dots (.) outside character classes (first alternative of charClass

production), replace the dot with [^\n\r].

Envelope the result in ^(?: and)$.

The ECMAScript regexp is to be interpreted as a Unicode pattern ("u" flag; see Section 21.2.2

"Pattern Semantics" of).

Note that where a regexp literal is required, the actual regexp needs to be enclosed in /.

[ECMA-262]

•

•

[ECMA-262]

5.4. PCRE, RE2, and Ruby Regexps

To obtain a valid regexp in Perl Compatible Regular Expressions (PCRE) , the Go

programming language's RE2 regexp library , and the Ruby programming language,

perform the same steps as in Section 5.3, except that the last step is:

Enclose the regexp in \A(?: and)\z.

[PCRE2]

[RE2]

•

6. Motivation and Background

While regular expressions originally were intended to describe a formal language to support a

Boolean matching function, they have been enhanced with parsing functions that support the

extraction and replacement of arbitrary portions of the matched text. With this accretion of

features, parsing-regexp libraries have become more susceptible to bugs and surprising

performance degradations that can be exploited in denial-of-service attacks by an attacker who

controls the regexp submitted for processing. I-Regexp is designed to offer interoperability and to

be less vulnerable to such attacks, with the trade-off that its only function is to offer a Boolean

response as to whether a character sequence is matched by a regexp.

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 6

6.1. Implementing I-Regexp

XSD regexps are relatively easy to implement or map to widely implemented parsing-regexp

dialects, with these notable exceptions:

Character class subtraction. This is a very useful feature in many specifications, but it is

unfortunately mostly absent from parsing-regexp dialects. Thus, it is omitted from I-Regexp.

Multi-character escapes. \d, \w, \s and their uppercase complement classes exhibit a large

amount of variation between regexp flavors. Thus, they are omitted from I-Regexp.

Not all regexp implementations support access to Unicode tables that enable executing

constructs such as \p{Nd}, although the \p/\P feature in general is now quite widely

available. While, in principle, it is possible to translate these into character-class matches,

this also requires access to those tables. Thus, regexp libraries in severely constrained

environments may not be able to support I-Regexp conformance.

•

•

•

7. IANA Considerations

This document has no IANA actions.

8. Security Considerations

While technically out of the scope of this specification, Section of

RFC 3629 applies to implementations. Particular note needs to be taken of the last

paragraph of Section of RFC 3629 ; an I-Regexp implementation

may need to mitigate limitations of the platform implementation in this regard.

As discussed in Section 6, more complex regexp libraries may contain exploitable bugs, which

can lead to crashes and remote code execution. There is also the problem that such libraries

often have performance characteristics that are hard to predict, leading to attacks that overload

an implementation by matching against an expensive attacker-controlled regexp.

I-Regexps have been designed to allow implementation in a way that is resilient to both threats;

this objective needs to be addressed throughout the implementation effort. Non-checking

implementations (see Section 3.1) are likely to expose security limitations of any regexp engine

they use, which may be less problematic if that engine has been built with security

considerations in mind (e.g.,). In any case, a checking implementation is still

.

Implementations that specifically implement the I-Regexp subset can, with care, be designed to

generally run in linear time and space in the input and to detect when that would not be the case

(see below).

10 ("Security Considerations")

[STD63]

3 ("UTF-8 definition") [STD63]

[RE2]

RECOMMENDED

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 7

https://rfc-editor.org/rfc/rfc3629#section-10
https://rfc-editor.org/rfc/rfc3629#section-10
https://rfc-editor.org/rfc/rfc3629#section-3
https://rfc-editor.org/rfc/rfc3629#section-3

9. References

Existing regexp engines should be able to easily handle most I-Regexps (after the adjustments

discussed in Section 5), but may consume excessive resources for some types of I-Regexps or

outright reject them because they cannot guarantee efficient execution. (Note that different

versions of the same regexp library may be more or less vulnerable to excessive resource

consumption for these cases.)

Specifically, range quantifiers (as in a{2,4}) provide particular challenges for both existing and

I-Regexp focused implementations. Implementations may therefore limit range quantifiers in

composability (disallowing nested range quantifiers such as (a{2,4}){2,4}) or range

(disallowing very large ranges such as a{20,200000}), or detect and reject any excessive

resource consumption caused by range quantifiers.

I-Regexp implementations that are used to evaluate regexps from untrusted sources need to be

robust in these cases. Implementers using existing regexp libraries are encouraged:

to check their documentation to see if mitigations are configurable, such as limits in resource

consumption, and

to document their own degree of robustness resulting from employing such mitigations.

