Stream: Internet Engineering Task Force (IETF)

RFC: 9616

Category: Standards Track
Published: September 2024

ISSN: 2070-1721

Authors: B.Jonglez . Chroboczek

ENS Lyon IRIF, Université Paris Cité

RFC 9616
Delay-Based Metric Extension for the Babel Routing
Protocol

Abstract

This document defines an extension to the Babel routing protocol that measures the round-trip
time (RTT) between routers and makes it possible to prefer lower-latency links over higher-
latency ones.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9616.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Jonglez & Chroboczek Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9616
https://www.rfc-editor.org/info/rfc9616
https://trustee.ietf.org/license-info

RFC 9616

Table of Contents

1.

Introduction

1.1. Applicability

. Specification of Requirements

. RTT Sampling

3.1. Data Structures
3.2. Protocol Operation
3.3. Wrap-Around and Node Restart

3.4. Implementation Notes

. RTT-Based Route Selection

4.1. Smoothing
4.2. Cost Computation

4.3. Hysteresis

. Packet Format

Babel RTT Extension

. Backwards and Forwards Compatibility

6.1. Timestamp Sub-TLV in Hello TLVs

6.2. Timestamp Sub-TLV in IHU TLVs

. IANA Considerations
. Security Considerations

. References

9.1. Normative References

9.2. Informative References

Acknowledgements

Authors' Addresses

Jonglez & Chroboczek

Standards Track

September 2024

S

PSRN, BN N N

10

10
10
10
11

11
12
12
12
12

12
13

Page 2

RFC 9616 Babel RTT Extension September 2024

1. Introduction

The Babel routing protocol [RFC8966] does not mandate a specific algorithm for computing
metrics; existing implementations use a packet-loss-based metric on wireless links and a simple
hop-count metric on all other types of links. While this strategy works reasonably well in many
networks, it fails to select reasonable routes in some topologies involving tunnels or VPNs.

Hommm e +
| A (Paris) +--------------- +
Hommm oo + \
/ \
/ \
/ \
Fommm e + Fommm o +
| B (Paris) | | C (Tokyo) |
Fommm o m oo + Fommm oo +
\ /
\ /
\ /
Hommm e + /
| D (Paris) +--------------- +
Hommm oo +

Figure 1: Four Routers in a Diamond Topology

For example, consider the topology described in Figure 1, with three routers A, B, and D located
in Paris and a fourth router C located in Tokyo, connected through tunnels in a diamond
topology. When routing traffic from A to D, it is obviously preferable to use the local route
through B as this is likely to provide better service quality and lower monetary cost than the
distant route through C. However, the existing implementations of Babel consider both routes as
having the same metric; therefore, they will route the traffic through C in roughly half the cases.

In the first part of this document (Section 3), we specify an extension to the Babel routing
protocol that produces a sequence of accurate measurements of the round-trip time (RTT)
between two Babel neighbours. These measurements are not directly usable as an input to
Babel's route selection procedure since they tend to be noisy and to cause a negative feedback
loop, which might give rise to frequent oscillations. In the second part (Section 4), we define an
algorithm that maps the sequence of RTT samples to a link cost that can be used for route
selection.

Jonglez & Chroboczek Standards Track Page 3

RFC 9616 Babel RTT Extension September 2024

1.1. Applicability

The extension defined in Section 3 provides a sequence of accurate but potentially noisy RTT
samples. Since the RTT is a symmetric measure of delay, this protocol is only applicable in
environments where the symmetric delay is a good predictor of whether a link should be taken
by routing traffic, which might not necessarily be the case in networks built over exotic link
technologies.

The extension makes minimal requirements on the nodes. In particular, it does not assume
synchronised clocks, and only requires that clock drift be negligible during the time interval
between two Hello TLVs. Since that is on the order of a few seconds, this requirement is met even
with cheap crystal oscillators, such as the ones used in consumer electronics.

The algorithm defined in Section 4 depends on a number of assumptions about the network. The
assumption with the most severe consequences is that all links below a certain RTT (rtt-min in
Section 4.2) can be grouped in a single category of "good" links. While this is the case in wide-
area overlay networks, it makes the algorithm inapplicable in networks where distinguishing
between low-latency links is important.

There are other assumptions, but they are less likely to limit the algorithm's applicability. The
algorithm assumes that all links above a certain RTT (rtt-max in Section 4.2) are equally bad, and
they will only be used as a last resort. In addition, in order to avoid oscillations, the algorithm is
designed to react slowly to RTT variations, thus causing suboptimal routing for seconds or even
minutes after an RTT change; while this is a desirable property in fixed networks, as it avoid
excessive route oscillations, it might be an issue with networks with high rates of node mobility.

2. Specification of Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

3. RTT Sampling

3.1. Data Structures

We assume that every Babel speaker maintains a local clock that counts microseconds from an
arbitrary origin. We do not assume that clocks are synchronised: clocks local to distinct nodes
need not share a common origin. The protocol will eventually recover if the clock is stepped, so
clocks need not persist across node reboots.

Jonglez & Chroboczek Standards Track Page 4

RFC 9616 Babel RTT Extension September 2024

Every Babel speaker maintains a Neighbour Table, described in Section 3.2.4 of [RFC8966]. This
extension extends every entry in the Neighbour Table with the following data:
* the Origin Timestamp, a 32-bit timestamp (modulo 232 according to the neighbour's clock;

* the Receive Timestamp, a 32-bit timestamp (modulo 232 according to the local clock.

