
RFC 9363

A YANG Data Model for Static Context Header

Compression (SCHC)

Abstract

This document describes a YANG data model for the Static Context Header Compression (SCHC)

compression and fragmentation Rules.

This document formalizes the description of the Rules for better interoperability between SCHC

instances either to exchange a set of Rules or to modify the parameters of some Rules.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9363

Standards Track

March 2023

2070-1721

 A. Minaburo

Acklio

L. Toutain

IMT Atlantique

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Further information on Internet

Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9363

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Minaburo & Toutain Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9363
https://www.rfc-editor.org/info/rfc9363
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Requirements Language

3. Terminology

4. SCHC Rules

4.1. Compression Rules

4.2. Identifier Generation

4.3. Convention for Field Identifier

4.4. Convention for Field Length

4.5. Convention for Field Position

4.6. Convention for Direction Indicator

4.7. Convention for Target Value

4.8. Convention for Matching Operator

4.8.1. Matching Operator Arguments

4.9. Convention for Compression Decompression Actions

4.9.1. Compression Decompression Action Arguments

4.10. Fragmentation Rule

4.10.1. Fragmentation Mode

4.10.2. Fragmentation Header

4.10.3. Last Fragment Format

4.10.4. Acknowledgment Behavior

4.10.5. Timer Values

4.10.6. Fragmentation Parameter

4.10.7. Layer 2 Parameters

5. Rule Definition

5.1. Compression Rule

5.2. Fragmentation Rule

5.3. YANG Tree

6. YANG Data Model

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 2

7. IANA Considerations

7.1. URI Registration

7.2. YANG Module Name Registration

8. Security Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Example

Acknowledgments

Authors' Addresses

1. Introduction

SCHC is a compression and fragmentation mechanism for constrained networks defined in

. It is based on a static context shared by two entities at the boundary of the

constrained network. provides an informal representation of the Rules used either for

compression/decompression (C/D) or fragmentation/reassembly (F/R). The goal of this document

is to formalize the description of the Rules to offer:

the same definition on both ends, even if the internal representation is different, and

an update of the other end to set up some specific values (e.g., IPv6 prefix, destination

address, etc.).

 illustrates the exchange of Rules using the YANG data model.

This document defines a YANG data model to represent both compression and

fragmentation Rules, which leads to common representation for values for all the Rules'

elements.

[RFC8724]

[RFC8724]

•

•

[LPWAN-ARCH]

[RFC7950]

2. Requirements Language

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 3

App:

Bi:

CDA:

Context:

Dev:

DevIID:

DI:

Dw:

FID:

FL:

FP:

IID:

L2 Word:

MO:

3. Terminology

This section defines the terminology and acronyms used in this document. It extends the

terminology of .

Low-Power WAN (LPWAN) Application, as defined by . An application sending/

receiving packets to/from the Dev.

Bidirectional. Characterizes a Field Descriptor that applies to headers of packets traveling in

either direction (Up and Dw; see this glossary).

Compression/Decompression Action. Describes the pair of actions that are performed at

the compressor to compress a header field and at the decompressor to recover the original

value of the header field.

A set of Rules used to compress/decompress headers.

Device, as defined by .

Device Interface Identifier. The IID that identifies the Dev interface.

Direction Indicator. This field tells which direction of packet travel (Up, Dw, or Bi) a Field

Descriptor applies to. This allows for asymmetric processing, using the same Rule.

Downlink direction for compression/decompression, from SCHC C/D in the network to

SCHC C/D in the Dev.

Field Identifier or Field ID. This identifies the protocol and field a Field Descriptor applies

to.

Field Length. This is the length of the original packet header field. It is expressed as a

number of bits for header fields of fixed lengths or as a type (e.g., variable, token length, ...)

for Field Lengths that are unknown at the time of Rule creation. The length of a header field is

defined in the corresponding protocol specification (such as IPv6 or UDP).

Field Position. When a field is expected to appear multiple times in a header, the Field

Position specifies the occurrence this Field Descriptor applies to (for example, first Uri-Path

option, second Uri-Path, etc. in a Constrained Application Protocol (CoAP) header), counting

from 1. The value 0 is special and means "don't care" (see).

Interface Identifier. See the IPv6 addressing architecture .

This is the minimum subdivision of payload data that the Layer 2 (L2) will carry. In

most L2 technologies, the L2 Word is an octet. In bit-oriented radio technologies, the L2 Word

might be a single bit. The L2 Word size is assumed to be constant over time for each device.

Matching Operator. An operator used to match a value contained in a header field with a

value contained in a Rule.

[RFC8376]

[RFC8376]

[RFC8376]

Section 7.2 of [RFC8724]

[RFC7136]

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc8724#section-7.2

RuleID:

TV:

Up:

Rule Identifier. An identifier for a Rule. SCHC C/D on both sides share the same RuleID

for a given packet. A set of RuleIDs are used to support SCHC F/R functionality.

Target Value. A value contained in a Rule that will be matched with the value of a header

field.

Uplink direction for compression/decompression, from the Dev SCHC C/D to the network

SCHC C/D.

4. SCHC Rules

SCHC compression is generic; the main mechanism does not refer to a specific protocol. Any

header field is abstracted through a Field Identifier (FID), a position (FP), a direction (DI), and a

value that can be a numerical value or a string. and specify fields for IPv6

, UDP , and CoAP , including options defined for no server response

 and Object Security for Constrained RESTful Environments (OSCORE) . For

the latter, splits this field into subfields.

SCHC fragmentation requires a set of common parameters that are included in a Rule. These

parameters are defined in .

The YANG data model enables the compression and the fragmentation selection using the feature

statement.

[RFC8724] [RFC8824]

[RFC8200] [RFC0768] [RFC7252]

[RFC7967] [RFC8613]

[RFC8824]

[RFC8724]

4.1. Compression Rules

 proposes an informal representation of the compression Rule. A compression context

for a device is composed of a set of Rules. Each Rule contains information to describe a specific

field in the header to be compressed.

[RFC8724]

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 5

Figure 1: Compression Decompression Context

 +---+

 | Rule N |

 +---+|

 | Rule i ||

+---+||

| (FID) Rule 1 |||

|+-------+--+--+--+------------+-----------------+---------------+|||

||Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||||

|+-------+--+--+--+------------+-----------------+---------------+|||

||Field 2|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||||

|+-------+--+--+--+------------+-----------------+---------------+|||

||... |..|..|..| ... | ... | ... ||||

|+-------+--+--+--+------------+-----------------+---------------+||/

||Field N|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act|||

|+-------+--+--+--+------------+-----------------+---------------+|/

| |

\---/

4.2. Identifier Generation

Identifiers used in the SCHC YANG data model are from the identityref statement to ensure global

uniqueness and easy augmentation if needed. The principle to define a new type based on a

group of identityref is the following:

Define a main identity ending with the keyword base-type.

Derive all the identities used in the data model from this base type.

Create a typedef from this base type.

The example below (Figure 2) shows how an identityref is created for Reassembly Check

Sequence (RCS) algorithms used during SCHC fragmentation.

•

•

•

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 6

Figure 2: Principle to Define a Type Based on identityref

 identity rcs-algorithm-base-type {

 description

 "Identify which algorithm is used to compute RCS.

 The algorithm also defines the size of the RCS field.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 identity rcs-crc32 {

 base rcs-algorithm-base-type;

 description

 "CRC32 defined as default RCS in RFC 8724. This RCS is

 4 bytes long.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 typedef rcs-algorithm-type {

 type identityref {

 base rcs-algorithm-base-type;

 }

 description

 "Define the type for RCS algorithm in Rules.";

 }

4.3. Convention for Field Identifier

In the process of compression, the headers of the original packet are first parsed to create a list of

fields. This list of fields is matched against the Rules to find the appropriate Rule and apply

compression. does not state how the Field ID value is constructed. In examples,

identification is done through a string indexed by the protocol name (e.g., IPv6.version,

CoAP.version, etc.).

The current YANG data model includes field definitions found in and .

Using the YANG data model, each field be identified through a global YANG identityref.

A YANG Field ID for the protocol is always derived from the fid-base-type. Then, an identity for

each protocol is specified using the naming convention fid-<<protocol name>>-base-type. All

possible fields for this protocol derive from the protocol identity. The naming convention is

"fid-" followed by the protocol name and the field name. If a field has to be divided into subfields,

the field identity serves as a base.

The full field-id definition is found in Section 6. A type is defined for the IPv6 protocol, and each

field is based on it. Note that the Diffserv bits derive from the Traffic Class identity.

[RFC8724]

[RFC8724] [RFC8824]

MUST

MUST

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 7

4.4. Convention for Field Length

The Field Length is either an integer giving the size of a field in bits or a specific function.

 defines the "var" function, which allows variable-length fields (whose length is

expressed in bytes), and defines the "tkl" function for managing the CoAP Token

Length field.

The naming convention is "fl-" followed by the function name.

The Field Length function can be defined as an identityref, as described in Section 6. Therefore,

the type for the Field Length is a union between an integer giving the size of the length in bits

and the identityref.

[RFC8724]

[RFC8824]

4.5. Convention for Field Position

The Field Position is a positive integer that gives the occurrence times of a specific field from the

header start. The default value is 1 and is incremented at each repetition. Value 0 indicates that

the position is not important and is not considered during the Rule selection process.

The Field Position is a positive integer. The type is uint8.

4.6. Convention for Direction Indicator

The Direction Indicator is used to tell if a field appears in both directions (Bi) or only uplink (Up)

or Downlink (Dw). The naming convention is "di" followed by the Direction Indicator name.

The type is "di-type".

4.7. Convention for Target Value

The Target Value is a list of binary sequences of any length, aligned to the left. In the Rule, the

structure will be used as a list, with the index as a key. The highest index value is used to

compute the size of the index sent in residue for the match-mapping Compression

Decompression Action (CDA). The index can specify several values:

For equal and most significant bits (MSBs), the Target Value contains a single element.

Therefore, the index is set to 0.

For match-mapping, the Target Value can contain several elements. Index values start

from 0 and be contiguous.

If the header field contains text, the binary sequence uses the same encoding.

•

• MUST

MUST

4.8. Convention for Matching Operator

The Matching Operator (MO) is a function applied between a field value provided by the parsed

header and the Target Value. defines 4 MOs.

The naming convention is "mo-" followed by the MO name.

[RFC8724]

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 8

The type is "mo-type".

4.8.1. Matching Operator Arguments

They are viewed as a list, built with a tv-struct (see Section 4.7).

4.9. Convention for Compression Decompression Actions

The Compression Decompression Action (CDA) identifies the function to use for compression or

decompression. defines 7 CDAs.

The naming convention is "cda-" followed by the CDA name.

[RFC8724]

4.9.1. Compression Decompression Action Arguments

Currently no CDA requires arguments, but some CDAs may require one or several arguments in

the future. They are viewed as a list of target-value type.

4.10. Fragmentation Rule

Fragmentation is optional in the data model and depends on the presence of the "fragmentation"

feature.

Most of the fragmentation parameters are listed in .

Since fragmentation Rules work for a specific direction, they contain a mandatory

Direction Indicator. The type is the same as the one used in compression entries, but

bidirectional be used.

Appendix D of [RFC8724]

MUST

MUST NOT

4.10.1. Fragmentation Mode

 defines 3 fragmentation modes:

No ACK: This mode is unidirectional; no acknowledgment is sent back.

ACK Always: Each fragmentation window must be explicitly acknowledged before going to

the next.

ACK on Error: A window is acknowledged only when the receiver detects some missing

fragments.

The type is "fragmentation-mode-type". The naming convention is "fragmentation-mode-"

followed by the fragmentation mode name.

[RFC8724]

•

•

•

4.10.2. Fragmentation Header

A data fragment header, starting with the RuleID, can be sent in the fragmentation direction.

 indicates that the SCHC header may be composed of the following (cf. Figure 3):

a Datagram Tag (DTag) identifying the datagram being fragmented if the fragmentation

applies concurrently on several datagrams. This field is optional, and its length is defined by

the Rule.

[RFC8724]

•

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc8724#appendix-D

a Window (W) used in ACK-Always and ACK-on-Error modes. In ACK-Always, its size is 1. In

ACK-on-Error, it depends on the Rule. This field is not needed in No-ACK mode.

a Fragment Compressed Number (FCN) indicating the fragment/tile position within the

window. This field is mandatory on all modes defined in , and its size is defined by

the Rule.

•

•

[RFC8724]

Figure 3: Data Fragment Header from RFC 8724

|-- SCHC Fragment Header ----|

 |-- T --|-M-|-- N --|

+-- ... -+- ... -+---+- ... -+--------...-------+~~~~~~~~~~~~~~~~~~~~

| RuleID | DTag | W | FCN | Fragment Payload | padding (as needed)

+-- ... -+- ... -+---+- ... -+--------...-------+~~~~~~~~~~~~~~~~~~~~

4.10.3. Last Fragment Format

The last fragment of a datagram is sent with a Reassembly Check Sequence (RCS) field to detect

residual transmission errors and possible losses in the last window. defines a single

algorithm based on Ethernet CRC computation.

The naming convention is "rcs-" followed by the algorithm name.

For ACK-on-Error mode, the All-1 fragment may just contain the RCS or can include a tile. The

following parameters define the behavior:

all-1-data-no: The last fragment contains no data, just the RCS.

all-1-data-yes: The last fragment includes a single tile and the RCS.

all-1-data-sender-choice: The last fragment may or may not contain a single tile. The receiver

can detect if a tile is present.

The naming convention is "all-1-data-" followed by the behavior identifier.

[RFC8724]

•

•

•

4.10.4. Acknowledgment Behavior

The acknowledgment fragment header goes in the opposite direction of data. defines

the header, which is composed of the following (see Figure 4):

a DTag (if present).

a mandatory window, as in the data fragment.

a C bit giving the status of RCS validation. In case of failure, a bitmap follows, indicating the

received tile.

[RFC8724]

•

•

•

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 10

For ACK-on-Error, SCHC defines when an acknowledgment can be sent. This can be at any time

defined by the Layer 2, at the end of a window (FCN all-0), or as a response to receiving the last

fragment (FCN all-1). The naming convention is "ack-behavior" followed by the algorithm name.

Figure 4: Acknowledgment Fragment Header for RFC 8724

|--- SCHC ACK Header ----|

 |-- T --|-M-| 1 |

+-- ... -+- ... -+---+---+~~~~~~~~~~~~~~~~~~

| RuleID | DTag | W |C=1| padding as needed (success)

+-- ... -+- ... -+---+---+~~~~~~~~~~~~~~~~~~

+-- ... -+- ... -+---+---+------ ... ------+~~~~~~~~~~~~~~~

| RuleID | DTag | W |C=0|Compressed Bitmap| pad. as needed (failure)

+-- ... -+- ... -+---+---+------ ... ------+~~~~~~~~~~~~~~~

4.10.5. Timer Values

The state machine requires some common values to handle fragmentation correctly.

The Retransmission Timer gives the duration before sending an ACK request (cf.

). If specified, the value be strictly positive.

The Inactivity Timer gives the duration before aborting a fragmentation session (cf.

