
RFC 8794
Extensible Binary Meta Language

Abstract
This document defines the Extensible Binary Meta Language (EBML) format as a binary
container format designed for audio/video storage. EBML is designed as a binary equivalent to
XML and uses a storage-efficient approach to build nested Elements with identifiers, lengths, and
values. Similar to how an XML Schema defines the structure and semantics of an XML Document,
this document defines how EBML Schemas are created to convey the semantics of an EBML
Document.

Stream: Internet Engineering Task Force (IETF)
RFC: 8794
Category: Standards Track
Published: July 2020
ISSN: 2070-1721
Authors: S. Lhomme D. Rice M. Bunkus

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc8794

Copyright Notice
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

https://trustee.ietf.org/license-info

Lhomme, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc8794
https://www.rfc-editor.org/info/rfc8794
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Notation and Conventions

3. Structure

4. Variable-Size Integer

4.1. VINT_WIDTH

4.2. VINT_MARKER

4.3. VINT_DATA

4.4. VINT Examples

5. Element ID

6. Element Data Size

6.1. Data Size Format

6.2. Unknown Data Size

6.3. Data Size Values

7. EBML Element Types

7.1. Signed Integer Element

7.2. Unsigned Integer Element

7.3. Float Element

7.4. String Element

7.5. UTF-8 Element

7.6. Date Element

7.7. Master Element

7.8. Binary Element

8. EBML Document

8.1. EBML Header

8.2. EBML Body

9. EBML Stream

10. EBML Versioning

10.1. EBML Header Version

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 2

10.2. EBML Document Version

11. Elements semantics

11.1. EBML Schema

11.1.1. EBML Schema Example

11.1.2. <EBMLSchema> Element

11.1.3. <EBMLSchema> Namespace

11.1.4. <EBMLSchema> Attributes

11.1.5. <element> Element

11.1.6. <element> Attributes

11.1.7. <documentation> Element

11.1.8. <documentation> Attributes

11.1.9. <implementation_note> Element

11.1.10. <implementation_note> Attributes

11.1.11. <restriction> Element

11.1.12. <enum> Element

11.1.13. <enum> Attributes

11.1.14. <extension> Element

11.1.15. <extension> Attributes

11.1.16. XML Schema for EBML Schema

11.1.17. Identically Recurring Elements

11.1.18. Textual expression of floats

11.1.19. Note on the use of default attributes to define Mandatory EBML Elements

11.2. EBML Header Elements

11.2.1. EBML Element

11.2.2. EBMLVersion Element

11.2.3. EBMLReadVersion Element

11.2.4. EBMLMaxIDLength Element

11.2.5. EBMLMaxSizeLength Element

11.2.6. DocType Element

11.2.7. DocTypeVersion Element

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 3

11.2.8. DocTypeReadVersion Element

11.2.9. DocTypeExtension Element

11.2.10. DocTypeExtensionName Element

11.2.11. DocTypeExtensionVersion Element

11.3. Global Elements

11.3.1. CRC-32 Element

11.3.2. Void Element

12. Considerations for Reading EBML Data

13. Terminating Elements

14. Guidelines for Updating Elements

14.1. Reducing Element Data in Size

14.1.1. Adding a Void Element

14.1.2. Extending the Element Data Size

14.1.3. Terminating Element Data

14.2. Considerations when Updating Elements with Cyclic Redundancy Check (CRC)

15. Backward and Forward Compatibility

15.1. Backward Compatibility

15.2. Forward Compatibility

16. Security Considerations

17. IANA Considerations

17.1. EBML Element IDs Registry

17.2. EBML DocTypes Registry

18. Normative References

19. Informative References

Authors' Addresses

1. Introduction
EBML, short for Extensible Binary Meta Language, specifies a binary format aligned with octets
(bytes) and inspired by the principle of XML (a framework for structuring data).

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 4

The goal of this document is to define a generic, binary, space-efficient format that can be used to
define more complex formats using an EBML Schema. EBML is used by the multimedia
container, Matroska . The applicability of EBML for other use cases is beyond the
scope of this document.

The definition of the EBML format recognizes the idea behind HTML and XML as a good one:
separate structure and semantics allowing the same structural layer to be used with multiple,
possibly widely differing, semantic layers. Except for the EBML Header and a few Global
Elements, this specification does not define particular EBML format semantics; however, this
specification is intended to define how other EBML-based formats can be defined, such as the
audio/video container formats Matroska and WebM .

EBML uses a simple approach of building Elements upon three pieces of data (tag, length, and
value), as this approach is well known, easy to parse, and allows selective data parsing. The
EBML structure additionally allows for hierarchical arrangement to support complex structural
formats in an efficient manner.

A typical EBML file has the following structure:

[Matroska]

[WebM]

EBML Header (master)
 + DocType (string)
 + DocTypeVersion (unsigned integer)
EBML Body Root (master)
 + ElementA (utf-8)
 + Parent (master)
 + ElementB (integer)
 + Parent (master)
 + ElementB (integer)

EBML:

EBML Document Type:

EBML Schema:

EBML Document:

2. Notation and Conventions
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

This document defines specific terms in order to define the format and application of EBML.
Specific terms are defined below:

Extensible Binary Meta Language

A name provided by an EBML Schema to designate a particular
implementation of EBML for a data format (e.g., Matroska and WebM).

A standardized definition for the structure of an EBML Document Type.

A datastream comprised of only two components, an EBML Header and an
EBML Body.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 5

EBML Reader:

EBML Stream:

EBML Header:

EBML Body:

Variable-Size Integer:

VINT:

EBML Element:

Element ID:

Element Data Size:

VINTMAX:

Unknown-Sized Element:

Element Data:

Root Level:

Root Element:

Top-Level Element:

Master Element:

Child Element:

Parent Element:

Descendant Element:

A data parser that interprets the semantics of an EBML Document and creates a
way for programs to use EBML.

A file that consists of one or more EBML Documents that are concatenated
together.

A declaration that provides processing instructions and identification of the EBML
Body. The EBML Header is analogous to an XML Declaration (see Section 2.8 on
"Prolog and Document Type Declaration").

All data of an EBML Document following the EBML Header.

A compact variable-length binary value that defines its own length.

Also known as Variable-Size Integer.

A foundation block of data that contains three parts: an Element ID, an
Element Data Size, and Element Data.

A binary value, encoded as a Variable-Size Integer, used to uniquely identify a
defined EBML Element within a specific EBML Schema.

An expression, encoded as a Variable-Size Integer, of the length in
octets of Element Data.

The maximum possible value that can be stored as Element Data Size.

An Element with an unknown Element Data Size.

The value(s) of the EBML Element, which is identified by its Element ID and
Element Data Size. The form of the Element Data is defined by this document and the
corresponding EBML Schema of the Element's EBML Document Type.

The starting level in the hierarchy of an EBML Document.

A mandatory, nonrepeating EBML Element that occurs at the top level of the
path hierarchy within an EBML Body and contains all other EBML Elements of the EBML
Body, excepting optional Void Elements.

An EBML Element defined to only occur as a Child Element of the Root
Element.

The Master Element contains zero, one, or many other EBML Elements.

A Child Element is a relative term to describe the EBML Elements
immediately contained within a Master Element.

A relative term to describe the Master Element that contains a specified
element. For any specified EBML Element that is not at Root Level, the Parent Element
refers to the Master Element in which that EBML Element is directly contained.

A relative term to describe any EBML Elements contained within a
Master Element, including any of the Child Elements of its Child Elements, and so on.

[XML]

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 6

Void Element:

Element Name:

Element Path:

Empty Element:

An Element used to overwrite data or reserve space within a Master Element
for later use.

The human-readable name of the EBML Element.

The hierarchy of Parent Element where the EBML Element is expected to be
found in the EBML Body.

An EBML Element that has an Element Data Size with all VINT_DATA bits set
to zero, which indicates that the Element Data of the Element is zero octets in length.

3. Structure
EBML uses a system of Elements to compose an EBML Document. EBML Elements incorporate
three parts: an Element ID, an Element Data Size, and Element Data. The Element Data, which is
described by the Element ID, includes either binary data, one or more other EBML Elements, or
both.

4. Variable-Size Integer
The Element ID and Element Data Size are both encoded as a Variable-Size Integer. The Variable-
Size Integer is composed of a VINT_WIDTH, VINT_MARKER, and VINT_DATA, in that order.
Variable-Size Integers left-pad the VINT_DATA value with zero bits so that the whole
Variable-Size Integer is octet aligned. The Variable-Size Integer will be referred to as VINT for
shorthand.

MUST

4.1. VINT_WIDTH
Each Variable-Size Integer starts with a VINT_WIDTH followed by a VINT_MARKER. VINT_WIDTH
is a sequence of zero or more bits of value 0 and is terminated by the VINT_MARKER, which is a
single bit of value 1. The total length in bits of both VINT_WIDTH and VINT_MARKER is the total
length in octets in of the Variable-Size Integer.

The single bit 1 starts a Variable-Size Integer with a length of one octet. The sequence of bits 01
starts a Variable-Size Integer with a length of two octets. 001 starts a Variable-Size Integer with a
length of three octets, and so on, with each additional 0 bit adding one octet to the length of the
Variable-Size Integer.

4.2. VINT_MARKER
The VINT_MARKER serves as a separator between the VINT_WIDTH and VINT_DATA. Each
Variable-Size Integer contain exactly one VINT_MARKER. The VINT_MARKER is one bit in
length and contain a bit with a value of one. The first bit with a value of one within the Variable-
Size Integer is the VINT_MARKER.

MUST

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 7

4.3. VINT_DATA
The VINT_DATA portion of the Variable-Size Integer includes all data following (but not
including) the VINT_MARKER until end of the Variable-Size Integer whose length is derived from
the VINT_WIDTH. The bits required for the VINT_WIDTH and the VINT_MARKER use one out of
every eight bits of the total length of the Variable-Size Integer. Thus, a Variable-Size Integer of 1-
octet length supplies 7 bits for VINT_DATA, a 2-octet length supplies 14 bits for VINT_DATA, and a
3-octet length supplies 21 bits for VINT_DATA. If the number of bits required for VINT_DATA is
less than the bit size of VINT_DATA, then VINT_DATA be zero-padded to the left to a size
that fits. The VINT_DATA value be expressed as a big-endian unsigned integer.

MUST
MUST

4.4. VINT Examples
Table 1 shows examples of Variable-Size Integers with lengths from 1 to 5 octets. The "Usable
Bits" column refers to the number of bits that can be used in the VINT_DATA. The
"Representation" column depicts a binary expression of Variable-Size Integers where
VINT_WIDTH is depicted by 0, the VINT_MARKER as 1, and the VINT_DATA as x.

A Variable-Size Integer may be rendered at octet lengths larger than needed to store the data in
order to facilitate overwriting it at a later date -- e.g., when its final size isn't known in advance.
In Table 2, an integer 2 (with a corresponding binary value of 0b10) is shown encoded as
different Variable-Size Integers with lengths from one octet to four octets. All four encoded
examples have identical semantic meaning, though the VINT_WIDTH and the padding of the
VINT_DATA vary.

Octet Length Usable Bits Representation

1 7 1xxx xxxx

2 14 01xx xxxx xxxx xxxx

3 21 001x xxxx xxxx xxxx xxxx xxxx

4 28 0001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx

5 35 0000 1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

Table 1: VINT examples depicting usable bits

Integer Octet
Length

As Represented in VINT
(binary)

As Represented in VINT
(hexadecimal)

2 1 1000 0010 0x82

2 2 0100 0000 0000 0010 0x4002

2 3 0010 0000 0000 0000 0000 0010 0x200002

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 8

Integer Octet
Length

As Represented in VINT
(binary)

As Represented in VINT
(hexadecimal)

2 4 0001 0000 0000 0000 0000 0000
0000 0010

0x10000002

Table 2: VINT examples depicting the same integer value rendered at different VINT lengths

5. Element ID
An Element ID is a Variable-Size Integer. By default, Element IDs are from one octet to four octets
in length, although Element IDs of greater lengths be used if the EBMLMaxIDLength
Element of the EBML Header is set to a value greater than four (see Section 11.2.4). The bits of the
VINT_DATA component of the Element ID be all 0 values or all 1 values. The
VINT_DATA component of the Element ID be encoded at the shortest valid length. For
example, an Element ID with binary encoding of 1011 1111 is valid, whereas an Element ID with
binary encoding of 0100 0000 0011 1111 stores a semantically equal VINT_DATA but is invalid,
because a shorter VINT encoding is possible. Additionally, an Element ID with binary encoding of
1111 1111 is invalid, since the VINT_DATA section is set to all one values, whereas an Element ID
with binary encoding of 0100 0000 0111 1111 stores a semantically equal VINT_DATA and is the
shortest-possible VINT encoding.

Table 3 details these specific examples further:

MAY

MUST NOT
MUST

VINT_WIDTH VINT_MARKER VINT_DATA Element ID Status

1 0000000 Invalid: VINT_DATA be set
to all 0

0 1 00000000000000 Invalid: VINT_DATA be set
to all 0

1 0000001 Valid

0 1 00000000000001 Invalid: A shorter VINT_DATA
encoding is available.

1 0111111 Valid

0 1 00000000111111 Invalid: A shorter VINT_DATA
encoding is available.

1 1111111 Invalid: VINT_DATA be set
to all 1

0 1 00000001111111 Valid

Table 3: Examples of valid and invalid Element IDs

MUST NOT

MUST NOT

MUST NOT

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 9

The range and count of possible Element IDs are determined by their octet length. Examples of
this are provided in Table 4.

Element ID Octet Length Range of Valid Element IDs Number of Valid Element IDs

1 0x81 - 0xFE 126

2 0x407F - 0x7FFE 16,256

3 0x203FFF - 0x3FFFFE 2,080,768

4 0x101FFFFF - 0x1FFFFFFE 268,338,304

Table 4: Examples of count and range for Element IDs at various octet lengths

6. Element Data Size

6.1. Data Size Format
The Element Data Size expresses the length in octets of Element Data. The Element Data Size
itself is encoded as a Variable-Size Integer. By default, Element Data Sizes can be encoded in
lengths from one octet to eight octets, although Element Data Sizes of greater lengths be
used if the octet length of the longest Element Data Size of the EBML Document is declared in the
EBMLMaxSizeLength Element of the EBML Header (see Section 11.2.5). Unlike the VINT_DATA of
the Element ID, the VINT_DATA component of the Element Data Size is not mandated to be
encoded at the shortest valid length. For example, an Element Data Size with binary encoding of
1011 1111 or a binary encoding of 0100 0000 0011 1111 are both valid Element Data Sizes and
both store a semantically equal value (both 0b00000000111111 and 0b0111111, the VINT_DATA
sections of the examples, represent the integer 63).

Although an Element ID with all VINT_DATA bits set to zero is invalid, an Element Data Size with
all VINT_DATA bits set to zero is allowed for EBML Element Types that do not mandate a nonzero
length (see Section 7). An Element Data Size with all VINT_DATA bits set to zero indicates that the
Element Data is zero octets in length. Such an EBML Element is referred to as an Empty Element.
If an Empty Element has a default value declared, then the EBML Reader interpret the
value of the Empty Element as the default value. If an Empty Element has no default value
declared, then the EBML Reader use the value of the Empty Element for the corresponding
EBML Element Type of the Element ID, 0 for numbers and an empty string for strings.

MAY

MUST

MUST

6.2. Unknown Data Size
An Element Data Size with all VINT_DATA bits set to one is reserved as an indicator that the size
of the EBML Element is unknown. The only reserved value for the VINT_DATA of Element Data
Size is all bits set to one. An EBML Element with an unknown Element Data Size is referred to as
an Unknown-Sized Element. Only a Master Element is allowed to be of unknown size, and it can
only be so if the unknownsizeallowed attribute of its EBML Schema is set to true (see Section
11.1.6.10).

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 10

The use of Unknown-Sized Elements allows an EBML Element to be written and read before the
size of the EBML Element is known. Unknown-Sized Elements only be used if the Element
Data Size is not known before the Element Data is written, such as in some cases of
datastreaming. The end of an Unknown-Sized Element is determined by whichever comes first:

Any EBML Element that is a valid Parent Element of the Unknown-Sized Element according
to the EBML Schema, Global Elements excluded.

Any valid EBML Element according to the EBML Schema, Global Elements excluded, that is
not a Descendant Element of the Unknown-Sized Element but shares a common direct
parent, such as a Top-Level Element.

Any EBML Element that is a valid Root Element according to the EBML Schema, Global
Elements excluded.

The end of the Parent Element with a known size has been reached.

The end of the EBML Document, either when reaching the end of the file or because a new
EBML Header started.

Consider an Unknown-Sized Element whose EBML path is \root\level1\level2\elt. When
reading a new Element ID, assuming the EBML Path of that new Element is valid, here are some
possible and impossible ways that this new Element is ending elt:

EBML Path of new
element

Status

\root\level1\level2 Ends the Unknown-Sized Element, as it is a new Parent Element

\root\level1 Ends the Unknown-Sized Element, as it is a new Parent Element

\root Ends the Unknown-Sized Element, as it is a new Root Element

\root2 Ends the Unknown-Sized Element, as it is a new Root Element

\root\level1\level2
\other

Ends the Unknown-Sized Element, as they share the same parent

\root\level1\level2
\elt

Ends the Unknown-Sized Element, as they share the same parent

\root\level1\level2
\elt\inside

Doesn't end the Unknown-Sized Element; it's a child of elt

\root\level1\level2
\elt\<global>

Global Element is valid; it's a child of elt

MUST

•

•

•

•

•

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 11

EBML Path of new
element

Status

\root\level1\level2
\<global>

Global Element cannot be interpreted with this path; while
parsing elt, a Global Element can only be a child of elt

Table 5: Examples of determining the end of an Unknown-Sized Element

6.3. Data Size Values
For Element Data Sizes encoded at octet lengths from one to eight, Table 6 depicts the range of
possible values that can be encoded as an Element Data Size. An Element Data Size with an octet
length of 8 is able to express a size of 256-2 or 72,057,594,037,927,934 octets (or about 72
petabytes). The maximum possible value that can be stored as Element Data Size is referred to as
VINTMAX.

If the length of Element Data equals 2n*7-1, then the octet length of the Element Data Size
be at least n+1. This rule prevents an Element Data Size from being expressed as the unknown-
size value. Table 7 clarifies this rule by showing a valid and invalid expression of an Element
Data Size with a VINT_DATA of 127 (which is equal to 21*7-1) and 16,383 (which is equal to
22*7-1).

Octet Length Possible Value Range

1 0 to 27 - 2

2 0 to 214 - 2

3 0 to 221 - 2

4 0 to 228 - 2

5 0 to 235 - 2

6 0 to 242 - 2

7 0 to 249 - 2

8 0 to 256 - 2

Table 6: Possible range of values that can
be stored in VINTs, by octet length

MUST

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 12

VINT_WIDTH VINT_MARKER VINT_DATA Element Data Size Status

1 1111111 Reserved (meaning
Unknown)

0 1 00000001111111 Valid (meaning 127 octets)

00 1 000000000000001111111 Valid (meaning 127 octets)

0 1 11111111111111 Reserved (meaning
Unknown)

00 1 000000011111111111111 Valid (16,383 octets)

Table 7: Demonstration of VINT_DATA reservation for VINTs of unknown size

7. EBML Element Types
EBML Elements are defined by an EBML Schema (see Section 11.1), which declare one of
the following EBML Element Types for each EBML Element. An EBML Element Type defines a
concept of storing data within an EBML Element that describes such characteristics as length,
endianness, and definition.

EBML Elements that are defined as a Signed Integer Element, Unsigned Integer Element, Float
Element, or Date Element use big-endian storage.

MUST

7.1. Signed Integer Element
A Signed Integer Element declare a length from zero to eight octets. If the EBML Element is
not defined to have a default value, then a Signed Integer Element with a zero-octet length
represents an integer value of zero.

A Signed Integer Element stores an integer (meaning that it can be written without a fractional
component) that could be negative, positive, or zero. Signed Integers are stored with two's
complement notation with the leftmost bit being the sign bit. Because EBML limits Signed
Integers to 8 octets in length, a Signed Integer Element stores a number from
-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

MUST

7.2. Unsigned Integer Element
An Unsigned Integer Element declare a length from zero to eight octets. If the EBML
Element is not defined to have a default value, then an Unsigned Integer Element with a zero-
octet length represents an integer value of zero.

An Unsigned Integer Element stores an integer (meaning that it can be written without a
fractional component) that could be positive or zero. Because EBML limits Unsigned Integers to 8
octets in length, an Unsigned Integer Element stores a number from 0 to
18,446,744,073,709,551,615.

MUST

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 13

7.3. Float Element
A Float Element declare a length of either zero octets (0 bit), four octets (32 bit), or eight
octets (64 bit). If the EBML Element is not defined to have a default value, then a Float Element
with a zero-octet length represents a numerical value of zero.

A Float Element stores a floating-point number in the 32-bit and 64-bit binary interchange
format, as defined in .

MUST

[IEEE.754]

7.4. String Element
A String Element declare a length in octets from zero to VINTMAX. If the EBML Element is
not defined to have a default value, then a String Element with a zero-octet length represents an
empty string.

A String Element either be empty (zero-length) or contain printable ASCII characters
 in the range of 0x20 to 0x7E, with an exception made for termination (see Section 13).

MUST

MUST
[RFC0020]

7.5. UTF-8 Element
A UTF-8 Element declare a length in octets from zero to VINTMAX. If the EBML Element is
not defined to have a default value, then a UTF-8 Element with a zero-octet length represents an
empty string.

A UTF-8 Element contains only a valid Unicode string as defined in , with an exception
made for termination (see Section 13).

MUST

[RFC3629]

7.6. Date Element
A Date Element declare a length of either zero octets or eight octets. If the EBML Element is
not defined to have a default value, then a Date Element with a zero-octet length represents a
timestamp of 2001-01-01T00:00:00.000000000 UTC .

