
RFC 9124
A Manifest Information Model for Firmware Updates
in Internet of Things (IoT) Devices

Abstract
Vulnerabilities with Internet of Things (IoT) devices have raised the need for a reliable and secure
firmware update mechanism that is also suitable for constrained devices. Ensuring that devices
function and remain secure over their service lifetime requires such an update mechanism to fix
vulnerabilities, update configuration settings, and add new functionality.

One component of such a firmware update is a concise and machine-processable metadata
document, or manifest, that describes the firmware image(s) and offers appropriate protection.
This document describes the information that must be present in the manifest.

Stream:
RFC:
Category:
Published:
ISSN:
Authors:

Internet Engineering Task Force (IETF)
9124
Informational
January 2022 
2070-1721

   B. Moran
Arm Limited

H. Tschofenig
Arm Limited

H. Birkholz
Fraunhofer SIT

Status of This Memo 
This document is not an Internet Standards Track specification; it is published for informational
purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Not all documents approved by
the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9124

Copyright Notice 
Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights
reserved.

Moran, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9124
https://www.rfc-editor.org/info/rfc9124


This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents ( ) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents 
1.  Introduction

2.  Requirements and Terminology

2.1.  Requirements Notation

2.2.  Terminology

3.  Manifest Information Elements

3.1.  Version ID of the Manifest Structure

3.2.  Monotonic Sequence Number

3.3.  Vendor ID

3.4.  Class ID

3.4.1.  Example 1: Different Classes

3.4.2.  Example 2: Upgrading Class ID

3.4.3.  Example 3: Shared Functionality

3.4.4.  Example 4: Rebranding

3.5.  Precursor Image Digest Condition

3.6.  Required Image Version List

3.7.  Expiration Time

3.8.  Payload Format

3.9.  Processing Steps

3.10. Storage Location

3.10.1.  Example 1: Two Storage Locations

3.10.2.  Example 2: Filesystem

3.10.3.  Example 3: Flash Memory

3.11. Component Identifier

3.12. Payload Indicator

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 2

https://trustee.ietf.org/license-info


3.13. Payload Digests

3.14. Size

3.15. Manifest Envelope Element: Signature

3.16. Additional Installation Instructions

3.17. Manifest Text Information

3.18. Aliases

3.19. Dependencies

3.20. Encryption Wrapper

3.21. XIP Address

3.22. Load-Time Metadata

3.23. Runtime Metadata

3.24. Payload

3.25. Manifest Envelope Element: Delegation Chain

4.  Security Considerations

4.1.  Threat Model

4.2.  Threat Descriptions

4.2.1.  THREAT.IMG.EXPIRED: Old Firmware

4.2.2.  THREAT.IMG.EXPIRED.OFFLINE: Offline Device + Old Firmware

4.2.3.  THREAT.IMG.INCOMPATIBLE: Mismatched Firmware

4.2.4.  THREAT.IMG.FORMAT: The Target Device Misinterprets the Type of Payload

4.2.5.  THREAT.IMG.LOCATION: The Target Device Installs the Payload to the Wrong
Location

4.2.6.  THREAT.NET.REDIRECT: Redirection to Inauthentic Payload Hosting

4.2.7.  THREAT.NET.ONPATH: Traffic Interception

4.2.8.  THREAT.IMG.REPLACE: Payload Replacement

4.2.9.  THREAT.IMG.NON_AUTH: Unauthenticated Images

4.2.10. THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor Images

4.2.11. THREAT.UPD.UNAPPROVED: Unapproved Firmware

4.2.12. THREAT.IMG.DISCLOSURE: Reverse Engineering of Firmware Image for
Vulnerability Analysis

4.2.13. THREAT.MFST.OVERRIDE: Overriding Critical Manifest Elements

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 3



4.2.14. THREAT.MFST.EXPOSURE: Confidential Manifest Element Exposure

4.2.15. THREAT.IMG.EXTRA: Extra Data after Image

4.2.16. THREAT.KEY.EXPOSURE: Exposure of Signing Keys

4.2.17. THREAT.MFST.MODIFICATION: Modification of Manifest or Payload prior to
Signing

4.2.18. THREAT.MFST.TOCTOU: Modification of Manifest between Authentication and Use

4.3.  Security Requirements

4.3.1.  REQ.SEC.SEQUENCE: Monotonic Sequence Numbers

4.3.2.  REQ.SEC.COMPATIBLE: Vendor, Device-Type Identifiers

4.3.3.  REQ.SEC.EXP: Expiration Time

4.3.4.  REQ.SEC.AUTHENTIC: Cryptographic Authenticity

4.3.5.  REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type

4.3.6.  REQ.SEC.AUTH.IMG_LOC: Authenticated Storage Location

4.3.7.  REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote Payload

4.3.8.  REQ.SEC.AUTH.EXEC: Secure Execution

4.3.9.  REQ.SEC.AUTH.PRECURSOR: Authenticated Precursor Images

4.3.10. REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and Class IDs

4.3.11. REQ.SEC.RIGHTS: Rights Require Authenticity

4.3.12. REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption

4.3.13. REQ.SEC.ACCESS_CONTROL: Access Control

4.3.14. REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests

4.3.15. REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest

4.3.16. REQ.SEC.REPORTING: Secure Reporting

4.3.17. REQ.SEC.KEY.PROTECTION: Protected Storage of Signing Keys

4.3.18. REQ.SEC.KEY.ROTATION: Protected Storage of Signing Keys

4.3.19. REQ.SEC.MFST.CHECK: Validate Manifests prior to Deployment

4.3.20. REQ.SEC.MFST.TRUSTED: Construct Manifests in a Trusted Environment

4.3.21. REQ.SEC.MFST.CONST: Manifest Kept Immutable between Check and Use

4.4.  User Stories

4.4.1.  USER_STORY.INSTALL.INSTRUCTIONS: Installation Instructions

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 4



4.4.2.  USER_STORY.MFST.FAIL_EARLY: Fail Early

4.4.3.  USER_STORY.OVERRIDE: Override Non-critical Manifest Elements

4.4.4.  USER_STORY.COMPONENT: Component Update

4.4.5.  USER_STORY.MULTI_AUTH: Multiple Authorizations

4.4.6.  USER_STORY.IMG.FORMAT: Multiple Payload Formats

4.4.7.  USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential Information
Disclosures

4.4.8.  USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from Unpacking
Unknown Formats

4.4.9.  USER_STORY.IMG.CURRENT_VERSION: Specify Version Numbers of Target
Firmware

4.4.10. USER_STORY.IMG.SELECT: Enable Devices to Choose between Images

4.4.11. USER_STORY.EXEC.MFST: Secure Execution Using Manifests

4.4.12. USER_STORY.EXEC.DECOMPRESS: Decompress on Load

4.4.13. USER_STORY.MFST.IMG: Payload in Manifest

4.4.14. USER_STORY.MFST.PARSE: Simple Parsing

4.4.15. USER_STORY.MFST.DELEGATION: Delegated Authority in Manifest

4.4.16. USER_STORY.MFST.PRE_CHECK: Update Evaluation

4.4.17. USER_STORY.MFST.ADMINISTRATION: Administration of Manifests

4.5.  Usability Requirements

4.5.1.  REQ.USE.MFST.PRE_CHECK: Pre-installation Checks

4.5.2.  REQ.USE.MFST.TEXT: Descriptive Manifest Information

4.5.3.  REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote Resource Location

4.5.4.  REQ.USE.MFST.COMPONENT: Component Updates

4.5.5.  REQ.USE.MFST.MULTI_AUTH: Multiple Authentications

4.5.6.  REQ.USE.IMG.FORMAT: Format Usability

4.5.7.  REQ.USE.IMG.NESTED: Nested Formats

4.5.8.  REQ.USE.IMG.VERSIONS: Target Version Matching

4.5.9.  REQ.USE.IMG.SELECT: Select Image by Destination

4.5.10. REQ.USE.EXEC: Executable Manifest

4.5.11. REQ.USE.LOAD: Load-Time Information

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 5



4.5.12. REQ.USE.PAYLOAD: Payload in Manifest Envelope

4.5.13. REQ.USE.PARSE: Simple Parsing

4.5.14. REQ.USE.DELEGATION: Delegation of Authority in Manifest

5.  IANA Considerations

6.  References

6.1.  Normative References

6.2.  Informative References

Acknowledgements

Authors' Addresses

1. Introduction 
Vulnerabilities with Internet of Things (IoT) devices have raised the need for a reliable and secure
firmware update mechanism that is also suitable for constrained devices. Ensuring that devices
function and remain secure over their service lifetime requires such an update mechanism to fix
vulnerabilities, update configuration settings, and add new functionality.

One component of such a firmware update is a concise and machine-processable metadata
document, or manifest, that describes the firmware image(s) and offers appropriate protection.
This document describes the information that must be present in the manifest.

This document describes all the information elements required in a manifest to secure firmware
updates of IoT devices. Each information element is motivated by user stories and threats it aims
to mitigate. These threats and user stories are not intended to be an exhaustive list of the threats
against IoT devices and possible user stories that describe how to conduct a firmware update.
Instead, they are intended to describe the threats against firmware updates in isolation and
provide sufficient motivation to specify the information elements that cover a wide range of user
stories.

To distinguish information elements from their encoding and serialization over the wire, this
document presents an information model. RFC 3444  describes the differences between
information models and data models.

Because this document covers a wide range of user stories and a wide range of threats, not all
information elements apply to all scenarios. As a result, various information elements are
optional to implement and optional to use, depending on which threats exist in a particular
domain of application and which user stories are important for deployments.

[RFC3444]

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 6



2. Requirements and Terminology 

2.1. Requirements Notation 
The key words " ", " ", " ", " ", " ", " ", " ",
" ", " ", " ", and " " in this document are to be
interpreted as described in BCP 14  when, and only when, they appear in all
capitals, as shown here.

Unless otherwise stated, these words apply to the design of the manifest format, not its
implementation or application. Hence, whenever an information element is declared as
" ", this implies that the manifest format document has to include support for it.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD NOT
RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

REQUIRED

2.2. Terminology 
This document uses terms defined in . The term "Operator" refers to either a device
operator or a network operator.

"Secure time" and "secure clock" refer to a set of requirements on time sources. For local time
sources, this primarily means that the clock must be monotonically increasing, including across
power cycles, firmware updates, etc. For remote time sources, the provided time must be both
authenticated and guaranteed to be correct to within some predetermined bounds, whenever the
time source is accessible.

The term "Envelope" (or "Manifest Envelope") is used to describe an encoding that allows the
bundling of a manifest with related information elements that are not directly contained within
the manifest.

The term "payload" is used to describe the data that is delivered to a device during an update. This
is distinct from a "firmware image", as described in , because the payload is often in an
intermediate state, such as being encrypted, compressed, and/or encoded as a differential update.
The payload, taken in isolation, is often not the final firmware image.

[RFC9019]

[RFC9019]

3. Manifest Information Elements 
Each manifest information element is anchored in a security requirement or a usability
requirement. The manifest elements are described below, justified by their requirements.

3.1. Version ID of the Manifest Structure 
This is an identifier that describes which iteration of the manifest format is contained in the
structure. This allows devices to identify the version of the manifest data model that is in use.

This element is .REQUIRED

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 7



Implements:

3.2. Monotonic Sequence Number 
This element provides a monotonically increasing (unsigned) sequence number to prevent
malicious actors from reverting a firmware update against the policies of the relevant authority.
This number must not wrap around.

For convenience, the monotonic sequence number may be a UTC timestamp. This allows global
synchronization of sequence numbers without any additional management.

This element is .

 

REQUIRED

REQ.SEC.SEQUENCE (Section 4.3.1)

Implements:

3.3. Vendor ID 
The Vendor ID element helps to distinguish between identically named products from different
vendors. The Vendor ID is not intended to be a human-readable element. It is intended for binary
match/mismatch comparison only.

Recommended practice is to use version 5 Universally Unique Identifiers (UUIDs)  with
the vendor's domain name and the DNS name space ID. Other options include type 1 and type 4
UUIDs.

Fixed-size binary identifiers are preferred because they are simple to match, unambiguous in
length, explicitly non-parsable, and require no issuing authority. Guaranteed unique integers are
preferred because they are small and simple to match; however, they may not be fixed length,
and they may require an issuing authority to ensure uniqueness. Free-form text is avoided
because it is variable length, prone to error, and often requires parsing outside the scope of the
manifest serialization.

If human-readable content is required, it  be contained in a separate manifest
information element: .

This element is .

, 
 

Here is an example for a domain-name-based UUID. Vendor A creates a UUID based on a domain
name it controls, such as vendorId = UUID5(DNS, "vendor-a.example").

Because the DNS infrastructure prevents multiple registrations of the same domain name, this
UUID is (with very high probability) guaranteed to be unique. Because the domain name is
known, this UUID is reproducible. Type 1 and type 4 UUIDs produce similar guarantees of
uniqueness, but not reproducibility.

[RFC4122]

SHOULD
Manifest Text Information (Section 3.17)

RECOMMENDED

REQ.SEC.COMPATIBLE (Section 4.3.2) REQ.SEC.AUTH.COMPATIBILITY (Section
4.3.10)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 8



This approach creates a contention when a vendor changes its name or relinquishes control of a
domain name. In this scenario, it is possible that another vendor would start using that same
domain name. However, this UUID is not proof of identity; a device's trust in a vendor must be
anchored in a cryptographic key, not a UUID.

3.4. Class ID 
A device "Class" is a set of different device types that can accept the same firmware update
without modification. It thereby allows devices to determine the applicability of the firmware in
an unambiguous way. Class IDs must be unique within the scope of a Vendor ID. This is to prevent
similarly or identically named devices from colliding in their customer's infrastructure.

Recommended practice is to use version 5 UUIDs  with as much information as
necessary to define firmware compatibility. Possible information used to derive the Class ID UUID
includes:

Model name or number 
Hardware revision 
Runtime library version 
Bootloader version 
ROM revision 
Silicon batch number 

The Class ID UUID should use the Vendor ID as the name space identifier. Classes may be more
fine-grained than is required to identify firmware compatibility. Classes must not be less granular
than is required to identify firmware compatibility. Devices may have multiple Class IDs.

The Class ID is not intended to be a human-readable element. It is intended for binary match/
mismatch comparison only. A manifest serialization  permit free-form text content
to be used for the Class ID. A fixed-size binary identifier  be used.

Some organizations desire to keep the same product naming across multiple, incompatible
hardware revisions for ease of user experience. If this naming is propagated into the firmware,
then matching a specific hardware version becomes a challenge. An opaque, non-readable binary
identifier has no naming implications and so is more likely to be usable for distinguishing among
incompatible device groupings, regardless of naming.

Fixed-size binary identifiers are preferred because they are simple to match, unambiguous in
length, opaque and free from naming implications, and explicitly non-parsable. Free-form text is
avoided because it is variable length, prone to error, often requires parsing outside the scope of
the manifest serialization, and may be homogenized across incompatible device groupings.

If the Class ID is not implemented, then each logical device class must use a unique trust anchor
for authorization.

This element is .

[RFC4122]

• 
• 
• 
• 
• 
• 

SHOULD NOT
SHOULD

RECOMMENDED

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 9



Implements: , 
 

REQ.SEC.COMPATIBLE (Section 4.3.2) REQ.SEC.AUTH.COMPATIBILITY (Section
4.3.10)

3.4.1. Example 1: Different Classes 

Vendor A creates Product Z and Product Y. The firmware images of Products Z and Y are not
interchangeable. Vendor A creates UUIDs as follows:

vendorId = UUID5(DNS, "vendor-a.example") 
ZclassId = UUID5(vendorId, "Product Z") 
YclassId = UUID5(vendorId, "Product Y") 

This ensures that Vendor A's Product Z cannot install firmware for Product Y and Product Y
cannot install firmware for Product Z.

• 
• 
• 

3.4.2. Example 2: Upgrading Class ID 

Vendor A creates Product X. Later, Vendor A adds a new feature to Product X, creating Product X
v2. Product X requires a firmware update to work with firmware intended for Product X v2.

Vendor A creates UUIDs as follows:

vendorId = UUID5(DNS, "vendor-a.example") 
XclassId = UUID5(vendorId, "Product X") 
Xv2classId = UUID5(vendorId, "Product X v2") 

When Product X receives the firmware update necessary to be compatible with Product X v2, part
of the firmware update changes the Class ID to Xv2classId.

• 
• 
• 

3.4.3. Example 3: Shared Functionality 

Vendor A produces two products: Product X and Product Y. These components share a common
core (such as an operating system (OS)) but have different applications. The common core and
the applications can be updated independently. To enable X and Y to receive the same common
core update, they require the same Class ID. To ensure that only Product X receives Application X
and only Product Y receives Application Y, Product X and Product Y must have different Class IDs.
The vendor creates Class IDs as follows:

vendorId = UUID5(DNS, "vendor-a.example") 
XclassId = UUID5(vendorId, "Product X") 
YclassId = UUID5(vendorId, "Product Y") 
CommonClassId = UUID5(vendorId, "common core") 

Product X matches against both XclassId and CommonClassId. Product Y matches against both
YclassId and CommonClassId.

• 
• 
• 
• 

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 10



3.4.4. Example 4: Rebranding 

Vendor A creates a Product A and its firmware. Vendor B sells the product under its own name as
Product B with some customized configuration. The vendors create the Class IDs as follows:

vendorIdA = UUID5(DNS, "vendor-a.example") 
classIdA = UUID5(vendorIdA, "Product A-Unlabeled") 
vendorIdB = UUID5(DNS, "vendor-b.example") 
classIdB = UUID5(vendorIdB, "Product B") 

The product will match against each of these Class IDs. If Vendor A and Vendor B provide different
components for the device, the implementor may choose to make ID matching scoped to each
component. Then, the vendorIdA, classIdA match the component ID supplied by Vendor A, and
the vendorIdB, classIdB match the component ID supplied by Vendor B.

• 
• 
• 
• 

Implements:

3.5. Precursor Image Digest Condition 
This element provides information about the payload that needs to be present on the device for
an update to apply. This may, for example, be the case with differential updates.

This element is .

 

OPTIONAL

REQ.SEC.AUTH.PRECURSOR (Section 4.3.9)

Implements:

3.6. Required Image Version List 
Payloads may only be applied to a specific firmware version or multiple firmware versions. For
example, a payload containing a differential update may be applied only to a specific firmware
version.

When a payload applies to multiple versions of firmware, the required image version list specifies
which firmware versions must be present for the update to be applied. This allows the update
author to target specific versions of firmware for an update, while excluding those to which it
should not or cannot be applied.

This element is .

 

OPTIONAL

REQ.USE.IMG.VERSIONS (Section 4.5.8)

3.7. Expiration Time 
This element tells a device the time at which the manifest expires and should no longer be used.
This element should be used where a secure source of time is provided and firmware is intended
to expire predictably. This element may also be displayed (e.g., via an app) for user confirmation,
since users typically have a reliable knowledge of the date.

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 11



Implements:

Special consideration is required for end-of-life if firmware will not be updated again -- for
example, if a business stops issuing updates to a device. In this case, the last valid firmware should
not have an expiration time.

This element is .