). The value 0 explicitly indicates that this timer is disabled.

 does not specify any range for these timers. recommends a duration of 12

hours. In fact, the value range should be between milliseconds for real-time systems to several

days for worse-than-best-effort systems. To allow a large range of applications, two parameters

must be specified:

the duration of a tick. It is computed by this formula: 2
tick-duration

/10
6
. When tick-duration is

set to 0, the unit is the microsecond. The default value of 20 leads to a unit of 1.048575

seconds. A value of 32 leads to a tick-duration of about 1 hour 11 minutes.

the number of ticks in the predefined unit. With the default tick-duration value of 20, the

timers can cover a range between 1.0 second and 19 hours, as recommended in .

• Section

8.2.2.4 of [RFC8724] MUST

• Section

8.2.2.4 of [RFC8724]

[RFC8724] [RFC9011]

•

•

[RFC9011]

4.10.6. Fragmentation Parameter

The SCHC fragmentation protocol specifies the number of attempts before aborting through the

parameter:

max-ack-requests (cf.) • Section 8.2.2.4 of [RFC8724]

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 11

https://www.rfc-editor.org/rfc/rfc8724#section-8.2.2.4
https://www.rfc-editor.org/rfc/rfc8724#section-8.2.2.4
https://www.rfc-editor.org/rfc/rfc8724#section-8.2.2.4
https://www.rfc-editor.org/rfc/rfc8724#section-8.2.2.4
https://www.rfc-editor.org/rfc/rfc8724#section-8.2.2.4

4.10.7. Layer 2 Parameters

The data model includes two parameters needed for fragmentation:

l2-word-size: base fragmentation, in bits, on a Layer 2 Word that can be of any

length. The default value is 8 and corresponds to the default value for the byte-aligned Layer

2. A value of 1 will indicate that there is no alignment and no need for padding.

maximum-packet-size: defines the maximum size of an uncompressed datagram. By default,

the value is set to 1280 bytes.

They are defined as unsigned integers; see Section 6.

• [RFC8724]

•

5. Rule Definition

A Rule is identified by a unique Rule Identifier (RuleID) comprising both a RuleID value and a

RuleID length. The YANG grouping rule-id-type defines the structure used to represent a RuleID.

A length of 0 is allowed to represent an implicit Rule.

Three natures of Rules are defined in :

Compression: A compression Rule is associated with the RuleID.

No-compression: This identifies the default Rule used to send a packet integrally when no-

compression Rule was found (see).

Fragmentation: Fragmentation parameters are associated with the RuleID. Fragmentation is

optional, and the feature "fragmentation" should be set.

The YANG data model respectively introduces these three identities :

nature-compression

nature-no-compression

nature-fragmentation

The naming convention is "nature-" followed by the nature identifier.

To access a specific Rule, the RuleID length and value are used as a key. The Rule is either a

compression or a fragmentation Rule.

[RFC8724]

•

•

Section 6 of [RFC8724]

•

•

•

•

5.1. Compression Rule

A compression Rule is composed of entries describing its processing. An entry contains all the

information defined in Figure 1 with the types defined above.

The compression Rule described Figure 1 is defined by compression-content. It defines a list of

compression-rule-entry, indexed by their Field ID, position, and direction. The compression-rule-

entry element represents a line in Figure 1. Their type reflects the identifier types defined in

Section 4.1.

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc8724#section-6

Some checks are performed on the values:

When MO is ignore, no Target Value is needed; for other MOs, there be a Target Value

present.

When MSB MO is specified, the matching-operator-value must be present.

• MUST

•

5.2. Fragmentation Rule

A fragmentation Rule is composed of entries describing the protocol behavior. Some on them are

numerical entries, others are identifiers defined in Section 4.10.

5.3. YANG Tree

The YANG data model described in this document conforms to the Network Management

Datastore Architecture defined in .[RFC8342]

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 13

Figure 5: Overview of the SCHC Data Model

module: ietf-schc

 +--rw schc

 +--rw rule* [rule-id-value rule-id-length]

 +--rw rule-id-value uint32

 +--rw rule-id-length uint8

 +--rw rule-nature nature-type

 +--rw (nature)?

 +--:(fragmentation) {fragmentation}?

 | +--rw fragmentation-mode

 | | schc:fragmentation-mode-type

 | +--rw l2-word-size? uint8

 | +--rw direction schc:di-type

 | +--rw dtag-size? uint8

 | +--rw w-size? uint8

 | +--rw fcn-size uint8

 | +--rw rcs-algorithm? rcs-algorithm-type

 | +--rw maximum-packet-size? uint16

 | +--rw window-size? uint16

 | +--rw max-interleaved-frames? uint8

 | +--rw inactivity-timer

 | | +--rw ticks-duration? uint8

 | | +--rw ticks-numbers? uint16

 | +--rw retransmission-timer

 | | +--rw ticks-duration? uint8

 | | +--rw ticks-numbers? uint16

 | +--rw max-ack-requests? uint8

 | +--rw (mode)?

 | +--:(no-ack)

 | +--:(ack-always)

 | +--:(ack-on-error)

 | +--rw tile-size? uint8

 | +--rw tile-in-all-1? schc:all-1-data-type

 | +--rw ack-behavior? schc:ack-behavior-type

 +--:(compression) {compression}?

 +--rw entry*

 [field-id field-position direction-indicator]

 +--rw field-id schc:fid-type

 +--rw field-length schc:fl-type

 +--rw field-position uint8

 +--rw direction-indicator schc:di-type

 +--rw target-value* [index]

 | +--rw index uint16

 | +--rw value? binary

 +--rw matching-operator schc:mo-type

 +--rw matching-operator-value* [index]

 | +--rw index uint16

 | +--rw value? binary

 +--rw comp-decomp-action schc:cda-type

 +--rw comp-decomp-action-value* [index]

 +--rw index uint16

 +--rw value? binary

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 14

6. YANG Data Model

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 15

<CODE BEGINS> file "ietf-schc@2023-03-01.yang"

module ietf-schc {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-schc";

 prefix schc;

 organization

 "IETF IPv6 over Low Power Wide-Area Networks (lpwan) Working

 Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/lpwan/about/>

 WG List: <mailto:lp-wan@ietf.org>

 Editor: Laurent Toutain

 <mailto:laurent.toutain@imt-atlantique.fr>

 Editor: Ana Minaburo

 <mailto:ana@ackl.io>";

 description

 "Copyright (c) 2023 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Revised BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9363

 (https://www.rfc-editor.org/info/rfc9363); see the RFC itself

 for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL

 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',

 'MAY', and 'OPTIONAL' in this document are to be interpreted as

 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,

 they appear in all capitals, as shown here.

 Generic data model for the Static Context Header Compression

 Rule for SCHC, based on RFCs 8724 and 8824. Including

 compression, no-compression, and fragmentation Rules.

 This module is a YANG data model for SCHC Rules (RFCs 8724 and

 8824). RFC 8724 describes compression Rules in an abstract

 way through a table.

 |---|

 | (FID) Rule 1 |

 |+-------+--+--+--+------------+-----------------+---------------+|

 ||Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||

 |+-------+--+--+--+------------+-----------------+---------------+|

 ||Field 2|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||

 |+-------+--+--+--+------------+-----------------+---------------+|

 ||... |..|..|..| ... | ... | ... ||

 |+-------+--+--+--+------------+-----------------+---------------+|

 ||Field N|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||

 |+-------+--+--+--+------------+-----------------+---------------+|

 |---|

 This module specifies a global data model that can be used for

 Rule exchanges or modification. It specifies both the data

 model format and the global identifiers used to describe some

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 16

 operations in fields.

 This data model applies to both compression and fragmentation.";

 revision 2023-03-01 {

 description

 "Initial version from RFC 9363.";

 reference

 "RFC 9363 A YANG Data Model for Static Context Header

 Compression (SCHC)";

 }

 feature compression {

 description

 "SCHC compression capabilities are taken into account.";

 }

 feature fragmentation {

 description

 "SCHC fragmentation capabilities are taken into account.";

 }

 // -------------------------

 // Field ID type definition

 //--------------------------

 // generic value TV definition

 identity fid-base-type {

 description

 "Field ID base type for all fields.";

 }

 identity fid-ipv6-base-type {

 base fid-base-type;

 description

 "Field ID base type for IPv6 headers described in RFC 8200.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-version {

 base fid-ipv6-base-type;

 description

 "IPv6 version field.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-trafficclass {

 base fid-ipv6-base-type;

 description

 "IPv6 Traffic Class field.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-trafficclass-ds {

 base fid-ipv6-trafficclass;

 description

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 17

 "IPv6 Traffic Class field: Diffserv field.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification,

 RFC 3168 The Addition of Explicit Congestion Notification

 (ECN) to IP";

 }

 identity fid-ipv6-trafficclass-ecn {

 base fid-ipv6-trafficclass;

 description

 "IPv6 Traffic Class field: ECN field.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification,

 RFC 3168 The Addition of Explicit Congestion Notification

 (ECN) to IP";

 }

 identity fid-ipv6-flowlabel {

 base fid-ipv6-base-type;

 description

 "IPv6 Flow Label field.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-payload-length {

 base fid-ipv6-base-type;

 description

 "IPv6 Payload Length field.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-nextheader {

 base fid-ipv6-base-type;

 description

 "IPv6 Next Header field.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-hoplimit {

 base fid-ipv6-base-type;

 description

 "IPv6 Next Header field.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-devprefix {

 base fid-ipv6-base-type;

 description

 "Corresponds to either the source address or the destination

 address prefix of RFC 8200 depending on whether it is an

 uplink or a downlink message.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 18

 identity fid-ipv6-deviid {

 base fid-ipv6-base-type;

 description

 "Corresponds to either the source address or the destination

 address IID of RFC 8200 depending on whether it is an uplink

 or a downlink message.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-appprefix {

 base fid-ipv6-base-type;

 description

 "Corresponds to either the source address or the destination

 address prefix of RFC 8200 depending on whether it is an

 uplink or a downlink message.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-ipv6-appiid {

 base fid-ipv6-base-type;

 description

 "Corresponds to either the source address or the destination

 address IID of RFC 8200 depending on whether it is an uplink

 or a downlink message.";

 reference

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";

 }

 identity fid-udp-base-type {

 base fid-base-type;

 description

 "Field ID base type for UDP headers described in RFC 768.";

 reference

 "RFC 768 User Datagram Protocol";

 }

 identity fid-udp-dev-port {

 base fid-udp-base-type;

 description

 "UDP source or destination port, if uplink or downlink

 communication, respectively.";

 reference

 "RFC 768 User Datagram Protocol";

 }

 identity fid-udp-app-port {

 base fid-udp-base-type;

 description

 "UDP destination or source port, if uplink or downlink

 communication, respectively.";

 reference

 "RFC 768 User Datagram Protocol";

 }

 identity fid-udp-length {

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 19

 base fid-udp-base-type;

 description

 "UDP length.";

 reference

 "RFC 768 User Datagram Protocol";

 }

 identity fid-udp-checksum {

 base fid-udp-base-type;

 description

 "UDP length.";

 reference

 "RFC 768 User Datagram Protocol";

 }

 identity fid-coap-base-type {

 base fid-base-type;

 description

 "Field ID base type for UDP headers described.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-version {

 base fid-coap-base-type;

 description

 "CoAP version.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-type {

 base fid-coap-base-type;

 description

 "CoAP type.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-tkl {

 base fid-coap-base-type;

 description

 "CoAP token length.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-code {

 base fid-coap-base-type;

 description

 "CoAP code.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-code-class {

 base fid-coap-code;

 description

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 20

 "CoAP code class.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-code-detail {

 base fid-coap-code;

 description

 "CoAP code detail.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-mid {

 base fid-coap-base-type;

 description

 "CoAP message ID.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-token {

 base fid-coap-base-type;

 description

 "CoAP token.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option {

 base fid-coap-base-type;

 description

 "Generic CoAP option.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-if-match {

 base fid-coap-option;

 description

 "CoAP option If-Match.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-uri-host {

 base fid-coap-option;

 description

 "CoAP option Uri-Host.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-etag {

 base fid-coap-option;

 description

 "CoAP option ETag.";

 reference

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 21

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-if-none-match {

 base fid-coap-option;

 description

 "CoAP option if-none-match.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-observe {

 base fid-coap-option;

 description

 "CoAP option Observe.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-uri-port {

 base fid-coap-option;

 description

 "CoAP option Uri-Port.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-location-path {

 base fid-coap-option;

 description

 "CoAP option Location-Path.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-uri-path {

 base fid-coap-option;

 description

 "CoAP option Uri-Path.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-content-format {

 base fid-coap-option;

 description

 "CoAP option Content Format.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-max-age {

 base fid-coap-option;

 description

 "CoAP option Max-Age.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 22

 identity fid-coap-option-uri-query {

 base fid-coap-option;

 description

 "CoAP option Uri-Query.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-accept {

 base fid-coap-option;

 description

 "CoAP option Accept.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-location-query {

 base fid-coap-option;

 description

 "CoAP option Location-Query.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-block2 {

 base fid-coap-option;

 description

 "CoAP option Block2.";

 reference

 "RFC 7959 Block-Wise Transfers in the Constrained

 Application Protocol (CoAP)";

 }

 identity fid-coap-option-block1 {

 base fid-coap-option;

 description

 "CoAP option Block1.";

 reference

 "RFC 7959 Block-Wise Transfers in the Constrained

 Application Protocol (CoAP)";

 }

 identity fid-coap-option-size2 {

 base fid-coap-option;

 description

 "CoAP option Size2.";

 reference

 "RFC 7959 Block-Wise Transfers in the Constrained

 Application Protocol (CoAP)";

 }

 identity fid-coap-option-proxy-uri {

 base fid-coap-option;

 description

 "CoAP option Proxy-Uri.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 23

 }

 identity fid-coap-option-proxy-scheme {

 base fid-coap-option;

 description

 "CoAP option Proxy-Scheme.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-size1 {

 base fid-coap-option;

 description

 "CoAP option Size1.";

 reference

 "RFC 7252 The Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-no-response {

 base fid-coap-option;

 description

 "CoAP option No response.";

 reference

 "RFC 7967 Constrained Application Protocol (CoAP)

 Option for No Server Response";

 }

 identity fid-oscore-base-type {

 base fid-coap-option;

 description

 "OSCORE options (RFC8613) split in suboptions.";

 reference

 "RFC 8824 Static Context Header Compression (SCHC) for the

 Constrained Application Protocol (CoAP)";

 }

 identity fid-coap-option-oscore-flags {

 base fid-coap-option;

 description

 "CoAP option OSCORE flags.";

 reference

 "RFC 8824 Static Context Header Compression (SCHC) for the

 Constrained Application Protocol (CoAP) (see

 Section 6.4)";

 }

 identity fid-coap-option-oscore-piv {

 base fid-coap-option;

 description

 "CoAP option OSCORE flags.";

 reference

 "RFC 8824 Static Context Header Compression (SCHC) for the

 Constrained Application Protocol (CoAP) (see

 Section 6.4)";

 }

 identity fid-coap-option-oscore-kid {

 base fid-coap-option;

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 24

 description

 "CoAP option OSCORE flags.";

 reference

 "RFC 8824 Static Context Header Compression (SCHC) for the

 Constrained Application Protocol (CoAP) (see

 Section 6.4)";