Both values are initially undefined.

3.2. Protocol Operation

The RTT to a neighbour is estimated using an algorithm due to Mills [RFC891], originally
developed for the HELLO routing protocol and later used in NTP [RFC5905].

A Babel speaker periodically sends Hello messages to its neighbours (Section 3.4.1 of [RFC8966]).
Additionally, it occasionally sends a set of IHU ("I Heard You") messages, at most one per
neighbour (Section 3.4.2 of [RFC8966]).

A B
I I
t1 + |
[\ I
[\ I
[\ | Hello(t1)
AN
I \
I \
| + t1'
I I
| | RTT = (t2 - t1) - (t2' - t1")
I I
| + t2'
I /1
I /|
[/ |
[/ | Hello(t2')
| 7/ | IHU(t1, t1")
|/ I
t2 + |
I I
\ Y

Figure 2: Mills' Algorithm

In order to enable the computation of RTTs, a node A MUST include, in every Hello that it sends, a
timestamp t1 (according to A's local clock), as illustrated in Figure 2. When a node B receives A's
timestamped Hello, it computes the time t1' at which the Hello was received (according to B's
local clock). It then MUST record the value t1 in the Origin Timestamp field of the Neighbour
Table entry corresponding to A and the value t1' in the Receive Timestamp field of the Neighbour
Table entry.

Jonglez & Chroboczek Standards Track Page 5

https://rfc-editor.org/rfc/rfc8966#section-3.2.4
https://rfc-editor.org/rfc/rfc8966#section-3.4.1
https://rfc-editor.org/rfc/rfc8966#section-3.4.2

RFC 9616 Babel RTT Extension September 2024

When B sends an IHU to A, it checks whether both timestamps are defined in the Neighbour
Table. If that is the case, then it MUST ensure that its IHU TLV is sent in a packet that also contains
a timestamped Hello TLV (either a normally scheduled Hello or an unscheduled Hello, see
Section 3.4.1 of [RFC8966]). It MUST include in the IHU both the Origin Timestamp and the
Receive Timestamp stored in the Neighbour Table.

Upon receiving B's packet, A computes the time t2 (according to its local clock) at which it was
received. Node A MUST then verify that it contains both a Hello TLV with timestamp t2' and an
IHU TLV with two timestamps t1 and t1'. If that is the case, A computes the value:

RTT = (t2 - t1) - (t2' - t1')

(where all computations are done modulo 232), which is a measurement of the RTT between A
and B. (A then stores the values t2' and t2 in its Neighbour Table, as B did before.)

This algorithm has a number of desirable properties:

1. The algorithm is symmetric: A and B use the same procedures for timestamping packets and
computing RTT samples, and both nodes produce one RTT sample for each received (Hello,
IHU) pair.

2. Since there is no requirement that t1' and t2' be equal, the protocol is asynchronous: the only
change to Babel's message scheduling is the requirement that a packet containing an IHU
also contain a Hello.

3. Since the algorithm only ever computes differences of timestamps according to a single
clock, it does not require synchronised clocks.

4. The algorithm requires very little additional state: a node only needs to store the two
timestamps associated with the last hello received from each neighbour.

5. Since the algorithm only requires piggybacking one or two timestamps on each Hello and
IHU TLV, it makes efficient use of network resources.

In principle, this algorithm is inaccurate in the presence of clock drift (i.e., when A's clock and B's
clock are running at different frequencies). However, t2' - t1' is usually on the order of a few
seconds, and significant clock drift is unlikely to happen at that time scale.

In order for RTT values to be consistent between implementations, timestamps need to be
computed at roughly the same point in the network stack. Transmit timestamps SHOULD be
computed just before the packet is passed to the network stack (i.e., before it is subjected to any
queueing delays); receive timestamps SHOULD be computed just after the packet is received from
the network stack.

Jonglez & Chroboczek Standards Track Page 6

https://rfc-editor.org/rfc/rfc8966#section-3.4.1

RFC 9616 Babel RTT Extension September 2024

3.3. Wrap-Around and Node Restart

Timestamp values are a count of microseconds stored as a 32-bit unsigned integer; thus, they
wrap around every 71 minutes or so. What is more, a node may occasionally reboot and restart
its clock at an arbitrary origin. For these reasons, very old timestamps or nonsensical timestamps
MUST NOT be used to yield RTT samples.

The following algorithm can be used to discard obsolete samples. When a node receives a packet
containing a Hello and an IHU, it compares the current local time t2 with the Origin Timestamp
contained in the IHU; if the Origin Timestamp appears to be in the future, or if it is in the past by
more than a time T (the value T = 3 minutes is recommended), then the timestamps are still
recorded in the Neighbour Table, but they are not used for computation of an RTT sample.

Similarly, the node compares the Hello's timestamp with the Receive Timestamp recorded in the
Neighbour Table; if the Hello's timestamp appears to be older than the recorded timestamp, or if
it appears to be more recent by an interval larger than the value T, then the timestamps are not
used for computation of an RTT sample.

3.4. Implementation Notes

The accuracy of the computed RTT samples depends on Transmit Timestamps being computed as
late as possible before a packet containing a Hello TLV is passed to the network stack, and
Receive Timestamps being computed as early as possible after reception of a packet containing a
(Hello, IHU) pair. We have found the following implementation strategy to be useful.