•

•

[RFC2119]

[RFC5234]

[RFC7405]

[RFC8174]

[XSD-1.1-2]

[XSD-2]

9.1. Normative References

, , ,

, , March 1997,

.

 and ,

, , , , January 2008,

.

, , ,

, December 2014, .

, ,

, , , May 2017,

.

, , , ,

, and ,

, ,

, 5 April 2012,

.

 and ,

, ,

, 28 October 2004,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Crocker, D., Ed. P. Overell "Augmented BNF for Syntax Specifications:

ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://

www.rfc-editor.org/info/rfc5234>

Kyzivat, P. "Case-Sensitive String Support in ABNF" RFC 7405 DOI 10.17487/

RFC7405 <https://www.rfc-editor.org/info/rfc7405>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Peterson, D., Ed. Gao, S., Ed. Malhotra, A., Ed. Sperberg-McQueen, C. M., Ed.

Thompson, H., Ed. P. Biron, Ed. "W3C XML Schema Definition Language

(XSD) 1.1 Part 2: Datatypes" W3C REC REC-xmlschema11-2-20120405 W3C REC-

xmlschema11-2-20120405 <https://www.w3.org/TR/2012/REC-

xmlschema11-2-20120405/>

Biron, P., Ed. A. Malhotra, Ed. "XML Schema Part 2: Datatypes Second

Edition" W3C REC REC-xmlschema-2-20041028 W3C REC-

xmlschema-2-20041028 <https://www.w3.org/TR/2004/REC-

xmlschema-2-20041028/>

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 8

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
https://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
https://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[ECMA-262]

[JSONPATH-BASE]

[PCRE2]

[RE2]

[RFC7493]

[STD63]

[UNICODE-GLOSSARY]

9.2. Informative References

, ,

, June 2020,

.

, , and ,

, ,

, 25 August 2023,

.

,

.

,

, .

, , , ,

March 2015, .

, ,

.

Ecma International "ECMAScript 2020 Language Specification" Standard

ECMA-262, 11th Edition <https://www.ecma-international.org/wp-

content/uploads/ECMA-262.pdf>

Gössner, S., Ed. Normington, G., Ed. C. Bormann, Ed. "JSONPath: Query

expressions for JSON" Work in Progress Internet-Draft, draft-ietf-jsonpath-

base-20 <https://datatracker.ietf.org/doc/html/draft-ietf-

jsonpath-base-20>

"Perl-compatible Regular Expressions (revised API: PCRE2)" <http://pcre.org/

current/doc/html/>

"RE2 is a fast, safe, thread-friendly alternative to backtracking regular

expression engines like those used in PCRE, Perl, and Python. It is a C++ library."

commit 73031bb <https://github.com/google/re2>

Bray, T., Ed. "The I-JSON Message Format" RFC 7493 DOI 10.17487/RFC7493

<https://www.rfc-editor.org/info/rfc7493>

, , , ,

November 2003.

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629

<https://www.rfc-editor.org/info/std63>

Unicode, Inc. "Glossary of Unicode Terms" <https://unicode.org/

glossary/>

Acknowledgements

Discussion in the IETF JSONPATH WG about whether to include a regexp mechanism into the

JSONPath query expression specification and previous discussions about the YANG pattern and

Concise Data Definition Language (CDDL) .regexp features motivated this specification.

The basic approach for this specification was inspired by "The I-JSON Message Format"

.[RFC7493]

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 9

https://www.ecma-international.org/wp-content/uploads/ECMA-262.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-262.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-20
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-20
http://pcre.org/current/doc/html/
http://pcre.org/current/doc/html/
https://github.com/google/re2
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/std63
https://unicode.org/glossary/
https://unicode.org/glossary/

Authors' Addresses

Carsten Bormann

Universität Bremen TZI

Postfach 330440

 D-28359 Bremen

Germany

 +49-421-218-63921 Phone:

 cabo@tzi.org Email:

Tim Bray

Textuality

Canada

 tbray@textuality.com Email:

RFC 9485 I-Regexp October 2023

Bormann & Bray Standards Track Page 10

tel:+49-421-218-63921
mailto:cabo@tzi.org
mailto:tbray@textuality.com

	RFC 9485
	I-Regexp: An Interoperable Regular Expression Format
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Objectives
	3. I-Regexp Syntax
	3.1. Checking Implementations

	4. I-Regexp Semantics
	5. Mapping I-Regexp to Regexp Dialects
	5.1. Multi-Character Escapes
	5.2. XSD Regexps
	5.3. ECMAScript Regexps
	5.4. PCRE, RE2, and Ruby Regexps