 }

 identity fid-coap-option-oscore-kidctx {

 base fid-coap-option;

 description

 "CoAP option OSCORE flags.";

 reference

 "RFC 8824 Static Context Header Compression (SCHC) for the

 Constrained Application Protocol (CoAP)(see

 Section 6.4)";

 }

 //----------------------------------

 // Field Length type definition

 //----------------------------------

 identity fl-base-type {

 description

 "Used to extend Field Length functions.";

 }

 identity fl-variable {

 base fl-base-type;

 description

 "Residue length in bytes is sent as defined for CoAP.";

 reference

 "RFC 8824 Static Context Header Compression (SCHC) for the

 Constrained Application Protocol (CoAP) (see

 Section 5.3)";

 }

 identity fl-token-length {

 base fl-base-type;

 description

 "Residue length in bytes is sent as defined for CoAP.";

 reference

 "RFC 8824 Static Context Header Compression (SCHC) for the

 Constrained Application Protocol (CoAP) (see

 Section 4.5)";

 }

 //---------------------------------

 // Direction Indicator type

 //---------------------------------

 identity di-base-type {

 description

 "Used to extend Direction Indicators.";

 }

 identity di-bidirectional {

 base di-base-type;

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 25

 description

 "Direction Indicator of bidirectionality.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.1)";

 }

 identity di-up {

 base di-base-type;

 description

 "Direction Indicator of uplink.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.1)";

 }

 identity di-down {

 base di-base-type;

 description

 "Direction Indicator of downlink.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.1)";

 }

 //----------------------------------

 // Matching Operator type definition

 //----------------------------------

 identity mo-base-type {

 description

 "Matching Operator: used in the Rule selection process

 to check if a Target Value matches the field's value.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.2)";

 }

 identity mo-equal {

 base mo-base-type;

 description

 "equal MO.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.3)";

 }

 identity mo-ignore {

 base mo-base-type;

 description

 "ignore MO.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 26

 Header Compression and Fragmentation (see

 Section 7.3)";

 }

 identity mo-msb {

 base mo-base-type;

 description

 "MSB MO.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.3)";

 }

 identity mo-match-mapping {

 base mo-base-type;

 description

 "match-mapping MO.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.3)";

 }

 //------------------------------

 // CDA type definition

 //------------------------------

 identity cda-base-type {

 description

 "Compression Decompression Actions. Specify the action to

 be applied to the field's value in a specific Rule.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.2)";

 }

 identity cda-not-sent {

 base cda-base-type;

 description

 "not-sent CDA.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.4)";

 }

 identity cda-value-sent {

 base cda-base-type;

 description

 "value-sent CDA.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.4)";

 }

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 27

 identity cda-lsb {

 base cda-base-type;

 description

 "Least Significant Bit (LSB) CDA.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.4)";

 }

 identity cda-mapping-sent {

 base cda-base-type;

 description

 "mapping-sent CDA.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.4)";

 }

 identity cda-compute {

 base cda-base-type;

 description

 "compute-* CDA.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.4)";

 }

 identity cda-deviid {

 base cda-base-type;

 description

 "DevIID CDA.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.4)";

 }

 identity cda-appiid {

 base cda-base-type;

 description

 "Application Interface Identifier (AppIID) CDA.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context

 Header Compression and Fragmentation (see

 Section 7.4)";

 }

 // -- type definition

 typedef fid-type {

 type identityref {

 base fid-base-type;

 }

 description

 "Field ID generic type.";

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 28

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 typedef fl-type {

 type identityref {

 base fl-base-type;

 }

 description

 "Function used to indicate Field Length.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 typedef di-type {

 type identityref {

 base di-base-type;

 }

 description

 "Direction in LPWAN network: up when emitted by the device,

 down when received by the device, or bi when emitted or

 received by the device.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 typedef mo-type {

 type identityref {

 base mo-base-type;

 }

 description

 "Matching Operator (MO) to compare field values with

 Target Values.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 typedef cda-type {

 type identityref {

 base cda-base-type;

 }

 description

 "Compression Decompression Action to compress or

 decompress a field.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 // -- FRAGMENTATION TYPE

 // -- fragmentation modes

 identity fragmentation-mode-base-type {

 description

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 29

 "Define the fragmentation mode.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 identity fragmentation-mode-no-ack {

 base fragmentation-mode-base-type;

 description

 "No-ACK mode.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 identity fragmentation-mode-ack-always {

 base fragmentation-mode-base-type;

 description

 "ACK-Always mode.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 identity fragmentation-mode-ack-on-error {

 base fragmentation-mode-base-type;

 description

 "ACK-on-Error mode.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 typedef fragmentation-mode-type {

 type identityref {

 base fragmentation-mode-base-type;

 }

 description

 "Define the type used for fragmentation mode in Rules.";

 }

 // -- Ack behavior

 identity ack-behavior-base-type {

 description

 "Define when to send an Acknowledgment.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 identity ack-behavior-after-all-0 {

 base ack-behavior-base-type;

 description

 "Fragmentation expects ACK after sending All-0 fragment.";

 }

 identity ack-behavior-after-all-1 {

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 30

 base ack-behavior-base-type;

 description

 "Fragmentation expects ACK after sending All-1 fragment.";

 }

 identity ack-behavior-by-layer2 {

 base ack-behavior-base-type;

 description

 "Layer 2 defines when to send an ACK.";

 }

 typedef ack-behavior-type {

 type identityref {

 base ack-behavior-base-type;

 }

 description

 "Define the type used for ACK behavior in Rules.";

 }

 // -- All-1 with data types

 identity all-1-data-base-type {

 description

 "Type to define when to send an Acknowledgment message.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 identity all-1-data-no {

 base all-1-data-base-type;

 description

 "All-1 contains no tiles.";

 }

 identity all-1-data-yes {

 base all-1-data-base-type;

 description

 "All-1 MUST contain a tile.";

 }

 identity all-1-data-sender-choice {

 base all-1-data-base-type;

 description

 "Fragmentation process chooses to send tiles or not in All-1.";

 }

 typedef all-1-data-type {

 type identityref {

 base all-1-data-base-type;

 }

 description

 "Define the type used for All-1 format in Rules.";

 }

 // -- RCS algorithm types

 identity rcs-algorithm-base-type {

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 31

 description

 "Identify which algorithm is used to compute RCS.

 The algorithm also defines the size of the RCS field.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 identity rcs-crc32 {

 base rcs-algorithm-base-type;

 description

 "CRC32 defined as default RCS in RFC 8724. This RCS is

 4 bytes long.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 typedef rcs-algorithm-type {

 type identityref {

 base rcs-algorithm-base-type;

 }

 description

 "Define the type for RCS algorithm in Rules.";

 }

 // -------- RULE ENTRY DEFINITION ------------

 grouping tv-struct {

 description

 "Defines the Target Value element. If the header field

 contains a text, the binary sequence uses the same encoding.

 field-id allows the conversion to the appropriate type.";

 leaf index {

 type uint16;

 description

 "Index gives the position in the matching list. If only one

 element is present, index is 0. Otherwise, index is the

 order in the matching list, starting at 0.";

 }

 leaf value {

 type binary;

 description

 "Target Value content as an untyped binary value.";

 }

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 grouping compression-rule-entry {

 description

 "These entries define a compression entry (i.e., a line),

 as defined in RFC 8724.

 +-------+--+--+--+------------+-----------------+---------------+

 |Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act|

 +-------+--+--+--+------------+-----------------+---------------+

 An entry in a compression Rule is composed of 7 elements:

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 32

 - Field ID: the header field to be compressed

 - Field Length : either a positive integer or a function

 - Field Position: a positive (and possibly equal to 0)

 integer

 - Direction Indicator: an indication in which direction the

 compression and decompression process is effective

 - Target Value: a value against which the header field is

 compared

 - Matching Operator: the comparison operation and optional

 associate parameters

 - Comp./Decomp. Action: the compression or decompression

 action and optional parameters

 ";

 leaf field-id {

 type schc:fid-type;

 mandatory true;

 description

 "Field ID, identify a field in the header with a YANG

 identity reference.";

 }

 leaf field-length {

 type union {

 type uint8;

 type schc:fl-type;

 }

 mandatory true;

 description

 "Field Length, expressed in number of bits if the length is

 known when the Rule is created or through a specific

 function if the length is variable.";

 }

 leaf field-position {

 type uint8;

 mandatory true;

 description

 "Field Position in the header is an integer. Position 1

 matches the first occurrence of a field in the header,

 while incremented position values match subsequent

 occurrences.

 Position 0 means that this entry matches a field

 irrespective of its position of occurrence in the

 header.

 Be aware that the decompressed header may have

 position-0 fields ordered differently than they

 appeared in the original packet.";

 }

 leaf direction-indicator {

 type schc:di-type;

 mandatory true;

 description

 "Direction Indicator, indicate if this field must be

 considered for Rule selection or ignored based on the

 direction (bidirectional, only uplink, or only

 downlink).";

 }

 list target-value {

 key "index";

 uses tv-struct;

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 33

 description

 "A list of values to compare with the header field value.

 If Target Value is a singleton, position must be 0.

 For use as a matching list for the mo-match-mapping Matching

 Operator, index should take consecutive values starting

 from 0.";

 }

 leaf matching-operator {

 type schc:mo-type;

 must "../target-value or derived-from-or-self(.,

 'mo-ignore')" {

 error-message

 "mo-equal, mo-msb, and mo-match-mapping need target-value";

 description

 "target-value is not required for mo-ignore.";

 }

 must "not (derived-from-or-self(., 'mo-msb')) or

 ../matching-operator-value" {

 error-message "mo-msb requires length value";

 }

 mandatory true;

 description

 "MO: Matching Operator.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation (see Section 7.3)";

 }

 list matching-operator-value {

 key "index";

 uses tv-struct;

 description

 "Matching Operator Arguments, based on TV structure to allow

 several arguments.

 In RFC 8724, only the MSB Matching Operator needs arguments

 (a single argument, which is the number of most significant

 bits to be matched).";

 }

 leaf comp-decomp-action {

 type schc:cda-type;

 must "../target-value or

 derived-from-or-self(., 'cda-value-sent') or

 derived-from-or-self(., 'cda-compute') or

 derived-from-or-self(., 'cda-appiid') or

 derived-from-or-self(., 'cda-deviid')" {

 error-message

 "cda-not-sent, cda-lsb, and cda-mapping-sent need

 target-value";

 description

 "target-value is not required for some CDA.";

 }

 mandatory true;

 description

 "CDA: Compression Decompression Action.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation (see Section 7.4)";

 }

 list comp-decomp-action-value {

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 34

 key "index";

 uses tv-struct;

 description

 "CDA arguments, based on a TV structure, in order to allow

 for several arguments. The CDAs specified in RFC 8724

 require no argument.";

 }

 }

 // --Rule nature

 identity nature-base-type {

 description

 "A Rule, identified by its RuleID, is used for a single

 purpose. RFC 8724 defines 3 natures:

 compression, no-compression, and fragmentation.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation (see Section 6)";

 }

 identity nature-compression {

 base nature-base-type;

 description

 "Identify a compression Rule.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation (see Section 6)";

 }

 identity nature-no-compression {

 base nature-base-type;

 description

 "Identify a no-compression Rule.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation (see Section 6)";

 }

 identity nature-fragmentation {

 base nature-base-type;

 description

 "Identify a fragmentation Rule.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation (see Section 6)";

 }

 typedef nature-type {

 type identityref {

 base nature-base-type;

 }

 description

 "Defines the type to indicate the nature of the Rule.";

 }

 grouping compression-content {

 list entry {

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 35

 must "derived-from-or-self(../rule-nature,

 'nature-compression')" {

 error-message "Rule nature must be compression";

 }

 key "field-id field-position direction-indicator";

 uses compression-rule-entry;

 description

 "A compression Rule is a list of Rule entries, each

 describing a header field. An entry is identified

 through a field-id, its position in the packet, and

 its direction.";

 }

 description

 "Define a compression Rule composed of a list of entries.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 grouping fragmentation-content {

 description

 "This grouping defines the fragmentation parameters for

 all the modes (No ACK, ACK Always, and ACK on Error) specified

 in RFC 8724.";

 leaf fragmentation-mode {

 type schc:fragmentation-mode-type;

 must "derived-from-or-self(../rule-nature,

 'nature-fragmentation')" {

 error-message "Rule nature must be fragmentation";

 }

 mandatory true;

 description

 "Which fragmentation mode is used (No ACK, ACK Always, or

 ACK on Error).";

 }

 leaf l2-word-size {

 type uint8;

 default "8";

 description

 "Size, in bits, of the Layer 2 Word.";

 }

 leaf direction {

 type schc:di-type;

 must "derived-from-or-self(., 'di-up') or

 derived-from-or-self(., 'di-down')" {

 error-message

 "Direction for fragmentation Rules are up or down.";

 }

 mandatory true;

 description

 "MUST be up or down, bidirectional MUST NOT be used.";

 }

 // SCHC Frag header format

 leaf dtag-size {

 type uint8;

 default "0";

 description

 "Size, in bits, of the DTag field (T variable from

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 36

 RFC 8724).";

 }

 leaf w-size {

 when "derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-on-error')

 or

 derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-always') ";

 type uint8;

 description

 "Size, in bits, of the window field (M variable from

 RFC 8724).";

 }

 leaf fcn-size {

 type uint8;

 mandatory true;

 description

 "Size, in bits, of the FCN field (N variable from

 RFC 8724).";

 }

 leaf rcs-algorithm {

 type rcs-algorithm-type;

 default "schc:rcs-crc32";

 description

 "Algorithm used for RCS. The algorithm specifies the RCS

 size.";

 }

 // SCHC fragmentation protocol parameters

 leaf maximum-packet-size {

 type uint16;

 default "1280";

 description

 "When decompression is done, packet size must not

 strictly exceed this limit, expressed in bytes.";

 }

 leaf window-size {

 type uint16;

 description

 "By default, if not specified, the FCN value is 2^w-size - 1.

 This value should not be exceeded. Possible FCN values

 are between 0 and window-size - 1.";

 }

 leaf max-interleaved-frames {

 type uint8;

 default "1";

 description

 "Maximum of simultaneously fragmented frames. Maximum value

 is 2^dtag-size. All DTag values can be used, but more than

 max-interleaved-frames MUST NOT be active at any time.";

 }

 container inactivity-timer {

 leaf ticks-duration {

 type uint8;

 default "20";

 description

 "Duration of one tick in microseconds:

 2^ticks-duration/10^6 = 1.048s.";

 }

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 37

 leaf ticks-numbers {

 type uint16 {

 range "0..max";

 }

 description

 "Timer duration = ticks-numbers*2^ticks-duration / 10^6.";

 }

 description

 "Duration in seconds of the Inactivity Timer; 0 indicates

 that the timer is disabled.