The Date Element stores an integer in the same format as the Signed Integer Element that
expresses a point in time referenced in nanoseconds from the precise beginning of the third
millennium of the Gregorian Calendar in Coordinated Universal Time (also known as
2001-01-01T00:00:00.000000000 UTC). This provides a possible expression of time from
1708-09-11T00:12:44.854775808 UTC to 2293-04-11T11:47:16.854775807 UTC.

MUST

[RFC3339]

7.7. Master Element
A Master Element declare a length in octets from zero to VINTMAX or be of unknown
length. See Section 6 for rules that apply to elements of unknown length.

The Master Element contains zero or more other elements. EBML Elements contained within a
Master Element have the EBMLParentPath of their Element Path equal to the
EBMLFullPath of the Master Element Element Path (see Section 11.1.6.2). Element Data stored

MUST

MUST

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 14

within Master Elements only consist of EBML Elements and contain any
data that is not part of an EBML Element. The EBML Schema identifies what Element IDs are
valid within the Master Elements for that version of the EBML Document Type. Any data
contained within a Master Element that is not part of a Child Element be ignored.

SHOULD SHOULD NOT

MUST

7.8. Binary Element
A Binary Element declare a length in octets from zero to VINTMAX.

The contents of a Binary Element should not be interpreted by the EBML Reader.

MUST

8. EBML Document
An EBML Document is composed of only two components, an EBML Header and an EBML Body.
An EBML Document start with an EBML Header that declares significant characteristics of
the entire EBML Body. An EBML Document consists of EBML Elements and contain
any data that is not part of an EBML Element.

MUST
MUST NOT

8.1. EBML Header
The EBML Header is a declaration that provides processing instructions and identification of the
EBML Body. The EBML Header of an EBML Document is analogous to the XML Declaration of an
XML Document.

The EBML Header documents the EBML Schema (also known as the EBML DocType) that is used
to semantically interpret the structure and meaning of the EBML Document. Additionally, the
EBML Header documents the versions of both EBML and the EBML Schema that were used to
write the EBML Document and the versions required to read the EBML Document.

The EBML Header contain a single Master Element with an Element Name of EBML and
Element ID of 0x1A45DFA3 (see Section 11.2.1); the Master Element may have any number of
additional EBML Elements within it. The EBML Header of an EBML Document that uses an
EBMLVersion of 1 only contain EBML Elements that are defined as part of this document.

Elements within an EBML Header can be at most 4 octets long, except for the EBML Element with
Element Name EBML and Element ID 0x1A45DFA3 (see Section 11.2.1); this Element can be up to 8
octets long.

MUST

MUST

8.2. EBML Body
All data of an EBML Document following the EBML Header is the EBML Body. The end of the
EBML Body, as well as the end of the EBML Document that contains the EBML Body, is reached at
whichever comes first: the beginning of a new EBML Header at the Root Level or the end of the
file. This document defines precisely which EBML Elements are to be used within the EBML
Header but does not name or define which EBML Elements are to be used within the EBML Body.
The definition of which EBML Elements are to be used within the EBML Body is defined by an
EBML Schema.

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 15

Within the EBML Body, the maximum octet length allowed for any Element ID is set by the
EBMLMaxIDLength Element of the EBML Header, and the maximum octet length allowed for any
Element Data Size is set by the EBMLMaxSizeLength Element of the EBML Header.

9. EBML Stream
An EBML Stream is a file that consists of one or more EBML Documents that are concatenated
together. An occurrence of an EBML Header at the Root Level marks the beginning of an EBML
Document.

10. EBML Versioning
An EBML Document handles 2 different versions: the version of the EBML Header and the
version of the EBML Body. Both versions are meant to be backward compatible.

10.1. EBML Header Version
The version of the EBML Header is found in EBMLVersion. An EBML parser can read an EBML
Header if it can read either the EBMLVersion version or a version equal or higher than the one
found in EBMLReadVersion.

10.2. EBML Document Version
The version of the EBML Body is found in EBMLDocTypeVersion. A parser for the particular
DocType format can read the EBML Document if it can read either the EBMLDocTypeVersion
version of that format or a version equal or higher than the one found in
EBMLDocTypeReadVersion.

11. Elements semantics

11.1. EBML Schema
An EBML Schema is a well-formed XML Document that defines the properties,
arrangement, and usage of EBML Elements that compose a specific EBML Document Type. The
relationship of an EBML Schema to an EBML Document is analogous to the relationship of an
XML Schema to an XML Document . An EBML Schema be clearly
associated with one or more EBML Document Types. An EBML Document Type is identified by a
string stored within the EBML Header in the DocType Element -- for example, Matroska or WebM
(see Section 11.2.6). The DocType value for an EBML Document Type be unique, persistent,
and described in the IANA registry (see Section 17.2).

An EBML Schema declare exactly one EBML Element at Root Level (referred to as the Root
Element) that occurs exactly once within an EBML Document. The Void Element also occur
at Root Level but is not a Root Element (see Section 11.3.2).

[XML]

[XML-SCHEMA] [XML] MUST

MUST

MUST
MAY

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 16

The EBML Schema document all Elements of the EBML Body. The EBML Schema does not
document Global Elements that are defined by this document (namely, the Void Element and the
CRC-32 Element).

The EBML Schema use the Element ID 0x1A45DFA3, which is reserved for the EBML
Header for the purpose of resynchronization.

An EBML Schema constrain the use of EBML Header Elements (see Section 11.2) by adding
or constraining that Element's range attribute. For example, an EBML Schema constrain the
EBMLMaxSizeLength to a maximum value of 8 or constrain the EBMLVersion to only
support a value of 1. If an EBML Schema adopts the EBML Header Element as is, then it is not
required to document that Element within the EBML Schema. If an EBML Schema constrains the
range of an EBML Header Element, then that Element be documented within an <element>
node of the EBML Schema. This document provides an example of an EBML Schema; see Section
11.1.1.

MUST

MUST NOT

MAY
MAY

MAY

MUST

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 17

11.1.1. EBML Schema Example

<?xml version="1.0" encoding="utf-8"?>
<EBMLSchema xmlns="urn:ietf:rfc:8794"
 docType="files-in-ebml-demo" version="1">
 <!-- constraints to the range of two EBML Header Elements -->
 <element name="EBMLReadVersion" path="\EBML\EBMLReadVersion"
 id="0x42F7" minOccurs="1" maxOccurs="1" range="1" default="1"
 type="uinteger"/>
 <element name="EBMLMaxSizeLength"
 path="\EBML\EBMLMaxSizeLength" id="0x42F3" minOccurs="1"
 maxOccurs="1" range="8" default="8" type="uinteger"/>
 <!-- Root Element-->
 <element name="Files" path="\Files" id="0x1946696C"
 type="master">
 <documentation lang="en"
 purpose="definition">Container of data and
 attributes representing one or many files.</documentation>
 </element>
 <element name="File" path="\Files\File" id="0x6146"
 type="master" minOccurs="1">
 <documentation lang="en" purpose="definition">
 An attached file.
 </documentation>
 </element>
 <element name="FileName" path="\Files\File\FileName"
 id="0x614E" type="utf-8"
 minOccurs="1">
 <documentation lang="en" purpose="definition">
 Filename of the attached file.
 </documentation>
 </element>
 <element name="MimeType" path="\Files\File\MimeType"
 id="0x464D" type="string"
 minOccurs="1">
 <documentation lang="en" purpose="definition">
 MIME type of the file.
 </documentation>
 </element>
 <element name="ModificationTimestamp"
 path="\Files\File\ModificationTimestamp" id="0x4654"
 type="date" minOccurs="1">
 <documentation lang="en" purpose="definition">
 Modification timestamp of the file.
 </documentation>
 </element>
 <element name="Data" path="\Files\File\Data" id="0x4664"
 type="binary" minOccurs="1">
 <documentation lang="en" purpose="definition">
 The data of the file.
 </documentation>
 </element>
</EBMLSchema>

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 18

11.1.2. <EBMLSchema> Element

Within an EBML Schema, the XPath of the <EBMLSchema> element is /EBMLSchema.

When used as an XML Document, the EBML Schema use <EBMLSchema> as the top-level
element. The <EBMLSchema> element can contain <element> subelements.

[XPath]

MUST

11.1.3. <EBMLSchema> Namespace

The namespace URI for elements of the EBML Schema is a URN as defined by that uses
the namespace identifier 'ietf' defined by and extended by . This URN is
urn:ietf:rfc:8794.

[RFC8141]
[RFC2648] [RFC3688]

11.1.4. <EBMLSchema> Attributes

Within an EBML Schema, the <EBMLSchema> element uses the following attributes to define an
EBML Element:

11.1.4.1. docType
Within an EBML Schema, the XPath of the @docType attribute is /EBMLSchema/@docType.

The docType lists the official name of the EBML Document Type that is defined by the EBML
Schema; for example, <EBMLSchema docType="matroska">.

The docType attribute is within the <EBMLSchema> Element.REQUIRED

11.1.4.2. version
Within an EBML Schema, the XPath of the @version attribute is /EBMLSchema/@version.

The version lists a nonnegative integer that specifies the version of the docType documented by
the EBML Schema. Unlike XML Schemas, an EBML Schema documents all versions of a docType's
definition rather than using separate EBML Schemas for each version of a docType. EBML
Elements may be introduced and deprecated by using the minver and maxver attributes of
<element>.

The version attribute is within the <EBMLSchema> Element.REQUIRED

11.1.4.3. ebml
Within an EBML Schema, the XPath of the @ebml attribute is /EBMLSchema/@ebml.

The ebml attribute is a positive integer that specifies the version of the EBML Header (see Section
11.2.2) used by the EBML Schema. If the attribute is omitted, the EBML Header version is 1.

11.1.5. <element> Element

Within an EBML Schema, the XPath of the <element> element is /EBMLSchema/element.

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 19

Each <element> defines one EBML Element through the use of several attributes that are defined
in Section 11.1.6. EBML Schemas contain additional attributes to extend the semantics but

 conflict with the definitions of the <element> attributes defined within this document.

The <element> nodes contain a description of the meaning and use of the EBML Element stored
within one or more <documentation> subelements, followed by optional
<implementation_note> subelements, followed by zero or one <restriction> subelement,
followed by optional <extension> subelements. All <element> nodes be subelements of
the <EBMLSchema>.

MAY
MUST NOT

MUST

11.1.6. <element> Attributes

Within an EBML Schema, the <element> uses the following attributes to define an EBML
Element:

11.1.6.1. name
Within an EBML Schema, the XPath of the @name attribute is /EBMLSchema/element/@name.

The name provides the human-readable name of the EBML Element. The value of the name
 be in the form of characters "A" to "Z", "a" to "z", "0" to "9", "-", and ".". The first character of

the name be in the form of an "A" to "Z", "a" to "z", or "0" to "9" character.

The name attribute is .

MUST
MUST

REQUIRED

11.1.6.2. path
Within an EBML Schema, the XPath of the @path attribute is /EBMLSchema/element/@path.

The path defines the allowed storage locations of the EBML Element within an EBML Document.
This path be defined with the full hierarchy of EBML Elements separated with a \. The top
EBML Element in the path hierarchy is the first in the value. The syntax of the path attribute is
defined using this Augmented Backus-Naur Form (ABNF) with the case-sensitive
update notation:

MUST

[RFC5234]
[RFC7405]

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 20

The path attribute is .

The *, (, and) symbols are interpreted as defined in .

The EBMLAtomName of the EBMLElement part be equal to the @name attribute of the
EBML Schema. If the EBMLElement part contains an IsRecursive part, the EBML Element can
occur within itself recursively (see Section 11.1.6.11).

The starting PathDelimiter of EBMLParentPath corresponds to the root of the EBML Document.

The @path value be unique within the EBML Schema. The @id value corresponding to this
@path be defined for use within another EBML Element with the same
EBMLParentPath as this @path.

A path with a GlobalPlaceholder as the EBMLLastParent defines a Global Element; see Section
11.3. If the element has no EBMLLastParent part, or the EBMLLastParent part is not a
GlobalPlaceholder, then the Element is not a Global Element.

The GlobalParentOccurrence part is interpreted as the number of valid EBMLPathAtom parts
that can replace the GlobalPlaceholder in the path. PathMinOccurrence represents the minimum
number of EBMLPathAtoms required to replace the GlobalPlaceholder. PathMaxOccurrence
represents the maximum number of EBMLPathAtoms possible to replace the GlobalPlaceholder.

If PathMinOccurrence is not present, then that GlobalParentOccurrence has a
PathMinOccurrence value of 0. If PathMaxOccurrence is not present, then there is no upper
bound for the permitted number of EBMLPathAtoms possible to replace the GlobalPlaceholder.
PathMaxOccurrence have the value 0, as it would mean no EBMLPathAtom can

REQUIRED

EBMLFullPath = EBMLParentPath EBMLElement

EBMLParentPath = PathDelimiter [EBMLParents]

EBMLParents = 0*IntermediatePathAtom EBMLLastParent
IntermediatePathAtom = EBMLPathAtom / GlobalPlaceholder
EBMLLastParent = EBMLPathAtom / GlobalPlaceholder

EBMLPathAtom = [IsRecursive] EBMLAtomName PathDelimiter
EBMLElement = [IsRecursive] EBMLAtomName

PathDelimiter = "\"
IsRecursive = "+"
EBMLAtomName = ALPHA / DIGIT 0*EBMLNameChar
EBMLNameChar = ALPHA / DIGIT / "-" / "."

GlobalPlaceholder = "(" GlobalParentOccurrence "\)"
GlobalParentOccurrence = [PathMinOccurrence] "-" [PathMaxOccurrence]
PathMinOccurrence = 1*DIGIT ; no upper limit
PathMaxOccurrence = 1*DIGIT ; no upper limit

[RFC5234]

MUST

MUST
MUST NOT

MUST NOT

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 21

replace the GlobalPlaceholder, and the EBMLFullPath would be the same without that
GlobalPlaceholder part. PathMaxOccurrence be bigger than, or equal to,
PathMinOccurrence.

For example, in \a\(0-1\)global, the Element path \a\x\global corresponds to an
EBMLPathAtom occurrence of 1. The Element \a\x\y\global corresponds to an EBMLPathAtom
occurrence of 2, etc. In those cases, \a\x or \a\x\y be valid paths to be able to contain the
element global.

Consider another EBML Path, \a\(1-\)global. There has to be at least one EBMLPathAtom
between the \a\ part and global. So the global EBML Element cannot be found inside the \a
EBML Element, as it means the resulting path \a\global has no EBMLPathAtom between the \a\
and global. However, the global EBML Element can be found inside the \a\b EBML Element,
because the resulting path, \a\b\global, has one EBMLPathAtom between the \a\ and global.
Alternatively, it can be found inside the \a\b\c EBML Element (two EBMLPathAtom), or inside
the \a\b\c\d EBML Element (three EBMLPathAtom), etc.

Consider another EBML Path, \a\(0-1\)global. There has to be at most one EBMLPathAtom
between the \a\ part and global. So the global EBML Element can be found inside either the \a
EBML Element (0 EBMLPathAtom replacing GlobalPlaceholder) or the \a\b EBML Element (one
replacement EBMLPathAtom). But it cannot be found inside the \a\b\c EBML Element, because
the resulting path, \a\b\c\global, has two EBMLPathAtom between \a\ and global.

MUST

MUST

11.1.6.3. id
Within an EBML Schema, the XPath of the @id attribute is /EBMLSchema/element/@id.

The Element ID is encoded as a Variable-Size Integer. It is read and stored in big-endian order. In
the EBML Schema, it is expressed in hexadecimal notation prefixed by a 0x. To reduce the risk of
false positives while parsing EBML Streams, the Element IDs of the Root Element and Top-Level
Elements be at least 4 octets in length. Element IDs defined for use at Root Level or
directly under the Root Level use shorter octet lengths to facilitate padding and optimize
edits to EBML Documents; for instance, the Void Element uses an Element ID with a length of one
octet to allow its usage in more writing and editing scenarios.

The Element ID of any Element found within an EBML Document only match a single
@path value of its corresponding EBML Schema, but a separate instance of that Element ID value
defined by the EBML Schema occur within a different @path. If more than one Element is
defined to use the same @id value, then the @path values of those Elements share the
same EBMLParentPath. Elements be defined to use the same @id value if one of their
common Parent Elements could be an Unknown-Sized Element.

The id attribute is .

SHOULD
MAY

MUST

MAY
MUST NOT

MUST NOT

REQUIRED

11.1.6.4. minOccurs
Within an EBML Schema, the XPath of the @minOccurs attribute is /EBMLSchema/element/
@minOccurs.

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 22

minOccurs is a nonnegative integer expressing the minimum permitted number of occurrences
of this EBML Element within its Parent Element.

Each instance of the Parent Element contain at least this many instances of this EBML
Element. If the EBML Element has an empty EBMLParentPath, then minOccurs refers to
constraints on the occurrence of the EBML Element within the EBML Document. EBML Elements
with minOccurs set to "1" that also have a default value (see Section 11.1.6.8) declared are not

 to be stored but are to be interpreted; see Section 11.1.19.

An EBML Element defined with a minOccurs value greater than zero is called a Mandatory EBML
Element.

The minOccurs attribute is . If the minOccurs attribute is not present, then that EBML
Element has a minOccurs value of 0.

The semantic meaning of minOccurs within an EBML Schema is analogous to the meaning of
minOccurs within an XML Schema.

MUST

REQUIRED REQUIRED

OPTIONAL

11.1.6.5. maxOccurs
Within an EBML Schema, the XPath of the @maxOccurs attribute is /EBMLSchema/element/
@maxOccurs.

maxOccurs is a nonnegative integer expressing the maximum permitted number of occurrences
of this EBML Element within its Parent Element.

Each instance of the Parent Element contain at most this many instances of this EBML
Element, including the unwritten mandatory element with a default value; see Section 11.1.19. If
the EBML Element has an empty EBMLParentPath, then maxOccurs refers to constraints on the
occurrence of the EBML Element within the EBML Document.

The maxOccurs attribute is . If the maxOccurs attribute is not present, then there is no
upper bound for the permitted number of occurrences of this EBML Element within its Parent
Element or within the EBML Document, depending on whether or not the EBMLParentPath of
the EBML Element is empty.

The semantic meaning of maxOccurs within an EBML Schema is analogous to the meaning of
maxOccurs within an XML Schema; when it is not present, it's similar to
xml:maxOccurs="unbounded" in an XML Schema.

MUST

OPTIONAL

11.1.6.6. range
Within an EBML Schema, the XPath of the @range attribute is /EBMLSchema/element/@range.

A numerical range for EBML Elements that are of numerical types (Unsigned Integer, Signed
Integer, Float, and Date). If specified, the value of the EBML Element be within the defined
range. See Section 11.1.6.6.1 for rules applied to expression of range values.

The range attribute is . If the range attribute is not present, then any value legal for
the type attribute is valid.

MUST

OPTIONAL

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 23

11.1.6.6.1. Expression of range
The range attribute only be used with EBML Elements that are either signed integer,
unsigned integer, float, or date. The expression defines the upper, lower, exact, or excluded value
of the EBML Element and optionally an upper boundary value combined with a lower boundary.
The range expression may contain whitespace (using the ASCII 0x20 character) for readability,
but whitespace within a range expression convey meaning.

To set a fixed value for the range, the value is used as the attribute value. For example, 1234
means the EBML element always has the value 1234. The value can be prefixed with not to
indicate that the fixed value be used for that Element. For example, not 1234 means
the Element can use all values of its type except 1234.

The > sign is used for an exclusive lower boundary, and the >= sign is used for an inclusive lower
boundary. For example, >3 means the Element value be greater than 3, and >=0x1p+0
means the Element value be greater than or equal to the floating value 1.0; see Section
11.1.18.

The < sign is used for an exclusive upper boundary, and the <= sign is used for an inclusive upper
boundary. For example, <-2 means the Element value be less than -2, and <=10 means the
Element value be less than or equal to 10.

The lower and upper bounds can be combined into an expression to form a closed boundary. The
lower boundary comes first, followed by the upper boundary, separated by a comma. For
example, >3,<= 20 means the Element value be greater than 3 and less than or equal to 20.

A special form of lower and upper bounds using the - separator is possible, meaning the Element
value be greater than, or equal to, the first value and be less than or equal to the
second value. For example, 1-10 is equivalent to >=1,<=10. If the upper boundary is negative, the
range attribute only use the latter form.

MUST

MUST NOT

MUST NOT

MUST
MUST

MUST
MUST

MUST

MUST MUST

MUST

11.1.6.7. length
Within an EBML Schema, the XPath of the @length attribute is /EBMLSchema/element/@length.

The length attribute is a value to express the valid length of the Element Data as written,
measured in octets. The length provides a constraint in addition to the Length value of the
definition of the corresponding EBML Element Type. This length be expressed as either a
nonnegative integer or a range (see Section 11.1.6.6.1) that consists of only nonnegative integers
and valid operators.

The length attribute is . If the length attribute is not present for that EBML Element,
then that EBML Element is only limited in length by the definition of the associated EBML
Element Type.

MUST

OPTIONAL

11.1.6.8. default
Within an EBML Schema, the XPath of the @default attribute is /EBMLSchema/element/
@default.

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 24

If an Element is mandatory (has a minOccurs value greater than zero) but not written within its
Parent Element or stored as an Empty Element, then the EBML Reader of the EBML Document

 semantically interpret the EBML Element as present with this specified default value for
the EBML Element. An unwritten mandatory Element with a declared default value is
semantically equivalent to that Element if written with the default value stored as the Element
Data. EBML Elements that are Master Elements declare a default value. EBML
Elements with a minOccurs value greater than 1 declare a default value.

The default attribute is .

MUST

MUST NOT
MUST NOT

OPTIONAL

11.1.6.9. type
Within an EBML Schema, the XPath of the @type attribute is /EBMLSchema/element/@type.