	6. Motivation and Background
	6.1. Implementing I-Regexp

	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

 I-Regexp: An Interoperable Regular Expression Format

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 +49-421-218-63921
 cabo@tzi.org

 Textuality

 Canada

 tbray@textuality.com

 art
 jsonpath
 Regexp
 Regex

 This document specifies I-Regexp, a flavor of regular expression that is
limited in scope with the goal of interoperation across many different
regular expression libraries.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Objectives

 . I-Regexp Syntax

 . Checking Implementations

 . I-Regexp Semantics

 . Mapping I-Regexp to Regexp Dialects

 . Multi-Character Escapes

 . XSD Regexps

 . ECMAScript Regexps

 . PCRE, RE2, and Ruby Regexps

 . Motivation and Background

 . Implementing I-Regexp

 . IANA Considerations

 . Security Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 This specification describes an interoperable regular expression (abbreviated as "regexp") flavor, I-Regexp.
 I-Regexp does not provide advanced regular expression features such as capture groups, lookahead, or backreferences.
It supports only a Boolean matching capability, i.e., testing whether a given regular expression matches a given piece of text.
 I-Regexp supports the entire repertoire of Unicode characters (Unicode
scalar values); both the I-Regexp strings themselves and the strings
they are matched against are sequences of Unicode scalar values (often
represented in UTF-8 encoding form for interchange).
 I-Regexp is a subset of XML Schema Definition (XSD) regular expressions .
 This document includes guidance for converting I-Regexps for use with several well-known regular expression idioms.
 The development of I-Regexp was motivated by the work of the JSONPath Working Group (WG). The WG wanted to include support for the use of regular expressions in JSONPath filters
in its specification , but was unable to find a useful
specification for regular expressions that would be interoperable across the popular libraries.

 Terminology
 This document uses the abbreviation "regexp" for what is usually
called a "regular expression" in programming.
The term "I-Regexp" is used as a noun meaning a character string (sequence of
Unicode scalar values) that conforms to the requirements
in this specification; the plural is "I-Regexps".
 This specification uses Unicode terminology; a good entry point is provided by .

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 The grammatical rules in this document are to be interpreted as ABNF,
as described in and , where the "characters" of
 are Unicode scalar values.

 Objectives
 I-Regexps should handle the vast majority of practical cases where a
matching regexp is needed in a data-model specification or a query-language expression.
 At the time of writing, an editor of this document conducted a survey of the regexp syntax
used in recently published RFCs. All examples found there should be covered by I-Regexps,
both syntactically and with their intended semantics.
The exception is the use of multi-character escapes, for which
workaround guidance is provided in .

 I-Regexp Syntax
 An I-Regexp MUST conform to the ABNF specification in
 .

 I-Regexp Syntax in ABNF

i-regexp = branch *("|" branch)
branch = *piece
piece = atom [quantifier]
quantifier = ("*" / "+" / "?") / range-quantifier
range-quantifier = "{" QuantExact ["," [QuantExact]] "}"
QuantExact = 1*%x30-39 ; '0'-'9'

atom = NormalChar / charClass / ("(" i-regexp ")")
NormalChar = (%x00-27 / "," / "-" / %x2F-3E ; '/'-'>'
 / %x40-5A ; '@'-'Z'
 / %x5E-7A ; '^'-'z'
 / %x7E-D7FF ; skip surrogate code points
 / %xE000-10FFFF)
charClass = "." / SingleCharEsc / charClassEsc / charClassExpr
SingleCharEsc = "\" (%x28-2B ; '('-'+'
 / "-" / "." / "?" / %x5B-5E ; '['-'^'
 / %s"n" / %s"r" / %s"t" / %x7B-7D ; '{'-'}'
)
charClassEsc = catEsc / complEsc
charClassExpr = "[" ["^"] ("-" / CCE1) *CCE1 ["-"] "]"
CCE1 = (CCchar ["-" CCchar]) / charClassEsc
CCchar = (%x00-2C / %x2E-5A ; '.'-'Z'
 / %x5E-D7FF ; skip surrogate code points
 / %xE000-10FFFF) / SingleCharEsc
catEsc = %s"\p{" charProp "}"
complEsc = %s"\P{" charProp "}"
charProp = IsCategory
IsCategory = Letters / Marks / Numbers / Punctuation / Separators /
 Symbols / Others
Letters = %s"L" [(%s"l" / %s"m" / %s"o" / %s"t" / %s"u")]
Marks = %s"M" [(%s"c" / %s"e" / %s"n")]
Numbers = %s"N" [(%s"d" / %s"l" / %s"o")]
Punctuation = %s"P" [(%x63-66 ; 'c'-'f'
 / %s"i" / %s"o" / %s"s")]
Separators = %s"Z" [(%s"l" / %s"p" / %s"s")]
Symbols = %s"S" [(%s"c" / %s"k" / %s"m" / %s"o")]
Others = %s"C" [(%s"c" / %s"f" / %s"n" / %s"o")]