 

OPTIONAL

REQ.SEC.EXP (Section 4.3.3)

Implements:

3.8. Payload Format 
This element describes the payload format within the signed metadata. It is used to enable devices
to decode payloads correctly.

This element is .

,  

REQUIRED

REQ.SEC.AUTH.IMG_TYPE (Section 4.3.5) REQ.USE.IMG.FORMAT (Section 4.5.6)

Implements:

3.9. Processing Steps 
This element provides a representation of the processing steps required to decode a payload -- in
particular, those that are compressed, packed, or encrypted. The representation must describe
which algorithms are used and must convey any additional parameters required by those
algorithms.

A processing step may indicate the expected digest of the payload after the processing is complete.

This element is .

 

RECOMMENDED

REQ.USE.IMG.NESTED (Section 4.5.7)

Implements:

3.10. Storage Location 
This element tells the device where to store a payload within a given component. The device can
use this to establish which permissions are necessary and the physical storage location to use.

This element is .

 

REQUIRED

REQ.SEC.AUTH.IMG_LOC (Section 4.3.6)

3.10.1. Example 1: Two Storage Locations 

A device supports two components: an OS and an application. These components can be updated
independently, expressing dependencies to ensure compatibility between the components. The
author chooses two storage identifiers:

"OS" 
"APP" 

• 
• 

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 12



3.10.2. Example 2: Filesystem 

A device supports a full-featured filesystem. The author chooses to use the storage identifier as the
path at which to install the payload. The payload may be a tarball, in which case it unpacks the
tarball into the specified path.

3.10.3. Example 3: Flash Memory 

A device supports flash memory. The author chooses to make the storage identifier the offset
where the image should be written.

Implements:

3.11. Component Identifier 
In a device with more than one storage subsystem, a storage identifier is insufficient to identify
where and how to store a payload. To resolve this, a component identifier indicates to which part
of the storage subsystem the payload shall be placed.

A serialization may choose to combine the use of a component identifier and 
.

This element is .

 

storage location
(Section 3.10)

OPTIONAL

REQ.USE.MFST.COMPONENT (Section 4.5.4)

Implements:

3.12. Payload Indicator 
This element provides the information required for the device to acquire the payload. This
functionality is only needed when the target device does not intrinsically know where to find the
payload.

This can be encoded in several ways:

One URI 
A list of URIs 
A prioritized list of URIs 
A list of signed URIs 

This element is .

 

• 
• 
• 
• 

OPTIONAL

REQ.SEC.AUTH.REMOTE_LOC (Section 4.3.7)

3.13. Payload Digests 
This element contains one or more digests of one or more payloads. This allows the target device
to ensure authenticity of the payload(s) when combined with the  element.
A manifest format must provide a mechanism to select one payload from a list based on system
parameters, such as an execute-in-place (XIP) installation address.

Signature (Section 3.15)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 13



Implements:

This element is . Support for more than one digest is .

,  

REQUIRED OPTIONAL

REQ.SEC.AUTHENTIC (Section 4.3.4) REQ.USE.IMG.SELECT (Section 4.5.9)

Implements:

3.14. Size 
This element provides the size of the payload in bytes, which informs the target device how big of
a payload to expect. Without it, devices are exposed to some classes of denial-of-service attacks.

This element is .

 

REQUIRED

REQ.SEC.AUTH.EXEC (Section 4.3.8)

Implements:

3.15. Manifest Envelope Element: Signature 
The signature element contains all the information necessary to protect the contents of the
manifest against modification and to offer authentication of the signer. Because the signature
element authenticates the manifest, it cannot be contained within the manifest. Instead, either
the manifest is contained within the signature element or the signature element is a member of
the Manifest Envelope and bundled with the manifest.

The signature element represents the foundation of all security properties of the manifest.
Manifests, which are included as dependencies by other manifests, should include a signature so
that the recipient can distinguish between different actors with different permissions.

The signature element must support multiple signers and multiple signing algorithms. A manifest
format may allow multiple manifests to be covered by a single signature element.

This element is  in non-dependency manifests.

, , 
 

REQUIRED

REQ.SEC.AUTHENTIC (Section 4.3.4) REQ.SEC.RIGHTS (Section 4.3.11)
REQ.USE.MFST.MULTI_AUTH (Section 4.5.5)

Implements:

3.16. Additional Installation Instructions 
Additional installation instructions are machine-readable commands the device should execute
when processing the manifest. This information is distinct from the information necessary to
process a payload. Additional installation instructions include information such as update timing
(for example, install only on Sunday, at 0200), procedural considerations (for example, shut down
the equipment under control before executing the update), and pre- and post-installation steps
(for example, run a script). Other installation instructions could include requesting user
confirmation before installing.

This element is .

 

OPTIONAL

REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 14



Implements:

3.17. Manifest Text Information 
This is textual information pertaining to the update described by the manifest. This information
is for human consumption only. It  be the basis of any decision made by the recipient.

This element is .

 

MUST NOT

OPTIONAL

REQ.USE.MFST.TEXT (Section 4.5.2)

Implements:

3.18. Aliases 
Aliases provide a mechanism for a manifest to augment or replace URIs or URI lists defined by
one or more of its dependencies.

This element is .

 

OPTIONAL

REQ.USE.MFST.OVERRIDE_REMOTE (Section 4.5.3)

Implements:

3.19. Dependencies 
This is a list of other manifests that are required by the current manifest. Manifests are identified
in an unambiguous way, such as a cryptographic digest.

This element is  to support deployments that include both multiple authorities and
multiple payloads.

 

REQUIRED

REQ.USE.MFST.COMPONENT (Section 4.5.4)

Implements:

3.20. Encryption Wrapper 
Encrypting firmware images requires symmetric content encryption keys. The encryption
wrapper provides the information needed for a device to obtain or locate a key that it uses to
decrypt the firmware.

This element is  for encrypted payloads.

 

REQUIRED

REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

3.21. XIP Address 
In order to support XIP systems with multiple possible base addresses, it is necessary to specify
which address the payload is linked for.

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 15



Implements:

For example, a microcontroller may have a simple bootloader that chooses one of two images to
boot. That microcontroller then needs to choose one of two firmware images to install, based on
which of its two images is older.

This element is .

 

OPTIONAL

REQ.USE.IMG.SELECT (Section 4.5.9)

Implements:

3.22. Load-Time Metadata 
Load-time metadata provides the device with information that it needs in order to load one or
more images. This metadata may include any of the following:

The source (e.g., non-volatile storage) 
The destination (e.g., an address in RAM) 
Cryptographic information 
Decompression information 
Unpacking information 

Typically, loading is done by copying an image from its permanent storage location into its active
use location. The metadata allows operations such as decryption, decompression, and unpacking
to be performed during that copy.

This element is .

 

• 
• 
• 
• 
• 

OPTIONAL

REQ.USE.LOAD (Section 4.5.11)

Implements:

3.23. Runtime Metadata 
Runtime metadata provides the device with any extra information needed to boot the device.
This may include the entry point of an XIP image or the kernel command line to boot a Linux
image.

This element is .

 

OPTIONAL

REQ.USE.EXEC (Section 4.5.10)

3.24. Payload 
The Payload element is contained within the manifest or Manifest Envelope and enables the
manifest and payload to be delivered simultaneously. This is used for delivering small payloads,
such as cryptographic keys or configuration data.

This element is .OPTIONAL

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 16



Implements:  REQ.USE.PAYLOAD (Section 4.5.12)

Implements:

3.25. Manifest Envelope Element: Delegation Chain 
The delegation chain offers enhanced authorization functionality via authorization tokens, such
as Concise Binary Object Representation (CBOR) Web Tokens  with Proof-of-Possession
Key Semantics . Each token itself is protected and does not require another layer of
protection. Each authorization token typically includes a public key or a public key fingerprint;
however, this is dependent on the tokens used. Each token  include additional metadata, such
as key usage information. Because the delegation chain is needed to verify the signature, it must
be placed in the Manifest Envelope, rather than the manifest.

The first token in any delegation chain  be authenticated by the recipient's trust anchor.
Each subsequent token  be authenticated using the previous token. This allows a recipient to
discard each antecedent token after it has authenticated the subsequent token. The final token 

 enable authentication of the manifest. More than one delegation chain  be used if more
than one signature is used. Note that no restriction is placed on the encoding order of these
tokens; the order of elements is logical only.

This element is .

,  

[RFC8392]
[RFC8747]

MAY

MUST
MUST

MUST MAY

OPTIONAL

REQ.USE.DELEGATION (Section 4.5.14) REQ.SEC.KEY.ROTATION (Section 4.3.18)

4. Security Considerations 
The following subsections describe the threat model, user stories, security requirements, and
usability requirements. This section also provides the motivations for each of the manifest
information elements.

Note that it is worthwhile to recall that a firmware update is, by definition, remote code
execution. Hence, if a device is configured to trust an entity to provide firmware, it trusts this
entity to behave correctly. Many classes of attacks can be mitigated by verifying that a firmware
update came from a trusted party and that no rollback is taking place. However, if the trusted
entity has been compromised and distributes attacker-provided firmware to devices, then the
possibilities for defense are limited.

4.1. Threat Model 
The following subsections aim to provide information about the threats that were considered, the
security requirements that are derived from those threats, and the fields that permit
implementation of the security requirements. This model uses the Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege (STRIDE)
approach . Each threat is classified according to the following:

Spoofing identity 
Tampering with data 

[STRIDE]

• 
• 

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 17



Repudiation 
Information disclosure 
Denial of service 
Elevation of privilege 

This threat model only covers elements related to the transport of firmware updates. It explicitly
does not cover threats outside of the transport of firmware updates. For example, threats to an
IoT device due to physical access are out of scope.

• 
• 
• 
• 

4.2. Threat Descriptions 
Many of the threats detailed in this section contain a "threat escalation" description. This explains
how the described threat might fit together with other threats and produce a high-severity threat.
This is important because some of the described threats may seem low severity but could be used
with others to construct a high-severity compromise.

Classification:

Threat Escalation:

Mitigated by:

4.2.1. THREAT.IMG.EXPIRED: Old Firmware 

Elevation of Privilege 

An attacker sends an old, but valid, manifest with an old, but valid, firmware image to a device. If
there is a known vulnerability in the provided firmware image, this may allow an attacker to
exploit the vulnerability and gain control of the device.

If the attacker is able to exploit the known vulnerability, then this threat can
be escalated to all types. 

 REQ.SEC.SEQUENCE (Section 4.3.1)

Classification:

4.2.2. THREAT.IMG.EXPIRED.OFFLINE: Offline Device + Old Firmware 

Elevation of Privilege 

An attacker targets a device that has been offline for a long time and runs an old firmware
version. The attacker sends an old, but valid, manifest to a device with an old, but valid, firmware
image. The attacker-provided firmware is newer than the installed firmware but older than the
most recently available firmware. If there is a known vulnerability in the provided firmware
image, then this may allow an attacker to gain control of a device. Because the device has been
offline for a long time, it is unaware of any new updates. As such, it will treat the old manifest as
the most current.

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 18



Threat Escalation:

Mitigated by:

The exact mitigation for this threat depends on where the threat comes from. This requires
careful consideration by the implementor. If the threat is from a network actor, including an on-
path attacker, or an intruder into a management system, then a user confirmation can mitigate
this attack, simply by displaying an expiration date and requesting confirmation. On the other
hand, if the user is the attacker, then an online confirmation system (for example, a trusted
timestamp server) can be used as a mitigation system.

If the attacker is able to exploit the known vulnerability, then this threat can
be escalated to all types. 

,  REQ.SEC.EXP (Section 4.3.3) REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

Classification:

Mitigated by:

4.2.3. THREAT.IMG.INCOMPATIBLE: Mismatched Firmware 

Denial of Service 

An attacker sends a valid firmware image, for the wrong type of device, signed by an actor with
firmware installation permission on both device types. The firmware is verified by the device
positively because it is signed by an actor with the appropriate permission. This could have wide-
ranging consequences. For devices that are similar, it could cause minor breakage or expose
security vulnerabilities. For devices that are very different, it is likely to render devices
inoperable.

 

For example, suppose that two vendors -- Vendor A and Vendor B -- adopt the same trade name in
different geographic regions, and they both make products with the same names, or product
name matching is not used. This causes firmware from Vendor A to match devices from Vendor B.

If the vendors are the firmware authorities, then devices from Vendor A will reject images signed
by Vendor B, since they use different credentials. However, if both devices trust the same author,
then devices from Vendor A could install firmware intended for devices from Vendor B.

REQ.SEC.COMPATIBLE (Section 4.3.2)

Classification:

Threat Escalation:

Mitigated by:

4.2.4. THREAT.IMG.FORMAT: The Target Device Misinterprets the Type of Payload 

Denial of Service 

If a device misinterprets the format of the firmware image, it may cause a device to install a
firmware image incorrectly. An incorrectly installed firmware image would likely cause the
device to stop functioning.

An attacker that can cause a device to misinterpret the received firmware
image may gain elevation of privilege and potentially expand this to all types of threats. 

 REQ.SEC.AUTH.IMG_TYPE (Section 4.3.5)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 19



Classification:

Threat Escalation:

Mitigated by:

4.2.5. THREAT.IMG.LOCATION: The Target Device Installs the Payload to the Wrong
Location 

Denial of Service 

If a device installs a firmware image to the wrong location on the device, then it is likely to break.
For example, a firmware image installed as an application could cause a device and/or
application to stop functioning.

An attacker that can cause a device to misinterpret the received code may
gain elevation of privilege and potentially expand this to all types of threats. 

 REQ.SEC.AUTH.IMG_LOC (Section 4.3.6)

Classification:

Mitigated by:

4.2.6. THREAT.NET.REDIRECT: Redirection to Inauthentic Payload Hosting 

Denial of Service 

If a device is tricked into fetching a payload for an attacker-controlled site, the attacker may send
corrupted payloads to devices.

 REQ.SEC.AUTH.REMOTE_LOC (Section 4.3.7)

Classification:

Mitigated by:

4.2.7. THREAT.NET.ONPATH: Traffic Interception 

Spoofing Identity, Tampering with Data 

An attacker intercepts all traffic to and from a device. The attacker can monitor or modify any
data sent to or received from the device. This can take the form of manifests, payloads, status
reports, and capability reports being modified or not delivered to the intended recipient. It can
also take the form of analysis of data sent to or from the device, in content, size, or frequency.

, , 
, ,

 

REQ.SEC.AUTHENTIC (Section 4.3.4) REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)
REQ.SEC.AUTH.REMOTE_LOC (Section 4.3.7) REQ.SEC.MFST.CONFIDENTIALITY (Section 4.3.14)
REQ.SEC.REPORTING (Section 4.3.16)

Classification:

4.2.8. THREAT.IMG.REPLACE: Payload Replacement 

Elevation of Privilege 

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 20



Threat Escalation:

Mitigated by:

An attacker replaces newly downloaded firmware after a device finishes verifying a manifest.
This could cause the device to execute the attacker's code. This attack likely requires physical
access to the device. However, it is possible that this attack is carried out in combination with
another threat that allows remote execution. This is a typical Time Of Check / Time Of Use
(TOCTOU) attack.

If the attacker is able to exploit a known vulnerability or if the attacker can
supply their own firmware, then this threat can be escalated to all types. 

 REQ.SEC.AUTH.EXEC (Section 4.3.8)

Classification:

Mitigated by:

4.2.9. THREAT.IMG.NON_AUTH: Unauthenticated Images 

Elevation of Privilege / all types 

If an attacker can install their firmware on a device -- for example, by manipulating either
payload or metadata -- then they have complete control of the device.

 REQ.SEC.AUTHENTIC (Section 4.3.4)

Classification:

Mitigated by:

4.2.10. THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor Images 

Denial of Service / all types 

Modifications of payloads and metadata allow an attacker to introduce a number of denial-of-
service attacks. Below are some examples.

An attacker sends a valid, current manifest to a device that has an unexpected precursor image.
If a payload format requires a precursor image (for example, delta updates) and that precursor
image is not available on the target device, it could cause the update to break.

An attacker that can cause a device to install a payload against the wrong precursor image could
gain elevation of privilege and potentially expand this to all types of threats. However, it is
unlikely that a valid differential update applied to an incorrect precursor would result in
functional, but vulnerable, firmware.

 REQ.SEC.AUTH.PRECURSOR (Section 4.3.9)

Classification:

4.2.11. THREAT.UPD.UNAPPROVED: Unapproved Firmware 

Denial of Service, Elevation of Privilege 

This threat can appear in several ways; however, it is ultimately about ensuring that devices
retain the behavior required by their owner or Operator. The owner or Operator of a device
typically requires that the device maintain certain features, functions, capabilities, behaviors, or
interoperability constraints (more generally, behavior). If these requirements are broken, then a

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 21



Threat Escalation:

Mitigated by:

device will not fulfill its purpose. Therefore, if any party other than the device's owner or the
owner's contracted device operator has the ability to modify device behavior without approval,
then this constitutes an elevation of privilege.

Similarly, a network operator may require that devices behave in a particular way in order to
maintain the integrity of the network. If device behavior on a network can be modified without
the approval of the network operator, then this constitutes an elevation of privilege with respect
to the network.

For example, if the owner of a device has purchased that device because of Features A, B, and C,
and a firmware update that removes Feature A is issued by the manufacturer, then the device
may not fulfill the owner's requirements any more. In certain circumstances, this can cause
significantly greater threats. Suppose that Feature A is used to implement a safety-critical system,
whether the manufacturer intended this behavior or not. When unapproved firmware is
installed, the system may become unsafe.

In a second example, the owner or Operator of a system of two or more interoperating devices
needs to approve firmware for their system in order to ensure interoperability with other devices
in the system. If the firmware is not qualified, the system as a whole may not work. Therefore, if a
device installs firmware without the approval of the device owner or Operator, this is a threat to
devices or the system as a whole.

Similarly, the Operator of a network may need to approve firmware for devices attached to the
network in order to ensure favorable operating conditions within the network. If the firmware is
not qualified, it may degrade the performance of the network. Therefore, if a device installs
firmware without the approval of the network operator, this is a threat to the network itself.

If the network operator expects configuration that is present in devices
deployed in Network A, but not in devices deployed in Network B, then the device may
experience degraded security, leading to threats of all types. 

,  REQ.SEC.RIGHTS (Section 4.3.11) REQ.SEC.ACCESS_CONTROL (Section 4.3.13)

4.2.11.1. Example 1: Multiple Network Operators with a Single Device Operator 
In this example, assume that device operators expect the rights to create firmware but that
network operators expect the rights to qualify firmware as "fit for purpose" on their networks.
Additionally, assume that device operators manage devices that can be deployed on any network,
including Network A and Network B in our example.

An attacker may obtain a manifest for a device on Network A. Then, this attacker sends that
manifest to a device on Network B. Because Network A and Network B are under the control of
different Operators, and the firmware for a device on Network A has not been qualified to be
deployed on Network B, the target device on Network B is now in violation of Operator B's policy
and may be disabled by this unqualified, but signed, firmware.

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 22



This is a denial of service because it can render devices inoperable. This is an elevation of
privilege because it allows the attacker to make installation decisions that should be made by the
Operator.