The type be set to one of the following values: integer (signed integer), uinteger
(unsigned integer), float, string, date, utf-8, master, or binary. The content of each type is
defined in Section 7.

The type attribute is .

MUST

REQUIRED

11.1.6.10. unknownsizeallowed
Within an EBML Schema, the XPath of the @unknownsizeallowed attribute is /EBMLSchema/
element/@unknownsizeallowed.

This attribute is a boolean to express whether an EBML Element is permitted to be an Unknown-
Sized Element (having all VINT_DATA bits of Element Data Size set to 1). EBML Elements that are
not Master Elements set unknownsizeallowed to true. An EBML Element that is
defined with an unknownsizeallowed attribute set to 1 also have the unknownsizeallowed
attribute of its Parent Element set to 1.

An EBML Element with the unknownsizeallowed attribute set to 1 have its recursive
attribute set to 1.

The unknownsizeallowed attribute is . If the unknownsizeallowed attribute is not
used, then that EBML Element is not allowed to use an unknown Element Data Size.

MUST NOT
MUST

MUST NOT

OPTIONAL

11.1.6.11. recursive
Within an EBML Schema, the XPath of the @recursive attribute is /EBMLSchema/element/
@recursive.

This attribute is a boolean to express whether an EBML Element is permitted to be stored
recursively. If it is allowed, the EBML Element be stored within another EBML Element that
has the same Element ID, which itself can be stored in an EBML Element that has the same
Element ID, and so on. EBML Elements that are not Master Elements set recursive to
true.

If the EBMLElement part of the @path contains an IsRecursive part, then the recursive value
 be true; otherwise, it be false.

MAY

MUST NOT

MUST MUST

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 25

An EBML Element with the recursive attribute set to 1 have its unknownsizeallowed
attribute set to 1.

The recursive attribute is . If the recursive attribute is not present, then the EBML
Element be used recursively.

MUST NOT

OPTIONAL
MUST NOT

11.1.6.12. recurring
Within an EBML Schema, the XPath of the @recurring attribute is /EBMLSchema/element/
@recurring.

This attribute is a boolean to express whether or not an EBML Element is defined as an
Identically Recurring Element; see Section 11.1.17.

The recurring attribute is . If the recurring attribute is not present, then the EBML
Element is not an Identically Recurring Element.

OPTIONAL

11.1.6.13. minver
Within an EBML Schema, the XPath of the @minver attribute is /EBMLSchema/element/@minver.

The minver (minimum version) attribute stores a nonnegative integer that represents the first
version of the docType to support the EBML Element.

The minver attribute is . If the minver attribute is not present, then the EBML Element
has a minimum version of "1".

OPTIONAL

11.1.6.14. maxver
Within an EBML Schema, the XPath of the @maxver attribute is /EBMLSchema/element/@maxver.

The maxver (maximum version) attribute stores a nonnegative integer that represents the last or
most recent version of the docType to support the element. maxver be greater than or
equal to minver.

The maxver attribute is . If the maxver attribute is not present, then the EBML Element
has a maximum version equal to the value stored in the version attribute of <EBMLSchema>.

MUST

OPTIONAL

11.1.7. <documentation> Element

Within an EBML Schema, the XPaths of the <documentation> elements are /EBMLSchema/
element/documentation and /EBMLSchema/element/restriction/enum/documentation.

The <documentation> element provides additional information about EBML Elements or
enumeration values. Within the <documentation> element, the following XHTML
elements be used: <a>,
, and .

[XHTML]
MAY

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 26

11.1.8. <documentation> Attributes

11.1.8.1. lang
Within an EBML Schema, the XPath of the @lang attribute is /EBMLSchema/element/
documentation/@lang.

The lang attribute is set to the value from of the language of the element's
documentation.

The lang attribute is .

[RFC5646]

OPTIONAL

11.1.8.2. purpose
Within an EBML Schema, the XPath of the @purpose attribute is /EBMLSchema/element/
documentation/@purpose.

A purpose attribute distinguishes the meaning of the documentation. Values for the
<documentation> subelement's purpose attribute include one of the values listed in Table
8.

The purpose attribute is .

MUST

value of purpose
attribute

definition

definition A "definition" is recommended for every defined EBML Element. This
documentation explains the semantic meaning of the EBML Element.

rationale An explanation about the reason or catalyst for the definition of the
Element.

usage notes Recommended practices or guidelines for both reading, writing, or
interpreting the Element.

references Informational references to support the contextualization and
understanding of the value of the Element.

Table 8: Definitions of the permitted values for the purpose attribute of the documentation Element

REQUIRED

11.1.9. <implementation_note> Element

Within an EBML Schema, the XPath of the <implementation_note> element is /EBMLSchema/
element/implementation_note.

In some cases within an EBML Document Type, the attributes of the <element> element are not
sufficient to clearly communicate how the defined EBML Element is intended to be implemented.
For instance, one EBML Element might only be mandatory if another EBML Element is present.
As another example, the default value of an EBML Element might be derived from a related
Element's content. In these cases where the Element's definition is conditional or advanced

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 27

implementation notes are needed, one or many <implementation_note> elements can be used
to store that information. The <implementation_note> refers to a specific attribute of the parent
<element> as expressed by the note_attribute attribute (see Section 11.1.10.1).

11.1.10. <implementation_note> Attributes

11.1.10.1. note_attribute
Within an EBML Schema, the XPath of the @note_attribute attribute is /EBMLSchema/element/
implementation_note/@note_attribute.

The note_attribute attribute references which of the attributes of the <element> the
<implementation_note> relates to. The note_attribute attribute be set to one of the
following values (corresponding to that attribute of the parent <element>): minOccurs,
maxOccurs, range, length, default, minver, or maxver. The <implementation_note>
supersede the parent <element>'s attribute that is named in the note_attribute attribute. An
<element> have more than one <implementation_note> of the same
note_attribute.

The note_attribute attribute is .

MUST

SHALL

SHALL NOT

REQUIRED

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 28

11.1.10.2. <implementation_note> Example
The following fragment of an EBML Schema demonstrates how an <implementation_note> is
used. In this case, an EBML Schema documents a list of items that are described with an optional
cost. The Currency Element uses an <implementation_note> to say that the Currency Element is

 if the Cost Element is set, otherwise not.REQUIRED

<element name="Items" path="\Items" id="0x4025" type="master"
 minOccurs="1" maxOccurs="1">
 <documentation lang="en" purpose="definition">
 A set of items.
 </documentation>
</element>
<element name="Item" path="\Items\Item" id="0x4026"
 type="master">
 <documentation lang="en" purpose="definition">
 An item.
 </documentation>
</element>
<element name="Cost" path="\Items\Item\Cost" id="0x4024"
 type="float" maxOccurs="1">
 <documentation lang="en" purpose="definition">
 The cost of the item, if any.
 </documentation>
</element>
<element name="Currency" path="\Items\Item\Currency" id="0x403F"
 type="string" maxOccurs="1">
 <documentation lang="en" purpose="definition">
 The currency of the item's cost.
 </documentation>
 <implementation_note note_attribute="minOccurs">
 Currency MUST be set (minOccurs=1) if the associated Item stores
 a Cost, else Currency MAY be unset (minOccurs=0).
 </implementation_note>
</element>

11.1.11. <restriction> Element

Within an EBML Schema, the XPath of the <restriction> element is /EBMLSchema/element/
restriction.

The <restriction> element provides information about restrictions to the allowable values for
the EBML Element, which are listed in <enum> elements.

11.1.12. <enum> Element

Within an EBML Schema, the XPath of the <enum> element is /EBMLSchema/element/
restriction/enum.

The <enum> element stores a list of values allowed for storage in the EBML Element. The values
 match the type of the EBML Element (for example, <enum value="Yes"> cannot be a valid

value for an EBML Element that is defined as an unsigned integer). An <enum> element also
store <documentation> elements to further describe the <enum>.

MUST
MAY

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 29

11.1.13. <enum> Attributes

11.1.13.1. label
Within an EBML Schema, the XPath of the @label attribute is /EBMLSchema/element/
restriction/enum/@label.

The label provides a concise expression for human consumption that describes what the value of
<enum> represents.

The label attribute is .OPTIONAL

11.1.13.2. value
Within an EBML Schema, the XPath of the @value attribute is /EBMLSchema/element/
restriction/enum/@value.

The value represents data that be stored within the EBML Element.

The value attribute is .

MAY

REQUIRED

11.1.14. <extension> Element

Within an EBML Schema, the XPath of the <extension> element is /EBMLSchema/element/
extension.

The <extension> element provides an unconstrained element to contain information about the
associated EBML <element>, which is undefined by this document but be defined by the
associated EBML Document Type. The <extension> element contain a type attribute and
also contain any other attribute or subelement as long as the EBML Schema remains as a
well-formed XML Document. All <extension> elements be subelements of the <element>.

MAY
MUST

MAY
MUST

11.1.15. <extension> Attributes

11.1.15.1. type
Within an EBML Schema, the XPath of the @type attribute is /EBMLSchema/element/extension/
@type.

The type attribute should reference a name or identifier of the project or authority associated
with the contents of the <extension> element.

The type attribute is .REQUIRED

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 30

11.1.16. XML Schema for EBML Schema

The following provides an XML Schema for facilitating verification of an EBML
Schema described in Section 11.1.

[XML-SCHEMA]

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 31

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="urn:ietf:rfc:8794"
 targetNamespace="urn:ietf:rfc:8794"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 elementFormDefault="qualified" version="01">

 <!-- for HTML in comments -->
 <xs:import namespace="http://www.w3.org/1999/xhtml"
 schemaLocation="http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd"/>

 <xs:element name="EBMLSchema" type="EBMLSchemaType"/>

 <xs:complexType name="EBMLSchemaType">
 <xs:sequence>
 <xs:element name="element" type="elementType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="docType" use="required"/>
 <xs:attribute name="version" use="required" type="xs:integer"/>
 <xs:attribute name="ebml" type="xs:positiveInteger"
 default="1"/>
 </xs:complexType>

 <xs:complexType name="elementType">
 <xs:sequence>
 <xs:element name="documentation" type="documentationType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="implementation_note" type="noteType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="restriction" type="restrictionType"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="extension" type="extensionType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9A-Za-z.-]([0-9A-Za-z.-])*"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="path" use="required">
 <!-- <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:pattern value="[0-9]**[0-9]*()"/>
 </xs:restriction>
 </xs:simpleType> -->
 </xs:attribute>
 <xs:attribute name="id" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="0x([0-9A-F][0-9A-F])+"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="minOccurs" default="0">

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 32

 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxOccurs" default="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="range"/>
 <xs:attribute name="length"/>
 <xs:attribute name="default"/>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="integer"/>
 <xs:enumeration value="uinteger"/>
 <xs:enumeration value="float"/>
 <xs:enumeration value="string"/>
 <xs:enumeration value="date"/>
 <xs:enumeration value="utf-8"/>
 <xs:enumeration value="master"/>
 <xs:enumeration value="binary"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="unknownsizeallowed" type="xs:boolean"
 default="false"/>
 <xs:attribute name="recursive" type="xs:boolean"
 default="false"/>
 <xs:attribute name="recurring" type="xs:boolean"
 default="false"/>
 <xs:attribute name="minver" default="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxver">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>

 <xs:complexType name="restrictionType">
 <xs:sequence>
 <xs:element name="enum" type="enumType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 33

 <xs:complexType name="extensionType">
 <xs:sequence>
 <xs:any processContents="skip"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="type" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="enumType">
 <xs:sequence>
 <xs:element name="documentation" type="documentationType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="label"/>
 <xs:attribute name="value" use="required"/>
 </xs:complexType>

 <xs:complexType name="documentationType" mixed="true">
 <xs:sequence>
 <xs:element name="a" type="xhtml:xhtml.a.type"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="br" type="xhtml:xhtml.br.type"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="strong" type="xhtml:xhtml.strong.type"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="lang"/>
 <xs:attribute name="purpose" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="definition"/>
 <xs:enumeration value="rationale"/>
 <xs:enumeration value="references"/>
 <xs:enumeration value="usage notes"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>

 <xs:complexType name="noteType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="note_attribute" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="minOccurs"/>
 <xs:enumeration value="maxOccurs"/>
 <xs:enumeration value="range"/>
 <xs:enumeration value="length"/>
 <xs:enumeration value="default"/>
 <xs:enumeration value="minver"/>
 <xs:enumeration value="maxver"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 34

 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

11.1.17. Identically Recurring Elements

An Identically Recurring Element is an EBML Element that occur within its Parent Element
more than once, but each recurrence of it within that Parent Element be identical both in
storage and semantics. Identically Recurring Elements are permitted to be stored multiple times
within the same Parent Element in order to increase data resilience and optimize the use of
EBML in transmission. For instance, a pertinent Top-Level Element could be periodically resent
within a datastream so that an EBML Reader that starts reading the stream from the middle
could better interpret the contents. Identically Recurring Elements include a CRC-32
Element as a Child Element; this is especially recommended when EBML is used for long-term
storage or transmission. If a Parent Element contains more than one copy of an Identically
Recurring Element that includes a CRC-32 Element as a Child Element, then the first instance of
the Identically Recurring Element with a valid CRC-32 value should be used for interpretation. If
a Parent Element contains more than one copy of an Identically Recurring Element that does not
contain a CRC-32 Element, or if CRC-32 Elements are present but none are valid, then the first
instance of the Identically Recurring Element should be used for interpretation.

MAY
MUST

SHOULD

11.1.18. Textual expression of floats

When a float value is represented textually in an EBML Schema, such as within a default or
range value, the float values be expressed as Hexadecimal Floating-Point Constants as
defined in the C11 standard (see Section 6.4.4.2 on Floating Constants). Table 9
provides examples of expressions of float ranges.

Within an expression of a float range, as in an integer range, the - (hyphen) character is the
separator between the minimum and maximum values permitted by the range. Hexadecimal
Floating-Point Constants also use a - (hyphen) when indicating a negative binary power. Within a
float range, when a - (hyphen) is immediately preceded by a letter p, then the - (hyphen) is a part

MUST
[ISO9899]

as decimal as Hexadecimal Floating-Point Constants

0.0 0x0p+1

0.0-1.0 0x0p+1-0x1p+0

1.0-256.0 0x1p+0-0x1p+8

0.857421875 0x1.b7p-1

-1.0--0.857421875 -0x1p+0--0x1.b7p-1

Table 9: Example of Floating-Point values and ranges as decimal and
Hexadecimal Floating-Point Constants

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 35

of the Hexadecimal Floating-Point Constant that notes negative binary power. Within a float
range, when a - (hyphen) is not immediately preceded by a letter p, then the - (hyphen)
represents the separator between the minimum and maximum values permitted by the range.

11.1.19. Note on the use of default attributes to define Mandatory EBML Elements

If a Mandatory EBML Element has a default value declared by an EBML Schema and the value of
the EBML Element is equal to the declared default value, then that EBML Element is not required
to be present within the EBML Document if its Parent Element is present. In this case, the default
value of the Mandatory EBML Element be read by the EBML Reader, although the EBML
Element is not present within its Parent Element.

If a Mandatory EBML Element has no default value declared by an EBML Schema and its Parent
Element is present, then the EBML Element be present, as well. If a Mandatory EBML
Element has a default value declared by an EBML Schema, and its Parent Element is present, and
the value of the EBML Element is NOT equal to the declared default value, then the EBML
Element be present.

Table 10 clarifies whether a Mandatory EBML Element be written, according to whether
the default value is declared, the value of the EBML Element is equal to the declared default
value, and/or the Parent Element is used.

MUST

MUST

MUST

MUST

Is the default
value declared?

Is the value
equal to
default?

Is the Parent
Element
present?

Then is storing the EBML
Element ?

Yes Yes Yes No

Yes Yes No No

Yes No Yes Yes

Yes No No No

No n/a Yes Yes

No n/a No No

Table 10: Demonstration of the conditional requirements of VINT Storage

REQUIRED

11.2. EBML Header Elements
This document contains definitions of all EBML Elements of the EBML Header.

name:

path:

11.2.1. EBML Element

EBML

\EBML

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 36

id:

minOccurs:

maxOccurs:

type:

description:

0x1A45DFA3

1

1

Master Element

Set the EBML characteristics of the data to follow. Each EBML Document has to
start with this.

name:

path:

id:

minOccurs:

maxOccurs:

range:

default:

type:

description:

11.2.2. EBMLVersion Element

EBMLVersion

\EBML\EBMLVersion

0x4286

1

1

not 0

1

Unsigned Integer

The version of EBML specifications used to create the EBML Document. The
version of EBML defined in this document is 1, so EBMLVersion be 1. SHOULD

name:

path:

id:

minOccurs:

maxOccurs:

range:

default:

type:

description:

11.2.3. EBMLReadVersion Element

EBMLReadVersion

\EBML\EBMLReadVersion

0x42F7

1

1

1

1

Unsigned Integer

The minimum EBML version an EBML Reader has to support to read this EBML
Document. The EBMLReadVersion Element be less than or equal to EBMLVersion. MUST

11.2.4. EBMLMaxIDLength Element

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 37

name:

path:

id:

minOccurs:

maxOccurs:

range:

default:

type:

description:

EBMLMaxIDLength

\EBML\EBMLMaxIDLength

0x42F2

1

1

>=4

4

Unsigned Integer

The EBMLMaxIDLength Element stores the maximum permitted length in octets of
the Element IDs to be found within the EBML Body. An EBMLMaxIDLength Element value
of four is , though larger values are allowed. RECOMMENDED

name:

path:

id:

minOccurs:

maxOccurs:

range:

default:

type:

description:

11.2.5. EBMLMaxSizeLength Element

EBMLMaxSizeLength

\EBML\EBMLMaxSizeLength

0x42F3

1

1

not 0

8

Unsigned Integer

The EBMLMaxSizeLength Element stores the maximum permitted length in octets
of the expressions of all Element Data Sizes to be found within the EBML Body. The
EBMLMaxSizeLength Element documents an upper bound for the length of all Element
Data Size expressions within the EBML Body and not an upper bound for the value of all
Element Data Size expressions within the EBML Body. EBML Elements that have an
Element Data Size expression that is larger in octets than what is expressed by
EBMLMaxSizeLength Element are invalid.

name:

path:

id:

11.2.6. DocType Element

DocType

\EBML\DocType

0x4282

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 38

minOccurs:

maxOccurs:

length:

type:

description:

1

1

>0

String

A string that describes and identifies the content of the EBML Body that follows
this EBML Header.

name:

path:

id:

minOccurs:

maxOccurs:

range:

default:

type:

description:

11.2.7. DocTypeVersion Element

DocTypeVersion

\EBML\DocTypeVersion

0x4287

1

1

not 0

1

Unsigned Integer

The version of DocType interpreter used to create the EBML Document.

name:

path:

id:

minOccurs:

maxOccurs:

range:

default:

type:

description:

11.2.8. DocTypeReadVersion Element

DocTypeReadVersion

\EBML\DocTypeReadVersion

0x4285

1

1

not 0

1

Unsigned Integer

The minimum DocType version an EBML Reader has to support to read this EBML
Document. The value of the DocTypeReadVersion Element be less than or equal to
the value of the DocTypeVersion Element.

MUST

11.2.9. DocTypeExtension Element

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 39

name:

path:

id:

minOccurs:

type:

description:

DocTypeExtension

\EBML\DocTypeExtension

0x4281

0

Master Element

A DocTypeExtension adds extra Elements to the main DocType+DocTypeVersion
tuple it's attached to. An EBML Reader know these extra Elements and how to use
them. A DocTypeExtension be used to iterate between experimental Elements before
they are integrated into a regular DocTypeVersion. Reading one DocTypeExtension version
of a DocType+DocTypeVersion tuple doesn't imply one should be able to read upper
versions of this DocTypeExtension.

MAY
MAY

name:

path:

id:

minOccurs:

maxOccurs:

length:

type:

description:

11.2.10. DocTypeExtensionName Element

DocTypeExtensionName

\EBML\DocTypeExtension\DocTypeExtensionName

0x4283

1

1

>0

String

The name of the DocTypeExtension to differentiate it from other
DocTypeExtensions of the same DocType+DocTypeVersion tuple. A
DocTypeExtensionName value be unique within the EBML Header. MUST

name:

path:

id:

minOccurs:

maxOccurs:

range:

type:

11.2.11. DocTypeExtensionVersion Element

DocTypeExtensionVersion

\EBML\DocTypeExtension\DocTypeExtensionVersion

0x4284

1

1

not 0

Unsigned Integer

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 40

description: The version of the DocTypeExtension. Different DocTypeExtensionVersion values
of the same DocType + DocTypeVersion + DocTypeExtensionName tuple contain
completely different sets of extra Elements. An EBML Reader support multiple
versions of the same tuple, only one version of the tuple, or not support the tuple at all.

MAY
MAY

11.3. Global Elements
EBML allows some special Elements to be found within more than one parent in an EBML
Document or optionally at the Root Level of an EBML Body. These Elements are called Global
Elements. There are two Global Elements that can be found in any EBML Document: the CRC-32
Element and the Void Element. An EBML Schema add other Global Elements to the format it
defines. These extra elements apply only to the EBML Body, not the EBML Header.

Global Elements are EBML Elements whose EBMLLastParent part of the path has a
GlobalPlaceholder. Because it is the last Parent part of the path, a Global Element might also have
EBMLParentPath parts in its path. In this case, the Global Element can only be found within this
EBMLParentPath path -- i.e., it's not fully "global".

A Global Element can be found in many Parent Elements, allowing the same number of
occurrences in each Parent where this Element is found.