When a Hello TLV is buffered for transmission, we insert a PadN sub-TLV (Section 4.7.2 of
[RFC8966]) with a length of 4 octets within the TLV. When the packet is ready to be sent, we check
whether it contains a 4-octet PadN sub-TLV; if that's the case, we overwrite the PadN sub-TLV
with a Timestamp sub-TLV with the current time, and send out the packet.

Conversely, when a packet is received, we immediately compute the current time and record it
with the received packet. We then process the packet as usual and use the recorded timestamp in
order to compute an RTT sample.

The protocol is designed to survive the clock being reset when a node reboots; on POSIX systems,
this makes it possible to use the CLOCK_MONOTONIC clock for computing timestamps. If
CLOCK_MONOTONIC is not available, CLOCK_REALTIME may be used, since the protocol is able
to survive the clock being occasionally stepped.

Jonglez & Chroboczek Standards Track Page 7

RFC 9616 Babel RTT Extension September 2024

4. RTT-Based Route Selection

The protocol described above yields a series of RTT samples. While these samples are fairly
accurate, they are not directly usable as an input to the route selection procedure, for at least
three reasons:

1. In the presence of bursty traffic, routers experience transient congestion, which causes
occasional spikes in the measured RTT. Thus, the RTT signal may be noisy and require
smoothing before it can be used for route selection.

2. Using the RTT signal for route selection gives rise to a negative feedback loop. When a route
has a low RTT, it is deemed to be more desirable; this causes it to be used for more data
traffic, which may lead to congestion, which in turn increases the RTT. Without some form of
hysteresis, using RTT for route selection would lead to oscillations between parallel routes,
which would lead to packet reordering and negatively affect upper-layer protocols (such as
TCP).

3. Even in the absence of congestion, the RTT tends to exhibit some variation. If the RTTs of two
parallel routes oscillate around a common value, using the RTT as input to route selection
will cause frequent routing oscillations, which, again, indicates the need for some form of
hysteresis.

In this section, we describe an algorithm that integrates smoothing and hysteresis. It has been
shown to behave well both in simulation and experimentally over the Internet [DELAY-BASED]
and is RECOMMENDED when RTT information is being used for route selection. The algorithm is
structured as follows:

e the RTT values are first smoothed in order to avoid instabilities due to outliers (Section 4.1);

* the resulting smoothed samples are mapped to a cost using a bounded, non-linear mapping,
which avoids instabilities at the lower and upper end of the RTT range (Section 4.2);

* a hysteresis filter is applied in order to limit the amount of oscillation in the middle of the
RTT range (Section 4.3).

4.1. Smoothing

The RTT samples provided by Mills' algorithm are fairly accurate, but noisy: experiments
indicate the occasional presence of individual samples that are much larger than the expected
value. Thus, some form of smoothing SHOULD be applied in order to avoid instabilities due to
occasional outliers.

An implementation MAY use the exponential average algorithm, which is simple to implement
and appears to yield good results in practice [DELAY-BASED]. The algorithm is parameterised by
a constant a, where 0 < a < 1, which controls the amount of smoothing being applied. For each
neighbour, it maintains a smoothed value RTT, which is initially undefined. When the first
sample RTTO is measured, the smoothed value is set to the value of RTT0. At each new sample
RTTn, the smoothed value is set to a weighted average of the previous smoothed value and the
new sample:

Jonglez & Chroboczek Standards Track Page 8

RFC 9616 Babel RTT Extension September 2024

RTT := a RTT + (1 - a) RTTn

The smoothing constant a SHOULD be between 0.8 and 0.9; the value 0.836 is the RECOMMENDED
default.

4.2. Cost Computation

The smoothed RTT value obtained in the previous step needs to be mapped to a link cost, suitable
for input to the metric computation procedure (Section 3.5.2 of [REC8966]). Obviously, the
mapping should be monotonic (larger RTTs imply larger costs). In addition, the mapping should
be constant beyond a certain value (all very bad links are equally bad) so that congested links do
not contribute to routing instability. The mapping should also be constant around 0, so that small
oscillations in the RTT of low-RTT links do not contribute to routing instability.

cost
A
I
I
| C + max-rtt-penalty
| o -
[/.
| / .
| /
| /
| /
I /
| /
| /
| /
| /
€ doccccoooooos +
|
|
I
O +-- - - - >
0 rtt-min rtt-max RTT

Figure 3: Mapping from RTT to Link Cost

Implementations SHOULD use the mapping described in Figure 3, which is parameterised by
three parameters: rtt-min, rtt-max, and max-rtt-penalty. For RTT values below rtt-min, the link
cost is just the nominal cost C of a single hop. Between rtt-min and rtt-max, the cost increases
linearly; above rtt-max, the constant value max-rtt-penalty is added to the nominal cost.

The value rtt-min should be slightly larger than the RTT of a local, uncongested link. The value
rtt-max should be the RTT above which a link should be avoided if possible, either because it is a
long-distance link or because it is congested; reducing the value of rtt-max improves stability, but

Jonglez & Chroboczek Standards Track Page 9

https://rfc-editor.org/rfc/rfc8966#section-3.5.2

RFC 9616 Babel RTT Extension September 2024

prevents the protocol from discriminating between high-latency links. As for max-rtt-penalty, it
controls how much the protocol will penalise long-distance links. The default values rtt-min = 10
ms, rtt-max = 120 ms, and max-rtt-penalty = 150 are RECOMMENDED.

4.3. Hysteresis

Even after applying a bounded mapping from smoothed RTT to a cost value, the cost may
fluctuate when a link's RTT is between rtt-min and rtt-max. Implementations SHOULD use a
robust hysteresis algorithm, such as the one described in Appendix A.3 of [RFC8966].