4.2.11.2. Example 2: Single Network Operator with Multiple Device Operators 
Multiple devices that interoperate are used on the same network and communicate with each
other. Some devices are manufactured and managed by Device Operator A and other devices by
Device Operator B. New firmware is released by Device Operator A that breaks compatibility with
devices from Device Operator B. An attacker sends the new firmware to the devices managed by
Device Operator A without the approval of the network operator. This breaks the behavior of the
larger system, causing denial of service and, possibly, other threats. Where the network is a
distributed Supervisory Control and Data Acquisition (SCADA) system, this could cause
misbehavior of the process that is under control.

Classification:

Mitigated by:

4.2.12. THREAT.IMG.DISCLOSURE: Reverse Engineering of Firmware Image for
Vulnerability Analysis 

all types 

An attacker wants to mount an attack on an IoT device. To prepare the attack, the provided
firmware image is reverse engineered and analyzed for vulnerabilities.

 REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

Classification:

Threat Escalation:

Mitigated by:

4.2.13. THREAT.MFST.OVERRIDE: Overriding Critical Manifest Elements 

Elevation of Privilege 

An authorized actor, but not the author, uses an override mechanism (
) to change an information element in a manifest signed by the author. For

example, if the authorized actor overrides the digest and URI of the payload, the actor can replace
the entire payload with a payload of their choice.

By overriding elements such as payload installation instructions or a
firmware digest, this threat can be escalated to all types. 

 

USER_STORY.OVERRIDE
(Section 4.4.3)

REQ.SEC.ACCESS_CONTROL (Section 4.3.13)

Classification:

Mitigated by:

4.2.14. THREAT.MFST.EXPOSURE: Confidential Manifest Element Exposure 

Information Disclosure 

A third party may be able to extract sensitive information from the manifest.

 REQ.SEC.MFST.CONFIDENTIALITY (Section 4.3.14)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 23



Classification:

Mitigated by:

4.2.15. THREAT.IMG.EXTRA: Extra Data after Image 

all types 

If a third party modifies the image so that it contains extra code after a valid, authentic image,
that third party can then use their own code in order to make better use of an existing
vulnerability.

 REQ.SEC.IMG.COMPLETE_DIGEST (Section 4.3.15)

Classification:

Mitigated by:

4.2.16. THREAT.KEY.EXPOSURE: Exposure of Signing Keys 

all types 

If a third party obtains a key or even indirect access to a key -- for example, in a hardware
security module (HSM) -- then they can perform the same actions as the legitimate owner of the
key. If the key is trusted for firmware updates, then the third party can perform firmware updates
as though they were the legitimate owner of the key.

For example, if manifest signing is performed on a server connected to the internet, an attacker
may compromise the server and then be able to sign manifests, even if the keys for manifest
signing are held in an HSM that is accessed by the server.

,  REQ.SEC.KEY.PROTECTION (Section 4.3.17) REQ.SEC.KEY.ROTATION (Section 4.3.18)

Classification:

Mitigated by:

4.2.17. THREAT.MFST.MODIFICATION: Modification of Manifest or Payload prior to Signing 

all types 

If an attacker can alter a manifest or payload before it is signed, they can perform all the same
actions as the manifest author. This allows the attacker to deploy firmware updates to any
devices that trust the manifest author. If an attacker can modify the code of a payload before the
corresponding manifest is created, they can insert their own code. If an attacker can modify the
manifest before it is signed, they can redirect the manifest to their own payload.

For example, the attacker deploys malware to the developer's computer or signing service that
watches manifest creation activities and inserts code into any binary that is referenced by a
manifest.

For example, the attacker deploys malware to the developer's computer or signing service that
replaces the referenced binary (digest) and URI with the attacker's binary (digest) and URI.

,  REQ.SEC.MFST.CHECK (Section 4.3.19) REQ.SEC.MFST.TRUSTED (Section 4.3.20)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 24



Classification:

Mitigated by:

4.2.18. THREAT.MFST.TOCTOU: Modification of Manifest between Authentication and Use 

all types 

If an attacker can modify a manifest after it is authenticated (time of check) but before it is used
(time of use), then the attacker can place any content whatsoever in the manifest.

 REQ.SEC.MFST.CONST (Section 4.3.21)

4.3. Security Requirements 
The security requirements here are a set of policies that mitigate the threats described in Section
4.1.

Mitigates:

Implemented by:

4.3.1. REQ.SEC.SEQUENCE: Monotonic Sequence Numbers 

Only an actor with firmware installation authority is permitted to decide when device firmware
can be installed. To enforce this rule, manifests  contain monotonically increasing
sequence numbers. Manifests may use UTC epoch timestamps to coordinate monotonically
increasing sequence numbers across many actors in many locations. If UTC epoch timestamps
are used, they must not be treated as times; they must be treated only as sequence numbers.
Devices must reject manifests with sequence numbers smaller than any onboard sequence
number, i.e., there is no sequence number rollover.

Note: This is not a firmware version field. It is a manifest sequence number. A
firmware version may be rolled back by creating a new manifest for the old
firmware version with a later sequence number.

 

 

MUST

THREAT.IMG.EXPIRED (Section 4.2.1)

Monotonic Sequence Number (Section 3.2)

Mitigates:

Implemented by:

4.3.2. REQ.SEC.COMPATIBLE: Vendor, Device-Type Identifiers 

Devices  only apply firmware that is intended for them. Devices must know that a given
update applies to their vendor, model, hardware revision, and software revision. Human-
readable identifiers are often prone to error in this regard, so unique identifiers should be used
instead.

 

,  

MUST

THREAT.IMG.INCOMPATIBLE (Section 4.2.3)

Vendor ID Condition (Section 3.3) Class ID Condition (Section 3.4)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 25



Mitigates:

Implemented by:

4.3.3. REQ.SEC.EXP: Expiration Time 

A firmware manifest  expire after a given time, and devices may have a secure clock (local or
remote). If a secure clock is provided and the firmware manifest has an expiration timestamp,
the device must reject the manifest if the current time is later than the expiration time.

Special consideration is required for end-of-life in cases where a device will not be updated again
-- for example, if a business stops issuing updates for a device. The last valid firmware should not
have an expiration time.

If a device has a flawed time source (either local or remote), an old update can be deployed as
new.

 

 

MAY

THREAT.IMG.EXPIRED.OFFLINE (Section 4.2.2)

Expiration Time (Section 3.7)

Mitigates:

Implemented by:

4.3.4. REQ.SEC.AUTHENTIC: Cryptographic Authenticity 

The authenticity of an update  be demonstrable. Typically, this means that updates must be
digitally signed. Because the manifest contains information about how to install the update, the
manifest's authenticity must also be demonstrable. To reduce the overhead required for
validation, the manifest contains the cryptographic digest of the firmware image, rather than a
second digital signature. The authenticity of the manifest can be verified with a digital signature
or Message Authentication Code. The authenticity of the firmware image is tied to the manifest by
the use of a cryptographic digest of the firmware image.

,  

,  

MUST

THREAT.IMG.NON_AUTH (Section 4.2.9) THREAT.NET.ONPATH (Section 4.2.7)

Signature (Section 3.15) Payload Digests (Section 3.13)

Mitigates:

Implemented by:

4.3.5. REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type 

The type of payload  be authenticated. For example, the target must know whether the
payload is XIP firmware, a loadable module, or configuration data.

 

,  

MUST

THREAT.IMG.FORMAT (Section 4.2.4)

Payload Format (Section 3.8) Signature (Section 3.15)

Mitigates:

Implemented by:

4.3.6. REQ.SEC.AUTH.IMG_LOC: Authenticated Storage Location 

The location on the target where the payload is to be stored  be authenticated.

 

 

MUST

THREAT.IMG.LOCATION (Section 4.2.5)

Storage Location (Section 3.10)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 26



Mitigates:

Implemented by:

4.3.7. REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote Payload 

The location where a target should find a payload  be authenticated. Remote resources need
to receive an equal amount of cryptographic protection as the manifest itself, when
dereferencing URIs. The security considerations of Uniform Resource Identifiers (URIs) are
applicable .

,  

 

MUST

[RFC3986]

THREAT.NET.REDIRECT (Section 4.2.6) THREAT.NET.ONPATH (Section 4.2.7)

Payload Indicator (Section 3.12)

Mitigates:

Implemented by:

4.3.8. REQ.SEC.AUTH.EXEC: Secure Execution 

The target  verify firmware at the time of boot. This requires authenticated payload size
and firmware digest.

 

,  

SHOULD

THREAT.IMG.REPLACE (Section 4.2.8)

Payload Digests (Section 3.13) Size (Section 3.14)

Mitigates:

Implemented by:

4.3.9. REQ.SEC.AUTH.PRECURSOR: Authenticated Precursor Images 

If an update uses a differential compression method, it  specify the digest of the precursor
image, and that digest  be authenticated.

 

 

MUST
MUST

THREAT.UPD.WRONG_PRECURSOR (Section 4.2.10)

Precursor Image Digest (Section 3.5)

Mitigates:

Implemented by:

4.3.10. REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and Class IDs 

The identifiers that specify firmware compatibility  be authenticated to ensure that only
compatible firmware is installed on a target device.

 

,  

MUST

THREAT.IMG.INCOMPATIBLE (Section 4.2.3)

Vendor ID Condition (Section 3.3) Class ID Condition (Section 3.4)

4.3.11. REQ.SEC.RIGHTS: Rights Require Authenticity 

If a device grants different rights to different actors, exercising those rights  be accompanied
by proof of those rights, in the form of proof of authenticity. Authenticity mechanisms, such as
those required in , can be used to prove authenticity.

For example, if a device has a policy that requires that firmware have both an Authorship right
and a Qualification right and if that device grants Authorship and Qualification rights to different
parties, such as a device operator and a network operator, respectively, then the firmware cannot
be installed without proof of rights from both the device operator and the network operator.

MUST

REQ.SEC.AUTHENTIC (Section 4.3.4)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 27



Mitigates:

Implemented by:

 

 

THREAT.UPD.UNAPPROVED (Section 4.2.11)

Signature (Section 3.15)

Mitigates:

Implemented by:

4.3.12. REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption 

The manifest information model  enable encrypted payloads. Encryption helps to prevent
third parties, including attackers, from reading the content of the firmware image. This can
protect against confidential information disclosures and discovery of vulnerabilities through
reverse engineering. Therefore, the manifest must convey the information required to allow an
intended recipient to decrypt an encrypted payload.

,  

 

MUST

THREAT.IMG.DISCLOSURE (Section 4.2.12) THREAT.NET.ONPATH (Section 4.2.7)

Encryption Wrapper (Section 3.20)

Mitigates:

Implemented by:

4.3.13. REQ.SEC.ACCESS_CONTROL: Access Control 

If a device grants different rights to different actors, then an exercise of those rights  be
validated against a list of rights for the actor. This typically takes the form of an Access Control
List (ACL). ACLs are applied to two scenarios:

An ACL decides which elements of the manifest may be overridden and by which actors. 
An ACL decides which component identifier / storage identifier pairs can be written by which
actors. 

,  

Client-side code, not specified in manifest 

MUST

1. 
2. 

THREAT.MFST.OVERRIDE (Section 4.2.13) THREAT.UPD.UNAPPROVED (Section 4.2.11)

Mitigates:

Implemented by:

4.3.14. REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests 

A manifest format  allow encryption of selected parts of the manifest or encryption of the
entire manifest to prevent sensitive content of the firmware metadata from being leaked.

,  

Manifest Encryption Wrapper / Transport Security 

MUST

THREAT.MFST.EXPOSURE (Section 4.2.14) THREAT.NET.ONPATH (Section 4.2.7)

Mitigates:

4.3.15. REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest 

The digest  cover all available space in a fixed-size storage location. Variable-size storage
locations  be restricted to exactly the size of deployed payload. This prevents any data from
being distributed without being covered by the digest. For example, XIP microcontrollers typically
have fixed-size storage. These devices should deploy a digest that covers the deployed firmware
image, concatenated with the default erased value of any remaining space.

 

SHOULD
MUST

THREAT.IMG.EXTRA (Section 4.2.15)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 28



Implemented by:  Payload Digests (Section 3.13)

Mitigates:

Implemented by:

4.3.16. REQ.SEC.REPORTING: Secure Reporting 

Status reports from the device to any remote system  be performed over an authenticated,
confidential channel in order to prevent modification or spoofing of the reports.

 

Transport Security / Manifest format triggering generation of reports 

MUST

THREAT.NET.ONPATH (Section 4.2.7)

Mitigates:

Implemented by:

4.3.17. REQ.SEC.KEY.PROTECTION: Protected Storage of Signing Keys 

Cryptographic keys for signing/authenticating manifests  be stored in a manner that is
inaccessible to networked devices -- for example, in an HSM or an air-gapped computer. This
protects against an attacker obtaining the keys.

Keys  be stored in a way that limits the risk of a legitimate, but compromised, entity (such
as a server or developer computer) issuing signing requests.

 

Hardware-assisted isolation technologies, which are outside the scope of the
manifest format 

SHOULD

SHOULD

THREAT.KEY.EXPOSURE (Section 4.2.16)

Mitigates:

Implemented by:

4.3.18. REQ.SEC.KEY.ROTATION: Protected Storage of Signing Keys 

Cryptographic keys for signing/authenticating manifests  be replaced from time to time.
Because it is difficult and risky to replace a trust anchor, keys used for signing updates  be
delegates of that trust anchor.

If key expiration is performed based on time, then a secure clock is needed. If the time source
used by a recipient to check for expiration is flawed, an old signing key can be used as current,
which compounds .

 

Secure storage technology, which is a system design/implementation aspect
outside the scope of the manifest format 

SHOULD
SHOULD

THREAT.KEY.EXPOSURE (Section 4.2.16)

THREAT.KEY.EXPOSURE (Section 4.2.16)

Mitigates:

4.3.19. REQ.SEC.MFST.CHECK: Validate Manifests prior to Deployment 

Manifests  be verified prior to deployment. This reduces problems that may arise with
devices installing firmware images that damage devices unintentionally.

 

SHOULD

THREAT.MFST.MODIFICATION (Section 4.2.17)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 29



Implemented by: Testing infrastructure. While outside the scope of the manifest format, proper
testing of low-level software is essential for avoiding unnecessary downtime or worse
situations. 

Mitigates:

Implemented by:

4.3.20. REQ.SEC.MFST.TRUSTED: Construct Manifests in a Trusted Environment 

For high-risk deployments, such as large numbers of devices or devices that provide critical
functions, manifests  be constructed in an environment that is protected from
interference, such as an air-gapped computer. Note that a networked computer connected to an
HSM does not fulfill this requirement (see ).

 

Physical and network security for protecting the environment where
firmware updates are prepared to avoid unauthorized access to this infrastructure 

SHOULD

THREAT.MFST.MODIFICATION (Section 4.2.17)

THREAT.MFST.MODIFICATION (Section 4.2.17)

Mitigates:

Implemented by:

4.3.21. REQ.SEC.MFST.CONST: Manifest Kept Immutable between Check and Use 

Both the manifest and any data extracted from it  be held immutable between its
authenticity verification (time of check) and its use (time of use). To make this guarantee, the
manifest  fit within internal memory or secure memory, such as encrypted memory. The
recipient  defend the manifest from tampering by code or hardware resident in the
recipient -- for example, other processes or debuggers.

If an application requires that the manifest be verified before storing it, then this means the
manifest  fit in RAM.

 

Proper system design with sufficient resources and implementation avoiding
TOCTOU attacks 

MUST

MUST
SHOULD

MUST

THREAT.MFST.TOCTOU (Section 4.2.18)

4.4. User Stories 
User stories provide expected use cases. These are used to feed into usability requirements.

4.4.1. USER_STORY.INSTALL.INSTRUCTIONS: Installation Instructions 

As a device operator, I want to provide my devices with additional installation instructions so
that I can keep process details out of my payload data.

Some installation instructions might be as follows:

Use a table of hashes to ensure that each block of the payload is validated before writing. 
Do not report progress. 
Pre-cache the update, but do not install. 
Install the pre-cached update matching this manifest. 
Install this update immediately, overriding any long-running tasks. 

• 
• 
• 
• 
• 

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 30



Satisfied by:  REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

Satisfied by:

4.4.2. USER_STORY.MFST.FAIL_EARLY: Fail Early 

As a designer of a resource-constrained IoT device, I want bad updates to fail as early as possible
to preserve battery life and limit consumed bandwidth.

 REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

:

Conditions:

:

:

Satisfied by:

4.4.3. USER_STORY.OVERRIDE: Override Non-critical Manifest Elements 

As a device operator, I would like to be able to override the non-critical information in the
manifest so that I can control my devices more precisely. The authority to override this
information is provided via the installation of a limited trust anchor by another authority.

Some examples of potentially overridable information:

This allows the device operator to direct devices to their own infrastructure
in order to reduce network load. 

This allows the device operator to impose additional constraints on the installation
of the manifest. 

This allows the device operator to add more instructions, such as time
of installation. 

If an intermediary performs an action on behalf of a device, it
may need to override the processing steps. It is still possible for a device to verify the final
content and the result of any processing step that specifies a digest. Some processing steps
should be non-overridable. 

 

URIs (Section 3.12)

Directives (Section 3.16)

Processing Steps (Section 3.9)

REQ.USE.MFST.COMPONENT (Section 4.5.4)

Satisfied by:

4.4.4. USER_STORY.COMPONENT: Component Update 

As a device operator, I want to divide my firmware into components, so that I can reduce the size
of updates, make different parties responsible for different components, and divide my firmware
into frequently updated and infrequently updated components.

 REQ.USE.MFST.COMPONENT (Section 4.5.4)

Satisfied by:

4.4.5. USER_STORY.MULTI_AUTH: Multiple Authorizations 

As a device operator, I want to ensure the quality of a firmware update before installing it, so that
I can ensure interoperability of all devices in my product family. I want to restrict the ability to
make changes to my devices to require my express approval.

, 
 

REQ.USE.MFST.MULTI_AUTH (Section 4.5.5) REQ.SEC.ACCESS_CONTROL (Section
4.3.13)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 31



Satisfied by:

4.4.6. USER_STORY.IMG.FORMAT: Multiple Payload Formats 

As a device operator, I want to be able to send multiple payload formats to suit the needs of my
update, so that I can optimize the bandwidth used by my devices.

 REQ.USE.IMG.FORMAT (Section 4.5.6)

Satisfied by:

4.4.7. USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential Information Disclosures 

As a firmware author, I want to prevent confidential information in the manifest from being
disclosed when distributing manifests and firmware images. Confidential information may
include information about the device these updates are being applied to as well as information in
the firmware image itself.

 REQ.SEC.IMG.CONFIDENTIALITY (Section 4.3.12)

Satisfied by:

4.4.8. USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from Unpacking Unknown
Formats 

As a device operator, I want devices to determine whether they can process a payload prior to
downloading it.

In some cases, it may be desirable for a third party to perform some processing on behalf of a
target. For this to occur, the third party  indicate what processing occurred and how to
verify it against the Trust Provisioning Authority's intent.

This amounts to overriding  and .