MAY

name:

path:

id:

minOccurs:

maxOccurs:

length:

type:

description:

11.3.1. CRC-32 Element

CRC-32

\(1-\)CRC-32

0xBF

0

1

4

Binary

The CRC-32 Element contains a 32-bit Cyclic Redundancy Check value of all the
Element Data of the Parent Element as stored except for the CRC-32 Element itself. When
the CRC-32 Element is present, the CRC-32 Element be the first ordered EBML
Element within its Parent Element for easier reading. All Top-Level Elements of an EBML
Document that are Master Elements include a CRC-32 Element as a Child Element.
The CRC in use is the IEEE-CRC-32 algorithm as used in the standard and in
Section 8.1.1.6.2 of , with initial value of 0xFFFFFFFF. The CRC value be
computed on a little-endian bytestream and use little-endian storage.

MUST

SHOULD
[ISO3309]

[ITU.V42] MUST
MUST

name:

11.3.2. Void Element

Void

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 41

path:

id:

minOccurs:

type:

description:

\(-\)Void

0xEC

0

Binary

Used to void data or to avoid unexpected behaviors when using damaged data. The
content is discarded. Also used to reserve space in a subelement for later use.

12. Considerations for Reading EBML Data
The following scenarios describe events to consider when reading EBML Documents, as well as
the recommended design of an EBML Reader.

If a Master Element contains a CRC-32 Element that doesn't validate, then the EBML Reader
ignore all contained data except for Descendant Elements that contain their own valid CRC-32
Element.

In the following XML representation of a simple, hypothetical EBML fragment, a Master Element
called CONTACT contains two Child Elements, NAME and ADDRESS. In this example, some data
within the NAME Element had been altered so that the CRC-32 of the NAME Element does not
validate, and thus any Ancestor Element with a CRC-32 would therefore also no longer validate.
However, even though the CONTACT Element has a CRC-32 that does not validate (because of the
changed data within the NAME Element), the CRC-32 of the ADDRESS Element does validate, and
thus the contents and semantics of the ADDRESS Element be used.

If a Master Element contains more occurrences of a Child Master Element than permitted
according to the maxOccurs and recurring attributes of the definition of that Element, then the
occurrences in addition to maxOccurs be ignored.

If a Master Element contains more occurrences of a Child Element than permitted according to
the maxOccurs attribute of the definition of that Element, then all instances of that Element after
the first maxOccurs occurrences from the beginning of its Parent Element be ignored.

MAY

MAY

<CONTACT>
 <CRC-32>c119a69b</CRC-32><!-- does not validate -->
 <NAME>
 <CRC-32>1f59ee2b</CRC-32><!-- does not validate -->
 <FIRST-NAME>invalid data</FIRST-NAME>
 <LAST-NAME>invalid data</LAST-NAME>
 </NAME>
 <ADDRESS>
 <CRC-32>df941cc9</CRC-32><!-- validates -->
 <STREET>valid data</STREET>
 <CITY>valid data</CITY>
 </ADDRESS>
</CONTACT>

MAY

SHOULD

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 42

13. Terminating Elements
Null Octets, which are octets with all bits set to zero, follow the value of a String Element or
UTF-8 Element to serve as a terminator. An EBML Writer terminate a String Element or
UTF-8 Element with Null Octets in order to overwrite a stored value with a new value of lesser
length while maintaining the same Element Data Size; this can prevent the need to rewrite large
portions of an EBML Document. Otherwise, the use of Null Octets within a String Element or
UTF-8 Element is . The Element Data of a UTF-8 Element be a valid
UTF-8 string up to whichever comes first: the end of the Element or the first occurring Null octet.
Within the Element Data of a String or UTF-8 Element, any Null octet itself and any following
data within that Element be ignored. A string value and a copy of that string value
terminated by one or more Null Octets are semantically equal.

Table 11 shows examples of semantics and validation for the use of Null Octets. Values to
represent Stored Values and the Semantic Meaning as represented as hexadecimal values.

MAY
MAY

NOT RECOMMENDED MUST

SHOULD

Stored Value Semantic Meaning

0x65 0x62 0x6D 0x6C 0x65 0x62 0x6D 0x6C

0x65 0x62 0x00 0x6C 0x65 0x62

0x65 0x62 0x00 0x00 0x65 0x62

0x65 0x62 0x65 0x62

Table 11: Examples of semantics for Null Octets in
VINT_DATA

14. Guidelines for Updating Elements
An EBML Document can be updated without requiring that the entire EBML Document be
rewritten. These recommendations describe strategies for changing the Element Data of a
written EBML Element with minimal disruption to the rest of the EBML Document.

14.1. Reducing Element Data in Size
There are three methods to reduce the size of Element Data of a written EBML Element.

14.1.1. Adding a Void Element

When an EBML Element is changed to reduce its total length by more than one octet, an EBML
Writer fill the freed space with a Void Element.SHOULD

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 43

14.1.2. Extending the Element Data Size

The same value for Element Data Size be written in various lengths, so for minor reductions
of the Element Data, the Element Size be written to a longer octet length to fill the freed
space.

For example, the first row of Table 12 depicts a String Element that stores an Element ID (3
octets), Element Data Size (1 octet), and Element Data (4 octets). If the Element Data is changed to
reduce the length by one octet, and if the current length of the Element Data Size is less than its
maximum permitted length, then the Element Data Size of that Element be rewritten to
increase its length by one octet. Thus, before and after the change, the EBML Element maintains
the same length of 8 octets, and data around the Element does not need to be moved.

This method is when the Element Data is reduced by a single octet; for
reductions by two or more octets, it is to fill the freed space with a Void Element.

Note that if the Element Data length needs to be rewritten as shortened by one octet and the
Element Data Size could be rewritten as a shorter VINT, then it is to rewrite the
Element Data Size as one octet shorter, shorten the Element Data by one octet, and follow that
Element with a Void Element. For example, Table 13 depicts a String Element that stores an
Element ID (3 octets), Element Data Size (2 octets, but could be rewritten in one octet), and
Element Data (3 octets). If the Element Data is to be rewritten to a two-octet length, then another
octet can be taken from Element Data Size so that there is enough space to add a two-octet Void
Element.

MAY
MAY

MAY

Status Element ID Element Data Size Element Data

Before edit 0x3B4040 0x84 0x65626D6C

After edit 0x3B4040 0x4003 0x6D6B76

Table 12: Example of editing a VINT to reduce VINT_DATA length by
one octet

RECOMMENDED
RECOMMENDED

RECOMMENDED

Status Element ID Element Data Size Element Data Void Element

Before 0x3B4040 0x4003 0x6D6B76

After 0x3B4040 0x82 0x6869 0xEC80

Table 13: Example of editing a VINT to reduce VINT_DATA length by more than one
octet

14.1.3. Terminating Element Data

For String Elements and UTF-8 Elements, the length of Element Data could be reduced by adding
Null Octets to terminate the Element Data (see Section 13).

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 44

In Table 14, Element Data four octets long is changed to a value three octets long, followed by a
Null Octet; the Element Data Size includes any Null Octets used to terminate Element Data and
therefore remains unchanged.

Note that this method is . For reductions of one octet, the method for
Extending the Element Data Size be used. For reduction by more than one octet, the
method for Adding a Void Element be used.

Status Element ID Element Data Size Element Data

Before edit 0x3B4040 0x84 0x65626D6C

After edit 0x3B4040 0x84 0x6D6B7600

Table 14: Example of terminating VINT_DATA with a Null Octet when
reducing VINT length during an edit

NOT RECOMMENDED
SHOULD

SHOULD

14.2. Considerations when Updating Elements with Cyclic Redundancy
Check (CRC)
If the Element to be changed is a Descendant Element of any Master Element that contains a
CRC-32 Element (see Section 11.3.1), then the CRC-32 Element be verified before permitting
the change. Additionally, the CRC-32 Element value be subsequently updated to reflect the
changed data.

MUST
MUST

15. Backward and Forward Compatibility
Elements of an EBML format be designed with backward and forward compatibility in
mind.

SHOULD

15.1. Backward Compatibility
Backward compatibility of new EBML Elements can be achieved by using default values for
mandatory elements. The default value represent the state that was assumed for previous
versions of the EBML Schema, without this new EBML Element. If such a state doesn't make
sense for previous versions, then the new EBML Element be mandatory.

Non-mandatory EBML Elements can be added in a new EBMLDocTypeVersion. Since they are not
mandatory, they won't be found in older versions of the EBMLDocTypeVersion, just as they might
not be found in newer versions. This causes no compatibility issue.

MUST

SHOULD NOT

15.2. Forward Compatibility
EBML Elements be marked as deprecated in a new EBMLDocTypeVersion using the maxver
attribute of the EBML Schema. If such an Element is found in an EBML Document with a newer
version of the EBMLDocTypeVersion, it be discarded.

MAY

SHOULD

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 45

16. Security Considerations
EBML itself does not offer any kind of security and does not provide confidentiality. EBML does
not provide any kind of authorization. EBML only offers marginally useful and effective data
integrity options, such as CRC elements.

Even if the semantic layer offers any kind of encryption, EBML itself could leak information at
both the semantic layer (as declared via the DocType Element) and within the EBML structure
(the presence of EBML Elements can be derived even with an unknown semantic layer using a
heuristic approach -- not without errors, of course, but with a certain degree of confidence).

An EBML Document that has the following issues may still be handled by the EBML Reader and
the data accepted as such, depending on how strict the EBML Reader wants to be:

Invalid Element IDs that are longer than the limit stated in the EBMLMaxIDLength Element
of the EBML Header.

Invalid Element IDs that are not encoded in the shortest-possible way.

Invalid Element Data Size values that are longer than the limit stated in the
EBMLMaxSizeLength Element of the EBML Header.

Element IDs that are unknown to the EBML Reader be accepted as valid EBML IDs in order
to skip such elements.

EBML Elements with a string type may contain extra data after the first 0x00. These data be
discarded according to the Section 13 rules.

An EBML Reader may discard some or all data if the following errors are found in the EBML
Document:

Invalid Element Data Size values (e.g., extending the length of the EBML Element beyond the
scope of the Parent Element, possibly triggering access-out-of-bounds issues).

Very high lengths in order to force out-of-memory situations resulting in a denial of service,
access-out-of-bounds issues, etc.

Missing EBML Elements that are mandatory in a Master Element and have no declared
default value, making the semantic invalid at that Master Element level.

Usage of invalid UTF-8 encoding in EBML Elements of UTF-8 type (e.g., in order to trigger
access-out-of-bounds or buffer-overflow issues).

Usage of invalid data in EBML Elements with a date type, triggering bogus date accesses.

The CRC-32 Element (see Section 11.3.1) of a Master Element doesn't match the rest of the
content of that Master Element.

•

•

•

MAY

MUST

•

•

•

•

•

•

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 46

Side-channel attacks could exploit:

The semantic equivalence of the same string stored in a String Element or UTF-8 Element
with and without zero-bit padding, making comparison at the semantic level invalid.

The semantic equivalence of VINT_DATA within Element Data Size with two different lengths
due to left-padding zero bits, making comparison at the semantic level invalid.

Data contained within a Master Element that is not itself part of a Child Element, which can
trigger incorrect parsing behavior in EBML Readers.

Extraneous copies of Identically Recurring Element, making parsing unnecessarily slow to
the point of not being usable.

Copies of Identically Recurring Element within a Parent Element that contain invalid CRC-32
Elements. EBML Readers not checking the CRC-32 might use the version of the element with
mismatching CRC-32s.

Use of Void Elements that could be used to hide content or create bogus resynchronization
points seen by some EBML Readers and not others.

•

•

•

•

•

•

17. IANA Considerations

17.1. EBML Element IDs Registry
This document creates a new IANA registry called the "EBML Element IDs" registry.

Element IDs are described in Section 5. Element IDs are encoded using the VINT mechanism
described in Section 4 and can be between one and five octets long. Five-octet-long Element IDs
are possible only if declared in the header.

This IANA registry only applies to Elements that can be contained in the EBML Header, thus
including Global Elements. Elements only found in the EBML Body have their own set of
independent Element IDs and are not part of this IANA registry.

One-octet Element IDs be between 0x81 and 0xFE. These items are valuable because they
are short, and they need to be used for commonly repeated elements. Element IDs are to be
allocated within this range according to the "RFC Required" policy .

The following one-octet Element IDs are RESERVED: 0xFF and 0x80.

Values in the one-octet range of 0x00 to 0x7F are not valid for use as an Element ID.

Two-octet Element IDs be between 0x407F and 0x7FFE. Element IDs are to be allocated
within this range according to the "Specification Required" policy .

The following two-octet Element IDs are RESERVED: 0x7FFF and 0x4000.

MUST

[RFC8126]

MUST
[RFC8126]

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 47

Values in the two-octet ranges of 0x0000 to 0x3FFF and 0x8000 to 0xFFFF are not valid for use as
an Element ID.

Three-octet Element IDs be between 0x203FFF and 0x3FFFFE. Element IDs are to be
allocated within this range according to the "First Come First Served" policy .

The following three-octet Element IDs are RESERVED: 0x3FFFFF and 0x200000.

Values in the three-octet ranges of 0x000000 to 0x1FFFFF and 0x400000 to 0xFFFFFF are not valid
for use as an Element ID.

Four-octet Element IDs be between 0x101FFFFF and 0x1FFFFFFE. Four-octet Element IDs
are somewhat special in that they are useful for resynchronizing to major structures in the event
of data corruption or loss. As such, four-octet Element IDs are split into two categories. Four-octet
Element IDs whose lower three octets (as encoded) would make printable 7-bit ASCII values
(0x20 to 0x7E, inclusive) be allocated by the "Specification Required" policy. Sequential
allocation of values is not required: specifications include a specific request and are
encouraged to do early allocations.

To be clear about the above category: four-octet Element IDs always start with hex 0x10 to 0x1F,
and that octet may be chosen so that the entire VINT has some desirable property, such as a
specific CRC. The other three octets, when ALL having values between 0x20 (32, ASCII Space) and
0x7E (126, ASCII "~"), fall into this category.

Other four-octet Element IDs may be allocated by the "First Come First Served" policy.

The following four-octet Element IDs are RESERVED: 0x1FFFFFFF and 0x10000000.

Values in the four-octet ranges of 0x00000000 to 0x0FFFFFFF and 0x20000000 to 0xFFFFFFFF are
not valid for use as an Element ID.

Five-octet Element IDs (values from 0x080FFFFFFF to 0x0FFFFFFFFE) are RESERVED according to
the "Experimental Use" policy : they may be used by anyone at any time, but there is no
coordination.

ID Values found in this document are assigned as initial values as follows:

Element ID Element Name Reference

0x1A45DFA3 EBML Described in Section 11.2.1

0x4286 EBMLVersion Described in Section 11.2.2

0x42F7 EBMLReadVersion Described in Section 11.2.3

0x42F2 EBMLMaxIDLength Described in Section 11.2.4

0x42F3 EBMLMaxSizeLength Described in Section 11.2.5

MUST
[RFC8126]

MUST

MUST
SHOULD

[RFC8126]

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 48

[IEEE.754]

[ISO3309]

18. Normative References
, , 13 June 2019,

.

,
, ,

October 1984, .

Element ID Element Name Reference

0x4282 DocType Described in Section 11.2.6

0x4287 DocTypeVersion Described in Section 11.2.7

0x4285 DocTypeReadVersion Described in Section 11.2.8

0x4281 DocTypeExtension Described in Section 11.2.9

0x4283 DocTypeExtensionName Described in Section 11.2.10

0x4284 DocTypeExtensionVersion Described in Section 11.2.11

0xBF CRC-32 Described in Section 11.3.1

0xEC Void Described in Section 11.3.2

Table 15: IDs and Names for EBML Elements assigned by this document

17.2. EBML DocTypes Registry
This document creates a new IANA registry called the "EBML DocTypes" registry.

To register a new DocType in this registry, one needs a DocType name, a Description of the
DocType, a Change Controller (IESG or email of registrant), and an optional Reference to a
document describing the DocType.

DocType values are described in Section 11.1.4.1. DocTypes are ASCII strings, defined in Section
7.4, which label the official name of the EBML Document Type. The strings may be allocated
according to the "First Come First Served" policy.

The use of ASCII corresponds to the types and code already in use; the value is not meant to be
visible to the user.

DocType string values of "matroska" and "webm" are RESERVED to the IETF for future use. These
can be assigned via the "IESG Approval" or "RFC Required" policies .[RFC8126]

IEEE "IEEE Standard for Binary Floating-Point Arithmetic"
<https://standards.ieee.org/standard/754-2019.html>

International Organization for Standardization "Data communication -- High-
level data link control procedures -- Frame structure" ISO 3309, 3rd Edition

<https://www.iso.org/standard/8558.html>

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 49

https://standards.ieee.org/standard/754-2019.html
https://www.iso.org/standard/8558.html

[ISO9899]

[ITU.V42]

[RFC0020]

[RFC2119]

[RFC2648]

[RFC3339]

[RFC3629]

[RFC3688]

[RFC5234]

[RFC5646]

[RFC7405]

[RFC8126]

[RFC8141]

[RFC8174]

,
, , 2011,

.

,
,

, March 2002, .

, , , ,
, October 1969, .

, , ,
, , March 1997,
.

, , ,
, August 1999, .

, ,
, , July 2002,

.

, , , ,
, November 2003,

.

, , , , ,
January 2004, .

,
, , , , January 2008,

.

, , ,
, , September 2009,

.

, , ,
, December 2014, .

,
, , , , June

2017, .

, , ,
, April 2017, .

, ,
, , , May 2017,

.

International Organization for Standardization "Information technology --
Programming languages -- C" ISO/IEC 9899:2011 <https://www.iso.org/
standard/57853.html>

International Telecommunications Union "Error-correcting procedures for
DCEs using asynchronous-to-synchronous conversion" ITU-T Recommendation
V.42 <https://www.itu.int/rec/T-REC-V.42>

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI 10.17487/
RFC0020 <https://www.rfc-editor.org/info/rfc20>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Moats, R. "A URN Namespace for IETF Documents" RFC 2648 DOI 10.17487/
RFC2648 <https://www.rfc-editor.org/info/rfc2648>

Klyne, G. and C. Newman "Date and Time on the Internet: Timestamps" RFC
3339 DOI 10.17487/RFC3339 <https://www.rfc-editor.org/info/
rfc3339>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629
DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/
rfc3629>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Crocker, D., Ed. and P. Overell "Augmented BNF for Syntax Specifications:
ABNF" STD 68 RFC 5234 DOI 10.17487/RFC5234 <https://
www.rfc-editor.org/info/rfc5234>

Phillips, A., Ed. and M. Davis, Ed. "Tags for Identifying Languages" BCP 47 RFC
5646 DOI 10.17487/RFC5646 <https://www.rfc-editor.org/info/
rfc5646>

Kyzivat, P. "Case-Sensitive String Support in ABNF" RFC 7405 DOI 10.17487/
RFC7405 <https://www.rfc-editor.org/info/rfc7405>

Cotton, M., Leiba, B., and T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Saint-Andre, P. and J. Klensin "Uniform Resource Names (URNs)" RFC 8141 DOI
10.17487/RFC8141 <https://www.rfc-editor.org/info/rfc8141>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 50

https://www.iso.org/standard/57853.html
https://www.iso.org/standard/57853.html
https://www.itu.int/rec/T-REC-V.42
https://www.rfc-editor.org/info/rfc20
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2648
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8141
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[XHTML]

[XML]

[XML-SCHEMA]

[Matroska]

[WebM]

[XPath]

, ,
, 27 March 2018,
.

, ,
, 26 November 2008,

.

, ,
, 28 October

2004, .

19. Informative References
,

, , ,
17 April 2020, .

, , 28 November 2017,
.

, ,
, 16 November 1999,

.