 Allows a precision from microsecond to year by sending the

 tick-duration value. For instance:

 tick-duration: smallest value <-> highest value

 20: 00y 000d 00h 00m 01s.048575<->00y 000d 19h 05m 18s.428159

 21: 00y 000d 00h 00m 02s.097151<->00y 001d 14h 10m 36s.856319

 22: 00y 000d 00h 00m 04s.194303<->00y 003d 04h 21m 13s.712639

 23: 00y 000d 00h 00m 08s.388607<->00y 006d 08h 42m 27s.425279

 24: 00y 000d 00h 00m 16s.777215<->00y 012d 17h 24m 54s.850559

 25: 00y 000d 00h 00m 33s.554431<->00y 025d 10h 49m 49s.701119

 Note that the smallest value is also the incrementation

 step.";

 }

 container retransmission-timer {

 leaf ticks-duration {

 type uint8;

 default "20";

 description

 "Duration of one tick in microseconds:

 2^ticks-duration/10^6 = 1.048s.";

 }

 leaf ticks-numbers {

 type uint16 {

 range "1..max";

 }

 description

 "Timer duration = ticks-numbers*2^ticks-duration / 10^6.";

 }

 when "derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-on-error')

 or

 derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-always') ";

 description

 "Duration in seconds of the Retransmission Timer.

 See the Inactivity Timer.";

 }

 leaf max-ack-requests {

 when "derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-on-error')

 or

 derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-always') ";

 type uint8 {

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 38

 range "1..max";

 }

 description

 "The maximum number of retries for a specific SCHC ACK.";

 }

 choice mode {

 case no-ack;

 case ack-always;

 case ack-on-error {

 leaf tile-size {

 when "derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-on-error')";

 type uint8;

 description

 "Size, in bits, of tiles. If not specified or set to 0,

 tiles fill the fragment.";

 }

 leaf tile-in-all-1 {

 when "derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-on-error')";

 type schc:all-1-data-type;

 description

 "Defines whether the sender and receiver expect a tile in

 All-1 fragments or not, or if it is left to the sender's

 choice.";

 }

 leaf ack-behavior {

 when "derived-from-or-self(../fragmentation-mode,

 'fragmentation-mode-ack-on-error')";

 type schc:ack-behavior-type;

 description

 "Sender behavior to acknowledge, after All-0 or All-1 or

 when the LPWAN allows it.";

 }

 }

 description

 "RFC 8724 defines 3 fragmentation modes.";

 }

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 // Define RuleID. RuleID is composed of a RuleID value and a

 // RuleID length

 grouping rule-id-type {

 leaf rule-id-value {

 type uint32;

 description

 "RuleID value. This value must be unique, considering its

 length.";

 }

 leaf rule-id-length {

 type uint8 {

 range "0..32";

 }

 description

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 39

Figure 6: SCHC YANG Data Model

 "RuleID length, in bits. The value 0 is for implicit

 Rules.";

 }

 description

 "A RuleID is composed of a value and a length, expressed in

 bits.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

 // SCHC table for a specific device.

 container schc {

 list rule {

 key "rule-id-value rule-id-length";

 uses rule-id-type;

 leaf rule-nature {

 type nature-type;

 mandatory true;

 description

 "Specify the Rule's nature.";

 }

 choice nature {

 case fragmentation {

 if-feature "fragmentation";

 uses fragmentation-content;

 }

 case compression {

 if-feature "compression";

 uses compression-content;

 }

 description

 "A Rule is for compression, for no-compression, or for

 fragmentation.";

 }

 description

 "Set of compression, no-compression, or fragmentation

 Rules identified by their rule-id.";

 }

 description

 "A SCHC set of Rules is composed of a list of Rules that are

 used for compression, no-compression, or fragmentation.";

 reference

 "RFC 8724 SCHC: Generic Framework for Static Context Header

 Compression and Fragmentation";

 }

}

<CODE ENDS>

7. IANA Considerations

This document registers one URI and one YANG data model.

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 40

URI:

Registrant Contact:

XML:

7.1. URI Registration

IANA registered the following URI in the "IETF XML Registry" :

urn:ietf:params:xml:ns:yang:ietf-schc

The IESG.

N/A; the requested URI is an XML namespace.

[RFC3688]

name:

namespace:

prefix:

reference:

7.2. YANG Module Name Registration

IANA has registered the following YANG data model in the "YANG Module Names" registry

.

ietf-schc

urn:ietf:params:xml:ns:yang:ietf-schc

schc

RFC 9363

[RFC6020]

/schc:

8. Security Considerations

The YANG module specified in this document defines a schema for data that is designed to be

accessed via network management protocols such as NETCONF or RESTCONF

. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-

implement secure transport is Secure Shell (SSH) . The lowest RESTCONF layer is

HTTPS, and the mandatory-to-implement secure transport is TLS .

The Network Configuration Access Control Model (NACM) provides the means to

restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all

available NETCONF or RESTCONF protocol operations and content.

There are a number of data nodes defined in this YANG module that are writable/creatable/

deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or

vulnerable in some network environments. Write operations (e.g., edit-config) to these data

nodes without proper protection can have a negative effect on network operations. These are the

subtrees and data nodes and their sensitivity/vulnerability:

All the data nodes may be modified. The Rule contains sensitive information, such as the

application IPv6 address where the device's data will be sent after decompression. An

attacker may try to modify other devices' Rules by changing the application address and may

block communication or allows traffic eavesdropping. Therefore, a device must be allowed to

modify only its own rules on the remote SCHC instance. The identity of the requester must be

validated. This can be done through certificates or access lists. Modification may be allowed

regarding the Field Descriptor (i.e., IPv6 addresses field descriptors should not be modified,

but UDP dev port could be changed).

[RFC6241]

[RFC8040]

[RFC6242]

[RFC8446]

[RFC8341]

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 41

[RFC0768]

[RFC2119]

[RFC3688]

[RFC6020]

[RFC6241]

[RFC6242]

[RFC7136]

[RFC7252]

[RFC8040]

[RFC8174]

9. References

9.1. Normative References

, , , , ,

August 1980, .

, , ,

, , March 1997,

.

, , , , ,

January 2004, .

,

, , , October

2010, .

, , , and ,

, , ,

June 2011, .

, ,

, , June 2011,

.

 and , , ,

, February 2014,

.

, , and ,

, , , June 2014,

.

, , and , , ,

, January 2017, .

, ,

, , , May 2017,

.

/schc:

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable

in some network environments. It is thus important to control read access (e.g., via get, get-

config, or notification) to these data nodes. These are the subtrees and data nodes and their

sensitivity/vulnerability:

By reading a module, an attacker may learn the traffic generated by a device and can also

learn about application addresses or REST API.

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768

<https://www.rfc-editor.org/info/rfc768>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688

<https://www.rfc-editor.org/info/rfc3688>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network

Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.

"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Wasserman, M. "Using the NETCONF Protocol over Secure Shell (SSH)" RFC

6242 DOI 10.17487/RFC6242 <https://www.rfc-editor.org/info/

rfc6242>

Carpenter, B. S. Jiang "Significance of IPv6 Interface Identifiers" RFC 7136

DOI 10.17487/RFC7136 <https://www.rfc-editor.org/info/

rfc7136>

Shelby, Z. Hartke, K. C. Bormann "The Constrained Application Protocol

(CoAP)" RFC 7252 DOI 10.17487/RFC7252 <https://www.rfc-

editor.org/info/rfc7252>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI

10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 42

https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc7136
https://www.rfc-editor.org/info/rfc7136
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8200]

[RFC8341]

[RFC8342]

[RFC8446]

[RFC8613]

[RFC8724]

[RFC8824]

[LPWAN-ARCH]

[RFC7950]

[RFC7967]

[RFC8376]

[RFC9011]

 and , ,

, , , July 2017,

.

 and , ,

, , , March 2018,

.

, , , , and ,

, , ,

March 2018, .

, , ,

, August 2018, .

, , , and ,

, ,

, July 2019, .

, , , , and ,

,

, , April 2020,

.

, , and ,

, ,

, June 2021, .

9.2. Informative References

, , and ,

, ,

, 30 June 2022,

.

, , ,

, August 2016, .

, , , and ,

, ,

, August 2016, .

, , ,

, May 2018, .

 and ,

, , , April

2021, .

Deering, S. R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD

86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/

rfc8200>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"

STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-

editor.org/info/rfc8341>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network

Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446

DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Selander, G. Mattsson, J. Palombini, F. L. Seitz "Object Security for

Constrained RESTful Environments (OSCORE)" RFC 8613 DOI 10.17487/

RFC8613 <https://www.rfc-editor.org/info/rfc8613>

Minaburo, A. Toutain, L. Gomez, C. Barthel, D. JC. Zuniga "SCHC: Generic

Framework for Static Context Header Compression and Fragmentation" RFC

8724 DOI 10.17487/RFC8724 <https://www.rfc-editor.org/info/

rfc8724>

Minaburo, A. Toutain, L. R. Andreasen "Static Context Header

Compression (SCHC) for the Constrained Application Protocol (CoAP)" RFC 8824

DOI 10.17487/RFC8824 <https://www.rfc-editor.org/info/rfc8824>

Pelov, A. Thubert, P. A. Minaburo "LPWAN Static Context Header

Compression (SCHC) Architecture" Work in Progress Internet-Draft, draft-ietf-

lpwan-architecture-02 <https://datatracker.ietf.org/doc/html/draft-

ietf-lpwan-architecture-02>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI

10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bhattacharyya, A. Bandyopadhyay, S. Pal, A. T. Bose "Constrained

Application Protocol (CoAP) Option for No Server Response" RFC 7967 DOI

10.17487/RFC7967 <https://www.rfc-editor.org/info/rfc7967>

Farrell, S., Ed. "Low-Power Wide Area Network (LPWAN) Overview" RFC 8376

DOI 10.17487/RFC8376 <https://www.rfc-editor.org/info/rfc8376>

Gimenez, O., Ed. I. Petrov, Ed. "Static Context Header Compression and

Fragmentation (SCHC) over LoRaWAN" RFC 9011 DOI 10.17487/RFC9011

<https://www.rfc-editor.org/info/rfc9011>

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 43

https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8613
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8824
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-architecture-02
https://datatracker.ietf.org/doc/html/draft-ietf-lpwan-architecture-02
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7967
https://www.rfc-editor.org/info/rfc8376
https://www.rfc-editor.org/info/rfc9011

Appendix A. Example

The informal Rules given Figure 7 are represented in XML, as shown in Figure 8.

Figure 7: Rules Example

/-------------------------\

|Rule 6/3 110 |

|---------------+---+--+--+----------------+-------+----------------\

|IPV6.VER | 4| 1|BI| 6|EQUAL |NOT-SENT |

|IPV6.TC | 8| 1|BI| 0|EQUAL |NOT-SENT |

|IPV6.FL | 20| 1|BI| 0|IGNORE |NOT-SENT |

|IPV6.LEN | 16| 1|BI| |IGNORE |COMPUTE-LENGTH |

|IPV6.NXT | 8| 1|BI| 58|EQUAL |NOT-SENT |

|IPV6.HOP_LMT | 8| 1|BI| 255|IGNORE |NOT-SENT |

|IPV6.DEV_PREFIX| 64| 1|BI|200104701f2101d2|EQUAL |NOT-SENT |

|IPV6.DEV_IID | 64| 1|BI|0000000000000003|EQUAL |NOT-SENT |

|IPV6.APP_PREFIX| 64| 1|BI| |IGNORE |VALUE-SENT |

|IPV6.APP_IID | 64| 1|BI| |IGNORE |VALUE-SENT |

\---------------+---+--+--+----------------+-------+----------------/

/-------------------------\

|Rule 12/11 00001100 |

!=========================+===\

!^ Fragmentation mode : NoAck header dtag 2 Window 0 FCN 3 UP ^!

!^ No Tile size specified ^!

!^ RCS Algorithm: RCS_CRC32 ^!

\===/

/-------------------------\

|Rule 100/8 01100100 |

| NO-COMPRESSION RULE |

\-------------------------/

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 44

<?xml version='1.0' encoding='UTF-8'?>

 <schc xmlns="urn:ietf:params:xml:ns:yang:ietf-schc">

 <rule>

 <rule-id-value>6</rule-id-value>

 <rule-id-length>3</rule-id-length>

 <rule-nature>nature-compression</rule-nature>

 <entry>

 <field-id>fid-ipv6-version</field-id>

 <field-length>4</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-equal</matching-operator>

 <comp-decomp-action>cda-not-sent</comp-decomp-action>

 <target-value>

 <index>0</index>

 <value>AAY=</value>

 </target-value>

 </entry>

 <entry>

 <field-id>fid-ipv6-trafficclass</field-id>

 <field-length>8</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-equal</matching-operator>

 <comp-decomp-action>cda-not-sent</comp-decomp-action>

 <target-value>

 <index>0</index>

 <value>AA==</value>

 </target-value>

 </entry>

 <entry>

 <field-id>fid-ipv6-flowlabel</field-id>

 <field-length>20</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-ignore</matching-operator>

 <comp-decomp-action>cda-not-sent</comp-decomp-action>

 <target-value>

 <index>0</index>

 <value>AA==</value>

 </target-value>

 </entry>

 <entry>

 <field-id>fid-ipv6-payload-length</field-id>

 <field-length>16</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-ignore</matching-operator>

 <comp-decomp-action>cda-compute</comp-decomp-action>

 </entry>

 <entry>

 <field-id>fid-ipv6-nextheader</field-id>

 <field-length>8</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-equal</matching-operator>

 <comp-decomp-action>cda-not-sent</comp-decomp-action>

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 45

 <target-value>

 <index>0</index>

 <value>ADo=</value>

 </target-value>

 </entry>

 <entry>

 <field-id>fid-ipv6-hoplimit</field-id>

 <field-length>8</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-ignore</matching-operator>

 <comp-decomp-action>cda-not-sent</comp-decomp-action>

 <target-value>

 <index>0</index>

 <value>AP8=</value>

 </target-value>

 </entry>

 <entry>

 <field-id>fid-ipv6-devprefix</field-id>

 <field-length>64</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-equal</matching-operator>

 <comp-decomp-action>cda-not-sent</comp-decomp-action>

 <target-value>

 <index>0</index>

 <value>IAEEcB8hAdI=</value>

 </target-value>

 </entry>

 <entry>

 <field-id>fid-ipv6-deviid</field-id>

 <field-length>64</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-equal</matching-operator>

 <comp-decomp-action>cda-not-sent</comp-decomp-action>

 <target-value>

 <index>0</index>

 <value>AAAAAAAAAAM=</value>

 </target-value>

 </entry>

 <entry>

 <field-id>fid-ipv6-appprefix</field-id>

 <field-length>64</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-ignore</matching-operator>

 <comp-decomp-action>cda-value-sent</comp-decomp-action>

 </entry>

 <entry>

 <field-id>fid-ipv6-appiid</field-id>

 <field-length>64</field-length>

 <field-position>1</field-position>

 <direction-indicator>di-bidirectional</direction-indicator>

 <matching-operator>mo-ignore</matching-operator>

 <comp-decomp-action>cda-value-sent</comp-decomp-action>

 </entry>

 </rule>

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 46

Figure 8: XML Representation of the Rules

 <rule>

 <rule-id-value>12</rule-id-value>

 <rule-id-length>11</rule-id-length>

 <rule-nature>nature-fragmentation</rule-nature>

 <direction>di-up</direction>

 <rcs-algorithm>rcs-crc32</rcs-algorithm>

 <dtag-size>2</dtag-size>

 <fcn-size>3</fcn-size>

 <fragmentation-mode>

 fragmentation-mode-no-ack

 </fragmentation-mode>

 </rule>

 <rule>

 <rule-id-value>100</rule-id-value>

 <rule-id-length>8</rule-id-length>

 <rule-nature>nature-no-compression</rule-nature>

 </rule>

 </schc>

Acknowledgments

The authors would like to thank , , , and

 for their careful reading and valuable inputs. A special thanks for ,

, , , and for their explanations and wise

advice when building the model.