, , 
 

MUST

Processing Steps (Section 3.9) Payload Indicator (Section 3.12)

REQ.USE.IMG.FORMAT (Section 4.5.6) REQ.USE.IMG.NESTED (Section 4.5.7)
REQ.USE.MFST.OVERRIDE_REMOTE (Section 4.5.3)

Satisfied by:

4.4.9. USER_STORY.IMG.CURRENT_VERSION: Specify Version Numbers of Target Firmware 

As a device operator, I want to be able to target devices for updates based on their current
firmware version, so that I can control which versions are replaced with a single manifest.

 REQ.USE.IMG.VERSIONS (Section 4.5.8)

Satisfied by:

4.4.10. USER_STORY.IMG.SELECT: Enable Devices to Choose between Images 

As a developer, I want to be able to sign two or more versions of my firmware in a single manifest
so that I can use a very simple bootloader that chooses between two or more images that are
executed in place.

 REQ.USE.IMG.SELECT (Section 4.5.9)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 32



Satisfied by:

4.4.11. USER_STORY.EXEC.MFST: Secure Execution Using Manifests 

As a signer for both secure execution/boot and firmware deployment, I would like to use the same
signed document for both tasks so that my data size is smaller, I can share common code, and I
can reduce signature verifications.

 REQ.USE.EXEC (Section 4.5.10)

Satisfied by:

4.4.12. USER_STORY.EXEC.DECOMPRESS: Decompress on Load 

As a developer of firmware for a run-from-RAM device, I would like to use compressed images
and to indicate to the bootloader that I am using a compressed image in the manifest so that it
can be used with secure execution/boot.

 REQ.USE.LOAD (Section 4.5.11)

Satisfied by:

4.4.13. USER_STORY.MFST.IMG: Payload in Manifest 

As an Operator of devices on a constrained network, I would like the manifest to be able to
include a small payload in the same packet so that I can reduce network traffic.

Small payloads may include, for example, wrapped content encryption keys, configuration
information, public keys, authorization tokens, or X.509 certificates.

 REQ.USE.PAYLOAD (Section 4.5.12)

Satisfied by:

4.4.14. USER_STORY.MFST.PARSE: Simple Parsing 

As a developer for constrained devices, I want a low-complexity library for processing updates so
that I can fit more application code on my device.

 REQ.USE.PARSE (Section 4.5.13)

Satisfied by:

4.4.15. USER_STORY.MFST.DELEGATION: Delegated Authority in Manifest 

As a device operator that rotates delegated authority more often than delivering firmware
updates, I would like to delegate a new authority when I deliver a firmware update so that I can
accomplish both tasks in a single transmission.

 REQ.USE.DELEGATION (Section 4.5.14)

4.4.16. USER_STORY.MFST.PRE_CHECK: Update Evaluation 

As an Operator of a constrained network, I would like devices on my network to be able to
evaluate the suitability of an update prior to initiating any large download so that I can prevent
unnecessary consumption of bandwidth.

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 33



Satisfied by:  REQ.USE.MFST.PRE_CHECK (Section 4.5.1)

Satisfied by:

4.4.17. USER_STORY.MFST.ADMINISTRATION: Administration of Manifests 

As a device operator, I want to understand what an update will do and to which devices it applies
so that I can make informed choices about which updates to apply, when to apply them, and
which devices should be updated.

 REQ.USE.MFST.TEXT (Section 4.5.2)

4.5. Usability Requirements 
The following usability requirements satisfy the user stories listed above.

Satisfies:

Implemented by:

4.5.1. REQ.USE.MFST.PRE_CHECK: Pre-installation Checks 

A manifest format  be able to carry all information required to process an update.

For example, information about which precursor image is required for a differential update must
be placed in the manifest.

, 
 

 

MUST

USER_STORY.MFST.PRE_CHECK (Section 4.4.16) USER_STORY.INSTALL.INSTRUCTIONS
(Section 4.4.1)

Additional Installation Instructions (Section 3.16)

Satisfies:

Implemented by:

4.5.2. REQ.USE.MFST.TEXT: Descriptive Manifest Information 

It  be possible for a device operator to determine what a manifest will do and which devices
will accept it prior to distribution.

 

 

MUST

USER_STORY.MFST.ADMINISTRATION (Section 4.4.17)

Manifest Text Information (Section 3.17)

Satisfies:

Implemented by:

4.5.3. REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote Resource Location 

A manifest format  be able to redirect payload fetches. This applies where two manifests are
used in conjunction. For example, a device operator creates a manifest specifying a payload and
signs it, and provides a URI for that payload. A network operator creates a second manifest, with
a dependency on the first. They use this second manifest to override the URIs provided by the
device operator, directing them into their own infrastructure instead. Some devices may provide
this capability, while others may only look at canonical sources of firmware. For this to be
possible, the device must fetch the payload, whereas a device that accepts payload pushes will
ignore this feature.

 

 

MUST

USER_STORY.OVERRIDE (Section 4.4.3)

Aliases (Section 3.18)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 34



Satisfies:

Implemented by:

4.5.4. REQ.USE.MFST.COMPONENT: Component Updates 

A manifest format  be able to express the requirement to install one or more payloads from
one or more authorities so that a multi-payload update can be described. This allows multiple
parties with different permissions to collaborate in creating a single update for the IoT device,
across multiple components.

This requirement implies that it must be possible to construct a tree of manifests on a multi-
image target.

In order to enable devices with a heterogeneous storage architecture, the manifest must enable
specification of both a storage system and the storage location within that storage system.

,  

Dependencies, StorageIdentifier, ComponentIdentifier 

MUST

USER_STORY.OVERRIDE (Section 4.4.3) USER_STORY.COMPONENT (Section 4.4.4)

4.5.4.1. Example 1: Multiple Microcontrollers 
An IoT device with multiple microcontrollers in the same physical device will likely require
multiple payloads with different component identifiers.

4.5.4.2. Example 2: Code and Configuration 
A firmware image can be divided into two payloads: code and configuration. These payloads may
require authorizations from different actors in order to install (see 

 and ). This structure means that multiple
manifests may be required, with a dependency structure between them.

REQ.SEC.RIGHTS (Section
4.3.11) REQ.SEC.ACCESS_CONTROL (Section 4.3.13)

4.5.4.3. Example 3: Multiple Software Modules 
A firmware image can be divided into multiple functional blocks for separate testing and
distribution. This means that code would need to be distributed in multiple payloads. For example,
this might be desirable in order to ensure that common code between devices is identical in order
to reduce distribution bandwidth.

Satisfies:

Implemented by:

4.5.5. REQ.USE.MFST.MULTI_AUTH: Multiple Authentications 

A manifest format  be able to carry multiple signatures so that authorizations from multiple
parties with different permissions can be required in order to authorize installation of a manifest.

 

 

MUST

USER_STORY.MULTI_AUTH (Section 4.4.5)

Signature (Section 3.15)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 35



Satisfies:

Implemented by:

4.5.6. REQ.USE.IMG.FORMAT: Format Usability 

The manifest format  accommodate any payload format that an Operator wishes to use.
This enables the recipient to detect which format the Operator has chosen. Some examples of
payload format are as follows:

Binary 
Executable and Linkable Format (ELF) 
Differential 
Compressed 
Packed configuration 
Intel HEX 
Motorola S-Record 

 
 

 

MUST

• 
• 
• 
• 
• 
• 
• 

USER_STORY.IMG.FORMAT (Section 4.4.6) USER_STORY.IMG.UNKNOWN_FORMAT
(Section 4.4.8)

Payload Format (Section 3.8)

Satisfies:

Implemented by:

4.5.7. REQ.USE.IMG.NESTED: Nested Formats 

The manifest format  accommodate nested formats, announcing to the target device all the
nesting steps and any parameters used by those steps.

 

 

MUST

USER_STORY.IMG.CONFIDENTIALITY (Section 4.4.7)

Processing Steps (Section 3.9)

Satisfies:

Implemented by:

4.5.8. REQ.USE.IMG.VERSIONS: Target Version Matching 

The manifest format  provide a method to specify multiple version numbers of firmware to
which the manifest applies, either with a list or with range matching.

 

 

MUST

USER_STORY.IMG.CURRENT_VERSION (Section 4.4.9)

Required Image Version List (Section 3.6)

Satisfies:

Implemented by:

4.5.9. REQ.USE.IMG.SELECT: Select Image by Destination 

The manifest format  provide a mechanism to list multiple equivalent payloads by execute-
in-place (XIP) installation address, including the payload digest and, optionally, payload URIs.

 

 

MUST

USER_STORY.IMG.SELECT (Section 4.4.10)

XIP Address (Section 3.21)

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 36



Satisfies:

Implemented by:

4.5.10. REQ.USE.EXEC: Executable Manifest 

The manifest format  allow the description of an executable system with a manifest on both
XIP microcontrollers and complex operating systems. In addition, the manifest format  be
able to express metadata, such as a kernel command line, used by any loader or bootloader.

 

 

MUST
MUST

USER_STORY.EXEC.MFST (Section 4.4.11)

Runtime Metadata (Section 3.23)

Satisfies:

Implemented by:

4.5.11. REQ.USE.LOAD: Load-Time Information 

The manifest format  enable carrying additional metadata for load-time processing of a
payload, such as cryptographic information, load address, and compression algorithm. Note that
load comes before execution/boot.

 

 

MUST

USER_STORY.EXEC.DECOMPRESS (Section 4.4.12)

Load-Time Metadata (Section 3.22)

4.5.12. REQ.USE.PAYLOAD: Payload in Manifest Envelope 

The manifest format  allow placing a payload in the same structure as the manifest. This
may place the payload in the same packet as the manifest.

Integrated payloads may include, for example, binaries as well as configuration information, and
keying material.

When an integrated payload is provided, this increases the size of the manifest. Manifest size can
cause several processing and storage concerns that require careful consideration. The payload
can prevent the whole manifest from being contained in a single network packet, which can
cause fragmentation and the loss of portions of the manifest in lossy networks. This causes the
need for reassembly and retransmission logic. The manifest  be held immutable between
verification and processing (see ), so a larger manifest will
consume more memory with immutability guarantees -- for example, internal RAM or NVRAM,
or external secure memory. If the manifest exceeds the available immutable memory, then it 

 be processed modularly, evaluating each of the following: delegation chains; the security
container; and the actual manifest, which includes verifying the integrated payload. If the
security model calls for downloading the manifest and validating it before storing to NVRAM in
order to prevent wear to NVRAM and energy expenditure in NVRAM, then either increasing
memory allocated to manifest storage or modular processing of the received manifest may be
required. While the manifest has been organized to enable this type of processing, it creates
additional complexity in the parser. If the manifest is stored in NVRAM prior to processing, the
integrated payload may cause the manifest to exceed the available storage. Because the manifest
is received prior to validation of applicability, authority, or correctness, integrated payloads cause
the recipient to expend network bandwidth and energy that may not be required if the manifest
is discarded, and these costs vary with the size of the integrated payload.

MUST

MUST
REQ.SEC.MFST.CONST (Section 4.3.21)

MUST

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 37



[RFC2119]

[RFC4122]

[RFC8174]

[RFC8392]

6. References 

6.1. Normative References 

, , , 
, , March 1997, 
. 

, , and , 
, , , July 2005, 

. 

, , , 
, , May 2017, 
. 

, , , and , 
, , , May 2018, 

. 

See also:

Satisfies:

Implemented by:

 

 

 

REQ.SEC.MFST.CONST (Section 4.3.21)

USER_STORY.MFST.IMG (Section 4.4.13)

Payload (Section 3.24)

Satisfies:

Implemented by:

4.5.13. REQ.USE.PARSE: Simple Parsing 

The structure of the manifest  be simple to parse to reduce the attack vectors against
manifest parsers.

 

N/A 

MUST

USER_STORY.MFST.PARSE (Section 4.4.14)

Satisfies:

Implemented by:

4.5.14. REQ.USE.DELEGATION: Delegation of Authority in Manifest 

A manifest format  enable the delivery of delegation information. This information delivers
a new key with which the recipient can verify the manifest.

 

 

MUST

USER_STORY.MFST.DELEGATION (Section 4.4.15)

Delegation Chain (Section 3.25)

5. IANA Considerations 
This document has no IANA actions.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leach, P. Mealling, M. R. Salz "A Universally Unique IDentifier (UUID) URN
Namespace" RFC 4122 DOI 10.17487/RFC4122 <https://www.rfc-
editor.org/info/rfc4122>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP 14
RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Jones, M. Wahlstroem, E. Erdtman, S. H. Tschofenig "CBOR Web Token
(CWT)" RFC 8392 DOI 10.17487/RFC8392 <https://www.rfc-editor.org/
info/rfc8392>

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 38

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8392
https://www.rfc-editor.org/info/rfc8392


[RFC8747]

[RFC9019]

[RFC3444]

[RFC3986]

[STRIDE]

, , , , and , 
, , 

, March 2020, . 

, , , and , 
, , , April 2021, 

. 

6.2. Informative References 

 and , 
, , , January 2003, 

. 

, , and , 
, , , , January 2005, 

. 

, , November 2009, 

. 

Jones, M. Seitz, L. Selander, G. Erdtman, S. H. Tschofenig "Proof-of-
Possession Key Semantics for CBOR Web Tokens (CWTs)" RFC 8747 DOI 10.17487/
RFC8747 <https://www.rfc-editor.org/info/rfc8747>

Moran, B. Tschofenig, H. Brown, D. M. Meriac "A Firmware Update
Architecture for Internet of Things" RFC 9019 DOI 10.17487/RFC9019
<https://www.rfc-editor.org/info/rfc9019>

Pras, A. J. Schoenwaelder "On the Difference between Information Models
and Data Models" RFC 3444 DOI 10.17487/RFC3444 <https://
www.rfc-editor.org/info/rfc3444>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):
Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986 <https://
www.rfc-editor.org/info/rfc3986>

Microsoft "The STRIDE Threat Model" <https://
docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.
20)>

Acknowledgements 
We would like to thank our working group chairs -- , , and 

 -- for their review comments and their support.

We would like to thank the participants of the 2018 Berlin Software Updates for Internet of Things
(SUIT) Hackathon and the June 2018 virtual design team meetings for their discussion input.

In particular, we would like to thank , , , 
, , , , , 

, , , , , 
, , , , , , 

, and .

We would like to thank those who contributed to the development of this information model. In
particular, we would like to thank , , , , and 

.

Finally, we would like to thank the following IESG members for their review feedback: , 
, , , , and .

Dave Thaler Russ Housley David
Waltermire

Koen Zandberg Emmanuel Baccelli Carsten Bormann
David Brown Markus Gueller Frank Audun Kvamtrø Øyvind Rønningstad Michael Richardson
Jan-Frederik Rieckers Francisco Acosta Anton Gerasimov Matthias Wählisch Max Gröning
Daniel Petry Gaëtan Harter Ralph Hamm Steve Patrick Fabio Utzig Paul Lambert Saïd
Gharout Milen Stoychev

Milosch Meriac Jean-Luc Giraud Dan Ros Amyas Phillips
Gary Thomson

Erik Kline
Murray Kucherawy Barry Leiba Alissa Cooper Stephen Farrell Benjamin Kaduk

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 39

https://www.rfc-editor.org/info/rfc8747
https://www.rfc-editor.org/info/rfc9019
https://www.rfc-editor.org/info/rfc3444
https://www.rfc-editor.org/info/rfc3444
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)
https://docs.microsoft.com/en-us/previous-versions/commerce-server/ee823878(v=cs.20)


Authors' Addresses 
Brendan Moran
Arm Limited

 Brendan.Moran@arm.com Email:

Hannes Tschofenig
Arm Limited

 hannes.tschofenig@gmx.net Email:

Henk Birkholz
Fraunhofer SIT

 henk.birkholz@sit.fraunhofer.de Email:

RFC 9124 A Firmware Manifest Information Model January 2022

Moran, et al. Informational Page 40

mailto:Brendan.Moran@arm.com
mailto:hannes.tschofenig@gmx.net
mailto:henk.birkholz@sit.fraunhofer.de

	RFC 9124
	A Manifest Information Model for Firmware Updates in Internet of Things (IoT) Devices
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements and Terminology
	2.1. Requirements Notation
	2.2. Terminology

	3. Manifest Information Elements
	3.1. Version ID of the Manifest Structure
	3.2. Monotonic Sequence Number
	3.3. Vendor ID
	3.4. Class ID
	3.4.1. Example 1: Different Classes
	3.4.2. Example 2: Upgrading Class ID
	3.4.3. Example 3: Shared Functionality
	3.4.4. Example 4: Rebranding

	3.5. Precursor Image Digest Condition
	3.6. Required Image Version List
	3.7. Expiration Time
	3.8. Payload Format
	3.9. Processing Steps
	3.10. Storage Location
	3.10.1. Example 1: Two Storage Locations
	3.10.2. Example 2: Filesystem
	3.10.3. Example 3: Flash Memory

	3.11. Component Identifier
	3.12. Payload Indicator
	3.13. Payload Digests
	3.14. Size
	3.15. Manifest Envelope Element: Signature
	3.16. Additional Installation Instructions
	3.17. Manifest Text Information
	3.18. Aliases
	3.19. Dependencies
	3.20. Encryption Wrapper
	3.21. XIP Address
	3.22. Load-Time Metadata
	3.23. Runtime Metadata
	3.24. Payload
	3.25. Manifest Envelope Element: Delegation Chain

	4. Security Considerations
	4.1. Threat Model
	4.2. Threat Descriptions
	4.2.1. THREAT.IMG.EXPIRED: Old Firmware
	4.2.2. THREAT.IMG.EXPIRED.OFFLINE: Offline Device + Old Firmware
	4.2.3. THREAT.IMG.INCOMPATIBLE: Mismatched Firmware
	4.2.4. THREAT.IMG.FORMAT: The Target Device Misinterprets the Type of Payload
	4.2.5. THREAT.IMG.LOCATION: The Target Device Installs the Payload to the Wrong Location
	4.2.6. THREAT.NET.REDIRECT: Redirection to Inauthentic Payload Hosting
	4.2.7. THREAT.NET.ONPATH: Traffic Interception
	4.2.8. THREAT.IMG.REPLACE: Payload Replacement
	4.2.9. THREAT.IMG.NON_AUTH: Unauthenticated Images
	4.2.10. THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor Images
	4.2.11. THREAT.UPD.UNAPPROVED: Unapproved Firmware
	4.2.11.1. Example 1: Multiple Network Operators with a Single Device Operator
	4.2.11.2. Example 2: Single Network Operator with Multiple Device Operators

	4.2.12. THREAT.IMG.DISCLOSURE: Reverse Engineering of Firmware Image for Vulnerability Analysis
	4.2.13. THREAT.MFST.OVERRIDE: Overriding Critical Manifest Elements
	4.2.14. THREAT.MFST.EXPOSURE: Confidential Manifest Element Exposure
	4.2.15. THREAT.IMG.EXTRA: Extra Data after Image
	4.2.16. THREAT.KEY.EXPOSURE: Exposure of Signing Keys
	4.2.17. THREAT.MFST.MODIFICATION: Modification of Manifest or Payload prior to Signing
	4.2.18. THREAT.MFST.TOCTOU: Modification of Manifest between Authentication and Use