McCarron, S. "XHTML(tm) Basic 1.1 -- Second Edition" Latest version available
at https://www.w3.org/TR/xhtml-basic <https://www.w3.org/
TR/2018/SPSD-xhtml-basic-20180327/>

Bray, T., Ed., Paoli, J., Ed., Sperberg-McQueen, C.M., Ed., Maler, E., Ed., and F.
Yergeau, Ed. "Extensible Markup Language (XML) 1.0 (Fifth Edition)" Latest
version available at https://www.w3.org/TR/xml/ <https://
www.w3.org/TR/2008/REC-xml-20081126/>

Fallside, D.C. and P. Walmsley "XML Schema Part 0: Primer Second Edition"
Latest version available at http://www.w3.org/TR/xmlschema-0/

<https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/>

Lhomme, S., Bunkus, M., and D. Rice "Matroska Media Container Format
Specifications" Work in Progress Internet-Draft, draft-ietf-cellar-matroska-05

<https://tools.ietf.org/html/draft-ietf-cellar-matroska-05>

The WebM Project "WebM Container Guidelines" <https://
www.webmproject.org/docs/container/>

Clark, J., Ed. and S. DeRose "XML Path Language (XPath) Version 1.0" Latest
version available at https://www.w3.org/TR/xpath <https://
www.w3.org/TR/1999/REC-xpath-19991116>

Authors' Addresses
Steve Lhomme

 slhomme@matroska.org Email:

Dave Rice
 dave@dericed.com Email:

Moritz Bunkus
 moritz@bunkus.org Email:

RFC 8794 EBML July 2020

Lhomme, et al. Standards Track Page 51

https://www.w3.org/TR/2018/SPSD-xhtml-basic-20180327/
https://www.w3.org/TR/2018/SPSD-xhtml-basic-20180327/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
https://tools.ietf.org/html/draft-ietf-cellar-matroska-05
https://www.webmproject.org/docs/container/
https://www.webmproject.org/docs/container/
https://www.w3.org/TR/1999/REC-xpath-19991116
https://www.w3.org/TR/1999/REC-xpath-19991116
mailto:slhomme@matroska.org
mailto:dave@dericed.com
mailto:moritz@bunkus.org

	RFC 8794
	Extensible Binary Meta Language
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Notation and Conventions
	3. Structure
	4. Variable-Size Integer
	4.1. VINT_WIDTH
	4.2. VINT_MARKER
	4.3. VINT_DATA
	4.4. VINT Examples

	5. Element ID
	6. Element Data Size
	6.1. Data Size Format
	6.2. Unknown Data Size
	6.3. Data Size Values

	7. EBML Element Types
	7.1. Signed Integer Element
	7.2. Unsigned Integer Element
	7.3. Float Element
	7.4. String Element
	7.5. UTF-8 Element
	7.6. Date Element
	7.7. Master Element
	7.8. Binary Element

	8. EBML Document
	8.1. EBML Header
	8.2. EBML Body

	9. EBML Stream
	10. EBML Versioning
	10.1. EBML Header Version
	10.2. EBML Document Version

	11. Elements semantics
	11.1. EBML Schema
	11.1.1. EBML Schema Example
	11.1.2. <EBMLSchema> Element
	11.1.3. <EBMLSchema> Namespace
	11.1.4. <EBMLSchema> Attributes
	11.1.4.1. docType
	11.1.4.2. version
	11.1.4.3. ebml

	11.1.5. <element> Element
	11.1.6. <element> Attributes
	11.1.6.1. name
	11.1.6.2. path
	11.1.6.3. id
	11.1.6.4. minOccurs
	11.1.6.5. maxOccurs
	11.1.6.6. range
	11.1.6.6.1. Expression of range

	11.1.6.7. length
	11.1.6.8. default
	11.1.6.9. type
	11.1.6.10. unknownsizeallowed
	11.1.6.11. recursive
	11.1.6.12. recurring
	11.1.6.13. minver
	11.1.6.14. maxver

	11.1.7. <documentation> Element
	11.1.8. <documentation> Attributes
	11.1.8.1. lang
	11.1.8.2. purpose

	11.1.9. <implementation_note> Element
	11.1.10. <implementation_note> Attributes
	11.1.10.1. note_attribute
	11.1.10.2. <implementation_note> Example

	11.1.11. <restriction> Element
	11.1.12. <enum> Element
	11.1.13. <enum> Attributes
	11.1.13.1. label
	11.1.13.2. value

	11.1.14. <extension> Element
	11.1.15. <extension> Attributes
	11.1.15.1. type

	11.1.16. XML Schema for EBML Schema
	11.1.17. Identically Recurring Elements
	11.1.18. Textual expression of floats
	11.1.19. Note on the use of default attributes to define Mandatory EBML Elements

	11.2. EBML Header Elements
	11.2.1. EBML Element
	11.2.2. EBMLVersion Element
	11.2.3. EBMLReadVersion Element
	11.2.4. EBMLMaxIDLength Element
	11.2.5. EBMLMaxSizeLength Element
	11.2.6. DocType Element
	11.2.7. DocTypeVersion Element
	11.2.8. DocTypeReadVersion Element
	11.2.9. DocTypeExtension Element
	11.2.10. DocTypeExtensionName Element
	11.2.11. DocTypeExtensionVersion Element

	11.3. Global Elements
	11.3.1. CRC-32 Element
	11.3.2. Void Element

	12. Considerations for Reading EBML Data
	13. Terminating Elements
	14. Guidelines for Updating Elements
	14.1. Reducing Element Data in Size
	14.1.1. Adding a Void Element
	14.1.2. Extending the Element Data Size
	14.1.3. Terminating Element Data

	14.2. Considerations when Updating Elements with Cyclic Redundancy Check (CRC)

	15. Backward and Forward Compatibility
	15.1. Backward Compatibility
	15.2. Forward Compatibility

	16. Security Considerations
	17. IANA Considerations
	17.1. EBML Element IDs Registry
	17.2. EBML DocTypes Registry

	18. Normative References
	19. Informative References
	Authors' Addresses

 Extensible Binary Meta Language

 slhomme@matroska.org

 dave@dericed.com

 moritz@bunkus.org

 art
 cellar
 binary
 storage
 xml
 matroska
 webm

 This document defines the Extensible Binary Meta Language (EBML) format as a binary container format designed for audio/video storage. EBML is designed as a binary equivalent to XML and uses a storage-efficient approach to build nested Elements with identifiers, lengths, and values. Similar to how an XML Schema defines the structure and semantics of an XML Document, this document defines how EBML Schemas are created to convey the semantics of an EBML Document.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

 Table of Contents

 . Introduction

 . Notation and Conventions

 . Structure

 . Variable-Size Integer

 . VINT_WIDTH

 . VINT_MARKER

 . VINT_DATA

 . VINT Examples

 . Element ID

 . Element Data Size

 . Data Size Format

 . Unknown Data Size

 . Data Size Values

 . EBML Element Types

 . Signed Integer Element

 . Unsigned Integer Element

 . Float Element

 . String Element

 . UTF-8 Element

 . Date Element

 . Master Element

 . Binary Element

 . EBML Document

 . EBML Header

 . EBML Body

 . EBML Stream

 . EBML Versioning

 . EBML Header Version

 . EBML Document Version

 . Elements semantics

 . EBML Schema

 . EBML Schema Example

 . <EBMLSchema> Element

 . <EBMLSchema> Namespace

 . <EBMLSchema> Attributes

 . <element> Element

 . <element> Attributes

 . <documentation> Element

 . <documentation> Attributes

 . <implementation_note> Element

 . <implementation_note> Attributes

 . <restriction> Element

 . <enum> Element

 . <enum> Attributes

 . <extension> Element

 . <extension> Attributes

 . XML Schema for EBML Schema

 . Identically Recurring Elements

 . Textual expression of floats

 . Note on the use of default attributes to define Mandatory EBML Elements

 . EBML Header Elements

 . EBML Element

 . EBMLVersion Element

 . EBMLReadVersion Element

 . EBMLMaxIDLength Element

 . EBMLMaxSizeLength Element

 . DocType Element

 . DocTypeVersion Element

 . DocTypeReadVersion Element

 . DocTypeExtension Element

 . DocTypeExtensionName Element

 . DocTypeExtensionVersion Element

 . Global Elements

 . CRC-32 Element

 . Void Element

 . Considerations for Reading EBML Data

 . Terminating Elements

 . Guidelines for Updating Elements

 . Reducing Element Data in Size

 . Adding a Void Element

 . Extending the Element Data Size

 . Terminating Element Data

 . Considerations when Updating Elements with Cyclic Redundancy Check (CRC)

 . Backward and Forward Compatibility

 . Backward Compatibility

 . Forward Compatibility

 . Security Considerations

 . IANA Considerations

 . EBML Element IDs Registry

 . EBML DocTypes Registry

 . Normative References

 . Informative References

 Authors' Addresses

 Introduction
 EBML, short for Extensible Binary Meta Language, specifies a binary format
aligned with octets (bytes) and inspired by the principle of XML (a framework for
structuring data).
 The goal of this document is to define a generic, binary, space-efficient
format that can be used to define more complex formats using an EBML
Schema. EBML is used by the multimedia container, Matroska
 . The applicability of EBML for other
use cases is beyond the scope of this document.
 The definition of the EBML format recognizes the idea behind HTML and XML
as a good one: separate structure and semantics allowing the same structural
layer to be used with multiple, possibly widely differing, semantic
layers. Except for the EBML Header and a few Global Elements, this
specification does not define particular EBML format semantics; however, this
specification is intended to define how other EBML-based formats can be
defined, such as the audio/video container formats Matroska and WebM .
 EBML uses a simple approach of building Elements upon three pieces of data (tag, length, and value), as this approach is well known, easy to parse, and allows selective data parsing. The EBML structure additionally allows for hierarchical arrangement to support complex structural formats in an efficient manner.
 A typical EBML file has the following structure:
 EBML Header (master)
 + DocType (string)
 + DocTypeVersion (unsigned integer)
EBML Body Root (master)
 + ElementA (utf-8)
 + Parent (master)
 + ElementB (integer)
 + Parent (master)
 + ElementB (integer)

 Notation and Conventions
 The key words " MUST", " MUST NOT",
" REQUIRED", " SHALL", " SHALL NOT",
" SHOULD", " SHOULD NOT",
" RECOMMENDED", " NOT RECOMMENDED",
" MAY", and " OPTIONAL" in this document are to be interpreted as
described in BCP 14
when, and only when, they appear in all capitals, as shown here.
 This document defines specific terms in order to define the format and
application of EBML. Specific terms are defined below:

 EBML:
 Extensible Binary Meta Language
 EBML Document Type:
 A name provided by an EBML Schema to designate a particular
implementation of EBML for a data format (e.g., Matroska and WebM).
 EBML Schema:
 A standardized definition for the structure of an EBML Document Type.
 EBML Document:
 A datastream comprised of only two components, an EBML Header and
an EBML Body.
 EBML Reader:
 A data parser that interprets the semantics of an EBML Document
and creates a way for programs to use EBML.
 EBML Stream:
 A file that consists of one or more EBML Documents that are
concatenated together.
 EBML Header:
 A declaration that provides processing instructions and identification of
the EBML Body. The EBML Header is analogous to an XML Declaration
 (see Section 2.8 on "Prolog and Document Type Declaration").
 EBML Body:
 All data of an EBML Document following the EBML Header.
 Variable-Size Integer:
 A compact variable-length binary value that defines its own length.
 VINT:
 Also known as Variable-Size Integer.
 EBML Element:
 A foundation block of data that contains three parts: an Element ID,
an Element Data Size, and Element Data.
 Element ID:
 A binary value, encoded as a Variable-Size Integer,
used to uniquely identify a defined EBML Element within a specific
 EBML Schema.
 Element Data Size:
 An expression, encoded as a Variable-Size Integer, of the length
in octets of Element Data.
 VINTMAX:
 The maximum possible value that can be stored as Element Data Size.
 Unknown-Sized Element:
 An Element with an unknown Element Data Size.
 Element Data:
 The value(s) of the EBML Element, which is identified by its
 Element ID and Element Data Size. The form of the Element Data is
defined by this document and the corresponding EBML Schema of the
Element's EBML Document Type.
 Root Level:
 The starting level in the hierarchy of an EBML Document.
 Root Element:
 A mandatory, nonrepeating EBML Element that occurs at the top
level of the path hierarchy within an EBML Body and contains all other
 EBML Elements of the EBML Body, excepting optional Void Elements.
 Top-Level Element:
 An EBML Element defined to only occur as a Child Element
of the Root Element.
 Master Element:
 The Master Element contains zero, one, or many other EBML Elements.
 Child Element:
 A Child Element is a relative term to describe the EBML Elements
immediately contained within a Master Element.
 Parent Element:
 A relative term to describe the Master Element that contains a
specified element. For any specified EBML Element that is not at
 Root Level, the Parent Element refers to the Master Element
in which that EBML Element is directly contained.
 Descendant Element:
 A relative term to describe any EBML Elements contained within a
 Master Element, including any of the Child Elements of its
 Child Elements, and so on.
 Void Element:
 An Element used to overwrite data or
reserve space within a Master Element for later use.
 Element Name:
 The human-readable name of the EBML Element.
 Element Path:
 The hierarchy of Parent Element where the EBML Element
is expected to be found in the EBML Body.
 Empty Element:
 An EBML Element that has an Element Data Size with all
 VINT_DATA bits set to zero, which indicates
that the Element Data of the Element is zero octets in
length.

 Structure
 EBML uses a system of Elements to compose an EBML Document. EBML Elements incorporate three parts: an Element ID, an Element Data Size, and Element Data. The Element Data, which is described by the Element ID, includes either binary data, one or more other EBML Elements, or both.

 Variable-Size Integer
 The Element ID and Element Data Size are both encoded as a Variable-Size
Integer. The Variable-Size Integer is composed of a VINT_WIDTH, VINT_MARKER,
and VINT_DATA, in that order. Variable-Size Integers MUST
left-pad the VINT_DATA value with zero bits so that the whole Variable-Size
Integer is octet aligned. The Variable-Size Integer will be referred to as
VINT for shorthand.

 VINT_WIDTH
 Each Variable-Size Integer starts with a VINT_WIDTH followed by a
VINT_MARKER. VINT_WIDTH is a sequence of zero or more bits of value 0
and is terminated by the VINT_MARKER, which is a single bit of value
 1. The total length in bits of both VINT_WIDTH and VINT_MARKER is the
total length in octets in of the Variable-Size Integer.
 The single bit 1 starts a Variable-Size Integer with a length of
one octet. The sequence of bits 01 starts a Variable-Size Integer
with a length of two octets. 001 starts a Variable-Size Integer with
a length of three octets, and so on, with each additional 0 bit adding one
octet to the length of the Variable-Size Integer.

 VINT_MARKER
 The VINT_MARKER serves as a separator between the VINT_WIDTH and VINT_DATA. Each Variable-Size Integer MUST contain exactly one VINT_MARKER. The VINT_MARKER is one bit in length and contain a bit with a value of one. The first bit with a value of one within the Variable-Size Integer is the VINT_MARKER.

 VINT_DATA
 The VINT_DATA portion of the Variable-Size Integer includes all data following
(but not including) the VINT_MARKER until end of the Variable-Size
Integer whose length is derived from the VINT_WIDTH. The bits required for the
VINT_WIDTH and the VINT_MARKER use one out of every eight bits of the total
length of the Variable-Size Integer. Thus, a Variable-Size Integer of 1-octet
length supplies 7 bits for VINT_DATA, a 2-octet length supplies 14 bits for
VINT_DATA, and a 3-octet length supplies 21 bits for VINT_DATA. If the number
of bits required for VINT_DATA is less than the bit size of VINT_DATA, then
VINT_DATA MUST be zero-padded to the left to a size that
fits. The VINT_DATA value MUST be expressed as a big-endian
unsigned integer.

 VINT Examples
 shows examples of Variable-Size
Integers with lengths from 1 to 5 octets. The "Usable Bits" column refers to the
number of bits that can be used in the VINT_DATA. The "Representation" column
depicts a binary expression of Variable-Size Integers where VINT_WIDTH is
depicted by 0, the VINT_MARKER as 1, and the VINT_DATA as
 x.

 VINT examples depicting usable bits

 Octet Length
 Usable Bits
 Representation

 1
 7
 1xxx xxxx

 2
 14
 01xx xxxx xxxx xxxx

 3
 21
 001x xxxx xxxx xxxx xxxx xxxx

 4
 28
 0001 xxxx xxxx xxxx xxxx xxxx xxxx xxxx

 5
 35
 0000 1xxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx

 A Variable-Size Integer may be rendered at octet lengths larger
than needed to store the data in order to facilitate overwriting it at a later
date -- e.g., when its final size isn't known in advance. In
 , an integer 2 (with a
corresponding binary value of 0b10) is shown encoded as different Variable-Size
Integers with lengths from one octet to four octets. All four encoded
examples have identical semantic meaning, though the VINT_WIDTH and the padding
of the VINT_DATA vary.

 VINT examples depicting the same
integer value rendered at different VINT lengths

 Integer
 Octet Length
 As Represented in VINT (binary)
 As Represented in VINT (hexadecimal)

 2
 1
 1000 0010
 0x82

 2
 2
 0100 0000 0000 0010
 0x4002

 2
 3
 0010 0000 0000 0000 0000 0010
 0x200002

 2
 4
 0001 0000 0000 0000 0000 0000 0000 0010
 0x10000002

 Element ID
 An Element ID is a Variable-Size Integer. By default, Element IDs are from
one octet to four octets in length, although Element IDs of greater lengths
 MAY be used if the EBMLMaxIDLength Element of the EBML Header
is set to a value greater than four (see
). The bits of the VINT_DATA component
of the Element ID MUST NOT be all 0 values or all
 1 values. The VINT_DATA component of the Element ID
 MUST be encoded at the shortest valid length. For example, an
Element ID with binary encoding of 1011 1111 is valid, whereas an
Element ID with binary encoding of 0100 0000 0011 1111 stores a
semantically equal VINT_DATA but is invalid, because a shorter VINT encoding is
possible. Additionally, an Element ID with binary encoding of 1111 1111
is invalid, since the VINT_DATA section is set to all one values,
whereas an Element ID with binary encoding of 0100 0000 0111 1111
stores a semantically equal VINT_DATA and is the shortest-possible VINT
encoding.
 details these specific examples further:

 Examples of valid and invalid Element IDs

 VINT_WIDTH
 VINT_MARKER
 VINT_DATA
 Element ID Status

 1
 0000000
 Invalid: VINT_DATA MUST NOT be set to all 0

 0
 1
 00000000000000
 Invalid: VINT_DATA MUST NOT be set to all 0

 1
 0000001
 Valid

 0
 1
 00000000000001
 Invalid: A shorter VINT_DATA encoding is available.

 1
 0111111
 Valid

 0
 1
 00000000111111
 Invalid: A shorter VINT_DATA encoding is available.

 1
 1111111
 Invalid: VINT_DATA MUST NOT be set to all 1

 0
 1
 00000001111111
 Valid

 The range and count of possible Element IDs are determined by their
octet length. Examples of this are provided in
 .

 Examples of count and range for
Element IDs at various octet lengths

 Element ID Octet Length
 Range of Valid Element IDs
 Number of Valid Element IDs

 1
 0x81 - 0xFE
 126

 2
 0x407F - 0x7FFE
 16,256

 3
 0x203FFF - 0x3FFFFE
 2,080,768

 4
 0x101FFFFF - 0x1FFFFFFE
 268,338,304

 Element Data Size

 Data Size Format
 The Element Data Size expresses the length in octets of Element Data. The
Element Data Size itself is encoded as a Variable-Size Integer. By default,
Element Data Sizes can be encoded in lengths from one octet to eight octets,
although Element Data Sizes of greater lengths MAY be used if
the octet length of the longest Element Data Size of the EBML Document is
declared in the EBMLMaxSizeLength Element of the EBML Header (see
). Unlike the VINT_DATA of the
Element ID, the VINT_DATA component of the Element Data Size is not mandated
to be encoded at the shortest valid length. For example, an Element Data Size
with binary encoding of 1011 1111 or a binary encoding of 0100 0000 0011 1111
are both valid Element Data Sizes and both store a semantically equal value
(both 0b00000000111111 and 0b0111111, the VINT_DATA sections of the examples,
represent the integer 63).
 Although an Element ID with all VINT_DATA bits set to zero is invalid, an
Element Data Size with all VINT_DATA bits set to zero is allowed for EBML
Element Types that do not mandate a nonzero length (see
). An Element Data Size with all VINT_DATA
bits set to zero indicates that the Element Data is zero octets in
length. Such an EBML Element is referred to as an Empty Element. If an Empty
Element has a default value declared, then the EBML Reader MUST
interpret the value of the Empty Element as the default value. If an Empty
Element has no default value declared, then the EBML Reader MUST
use the value of the Empty Element for the corresponding EBML Element Type of
the Element ID, 0 for numbers and an empty string for strings.

 Unknown Data Size
 An Element Data Size with all VINT_DATA bits set to one is reserved as an
indicator that the size of the EBML Element is unknown. The only reserved
value for the VINT_DATA of Element Data Size is all bits set to one. An EBML
Element with an unknown Element Data Size is referred to as an Unknown-Sized
Element. Only a Master Element is allowed to be of unknown size, and it can
only be so if the unknownsizeallowed attribute of its EBML Schema is
set to true (see).
 The use of Unknown-Sized Elements allows an EBML Element to be written and read before the size of the EBML Element is known. Unknown-Sized Elements MUST only be used if the Element Data Size is not known before the Element Data is written, such as in some cases of datastreaming. The end of an Unknown-Sized Element is determined by whichever comes first:

 Any EBML Element that is a valid Parent Element of the Unknown-Sized Element according to the EBML Schema, Global Elements excluded.

 Any valid EBML Element according to the EBML Schema, Global Elements
excluded, that is not a Descendant Element of the Unknown-Sized Element but
shares a common direct parent, such as a Top-Level Element.

 Any EBML Element that is a valid Root Element according to the EBML Schema, Global Elements excluded.

 The end of the Parent Element with a known size has been reached.

 The end of the EBML Document, either when reaching the end of the file or because a new EBML Header started.

 Consider an Unknown-Sized Element whose EBML path is
 \root\level1\level2\elt. When reading a new Element ID, assuming the
EBML Path of that new Element is valid, here are some possible and impossible
ways that this new Element is ending elt:

 Examples of determining the end of an Unknown-Sized Element

 EBML Path of new element
 Status

 \root\level1\level2
 Ends the Unknown-Sized Element, as it is a new Parent Element

 \root\level1
 Ends the Unknown-Sized Element, as it is a new Parent Element

 \root
 Ends the Unknown-Sized Element, as it is a new Root Element

 \root2
 Ends the Unknown-Sized Element, as it is a new Root Element

 \root\level1\level2\other
 Ends the Unknown-Sized Element, as they share the same parent

 \root\level1\level2\elt
 Ends the Unknown-Sized Element, as they share the same parent

 \root\level1\level2\elt\inside
 Doesn't end the Unknown-Sized Element; it's a child of elt

 \root\level1\level2\elt\<global>
 Global Element is valid; it's a child of elt

 \root\level1\level2\<global>
 Global Element cannot be interpreted with this path; while parsing elt, a Global Element can only be a child of elt

 Data Size Values
 For Element Data Sizes encoded at octet lengths from one to eight,
 depicts the range of possible values
that can be encoded as an Element Data Size. An Element Data Size with an
octet length of 8 is able to express a size of 2 56-2 or
72,057,594,037,927,934 octets (or about 72 petabytes). The maximum possible
value that can be stored as Element Data Size is referred to as VINTMAX.

 Possible range of values that
can be stored in VINTs, by octet length

 Octet Length
 Possible Value Range

 1
 0 to 2 7 - 2

 2
 0 to 2 14 - 2

 3
 0 to 2 21 - 2

 4
 0 to 2 28 - 2

 5
 0 to 2 35 - 2

 6
 0 to 2 42 - 2

 7
 0 to 2 49 - 2

 8
 0 to 2 56 - 2

 If the length of Element Data equals 2 n*7-1, then the octet
length of the Element Data Size MUST be at least n+1. This rule
prevents an Element Data Size from being expressed as the unknown-size
value. clarifies this rule by
showing a valid and invalid expression of an Element Data Size with a
VINT_DATA of 127 (which is equal to 2 1*7-1) and 16,383 (which is equal to
2 2*7-1).