 As an additional restriction, charClassExpr is not allowed to
match [^], which, according to this grammar, would parse as a
positive character class containing the single character ^.
 This is essentially an XSD regexp without:

 character class
subtraction,
 multi-character escapes such as \s,
 \S, and \w, and
 Unicode blocks.

 An I-Regexp implementation MUST be a complete implementation of this
limited subset.
In particular, full support for the Unicode functionality defined in
 this specification is REQUIRED. The implementation:

 MUST NOT limit itself to 7- or 8-bit character sets such as ASCII, and

 MUST support the Unicode character property set in character classes.

 Checking Implementations
 A checking I-Regexp implementation is one that checks a supplied
regexp for compliance with this specification and reports any problems.
Checking implementations give their users confidence that they didn't
accidentally insert syntax that is not interoperable, so checking is RECOMMENDED.
Exceptions to this rule may be made for low-effort implementations
that map I-Regexp to another regexp library by simple steps such as
performing the mapping operations discussed in . Here, the
effort needed to do full checking might dwarf the rest of the
implementation effort.
Implementations SHOULD document whether or not they are checking.
 Specifications that employ I-Regexp may want to define in which
cases their implementations can work with a non-checking I-Regexp
implementation and when full checking is needed, possibly in the
process of defining their own implementation classes.

 I-Regexp Semantics
 This syntax is a subset of that of .
Implementations that interpret I-Regexps MUST
yield Boolean results as specified in .
(See also .)

 Mapping I-Regexp to Regexp Dialects
 The material in this section is not normative; it is provided as guidance
to developers who want to use I-Regexps in the context of other
regular expression dialects.

 Multi-Character Escapes
 I-Regexp does not support common multi-character escapes (MCEs) and character classes built around them. These can usually
be replaced as shown by the examples in .

 Example Substitutes for Multi-Character Escapes

 MCE/class:
 Replace with:

 \S

 [^ \t\n\r]

 [\S]

 [^\t\n\r]

 \d

 [0-9]

 Note that the semantics of \d in XSD regular expressions
 is that of \p{Nd}; however, this would include all Unicode
 characters that are digits in various writing systems, which is almost
 certainly not what is required in IETF publications.
 The construct \p{IsBasicLatin} is essentially a reference to legacy
ASCII; it can be replaced by the character class [\u0000-\u007f].

 XSD Regexps
 Any I-Regexp is also an XSD regexp , so the mapping is an identity
	function.
 Note that a few errata for have been fixed in ; therefore, it
is also included in the Normative References.
XSD 1.1 is less widely implemented than XSD 1.0, and implementations
of XSD 1.0 are likely to include these bugfixes; for the intents
and purposes of this specification, an implementation of XSD 1.0
regexps is equivalent to an implementation of XSD 1.1 regexps.

 ECMAScript Regexps
 Perform the following steps on an I-Regexp to obtain an ECMAScript
regexp :

 For any unescaped dots (.) outside character classes
 (first alternative of charClass production), replace the dot with
 [^\n\r].
 Envelope the result in ^(?: and)$.

 The ECMAScript regexp is to be interpreted as a Unicode pattern ("u"
flag; see Section 21.2.2 "Pattern Semantics" of).
 Note that where a regexp literal is required,
the actual regexp needs to be enclosed in /.

 PCRE, RE2, and Ruby Regexps
 To obtain a valid regexp in Perl Compatible Regular Expressions
 (PCRE) , the Go programming language's RE2 regexp library , and the Ruby
programming language, perform the same steps as in , except that the last step is:

 Enclose the regexp in \A(?: and)\z.

 Motivation and Background
 While regular expressions originally were intended to describe a
formal language to support a Boolean matching function, they
have been enhanced with parsing functions that support the extraction
and replacement of arbitrary portions of the matched text. With this
accretion of features, parsing-regexp libraries have become
more susceptible to bugs and surprising performance degradations that
can be exploited in denial-of-service attacks by
an attacker who controls the regexp submitted for
processing. I-Regexp is designed to offer interoperability and to be
less vulnerable to such attacks, with the trade-off that its only
function is to offer a Boolean response as to whether a character
sequence is matched by a regexp.