	4.3. Security Requirements
	4.3.1. REQ.SEC.SEQUENCE: Monotonic Sequence Numbers
	4.3.2. REQ.SEC.COMPATIBLE: Vendor, Device-Type Identifiers
	4.3.3. REQ.SEC.EXP: Expiration Time
	4.3.4. REQ.SEC.AUTHENTIC: Cryptographic Authenticity
	4.3.5. REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type
	4.3.6. REQ.SEC.AUTH.IMG_LOC: Authenticated Storage Location
	4.3.7. REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote Payload
	4.3.8. REQ.SEC.AUTH.EXEC: Secure Execution
	4.3.9. REQ.SEC.AUTH.PRECURSOR: Authenticated Precursor Images
	4.3.10. REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and Class IDs
	4.3.11. REQ.SEC.RIGHTS: Rights Require Authenticity
	4.3.12. REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption
	4.3.13. REQ.SEC.ACCESS_CONTROL: Access Control
	4.3.14. REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests
	4.3.15. REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest
	4.3.16. REQ.SEC.REPORTING: Secure Reporting
	4.3.17. REQ.SEC.KEY.PROTECTION: Protected Storage of Signing Keys
	4.3.18. REQ.SEC.KEY.ROTATION: Protected Storage of Signing Keys
	4.3.19. REQ.SEC.MFST.CHECK: Validate Manifests prior to Deployment
	4.3.20. REQ.SEC.MFST.TRUSTED: Construct Manifests in a Trusted Environment
	4.3.21. REQ.SEC.MFST.CONST: Manifest Kept Immutable between Check and Use

	4.4. User Stories
	4.4.1. USER_STORY.INSTALL.INSTRUCTIONS: Installation Instructions
	4.4.2. USER_STORY.MFST.FAIL_EARLY: Fail Early
	4.4.3. USER_STORY.OVERRIDE: Override Non-critical Manifest Elements
	4.4.4. USER_STORY.COMPONENT: Component Update
	4.4.5. USER_STORY.MULTI_AUTH: Multiple Authorizations
	4.4.6. USER_STORY.IMG.FORMAT: Multiple Payload Formats
	4.4.7. USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential Information Disclosures
	4.4.8. USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from Unpacking Unknown Formats
	4.4.9. USER_STORY.IMG.CURRENT_VERSION: Specify Version Numbers of Target Firmware
	4.4.10. USER_STORY.IMG.SELECT: Enable Devices to Choose between Images
	4.4.11. USER_STORY.EXEC.MFST: Secure Execution Using Manifests
	4.4.12. USER_STORY.EXEC.DECOMPRESS: Decompress on Load
	4.4.13. USER_STORY.MFST.IMG: Payload in Manifest
	4.4.14. USER_STORY.MFST.PARSE: Simple Parsing
	4.4.15. USER_STORY.MFST.DELEGATION: Delegated Authority in Manifest
	4.4.16. USER_STORY.MFST.PRE_CHECK: Update Evaluation
	4.4.17. USER_STORY.MFST.ADMINISTRATION: Administration of Manifests

	4.5. Usability Requirements
	4.5.1. REQ.USE.MFST.PRE_CHECK: Pre-installation Checks
	4.5.2. REQ.USE.MFST.TEXT: Descriptive Manifest Information
	4.5.3. REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote Resource Location
	4.5.4. REQ.USE.MFST.COMPONENT: Component Updates
	4.5.4.1. Example 1: Multiple Microcontrollers
	4.5.4.2. Example 2: Code and Configuration
	4.5.4.3. Example 3: Multiple Software Modules

	4.5.5. REQ.USE.MFST.MULTI_AUTH: Multiple Authentications
	4.5.6. REQ.USE.IMG.FORMAT: Format Usability
	4.5.7. REQ.USE.IMG.NESTED: Nested Formats
	4.5.8. REQ.USE.IMG.VERSIONS: Target Version Matching
	4.5.9. REQ.USE.IMG.SELECT: Select Image by Destination
	4.5.10. REQ.USE.EXEC: Executable Manifest
	4.5.11. REQ.USE.LOAD: Load-Time Information
	4.5.12. REQ.USE.PAYLOAD: Payload in Manifest Envelope
	4.5.13. REQ.USE.PARSE: Simple Parsing
	4.5.14. REQ.USE.DELEGATION: Delegation of Authority in Manifest


	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Acknowledgements
	Authors' Addresses



 
   
   
   
   
     A Manifest Information Model for Firmware Updates in Internet of Things (IoT) Devices
     
     
       Arm Limited
       
         Brendan.Moran@arm.com
      
    
     
       Arm Limited
       
         hannes.tschofenig@gmx.net
      
    
     
       Fraunhofer SIT
       
         henk.birkholz@sit.fraunhofer.de
      
    
     
     Security
     SUIT
     computer security
     smart objects
     
       Vulnerabilities with Internet of Things (IoT) devices have raised the need for a reliable and secure firmware update mechanism that is also suitable for constrained devices. Ensuring that devices function and remain secure over their service lifetime requires such an update mechanism to fix vulnerabilities, update configuration settings, and add new functionality.
       One component of such a firmware update is a concise and machine-processable metadata document, or manifest, that describes the firmware image(s) and offers appropriate protection. This document describes the information that must be present in the manifest.
    
     
       
         Status of This Memo
         
            This document is not an Internet Standards Track specification; it is
            published for informational purposes.  
        
         
            This document is a product of the Internet Engineering Task Force
            (IETF).  It represents the consensus of the IETF community.  It has
            received public review and has been approved for publication by the
            Internet Engineering Steering Group (IESG).  Not all documents
            approved by the IESG are candidates for any level of Internet
            Standard; see Section 2 of RFC 7841. 
        
         
            Information about the current status of this document, any
            errata, and how to provide feedback on it may be obtained at
             .
        
      
       
         Copyright Notice
         
            Copyright (c) 2022 IETF Trust and the persons identified as the
            document authors. All rights reserved.
        
         
            This document is subject to BCP 78 and the IETF Trust's Legal
            Provisions Relating to IETF Documents
            ( ) in effect on the date of
            publication of this document. Please review these documents
            carefully, as they describe your rights and restrictions with
            respect to this document. Code Components extracted from this
            document must include Revised BSD License text as described in
            Section 4.e of the Trust Legal Provisions and are provided without
            warranty as described in the Revised BSD License.
        
      
    
     
       
         Table of Contents
         
           
              .   Introduction
          
           
              .   Requirements and Terminology
             
               
                  .   Requirements Notation
              
               
                  .   Terminology
              
            
          
           
              .   Manifest Information Elements
             
               
                  .   Version ID of the Manifest Structure
              
               
                  .   Monotonic Sequence Number
              
               
                  .   Vendor ID
              
               
                  .   Class ID
                 
                   
                      .   Example 1: Different Classes
                  
                   
                      .   Example 2: Upgrading Class ID
                  
                   
                      .   Example 3: Shared Functionality
                  
                   
                      .   Example 4: Rebranding
                  
                
              
               
                  .   Precursor Image Digest Condition
              
               
                  .   Required Image Version List
              
               
                  .   Expiration Time
              
               
                  .   Payload Format
              
               
                  .   Processing Steps
              
               
                  .  Storage Location
                 
                   
                      .   Example 1: Two Storage Locations
                  
                   
                      .   Example 2: Filesystem
                  
                   
                      .   Example 3: Flash Memory
                  
                
              
               
                  .  Component Identifier
              
               
                  .  Payload Indicator
              
               
                  .  Payload Digests
              
               
                  .  Size
              
               
                  .  Manifest Envelope Element: Signature
              
               
                  .  Additional Installation Instructions
              
               
                  .  Manifest Text Information
              
               
                  .  Aliases
              
               
                  .  Dependencies
              
               
                  .  Encryption Wrapper
              
               
                  .  XIP Address
              
               
                  .  Load-Time Metadata
              
               
                  .  Runtime Metadata
              
               
                  .  Payload
              
               
                  .  Manifest Envelope Element: Delegation Chain
              
            
          
           
              .   Security Considerations
             
               
                  .   Threat Model
              
               
                  .   Threat Descriptions
                 
                   
                      .   THREAT.IMG.EXPIRED: Old Firmware
                  
                   
                      .   THREAT.IMG.EXPIRED.OFFLINE: Offline Device + Old Firmware
                  
                   
                      .   THREAT.IMG.INCOMPATIBLE: Mismatched Firmware
                  
                   
                      .   THREAT.IMG.FORMAT: The Target Device Misinterprets the Type of Payload
                  
                   
                      .   THREAT.IMG.LOCATION: The Target Device Installs the Payload to the Wrong Location
                  
                   
                      .   THREAT.NET.REDIRECT: Redirection to Inauthentic Payload Hosting
                  
                   
                      .   THREAT.NET.ONPATH: Traffic Interception
                  
                   
                      .   THREAT.IMG.REPLACE: Payload Replacement
                  
                   
                      .   THREAT.IMG.NON_AUTH: Unauthenticated Images
                  
                   
                      .  THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor Images
                  
                   
                      .  THREAT.UPD.UNAPPROVED: Unapproved Firmware
                  
                   
                      .  THREAT.IMG.DISCLOSURE: Reverse Engineering of Firmware Image for Vulnerability Analysis
                  
                   
                      .  THREAT.MFST.OVERRIDE: Overriding Critical Manifest Elements
                  
                   
                      .  THREAT.MFST.EXPOSURE: Confidential Manifest Element Exposure
                  
                   
                      .  THREAT.IMG.EXTRA: Extra Data after Image
                  
                   
                      .  THREAT.KEY.EXPOSURE: Exposure of Signing Keys
                  
                   
                      .  THREAT.MFST.MODIFICATION: Modification of Manifest or Payload prior to Signing
                  
                   
                      .  THREAT.MFST.TOCTOU: Modification of Manifest between Authentication and Use
                  
                
              
               
                  .   Security Requirements
                 
                   
                      .   REQ.SEC.SEQUENCE: Monotonic Sequence Numbers
                  
                   
                      .   REQ.SEC.COMPATIBLE: Vendor, Device-Type Identifiers
                  
                   
                      .   REQ.SEC.EXP: Expiration Time
                  
                   
                      .   REQ.SEC.AUTHENTIC: Cryptographic Authenticity
                  
                   
                      .   REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type
                  
                   
                      .   REQ.SEC.AUTH.IMG_LOC: Authenticated Storage Location
                  
                   
                      .   REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote Payload
                  
                   
                      .   REQ.SEC.AUTH.EXEC: Secure Execution
                  
                   
                      .   REQ.SEC.AUTH.PRECURSOR: Authenticated Precursor Images
                  
                   
                      .  REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and Class IDs
                  
                   
                      .  REQ.SEC.RIGHTS: Rights Require Authenticity
                  
                   
                      .  REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption
                  
                   
                      .  REQ.SEC.ACCESS_CONTROL: Access Control
                  
                   
                      .  REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests
                  
                   
                      .  REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest
                  
                   
                      .  REQ.SEC.REPORTING: Secure Reporting
                  
                   
                      .  REQ.SEC.KEY.PROTECTION: Protected Storage of Signing Keys
                  
                   
                      .  REQ.SEC.KEY.ROTATION: Protected Storage of Signing Keys
                  
                   
                      .  REQ.SEC.MFST.CHECK: Validate Manifests prior to Deployment
                  
                   
                      .  REQ.SEC.MFST.TRUSTED: Construct Manifests in a Trusted Environment
                  
                   
                      .  REQ.SEC.MFST.CONST: Manifest Kept Immutable between Check and Use
                  
                
              
               
                  .   User Stories
                 
                   
                      .   USER_STORY.INSTALL.INSTRUCTIONS: Installation Instructions
                  
                   
                      .   USER_STORY.MFST.FAIL_EARLY: Fail Early
                  
                   
                      .   USER_STORY.OVERRIDE: Override Non-critical Manifest Elements
                  
                   
                      .   USER_STORY.COMPONENT: Component Update
                  
                   
                      .   USER_STORY.MULTI_AUTH: Multiple Authorizations
                  
                   
                      .   USER_STORY.IMG.FORMAT: Multiple Payload Formats
                  
                   
                      .   USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential Information Disclosures
                  
                   
                      .   USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from Unpacking Unknown Formats
                  
                   
                      .   USER_STORY.IMG.CURRENT_VERSION: Specify Version Numbers of Target Firmware
                  
                   
                      .  USER_STORY.IMG.SELECT: Enable Devices to Choose between Images
                  
                   
                      .  USER_STORY.EXEC.MFST: Secure Execution Using Manifests
                  
                   
                      .  USER_STORY.EXEC.DECOMPRESS: Decompress on Load
                  
                   
                      .  USER_STORY.MFST.IMG: Payload in Manifest
                  
                   
                      .  USER_STORY.MFST.PARSE: Simple Parsing
                  
                   
                      .  USER_STORY.MFST.DELEGATION: Delegated Authority in Manifest
                  
                   
                      .  USER_STORY.MFST.PRE_CHECK: Update Evaluation
                  
                   
                      .  USER_STORY.MFST.ADMINISTRATION: Administration of Manifests
                  
                
              
               
                  .   Usability Requirements
                 
                   
                      .   REQ.USE.MFST.PRE_CHECK: Pre-installation Checks
                  
                   
                      .   REQ.USE.MFST.TEXT: Descriptive Manifest Information
                  
                   
                      .   REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote Resource Location
                  
                   
                      .   REQ.USE.MFST.COMPONENT: Component Updates
                  
                   
                      .   REQ.USE.MFST.MULTI_AUTH: Multiple Authentications
                  
                   
                      .   REQ.USE.IMG.FORMAT: Format Usability
                  
                   
                      .   REQ.USE.IMG.NESTED: Nested Formats
                  
                   
                      .   REQ.USE.IMG.VERSIONS: Target Version Matching
                  
                   
                      .   REQ.USE.IMG.SELECT: Select Image by Destination
                  
                   
                      .  REQ.USE.EXEC: Executable Manifest
                  
                   
                      .  REQ.USE.LOAD: Load-Time Information
                  
                   
                      .  REQ.USE.PAYLOAD: Payload in Manifest Envelope
                  
                   
                      .  REQ.USE.PARSE: Simple Parsing
                  
                   
                      .  REQ.USE.DELEGATION: Delegation of Authority in Manifest
                  
                
              
            
          
           
              .   IANA Considerations
          
           
              .   References
             
               
                  .   Normative References
              
               
                  .   Informative References
              
            
          
           
               Acknowledgements
          
           
               Authors' Addresses
          
        
      
    
  
   
     
       Introduction
       Vulnerabilities with Internet of Things (IoT) devices have raised the need for a reliable and secure firmware update mechanism that is also suitable for constrained devices. Ensuring that devices function and remain secure over their service lifetime requires such an update mechanism to fix vulnerabilities, update configuration settings, and add new functionality.
       One component of such a firmware update is a concise and machine-processable metadata document, or manifest, that describes the firmware image(s) and offers appropriate protection. This document describes the information that must be present in the manifest.
       This document describes all the information elements required in a manifest to secure firmware updates of IoT devices. Each information element is motivated by user stories and threats it aims to mitigate. These threats and user stories are not intended to be an exhaustive list of the threats against IoT devices and possible user stories that describe how to conduct a firmware update. Instead, they are intended to describe the threats against firmware updates in isolation and provide sufficient motivation to specify the information elements that cover a wide range of user stories.
       To distinguish information elements from their encoding and serialization over the wire, this document presents an information model. RFC 3444   describes the differences between information models and data models.
       Because this document covers a wide range of user stories and a wide range of threats, not all information elements apply to all scenarios. As a result, various information elements are optional to implement and optional to use, depending on which threats exist in a particular domain of application and which user stories are important for deployments.
    
     
       Requirements and Terminology
       
         Requirements Notation
         The key words " MUST", " MUST NOT",
        " REQUIRED", " SHALL",
        " SHALL NOT", " SHOULD",
        " SHOULD NOT",
        " RECOMMENDED", " NOT RECOMMENDED",
        " MAY", and " OPTIONAL" in this document
        are to be interpreted as described in BCP 14
            when, and only
        when, they appear in all capitals, as shown here.
         Unless otherwise stated, these words apply to the design of the manifest format, not its implementation or application. Hence, whenever an information element is declared as " REQUIRED", this implies that the manifest format document has to include support for it.
      
       
         Terminology
         This document uses terms defined in  .
The term "Operator" refers to either a device operator or a network operator.
         "Secure time" and "secure clock" refer to a set of requirements on time sources. For local time sources, this primarily means that the clock must be monotonically increasing, including across power cycles, firmware updates, etc. For remote time sources, the provided time must be both authenticated and guaranteed to be correct to within some predetermined bounds, whenever the time source is accessible.
         The term "Envelope" (or "Manifest Envelope") is used to describe an encoding that allows the bundling of a manifest with related information elements that are not directly contained within the manifest.
         The term "payload" is used to describe the data that is delivered to a device during an update. This is distinct from a "firmware image", as described in  , because the payload is often in an intermediate state, such as being encrypted, compressed, and/or encoded as a differential update. The payload, taken in isolation, is often not the final firmware image.
      
    
     
       Manifest Information Elements
       Each manifest information element is anchored in a security requirement or a usability requirement. The manifest elements are described below, justified by their requirements.
       
         Version ID of the Manifest Structure
         This is an identifier that describes which iteration of the manifest format is contained in the structure. This allows devices to identify the version of the manifest data model that is in use.
         This element is  REQUIRED.
      
       
         Monotonic Sequence Number
         This element provides a monotonically increasing (unsigned) sequence number to prevent malicious actors from reverting a firmware update against the policies of the relevant authority. This number must not wrap around.
         For convenience, the monotonic sequence number may be a UTC timestamp. This allows global synchronization of sequence numbers without any additional management.
         This element is  REQUIRED.
         
           Implements:
           
             REQ.SEC.SEQUENCE
        
      
       
         Vendor ID
         The Vendor ID element helps to distinguish between identically named products from different vendors. The Vendor ID is not intended to be a human-readable element. It is intended for binary match/mismatch comparison only.
         Recommended practice is to use version 5 Universally Unique Identifiers (UUIDs)   with the vendor's domain name and the DNS name space ID. Other options include type 1 and type 4 UUIDs.
         Fixed-size binary identifiers are preferred because they are simple to match, unambiguous in length, explicitly non-parsable, and require no issuing authority. Guaranteed unique integers are preferred because they are small and simple to match; however, they may not be fixed length, and they may require an issuing authority to ensure uniqueness. Free-form text is avoided because it is variable length, prone to error, and often requires parsing outside the scope of the manifest serialization.
         If human-readable content is required, it  SHOULD be contained in a separate manifest information element:  Manifest Text Information.
         This element is  RECOMMENDED.
         
           Implements:
           
             REQ.SEC.COMPATIBLE,  REQ.SEC.AUTH.COMPATIBILITY
        
         Here is an example for a domain-name-based UUID. Vendor A creates a UUID based on a domain name it controls, such as vendorId = UUID5(DNS, "vendor-a.example").
         Because the DNS infrastructure prevents multiple registrations of the same domain name, this UUID is (with very high probability) guaranteed to be unique. Because the domain name is known, this UUID is reproducible. Type 1 and type 4 UUIDs produce similar guarantees of uniqueness, but not reproducibility.
         This approach creates a contention when a vendor changes its name or relinquishes control of a domain name. In this scenario, it is possible that another vendor would start using that same domain name. However, this UUID is not proof of identity; a device's trust in a vendor must be anchored in a cryptographic key, not a UUID.
      