 Demonstration of VINT_DATA
reservation for VINTs of unknown size

 VINT_WIDTH
 VINT_MARKER
 VINT_DATA
 Element Data Size Status

 1
 1111111
 Reserved (meaning Unknown)

 0
 1
 00000001111111
 Valid (meaning 127 octets)

 00
 1
 000000000000001111111
 Valid (meaning 127 octets)

 0
 1
 11111111111111
 Reserved (meaning Unknown)

 00
 1
 000000011111111111111
 Valid (16,383 octets)

 EBML Element Types
 EBML Elements are defined by an EBML Schema (see
), which MUST declare one of the
following EBML Element Types for each EBML Element. An EBML Element Type
defines a concept of storing data within an EBML Element that describes such
characteristics as length, endianness, and definition.
 EBML Elements that are defined as a Signed Integer Element, Unsigned
Integer Element, Float Element, or Date Element use big-endian storage.

 Signed Integer Element
 A Signed Integer Element MUST declare a length from zero to eight octets. If the EBML Element is not defined to have a default value, then a Signed Integer Element with a zero-octet length represents an integer value of zero.
 A Signed Integer Element stores an integer (meaning that it can be written
without a fractional component) that could be negative, positive, or
zero. Signed Integers are stored with two's complement notation with the
leftmost bit being the sign bit. Because EBML limits Signed Integers to 8
octets in length, a Signed Integer Element stores a number from
-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807.

 Unsigned Integer Element
 An Unsigned Integer Element MUST declare a length from zero to eight octets. If the EBML Element is not defined to have a default value, then an Unsigned Integer Element with a zero-octet length represents an integer value of zero.
 An Unsigned Integer Element stores an integer (meaning that it can be
written without a fractional component) that could be positive or
zero. Because EBML limits Unsigned Integers to 8 octets in length, an Unsigned
Integer Element stores a number from 0 to 18,446,744,073,709,551,615.

 Float Element
 A Float Element MUST declare a length of either zero octets
(0 bit), four octets (32 bit), or eight octets (64 bit). If the EBML Element
is not defined to have a default value, then a Float Element with a zero-octet
length represents a numerical value of zero.
 A Float Element stores a floating-point number in the 32-bit and 64-bit
binary interchange format, as defined in .

 String Element
 A String Element MUST declare a length in octets from zero to VINTMAX. If the EBML Element is not defined to have a default value, then a String Element with a zero-octet length represents an empty string.
 A String Element MUST either be empty (zero-length) or contain printable ASCII characters in the range of 0x20 to 0x7E, with an exception made for termination (see).

 UTF-8 Element
 A UTF-8 Element MUST declare a length in octets from zero to VINTMAX. If the EBML Element is not defined to have a default value, then a UTF-8 Element with a zero-octet length represents an empty string.
 A UTF-8 Element contains only a valid Unicode string as defined in , with an exception made for termination (see).

 Date Element
 A Date Element MUST declare a length of either zero octets or eight octets. If the EBML Element is not defined to have a default value, then a Date Element with a zero-octet length represents a timestamp of 2001-01-01T00:00:00.000000000 UTC .
 The Date Element stores an integer in the same format as the Signed Integer Element that expresses a point in time referenced in nanoseconds from the precise beginning of the third millennium of the Gregorian Calendar in Coordinated Universal Time (also known as 2001-01-01T00:00:00.000000000 UTC). This provides a possible expression of time from 1708-09-11T00:12:44.854775808 UTC to 2293-04-11T11:47:16.854775807 UTC.

 Master Element
 A Master Element MUST declare a length in octets from zero to VINTMAX or be of unknown length. See for rules that apply to elements of unknown length.
 The Master Element contains zero or more other elements. EBML Elements contained within a Master Element MUST have the EBMLParentPath of their Element Path equal to the EBMLFullPath of the Master Element Element Path (see). Element Data stored within Master Elements SHOULD only consist of EBML Elements and SHOULD NOT contain any data that is not part of an EBML Element. The EBML Schema identifies what Element IDs are valid within the Master Elements for that version of the EBML Document Type. Any data contained within a Master Element that is not part of a Child Element MUST be ignored.

 Binary Element
 A Binary Element MUST declare a length in octets from zero to VINTMAX.
 The contents of a Binary Element should not be interpreted by the EBML Reader.

 EBML Document
 An EBML Document is composed of only two components, an EBML Header and an EBML Body. An EBML Document MUST start with an EBML Header that declares significant characteristics of the entire EBML Body. An EBML Document consists of EBML Elements and MUST NOT contain any data that is not part of an EBML Element.

 EBML Header
 The EBML Header is a declaration that provides processing instructions and identification of the EBML Body. The EBML Header of an EBML Document is analogous to the XML Declaration of an XML Document.
 The EBML Header documents the EBML Schema (also known as the EBML DocType)
that is used to semantically interpret the structure and meaning of the EBML
Document. Additionally, the EBML Header documents the versions of both EBML
and the EBML Schema that were used to write the EBML Document and the versions
required to read the EBML Document.
 The EBML Header MUST contain a single Master Element with an
Element Name of EBML and Element ID of 0x1A45DFA3 (see
); the Master Element may have any number of
additional EBML Elements within it. The EBML Header of an EBML Document that
uses an EBMLVersion of 1 MUST only contain EBML Elements that
are defined as part of this document.
 Elements within an EBML Header can be at most 4 octets long, except for the
EBML Element with Element Name EBML and Element ID
 0x1A45DFA3 (see); this Element can be up
to 8 octets long.

 EBML Body
 All data of an EBML Document following the EBML Header is the EBML Body. The end of the EBML Body, as well as the end of the EBML Document that contains the EBML Body, is reached at whichever comes first: the beginning of a new EBML Header at the Root Level or the end of the file. This document defines precisely which EBML Elements are to be used within the EBML Header but does not name or define which EBML Elements are to be used within the EBML Body. The definition of which EBML Elements are to be used within the EBML Body is defined by an EBML Schema.
 Within the EBML Body, the maximum octet length allowed for any Element ID
is set by the EBMLMaxIDLength Element of the EBML Header, and the maximum octet
length allowed for any Element Data Size is set by the EBMLMaxSizeLength
Element of the EBML Header.

 EBML Stream
 An EBML Stream is a file that consists of one or more EBML Documents that are concatenated together. An occurrence of an EBML Header at the Root Level marks the beginning of an EBML Document.

 EBML Versioning
 An EBML Document handles 2 different versions: the version of the EBML Header and the version of the EBML Body. Both versions are meant to be backward compatible.

 EBML Header Version
 The version of the EBML Header is found in EBMLVersion. An EBML parser can read an EBML Header if it can read either the EBMLVersion version or a version equal or higher than the one found in EBMLReadVersion.

 EBML Document Version
 The version of the EBML Body is found in EBMLDocTypeVersion. A parser for the particular DocType format can read the EBML Document if it can read either the EBMLDocTypeVersion version of that format or a version equal or higher than the one found in EBMLDocTypeReadVersion.

 Elements semantics

 EBML Schema
 An EBML Schema is a well-formed XML Document
 that defines the properties,
arrangement, and usage of EBML Elements that compose a specific EBML Document
Type. The relationship of an EBML Schema to an EBML Document is analogous to
the relationship of an XML Schema to an XML
Document . An EBML Schema
 MUST be clearly associated with one or more EBML Document
Types. An EBML Document Type is identified by a string stored within the EBML
Header in the DocType Element -- for example, Matroska or WebM (see
). The DocType value for an EBML Document Type
 MUST be unique, persistent, and described in the IANA registry
(see).
 An EBML Schema MUST declare exactly one EBML Element at Root Level (referred to as the Root Element) that occurs exactly once within an EBML Document. The Void Element MAY also occur at Root Level but is not a Root Element (see).
 The EBML Schema MUST document all Elements of the EBML
Body. The EBML Schema does not document Global Elements that are defined by
this document (namely, the Void Element and the CRC-32 Element).
 The EBML Schema MUST NOT use the Element ID
 0x1A45DFA3, which is reserved for the EBML Header for the purpose of
resynchronization.
 An EBML Schema MAY constrain the use of EBML Header Elements
(see) by adding or constraining
that Element's range attribute. For example, an EBML Schema
 MAY constrain the EBMLMaxSizeLength to a maximum value of
 8 or MAY constrain the EBMLVersion to only support a
value of 1. If an EBML Schema adopts the EBML Header Element as is,
then it is not required to document that Element within the EBML Schema. If an
EBML Schema constrains the range of an EBML Header Element, then that Element
 MUST be documented within an <element> node of
the EBML Schema. This document provides an example of an EBML Schema; see
 .

 EBML Schema Example
 <?xml version="1.0" encoding="utf-8"?>
<EBMLSchema xmlns="urn:ietf:rfc:8794"
 docType="files-in-ebml-demo" version="1">
 <!-- constraints to the range of two EBML Header Elements -->
 <element name="EBMLReadVersion" path="\EBML\EBMLReadVersion"
 id="0x42F7" minOccurs="1" maxOccurs="1" range="1" default="1"
 type="uinteger"/>
 <element name="EBMLMaxSizeLength"
 path="\EBML\EBMLMaxSizeLength" id="0x42F3" minOccurs="1"
 maxOccurs="1" range="8" default="8" type="uinteger"/>
 <!-- Root Element-->
 <element name="Files" path="\Files" id="0x1946696C"
 type="master">
 <documentation lang="en"
 purpose="definition">Container of data and
 attributes representing one or many files.</documentation>
 </element>
 <element name="File" path="\Files\File" id="0x6146"
 type="master" minOccurs="1">
 <documentation lang="en" purpose="definition">
 An attached file.
 </documentation>
 </element>
 <element name="FileName" path="\Files\File\FileName"
 id="0x614E" type="utf-8"
 minOccurs="1">
 <documentation lang="en" purpose="definition">
 Filename of the attached file.
 </documentation>
 </element>
 <element name="MimeType" path="\Files\File\MimeType"
 id="0x464D" type="string"
 minOccurs="1">
 <documentation lang="en" purpose="definition">
 MIME type of the file.
 </documentation>
 </element>
 <element name="ModificationTimestamp"
 path="\Files\File\ModificationTimestamp" id="0x4654"
 type="date" minOccurs="1">
 <documentation lang="en" purpose="definition">
 Modification timestamp of the file.
 </documentation>
 </element>
 <element name="Data" path="\Files\File\Data" id="0x4664"
 type="binary" minOccurs="1">
 <documentation lang="en" purpose="definition">
 The data of the file.
 </documentation>
 </element>
</EBMLSchema>

 <EBMLSchema> Element
 Within an EBML Schema, the XPath of the
 <EBMLSchema> element is /EBMLSchema.
 When used as an XML Document, the EBML Schema MUST use
 <EBMLSchema> as the top-level element. The
 <EBMLSchema> element can contain <element>
subelements.

 <EBMLSchema> Namespace
 The namespace URI for elements of the EBML Schema is a URN as defined by
 that uses the namespace identifier 'ietf' defined by
and extended by . This URN is urn:ietf:rfc:8794.

 <EBMLSchema> Attributes
 Within an EBML Schema, the <EBMLSchema> element uses the
following attributes to define an EBML Element:

 docType
 Within an EBML Schema, the XPath of the @docType attribute is
 /EBMLSchema/@docType.
 The docType lists the official name of the EBML Document Type that is
defined by the EBML Schema; for example,
 <EBMLSchema docType="matroska">.
 The docType attribute is REQUIRED within the
 <EBMLSchema> Element.

 version
 Within an EBML Schema, the XPath of the @version attribute is
 /EBMLSchema/@version.
 The version lists a nonnegative integer that specifies the version of the
 docType documented by the EBML Schema. Unlike XML Schemas, an EBML Schema
documents all versions of a docType's definition rather than using separate
EBML Schemas for each version of a docType. EBML Elements may be introduced
and deprecated by using the minver and maxver attributes of
 <element>.
 The version attribute is REQUIRED within the
 <EBMLSchema> Element.

 ebml
 Within an EBML Schema, the XPath of the @ebml attribute is /EBMLSchema/@ebml.
 The ebml attribute is a positive integer that specifies the
version of the EBML Header (see)
used by the EBML Schema. If the attribute is omitted, the EBML Header version
is 1.

 <element> Element
 Within an EBML Schema, the XPath of the <element> element is
 /EBMLSchema/element.
 Each <element> defines one EBML Element through the use of
several attributes that are defined in
 . EBML Schemas MAY contain
additional attributes to extend the semantics but MUST NOT
conflict with the definitions of the <element> attributes
defined within this document.
 The <element> nodes contain a description of the meaning and use of the EBML Element stored within one or more <documentation> subelements, followed by optional <implementation_note> subelements, followed by zero or one <restriction> subelement, followed by optional <extension> subelements. All <element> nodes MUST be subelements of the <EBMLSchema>.

 <element> Attributes
 Within an EBML Schema, the <element> uses the following
attributes to define an EBML Element:

 name
 Within an EBML Schema, the XPath of the @name attribute is
 /EBMLSchema/element/@name.
 The name provides the human-readable name of the EBML Element. The value of
the name MUST be in the form of characters "A" to
"Z", "a" to "z", "0" to "9",
"-", and ".". The first character of the name
 MUST be in the form of an "A" to "Z",
"a" to "z", or "0" to "9" character.
 The name attribute is REQUIRED.

 path
 Within an EBML Schema, the XPath of the @path attribute is
 /EBMLSchema/element/@path.
 The path defines the allowed storage locations of the EBML Element within
an EBML Document. This path MUST be defined with the full
hierarchy of EBML Elements separated with a \. The top EBML Element
in the path hierarchy is the first in the value. The syntax of the
 path attribute is defined using this Augmented Backus-Naur Form
(ABNF) with the case-sensitive update
 notation:
 The path attribute is REQUIRED.
 EBMLFullPath = EBMLParentPath EBMLElement

EBMLParentPath = PathDelimiter [EBMLParents]

EBMLParents = 0*IntermediatePathAtom EBMLLastParent
IntermediatePathAtom = EBMLPathAtom / GlobalPlaceholder
EBMLLastParent = EBMLPathAtom / GlobalPlaceholder

EBMLPathAtom = [IsRecursive] EBMLAtomName PathDelimiter
EBMLElement = [IsRecursive] EBMLAtomName

PathDelimiter = "\"
IsRecursive = "+"
EBMLAtomName = ALPHA / DIGIT 0*EBMLNameChar
EBMLNameChar = ALPHA / DIGIT / "-" / "."

GlobalPlaceholder = "(" GlobalParentOccurrence "\)"
GlobalParentOccurrence = [PathMinOccurrence] "-" [PathMaxOccurrence]
PathMinOccurrence = 1*DIGIT ; no upper limit
PathMaxOccurrence = 1*DIGIT ; no upper limit

 The *, (, and) symbols are interpreted as defined in .
 The EBMLAtomName of the EBMLElement part MUST be equal to the @name attribute of the EBML Schema.
If the EBMLElement part contains an IsRecursive part, the EBML Element can occur within itself recursively (see).
 The starting PathDelimiter of EBMLParentPath corresponds to the root of the EBML Document.
 The @path value MUST be unique within the EBML Schema. The @id value corresponding to this @path MUST NOT be defined for use within another EBML Element with the same EBMLParentPath as this @path.
 A path with a GlobalPlaceholder as the EBMLLastParent defines a Global Element; see .
If the element has no EBMLLastParent part, or the EBMLLastParent part is not a
GlobalPlaceholder, then the Element is not a Global Element.
 The GlobalParentOccurrence part is interpreted as the number of valid
 EBMLPathAtom parts that can replace the GlobalPlaceholder in the path.
PathMinOccurrence represents the minimum number of EBMLPathAtoms required to
replace the GlobalPlaceholder. PathMaxOccurrence represents the maximum number
of EBMLPathAtoms possible to replace the GlobalPlaceholder.
 If PathMinOccurrence is not present, then that GlobalParentOccurrence has a
PathMinOccurrence value of 0.
If PathMaxOccurrence is not present, then there is no upper bound for the
permitted number of EBMLPathAtoms possible to replace the GlobalPlaceholder.
PathMaxOccurrence MUST NOT have the value 0, as it would mean
no EBMLPathAtom can replace the GlobalPlaceholder, and the EBMLFullPath would
be the same without that GlobalPlaceholder part.
PathMaxOccurrence MUST be bigger than, or equal to,
PathMinOccurrence.
 For example, in \a\(0-1\)global, the Element path
 \a\x\global corresponds to an EBMLPathAtom occurrence of 1. The
Element \a\x\y\global corresponds to an EBMLPathAtom occurrence of 2,
etc. In those cases, \a\x or \a\x\y MUST be valid
paths to be able to contain the element global.
 Consider another EBML Path, \a\(1-\)global. There has to be at
least one EBMLPathAtom between the \a\ part and global.
So the global EBML Element cannot be found inside the \a
EBML Element, as it means the resulting path \a\global has no
EBMLPathAtom between the \a\ and global. However, the
 global EBML Element can be found inside the \a\b EBML
Element, because the resulting path, \a\b\global, has one EBMLPathAtom
between the \a\ and global. Alternatively, it can be found
inside the \a\b\c EBML Element (two EBMLPathAtom), or inside the
 \a\b\c\d EBML Element (three EBMLPathAtom), etc.
 Consider another EBML Path, \a\(0-1\)global. There has to be at
most one EBMLPathAtom between the \a\ part and global.
So the global EBML Element can be found inside either the \a
EBML Element (0 EBMLPathAtom replacing GlobalPlaceholder) or the
 \a\b EBML Element (one replacement EBMLPathAtom).
But it cannot be found inside the \a\b\c EBML Element, because the
resulting path, \a\b\c\global, has two EBMLPathAtom between
 \a\ and global.

 id
 Within an EBML Schema, the XPath of the @id attribute is
 /EBMLSchema/element/@id.
 The Element ID is encoded as a Variable-Size Integer. It is read and stored in big-endian
order. In the EBML Schema, it is expressed in
hexadecimal notation prefixed by a 0x. To reduce the risk of false positives while parsing EBML Streams, the
Element IDs of the Root Element and Top-Level Elements SHOULD
be at least 4 octets in length. Element IDs defined for use at Root Level or
directly under the Root Level MAY use shorter octet lengths to
facilitate padding and optimize edits to EBML Documents; for instance, the
Void Element uses an Element ID with a length of one octet to allow its usage
in more writing and editing scenarios.
 The Element ID of any Element found within an EBML Document MUST only match a single @path value of its corresponding EBML Schema, but a separate instance of that Element ID value defined by the EBML Schema MAY occur within a different @path. If more than one Element is defined to use the same @id value, then the @path values of those Elements MUST NOT share the same EBMLParentPath. Elements MUST NOT be defined to use the same @id value if one of their common Parent Elements could be an Unknown-Sized Element.
 The id attribute is REQUIRED.

 minOccurs
 Within an EBML Schema, the XPath of the @minOccurs attribute is
 /EBMLSchema/element/@minOccurs.
 minOccurs is a nonnegative integer expressing the minimum permitted number
of occurrences of this EBML Element within its Parent Element.
 Each instance of the Parent Element MUST contain at least this many instances of this EBML Element.
If the EBML Element has an empty EBMLParentPath, then minOccurs refers to
constraints on the occurrence of the EBML Element within the EBML Document.
EBML Elements with minOccurs set to "1" that also have a default
value (see) declared are not
 REQUIRED to be stored but are REQUIRED to be
interpreted; see
 .
 An EBML Element defined with a minOccurs value greater than zero is called
a Mandatory EBML Element.
 The minOccurs attribute is OPTIONAL. If the minOccurs
attribute is not present, then that EBML Element has a minOccurs value of
0.
 The semantic meaning of minOccurs within an EBML Schema is analogous to the meaning of minOccurs within an XML Schema.

 maxOccurs
 Within an EBML Schema, the XPath of the @maxOccurs attribute is
 /EBMLSchema/element/@maxOccurs.
 maxOccurs is a nonnegative integer expressing the maximum permitted number
of occurrences of this EBML Element within its Parent Element.
 Each instance of the Parent Element MUST contain at most
this many instances of this EBML Element, including the unwritten mandatory
element with a default value; see
 .
If the EBML Element has an empty EBMLParentPath, then maxOccurs refers to
constraints on the occurrence of the EBML Element within the EBML
Document.
 The maxOccurs attribute is OPTIONAL. If the maxOccurs
attribute is not present, then there is no upper bound for the permitted
number of occurrences of this EBML Element within its Parent Element or within
the EBML Document, depending on whether or not the EBMLParentPath of the EBML Element
is empty.
 The semantic meaning of maxOccurs within an EBML Schema is analogous to the
meaning of maxOccurs within an XML Schema; when it is not present, it's
similar to xml:maxOccurs="unbounded" in an XML Schema.

 range
 Within an EBML Schema, the XPath of the @range attribute is
 /EBMLSchema/element/@range.
 A numerical range for EBML Elements that are of numerical types (Unsigned
Integer, Signed Integer, Float, and Date). If specified, the value of the EBML
Element MUST be within the defined range. See
 for rules applied to expression of range
values.
 The range attribute is OPTIONAL. If the
 range attribute is
not present, then any value legal for the type attribute is valid.