Dominique Barthel Carsten Bormann Ivan Martinez

Alexander Pelov Joe Clarke

Carl Moberg Tom Petch Martin Thomson Éric Vyncke

Authors' Addresses

Ana Minaburo

Acklio

1137A avenue des Champs Blancs

 35510 Cesson-Sevigne Cedex

France

 ana@ackl.io Email:

Laurent Toutain

Institut MINES TELECOM; IMT Atlantique

2 rue de la Chataigneraie CS 17607

 35576 Cesson-Sevigne Cedex

France

 Laurent.Toutain@imt-atlantique.fr Email:

RFC 9363 LPWAN SCHC YANG Data Model March 2023

Minaburo & Toutain Standards Track Page 47

mailto:ana@ackl.io
mailto:Laurent.Toutain@imt-atlantique.fr

	RFC 9363
	A YANG Data Model for Static Context Header Compression (SCHC)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. Terminology
	4. SCHC Rules
	4.1. Compression Rules
	4.2. Identifier Generation
	4.3. Convention for Field Identifier
	4.4. Convention for Field Length
	4.5. Convention for Field Position
	4.6. Convention for Direction Indicator
	4.7. Convention for Target Value
	4.8. Convention for Matching Operator
	4.8.1. Matching Operator Arguments

	4.9. Convention for Compression Decompression Actions
	4.9.1. Compression Decompression Action Arguments

	4.10. Fragmentation Rule
	4.10.1. Fragmentation Mode
	4.10.2. Fragmentation Header
	4.10.3. Last Fragment Format
	4.10.4. Acknowledgment Behavior
	4.10.5. Timer Values
	4.10.6. Fragmentation Parameter
	4.10.7. Layer 2 Parameters

	5. Rule Definition
	5.1. Compression Rule
	5.2. Fragmentation Rule
	5.3. YANG Tree

	6. YANG Data Model
	7. IANA Considerations
	7.1. URI Registration
	7.2. YANG Module Name Registration

	8. Security Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Example
	Acknowledgments
	Authors' Addresses

 A YANG Data Model for Static Context Header Compression (SCHC)

 Acklio

 1137A avenue des Champs Blancs
 Cesson-Sevigne Cedex
 35510
 France

 ana@ackl.io

 Institut MINES TELECOM; IMT Atlantique

 2 rue de la Chataigneraie CS 17607
 Cesson-Sevigne Cedex
 35576
 France

 Laurent.Toutain@imt-atlantique.fr

 int
 lpwan
 Header Compression
 Fragmentation
 SCHC Rule
 IPv6
 UDP
 CoAP
 OSCORE

 This document describes a YANG data model for the Static Context Header Compression (SCHC)
compression and fragmentation Rules.
 This document formalizes the description of the Rules for better interoperability between SCHC instances either
to exchange a set of Rules or to modify the parameters of some Rules.

 Status of This Memo

 This is an Internet Standards Track document.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further
 information on Internet Standards is available in Section 2 of
 RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Requirements Language

 . Terminology

 . SCHC Rules

 . Compression Rules

 . Identifier Generation

 . Convention for Field Identifier

 . Convention for Field Length

 . Convention for Field Position

 . Convention for Direction Indicator

 . Convention for Target Value

 . Convention for Matching Operator

 . Matching Operator Arguments

 . Convention for Compression Decompression Actions

 . Compression Decompression Action Arguments

 . Fragmentation Rule

 . Fragmentation Mode

 . Fragmentation Header

 . Last Fragment Format

 . Acknowledgment Behavior

 . Timer Values

 . Fragmentation Parameter

 . Layer 2 Parameters

 . Rule Definition

 . Compression Rule

 . Fragmentation Rule

 . YANG Tree

 . YANG Data Model

 . IANA Considerations

 . URI Registration

 . YANG Module Name Registration

 . Security Considerations

 . References

 . Normative References

 . Informative References

 . Example

 Acknowledgments

 Authors' Addresses

 Introduction
 SCHC is a compression and fragmentation mechanism for constrained networks defined in .
It is based on a static context shared by two entities at the boundary of the constrained network.
 provides an informal representation of the Rules used either for compression/decompression (C/D)
or fragmentation/reassembly (F/R). The goal of this document is to formalize the description of the Rules to offer:

 the same definition on both ends, even if the internal representation is different, and
 an update of the other end to set up some specific values (e.g., IPv6 prefix, destination address, etc.).

 illustrates the exchange of Rules using the YANG data model.
 This document defines a YANG data model to represent both compression and fragmentation Rules, which leads to common representation for values for all the Rules' elements.

 Requirements Language

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 Terminology
 This section defines the terminology and acronyms used in this document.
It extends the terminology of .

 App:
 Low-Power WAN (LPWAN) Application, as defined by . An application sending/receiving packets to/from the Dev.
 Bi:
 Bidirectional. Characterizes a Field Descriptor that applies to headers of packets traveling in either direction (Up and Dw; see this glossary).
 CDA:
 Compression/Decompression Action. Describes the pair of actions that are performed at the compressor to compress a header field and at the decompressor to recover the original value of the header field.
 Context:
 A set of Rules used to compress/decompress headers.
 Dev:
 Device, as defined by .
 DevIID:
 Device Interface Identifier. The IID that identifies the Dev interface.
 DI:
 Direction Indicator. This field tells which direction of packet travel (Up, Dw, or Bi) a Field Descriptor applies to. This allows for asymmetric processing, using the same Rule.
 Dw:
 Downlink direction for compression/decompression, from SCHC C/D in the network to SCHC C/D in the Dev.
 FID:
 Field Identifier or Field ID. This identifies the protocol and field a Field Descriptor applies to.
 FL:
 Field Length. This is the length of the original packet header field. It is expressed as a number of bits for header fields of fixed lengths or as a type (e.g., variable, token length, ...) for Field Lengths that are unknown at the time of Rule creation. The length of a header field is defined in the corresponding protocol specification (such as IPv6 or UDP).
 FP:
 Field Position. When a field is expected to appear multiple times in a header, the Field Position specifies the occurrence this Field Descriptor applies to
(for example, first Uri-Path option, second Uri-Path, etc. in a Constrained Application Protocol (CoAP) header), counting from 1. The value 0 is special and means "don't care" (see).
 IID:
 Interface Identifier. See the IPv6 addressing architecture .
 L2 Word:
 This is the minimum subdivision of payload data that the Layer 2 (L2) will carry. In most L2 technologies, the L2 Word is an octet.
In bit-oriented radio technologies, the L2 Word might be a single bit.
The L2 Word size is assumed to be constant over time for each device.
 MO:
 Matching Operator. An operator used to match a value contained in a header field with a value contained in a Rule.
 RuleID:
 Rule Identifier. An identifier for a Rule. SCHC C/D on both sides share the same RuleID for a given packet. A set of RuleIDs are used to support SCHC F/R functionality.
 TV:
 Target Value. A value contained in a Rule that will be matched with the value of a header field.
 Up:
 Uplink direction for compression/decompression, from the Dev SCHC C/D to the network SCHC C/D.

 SCHC Rules
 SCHC compression is generic; the main mechanism does not refer
to a specific protocol. Any header field is abstracted through a Field Identifier (FID), a position (FP), a direction (DI), and a value that can be a numerical
value or a string. and specify fields for IPv6 , UDP , and CoAP , including options defined for no server response and Object Security for Constrained RESTful Environments (OSCORE) . For the latter, splits this field into subfields.
 SCHC fragmentation requires a set of common parameters that are included in a Rule. These parameters are defined in .
 The YANG data model enables the compression and the fragmentation selection using the feature statement.

 Compression Rules
 proposes an informal representation of the compression Rule.
A compression context for a device is composed of a set of Rules. Each Rule contains information to
describe a specific field in the header to be compressed.

 Compression Decompression Context

 +---+
 | Rule N |
 +---+|
 | Rule i ||
+---+||
(FID) Rule 1										
+-------+--+--+--+------------+-----------------+---------------+										
	Field 1	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
	Field 2	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
			
+-------+--+--+--+------------+-----------------+---------------+		/								
	Field N	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+	/									
\---/

 Identifier Generation
 Identifiers used in the SCHC YANG data model are from the identityref statement to ensure global uniqueness and easy augmentation if needed. The principle to define a new type based on a group of identityref is the following:

 Define a main identity ending with the keyword base-type.
 Derive all the identities used in the data model from this base type.
 Create a typedef from this base type.

 The example below () shows how an identityref is created for Reassembly Check Sequence (RCS) algorithms used during SCHC fragmentation.

 Principle to Define a Type Based on identityref

 identity rcs-algorithm-base-type {
 description
 "Identify which algorithm is used to compute RCS.
 The algorithm also defines the size of the RCS field.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity rcs-crc32 {
 base rcs-algorithm-base-type;
 description
 "CRC32 defined as default RCS in RFC 8724. This RCS is
 4 bytes long.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef rcs-algorithm-type {
 type identityref {
 base rcs-algorithm-base-type;
 }
 description
 "Define the type for RCS algorithm in Rules.";
 }

 Convention for Field Identifier
 In the process of compression, the headers of the original packet are first parsed to create a list of fields. This list of fields is matched against the Rules to find the appropriate Rule and apply compression. does not state how the Field ID value is constructed.
In examples, identification is done through a string indexed by the protocol name (e.g., IPv6.version, CoAP.version, etc.).
 The current YANG data model includes field definitions found in and .
 Using the YANG data model, each field MUST be identified through a global YANG identityref.
 A YANG Field ID for the protocol is always derived from the fid-base-type. Then, an identity
for each protocol is specified using the naming convention fid-<<protocol name>>-base-type.
All possible fields for this protocol MUST derive from the protocol identity. The naming
convention is "fid-" followed by the protocol name and the field name. If a field has
to be divided into subfields, the field identity serves as a base.
 The full field-id definition is found in . A type is defined for the IPv6 protocol, and each
field is based on it. Note that the Diffserv bits derive from the Traffic Class identity.

 Convention for Field Length
 The Field Length is either an integer giving the size of a field in bits or a specific function. defines the
"var" function, which allows variable-length fields (whose length is expressed in bytes), and defines the "tkl" function for managing the CoAP
Token Length field.
 The naming convention is "fl-" followed by the function name.
 The Field Length function can be defined as an identityref, as described in . Therefore, the type for the Field Length is a union between an integer giving the size of the length in bits and the identityref.

 Convention for Field Position
 The Field Position is a positive integer that gives the occurrence times of a
specific field from the header start. The default value is 1 and is incremented at each repetition.
Value 0 indicates that the position is not important and is not considered during the Rule selection process.
 The Field Position is a positive integer. The type is uint8.

 Convention for Direction Indicator
 The Direction Indicator is used to tell if a field appears in both directions (Bi) or only uplink (Up) or Downlink (Dw). The naming convention is "di" followed by the Direction Indicator name.
 The type is "di-type".

 Convention for Target Value
 The Target Value is a list of binary sequences of any length, aligned to the left. In the Rule, the structure will be used as a list, with the index as a key. The highest index value is used to compute the size of the index sent in residue for the match-mapping Compression Decompression Action (CDA). The index can specify several values:

 For equal and most significant bits (MSBs), the Target Value contains a single element. Therefore, the index is set to 0.
 For match-mapping, the Target Value can contain several elements. Index values MUST start from 0 and MUST be contiguous.

 If the header field contains text, the binary sequence uses the same encoding.

 Convention for Matching Operator
 The Matching Operator (MO) is a function applied between a field value provided by the parsed header and the Target Value. defines 4 MOs.
 The naming convention is "mo-" followed by the MO name.
 The type is "mo-type".

 Matching Operator Arguments
 They are viewed as a list, built with a tv-struct (see).

 Convention for Compression Decompression Actions
 The Compression Decompression Action (CDA) identifies the function to use for compression or decompression.
 defines 7 CDAs.
 The naming convention is "cda-" followed by the CDA name.

 Compression Decompression Action Arguments
 Currently no CDA requires arguments, but some CDAs may require one or several arguments in the future.
They are viewed as a list of target-value type.

 Fragmentation Rule
 Fragmentation is optional in the data model and depends on the presence of the "fragmentation" feature.
 Most of the fragmentation parameters are listed in .
 Since fragmentation Rules work for a specific direction, they MUST contain a mandatory Direction Indicator.
The type is the same as the one used in compression entries, but bidirectional MUST NOT be used.

 Fragmentation Mode
 defines 3 fragmentation modes:

 No ACK: This mode is unidirectional; no acknowledgment is sent back.
 ACK Always: Each fragmentation window must be explicitly acknowledged before going to the next.
 ACK on Error: A window is acknowledged only when the receiver detects some missing fragments.

 The type is "fragmentation-mode-type".
The naming convention is "fragmentation-mode-" followed by the fragmentation mode name.

 Fragmentation Header
 A data fragment header, starting with the RuleID, can be sent in the fragmentation direction.
 indicates that the SCHC header may be composed of the following (cf.):

 a Datagram Tag (DTag) identifying the datagram being fragmented if the fragmentation applies concurrently on several datagrams. This field is optional, and its length is defined by the Rule.
 a Window (W) used in ACK-Always and ACK-on-Error modes. In ACK-Always, its size is 1. In ACK-on-Error, it depends on the Rule. This field is not needed in No-ACK mode.
 a Fragment Compressed Number (FCN) indicating the fragment/tile position within the window. This field is mandatory on all modes defined in , and its size is defined by the Rule.

 Data Fragment Header from RFC 8724

|-- SCHC Fragment Header ----|
 |-- T --|-M-|-- N --|
+-- ... -+- ... -+---+- ... -+--------...-------+~~~~~~~~~~~~~~~~~~~~
| RuleID | DTag | W | FCN | Fragment Payload | padding (as needed)
+-- ... -+- ... -+---+- ... -+--------...-------+~~~~~~~~~~~~~~~~~~~~

 Last Fragment Format
 The last fragment of a datagram is sent with a Reassembly Check Sequence (RCS) field to detect residual
transmission errors and possible losses in the last window. defines a single algorithm based on Ethernet
CRC computation.
 The naming convention is "rcs-" followed by the algorithm name.
 For ACK-on-Error mode, the All-1 fragment may just contain the RCS or can include a tile. The following parameters define the
behavior:

 all-1-data-no: The last fragment contains no data, just the RCS.
 all-1-data-yes: The last fragment includes a single tile and the RCS.
 all-1-data-sender-choice: The last fragment may or may not contain a single tile. The receiver can detect if a tile is present.

 The naming convention is "all-1-data-" followed by the behavior identifier.

