The xtemplate package
Prototype document functions

The ETEX Project”
Released 2025-10-09

There are three broad “layers” between putting down ideas into a source file and
ending up with a typeset document. These layers of document writing are

1. authoring of the text with mark-up;
2. document layout design;
3. implementation (with TEX programming) of the design.

We write the text as an author, and we see the visual output of the design after the
document is generated; the TEX implementation in the middle is the glue between the
two.

TEX’s greatest success has been to standardize a system of mark-up that balances
the trade-off between ease of reading and ease of writing to suit almost all forms of
technical writing. It’s other original strength was a good background in typographical
design; while the standard IATEX 2¢ classes look somewhat dated now in terms of their
visual design, their typography is generally sound. (Barring the occasional minor faults.)

However, XTEX 2¢ has always lacked a standard approach to customizing the visual
design of a document. Changing the looks of the standard classes involved either:

o Creating a new version of the implementation code of the class and editing it.

e Loading one of the many packages to customize certain elements of the standard
classes.

e Loading a completely different document class, such as KOMA-Script or memoir,
that allows easy customization.

All three of these approaches have their drawbacks and learning curves.

The idea behind xtemplate is to cleanly separate the three layers introduced at the
beginning of this section, so that document authors who are not programmers can easily
change the design of their documents. xtemplate also makes it easier for IXTEX program-
mers to provide their own customizations on top of a pre-existing class.

*E-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

1 What is a document?

Besides the textual content of the words themselves, the source file of a document contains
mark-up elements that add structure to the document. These elements include sectional
divisions, figure/table captions, lists of various sorts, theorems/proofs, and so on. The
list will be different for every document that can be written.

Each element can be represented logically without worrying about the formatting,
with mark-up such as \section, \caption, \begin{enumerate} and so on. The output
of each one of these document elements will be a typeset representation of the information
marked up, and the visual arrangement and design of these elements can vary widely in
producing a variety of desired outcomes.

For each type of document element, there may be design variations that contain
the same sort of information but present it in slightly different ways. For example, the
difference between a numbered and an unnumbered section, \section and \sectionx,
or the difference between an itemized list or an enumerated list.

There are three distinct layers in the definition of “a document” at this level

1. semantic elements such as the ideas of sections and lists;
2. a set of design solutions for representing these elements visually;
3. specific variations for these designs that represent the elements in the document.

In the parlance of the template system, these are called object types, templates, and
instances, and they are discussed below in sections 3, 4, and 6, respectively.

2 Objects, templates, and instances

By formally declaring documents to be composed of mark-up elements grouped into
objects, which are interpreted and typeset with a set of templates, each of which has one
or more instances with which to compose each and every semantic unit of the text, we
can cleanly separate the components of document construction.

All of the structures provided by the template system are global, and do not respect

TEX grouping.

3 Object types

An object type (sometimes just “object”) is an abstract idea of a document element that
takes a fixed number of arguments corresponding to the information from the document
author that it is representing. A sectioning object, for example, might take three inputs:
“title”, “short title”, and “label”.

Any given document class will define which object types are to be used in the doc-
ument, and any template of a given object type can be used to generate an instance for
the object. (Of course, different templates will produce different typeset representations,
but the underlying content will be the same.)

\DeclareObjectType

\DeclareTemplateInterface

\DeclareObjectType {(object type)} {(no. of args)}

This function defines an (object type) taking (number of arguments), where the
(object type) is an abstraction as discussed above. For example,

\DeclareObjectType{sectioning}{3}

creates an object type “sectioning”, where each use of that object type will need three
arguments.

4 Templates

A template is a generalized design solution for representing the information of a specified
object type. Templates that do the same thing, but in different ways, are grouped
together by their object type and given separate names. There are two important parts
to a template:

e the parameters it takes to vary the design it is producing;
o the implementation of the design.

As a document author or designer does not care about the implementation but rather only
the interface to the template, these two aspects of the template definition are split into two
independent declarations, \DeclareTemplateInterface and \DeclareTemplateCode.

\DeclareTemplateInterface

{{object type)} {(template)} {(no. of args)}

{(key 1ist)}
A (template) interface is declared for a particular (object type), where the (number of
arguments) must agree with the object type declaration. The interface itself is defined
by the (key 1ist), which is itself a key—value list taking a specialized format:

(keyl) : (key typel) ,
(key2) : (key type2) ,
(key3) : (key type3) = (default3) ,
(key4) : (key typed) = (default4) ,

Each (key) name should consist of ASCII characters, with the exception of ,, = and ..
The recommended form for key names is to use lower case letters, with dashes to separate
out different parts. Spaces are ignored in key names, so they can be included or missed
out at will. Each (key) must have a (key type), which defined the type of input that
the (key) requires. A full list of key types is given in Table 1. Each key may have a
(default) value, which will be used in by the template if the (key) is not set explicitly.
The (default) should be of the correct form to be accepted by the (key type) of the
(key): this is not checked by the code.

Key-type

Description of input

boolean true or false

choice{(choices)} A list of pre-defined (choices)

commalist A comma-separated list

function{(N)} A function definition with N arguments (N from 0 to 9)
instance{(name)} An instance of type (name)

integer An integer or integer expression

length A fixed length

muskip A math length with shrink and stretch components
real A real (floating point) value

skip A length with shrink and stretch components
tokenlist A token list: any text or commands

Table 1: Key-types for defining template interfaces with \DeclareTemplateInterface.