 Expression of range
 The range attribute MUST only be used with EBML Elements
that are either signed integer, unsigned integer, float, or date. The
expression defines the upper, lower, exact, or excluded value of the EBML
Element and optionally an upper boundary value combined with a lower
boundary. The range expression may contain whitespace (using the ASCII 0x20
character) for readability, but whitespace within a range expression
 MUST NOT convey meaning.
 To set a fixed value for the range, the value is used as the attribute
value. For example, 1234 means the EBML element always has the value
1234. The value can be prefixed with not to indicate that the fixed
value MUST NOT be used for that Element. For example,
 not 1234 means the Element can use all values of its type except 1234.
 The > sign is used for an exclusive lower boundary, and the
 >= sign is used for an inclusive lower boundary. For example,
 >3 means the Element value MUST be greater than 3,
and >=0x1p+0 means the Element value MUST be
greater than or equal to the floating value 1.0; see
 .
 The < sign is used for an exclusive upper boundary, and the
 <= sign is used for an inclusive upper boundary. For example,
 <-2 means the Element value MUST be less than -2,
and <=10 means the Element value MUST be less than
or equal to 10.
 The lower and upper bounds can be combined into an expression to form a
closed boundary. The lower boundary comes first, followed by the upper
boundary, separated by a comma. For example, >3,<= 20 means the
Element value MUST be greater than 3 and less than or equal to
20.
 A special form of lower and upper bounds using the - separator is
possible, meaning the Element value MUST be greater than, or equal to,
the first value and MUST be less than or equal to the
second value. For example, 1-10 is equivalent to
 >=1,<=10. If the upper boundary is negative, the range attribute
 MUST only use the latter form.

 length
 Within an EBML Schema, the XPath of the @length attribute is
 /EBMLSchema/element/@length.
 The length attribute is a value to express the valid length of the Element
Data as written, measured in octets. The length provides a constraint in
addition to the Length value of the definition of the corresponding EBML
Element Type. This length MUST be expressed as either a
nonnegative integer or a range (see
) that consists of only nonnegative
integers and valid operators.
 The length attribute is OPTIONAL. If the
 length attribute is
not present for that EBML Element, then that EBML Element is only limited in
length by the definition of the associated EBML Element Type.

 default
 Within an EBML Schema, the XPath of the @default attribute is
 /EBMLSchema/element/@default.
 If an Element is mandatory (has a minOccurs value greater than zero) but not written within its Parent Element or stored as an Empty Element, then the EBML Reader of the EBML Document MUST semantically interpret the EBML Element as present with this specified default value for the EBML Element.
An unwritten mandatory Element with a declared default value is semantically equivalent to that Element if written with the default value stored as the Element Data.
EBML Elements that are Master Elements MUST NOT declare a default value.
EBML Elements with a minOccurs value greater than 1 MUST NOT declare a default value.
 The default attribute is OPTIONAL.

 type
 Within an EBML Schema, the XPath of the @type attribute is
 /EBMLSchema/element/@type.
 The type MUST be set to one of the following values:
 integer (signed integer), uinteger (unsigned integer),
 float, string, date, utf-8,
 master, or binary. The content of each type is defined
in .
 The type attribute is REQUIRED.

 unknownsizeallowed
 Within an EBML Schema, the XPath of the @unknownsizeallowed
attribute is /EBMLSchema/element/@unknownsizeallowed.
 This attribute is a boolean to express whether an EBML Element is permitted to
be an Unknown-Sized Element (having all VINT_DATA bits of Element Data Size set
to 1). EBML Elements that are not Master Elements MUST NOT set
 unknownsizeallowed to true. An EBML Element that is defined with an
 unknownsizeallowed attribute set to 1 MUST also have the
 unknownsizeallowed attribute of its Parent Element set to 1.
 An EBML Element with the unknownsizeallowed attribute set to 1
 MUST NOT have its recursive attribute set to 1.
 The unknownsizeallowed attribute is OPTIONAL. If the
 unknownsizeallowed attribute is not used, then that EBML Element is not
allowed to use an unknown Element Data Size.

 recursive
 Within an EBML Schema, the XPath of the @recursive attribute is
 /EBMLSchema/element/@recursive.
 This attribute is a boolean to express whether an EBML Element is permitted to
be stored recursively. If it is allowed, the EBML Element MAY be
stored within another EBML Element that has the same Element ID, which itself
can be stored in an EBML Element that has the same Element ID, and so on. EBML
Elements that are not Master Elements MUST NOT set recursive to
true.
 If the EBMLElement part of the @path contains an IsRecursive part,
then the recursive value MUST be true; otherwise, it
 MUST be false.
 An EBML Element with the recursive attribute set to 1 MUST NOT
have its unknownsizeallowed attribute set to 1.
 The recursive attribute is OPTIONAL. If the recursive
attribute is not present, then the EBML Element MUST NOT be
used recursively.

 recurring
 Within an EBML Schema, the XPath of the @recurring attribute is
 /EBMLSchema/element/@recurring.
 This attribute is a boolean to express whether or not an EBML Element is defined as an
Identically Recurring Element; see
 .
 The recurring attribute is OPTIONAL. If the recurring
attribute is not present, then the EBML Element is not an Identically
Recurring Element.

 minver
 Within an EBML Schema, the XPath of the @minver attribute is
 /EBMLSchema/element/@minver.
 The minver (minimum version) attribute stores a nonnegative integer that
represents the first version of the docType to support the EBML Element.
 The minver attribute is OPTIONAL. If the minver
attribute is not present, then the EBML Element has a minimum version of
"1".

 maxver
 Within an EBML Schema, the XPath of the @maxver attribute is
 /EBMLSchema/element/@maxver.
 The maxver (maximum version) attribute stores a nonnegative integer that
represents the last or most recent version of the docType to support the
element. maxver MUST be greater than or equal to minver.
 The maxver attribute is OPTIONAL. If the maxver attribute is
not present, then the EBML Element has a maximum version equal to the value
stored in the version attribute of <EBMLSchema>.

 <documentation> Element
 Within an EBML Schema, the XPaths of the <documentation>
elements are /EBMLSchema/element/documentation and /EBMLSchema/element/restriction/enum/documentation.
 The <documentation> element provides additional information
about EBML Elements or enumeration values. Within the <documentation> element, the
following XHTML elements MAY be
used: <a>,
, and .

 <documentation> Attributes

 lang
 Within an EBML Schema, the XPath of the @lang attribute is
 /EBMLSchema/element/documentation/@lang.
 The lang attribute is set to the value from of
the language of the element's documentation.
 The lang attribute is OPTIONAL.

 purpose
 Within an EBML Schema, the XPath of the @purpose attribute is
 /EBMLSchema/element/documentation/@purpose.
 A purpose attribute distinguishes the meaning of the documentation. Values
for the <documentation> subelement's purpose attribute
 MUST include one of the values listed in
 .

 Definitions of the permitted
values for the purpose attribute of the documentation Element

 value of purpose attribute
 definition

 definition
 A "definition" is recommended for every defined EBML Element. This documentation explains the semantic meaning of the EBML Element.

 rationale
 An explanation about the reason or catalyst for the definition of the Element.

 usage notes
 Recommended practices or guidelines for both reading, writing, or interpreting the Element.

 references
 Informational references to support the contextualization and understanding of the value of the Element.

 The purpose attribute is REQUIRED.

 <implementation_note> Element
 Within an EBML Schema, the XPath of the <implementation_note>
element is /EBMLSchema/element/implementation_note.
 In some cases within an EBML Document Type, the attributes of the
 <element> element are not sufficient to clearly communicate how
the defined EBML Element is intended to be implemented.
For instance, one EBML Element might only be mandatory if another EBML Element
is present. As another example, the default value of an EBML Element might
be derived from a related Element's content. In these cases where the Element's
definition is conditional or advanced implementation notes are needed, one or many
 <implementation_note> elements can be used to store that
information.
The <implementation_note> refers to a specific attribute of the
parent <element> as expressed by the note_attribute
attribute (see).

 <implementation_note> Attributes

 note_attribute
 Within an EBML Schema, the XPath of the @note_attribute attribute
is /EBMLSchema/element/implementation_note/@note_attribute.
 The note_attribute attribute references which of the attributes of the
 <element> the <implementation_note> relates to.
The note_attribute attribute MUST be set to one of the
following values (corresponding to that attribute of the parent
 <element>): minOccurs, maxOccurs,
 range, length, default, minver, or
 maxver. The <implementation_note> SHALL
supersede the parent <element>'s attribute that is named in the
 note_attribute attribute.
An <element> SHALL NOT have more than one <implementation_note> of the same note_attribute.
 The note_attribute attribute is REQUIRED.

 <implementation_note> Example
 The following fragment of an EBML Schema demonstrates how an
 <implementation_note> is used. In this case, an EBML Schema
documents a list of items that are described with an optional cost. The
Currency Element uses an <implementation_note> to say that the
Currency Element is REQUIRED if the Cost Element is set,
otherwise not.
 <element name="Items" path="\Items" id="0x4025" type="master"
 minOccurs="1" maxOccurs="1">
 <documentation lang="en" purpose="definition">
 A set of items.
 </documentation>
</element>
<element name="Item" path="\Items\Item" id="0x4026"
 type="master">
 <documentation lang="en" purpose="definition">
 An item.
 </documentation>
</element>
<element name="Cost" path="\Items\Item\Cost" id="0x4024"
 type="float" maxOccurs="1">
 <documentation lang="en" purpose="definition">
 The cost of the item, if any.
 </documentation>
</element>
<element name="Currency" path="\Items\Item\Currency" id="0x403F"
 type="string" maxOccurs="1">
 <documentation lang="en" purpose="definition">
 The currency of the item's cost.
 </documentation>
 <implementation_note note_attribute="minOccurs">
 Currency MUST be set (minOccurs=1) if the associated Item stores
 a Cost, else Currency MAY be unset (minOccurs=0).
 </implementation_note>
</element>

 <restriction> Element
 Within an EBML Schema, the XPath of the <restriction>
element is /EBMLSchema/element/restriction.
 The <restriction> element provides information about
restrictions to the allowable values for the EBML Element, which are listed in
 <enum> elements.

 <enum> Element
 Within an EBML Schema, the XPath of the <enum> element is
 /EBMLSchema/element/restriction/enum.
 The <enum> element stores a list of values allowed for
storage in the EBML Element. The values MUST match the type of
the EBML Element (for example, <enum value="Yes">
cannot be a valid value for an EBML Element that is defined as an unsigned
integer). An <enum> element MAY also store
 <documentation> elements to further describe the
 <enum>.

 <enum> Attributes

 label
 Within an EBML Schema, the XPath of the @label attribute is
 /EBMLSchema/element/restriction/enum/@label.
 The label provides a concise expression for human consumption that
describes what the value of <enum> represents.
 The label attribute is OPTIONAL.

 value
 Within an EBML Schema, the XPath of the @value attribute is
 /EBMLSchema/element/restriction/enum/@value.
 The value represents data that MAY be stored within the EBML Element.
 The value attribute is REQUIRED.

 <extension> Element
 Within an EBML Schema, the XPath of the <extension>
element is /EBMLSchema/element/extension.
 The <extension> element provides an unconstrained element to
contain information about the associated EBML <element>, which
is undefined by this document but MAY be defined by the
associated EBML Document Type. The <extension> element
 MUST contain a type attribute and also
 MAY contain any other attribute or subelement as long as the
EBML Schema remains as a well-formed XML Document. All
 <extension> elements MUST be subelements of the
 <element>.

 <extension> Attributes

 type
 Within an EBML Schema, the XPath of the @type attribute is
 /EBMLSchema/element/extension/@type.
 The type attribute should reference a name or identifier of the
project or authority associated with the contents of the
 <extension> element.
 The type attribute is REQUIRED.

 XML Schema for EBML Schema
 The following provides an XML Schema for
facilitating verification of an EBML Schema described in
 .
 <?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="urn:ietf:rfc:8794"
 targetNamespace="urn:ietf:rfc:8794"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xhtml="http://www.w3.org/1999/xhtml"
 elementFormDefault="qualified" version="01">

 <!-- for HTML in comments -->
 <xs:import namespace="http://www.w3.org/1999/xhtml"
 schemaLocation="http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd"/>

 <xs:element name="EBMLSchema" type="EBMLSchemaType"/>

 <xs:complexType name="EBMLSchemaType">
 <xs:sequence>
 <xs:element name="element" type="elementType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="docType" use="required"/>
 <xs:attribute name="version" use="required" type="xs:integer"/>
 <xs:attribute name="ebml" type="xs:positiveInteger"
 default="1"/>
 </xs:complexType>

 <xs:complexType name="elementType">
 <xs:sequence>
 <xs:element name="documentation" type="documentationType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="implementation_note" type="noteType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="restriction" type="restrictionType"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="extension" type="extensionType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[0-9A-Za-z.-]([0-9A-Za-z.-])*"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="path" use="required">
 <!-- <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:pattern value="[0-9]**[0-9]*()"/>
 </xs:restriction>
 </xs:simpleType> -->
 </xs:attribute>
 <xs:attribute name="id" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="0x([0-9A-F][0-9A-F])+"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="minOccurs" default="0">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxOccurs" default="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="range"/>
 <xs:attribute name="length"/>
 <xs:attribute name="default"/>
 <xs:attribute name="type" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="integer"/>
 <xs:enumeration value="uinteger"/>
 <xs:enumeration value="float"/>
 <xs:enumeration value="string"/>
 <xs:enumeration value="date"/>
 <xs:enumeration value="utf-8"/>
 <xs:enumeration value="master"/>
 <xs:enumeration value="binary"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="unknownsizeallowed" type="xs:boolean"
 default="false"/>
 <xs:attribute name="recursive" type="xs:boolean"
 default="false"/>
 <xs:attribute name="recurring" type="xs:boolean"
 default="false"/>
 <xs:attribute name="minver" default="1">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="maxver">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>

 <xs:complexType name="restrictionType">
 <xs:sequence>
 <xs:element name="enum" type="enumType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="extensionType">
 <xs:sequence>
 <xs:any processContents="skip"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="type" use="required"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="enumType">
 <xs:sequence>
 <xs:element name="documentation" type="documentationType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="label"/>
 <xs:attribute name="value" use="required"/>
 </xs:complexType>

 <xs:complexType name="documentationType" mixed="true">
 <xs:sequence>
 <xs:element name="a" type="xhtml:xhtml.a.type"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="br" type="xhtml:xhtml.br.type"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="strong" type="xhtml:xhtml.strong.type"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="lang"/>
 <xs:attribute name="purpose" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="definition"/>
 <xs:enumeration value="rationale"/>
 <xs:enumeration value="references"/>
 <xs:enumeration value="usage notes"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>

 <xs:complexType name="noteType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="note_attribute" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="minOccurs"/>
 <xs:enumeration value="maxOccurs"/>
 <xs:enumeration value="range"/>
 <xs:enumeration value="length"/>
 <xs:enumeration value="default"/>
 <xs:enumeration value="minver"/>
 <xs:enumeration value="maxver"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

 Identically Recurring Elements
 An Identically Recurring Element is an EBML Element that MAY
occur within its Parent Element more than once, but each recurrence of it
within that Parent Element MUST be identical both in storage
and semantics. Identically Recurring Elements are permitted to be stored
multiple times within the same Parent Element in order to increase data
resilience and optimize the use of EBML in transmission. For instance, a
pertinent Top-Level Element could be periodically resent within a datastream
so that an EBML Reader that starts reading the stream from the middle could
better interpret the contents. Identically Recurring Elements
 SHOULD include a CRC-32 Element as a Child Element; this is
especially recommended when EBML is used for long-term storage or
transmission. If a Parent Element contains more than one copy of an
Identically Recurring Element that includes a CRC-32 Element as a Child
Element, then the first instance of the Identically Recurring Element with a
valid CRC-32 value should be used for interpretation. If a Parent Element
contains more than one copy of an Identically Recurring Element that does not
contain a CRC-32 Element, or if CRC-32 Elements are present but none are valid,
then the first instance of the Identically Recurring Element should be used
for interpretation.

 Textual expression of floats
 When a float value is represented textually in an EBML Schema, such as
within a default or range value, the float values MUST be
expressed as Hexadecimal Floating-Point Constants as defined in the C11
standard (see Section 6.4.4.2 on Floating
Constants). provides examples of
expressions of float ranges.

 Example of Floating-Point values and
ranges as decimal and Hexadecimal Floating-Point Constants

 as decimal
 as Hexadecimal Floating-Point Constants

 0.0

 0x0p+1

 0.0-1.0

 0x0p+1-0x1p+0

 1.0-256.0

 0x1p+0-0x1p+8

 0.857421875

 0x1.b7p-1

 -1.0--0.857421875

 -0x1p+0--0x1.b7p-1

 Within an expression of a float range, as in an integer range, the
- (hyphen) character is the separator between the minimum and maximum values
permitted by the range. Hexadecimal Floating-Point Constants also use a -
(hyphen) when indicating a negative binary power. Within a float range, when a
- (hyphen) is immediately preceded by a letter p, then the - (hyphen) is a
part of the Hexadecimal Floating-Point Constant that notes negative binary
power. Within a float range, when a - (hyphen) is not immediately preceded by
a letter p, then the - (hyphen) represents the separator between the minimum
and maximum values permitted by the range.

 Note on the use of default attributes to define Mandatory EBML Elements
 If a Mandatory EBML Element has a default value declared by an EBML Schema
and the value of the EBML Element is equal to the declared default value, then
that EBML Element is not required to be present within the EBML Document if
its Parent Element is present. In this case, the default value of the
Mandatory EBML Element MUST be read by the EBML Reader,
although the EBML Element is not present within its Parent Element.
 If a Mandatory EBML Element has no default value declared by an EBML Schema
and its Parent Element is present, then the EBML Element MUST
be present, as well. If a Mandatory EBML Element has a default value declared
by an EBML Schema, and its Parent Element is present, and the value of the EBML
Element is NOT equal to the declared default value, then the EBML Element
 MUST be present.
 clarifies whether a Mandatory
EBML Element MUST be written, according to whether the default value
is declared, the value of the EBML Element is equal to the declared default
value, and/or the Parent Element is used.

 Demonstration of the conditional
requirements of VINT Storage

 Is the default value declared?
 Is the value equal to default?
 Is the Parent Element present?
 Then is storing the EBML Element REQUIRED?

 Yes
 Yes
 Yes
 No

 Yes
 Yes
 No
 No

 Yes
 No
 Yes
 Yes

 Yes
 No
 No
 No

 No
 n/a
 Yes
 Yes

 No
 n/a
 No
 No

 EBML Header Elements
 This document contains definitions of all EBML Elements of the EBML Header.

 EBML Element

 name:
 EBML
 path:

 \EBML
 id:
 0x1A45DFA3
 minOccurs:
 1
 maxOccurs:
 1
 type:
 Master Element
 description:
 Set the EBML characteristics of the data to follow. Each EBML Document has
to start with this.

 EBMLVersion Element

 name:
 EBMLVersion
 path:

 \EBML\EBMLVersion
 id:
 0x4286
 minOccurs:
 1
 maxOccurs:
 1
 range:
 not 0
 default:
 1
 type:
 Unsigned Integer
 description:
 The version of EBML specifications used to create the EBML Document. The
version of EBML defined in this document is 1, so EBMLVersion
 SHOULD be 1.

 EBMLReadVersion Element

 name:
 EBMLReadVersion
 path:

 \EBML\EBMLReadVersion
 id:
 0x42F7
 minOccurs:
 1
 maxOccurs:
 1
 range:
 1
 default:
 1
 type:
 Unsigned Integer
 description:
 The minimum EBML version an EBML Reader has to support to read this EBML
Document. The EBMLReadVersion Element MUST be less than or equal to EBMLVersion.

 EBMLMaxIDLength Element

 name:
 EBMLMaxIDLength
 path:

 \EBML\EBMLMaxIDLength
 id:
 0x42F2
 minOccurs:
 1
 maxOccurs:
 1
 range:
 >=4
 default:
 4
 type:
 Unsigned Integer
 description:
 The EBMLMaxIDLength Element stores the maximum permitted length in octets
of the Element IDs to be found within the EBML Body. An EBMLMaxIDLength Element value of four
is RECOMMENDED, though larger values are allowed.

 EBMLMaxSizeLength Element

 name:
 EBMLMaxSizeLength
 path:

 \EBML\EBMLMaxSizeLength
 id:
 0x42F3
 minOccurs:
 1
 maxOccurs:
 1
 range:
 not 0
 default:
 8
 type:
 Unsigned Integer
 description:
 The EBMLMaxSizeLength Element stores the maximum permitted length in
octets of the expressions of all Element Data Sizes to be found within the EBML Body. The
EBMLMaxSizeLength Element documents an upper bound for the length of
all Element Data Size expressions within the EBML Body and not an upper bound
for the value of all Element Data Size expressions
within the EBML Body. EBML Elements that have an Element Data Size expression that is larger in octets
than what is expressed by EBMLMaxSizeLength Element are invalid.

 DocType Element

 name:
 DocType
 path:

 \EBML\DocType
 id:
 0x4282
 minOccurs:
 1
 maxOccurs:
 1
 length:
 >0
 type:
 String
 description:
 A string that describes and identifies the content of the EBML Body that
follows this EBML Header.

 DocTypeVersion Element

 name:
 DocTypeVersion
 path:

 \EBML\DocTypeVersion
 id:
 0x4287
 minOccurs:
 1
 maxOccurs:
 1
 range:
 not 0
 default:
 1
 type:
 Unsigned Integer
 description:
 The version of DocType interpreter used to create the EBML Document.

 DocTypeReadVersion Element

 name:
 DocTypeReadVersion
 path:

 \EBML\DocTypeReadVersion
 id:
 0x4285
 minOccurs:
 1
 maxOccurs:
 1
 range:
 not 0
 default:
 1
 type:
 Unsigned Integer
 description:
 The minimum DocType version an EBML Reader has to support to read this
EBML Document. The value of the DocTypeReadVersion Element MUST
be less than or equal to the value of the DocTypeVersion Element.