 Acknowledgment Behavior
 The acknowledgment fragment header goes in the opposite direction of data. defines the header, which is composed of the following (see):

 a DTag (if present).
 a mandatory window, as in the data fragment.
 a C bit giving the status of RCS validation. In case of failure, a bitmap follows, indicating the received tile.

 Acknowledgment Fragment Header for RFC 8724

|--- SCHC ACK Header ----|
 |-- T --|-M-| 1 |
+-- ... -+- ... -+---+---+~~~~~~~~~~~~~~~~~~
| RuleID | DTag | W |C=1| padding as needed (success)
+-- ... -+- ... -+---+---+~~~~~~~~~~~~~~~~~~

+-- ... -+- ... -+---+---+------ ... ------+~~~~~~~~~~~~~~~
| RuleID | DTag | W |C=0|Compressed Bitmap| pad. as needed (failure)
+-- ... -+- ... -+---+---+------ ... ------+~~~~~~~~~~~~~~~

 For ACK-on-Error, SCHC defines when an acknowledgment can be sent. This can be at any time defined by the Layer 2, at the end of a window (FCN all-0),
or as a response to receiving the last fragment (FCN all-1). The naming convention is "ack-behavior" followed by the algorithm name.

 Timer Values
 The state machine requires some common values to handle fragmentation correctly.

 The Retransmission Timer gives the duration before sending an ACK request (cf.). If specified, the value MUST be strictly positive.
 The Inactivity Timer gives the duration before aborting a fragmentation session (cf.). The value 0 explicitly indicates that this timer is disabled.

 does not specify any range for these timers. recommends a duration of 12 hours. In fact, the value range should be between milliseconds for real-time systems to several days for worse-than-best-effort systems. To allow a large range of applications, two parameters must be specified:

 the duration of a tick. It is computed by this formula: 2 tick-duration/10 6. When tick-duration is set to 0, the unit is the microsecond. The default value of 20 leads to a unit of 1.048575 seconds. A value of 32 leads to a tick-duration of about 1 hour 11 minutes.
 the number of ticks in the predefined unit. With the default tick-duration value of 20, the timers can cover a range between 1.0 second and 19 hours, as recommended in .

 Fragmentation Parameter
 The SCHC fragmentation protocol specifies the number of attempts before aborting through the parameter:

 max-ack-requests (cf.)

 Layer 2 Parameters
 The data model includes two parameters needed for fragmentation:

 l2-word-size: base fragmentation, in bits, on a Layer 2 Word that can be of any length. The default value is 8 and corresponds
to the default value for the byte-aligned Layer 2. A value of 1 will indicate that there is no alignment and no need for padding.
 maximum-packet-size: defines the maximum size of an uncompressed datagram. By default, the value is set to 1280 bytes.

 They are defined as unsigned integers; see .

 Rule Definition
 A Rule is identified by a unique Rule Identifier (RuleID) comprising both a RuleID value and a RuleID length.
The YANG grouping rule-id-type defines the structure used to represent a RuleID. A length of 0 is allowed to represent an implicit Rule.
 Three natures of Rules are defined in :

 Compression: A compression Rule is associated with the RuleID.
 No-compression: This identifies the default Rule used to send a packet integrally when no-compression Rule was found (see).
 Fragmentation: Fragmentation parameters are associated with the RuleID. Fragmentation is optional, and the feature "fragmentation" should be set.

 The YANG data model respectively introduces these three identities :

 nature-compression
 nature-no-compression
 nature-fragmentation

 The naming convention is "nature-" followed by the nature identifier.
 To access a specific Rule, the RuleID length and value are used as a key. The Rule is either
a compression or a fragmentation Rule.

 Compression Rule
 A compression Rule is composed of entries describing its processing. An entry contains all the information defined in with the types defined above.
 The compression Rule described is defined by compression-content. It defines a list of
compression-rule-entry, indexed by their Field ID, position, and direction. The compression-rule-entry
element represents a line in . Their type reflects the identifier types defined in
 .
 Some checks are performed on the values:

 When MO is ignore, no Target Value is needed; for other MOs, there MUST be a Target Value present.
 When MSB MO is specified, the matching-operator-value must be present.

 Fragmentation Rule
 A fragmentation Rule is composed of entries describing the protocol behavior. Some on them are numerical entries,
others are identifiers defined in .

 YANG Tree
 The YANG data model described in this document conforms to the
Network Management Datastore Architecture defined in .

 Overview of the SCHC Data Model

module: ietf-schc
 +--rw schc
 +--rw rule* [rule-id-value rule-id-length]
 +--rw rule-id-value uint32
 +--rw rule-id-length uint8
 +--rw rule-nature nature-type
 +--rw (nature)?
 +--:(fragmentation) {fragmentation}?
 | +--rw fragmentation-mode
 | | schc:fragmentation-mode-type
 | +--rw l2-word-size? uint8
 | +--rw direction schc:di-type
 | +--rw dtag-size? uint8
 | +--rw w-size? uint8
 | +--rw fcn-size uint8
 | +--rw rcs-algorithm? rcs-algorithm-type
 | +--rw maximum-packet-size? uint16
 | +--rw window-size? uint16
 | +--rw max-interleaved-frames? uint8
 | +--rw inactivity-timer
 | | +--rw ticks-duration? uint8
 | | +--rw ticks-numbers? uint16
 | +--rw retransmission-timer
 | | +--rw ticks-duration? uint8
 | | +--rw ticks-numbers? uint16
 | +--rw max-ack-requests? uint8
 | +--rw (mode)?
 | +--:(no-ack)
 | +--:(ack-always)
 | +--:(ack-on-error)
 | +--rw tile-size? uint8
 | +--rw tile-in-all-1? schc:all-1-data-type
 | +--rw ack-behavior? schc:ack-behavior-type
 +--:(compression) {compression}?
 +--rw entry*
 [field-id field-position direction-indicator]
 +--rw field-id schc:fid-type
 +--rw field-length schc:fl-type
 +--rw field-position uint8
 +--rw direction-indicator schc:di-type
 +--rw target-value* [index]
 | +--rw index uint16
 | +--rw value? binary
 +--rw matching-operator schc:mo-type
 +--rw matching-operator-value* [index]
 | +--rw index uint16
 | +--rw value? binary
 +--rw comp-decomp-action schc:cda-type
 +--rw comp-decomp-action-value* [index]
 +--rw index uint16
 +--rw value? binary

 YANG Data Model

 SCHC YANG Data Model

module ietf-schc {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-schc";
 prefix schc;

 organization
 "IETF IPv6 over Low Power Wide-Area Networks (lpwan) Working
 Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/lpwan/about/>
 WG List: <mailto:lp-wan@ietf.org>
 Editor: Laurent Toutain
 <mailto:laurent.toutain@imt-atlantique.fr>
 Editor: Ana Minaburo
 <mailto:ana@ackl.io>";
 description
 "Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.
 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 This version of this YANG module is part of RFC 9363
 (https://www.rfc-editor.org/info/rfc9363); see the RFC itself
 for full legal notices.
 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
 NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
 'MAY', and 'OPTIONAL' in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Generic data model for the Static Context Header Compression
 Rule for SCHC, based on RFCs 8724 and 8824. Including
 compression, no-compression, and fragmentation Rules.

 This module is a YANG data model for SCHC Rules (RFCs 8724 and
 8824). RFC 8724 describes compression Rules in an abstract
 way through a table.
 |---|
 | (FID) Rule 1 |
 |+-------+--+--+--+------------+-----------------+---------------+|
 ||Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||
 |+-------+--+--+--+------------+-----------------+---------------+|
 ||Field 2|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||
 |+-------+--+--+--+------------+-----------------+---------------+|
 ||... |..|..|..| ... | ... | ... ||
 |+-------+--+--+--+------------+-----------------+---------------+|
 ||Field N|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||
+-------+--+--+--+------------+-----------------+---------------+
 This module specifies a global data model that can be used for
 Rule exchanges or modification. It specifies both the data
 model format and the global identifiers used to describe some
 operations in fields.
 This data model applies to both compression and fragmentation.";

 revision 2023-03-01 {
 description
 "Initial version from RFC 9363.";
 reference
 "RFC 9363 A YANG Data Model for Static Context Header
 Compression (SCHC)";
 }

 feature compression {
 description
 "SCHC compression capabilities are taken into account.";
 }

 feature fragmentation {
 description
 "SCHC fragmentation capabilities are taken into account.";
 }

 // -------------------------
 // Field ID type definition
 //--------------------------
 // generic value TV definition

 identity fid-base-type {
 description
 "Field ID base type for all fields.";
 }

 identity fid-ipv6-base-type {
 base fid-base-type;
 description
 "Field ID base type for IPv6 headers described in RFC 8200.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-version {
 base fid-ipv6-base-type;
 description
 "IPv6 version field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-trafficclass {
 base fid-ipv6-base-type;
 description
 "IPv6 Traffic Class field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-trafficclass-ds {
 base fid-ipv6-trafficclass;
 description
 "IPv6 Traffic Class field: Diffserv field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification,
 RFC 3168 The Addition of Explicit Congestion Notification
 (ECN) to IP";
 }

 identity fid-ipv6-trafficclass-ecn {
 base fid-ipv6-trafficclass;
 description
 "IPv6 Traffic Class field: ECN field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification,
 RFC 3168 The Addition of Explicit Congestion Notification
 (ECN) to IP";
 }

 identity fid-ipv6-flowlabel {
 base fid-ipv6-base-type;
 description
 "IPv6 Flow Label field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-payload-length {
 base fid-ipv6-base-type;
 description
 "IPv6 Payload Length field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-nextheader {
 base fid-ipv6-base-type;
 description
 "IPv6 Next Header field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-hoplimit {
 base fid-ipv6-base-type;
 description
 "IPv6 Next Header field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-devprefix {
 base fid-ipv6-base-type;
 description
 "Corresponds to either the source address or the destination
 address prefix of RFC 8200 depending on whether it is an
 uplink or a downlink message.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-deviid {
 base fid-ipv6-base-type;
 description
 "Corresponds to either the source address or the destination
 address IID of RFC 8200 depending on whether it is an uplink
 or a downlink message.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-appprefix {
 base fid-ipv6-base-type;
 description
 "Corresponds to either the source address or the destination
 address prefix of RFC 8200 depending on whether it is an
 uplink or a downlink message.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-appiid {
 base fid-ipv6-base-type;
 description
 "Corresponds to either the source address or the destination
 address IID of RFC 8200 depending on whether it is an uplink
 or a downlink message.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-udp-base-type {
 base fid-base-type;
 description
 "Field ID base type for UDP headers described in RFC 768.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-udp-dev-port {
 base fid-udp-base-type;
 description
 "UDP source or destination port, if uplink or downlink
 communication, respectively.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-udp-app-port {
 base fid-udp-base-type;
 description
 "UDP destination or source port, if uplink or downlink
 communication, respectively.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-udp-length {
 base fid-udp-base-type;
 description
 "UDP length.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-udp-checksum {
 base fid-udp-base-type;
 description
 "UDP length.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-coap-base-type {
 base fid-base-type;
 description
 "Field ID base type for UDP headers described.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-version {
 base fid-coap-base-type;
 description
 "CoAP version.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-type {
 base fid-coap-base-type;
 description
 "CoAP type.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-tkl {
 base fid-coap-base-type;
 description
 "CoAP token length.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-code {
 base fid-coap-base-type;
 description
 "CoAP code.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-code-class {
 base fid-coap-code;
 description
 "CoAP code class.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-code-detail {
 base fid-coap-code;
 description
 "CoAP code detail.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-mid {
 base fid-coap-base-type;
 description
 "CoAP message ID.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-token {
 base fid-coap-base-type;
 description
 "CoAP token.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option {
 base fid-coap-base-type;
 description
 "Generic CoAP option.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-if-match {
 base fid-coap-option;
 description
 "CoAP option If-Match.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-uri-host {
 base fid-coap-option;
 description
 "CoAP option Uri-Host.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-etag {
 base fid-coap-option;
 description
 "CoAP option ETag.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-if-none-match {
 base fid-coap-option;
 description
 "CoAP option if-none-match.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-observe {
 base fid-coap-option;
 description
 "CoAP option Observe.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-uri-port {
 base fid-coap-option;
 description
 "CoAP option Uri-Port.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-location-path {
 base fid-coap-option;
 description
 "CoAP option Location-Path.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-uri-path {
 base fid-coap-option;
 description
 "CoAP option Uri-Path.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-content-format {
 base fid-coap-option;
 description
 "CoAP option Content Format.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-max-age {
 base fid-coap-option;
 description
 "CoAP option Max-Age.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-uri-query {
 base fid-coap-option;
 description
 "CoAP option Uri-Query.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-accept {
 base fid-coap-option;
 description
 "CoAP option Accept.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-location-query {
 base fid-coap-option;
 description
 "CoAP option Location-Query.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-block2 {
 base fid-coap-option;
 description
 "CoAP option Block2.";
 reference
 "RFC 7959 Block-Wise Transfers in the Constrained
 Application Protocol (CoAP)";
 }

 identity fid-coap-option-block1 {
 base fid-coap-option;
 description
 "CoAP option Block1.";
 reference
 "RFC 7959 Block-Wise Transfers in the Constrained
 Application Protocol (CoAP)";
 }

 identity fid-coap-option-size2 {
 base fid-coap-option;
 description
 "CoAP option Size2.";
 reference
 "RFC 7959 Block-Wise Transfers in the Constrained
 Application Protocol (CoAP)";
 }

 identity fid-coap-option-proxy-uri {
 base fid-coap-option;
 description
 "CoAP option Proxy-Uri.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-proxy-scheme {
 base fid-coap-option;
 description
 "CoAP option Proxy-Scheme.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-size1 {
 base fid-coap-option;
 description
 "CoAP option Size1.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-no-response {
 base fid-coap-option;
 description
 "CoAP option No response.";
 reference
 "RFC 7967 Constrained Application Protocol (CoAP)
 Option for No Server Response";
 }

 identity fid-oscore-base-type {
 base fid-coap-option;
 description
 "OSCORE options (RFC8613) split in suboptions.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-oscore-flags {
 base fid-coap-option;
 description
 "CoAP option OSCORE flags.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 Section 6.4)";
 }

 identity fid-coap-option-oscore-piv {
 base fid-coap-option;
 description
 "CoAP option OSCORE flags.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 Section 6.4)";
 }

 identity fid-coap-option-oscore-kid {
 base fid-coap-option;
 description
 "CoAP option OSCORE flags.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 Section 6.4)";
 }

 identity fid-coap-option-oscore-kidctx {
 base fid-coap-option;
 description
 "CoAP option OSCORE flags.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP)(see
 Section 6.4)";
 }

 //----------------------------------
 // Field Length type definition
 //----------------------------------

 identity fl-base-type {
 description
 "Used to extend Field Length functions.";
 }

 identity fl-variable {
 base fl-base-type;
 description
 "Residue length in bytes is sent as defined for CoAP.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 Section 5.3)";
 }

 identity fl-token-length {
 base fl-base-type;
 description
 "Residue length in bytes is sent as defined for CoAP.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 Section 4.5)";
 }