       
         Class ID
         A device "Class" is a set of different device types that can accept the same firmware update without modification. It thereby allows devices to determine the applicability of the firmware in an unambiguous way. Class IDs must be unique within the scope of a Vendor ID. This is to prevent similarly or identically named devices from colliding in their customer's infrastructure.
         Recommended practice is to use version 5 UUIDs   with as much information as necessary to define firmware compatibility. Possible information used to derive the Class ID UUID includes:
         
           Model name or number
           Hardware revision
           Runtime library version
           Bootloader version
           ROM revision
           Silicon batch number
        
         The Class ID UUID should use the Vendor ID as the name space identifier. Classes may be more fine-grained than is required to identify firmware compatibility. Classes must not be less granular than is required to identify firmware compatibility. Devices may have multiple Class IDs.
         The Class ID is not intended to be a human-readable element. It is intended for binary match/mismatch comparison only. A manifest serialization  SHOULD NOT permit free-form text content to be used for the Class ID. A fixed-size binary identifier  SHOULD be used.
         Some organizations desire to keep the same product naming across multiple, incompatible hardware revisions for ease of user experience. If this naming is propagated into the firmware, then matching a specific hardware version becomes a challenge. An opaque, non-readable binary identifier has no naming implications and so is more likely to be usable for distinguishing among incompatible device groupings, regardless of naming.
         Fixed-size binary identifiers are preferred because they are simple to match, unambiguous in length, opaque and free from naming implications, and explicitly non-parsable. Free-form text is avoided because it is variable length, prone to error, often requires parsing outside the scope of the manifest serialization, and may be homogenized across incompatible device groupings.
         If the Class ID is not implemented, then each logical device class must use a unique trust anchor for authorization.
         This element is  RECOMMENDED.
         
           Implements:
           
             REQ.SEC.COMPATIBLE,  REQ.SEC.AUTH.COMPATIBILITY
        
         
           Example 1: Different Classes
           Vendor A creates Product Z and Product Y. The firmware images of Products Z and Y are not interchangeable. Vendor A creates UUIDs as follows:
           
             vendorId = UUID5(DNS, "vendor-a.example")
             ZclassId = UUID5(vendorId, "Product Z")
             YclassId = UUID5(vendorId, "Product Y")
          
           This ensures that Vendor A's Product Z cannot install firmware for Product Y and Product Y cannot install firmware for Product Z.
        
         
           Example 2: Upgrading Class ID
           Vendor A creates Product X. Later, Vendor A adds a new feature to Product X, creating Product X v2. Product X requires a firmware update to work with firmware intended for Product X v2.
           Vendor A creates UUIDs as follows:
           
             vendorId = UUID5(DNS, "vendor-a.example")
             XclassId = UUID5(vendorId, "Product X")
             Xv2classId = UUID5(vendorId, "Product X v2")
          
           When Product X receives the firmware update necessary to be compatible with Product X v2, part of the firmware update changes the Class ID to Xv2classId.
        
         
           Example 3: Shared Functionality
           Vendor A produces two products: Product X and Product Y. These components share a common core (such as an operating system (OS)) but have different applications. The common core and the applications can be updated independently. To enable X and Y to receive the same common core update, they require the same Class ID. To ensure that only Product X receives Application X and only Product Y receives Application Y, Product X and Product Y must have different Class IDs. The vendor creates Class IDs as follows:
           
             vendorId = UUID5(DNS, "vendor-a.example")
             XclassId = UUID5(vendorId, "Product X")
             YclassId = UUID5(vendorId, "Product Y")
             CommonClassId = UUID5(vendorId, "common core")
          
           Product X matches against both XclassId and CommonClassId. Product Y matches against both YclassId and CommonClassId.
        
         
           Example 4: Rebranding
           Vendor A creates a Product A and its firmware. Vendor B sells the product under its own name as Product B with some customized configuration. The vendors create the Class IDs as follows:
           
             vendorIdA = UUID5(DNS, "vendor-a.example")
             classIdA = UUID5(vendorIdA, "Product A-Unlabeled")
             vendorIdB = UUID5(DNS, "vendor-b.example")
             classIdB = UUID5(vendorIdB, "Product B")
          
           The product will match against each of these Class IDs. If Vendor A and Vendor B provide different components for the device, the implementor may choose to make ID matching scoped to each component. Then, the vendorIdA, classIdA match the component ID supplied by Vendor A, and the vendorIdB, classIdB match the component ID supplied by Vendor B.
        
      
       
         Precursor Image Digest Condition
         This element provides information about the payload that needs to be present on the device for an update to apply. This may, for example, be the case with differential updates.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.SEC.AUTH.PRECURSOR
        
      
       
         Required Image Version List
         Payloads may only be applied to a specific firmware version or multiple firmware versions. For example, a payload containing a differential update may be applied only to a specific firmware version.
         When a payload applies to multiple versions of firmware, the required image version list specifies which firmware versions must be present for the update to be applied. This allows the update author to target specific versions of firmware for an update, while excluding those to which it should not or cannot be applied.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.IMG.VERSIONS
        
      
       
         Expiration Time
         This element tells a device the time at which the manifest expires and should no longer be used. This element should be used where a secure source of time is provided and firmware is intended to expire predictably. This element may also be displayed (e.g., via an app) for user confirmation, since users typically have a reliable knowledge of the date.
         Special consideration is required for end-of-life if firmware will not be updated again -- for example, if a business stops issuing updates to a device. In this case, the last valid firmware should not have an expiration time.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.SEC.EXP
        
      
       
         Payload Format
         This element describes the payload format within the signed metadata. It is used to enable devices to decode payloads correctly.
         This element is  REQUIRED.
         
           Implements:
           
             REQ.SEC.AUTH.IMG_TYPE,  REQ.USE.IMG.FORMAT
        
      
       
         Processing Steps
         This element provides a representation of the processing steps required to decode a payload -- in particular, those that are compressed, packed, or encrypted. The representation must describe which algorithms are used and must convey any additional parameters required by those algorithms.
         A processing step may indicate the expected digest of the payload after the processing is complete.
         This element is  RECOMMENDED.
         
           Implements:
           
             REQ.USE.IMG.NESTED
        
      
       
         Storage Location
         This element tells the device where to store a payload within a given component. The device can use this to establish which permissions are necessary and the physical storage location to use.
         This element is  REQUIRED.
         
           Implements:
           
             REQ.SEC.AUTH.IMG_LOC
        
         
           Example 1: Two Storage Locations
           A device supports two components: an OS and an application. These components can be updated independently, expressing dependencies to ensure compatibility between the components. The author chooses two storage identifiers:
           
             "OS"
             "APP"
          
        
         
           Example 2: Filesystem
           A device supports a full-featured filesystem. The author chooses to use the storage identifier as the path at which to install the payload. The payload may be a tarball, in which case it unpacks the tarball into the specified path.
        
         
           Example 3: Flash Memory
           A device supports flash memory. The author chooses to make the storage identifier the offset where the image should be written.
        
      
       
         Component Identifier
         In a device with more than one storage subsystem, a storage identifier is insufficient to identify where and how to store a payload. To resolve this, a component identifier indicates to which part of the storage subsystem the payload shall be placed.
         A serialization may choose to combine the use of a component identifier and  storage location.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.MFST.COMPONENT
        
      
       
         Payload Indicator
         This element provides the information required for the device to acquire the payload. This functionality is only needed when the target device does not intrinsically know where to find the payload.
         This can be encoded in several ways:
         
           One URI
           A list of URIs
           A prioritized list of URIs
           A list of signed URIs
        
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.SEC.AUTH.REMOTE_LOC
        
      
       
         Payload Digests
         This element contains one or more digests of one or more payloads. This allows the target device to ensure authenticity of the payload(s) when combined with the  Signature element. A manifest format must provide a mechanism to select one payload from a list based on system parameters, such as an execute-in-place (XIP) installation address.
         This element is  REQUIRED. Support for more than one digest is  OPTIONAL.
         
           Implements:
           
             REQ.SEC.AUTHENTIC,  REQ.USE.IMG.SELECT
        
      
       
         Size
         This element provides the size of the payload in bytes, which informs the target device how big of a payload to expect. Without it, devices are exposed to some classes of denial-of-service attacks.
         This element is  REQUIRED.
         
           Implements:
           
             REQ.SEC.AUTH.EXEC
        
      
       
         Manifest Envelope Element: Signature
         The signature element contains all the information necessary to protect the contents of the manifest against modification and to offer authentication of the signer. Because the signature element authenticates the manifest, it cannot be contained within the manifest. Instead, either the manifest is contained within the signature element or the signature element is a member of the Manifest Envelope and bundled with the manifest.
         The signature element represents the foundation of all security properties of the manifest. Manifests, which are included as dependencies by other manifests, should include a signature so that the recipient can distinguish between different actors with different permissions.
         The signature element must support multiple signers and multiple signing algorithms. A manifest format may allow multiple manifests to be covered by a single signature element.
         This element is  REQUIRED in non-dependency manifests.
         
           Implements:
           
             REQ.SEC.AUTHENTIC,  REQ.SEC.RIGHTS,  REQ.USE.MFST.MULTI_AUTH
        
      
       
         Additional Installation Instructions
         Additional installation instructions are machine-readable commands the device should execute when processing the manifest. This information is distinct from the information necessary to process a payload. Additional installation instructions include information such as update timing (for example, install only on Sunday, at 0200), procedural considerations (for example, shut down the equipment under control before executing the update), and pre- and post-installation steps (for example, run a script). Other installation instructions could include requesting user confirmation before installing.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.MFST.PRE_CHECK
        
      
       
         Manifest Text Information
         This is textual information pertaining to the update described by the manifest. This information is for human consumption only. It  MUST NOT be the basis of any decision made by the recipient.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.MFST.TEXT
        
      
       
         Aliases
         Aliases provide a mechanism for a manifest to augment or replace URIs or URI lists defined by one or more of its dependencies.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.MFST.OVERRIDE_REMOTE
        
      
       
         Dependencies
         This is a list of other manifests that are required by the current manifest. Manifests are identified in an unambiguous way, such as a cryptographic digest.
         This element is  REQUIRED to support deployments that include both multiple authorities and multiple payloads.
         
           Implements:
           
             REQ.USE.MFST.COMPONENT
        
      
       
         Encryption Wrapper
         Encrypting firmware images requires symmetric content encryption keys. The encryption wrapper provides the information needed for a device to obtain or locate a key that it uses to decrypt the firmware.
         This element is  REQUIRED for encrypted payloads.
         
           Implements:
           
             REQ.SEC.IMG.CONFIDENTIALITY
        
      
       
         XIP Address
         In order to support XIP systems with multiple possible base addresses, it is necessary to specify which address the payload is linked for.
         For example, a microcontroller may have a simple bootloader that chooses one of two images to boot. That microcontroller then needs to choose one of two firmware images to install, based on which of its two images is older.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.IMG.SELECT
        
      
       
         Load-Time Metadata
         Load-time metadata provides the device with information that it needs in order to load one or more images. This metadata may include any of the following:
         
           The source (e.g., non-volatile storage)
           The destination (e.g., an address in RAM)
           Cryptographic information
           Decompression information
           Unpacking information
        
         Typically, loading is done by copying an image from its permanent storage location into its active use location. The metadata allows operations such as decryption, decompression, and unpacking to be performed during that copy.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.LOAD
        
      
       
         Runtime Metadata
         Runtime metadata provides the device with any extra information needed to boot the device. This may include the entry point of an XIP image or the kernel command line to boot a Linux image.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.EXEC
        
      
       
         Payload
         The Payload element is contained within the manifest or Manifest Envelope and enables the manifest and payload to be delivered simultaneously. This is used for delivering small payloads, such as cryptographic keys or configuration data.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.PAYLOAD
        
      
       
         Manifest Envelope Element: Delegation Chain
         The delegation chain offers enhanced authorization functionality via authorization tokens, such as Concise Binary Object Representation (CBOR) Web Tokens   with Proof-of-Possession Key Semantics  . Each token itself is protected and does not require another layer of protection. Each authorization token typically includes a public key or a public key fingerprint; however, this is dependent on the tokens used. Each token  MAY include additional metadata, such as key usage information. Because the delegation chain is needed to verify the signature, it must be placed in the Manifest Envelope, rather than the manifest.
         The first token in any delegation chain  MUST be authenticated by the recipient's trust anchor. Each subsequent token  MUST be authenticated using the previous token. This allows a recipient to discard each antecedent token after it has authenticated the subsequent token. The final token  MUST enable authentication of the manifest. More than one delegation chain  MAY be used if more than one signature is used. Note that no restriction is placed on the encoding order of these tokens; the order of elements is logical only.
         This element is  OPTIONAL.
         
           Implements:
           
             REQ.USE.DELEGATION,  REQ.SEC.KEY.ROTATION
        
      
    
     
       Security Considerations
       The following subsections describe the threat model, user stories, security requirements, and usability requirements. This section also provides the motivations for each of the manifest information elements.
       Note that it is worthwhile to recall that a firmware update is, by definition, remote code execution. Hence, if a device is configured to trust an entity to provide firmware, it trusts this entity to behave correctly. Many classes of attacks can be mitigated by verifying that a firmware update came from a trusted party and that no rollback is taking place. However, if the trusted entity has been compromised and distributes attacker-provided firmware to devices, then the possibilities for defense are limited.
       
         Threat Model
         The following subsections aim to provide information about the threats that were considered, the security requirements that are derived from those threats, and the fields that permit implementation of the security requirements. This model uses the Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, and Elevation of Privilege (STRIDE) approach  . Each threat is classified according to the following:
         
           Spoofing identity
           Tampering with data
           Repudiation
           Information disclosure
           Denial of service
           Elevation of privilege
        
         This threat model only covers elements related to the transport of firmware updates. It explicitly does not cover threats outside of the transport of firmware updates. For example, threats to an IoT device due to physical access are out of scope.
      
       
         Threat Descriptions
         Many of the threats detailed in this section contain a "threat escalation" description. This explains how the described threat might fit together with other threats and produce a high-severity threat. This is important because some of the described threats may seem low severity but could be used with others to construct a high-severity compromise.
         
           THREAT.IMG.EXPIRED: Old Firmware
           
             Classification:
             Elevation of Privilege
          
           An attacker sends an old, but valid, manifest with an old, but valid, firmware image to a device. If there is a known vulnerability in the provided firmware image, this may allow an attacker to exploit the vulnerability and gain control of the device.
           
             Threat Escalation:
             If the attacker is able to exploit the known vulnerability, then this threat can be escalated to all types.
             Mitigated by:
             
               REQ.SEC.SEQUENCE
          
        
         
           THREAT.IMG.EXPIRED.OFFLINE: Offline Device + Old Firmware
           
             Classification:
             Elevation of Privilege
          
           An attacker targets a device that has been offline for a long time and runs an old firmware version. The attacker sends an old, but valid, manifest to a device with an old, but valid, firmware image. The attacker-provided firmware is newer than the installed firmware but older than the most recently available firmware. If there is a known vulnerability in the provided firmware image, then this may allow an attacker to gain control of a device. Because the device has been offline for a long time, it is unaware of any new updates. As such, it will treat the old manifest as the most current.
           The exact mitigation for this threat depends on where the threat comes from. This requires careful consideration by the implementor. If the threat is from a network actor, including an on-path attacker, or an intruder into a management system, then a user confirmation can mitigate this attack, simply by displaying an expiration date and requesting confirmation. On the other hand, if the user is the attacker, then an online confirmation system (for example, a trusted timestamp server) can be used as a mitigation system.
           
             Threat Escalation:
             If the attacker is able to exploit the known vulnerability, then this threat can be escalated to all types.
             Mitigated by:
             
               REQ.SEC.EXP,  REQ.USE.MFST.PRE_CHECK
          
        
         
           THREAT.IMG.INCOMPATIBLE: Mismatched Firmware
           
             Classification:
             Denial of Service
          
           An attacker sends a valid firmware image, for the wrong type of device, signed by an actor with firmware installation permission on both device types. The firmware is verified by the device positively because it is signed by an actor with the appropriate permission. This could have wide-ranging consequences. For devices that are similar, it could cause minor breakage or expose security vulnerabilities. For devices that are very different, it is likely to render devices inoperable.
           
             Mitigated by:
             
               REQ.SEC.COMPATIBLE
          
           For example, suppose that two vendors -- Vendor A and Vendor B -- adopt the same trade name in different geographic regions, and they both make products with the same names, or product name matching is not used. This causes firmware from Vendor A to match devices from Vendor B.
           If the vendors are the firmware authorities, then devices from Vendor A will reject images signed by Vendor B, since they use different credentials. However, if both devices trust the same author, then devices from Vendor A could install firmware intended for devices from Vendor B.
        
         
           THREAT.IMG.FORMAT: The Target Device Misinterprets the Type of Payload
           
             Classification:
             Denial of Service
          
           If a device misinterprets the format of the firmware image, it may cause a device to install a firmware image incorrectly. An incorrectly installed firmware image would likely cause the device to stop functioning.
           
             Threat Escalation:
             An attacker that can cause a device to misinterpret the received firmware image may gain elevation of privilege and potentially expand this to all types of threats.
             Mitigated by:
             
               REQ.SEC.AUTH.IMG_TYPE
          
        
         
           THREAT.IMG.LOCATION: The Target Device Installs the Payload to the Wrong Location
           
             Classification:
             Denial of Service
          
           If a device installs a firmware image to the wrong location on the device, then it is likely to break. For example, a firmware image installed as an application could cause a device and/or application to stop functioning.
           
             Threat Escalation:
             An attacker that can cause a device to misinterpret the received code may gain elevation of privilege and potentially expand this to all types of threats.
             Mitigated by:
             
               REQ.SEC.AUTH.IMG_LOC
          
        
         
           THREAT.NET.REDIRECT: Redirection to Inauthentic Payload Hosting
           
             Classification:
             Denial of Service
          
           If a device is tricked into fetching a payload for an attacker-controlled site, the attacker may send corrupted payloads to devices.
           
             Mitigated by:
             
               REQ.SEC.AUTH.REMOTE_LOC
          
        
         
           THREAT.NET.ONPATH: Traffic Interception
           
             Classification:
             Spoofing Identity, Tampering with Data
          
           An attacker intercepts all traffic to and from a device. The attacker can monitor or modify any data sent to or received from the device. This can take the form of manifests, payloads, status reports, and capability reports being modified or not delivered to the intended recipient. It can also take the form of analysis of data sent to or from the device, in content, size, or frequency.
           
             Mitigated by:
             
               REQ.SEC.AUTHENTIC,  REQ.SEC.IMG.CONFIDENTIALITY,  REQ.SEC.AUTH.REMOTE_LOC,  REQ.SEC.MFST.CONFIDENTIALITY,  REQ.SEC.REPORTING
          
        
         
           THREAT.IMG.REPLACE: Payload Replacement
           
             Classification:
             Elevation of Privilege
          
           An attacker replaces newly downloaded firmware after a device finishes verifying a manifest. This could cause the device to execute the attacker's code. This attack likely requires physical access to the device. However, it is possible that this attack is carried out in combination with another threat that allows remote execution. This is a typical Time Of Check / Time Of Use (TOCTOU) attack.
           