5. Backwards and Forwards Compatibility

This protocol extension stores the data that it requires within sub-TLVs of Babel's Hello and IHU
TLVs. As discussed in Appendix D of [RFC8966], implementations that do not understand this
extension will silently ignore the sub-TLVs while parsing the rest of the TLVs that they contain. In
effect, this extension supports building hybrid networks consisting of extended and unextended
routers; while such networks might suffer from sub-optimal routing, they will not suffer from
routing loops or other pathologies.

If a sub-TLV defined in this extension is longer than expected, the additional data is silently
ignored. This provision is made in order to allow a future version of this protocol to extend the
packet format with additional data, for example high-precision or absolute timestamps.

6. Packet Format

This extension defines the Timestamp sub-TLV whose Type field has the value 3. This sub-TLV
can be contained within a Hello sub-TLV, in which case it carries a single timestamp, or within an
IHU sub-TLV, in which case it carries two timestamps.

Timestamps are encoded as 32-bit unsigned integers (modulo 232) expressed in units of one
microsecond, counting from an arbitrary origin. Timestamps wrap around every 4295 seconds,
or roughly 71 minutes (see also Section 3.3).

6.1. Timestamp Sub-TLV in Hello TLVs
When contained within a Hello TLV, the Timestamp sub-TLV has the following format:

0 1 2 3
©012345678901234567890123456789801
B e T S e e o S e e e e e T o T Tl L e e S e
Type = 3 | Length | Transmit Timestamp
-—+-+-+-F+-+-+-+-F+-+-+-+-F+-+-+-F+-F+-+-+-F+-F+-+-+-F+-F+-+-+-F+-F+-+-+-+-+
(continued) |
—t—t—t—t—t—t-t-t-t -ttt —t-t+-+-+

+— +— +

Type: Set to 3 to indicate a Timestamp sub-TLV.

Jonglez & Chroboczek Standards Track Page 10

https://rfc-editor.org/rfc/rfc8966#appendix-A.3
https://rfc-editor.org/rfc/rfc8966#appendix-D

RFC 9616 Babel RTT Extension September 2024

Length: The length of the body in octets, exclusive of the Type and Length fields.

Transmit Timestamp: The time at which the packet containing this sub-TLV was sent, according
to the sender's clock.

If the Length field is larger than the expected 4 octets, the sub-TLV MUST be processed normally
(the first 4 octets are interpreted as described above) and any extra data contained in this sub-
TLV MUST be silently ignored. If the Length field is smaller than the expected 4 octets, then this
sub-TLV MUST be ignored (and the remainder of the enclosing TLV processed as usual).

6.2. Timestamp Sub-TLV in IHU TLVs
When contained in an IHU TLV, the Timestamp sub-TLV has the following format:

0 1 2 3

0123456789012345678906123456789201

ettt -ttt -ttt -ttt -ttt -ttt -F-F -ttt -F-+—t-+-+-+

Type = 3 [Length [Origin Timestamp

Bt T cs St T e e R it e S At (T S R
(continued) | Receive Timestamp |

B e e T I e T I e o e T e P
(continued) |

—t—t-t-t—t-t—F-t-t—F-F-t—Ft-+-+-+

+— +— +— +

Type: Set to 3 to indicate a Timestamp sub-TLV.
Length: The length of the body in octets, exclusive of the Type and Length fields.

Origin Timestamp: A copy of the Transmit Timestamp of the last Timestamp sub-TLV contained
in a Hello TLV received from the node to which the enclosing IHU TLV applies.

Receive Timestamp: The time, according to the sender's clock, at which the last timestamped
Hello TLV was received from the node to which the enclosing IHU TLV applies.

If the Length field is larger than the expected 8 octets, the sub-TLV MUST be processed normally
(the first 8 octets are interpreted as described above), and any extra data contained in this sub-
TLV MUST be silently ignored. If the Length field is smaller than the expected 8 octets, then this
sub-TLV MUST be ignored (and the remainder of the enclosing TLV processed as usual).

7. IANA Considerations
IANA has added the following entry to the "Babel Sub-TLV Types" registry:

Type Name Reference
3 Timestamp RFC 9616
Table 1

Jonglez & Chroboczek Standards Track Page 11

RFC 9616 Babel RTT Extension September 2024

8. Security Considerations

This extension adds timestamping data to two of the TLVs sent by a Babel router. By broadcasting
the value of a reasonably accurate local clock, these additional data might make a node more
susceptible to timing attacks.

Broadcasting an accurate time raises privacy issues. The timestamps used by this protocol have
an arbitrary origin; therefore, they do not leak a node's boot time or time zone. However, having
access to accurate timestamps could allow an attacker to determine the physical location of a
node. Nodes might avoid disclosure of location information by not including Timestamp sub-
TLVs in the TLVs that they send, which will cause their neighbours to fall back to hop-count
routing.

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

[RFC8966] Chroboczek, J. and D. Schinazi, "The Babel Routing Protocol", RFC 8966, DOI
10.17487/RFC8966, January 2021, <https://www.rfc-editor.org/info/rfc8966>.

9.2. Informative References

[DELAY-BASED] Jonglez, B., Boutier, M., and J. Chroboczek, "A delay-based routing metric", DOI
10.48550/arXiv.1403.3488, March 2014, <http://arxiv.org/abs/1403.3488>.