 Implementing I-Regexp
 XSD regexps are relatively easy to implement or map to widely
implemented parsing-regexp dialects, with these notable
exceptions:

 Character class subtraction. This is a very useful feature in
 many specifications, but it is unfortunately mostly absent from
 parsing-regexp dialects. Thus, it is omitted from I-Regexp.
 Multi-character escapes. \d, \w, \s
 and their uppercase complement classes exhibit a large amount of
 variation between regexp flavors. Thus, they are omitted from
 I-Regexp.
 Not all regexp implementations support access to Unicode
 tables that enable executing constructs such as \p{Nd},
 although the \p/ \P feature in general is now quite
 widely available. While, in principle, it is possible to translate
 these into character-class matches, this also requires access to
 those tables. Thus, regexp libraries in severely constrained
 environments may not be able to support I-Regexp conformance.

 IANA Considerations
 This document has no IANA actions.

 Security Considerations
 While technically out of the scope of this specification, Section "Security Considerations" of RFC 3629 applies to implementations.
Particular note needs to be taken of the last paragraph of Section "UTF-8 definition" of RFC 3629 ; an I-Regexp implementation may need to
mitigate limitations of the platform implementation in this regard.
 As discussed in , more complex regexp libraries may
contain exploitable bugs, which can lead to crashes and remote code
execution. There is also the problem that such libraries often have
performance characteristics that are hard to predict, leading to attacks
that overload an implementation by matching against an expensive
attacker-controlled regexp.
 I-Regexps have been designed to allow implementation in a way that is
resilient to both threats; this objective needs to be addressed
throughout the implementation effort. Non-checking implementations (see) are likely to expose
security limitations of any regexp engine they use, which may be less
problematic if that engine has been built with security considerations
in mind (e.g.,). In any case, a checking implementation is still RECOMMENDED.
 Implementations that specifically implement the I-Regexp subset can,
with care, be designed to generally run in linear time and space in
the input and to detect when that would not be the case (see below).
 Existing regexp engines should be able to easily handle most I-Regexps
(after the adjustments discussed in), but may consume
excessive resources for some types of I-Regexps or outright reject
them because they cannot guarantee efficient execution.
(Note that different versions of the same regexp library may be more or
 less vulnerable to excessive resource consumption for these cases.)
 Specifically, range quantifiers (as in a{2,4}) provide particular
challenges for both existing and I-Regexp focused implementations.
Implementations may therefore limit range quantifiers in composability
(disallowing nested range quantifiers such as (a{2,4}){2,4}) or
range (disallowing very large ranges such as a{20,200000}), or detect
and reject any excessive resource consumption caused by range quantifiers.
 I-Regexp implementations that are used to evaluate regexps from
untrusted sources need to be robust in these cases.
Implementers using existing regexp libraries are encouraged:

 to check
their documentation to see if mitigations are configurable, such as
 limits in resource consumption, and
 to document their own degree of
robustness resulting from employing such mitigations.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Case-Sensitive String Support in ABNF

 This document extends the base definition of ABNF (Augmented Backus-Naur Form) to include a way to specify US-ASCII string literals that are matched in a case-sensitive manner.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes

 XML Schema Part 2: Datatypes Second Edition

 Informative References

 ECMAScript 2020 Language Specification

 Ecma International

 Standard ECMA-262, 11th Edition

 JSONPath: Query expressions for JSON

 Fachhochschule Dortmund

 Universität Bremen TZI

 Work in Progress

 Perl-compatible Regular Expressions (revised API: PCRE2)

 RE2 is a fast, safe, thread-friendly alternative to backtracking regular expression engines like those used in PCRE, Perl, and Python. It is a C++ library.

 commit 73031bb

 The I-JSON Message Format

 I-JSON (short for "Internet JSON") is a restricted profile of JSON designed to maximize interoperability and increase confidence that software can process it successfully with predictable results.

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 Glossary of Unicode Terms

 Unicode, Inc.

 Acknowledgements
 Discussion in the IETF
 JSONPATH WG about whether to include a regexp mechanism into the
 JSONPath query expression specification and previous
 discussions about the YANG pattern and Concise Data
 Definition Language (CDDL) .regexp
 features motivated this specification.
 The basic approach for this specification was inspired by " " .

 Authors' Addresses

 Universität Bremen TZI

 Postfach 330440
 Bremen
 D-28359
 Germany

 +49-421-218-63921
 cabo@tzi.org

 Textuality

 Canada

 tbray@textuality.com