             Threat Escalation:
             If the attacker is able to exploit a known vulnerability or if the attacker can supply their own firmware, then this threat can be escalated to all types.
             Mitigated by:
             
               REQ.SEC.AUTH.EXEC
          
        
         
           THREAT.IMG.NON_AUTH: Unauthenticated Images
           
             Classification:
             Elevation of Privilege / all types
          
           If an attacker can install their firmware on a device -- for example, by manipulating either payload or metadata -- then they have complete control of the device.
           
             Mitigated by:
             
               REQ.SEC.AUTHENTIC
          
        
         
           THREAT.UPD.WRONG_PRECURSOR: Unexpected Precursor Images
           
             Classification:
             Denial of Service / all types
          
           Modifications of payloads and metadata allow an attacker to introduce a number of denial-of-service attacks. Below are some examples.
           An attacker sends a valid, current manifest to a device that has an unexpected precursor image. If a payload format requires a precursor image (for example, delta updates) and that precursor image is not available on the target device, it could cause the update to break.
           An attacker that can cause a device to install a payload against the wrong precursor image could gain elevation of privilege and potentially expand this to all types of threats. However, it is unlikely that a valid differential update applied to an incorrect precursor would result in functional, but vulnerable, firmware.
           
             Mitigated by:
             
               REQ.SEC.AUTH.PRECURSOR
          
        
         
           THREAT.UPD.UNAPPROVED: Unapproved Firmware
           
             Classification:
             Denial of Service, Elevation of Privilege
          
           This threat can appear in several ways; however, it is ultimately about ensuring that devices retain the behavior required by their owner or Operator. The owner or Operator of a device typically requires that the device maintain certain features, functions, capabilities, behaviors, or interoperability constraints (more generally, behavior). If these requirements are broken, then a device will not fulfill its purpose. Therefore, if any party other than the device's owner or the owner's contracted device operator has the ability to modify device behavior without approval, then this constitutes an elevation of privilege.
           Similarly, a network operator may require that devices behave in a particular way in order to maintain the integrity of the network. If device behavior on a network can be modified without the approval of the network operator, then this constitutes an elevation of privilege with respect to the network.
           For example, if the owner of a device has purchased that device because of Features A, B, and C, and a firmware update that removes Feature A is issued by the manufacturer, then the device may not fulfill the owner's requirements any more. In certain circumstances, this can cause significantly greater threats. Suppose that Feature A is used to implement a safety-critical system, whether the manufacturer intended this behavior or not. When unapproved firmware is installed, the system may become unsafe.
           In a second example, the owner or Operator of a system of two or more interoperating devices needs to approve firmware for their system in order to ensure interoperability with other devices in the system. If the firmware is not qualified, the system as a whole may not work. Therefore, if a device installs firmware without the approval of the device owner or Operator, this is a threat to devices or the system as a whole.
           Similarly, the Operator of a network may need to approve firmware for devices attached to the network in order to ensure favorable operating conditions within the network. If the firmware is not qualified, it may degrade the performance of the network. Therefore, if a device installs firmware without the approval of the network operator, this is a threat to the network itself.
           
             Threat Escalation:
             If the network operator expects configuration that is present in devices deployed in Network A, but not in devices deployed in Network B, then the device may experience degraded security, leading to threats of all types.
             Mitigated by:
             
               REQ.SEC.RIGHTS,  REQ.SEC.ACCESS_CONTROL
          
           
             Example 1: Multiple Network Operators with a Single Device Operator
             In this example, assume that device operators expect the rights to create firmware but that network operators expect the rights to qualify firmware as "fit for purpose" on their networks. Additionally, assume that device operators manage devices that can be deployed on any network, including Network A and Network B in our example.
             An attacker may obtain a manifest for a device on Network A. Then, this attacker sends that manifest to a device on Network B. Because Network A and Network B are under the control of different Operators, and the firmware for a device on Network A has not been qualified to be deployed on Network B, the target device on Network B is now in violation of Operator B's policy and may be disabled by this unqualified, but signed, firmware.
             This is a denial of service because it can render devices inoperable. This is an elevation of privilege because it allows the attacker to make installation decisions that should be made by the Operator.
          
           
             Example 2: Single Network Operator with Multiple Device Operators
             Multiple devices that interoperate are used on the same network and communicate with each other. Some devices are manufactured and managed by Device Operator A and other devices by Device Operator B. New firmware is released by Device Operator A that breaks compatibility with devices from Device Operator B. An attacker sends the new firmware to the devices managed by Device Operator A without the approval of the network operator. This breaks the behavior of the larger system, causing denial of service and, possibly, other threats. Where the network is a distributed Supervisory Control and Data Acquisition (SCADA) system, this could cause misbehavior of the process that is under control.
          
        
         
           THREAT.IMG.DISCLOSURE: Reverse Engineering of Firmware Image for Vulnerability Analysis
           
             Classification:
             all types
          
           An attacker wants to mount an attack on an IoT device. To prepare the attack, the provided firmware image is reverse engineered and analyzed for vulnerabilities.
           
             Mitigated by:
             
               REQ.SEC.IMG.CONFIDENTIALITY
          
        
         
           THREAT.MFST.OVERRIDE: Overriding Critical Manifest Elements
           
             Classification:
             Elevation of Privilege
          
           An authorized actor, but not the author, uses an override mechanism ( USER_STORY.OVERRIDE) to change an information element in a manifest signed by the author. For example, if the authorized actor overrides the digest and URI of the payload, the actor can replace the entire payload with a payload of their choice.
           
             Threat Escalation:
             By overriding elements such as payload installation instructions or a firmware digest, this threat can be escalated to all types.
             Mitigated by:
             
               REQ.SEC.ACCESS_CONTROL
          
        
         
           THREAT.MFST.EXPOSURE: Confidential Manifest Element Exposure
           
             Classification:
             Information Disclosure
          
           A third party may be able to extract sensitive information from the manifest.
           
             Mitigated by:
             
               REQ.SEC.MFST.CONFIDENTIALITY
          
        
         
           THREAT.IMG.EXTRA: Extra Data after Image
           
             Classification:
             all types
          
           If a third party modifies the image so that it contains extra code after a valid, authentic image, that third party can then use their own code in order to make better use of an existing vulnerability.
           
             Mitigated by:
             
               REQ.SEC.IMG.COMPLETE_DIGEST
          
        
         
           THREAT.KEY.EXPOSURE: Exposure of Signing Keys
           
             Classification:
             all types
          
           If a third party obtains a key or even indirect access to a key -- for example, in a hardware security module (HSM) -- then they can perform the same actions as the legitimate owner of the key. If the key is trusted for firmware updates, then the third party can perform firmware updates as though they were the legitimate owner of the key.
           For example, if manifest signing is performed on a server connected to the internet, an attacker may compromise the server and then be able to sign manifests, even if the keys for manifest signing are held in an HSM that is accessed by the server.
           
             Mitigated by:
             
               REQ.SEC.KEY.PROTECTION,  REQ.SEC.KEY.ROTATION
          
        
         
           THREAT.MFST.MODIFICATION: Modification of Manifest or Payload prior to Signing
           
             Classification:
             all types
          
           If an attacker can alter a manifest or payload before it is signed, they can perform all the same actions as the manifest author. This allows the attacker to deploy firmware updates to any devices that trust the manifest author. If an attacker can modify the code of a payload before the corresponding manifest is created, they can insert their own code. If an attacker can modify the manifest before it is signed, they can redirect the manifest to their own payload.
           For example, the attacker deploys malware to the developer's computer or signing service that watches manifest creation activities and inserts code into any binary that is referenced by a manifest.
           For example, the attacker deploys malware to the developer's computer or signing service that replaces the referenced binary (digest) and URI with the attacker's binary (digest) and URI.
           
             Mitigated by:
             
               REQ.SEC.MFST.CHECK,  REQ.SEC.MFST.TRUSTED
          
        
         
           THREAT.MFST.TOCTOU: Modification of Manifest between Authentication and Use
           
             Classification:
             all types
          
           If an attacker can modify a manifest after it is authenticated (time of check) but before it is used (time of use), then the attacker can place any content whatsoever in the manifest.
           
             Mitigated by:
             
               REQ.SEC.MFST.CONST
          
        
      
       
         Security Requirements
         The security requirements here are a set of policies that mitigate the threats described in  .
         
           REQ.SEC.SEQUENCE: Monotonic Sequence Numbers
           Only an actor with firmware installation authority is permitted to decide when device firmware can be installed. To enforce this rule, manifests  MUST contain monotonically increasing sequence numbers. Manifests may use UTC epoch timestamps to coordinate monotonically increasing sequence numbers across many actors in many locations. If UTC epoch timestamps are used, they must not be treated as times; they must be treated only as sequence numbers. Devices must reject manifests with sequence numbers smaller than any onboard sequence number, i.e., there is no sequence number rollover.
           
             Note: This is not a firmware version field. It is a manifest sequence number. A firmware version may be rolled back by creating a new manifest for the old firmware version with a later sequence number.
          
           
             Mitigates:
             
               THREAT.IMG.EXPIRED
             Implemented by:
             
               Monotonic Sequence Number
          
        
         
           REQ.SEC.COMPATIBLE: Vendor, Device-Type Identifiers
           Devices  MUST only apply firmware that is intended for them. Devices must know that a given update applies to their vendor, model, hardware revision, and software revision. Human-readable identifiers are often prone to error in this regard, so unique identifiers should be used instead.
           
             Mitigates:
             
               THREAT.IMG.INCOMPATIBLE
             Implemented by:
             
               Vendor ID Condition,  Class ID Condition
          
        
         
           REQ.SEC.EXP: Expiration Time
           A firmware manifest  MAY expire after a given time, and devices may have a secure clock (local or remote). If a secure clock is provided and the firmware manifest has an expiration timestamp, the device must reject the manifest if the current time is later than the expiration time.
           Special consideration is required for end-of-life in cases where a device will not be updated again -- for example, if a business stops issuing updates for a device. The last valid firmware should not have an expiration time.
           If a device has a flawed time source (either local or remote), an old update can be deployed as new.
           
             Mitigates:
             
               THREAT.IMG.EXPIRED.OFFLINE
             Implemented by:
             
               Expiration Time
          
        
         
           REQ.SEC.AUTHENTIC: Cryptographic Authenticity
           The authenticity of an update  MUST be demonstrable. Typically, this means that updates must be digitally signed. Because the manifest contains information about how to install the update, the manifest's authenticity must also be demonstrable. To reduce the overhead required for validation, the manifest contains the cryptographic digest of the firmware image, rather than a second digital signature. The authenticity of the manifest can be verified with a digital signature or Message Authentication Code. The authenticity of the firmware image is tied to the manifest by the use of a cryptographic digest of the firmware image.
           
             Mitigates:
             
               THREAT.IMG.NON_AUTH,  THREAT.NET.ONPATH
             Implemented by:
             
               Signature,  Payload Digests
          
        
         
           REQ.SEC.AUTH.IMG_TYPE: Authenticated Payload Type
           The type of payload  MUST be authenticated. For example, the target must know whether the payload is XIP firmware, a loadable module, or configuration data.
           
             Mitigates:
             
               THREAT.IMG.FORMAT
             Implemented by:
             
               Payload Format,  Signature
          
        
         
           REQ.SEC.AUTH.IMG_LOC: Authenticated Storage Location
           The location on the target where the payload is to be stored  MUST be authenticated.
           
             Mitigates:
             
               THREAT.IMG.LOCATION
             Implemented by:
             
               Storage Location
          
        
         
           REQ.SEC.AUTH.REMOTE_LOC: Authenticated Remote Payload
           The location where a target should find a payload  MUST be authenticated. Remote resources need to receive an equal amount of cryptographic protection as the manifest itself, when dereferencing URIs. The security considerations of Uniform Resource Identifiers (URIs) are applicable  .
           
             Mitigates:
             
               THREAT.NET.REDIRECT,  THREAT.NET.ONPATH
             Implemented by:
             
               Payload Indicator
          
        
         
           REQ.SEC.AUTH.EXEC: Secure Execution
           The target  SHOULD verify firmware at the time of boot. This requires authenticated payload size and firmware digest.
           
             Mitigates:
             
               THREAT.IMG.REPLACE
             Implemented by:
             
               Payload Digests,  Size
          
        
         
           REQ.SEC.AUTH.PRECURSOR: Authenticated Precursor Images
           If an update uses a differential compression method, it  MUST specify the digest of the precursor image, and that digest  MUST be authenticated.
           
             Mitigates:
             
               THREAT.UPD.WRONG_PRECURSOR
             Implemented by:
             
               Precursor Image Digest
          
        
         
           REQ.SEC.AUTH.COMPATIBILITY: Authenticated Vendor and Class IDs
           The identifiers that specify firmware compatibility  MUST be authenticated to ensure that only compatible firmware is installed on a target device.
           
             Mitigates:
             
               THREAT.IMG.INCOMPATIBLE
             Implemented by:
             
               Vendor ID Condition,  Class ID Condition
          
        
         
           REQ.SEC.RIGHTS: Rights Require Authenticity
           If a device grants different rights to different actors, exercising those rights  MUST be accompanied by proof of those rights, in the form of proof of authenticity. Authenticity mechanisms, such as those required in  REQ.SEC.AUTHENTIC, can be used to prove authenticity.
           For example, if a device has a policy that requires that firmware have both an Authorship right and a Qualification right and if that device grants Authorship and Qualification rights to different parties, such as a device operator and a network operator, respectively, then the firmware cannot be installed without proof of rights from both the device operator and the network operator.
           
             Mitigates:
             
               THREAT.UPD.UNAPPROVED
             Implemented by:
             
               Signature
          
        
         
           REQ.SEC.IMG.CONFIDENTIALITY: Payload Encryption
           The manifest information model  MUST enable encrypted payloads. Encryption helps to prevent third parties, including attackers, from reading the content of the firmware image. This can protect against confidential information disclosures and discovery of vulnerabilities through reverse engineering. Therefore, the manifest must convey the information required to allow an intended recipient to decrypt an encrypted payload.
           
             Mitigates:
             
               THREAT.IMG.DISCLOSURE,  THREAT.NET.ONPATH
             Implemented by:
             
               Encryption Wrapper
          
        
         
           REQ.SEC.ACCESS_CONTROL: Access Control
           If a device grants different rights to different actors, then an exercise of those rights  MUST be validated against a list of rights for the actor. This typically takes the form of an Access Control List (ACL). ACLs are applied to two scenarios:
            An ACL decides which elements of the manifest may be overridden and by which actors.
             An ACL decides which component identifier / storage identifier pairs can be written by which actors.
          
           
             Mitigates:
             
               THREAT.MFST.OVERRIDE,  THREAT.UPD.UNAPPROVED
             Implemented by:
             Client-side code, not specified in manifest
          
        
         
           REQ.SEC.MFST.CONFIDENTIALITY: Encrypted Manifests
           A manifest format  MUST allow encryption of selected parts of the manifest or encryption of the entire manifest to prevent sensitive content of the firmware metadata from being leaked.
           
             Mitigates:
             
               THREAT.MFST.EXPOSURE,  THREAT.NET.ONPATH
             Implemented by:
             Manifest Encryption Wrapper / Transport Security
          
        
         
           REQ.SEC.IMG.COMPLETE_DIGEST: Whole Image Digest
           The digest  SHOULD cover all available space in a fixed-size storage location. Variable-size storage locations  MUST be restricted to exactly the size of deployed payload. This prevents any data from being distributed without being covered by the digest. For example, XIP microcontrollers typically have fixed-size storage. These devices should deploy a digest that covers the deployed firmware image, concatenated with the default erased value of any remaining space.
           
             Mitigates:
             
               THREAT.IMG.EXTRA
             Implemented by:
             
               Payload Digests
          
        
         
           REQ.SEC.REPORTING: Secure Reporting
           Status reports from the device to any remote system  MUST be performed over an authenticated, confidential channel in order to prevent modification or spoofing of the reports.
           
             Mitigates:
             
               THREAT.NET.ONPATH
             Implemented by:
             Transport Security / Manifest format triggering generation of reports
          
        
         
           REQ.SEC.KEY.PROTECTION: Protected Storage of Signing Keys
           Cryptographic keys for signing/authenticating manifests  SHOULD be stored in a manner that is inaccessible to networked devices -- for example, in an HSM or an air-gapped computer. This protects against an attacker obtaining the keys.
           Keys  SHOULD be stored in a way that limits the risk of a legitimate, but compromised, entity (such as a server or developer computer) issuing signing requests.
           
             Mitigates:
             
               THREAT.KEY.EXPOSURE
             Implemented by:
             Hardware-assisted isolation technologies, which are outside the scope of the manifest format
          
        
         
           REQ.SEC.KEY.ROTATION: Protected Storage of Signing Keys
           Cryptographic keys for signing/authenticating manifests  SHOULD be replaced from time to time. Because it is difficult and risky to replace a trust anchor, keys used for signing updates  SHOULD be delegates of that trust anchor.
           If key expiration is performed based on time, then a secure clock is needed. If the time source used by a recipient to check for expiration is flawed, an old signing key can be used as current, which compounds  THREAT.KEY.EXPOSURE.
           
             Mitigates:
             
               THREAT.KEY.EXPOSURE
             Implemented by:
             Secure storage technology, which is a system design/implementation aspect outside the scope of the manifest format
          
        
         
           REQ.SEC.MFST.CHECK: Validate Manifests prior to Deployment
           Manifests  SHOULD be verified prior to deployment. This reduces problems that may arise with devices installing firmware images that damage devices unintentionally.
           
             Mitigates:
             
               THREAT.MFST.MODIFICATION
             Implemented by:
             Testing infrastructure. While outside the scope of the manifest format, proper testing of low-level software is essential for avoiding unnecessary downtime or worse situations.
          
        
         
           REQ.SEC.MFST.TRUSTED: Construct Manifests in a Trusted Environment
           For high-risk deployments, such as large numbers of devices or devices that provide critical functions, manifests  SHOULD be constructed in an environment that is protected from interference, such as an air-gapped computer. Note that a networked computer connected to an HSM does not fulfill this requirement (see  THREAT.MFST.MODIFICATION).
           
             Mitigates:
             
               THREAT.MFST.MODIFICATION
             Implemented by:
             Physical and network security for protecting the environment where firmware updates are prepared to avoid unauthorized access to this infrastructure
          
        
         
           REQ.SEC.MFST.CONST: Manifest Kept Immutable between Check and Use
           Both the manifest and any data extracted from it  MUST be held immutable between its authenticity verification (time of check) and its use (time of use). To make this guarantee, the manifest  MUST fit within internal memory or secure memory, such as encrypted memory. The recipient  SHOULD defend the manifest from tampering by code or hardware resident in the recipient -- for example, other processes or debuggers.
           If an application requires that the manifest be verified before storing it, then this means the manifest  MUST fit in RAM.
           
             Mitigates:
             
               THREAT.MFST.TOCTOU
             Implemented by:
             Proper system design with sufficient resources and implementation avoiding TOCTOU attacks
          
        
      
       
         User Stories
         User stories provide expected use cases. These are used to feed into usability requirements.
         