[RFC891] Mills, D., "DCN Local-Network Protocols", STD 44, RFC 891, DOI 10.17487/
RFC0891, December 1983, <https://www.rfc-editor.org/info/rfc891>.

[RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch, "Network Time Protocol
Version 4: Protocol and Algorithms Specification”, RFC 5905, DOI 10.17487/
RFC5905, June 2010, <https://www.rfc-editor.org/info/rfc5905>.

Acknowledgements

The authors are indebted to Jean-Paul Smets, who prompted the investigation that originally lead
to this protocol. We are also grateful to Donald Eastlake, 3rd, Toke Hgiland-Jgrgensen, Maria
Matejka, David Schinazi, Pascal Thubert, Steffen Vogel, and Ondrej Zajicek.

Jonglez & Chroboczek Standards Track Page 12

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8966
http://arxiv.org/abs/1403.3488
https://www.rfc-editor.org/info/rfc891
https://www.rfc-editor.org/info/rfc5905

RFC 9616 Babel RTT Extension September 2024

Authors' Addresses

Baptiste Jonglez

ENS Lyon

France

Email: baptiste.jonglez@ens-lyon.org

Juliusz Chroboczek
IRIF, Université Paris Cité
Case 7014

75205 Paris Cedex 13
France

Email: jch@irif.fr

Jonglez & Chroboczek Standards Track Page 13

mailto:baptiste.jonglez@ens-lyon.org
mailto:jch@irif.fr

	RFC 9616
	Delay-Based Metric Extension for the Babel Routing Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Applicability

	2. Specification of Requirements
	3. RTT Sampling
	3.1. Data Structures
	3.2. Protocol Operation
	3.3. Wrap-Around and Node Restart
	3.4. Implementation Notes

	4. RTT-Based Route Selection
	4.1. Smoothing
	4.2. Cost Computation
	4.3. Hysteresis

	5. Backwards and Forwards Compatibility
	6. Packet Format
	6.1. Timestamp Sub-TLV in Hello TLVs
	6.2. Timestamp Sub-TLV in IHU TLVs

	7. IANA Considerations
	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Acknowledgements
	Authors' Addresses

 Delay-Based Metric Extension for the Babel Routing Protocol

 ENS Lyon

 France

 baptiste.jonglez@ens-lyon.org

 IRIF, Université Paris Cité

 Case 7014
 75205 Paris Cedex 13
 France

 jch@irif.fr

 RTG
 babel

 This document defines an extension to the Babel routing protocol that
measures the round-trip time (RTT) between routers and makes it possible
to prefer lower-latency links over higher-latency ones.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Applicability

 . Specification of Requirements

 . RTT Sampling

 . Data Structures

 . Protocol Operation

 . Wrap-Around and Node Restart

 . Implementation Notes

 . RTT-Based Route Selection

 . Smoothing

 . Cost Computation

 . Hysteresis

 . Backwards and Forwards Compatibility

 . Packet Format

 . Timestamp Sub-TLV in Hello TLVs

 . Timestamp Sub-TLV in IHU TLVs

 . IANA Considerations

 . Security Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgements

 Authors' Addresses

 Introduction
 The Babel routing protocol does not mandate
a specific algorithm for computing metrics; existing implementations use
a packet-loss-based metric on wireless links and a simple hop-count metric
on all other types of links. While this strategy works reasonably well in
many networks, it fails to select reasonable routes in some topologies
involving tunnels or VPNs.

 Four Routers in a Diamond Topology

 +------------+
 | A (Paris) +---------------+
 +------------+ \
 / \
 / \
 / \
 +------------+ +------------+
 | B (Paris) | | C (Tokyo) |
 +------------+ +------------+
 \ /
 \ /
 \ /
 +------------+ /
 | D (Paris) +---------------+
 +------------+

 For example, consider the topology described in ,
with three routers A, B, and D located in Paris and a fourth router
C located in Tokyo, connected through tunnels in a diamond topology. When
routing traffic from A to D, it is obviously preferable to use the local
route through B as this is likely to provide better service quality and
lower monetary cost than the distant route through C. However, the
existing implementations of Babel consider both routes as having the same
metric; therefore, they will route the traffic through C in roughly half the
cases.
 In the first part of this document (),
we specify an extension to the Babel routing protocol that produces
a sequence of accurate measurements of the round-trip time (RTT) between
two Babel neighbours. These measurements are not directly usable as an
input to Babel's route selection procedure since they tend to be noisy
and to cause a negative feedback loop, which might give rise to frequent
oscillations. In the second part (), we
define an algorithm that maps the sequence of RTT samples to a link cost
that can be used for route selection.

 Applicability
 The extension defined in provides
a sequence of accurate but potentially noisy RTT samples. Since the
RTT is a symmetric measure of delay, this protocol is only
applicable in environments where the symmetric delay is a good predictor
of whether a link should be taken by routing traffic, which might not
necessarily be the case in networks built over exotic link technologies.
 The extension makes minimal requirements on the nodes. In particular,
it does not assume synchronised clocks, and only requires that clock drift
be negligible during the time interval between two Hello TLVs. Since that
is on the order of a few seconds, this requirement is met even with cheap
crystal oscillators, such as the ones used in consumer electronics.
 The algorithm defined in depends on
a number of assumptions about the network. The assumption with the most
severe consequences is that all links below a certain RTT (rtt-min in
) can be grouped in a single category of
"good" links. While this is the case in wide-area overlay networks, it
makes the algorithm inapplicable in networks where distinguishing between
low-latency links is important.
 There are other assumptions, but they are less likely to limit the
algorithm's applicability. The algorithm assumes that all links above
a certain RTT (rtt-max in) are equally bad, and they will only be used as a last resort. In
addition, in order to avoid oscillations, the algorithm is designed to
react slowly to RTT variations, thus causing suboptimal routing for
seconds or even minutes after an RTT change; while this is a desirable
property in fixed networks, as it avoid excessive route oscillations, it
might be an issue with networks with high rates of node mobility.