 //---------------------------------
 // Direction Indicator type
 //---------------------------------

 identity di-base-type {
 description
 "Used to extend Direction Indicators.";
 }

 identity di-bidirectional {
 base di-base-type;
 description
 "Direction Indicator of bidirectionality.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.1)";
 }

 identity di-up {
 base di-base-type;
 description
 "Direction Indicator of uplink.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.1)";
 }

 identity di-down {
 base di-base-type;
 description
 "Direction Indicator of downlink.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.1)";
 }

 //----------------------------------
 // Matching Operator type definition
 //----------------------------------

 identity mo-base-type {
 description
 "Matching Operator: used in the Rule selection process
 to check if a Target Value matches the field's value.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.2)";
 }

 identity mo-equal {
 base mo-base-type;
 description
 "equal MO.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.3)";
 }

 identity mo-ignore {
 base mo-base-type;
 description
 "ignore MO.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.3)";
 }

 identity mo-msb {
 base mo-base-type;
 description
 "MSB MO.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.3)";
 }

 identity mo-match-mapping {
 base mo-base-type;
 description
 "match-mapping MO.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.3)";
 }

 //------------------------------
 // CDA type definition
 //------------------------------

 identity cda-base-type {
 description
 "Compression Decompression Actions. Specify the action to
 be applied to the field's value in a specific Rule.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.2)";
 }

 identity cda-not-sent {
 base cda-base-type;
 description
 "not-sent CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.4)";
 }

 identity cda-value-sent {
 base cda-base-type;
 description
 "value-sent CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.4)";
 }

 identity cda-lsb {
 base cda-base-type;
 description
 "Least Significant Bit (LSB) CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.4)";
 }

 identity cda-mapping-sent {
 base cda-base-type;
 description
 "mapping-sent CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.4)";
 }

 identity cda-compute {
 base cda-base-type;
 description
 "compute-* CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.4)";
 }

 identity cda-deviid {
 base cda-base-type;
 description
 "DevIID CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.4)";
 }

 identity cda-appiid {
 base cda-base-type;
 description
 "Application Interface Identifier (AppIID) CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 Section 7.4)";
 }

 // -- type definition

 typedef fid-type {
 type identityref {
 base fid-base-type;
 }
 description
 "Field ID generic type.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef fl-type {
 type identityref {
 base fl-base-type;
 }
 description
 "Function used to indicate Field Length.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef di-type {
 type identityref {
 base di-base-type;
 }
 description
 "Direction in LPWAN network: up when emitted by the device,
 down when received by the device, or bi when emitted or
 received by the device.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef mo-type {
 type identityref {
 base mo-base-type;
 }
 description
 "Matching Operator (MO) to compare field values with
 Target Values.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef cda-type {
 type identityref {
 base cda-base-type;
 }
 description
 "Compression Decompression Action to compress or
 decompress a field.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 // -- FRAGMENTATION TYPE
 // -- fragmentation modes

 identity fragmentation-mode-base-type {
 description
 "Define the fragmentation mode.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity fragmentation-mode-no-ack {
 base fragmentation-mode-base-type;
 description
 "No-ACK mode.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity fragmentation-mode-ack-always {
 base fragmentation-mode-base-type;
 description
 "ACK-Always mode.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity fragmentation-mode-ack-on-error {
 base fragmentation-mode-base-type;
 description
 "ACK-on-Error mode.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef fragmentation-mode-type {
 type identityref {
 base fragmentation-mode-base-type;
 }
 description
 "Define the type used for fragmentation mode in Rules.";
 }

 // -- Ack behavior

 identity ack-behavior-base-type {
 description
 "Define when to send an Acknowledgment.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity ack-behavior-after-all-0 {
 base ack-behavior-base-type;
 description
 "Fragmentation expects ACK after sending All-0 fragment.";
 }

 identity ack-behavior-after-all-1 {
 base ack-behavior-base-type;
 description
 "Fragmentation expects ACK after sending All-1 fragment.";
 }

 identity ack-behavior-by-layer2 {
 base ack-behavior-base-type;
 description
 "Layer 2 defines when to send an ACK.";
 }

 typedef ack-behavior-type {
 type identityref {
 base ack-behavior-base-type;
 }
 description
 "Define the type used for ACK behavior in Rules.";
 }

 // -- All-1 with data types

 identity all-1-data-base-type {
 description
 "Type to define when to send an Acknowledgment message.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity all-1-data-no {
 base all-1-data-base-type;
 description
 "All-1 contains no tiles.";
 }

 identity all-1-data-yes {
 base all-1-data-base-type;
 description
 "All-1 MUST contain a tile.";
 }

 identity all-1-data-sender-choice {
 base all-1-data-base-type;
 description
 "Fragmentation process chooses to send tiles or not in All-1.";
 }

 typedef all-1-data-type {
 type identityref {
 base all-1-data-base-type;
 }
 description
 "Define the type used for All-1 format in Rules.";
 }

 // -- RCS algorithm types

 identity rcs-algorithm-base-type {
 description
 "Identify which algorithm is used to compute RCS.
 The algorithm also defines the size of the RCS field.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity rcs-crc32 {
 base rcs-algorithm-base-type;
 description
 "CRC32 defined as default RCS in RFC 8724. This RCS is
 4 bytes long.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef rcs-algorithm-type {
 type identityref {
 base rcs-algorithm-base-type;
 }
 description
 "Define the type for RCS algorithm in Rules.";
 }

 // -------- RULE ENTRY DEFINITION ------------

 grouping tv-struct {
 description
 "Defines the Target Value element. If the header field
 contains a text, the binary sequence uses the same encoding.
 field-id allows the conversion to the appropriate type.";
 leaf index {
 type uint16;
 description
 "Index gives the position in the matching list. If only one
 element is present, index is 0. Otherwise, index is the
 order in the matching list, starting at 0.";
 }
 leaf value {
 type binary;
 description
 "Target Value content as an untyped binary value.";
 }
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 grouping compression-rule-entry {
 description
 "These entries define a compression entry (i.e., a line),
 as defined in RFC 8724.
 +-------+--+--+--+------------+-----------------+---------------+
 |Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act|
 +-------+--+--+--+------------+-----------------+---------------+
 An entry in a compression Rule is composed of 7 elements:
 - Field ID: the header field to be compressed
 - Field Length : either a positive integer or a function
 - Field Position: a positive (and possibly equal to 0)
 integer
 - Direction Indicator: an indication in which direction the
 compression and decompression process is effective
 - Target Value: a value against which the header field is
 compared
 - Matching Operator: the comparison operation and optional
 associate parameters
 - Comp./Decomp. Action: the compression or decompression
 action and optional parameters
 ";
 leaf field-id {
 type schc:fid-type;
 mandatory true;
 description
 "Field ID, identify a field in the header with a YANG
 identity reference.";
 }
 leaf field-length {
 type union {
 type uint8;
 type schc:fl-type;
 }
 mandatory true;
 description
 "Field Length, expressed in number of bits if the length is
 known when the Rule is created or through a specific
 function if the length is variable.";
 }
 leaf field-position {
 type uint8;
 mandatory true;
 description
 "Field Position in the header is an integer. Position 1
 matches the first occurrence of a field in the header,
 while incremented position values match subsequent
 occurrences.
 Position 0 means that this entry matches a field
 irrespective of its position of occurrence in the
 header.
 Be aware that the decompressed header may have
 position-0 fields ordered differently than they
 appeared in the original packet.";
 }
 leaf direction-indicator {
 type schc:di-type;
 mandatory true;
 description
 "Direction Indicator, indicate if this field must be
 considered for Rule selection or ignored based on the
 direction (bidirectional, only uplink, or only
 downlink).";
 }
 list target-value {
 key "index";
 uses tv-struct;
 description
 "A list of values to compare with the header field value.
 If Target Value is a singleton, position must be 0.
 For use as a matching list for the mo-match-mapping Matching
 Operator, index should take consecutive values starting
 from 0.";
 }
 leaf matching-operator {
 type schc:mo-type;
 must "../target-value or derived-from-or-self(.,
 'mo-ignore')" {
 error-message
 "mo-equal, mo-msb, and mo-match-mapping need target-value";
 description
 "target-value is not required for mo-ignore.";
 }
 must "not (derived-from-or-self(., 'mo-msb')) or
 ../matching-operator-value" {
 error-message "mo-msb requires length value";
 }
 mandatory true;
 description
 "MO: Matching Operator.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see Section 7.3)";
 }
 list matching-operator-value {
 key "index";
 uses tv-struct;
 description
 "Matching Operator Arguments, based on TV structure to allow
 several arguments.
 In RFC 8724, only the MSB Matching Operator needs arguments
 (a single argument, which is the number of most significant
 bits to be matched).";
 }
 leaf comp-decomp-action {
 type schc:cda-type;
 must "../target-value or
 derived-from-or-self(., 'cda-value-sent') or
 derived-from-or-self(., 'cda-compute') or
 derived-from-or-self(., 'cda-appiid') or
 derived-from-or-self(., 'cda-deviid')" {
 error-message
 "cda-not-sent, cda-lsb, and cda-mapping-sent need
 target-value";
 description
 "target-value is not required for some CDA.";
 }
 mandatory true;
 description
 "CDA: Compression Decompression Action.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see Section 7.4)";
 }
 list comp-decomp-action-value {
 key "index";
 uses tv-struct;
 description
 "CDA arguments, based on a TV structure, in order to allow
 for several arguments. The CDAs specified in RFC 8724
 require no argument.";
 }
 }

 // --Rule nature

 identity nature-base-type {
 description
 "A Rule, identified by its RuleID, is used for a single
 purpose. RFC 8724 defines 3 natures:
 compression, no-compression, and fragmentation.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see Section 6)";
 }

 identity nature-compression {
 base nature-base-type;
 description
 "Identify a compression Rule.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see Section 6)";
 }

 identity nature-no-compression {
 base nature-base-type;
 description
 "Identify a no-compression Rule.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see Section 6)";
 }

 identity nature-fragmentation {
 base nature-base-type;
 description
 "Identify a fragmentation Rule.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see Section 6)";
 }

 typedef nature-type {
 type identityref {
 base nature-base-type;
 }
 description
 "Defines the type to indicate the nature of the Rule.";
 }

 grouping compression-content {
 list entry {
 must "derived-from-or-self(../rule-nature,
 'nature-compression')" {
 error-message "Rule nature must be compression";
 }
 key "field-id field-position direction-indicator";
 uses compression-rule-entry;
 description
 "A compression Rule is a list of Rule entries, each
 describing a header field. An entry is identified
 through a field-id, its position in the packet, and
 its direction.";
 }
 description
 "Define a compression Rule composed of a list of entries.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 grouping fragmentation-content {
 description
 "This grouping defines the fragmentation parameters for
 all the modes (No ACK, ACK Always, and ACK on Error) specified
 in RFC 8724.";
 leaf fragmentation-mode {
 type schc:fragmentation-mode-type;
 must "derived-from-or-self(../rule-nature,
 'nature-fragmentation')" {
 error-message "Rule nature must be fragmentation";
 }
 mandatory true;
 description
 "Which fragmentation mode is used (No ACK, ACK Always, or
 ACK on Error).";
 }
 leaf l2-word-size {
 type uint8;
 default "8";
 description
 "Size, in bits, of the Layer 2 Word.";
 }
 leaf direction {
 type schc:di-type;
 must "derived-from-or-self(., 'di-up') or
 derived-from-or-self(., 'di-down')" {
 error-message
 "Direction for fragmentation Rules are up or down.";
 }
 mandatory true;
 description
 "MUST be up or down, bidirectional MUST NOT be used.";
 }
 // SCHC Frag header format
 leaf dtag-size {
 type uint8;
 default "0";
 description
 "Size, in bits, of the DTag field (T variable from
 RFC 8724).";
 }
 leaf w-size {
 when "derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-on-error')
 or
 derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-always') ";
 type uint8;
 description
 "Size, in bits, of the window field (M variable from
 RFC 8724).";
 }
 leaf fcn-size {
 type uint8;
 mandatory true;
 description
 "Size, in bits, of the FCN field (N variable from
 RFC 8724).";
 }
 leaf rcs-algorithm {
 type rcs-algorithm-type;
 default "schc:rcs-crc32";
 description
 "Algorithm used for RCS. The algorithm specifies the RCS
 size.";
 }
 // SCHC fragmentation protocol parameters
 leaf maximum-packet-size {
 type uint16;
 default "1280";
 description
 "When decompression is done, packet size must not
 strictly exceed this limit, expressed in bytes.";
 }
 leaf window-size {
 type uint16;
 description
 "By default, if not specified, the FCN value is 2^w-size - 1.
 This value should not be exceeded. Possible FCN values
 are between 0 and window-size - 1.";
 }
 leaf max-interleaved-frames {
 type uint8;
 default "1";
 description
 "Maximum of simultaneously fragmented frames. Maximum value
 is 2^dtag-size. All DTag values can be used, but more than
 max-interleaved-frames MUST NOT be active at any time.";
 }
 container inactivity-timer {
 leaf ticks-duration {
 type uint8;
 default "20";
 description
 "Duration of one tick in microseconds:
 2^ticks-duration/10^6 = 1.048s.";
 }
 leaf ticks-numbers {
 type uint16 {
 range "0..max";
 }
 description
 "Timer duration = ticks-numbers*2^ticks-duration / 10^6.";
 }

 description
 "Duration in seconds of the Inactivity Timer; 0 indicates
 that the timer is disabled.

 Allows a precision from microsecond to year by sending the
 tick-duration value. For instance:

 tick-duration: smallest value <-> highest value

 20: 00y 000d 00h 00m 01s.048575<->00y 000d 19h 05m 18s.428159
 21: 00y 000d 00h 00m 02s.097151<->00y 001d 14h 10m 36s.856319
 22: 00y 000d 00h 00m 04s.194303<->00y 003d 04h 21m 13s.712639
 23: 00y 000d 00h 00m 08s.388607<->00y 006d 08h 42m 27s.425279
 24: 00y 000d 00h 00m 16s.777215<->00y 012d 17h 24m 54s.850559
 25: 00y 000d 00h 00m 33s.554431<->00y 025d 10h 49m 49s.701119

 Note that the smallest value is also the incrementation
 step.";
 }
 container retransmission-timer {
 leaf ticks-duration {
 type uint8;
 default "20";
 description
 "Duration of one tick in microseconds:
 2^ticks-duration/10^6 = 1.048s.";
 }
 leaf ticks-numbers {
 type uint16 {
 range "1..max";
 }
 description
 "Timer duration = ticks-numbers*2^ticks-duration / 10^6.";
 }
 when "derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-on-error')
 or
 derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-always') ";
 description
 "Duration in seconds of the Retransmission Timer.
 See the Inactivity Timer.";
 }
 leaf max-ack-requests {
 when "derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-on-error')
 or
 derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-always') ";
 type uint8 {
 range "1..max";
 }
 description
 "The maximum number of retries for a specific SCHC ACK.";
 }
 choice mode {
 case no-ack;
 case ack-always;
 case ack-on-error {
 leaf tile-size {
 when "derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-on-error')";
 type uint8;
 description
 "Size, in bits, of tiles. If not specified or set to 0,
 tiles fill the fragment.";
 }
 leaf tile-in-all-1 {
 when "derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-on-error')";
 type schc:all-1-data-type;
 description
 "Defines whether the sender and receiver expect a tile in
 All-1 fragments or not, or if it is left to the sender's
 choice.";
 }
 leaf ack-behavior {
 when "derived-from-or-self(../fragmentation-mode,
 'fragmentation-mode-ack-on-error')";
 type schc:ack-behavior-type;
 description
 "Sender behavior to acknowledge, after All-0 or All-1 or
 when the LPWAN allows it.";
 }
 }
 description
 "RFC 8724 defines 3 fragmentation modes.";
 }
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 // Define RuleID. RuleID is composed of a RuleID value and a
 // RuleID length

 grouping rule-id-type {
 leaf rule-id-value {
 type uint32;
 description
 "RuleID value. This value must be unique, considering its
 length.";
 }
 leaf rule-id-length {
 type uint8 {
 range "0..32";
 }
 description
 "RuleID length, in bits. The value 0 is for implicit
 Rules.";
 }
 description
 "A RuleID is composed of a value and a length, expressed in
 bits.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 // SCHC table for a specific device.

 container schc {
 list rule {
 key "rule-id-value rule-id-length";
 uses rule-id-type;
 leaf rule-nature {
 type nature-type;
 mandatory true;
 description
 "Specify the Rule's nature.";
 }
 choice nature {
 case fragmentation {
 if-feature "fragmentation";
 uses fragmentation-content;
 }
 case compression {
 if-feature "compression";
 uses compression-content;
 }
 description
 "A Rule is for compression, for no-compression, or for
 fragmentation.";
 }
 description
 "Set of compression, no-compression, or fragmentation
 Rules identified by their rule-id.";
 }
 description
 "A SCHC set of Rules is composed of a list of Rules that are
 used for compression, no-compression, or fragmentation.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }
}

 IANA Considerations
 This document registers one URI and one YANG data model.