           USER_STORY.INSTALL.INSTRUCTIONS: Installation Instructions
           As a device operator, I want to provide my devices with additional installation instructions so that I can keep process details out of my payload data.
           Some installation instructions might be as follows:
           
             Use a table of hashes to ensure that each block of the payload is validated before writing.
             Do not report progress.
             Pre-cache the update, but do not install.
             Install the pre-cached update matching this manifest.
             Install this update immediately, overriding any long-running tasks.
          
           
             Satisfied by:
             
               REQ.USE.MFST.PRE_CHECK
          
        
         
           USER_STORY.MFST.FAIL_EARLY: Fail Early
           As a designer of a resource-constrained IoT device, I want bad updates to fail as early as possible to preserve battery life and limit consumed bandwidth.
           
             Satisfied by:
             
               REQ.USE.MFST.PRE_CHECK
          
        
         
           USER_STORY.OVERRIDE: Override Non-critical Manifest Elements
           As a device operator, I would like to be able to override the non-critical information in the manifest so that I can control my devices more precisely. The authority to override this information is provided via the installation of a limited trust anchor by another authority.
           Some examples of potentially overridable information:
           
              URIs:
             This allows the device operator to direct devices to their own infrastructure in order to reduce network load.
             Conditions:
             This allows the device operator to impose additional constraints on the installation of the manifest.
              Directives:
             This allows the device operator to add more instructions, such as time of installation.
              Processing Steps:
             If an intermediary performs an action on behalf of a device, it may need to override the processing steps. It is still possible for a device to verify the final content and the result of any processing step that specifies a digest. Some processing steps should be non-overridable.
             Satisfied by:
             
               REQ.USE.MFST.COMPONENT
          
        
         
           USER_STORY.COMPONENT: Component Update
           As a device operator, I want to divide my firmware into components, so that I can reduce the size of updates, make different parties responsible for different components, and divide my firmware into frequently updated and infrequently updated components.
           
             Satisfied by:
             
               REQ.USE.MFST.COMPONENT
          
        
         
           USER_STORY.MULTI_AUTH: Multiple Authorizations
           As a device operator, I want to ensure the quality of a firmware update before installing it, so that I can ensure interoperability of all devices in my product family. I want to restrict the ability to make changes to my devices to require my express approval.
           
             Satisfied by:
             
               REQ.USE.MFST.MULTI_AUTH,  REQ.SEC.ACCESS_CONTROL
          
        
         
           USER_STORY.IMG.FORMAT: Multiple Payload Formats
           As a device operator, I want to be able to send multiple payload formats to suit the needs of my update, so that I can optimize the bandwidth used by my devices.
           
             Satisfied by:
             
               REQ.USE.IMG.FORMAT
          
        
         
           USER_STORY.IMG.CONFIDENTIALITY: Prevent Confidential Information Disclosures
           As a firmware author, I want to prevent confidential information in the manifest from being disclosed when distributing manifests and firmware images. Confidential information may include information about the device these updates are being applied to as well as information in the firmware image itself.
           
             Satisfied by:
             
               REQ.SEC.IMG.CONFIDENTIALITY
          
        
         
           USER_STORY.IMG.UNKNOWN_FORMAT: Prevent Devices from Unpacking Unknown Formats
           As a device operator, I want devices to determine whether they can process a payload prior to downloading it.
           In some cases, it may be desirable for a third party to perform some processing on behalf of a target. For this to occur, the third party  MUST indicate what processing occurred and how to verify it against the Trust Provisioning Authority's intent.
           This amounts to overriding  Processing Steps and  Payload Indicator.
           
             Satisfied by:
             
               REQ.USE.IMG.FORMAT,  REQ.USE.IMG.NESTED,  REQ.USE.MFST.OVERRIDE_REMOTE
          
        
         
           USER_STORY.IMG.CURRENT_VERSION: Specify Version Numbers of Target Firmware
           As a device operator, I want to be able to target devices for updates based on their current firmware version, so that I can control which versions are replaced with a single manifest.
           
             Satisfied by:
             
               REQ.USE.IMG.VERSIONS
          
        
         
           USER_STORY.IMG.SELECT: Enable Devices to Choose between Images
           As a developer, I want to be able to sign two or more versions of my firmware in a single manifest so that I can use a very simple bootloader that chooses between two or more images that are executed in place.
           
             Satisfied by:
             
               REQ.USE.IMG.SELECT
          
        
         
           USER_STORY.EXEC.MFST: Secure Execution Using Manifests
           As a signer for both secure execution/boot and firmware deployment, I would like to use the same signed document for both tasks so that my data size is smaller, I can share common code, and I can reduce signature verifications.
           
             Satisfied by:
             
               REQ.USE.EXEC
          
        
         
           USER_STORY.EXEC.DECOMPRESS: Decompress on Load
           As a developer of firmware for a run-from-RAM device, I would like to use compressed images and to indicate to the bootloader that I am using a compressed image in the manifest so that it can be used with secure execution/boot.
           
             Satisfied by:
             
               REQ.USE.LOAD
          
        
         
           USER_STORY.MFST.IMG: Payload in Manifest
           As an Operator of devices on a constrained network, I would like the manifest to be able to include a small payload in the same packet so that I can reduce network traffic.
           Small payloads may include, for example, wrapped content encryption keys, configuration information, public keys, authorization tokens, or X.509 certificates.
           
             Satisfied by:
             
               REQ.USE.PAYLOAD
          
        
         
           USER_STORY.MFST.PARSE: Simple Parsing
           As a developer for constrained devices, I want a low-complexity library for processing updates so that I can fit more application code on my device.
           
             Satisfied by:
             
               REQ.USE.PARSE
          
        
         
           USER_STORY.MFST.DELEGATION: Delegated Authority in Manifest
           As a device operator that rotates delegated authority more often than delivering firmware updates, I would like to delegate a new authority when I deliver a firmware update so that I can accomplish both tasks in a single transmission.
           
             Satisfied by:
             
               REQ.USE.DELEGATION
          
        
         
           USER_STORY.MFST.PRE_CHECK: Update Evaluation
           As an Operator of a constrained network, I would like devices on my network to be able to evaluate the suitability of an update prior to initiating any large download so that I can prevent unnecessary consumption of bandwidth.
           
             Satisfied by:
             
               REQ.USE.MFST.PRE_CHECK
          
        
         
           USER_STORY.MFST.ADMINISTRATION: Administration of Manifests
           As a device operator, I want to understand what an update will do and to which devices it applies so that I can make informed choices about which updates to apply, when to apply them, and which devices should be updated.
           
             Satisfied by:
             
               REQ.USE.MFST.TEXT
          
        
      
       
         Usability Requirements
         The following usability requirements satisfy the user stories listed above.
         
           REQ.USE.MFST.PRE_CHECK: Pre-installation Checks
           A manifest format  MUST be able to carry all information required to process an update.
           For example, information about which precursor image is required for a differential update must be placed in the manifest.
           
             Satisfies:
             
               USER_STORY.MFST.PRE_CHECK, 
  USER_STORY.INSTALL.INSTRUCTIONS
             Implemented by:
             
               Additional Installation Instructions
          
        
         
           REQ.USE.MFST.TEXT: Descriptive Manifest Information
           It  MUST be possible for a device operator to determine what a manifest will do and which devices will accept it prior to distribution.
           
             Satisfies:
             
               USER_STORY.MFST.ADMINISTRATION
             Implemented by:
             
               Manifest Text Information
          
        
         
           REQ.USE.MFST.OVERRIDE_REMOTE: Override Remote Resource Location
           A manifest format  MUST be able to redirect payload fetches. This applies where two manifests are used in conjunction. For example, a device operator creates a manifest specifying a payload and signs it, and provides a URI for that payload. A network operator creates a second manifest, with a dependency on the first. They use this second manifest to override the URIs provided by the device operator, directing them into their own infrastructure instead. Some devices may provide this capability, while others may only look at canonical sources of firmware. For this to be possible, the device must fetch the payload, whereas a device that accepts payload pushes will ignore this feature.
           
             Satisfies:
             
               USER_STORY.OVERRIDE
             Implemented by:
             
               Aliases
          
        
         
           REQ.USE.MFST.COMPONENT: Component Updates
           A manifest format  MUST be able to express the requirement to install one or more payloads from one or more authorities so that a multi-payload update can be described. This allows multiple parties with different permissions to collaborate in creating a single update for the IoT device, across multiple components.
           This requirement implies that it must be possible to construct a tree of manifests on a multi-image target.
           In order to enable devices with a heterogeneous storage architecture, the manifest must enable specification of both a storage system and the storage location within that storage system.
           
             Satisfies:
             
               USER_STORY.OVERRIDE,  USER_STORY.COMPONENT
             Implemented by:
             Dependencies, StorageIdentifier, ComponentIdentifier
          
           
             Example 1: Multiple Microcontrollers
             An IoT device with multiple microcontrollers in the same physical device will likely require multiple payloads with different component identifiers.
          
           
             Example 2: Code and Configuration
             A firmware image can be divided into two payloads: code and configuration. These payloads may require authorizations from different actors in order to install (see  REQ.SEC.RIGHTS and  REQ.SEC.ACCESS_CONTROL). This structure means that multiple manifests may be required, with a dependency structure between them.
          
           
             Example 3: Multiple Software Modules
             A firmware image can be divided into multiple functional blocks for separate testing and distribution. This means that code would need to be distributed in multiple payloads. For example, this might be desirable in order to ensure that common code between devices is identical in order to reduce distribution bandwidth.
          
        
         
           REQ.USE.MFST.MULTI_AUTH: Multiple Authentications
           A manifest format  MUST be able to carry multiple signatures so that authorizations from multiple parties with different permissions can be required in order to authorize installation of a manifest.
           
             Satisfies:
             
               USER_STORY.MULTI_AUTH
             Implemented by:
             
               Signature
          
        
         
           REQ.USE.IMG.FORMAT: Format Usability
           The manifest format  MUST accommodate any payload format that an Operator wishes to use. This enables the recipient to detect which format the Operator has chosen. Some examples of payload format are as follows:
           
             Binary
             Executable and Linkable Format (ELF)
             Differential
             Compressed
             Packed configuration
             Intel HEX
             Motorola S-Record
          
           
             Satisfies:
             
               USER_STORY.IMG.FORMAT  USER_STORY.IMG.UNKNOWN_FORMAT
             Implemented by:
             
               Payload Format
          
        
         
           REQ.USE.IMG.NESTED: Nested Formats
           The manifest format  MUST accommodate nested formats, announcing to the target device all the nesting steps and any parameters used by those steps.
           
             Satisfies:
             
               USER_STORY.IMG.CONFIDENTIALITY
             Implemented by:
             
               Processing Steps
          
        
         
           REQ.USE.IMG.VERSIONS: Target Version Matching
           The manifest format  MUST provide a method to specify multiple version numbers of firmware to which the manifest applies, either with a list or with range matching.
           
             Satisfies:
             
               USER_STORY.IMG.CURRENT_VERSION
             Implemented by:
             
               Required Image Version List
          
        
         
           REQ.USE.IMG.SELECT: Select Image by Destination
           The manifest format  MUST provide a mechanism to list multiple equivalent payloads by execute-in-place (XIP) installation address, including the payload digest and, optionally, payload URIs.
           
             Satisfies:
             
               USER_STORY.IMG.SELECT
             Implemented by:
             
               XIP Address
          
        
         
           REQ.USE.EXEC: Executable Manifest
           The manifest format  MUST allow the description of an executable system with a manifest on both XIP microcontrollers and complex operating systems. In addition, the manifest format  MUST be able to express metadata, such as a kernel command line, used by any loader or bootloader.
           
             Satisfies:
             
               USER_STORY.EXEC.MFST
             Implemented by:
             
               Runtime Metadata
          
        
         
           REQ.USE.LOAD: Load-Time Information
           The manifest format  MUST enable carrying additional metadata for load-time processing of a payload, such as cryptographic information, load address, and compression algorithm. Note that load comes before execution/boot.
           
             Satisfies:
             
               USER_STORY.EXEC.DECOMPRESS
             Implemented by:
             
               Load-Time Metadata
          
        
         
           REQ.USE.PAYLOAD: Payload in Manifest Envelope
           The manifest format  MUST allow placing a payload in the same structure as the manifest. This may place the payload in the same packet as the manifest.
           Integrated payloads may include, for example, binaries as well as configuration information, and keying material.
           When an integrated payload is provided, this increases the size of the manifest. Manifest size can cause several processing and storage concerns that require careful consideration. The payload can prevent the whole manifest from being contained in a single network packet, which can cause fragmentation and the loss of portions of the manifest in lossy networks. This causes the need for reassembly and retransmission logic. The manifest  MUST be held immutable between verification and processing (see  REQ.SEC.MFST.CONST), so a larger manifest will consume more memory with immutability guarantees -- for example, internal RAM or NVRAM, or external secure memory. If the manifest exceeds the available immutable memory, then it  MUST be processed modularly, evaluating each of the following: delegation chains; the security container; and the actual manifest, which includes verifying the integrated payload. If the security model calls for downloading the manifest and validating it before storing to NVRAM in order to prevent wear to NVRAM and energy expenditure in NVRAM, then either increasing memory allocated to manifest storage or modular processing of the received manifest may be required. While the manifest has been organized to enable this type of processing, it creates additional complexity in the parser. If the manifest is stored in NVRAM prior to processing, the integrated payload may cause the manifest to exceed the available storage. Because the manifest is received prior to validation of applicability, authority, or correctness, integrated payloads cause the recipient to expend network bandwidth and energy that may not be required if the manifest is discarded, and these costs vary with the size of the integrated payload.
           
             See also:
             
               REQ.SEC.MFST.CONST
             Satisfies:
             
               USER_STORY.MFST.IMG
             Implemented by:
             
               Payload
          
        
         
           REQ.USE.PARSE: Simple Parsing
           The structure of the manifest  MUST be simple to parse to reduce the attack vectors against manifest parsers.
           
             Satisfies:
             
               USER_STORY.MFST.PARSE
             Implemented by:
             N/A
          
        
         
           REQ.USE.DELEGATION: Delegation of Authority in Manifest
           A manifest format  MUST enable the delivery of delegation information. This information delivers a new key with which the recipient can verify the manifest.
           
             Satisfies:
             
               USER_STORY.MFST.DELEGATION
             Implemented by:
             
               Delegation Chain
          
        
      
    
     
       IANA Considerations
       This document has no IANA actions.
    
  
   
     
       References
       
         Normative References
         
           
             Key words for use in RFCs to Indicate Requirement Levels
             
               
            
             
             
               In many standards track documents several words are used to signify the requirements in the specification.  These words are often capitalized. This document defines these words as they should be interpreted in IETF documents.  This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.
            
          
           
           
           
        
         
           
             A Universally Unique IDentifier (UUID) URN Namespace
             
               
            
             
               
            
             
               
            
             
             
               This specification defines a Uniform Resource Name namespace for UUIDs (Universally Unique IDentifier), also known as GUIDs (Globally Unique IDentifier).  A UUID is 128 bits long, and can guarantee uniqueness across space and time.  UUIDs were originally used in the Apollo Network Computing System and later in the Open Software Foundation\'s (OSF) Distributed Computing Environment (DCE), and then in Microsoft Windows platforms.
               This specification is derived from the DCE specification with the kind permission of the OSF (now known as The Open Group).  Information from earlier versions of the DCE specification have been incorporated into this document.  [STANDARDS-TRACK]
            
          
           
           
        
         
           
             Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words
             
               
            
             
             
               RFC 2119 specifies common key words that may be used in protocol  specifications.  This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the  defined special meanings.
            
          
           
           
           
        
         
           
             CBOR Web Token (CWT)
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               CBOR Web Token (CWT) is a compact means of representing claims to be transferred between two parties.  The claims in a CWT are encoded in the Concise Binary Object Representation (CBOR), and CBOR Object Signing and Encryption (COSE) is used for added application-layer security protection.  A claim is a piece of information asserted about a subject and is represented as a name/value pair consisting of a claim name and a claim value.  CWT is derived from JSON Web Token (JWT) but uses CBOR rather than JSON.
            
          
           
           
        
         
           
             Proof-of-Possession Key Semantics for CBOR Web Tokens (CWTs)
             
               
            
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               This specification describes how to declare in a CBOR Web Token (CWT) (which is defined by RFC 8392) that the presenter of the CWT possesses a particular proof-of-possession key. Being able to prove possession of a key is also sometimes described as being the holder-of-key. This specification provides equivalent functionality to "Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)" (RFC 7800) but using Concise Binary Object Representation (CBOR) and CWTs rather than JavaScript Object Notation (JSON) and JSON Web Tokens (JWTs).
            
          
           
           
        
         
           
             A Firmware Update Architecture for Internet of Things
             
               
            
             
               
            
             
               
            
             
               
            
             
             
               Vulnerabilities in Internet of Things (IoT) devices have raised the need for a reliable and secure firmware update mechanism suitable for devices with resource constraints. Incorporating such an update mechanism is a fundamental requirement for fixing vulnerabilities, but it also enables other important capabilities such as updating configuration settings and adding new functionality.
               In addition to the definition of terminology and an architecture, this document provides the motivation for the standardization of a manifest format as a transport-agnostic means for describing and protecting firmware updates.
            
          
           
           
        
      
       
         Informative References
         
           
             On the Difference between Information Models and Data Models
             
               
            
             
               
            
             
             
               There has been ongoing confusion about the differences between Information Models and Data Models for defining managed objects in network management.  This document explains the differences between these terms by analyzing how existing network management model specifications (from the IETF and other bodies such as the International Telecommunication Union (ITU) or the Distributed Management Task Force (DMTF)) fit into the universe of Information Models and Data Models. This memo documents the main results of the 8th workshop of the Network Management Research Group (NMRG) of the Internet Research Task Force (IRTF) hosted by the University of Texas at Austin.  This memo provides information for the Internet community.
            
          
           
           
        
         
           
             Uniform Resource Identifier (URI): Generic Syntax
             
               
            
             
               
            
             
               
            
             
             
               A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource.  This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet.  The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier.  This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme.  [STANDARDS-TRACK]
            
          
           
           
           
        
         
           
             The STRIDE Threat Model
             
               Microsoft
            
             
          
        
      
    
     
       Acknowledgements
       We would like to thank our working group chairs --  ,  , and   -- for their review comments and their support.
       We would like to thank the participants of the 2018 Berlin Software Updates for Internet of Things (SUIT) Hackathon and the June 2018 virtual design team meetings for their discussion input.
       In particular, we would like to thank  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , 
 ,  ,  ,  ,  ,  ,  ,  ,  , and  .
       We would like to thank those who contributed to the development of this information model. In particular, we would like to thank  ,  ,  ,  , and  .
       Finally, we would like to thank the following IESG members for their review feedback:  ,  ,  ,  ,  , and  .
    
     
       Authors' Addresses
       
         Arm Limited
         
           Brendan.Moran@arm.com
        
      
       
         Arm Limited
         
           hannes.tschofenig@gmx.net
        
      
       
         Fraunhofer SIT
         
           henk.birkholz@sit.fraunhofer.de
        
      
    
  