 Specification of Requirements

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 RTT Sampling

 Data Structures
 We assume that every Babel speaker maintains a local clock that counts
microseconds from an arbitrary origin. We do not assume that clocks are
synchronised: clocks local to distinct nodes need not share a common
origin. The protocol will eventually recover if the clock is stepped, so
clocks need not persist across node reboots.
 Every Babel speaker maintains a Neighbour Table, described in
 . This extension extends every
entry in the Neighbour Table with the following data:

 the Origin Timestamp, a 32-bit timestamp (modulo 2 32) according to
the neighbour's clock;
 the Receive Timestamp, a 32-bit timestamp (modulo 2 32) according to
the local clock.

 Both values are initially undefined.

 Protocol Operation
 The RTT to a neighbour is estimated using an algorithm due to Mills
 , originally developed for the HELLO routing
protocol and later used in NTP .
 A Babel speaker periodically sends Hello messages to its neighbours
(). Additionally, it
occasionally sends a set of IHU ("I Heard You") messages, at most one per
neighbour ().

 Mills' Algorithm

 A B
 | |
 t1 + |
 |\ |
 | \ |
 | \ | Hello(t1)
 | \ |
 | \ |
 | \|
 | + t1'
 | |
 | | RTT = (t2 - t1) - (t2' - t1')
 | |
 | + t2'
 | /|
 | / |
 | / |
 | / | Hello(t2')
 | / | IHU(t1, t1')
 |/ |
 t2 + |
 | |
 v v

 In order to enable the computation of RTTs, a node A MUST include, in
every Hello that it sends, a timestamp t1 (according to A's local clock),
as illustrated in . When a node B receives A's
timestamped Hello, it computes the time t1' at which the Hello was
received (according to B's local clock). It then MUST record the value t1
in the Origin Timestamp field of the Neighbour Table entry corresponding
to A and the value t1' in the Receive Timestamp field of the Neighbour
Table entry.
 When B sends an IHU to A, it checks whether both timestamps are defined
in the Neighbour Table. If that is the case, then it MUST ensure that its
IHU TLV is sent in a packet that also contains a timestamped Hello TLV
(either a normally scheduled Hello or an unscheduled Hello, see
). It MUST include in the IHU
both the Origin Timestamp and the Receive Timestamp stored in the Neighbour
Table.
 Upon receiving B's packet, A computes the time t2 (according to its
local clock) at which it was received. Node A MUST then verify that it
contains both a Hello TLV with timestamp t2' and an IHU TLV with two
timestamps t1 and t1'. If that is the case, A computes the value:
 RTT = (t2 - t1) - (t2' - t1')
 (where all computations are done modulo
2 32), which is a measurement of the RTT between A and B. (A then stores
the values t2' and t2 in its Neighbour Table, as B did before.)
 This algorithm has a number of desirable properties:
 The
algorithm is symmetric: A and B use the same procedures for timestamping
packets and computing RTT samples, and both nodes produce one RTT sample
for each received (Hello, IHU) pair.
 Since there is no
requirement that t1' and t2' be equal, the protocol is asynchronous: the
only change to Babel's message scheduling is the requirement that a packet
containing an IHU also contain a Hello.
 Since the algorithm only ever
computes differences of timestamps according to a single clock, it does
not require synchronised clocks.
 The algorithm requires very little
additional state: a node only needs to store the two timestamps associated
with the last hello received from each neighbour.
 Since the algorithm only
requires piggybacking one or two timestamps on each Hello and IHU TLV,
it makes efficient use of network resources.

 In principle, this algorithm is inaccurate in the presence of clock
drift (i.e., when A's clock and B's clock are running at different frequencies).
However, t2' - t1' is usually on the order of a few seconds, and
significant clock drift is unlikely to happen at that time scale.
 In order for RTT values to be consistent between implementations,
timestamps need to be computed at roughly the same point in the network
stack. Transmit timestamps SHOULD be computed just before the packet is
passed to the network stack (i.e., before it is subjected to any queueing
delays); receive timestamps SHOULD be computed just after the packet
is received from the network stack.

 Wrap-Around and Node Restart
 Timestamp values are a count of microseconds stored as a 32-bit
unsigned integer; thus, they wrap around every 71 minutes or so. What is
more, a node may occasionally reboot and restart its clock at an arbitrary
origin. For these reasons, very old timestamps or nonsensical timestamps
 MUST NOT be used to yield RTT samples.
 The following algorithm can be used to discard obsolete samples. When a node
receives a packet containing a Hello and an IHU, it compares the current
local time t2 with the Origin Timestamp contained in the IHU; if the
Origin Timestamp appears to be in the future, or if it is in the past by
more than a time T (the value T = 3 minutes is recommended), then the
timestamps are still recorded in the Neighbour Table, but they are not used for
computation of an RTT sample.
 Similarly, the node compares the Hello's timestamp with the Receive
Timestamp recorded in the Neighbour Table; if the Hello's timestamp
appears to be older than the recorded timestamp, or if it appears to be
more recent by an interval larger than the value T, then the timestamps
are not used for computation of an RTT sample.