 DocTypeExtension Element

 name:
 DocTypeExtension
 path:

 \EBML\DocTypeExtension
 id:
 0x4281
 minOccurs:
 0
 type:
 Master Element
 description:
 A DocTypeExtension adds extra Elements to the main DocType+DocTypeVersion
tuple it's attached to. An EBML Reader MAY know these extra Elements and how
to use them. A DocTypeExtension MAY be used to iterate between
experimental Elements before they are integrated into a regular
DocTypeVersion. Reading one DocTypeExtension version of a
DocType+DocTypeVersion tuple doesn't imply one should be able to read upper
versions of this DocTypeExtension.

 DocTypeExtensionName Element

 name:
 DocTypeExtensionName
 path:

 \EBML\DocTypeExtension\DocTypeExtensionName
 id:
 0x4283
 minOccurs:
 1
 maxOccurs:
 1
 length:
 >0
 type:
 String
 description:
 The name of the DocTypeExtension to differentiate it from other
DocTypeExtensions of the same DocType+DocTypeVersion tuple. A DocTypeExtensionName value
 MUST be unique within the EBML Header.

 DocTypeExtensionVersion Element

 name:
 DocTypeExtensionVersion
 path:

 \EBML\DocTypeExtension\DocTypeExtensionVersion
 id:
 0x4284
 minOccurs:
 1
 maxOccurs:
 1
 range:
 not 0
 type:
 Unsigned Integer
 description:
 The version of the DocTypeExtension. Different DocTypeExtensionVersion
values of the same DocType + DocTypeVersion + DocTypeExtensionName tuple
 MAY contain completely different sets of extra Elements. An
EBML Reader MAY support multiple versions
of the same tuple, only one version of the tuple, or not support the tuple at all.

 Global Elements
 EBML allows some special Elements to be found within more than one parent
in an EBML Document or optionally at the Root Level of an EBML Body. These
Elements are called Global Elements. There are two Global Elements that can be
found in any EBML Document: the CRC-32 Element and the Void Element. An EBML
Schema MAY add other Global Elements to the format it
defines. These extra elements apply only to the EBML Body, not the EBML
Header.
 Global Elements are EBML Elements whose EBMLLastParent part of the path has
a GlobalPlaceholder. Because it is the last Parent part of the path, a Global
Element might also have EBMLParentPath parts in its path. In this case, the
Global Element can only be found within this EBMLParentPath path -- i.e., it's
not fully "global".
 A Global Element can be found in many Parent Elements, allowing the same number of occurrences in each Parent where this Element is found.

 CRC-32 Element

 name:
 CRC-32
 path:

 \(1-\)CRC-32
 id:
 0xBF
 minOccurs:
 0
 maxOccurs:
 1
 length:
 4
 type:
 Binary
 description:
 The CRC-32 Element contains a 32-bit Cyclic Redundancy Check value of all
the Element Data of the Parent Element as stored except for the CRC-32 Element
itself. When the CRC-32 Element is present, the CRC-32 Element
 MUST be the first ordered EBML Element within its Parent
Element for easier reading. All Top-Level Elements of an EBML Document that
are Master Elements SHOULD include a CRC-32 Element as a Child
Element. The CRC in use is the IEEE-CRC-32 algorithm as used in the
 standard and in Section 8.1.1.6.2 of
 , with initial value of 0xFFFFFFFF. The CRC value
 MUST be computed on a little-endian bytestream and
 MUST use little-endian storage.

 Void Element

 name:
 Void
 path:

 \(-\)Void
 id:
 0xEC
 minOccurs:
 0
 type:
 Binary
 description:
 Used to void data or to avoid unexpected behaviors when using damaged
data. The content is discarded. Also used to reserve space in a subelement for
later use.

 Considerations for Reading EBML Data
 The following scenarios describe events to consider when reading EBML
Documents, as well as the recommended design of an EBML Reader.
 If a Master Element contains a CRC-32 Element that doesn't validate, then
the EBML Reader MAY ignore all contained data except for
Descendant Elements that contain their own valid CRC-32 Element.
 In the following XML representation of a simple, hypothetical EBML
fragment, a Master Element called CONTACT contains two Child Elements, NAME
and ADDRESS. In this example, some data within the NAME Element had been
altered so that the CRC-32 of the NAME Element does not validate, and thus any
Ancestor Element with a CRC-32 would therefore also no longer
validate. However, even though the CONTACT Element has a CRC-32 that does not
validate (because of the changed data within the NAME Element), the CRC-32 of
the ADDRESS Element does validate, and thus the contents and semantics of the
ADDRESS Element MAY be used.
 <CONTACT>
 <CRC-32>c119a69b</CRC-32><!-- does not validate -->
 <NAME>
 <CRC-32>1f59ee2b</CRC-32><!-- does not validate -->
 <FIRST-NAME>invalid data</FIRST-NAME>
 <LAST-NAME>invalid data</LAST-NAME>
 </NAME>
 <ADDRESS>
 <CRC-32>df941cc9</CRC-32><!-- validates -->
 <STREET>valid data</STREET>
 <CITY>valid data</CITY>
 </ADDRESS>
</CONTACT>

 If a Master Element contains more occurrences of a Child Master Element
than permitted according to the maxOccurs and recurring
attributes of the
definition of that Element, then the occurrences in addition to maxOccurs
 MAY be ignored.
 If a Master Element contains more occurrences of a Child Element than
permitted according to the maxOccurs attribute of the definition of that
Element, then all instances of that Element after the first maxOccurs
occurrences from the beginning of its Parent Element SHOULD be
ignored.

 Terminating Elements
 Null Octets, which are octets with all bits set to zero, MAY follow the value of a String Element or UTF-8 Element to serve as a terminator.
An EBML Writer MAY terminate a String Element or UTF-8 Element
with Null Octets in order to overwrite a stored value with a new value of
lesser length while maintaining the same Element Data Size; this can prevent
the need to rewrite large portions of an EBML Document. Otherwise, the use of
Null Octets within a String Element or UTF-8 Element is NOT RECOMMENDED.
The Element Data of a UTF-8 Element MUST
be a valid UTF-8 string up to whichever comes first: the end of the Element or
the first occurring Null octet. Within the Element Data of a String or UTF-8 Element,
any Null octet itself and any following data within that Element
 SHOULD be ignored. A string value and a copy of that string
value terminated by one or more Null Octets are semantically equal.
 shows examples of semantics
and validation for the use of Null Octets. Values to represent Stored Values
and the Semantic Meaning as represented as hexadecimal values.

 Examples of semantics for Null
Octets in VINT_DATA

 Stored Value
 Semantic Meaning

 0x65 0x62 0x6D 0x6C
 0x65 0x62 0x6D 0x6C

 0x65 0x62 0x00 0x6C
 0x65 0x62

 0x65 0x62 0x00 0x00
 0x65 0x62

 0x65 0x62
 0x65 0x62

 Guidelines for Updating Elements
 An EBML Document can be updated without requiring that the entire EBML
Document be rewritten. These recommendations describe strategies for changing
the Element Data of a written EBML Element with minimal disruption to the rest
of the EBML Document.

 Reducing Element Data in Size
 There are three methods to reduce the size of Element Data of a written EBML Element.

 Adding a Void Element
 When an EBML Element is changed to reduce its total length by more than one octet, an EBML Writer SHOULD fill the freed space with a Void Element.

 Extending the Element Data Size
 The same value for Element Data Size MAY be written in various lengths, so for minor reductions of the Element Data, the Element Size MAY be written to a longer octet length to fill the freed space.
 For example, the first row of
 depicts a String Element that stores
an Element ID (3 octets), Element Data Size (1 octet), and Element Data (4
octets). If the Element Data is changed to reduce the length by one octet, and
if the current length of the Element Data Size is less than its maximum
permitted length, then the Element Data Size of that Element
 MAY be rewritten to increase its length by one octet. Thus,
before and after the change, the EBML Element maintains the same length of 8
octets, and data around the Element does not need to be moved.

 Example of editing a VINT to
reduce VINT_DATA length by one octet

 Status
 Element ID
 Element Data Size
 Element Data

 Before edit
 0x3B4040
 0x84
 0x65626D6C

 After edit
 0x3B4040
 0x4003
 0x6D6B76

 This method is RECOMMENDED when the Element Data is
reduced by a single octet; for reductions by two or more octets, it is
 RECOMMENDED to fill the freed space with a Void Element.
 Note that if the Element Data length needs to be rewritten as shortened by
one octet and the Element Data Size could be rewritten as a shorter VINT, then
it is RECOMMENDED to rewrite the Element Data Size as one octet
shorter, shorten the Element Data by one octet, and follow that Element with a
Void Element. For example,
 depicts a String Element
that stores an Element ID (3 octets), Element Data Size (2 octets, but could
be rewritten in one octet), and Element Data (3 octets). If the Element Data
is to be rewritten to a two-octet length, then another octet can be taken from
Element Data Size so that there is enough space to add a two-octet Void
Element.

 Example of editing a
VINT to reduce VINT_DATA length by more than one octet

 Status
 Element ID
 Element Data Size
 Element Data
 Void Element

 Before
 0x3B4040
 0x4003
 0x6D6B76

 After
 0x3B4040
 0x82
 0x6869
 0xEC80

 Terminating Element Data
 For String Elements and UTF-8 Elements, the length of Element Data could be
reduced by adding Null Octets to terminate the Element Data (see
).
 In , Element Data four octets
long is changed to a value three octets long, followed by a Null Octet; the
Element Data Size includes any Null Octets used to terminate Element Data and therefore
remains unchanged.

 Example of terminating VINT_DATA
with a Null Octet when reducing VINT length during an edit

 Status
 Element ID
 Element Data Size
 Element Data

 Before edit
 0x3B4040
 0x84
 0x65626D6C

 After edit
 0x3B4040
 0x84
 0x6D6B7600

 Note that this method is NOT RECOMMENDED. For
reductions of one octet, the method for Extending the Element Data Size
 SHOULD be used. For reduction by more than one octet, the
method for Adding a Void Element SHOULD be used.

 Considerations when Updating Elements with Cyclic Redundancy Check (CRC)
 If the Element to be changed is a Descendant Element of any Master Element
that contains a CRC-32 Element (see),
then the CRC-32 Element MUST be verified before permitting the
change. Additionally, the CRC-32 Element value MUST be
subsequently updated to reflect the changed data.

 Backward and Forward Compatibility
 Elements of an EBML format SHOULD be designed with backward and forward compatibility in mind.

 Backward Compatibility
 Backward compatibility of new EBML Elements can be achieved by using default values for mandatory elements. The default value MUST represent the state that was assumed for previous versions of the EBML Schema, without this new EBML Element. If such a state doesn't make sense for previous versions, then the new EBML Element SHOULD NOT be mandatory.
 Non-mandatory EBML Elements can be added in a new EBMLDocTypeVersion. Since
they are not mandatory, they won't be found in older versions of the
EBMLDocTypeVersion, just as they might not be found in newer versions. This
causes no compatibility issue.

 Forward Compatibility
 EBML Elements MAY be marked as deprecated in a new
EBMLDocTypeVersion using the maxver attribute of the EBML Schema. If such an
Element is found in an EBML Document with a newer version of the
EBMLDocTypeVersion, it SHOULD be discarded.

 Security Considerations
 EBML itself does not offer any kind of security and does not provide confidentiality. EBML does not provide any kind of authorization. EBML only offers marginally useful and effective data integrity options, such as CRC elements.
 Even if the semantic layer offers any kind of encryption, EBML itself could
leak information at both the semantic layer (as declared via the DocType
Element) and within the EBML structure (the presence of EBML Elements can be
derived even with an unknown semantic layer using a heuristic approach -- not
without errors, of course, but with a certain degree of confidence).
 An EBML Document that has the following issues may still be handled by the
EBML Reader and the data accepted as such, depending on how strict the EBML
Reader wants to be:

 Invalid Element IDs that are longer than the limit stated in the EBMLMaxIDLength Element of the EBML Header.

 Invalid Element IDs that are not encoded in the shortest-possible way.

 Invalid Element Data Size values that are longer than the limit stated in the EBMLMaxSizeLength Element of the EBML Header.

 Element IDs that are unknown to the EBML Reader MAY be
accepted as valid EBML IDs in order to skip such elements.
 EBML Elements with a string type may contain extra data after the first
0x00. These data MUST be discarded according to the
 rules.
 An EBML Reader may discard some or all data if the following errors are found in the EBML Document:

 Invalid Element Data Size values (e.g., extending the length of the EBML Element beyond the scope of the Parent Element, possibly triggering access-out-of-bounds issues).

 Very high lengths in order to force out-of-memory situations resulting in a denial of service, access-out-of-bounds issues, etc.

 Missing EBML Elements that are mandatory in a Master Element and have no declared default value, making the semantic invalid at that Master Element level.

 Usage of invalid UTF-8 encoding in EBML Elements of UTF-8 type (e.g., in order to trigger access-out-of-bounds or buffer-overflow issues).

 Usage of invalid data in EBML Elements with a date type, triggering bogus date accesses.

 The CRC-32 Element (see) of a Master Element doesn't match the rest of the content of that Master Element.

 Side-channel attacks could exploit:

 The semantic equivalence of the same string stored in a String Element or UTF-8 Element with and without zero-bit padding, making comparison at the semantic level invalid.

 The semantic equivalence of VINT_DATA within Element Data Size with two different lengths due to left-padding zero bits, making comparison at the semantic level invalid.

 Data contained within a Master Element that is not itself part of a Child Element, which can trigger incorrect parsing behavior in EBML Readers.

 Extraneous copies of Identically Recurring Element, making parsing unnecessarily slow to the point of not being usable.

 Copies of Identically Recurring Element within a Parent Element that contain invalid CRC-32 Elements. EBML Readers not checking the CRC-32 might use the version of the element with mismatching CRC-32s.

 Use of Void Elements that could be used to hide content or create bogus resynchronization points seen by some EBML Readers and not others.

 IANA Considerations

 EBML Element IDs Registry
 This document creates a new IANA registry called the
"EBML Element IDs" registry.
 Element IDs are described in . Element
IDs are encoded using the VINT mechanism described in
 and can be between one and five
octets long. Five-octet-long Element IDs are possible only if declared
in the header.
 This IANA registry only applies to Elements that can be contained
in the EBML Header, thus including Global Elements. Elements only
found in the EBML Body have their own set of independent Element IDs
and are not part of this IANA registry.
 One-octet Element IDs MUST be between 0x81 and
0xFE. These items are valuable because they are short, and they need
to be used for commonly repeated elements. Element IDs are to be
allocated within this range according to the "RFC Required"
policy .
 The following one-octet Element IDs are RESERVED: 0xFF and
0x80.
 Values in the one-octet range of 0x00 to 0x7F are not valid for use
as an Element ID.
 Two-octet Element IDs MUST be between 0x407F and
0x7FFE. Element IDs are to be allocated within this range according to
the "Specification Required" policy
 .
 The following two-octet Element IDs are RESERVED: 0x7FFF and
0x4000.
 Values in the two-octet ranges of 0x0000 to 0x3FFF and 0x8000 to 0xFFFF are
not valid for use as an Element ID.
 Three-octet Element IDs MUST be between 0x203FFF and 0x3FFFFE. Element IDs are to be allocated within this range according to the "First Come First Served" policy .
 The following three-octet Element IDs are RESERVED: 0x3FFFFF and
0x200000.
 Values in the three-octet ranges of 0x000000 to 0x1FFFFF and
0x400000 to 0xFFFFFF are not valid for use as an Element ID.
 Four-octet Element IDs MUST be between 0x101FFFFF
and 0x1FFFFFFE. Four-octet Element IDs are somewhat special in that
they are useful for resynchronizing to major structures in the event
of data corruption or loss. As such, four-octet Element IDs are split
into two categories. Four-octet Element IDs whose lower three octets
(as encoded) would make printable 7-bit ASCII values (0x20 to 0x7E,
inclusive) MUST be allocated by the "Specification
Required" policy. Sequential allocation of values is not
required: specifications SHOULD include a specific
request and are encouraged to do early allocations.
 To be clear about the above category: four-octet Element IDs always start
with hex 0x10 to 0x1F, and that octet may be chosen so that the entire VINT
has some desirable property, such as a specific CRC. The other three octets,
when ALL having values between 0x20 (32, ASCII Space) and 0x7E (126, ASCII
"~"), fall into this category.
 Other four-octet Element IDs may be allocated by the "First Come First Served" policy.
 The following four-octet Element IDs are RESERVED: 0x1FFFFFFF and 0x10000000.
 Values in the four-octet ranges of 0x00000000 to 0x0FFFFFFF and 0x20000000
to 0xFFFFFFFF are not valid for use as an Element ID.
 Five-octet Element IDs (values from 0x080FFFFFFF to 0x0FFFFFFFFE) are RESERVED according to the "Experimental Use" policy : they may be used by anyone at any time, but there is no coordination.
 ID Values found in this document are assigned as initial values as follows:

 IDs and Names for EBML Elements assigned by this document

 Element ID
 Element Name
 Reference

 0x1A45DFA3
 EBML
 Described in

 0x4286
 EBMLVersion
 Described in

 0x42F7
 EBMLReadVersion
 Described in

 0x42F2
 EBMLMaxIDLength
 Described in

 0x42F3
 EBMLMaxSizeLength
 Described in

 0x4282
 DocType
 Described in

 0x4287
 DocTypeVersion
 Described in

 0x4285
 DocTypeReadVersion
 Described in

 0x4281
 DocTypeExtension
 Described in

 0x4283
 DocTypeExtensionName
 Described in

 0x4284
 DocTypeExtensionVersion
 Described in

 0xBF
 CRC-32
 Described in

 0xEC
 Void
 Described in

 EBML DocTypes Registry
 This document creates a new IANA registry called the "EBML DocTypes" registry.
 To register a new DocType in this registry, one needs a DocType name, a Description of the DocType, a Change Controller (IESG or email of registrant), and an optional Reference to a document describing the DocType.
 DocType values are described in . DocTypes
are ASCII strings, defined in , which
label the official name of the EBML Document Type. The strings may be
allocated according to the "First Come First Served" policy.
 The use of ASCII corresponds to the types and code already in use; the
value is not meant to be visible to the user.
 DocType string values of "matroska" and "webm" are RESERVED to the IETF for future use.
These can be assigned via the "IESG Approval" or "RFC Required" policies .

 Normative References

 IEEE Standard for Binary Floating-Point Arithmetic

 IEEE

 Data communication -- High-level data link control procedures -- Frame structure

 International Organization for Standardization

 Information technology -- Programming languages -- C

 International Organization for Standardization

 Error-correcting procedures for DCEs using asynchronous-to-synchronous conversion

 International Telecommunications Union

 ASCII format for network interchange

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 A URN Namespace for IETF Documents

 This document proposes the "ietf" namespace, which consists of the RFC family of documents (RFCs, STDs, FYIs, and BCPs) developed by the IETF and published by the RFC Editor and the minutes of working groups (WG) and birds of a feather (BOF) meetings that occur during IETF conferences. [STANDARDS-TRACK]

 Date and Time on the Internet: Timestamps

 This document defines a date and time format for use in Internet protocols that is a profile of the ISO 8601 standard for representation of dates and times using the Gregorian calendar.

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 Augmented BNF for Syntax Specifications: ABNF

 Internet technical specifications often need to define a formal syntax. Over the years, a modified version of Backus-Naur Form (BNF), called Augmented BNF (ABNF), has been popular among many Internet specifications. The current specification documents ABNF. It balances compactness and simplicity with reasonable representational power. The differences between standard BNF and ABNF involve naming rules, repetition, alternatives, order-independence, and value ranges. This specification also supplies additional rule definitions and encoding for a core lexical analyzer of the type common to several Internet specifications. [STANDARDS-TRACK]

 Tags for Identifying Languages

 This document describes the structure, content, construction, and semantics of language tags for use in cases where it is desirable to indicate the language used in an information object. It also describes how to register values for use in language tags and the creation of user-defined extensions for private interchange. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Case-Sensitive String Support in ABNF

 This document extends the base definition of ABNF (Augmented Backus-Naur Form) to include a way to specify US-ASCII string literals that are matched in a case-sensitive manner.

 Guidelines for Writing an IANA Considerations Section in RFCs

 Many protocols make use of points of extensibility that use constants to identify various protocol parameters. To ensure that the values in these fields do not have conflicting uses and to promote interoperability, their allocations are often coordinated by a central record keeper. For IETF protocols, that role is filled by the Internet Assigned Numbers Authority (IANA).
 To make assignments in a given registry prudently, guidance describing the conditions under which new values should be assigned, as well as when and how modifications to existing values can be made, is needed. This document defines a framework for the documentation of these guidelines by specification authors, in order to assure that the provided guidance for the IANA Considerations is clear and addresses the various issues that are likely in the operation of a registry.
 This is the third edition of this document; it obsoletes RFC 5226.

 Uniform Resource Names (URNs)

 A Uniform Resource Name (URN) is a Uniform Resource Identifier (URI) that is assigned under the "urn" URI scheme and a particular URN namespace, with the intent that the URN will be a persistent, location-independent resource identifier. With regard to URN syntax, this document defines the canonical syntax for URNs (in a way that is consistent with URI syntax), specifies methods for determining URN-equivalence, and discusses URI conformance. With regard to URN namespaces, this document specifies a method for defining a URN namespace and associating it with a namespace identifier, and it describes procedures for registering namespace identifiers with the Internet Assigned Numbers Authority (IANA). This document obsoletes both RFCs 2141 and 3406.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 XHTML(tm) Basic 1.1 -- Second Edition

 Extensible Markup Language (XML) 1.0 (Fifth Edition)

 Textuality and Netscape

 XML Schema Part 0: Primer Second Edition

 Informative References

 Matroska Media Container Format Specifications

 This document defines the Matroska audiovisual container, including definitions of its structural elements, as well as its terminology, vocabulary, and application.

 Work in Progress

 WebM Container Guidelines

 The WebM Project

 XML Path Language (XPath) Version 1.0

 Authors' Addresses

 slhomme@matroska.org

 dave@dericed.com

 moritz@bunkus.org