 URI Registration
 IANA registered the following URI in the "IETF XML Registry" :

 URI:
 urn:ietf:params:xml:ns:yang:ietf-schc
 Registrant Contact:
 The IESG.
 XML:
 N/A; the requested URI is an XML namespace.

 YANG Module Name Registration
 IANA has registered the following YANG data model in the "YANG Module Names" registry .

 name:
 ietf-schc
 namespace:
 urn:ietf:params:xml:ns:yang:ietf-schc
 prefix:
 schc
 reference:
 RFC 9363

 Security Considerations
 The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF or RESTCONF . The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) . The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS
 .
 The Network Configuration Access Control Model (NACM) provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.
 There are a number of data nodes defined in this YANG module that are writable/creatable/deletable
(i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable
in some network environments. Write operations (e.g., edit-config) to these data nodes without proper
protection can have a negative effect on network operations. These are the subtrees and data nodes and
their sensitivity/vulnerability:

 /schc:
 All the data nodes may be modified. The Rule contains sensitive information, such as the application IPv6 address where the device's data will be sent after decompression. An attacker may try to modify other devices' Rules by changing the application address and may block communication or allows traffic eavesdropping. Therefore, a device must be allowed to modify only its own rules on the remote SCHC instance. The identity of the requester must be validated. This can be done through certificates or access lists. Modification may be allowed regarding the Field Descriptor (i.e., IPv6 addresses field descriptors should not be modified, but UDP dev port could be changed).

 Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:

 /schc:
 By reading a module, an attacker may learn the traffic generated by a device and can also learn about application addresses or REST API.

 References

 Normative References

 User Datagram Protocol

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 The IETF XML Registry

 This document describes an IANA maintained registry for IETF standards which use Extensible Markup Language (XML) related items such as Namespaces, Document Type Declarations (DTDs), Schemas, and Resource Description Framework (RDF) Schemas.

 YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

 YANG is a data modeling language used to model configuration and state data manipulated by the Network Configuration Protocol (NETCONF), NETCONF remote procedure calls, and NETCONF notifications. [STANDARDS-TRACK]

 Network Configuration Protocol (NETCONF)

 The Network Configuration Protocol (NETCONF) defined in this document provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. The NETCONF protocol operations are realized as remote procedure calls (RPCs). This document obsoletes RFC 4741. [STANDARDS-TRACK]

 Using the NETCONF Protocol over Secure Shell (SSH)

 This document describes a method for invoking and running the Network Configuration Protocol (NETCONF) within a Secure Shell (SSH) session as an SSH subsystem. This document obsoletes RFC 4742. [STANDARDS-TRACK]

 Significance of IPv6 Interface Identifiers

 The IPv6 addressing architecture includes a unicast interface identifier that is used in the creation of many IPv6 addresses. Interface identifiers are formed by a variety of methods. This document clarifies that the bits in an interface identifier have no meaning and that the entire identifier should be treated as an opaque value. In particular, RFC 4291 defines a method by which the Universal and Group bits of an IEEE link-layer address are mapped into an IPv6 unicast interface identifier. This document clarifies that those two bits are significant only in the process of deriving interface identifiers from an IEEE link-layer address, and it updates RFC 4291 accordingly.

 The Constrained Application Protocol (CoAP)

 The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s. The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building automation.
 CoAP provides a request/response interaction model between application endpoints, supports built-in discovery of services and resources, and includes key concepts of the Web such as URIs and Internet media types. CoAP is designed to easily interface with HTTP for integration with the Web while meeting specialized requirements such as multicast support, very low overhead, and simplicity for constrained environments.

 RESTCONF Protocol

 This document describes an HTTP-based protocol that provides a programmatic interface for accessing data defined in YANG, using the datastore concepts defined in the Network Configuration Protocol (NETCONF).

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Internet Protocol, Version 6 (IPv6) Specification

 This document specifies version 6 of the Internet Protocol (IPv6). It obsoletes RFC 2460.

 Network Configuration Access Control Model

 The standardization of network configuration interfaces for use with the Network Configuration Protocol (NETCONF) or the RESTCONF protocol requires a structured and secure operating environment that promotes human usability and multi-vendor interoperability. There is a need for standard mechanisms to restrict NETCONF or RESTCONF protocol access for particular users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. This document defines such an access control model.
 This document obsoletes RFC 6536.

 Network Management Datastore Architecture (NMDA)

 Datastores are a fundamental concept binding the data models written in the YANG data modeling language to network management protocols such as the Network Configuration Protocol (NETCONF) and RESTCONF. This document defines an architectural framework for datastores based on the experience gained with the initial simpler model, addressing requirements that were not well supported in the initial model. This document updates RFC 7950.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Object Security for Constrained RESTful Environments (OSCORE)

 This document defines Object Security for Constrained RESTful Environments (OSCORE), a method for application-layer protection of the Constrained Application Protocol (CoAP), using CBOR Object Signing and Encryption (COSE). OSCORE provides end-to-end protection between endpoints communicating using CoAP or CoAP-mappable HTTP. OSCORE is designed for constrained nodes and networks supporting a range of proxy operations, including translation between different transport protocols.
 Although an optional functionality of CoAP, OSCORE alters CoAP options processing and IANA registration. Therefore, this document updates RFC 7252.

 SCHC: Generic Framework for Static Context Header Compression and Fragmentation

 This document defines the Static Context Header Compression and fragmentation (SCHC) framework, which provides both a header compression mechanism and an optional fragmentation mechanism. SCHC has been designed with Low-Power Wide Area Networks (LPWANs) in mind.
 SCHC compression is based on a common static context stored both in the LPWAN device and in the network infrastructure side. This document defines a generic header compression mechanism and its application to compress IPv6/UDP headers.
 This document also specifies an optional fragmentation and reassembly mechanism. It can be used to support the IPv6 MTU requirement over the LPWAN technologies. Fragmentation is needed for IPv6 datagrams that, after SCHC compression or when such compression was not possible, still exceed the Layer 2 maximum payload size.
 The SCHC header compression and fragmentation mechanisms are independent of the specific LPWAN technology over which they are used. This document defines generic functionalities and offers flexibility with regard to parameter settings and mechanism choices. This document standardizes the exchange over the LPWAN between two SCHC entities. Settings and choices specific to a technology or a product are expected to be grouped into profiles, which are specified in other documents. Data models for the context and profiles are out of scope.

 Static Context Header Compression (SCHC) for the Constrained Application Protocol (CoAP)

 This document defines how to compress Constrained Application Protocol (CoAP) headers using the Static Context Header Compression and fragmentation (SCHC) framework. SCHC defines a header compression mechanism adapted for Constrained Devices. SCHC uses a static description of the header to reduce the header's redundancy and size. While RFC 8724 describes the SCHC compression and fragmentation framework, and its application for IPv6/UDP headers, this document applies SCHC to CoAP headers. The CoAP header structure differs from IPv6 and UDP, since CoAP uses a flexible header with a variable number of options, themselves of variable length. The CoAP message format is asymmetric: the request messages have a header format different from the format in the response messages. This specification gives guidance on applying SCHC to flexible headers and how to leverage the asymmetry for more efficient compression Rules.

 Informative References

 LPWAN Static Context Header Compression (SCHC) Architecture

 Acklio

 Cisco Systems

 Acklio

 This document defines the LPWAN SCHC architecture.

 Work in Progress

 The YANG 1.1 Data Modeling Language

 YANG is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols. This document describes the syntax and semantics of version 1.1 of the YANG language. YANG version 1.1 is a maintenance release of the YANG language, addressing ambiguities and defects in the original specification. There are a small number of backward incompatibilities from YANG version 1. This document also specifies the YANG mappings to the Network Configuration Protocol (NETCONF).

 Constrained Application Protocol (CoAP) Option for No Server Response

 There can be machine-to-machine (M2M) scenarios where server responses to client requests are redundant. This kind of open-loop exchange (with no response path from the server to the client) may be desired to minimize resource consumption in constrained systems while updating many resources simultaneously or performing high-frequency updates. CoAP already provides Non-confirmable (NON) messages that are not acknowledged by the recipient. However, the request/response semantics still require the server to respond with a status code indicating "the result of the attempt to understand and satisfy the request", per RFC 7252.
 This specification introduces a CoAP option called 'No-Response'. Using this option, the client can explicitly express to the server its disinterest in all responses against the particular request. This option also provides granular control to enable expression of disinterest to a particular response class or a combination of response classes. The server MAY decide to suppress the response by not transmitting it back to the client according to the value of the No-Response option in the request. This option may be effective for both unicast and multicast requests. This document also discusses a few examples of applications that benefit from this option.

 Low-Power Wide Area Network (LPWAN) Overview

 Low-Power Wide Area Networks (LPWANs) are wireless technologies with characteristics such as large coverage areas, low bandwidth, possibly very small packet and application-layer data sizes, and long battery life operation. This memo is an informational overview of the set of LPWAN technologies being considered in the IETF and of the gaps that exist between the needs of those technologies and the goal of running IP in LPWANs.

 Static Context Header Compression and Fragmentation (SCHC) over LoRaWAN

 The Static Context Header Compression and fragmentation (SCHC) specification (RFC 8724) describes generic header compression and fragmentation techniques for Low-Power Wide Area Network (LPWAN) technologies. SCHC is a generic mechanism designed for great flexibility so that it can be adapted for any of the LPWAN technologies.
 This document defines a profile of SCHC (RFC 8724) for use in LoRaWAN networks and provides elements such as efficient parameterization and modes of operation.

 Example
 The informal Rules given are represented in XML, as shown in .

 Rules Example

/-------------------------\
|Rule 6/3 110 |
|---------------+---+--+--+----------------+-------+----------------\
IPV6.VER	4	1	BI	6	EQUAL	NOT-SENT
IPV6.TC	8	1	BI	0	EQUAL	NOT-SENT
IPV6.FL	20	1	BI	0	IGNORE	NOT-SENT
IPV6.LEN	16	1	BI		IGNORE	COMPUTE-LENGTH
IPV6.NXT	8	1	BI	58	EQUAL	NOT-SENT
IPV6.HOP_LMT	8	1	BI	255	IGNORE	NOT-SENT
IPV6.DEV_PREFIX	64	1	BI	200104701f2101d2	EQUAL	NOT-SENT
IPV6.DEV_IID	64	1	BI	0000000000000003	EQUAL	NOT-SENT
IPV6.APP_PREFIX	64	1	BI		IGNORE	VALUE-SENT
IPV6.APP_IID	64	1	BI		IGNORE	VALUE-SENT
\---------------+---+--+--+----------------+-------+----------------/						
/-------------------------\						
Rule 12/11 00001100						
!=========================+===\						
!^ Fragmentation mode : NoAck header dtag 2 Window 0 FCN 3 UP ^!						
!^ No Tile size specified ^!						
!^ RCS Algorithm: RCS_CRC32 ^!						
\===/						
/-------------------------\						
Rule 100/8 01100100						
NO-COMPRESSION RULE						
\-------------------------/

 XML Representation of the Rules

<?xml version='1.0' encoding='UTF-8'?>
 <schc xmlns="urn:ietf:params:xml:ns:yang:ietf-schc">
 <rule>
 <rule-id-value>6</rule-id-value>
 <rule-id-length>3</rule-id-length>
 <rule-nature>nature-compression</rule-nature>
 <entry>
 <field-id>fid-ipv6-version</field-id>
 <field-length>4</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AAY=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-trafficclass</field-id>
 <field-length>8</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AA==</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-flowlabel</field-id>
 <field-length>20</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AA==</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-payload-length</field-id>
 <field-length>16</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-compute</comp-decomp-action>
 </entry>
 <entry>
 <field-id>fid-ipv6-nextheader</field-id>
 <field-length>8</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>ADo=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-hoplimit</field-id>
 <field-length>8</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AP8=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-devprefix</field-id>
 <field-length>64</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>IAEEcB8hAdI=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-deviid</field-id>
 <field-length>64</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AAAAAAAAAAM=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-appprefix</field-id>
 <field-length>64</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-value-sent</comp-decomp-action>
 </entry>
 <entry>
 <field-id>fid-ipv6-appiid</field-id>
 <field-length>64</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-value-sent</comp-decomp-action>
 </entry>
 </rule>
 <rule>
 <rule-id-value>12</rule-id-value>
 <rule-id-length>11</rule-id-length>
 <rule-nature>nature-fragmentation</rule-nature>
 <direction>di-up</direction>
 <rcs-algorithm>rcs-crc32</rcs-algorithm>
 <dtag-size>2</dtag-size>
 <fcn-size>3</fcn-size>
 <fragmentation-mode>
 fragmentation-mode-no-ack
 </fragmentation-mode>
 </rule>
 <rule>
 <rule-id-value>100</rule-id-value>
 <rule-id-length>8</rule-id-length>
 <rule-nature>nature-no-compression</rule-nature>
 </rule>
 </schc>

 Acknowledgments
 The authors would like to thank , , , and for their careful reading and valuable inputs. A special thanks for
 , , , ,
and for their explanations and wise advice when building the model.

 Authors' Addresses

 Acklio

 1137A avenue des Champs Blancs
 Cesson-Sevigne Cedex
 35510
 France

 ana@ackl.io

 Institut MINES TELECOM; IMT Atlantique

 2 rue de la Chataigneraie CS 17607
 Cesson-Sevigne Cedex
 35576
 France

 Laurent.Toutain@imt-atlantique.fr