 Implementation Notes
 The accuracy of the computed RTT samples depends on Transmit Timestamps
being computed as late as possible before a packet containing a Hello TLV
is passed to the network stack, and Receive Timestamps being computed as
early as possible after reception of a packet containing a (Hello, IHU)
pair. We have found the following implementation strategy to be
useful.
 When a Hello TLV is buffered for transmission, we insert a PadN sub-TLV
(Section 4.7.2 of) with a length of 4 octets
within the TLV. When the packet is ready to be sent, we check whether it
contains a 4-octet PadN sub-TLV; if that's the case, we overwrite the PadN
sub-TLV with a Timestamp sub-TLV with the current time, and send out the
packet.
 Conversely, when a packet is received, we immediately compute the
current time and record it with the received packet. We then process the
packet as usual and use the recorded timestamp in order to compute an RTT
sample.
 The protocol is designed to survive the clock being reset when a node
reboots; on POSIX systems, this makes it possible to use the
CLOCK_MONOTONIC clock for computing timestamps. If CLOCK_MONOTONIC is not
available, CLOCK_REALTIME may be used, since the protocol is able to
survive the clock being occasionally stepped.

 RTT-Based Route Selection
 The protocol described above yields a series of RTT samples. While
these samples are fairly accurate, they are not directly usable as an
input to the route selection procedure, for at least three reasons:
 In the presence of bursty traffic, routers experience
transient congestion, which causes occasional spikes in the measured RTT.
Thus, the RTT signal may be noisy and require smoothing before it can
be used for route selection.
 Using the RTT signal for route selection gives rise to
a negative feedback loop. When a route has a low RTT, it is deemed to be
more desirable; this causes it to be used for more data traffic, which
may lead to congestion, which in turn increases the RTT. Without some
form of hysteresis, using RTT for route selection would lead to
oscillations between parallel routes, which would lead to packet
reordering and negatively affect upper-layer protocols (such as TCP).
 Even in the absence of congestion, the RTT tends to exhibit some
variation. If the RTTs of two parallel routes oscillate around
a common value, using the RTT as input to route selection will cause
frequent routing oscillations, which, again, indicates the need for some
form of hysteresis.

 In this section, we describe an algorithm that integrates smoothing and
hysteresis. It has been shown to behave well both in simulation and
experimentally over the Internet and is
 RECOMMENDED when RTT information is being used for route selection. The
algorithm is structured as follows:

 the RTT values are first smoothed in order to avoid instabilities due to
outliers ();
 the resulting smoothed samples are mapped to a cost using a bounded,
non-linear mapping, which avoids
instabilities at the lower and upper end of the RTT range
();
 a hysteresis filter is applied in order to limit the amount of
oscillation in the middle of the RTT range ().

 Smoothing
 The RTT samples provided by Mills' algorithm are fairly accurate, but
noisy: experiments indicate the occasional presence of individual samples
that are much larger than the expected value. Thus, some form of
smoothing SHOULD be applied in order to avoid instabilities due to
occasional outliers.
 An implementation MAY use the exponential average algorithm, which is
simple to implement and appears to yield good results in practice . The algorithm is parameterised by a constant α,
where 0 < α < 1, which controls the amount of smoothing being
applied. For each neighbour, it maintains a smoothed value RTT, which is
initially undefined. When the first sample RTT0 is measured, the smoothed
value is set to the value of RTT0. At each new sample RTTn, the smoothed
value is set to a weighted average of the previous smoothed value and the
new sample:
 RTT := α RTT + (1 - α) RTTn
 The smoothing constant α SHOULD be between 0.8 and 0.9; the value 0.836
is the RECOMMENDED default.

 Cost Computation
 The smoothed RTT value obtained in the previous step needs to be mapped
to a link cost, suitable for input to the metric computation procedure
(). Obviously, the mapping
should be monotonic (larger RTTs imply larger costs). In addition, the
mapping should be constant beyond a certain value (all very bad links are
equally bad) so that congested links do not contribute to routing
instability. The mapping should also be constant around 0, so that small
oscillations in the RTT of low-RTT links do not contribute to routing
instability.

 Mapping from RTT to Link Cost

 cost
 ^
 |
 |
 | C + max-rtt-penalty
 | +---------------------------
 | /.
 | / .
 | / .
 | / .
 | / .
 | / .
 | / .
 | / .
 | / .
 | / .
 C +------------+ .
 | . .
 | . .
 | . .
 | . .
 0 +-->
 0 rtt-min rtt-max RTT

 Implementations SHOULD use the mapping described in , which is parameterised by three parameters:
rtt-min, rtt-max, and max-rtt-penalty. For RTT values below rtt-min, the
link cost is just the nominal cost C of a single hop. Between rtt-min and
rtt-max, the cost increases linearly; above rtt-max, the constant value
max-rtt-penalty is added to the nominal cost.
 The value rtt-min should be slightly larger than the RTT of a local,
uncongested link. The value rtt-max should be the RTT above which a link
should be avoided if possible, either because it is a long-distance link
or because it is congested; reducing the value of rtt-max improves
stability, but prevents the protocol from discriminating between
high-latency links. As for max-rtt-penalty, it controls how much the
protocol will penalise long-distance links. The default values
rtt-min = 10 ms, rtt-max = 120 ms, and max-rtt-penalty = 150 are
 RECOMMENDED.

 Hysteresis
 Even after applying a bounded mapping from smoothed RTT to a cost
value, the cost may fluctuate when a link's RTT is between rtt-min and
rtt-max. Implementations SHOULD use a robust hysteresis algorithm, such
as the one described in .

 Backwards and Forwards Compatibility
 This protocol extension stores the data that it requires within
sub-TLVs of Babel's Hello and IHU TLVs. As discussed in
 , implementations that do not understand this
extension will silently ignore the sub-TLVs while parsing the rest of the
TLVs that they contain. In effect, this extension supports building
hybrid networks consisting of extended and unextended routers; while
such networks might suffer from sub-optimal routing, they will not suffer
from routing loops or other pathologies.
 If a sub-TLV defined in this extension is longer than expected, the
additional data is silently ignored. This provision is made in order to
allow a future version of this protocol to extend the packet format with
additional data, for example high-precision or absolute timestamps.

 Packet Format
 This extension defines the Timestamp sub-TLV whose Type field has the value
3. This sub-TLV can be contained within a Hello sub-TLV, in which case it
carries a single timestamp, or within an IHU sub-TLV, in which case it
carries two timestamps.
 Timestamps are encoded as 32-bit unsigned integers (modulo 2 32),
expressed in units of one microsecond, counting from an arbitrary origin.
Timestamps wrap around every 4295 seconds, or roughly 71 minutes (see also
).

 Timestamp Sub-TLV in Hello TLVs
 When contained within a Hello TLV, the Timestamp sub-TLV
has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type = 3 | Length | Transmit Timestamp |
+-+
| (continued) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Type:
 Set to 3 to indicate a Timestamp sub-TLV.
 Length:
 The length of the body in octets, exclusive of the Type
and Length fields.
 Transmit Timestamp:
 The time at which the packet containing
this sub-TLV was sent, according to the sender's clock.

 If the Length field is larger than the expected 4 octets, the sub-TLV
 MUST be processed normally (the first 4 octets are interpreted as
described above) and any extra data contained in this sub-TLV MUST be
silently ignored. If the Length field is smaller than the expected
4 octets, then this sub-TLV MUST be ignored (and the remainder of the
enclosing TLV processed as usual).

 Timestamp Sub-TLV in IHU TLVs
 When contained in an IHU TLV, the Timestamp sub-TLV has the following
format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type = 3 | Length | Origin Timestamp |
+-+
| (continued) | Receive Timestamp |
+-+
| (continued) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 Type:
 Set to 3 to indicate a Timestamp sub-TLV.
 Length:
 The length of the body in octets, exclusive of the Type
and Length fields.
 Origin Timestamp:
 A copy of the Transmit Timestamp of the last
Timestamp sub-TLV contained in a Hello TLV received from the node to which
the enclosing IHU TLV applies.
 Receive Timestamp:
 The time, according to the sender's clock,
at which the last timestamped Hello TLV was received from the node to which
the enclosing IHU TLV applies.

 If the Length field is larger than the expected 8 octets, the sub-TLV
 MUST be processed normally (the first 8 octets are interpreted as
described above), and any extra data contained in this sub-TLV MUST be
silently ignored. If the Length field is smaller than the expected
8 octets, then this sub-TLV MUST be ignored (and the remainder of the
enclosing TLV processed as usual).

 IANA Considerations
 IANA has added the following entry to the "Babel Sub-TLV Types"
registry:

 Type
 Name
 Reference

 3
 Timestamp
 RFC 9616

 Security Considerations
 This extension adds timestamping data to two of the TLVs sent by
 a Babel router. By broadcasting the value of a reasonably accurate
 local clock, these additional data might make a node more susceptible
 to timing attacks.
 Broadcasting an accurate time raises privacy issues. The timestamps
used by this protocol have an arbitrary origin; therefore, they do not leak
a node's boot time or time zone. However, having access to accurate
timestamps could allow an attacker to determine the physical location of
a node. Nodes might avoid disclosure of location information by not
including Timestamp sub-TLVs in the TLVs that they send, which will cause
their neighbours to fall back to hop-count routing.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 The Babel Routing Protocol

 Babel is a loop-avoiding, distance-vector routing protocol that is robust and efficient both in ordinary wired networks and in wireless mesh networks. This document describes the Babel routing protocol and obsoletes RFC 6126 and RFC 7557.

 Informative References

 A delay-based routing metric

 DCN Local-Network Protocols

 This RFC provides a description of the DCN protocols for maintaining connectivity, routing, and clock information in a local network. These procedures may be of interest to the designers and implementers of other local networks.

 Network Time Protocol Version 4: Protocol and Algorithms Specification

 The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol. NTPv4 includes a modified protocol header to accommodate the Internet Protocol version 6 address family. NTPv4 includes fundamental improvements in the mitigation and discipline algorithms that extend the potential accuracy to the tens of microseconds with modern workstations and fast LANs. It includes a dynamic server discovery scheme, so that in many cases, specific server configuration is not required. It corrects certain errors in the NTPv3 design and implementation and includes an optional extension mechanism. [STANDARDS-TRACK]

 Acknowledgements
 The authors are indebted to , who prompted the
investigation that originally lead to this protocol. We are also grateful
to , , , ,
 , , and .

 Authors' Addresses

 ENS Lyon

 France

 baptiste.jonglez@ens-lyon.org

 IRIF, Université Paris Cité

 Case 7014
 75205 Paris Cedex 13
 France

 jch@irif.fr