\KeyValue \KeyValue {(key name)}

There are occasions where the default (or value) for one key should be taken from another.
The \KeyValue function can be used to transfer this information without needing to know
the internal implementation of the key:

\DeclareTemplateInterface {
{

key-name-1 :

key-name-2 :

object } { template } { no. of args }

value ,
\KeyValue { key-name-1 },

key-type
key-type

\DeclareTemplateCode

Key-type Description of binding

boolean Boolean variable, e.g. \1_tmpa_bool

choice List of choice implementations (see Section 5)
commalist Comma list, e.g. \1_tmpa_clist

function Function taking N arguments, e.¢g. \use_i:nn

instance

integer Integer variable, e.g. \1_tmpa_int
length Dimension variable, e.g. \1_tmpa_dim
muskip Muskip variable, e.g. \1_tmpa_muskip
real Floating-point variable, e.g. \1_tmpa_fp
skip Skip variable, e.g. \1_tmpa_skip

tokenlist Token list variable, e.g. \1_tmpa_t1

Table 2: Bindings required for different key types when defining template implementa-
tions with \DeclareTemplateCode. Apart from code, choice and function all of these
accept the key word global to carry out a global assignment.

\DeclareTemplateCode

{(object type)} {(template)} {(no. of args)}

{(key bindings)} {(code)}
The relationship between a templates keys and the internal implementation is created
using the \DeclareTemplateCode function. As with \DeclareTemplateInterface, the
(template) name is given along with the (object type) and (number of arguments)
required. The (key bindings) argument is a key—value list which specifies the relation-
ship between each (key) of the template interface with an underlying(variable).

N

(key1) = (variablel),
(key2) = (variable2),
(key3) = global (variable3),
(key4) = global (variabled4),

N

With the exception of the choice, code and function key types, the (variable) here
should be the name of an existing IXTEX3 register. As illustrated, the key word “global”
may be included in the listing to indicate that the (variable) should be assigned globally.
A full list of variable bindings is given in Table 2.

The (code) argument of \DeclareTemplateCode is used as the replacement text for
the template when it is used, either directly or as an instance. This may therefore accept
arguments #1, #2, etc. as detailed by the (number of arguments) taken by the object

type.

\AssignTemplateKeys \AssignTemplateKeys

In the final argument of \DeclareTemplateCode the assignment of keys defined by
the template may be delayed by including the command \AssignTemplateKeys. If
this is not present, keys are assigned immediately before the template code. If
\AssignTemplateKeys is present, assignment is delayed until this point. Note that
the command must be directly present in the code, not placed within a nested com-
mand/macro.

5 Multiple choices

The choice key type implements multiple choice input. At the interface level, only the
list of valid choices is needed:

\DeclareTemplateInterface { foo } { bar > { 0 }
{ key-name : choice { A, B, C } }

where the choices are given as a comma-list (which must therefore be wrapped in braces).
A default value can also be given:

\DeclareTemplateInterface { foo } { bar } { 0 }
{ key-name : choice { A, B, C} =4}

At the implementation level, each choice is associated with code, using a nested
key—value list.

\DeclareTemplateCode { foo } { bar } { 0 }

{
key-name =
{
A = Code-A ,
B = Code-B ,
C = Code-C
}
}
{...}

The two choice lists should match, but in the implementation a special unknown choice
is also available. This can be used to ignore values and implement an “else” branch:

\DeclareTemplateCode { foo } { bar } { 0 }

{
key-name =
{
A = Code-A ,
B = Code-B ,
C = Code-C ,
unknown = Else-code
}
}
{...}

\Declarelnstance

\IfInstanceExistT
\IfInstanceExistF
\IfInstanceExistTF

\DeclareInstanceCopy

The unknown entry must be the last one given, and should not be listed in the interface
part of the template.

For keys which accept the values true and false both the boolean and choice key
types can be used. As template interfaces are intended to prompt clarity at the design
level, the boolean key type should be favored, with the choice type reserved for keys
which take arbitrary values.

6 Instances

After a template is defined it still needs to be put to use. The parameters that it expects
need to be defined before it can be used in a document. Every time a template has
parameters given to it, an instance is created, and this is the code that ends up in the
document to perform the typesetting of whatever pieces of information are input into it.

For example, a template might say “here is a section with or without a number that
might be centered or left aligned and print its contents in a certain font of a certain size,
with a bit of a gap before and after it” whereas an instance declares “this is a section
with a number, which is centered and set in 12 pt italic with a 10 pt skip before and a
12 pt skip after it”. Therefore, an instance is just a frozen version of a template with
specific settings as chosen by the designer.

\DeclareInstance
{(object type)} {(instance)} {(template)} {(parameters)}

This function uses a (template) for an (object type) to create an (instance). The
(instance) will be set up using the (parameters), which will set some of the (keys) in
the (template).

As a practical example, consider an object type for document sections (which might
include chapters, parts, sections, etc.), which is called sectioning. One possible template
for this object type might be called basic, and one instance of this template would be a
numbered section. The instance declaration might read:

\DeclareInstance { sectioning } { section-num } { basic }

{

numbered

true ,
justification = center ,

font =\normalsize\itshape ,
before-skip = 10pt ,
after-skip = 12pt ,

3

Of course, the key names here are entirely imaginary, but illustrate the general idea of
fixing some settings.

\IfInstanceExistTF {(object type)} {(instance)} {(true code)} {(false code)}

Tests if the named (instance) of a (object type) exists, and then inserts the appro-
priate code into the input stream.

\DeclareInstanceCopy
{(object type)} {(instance2)} {(instancel)}

Copies the (values) for (instancel) for an (object type) to (instance2).

\UseInstance

\UseTemplate

\EditTemplateDefaults

\EditInstance

7 Document interface

After the instances have been chosen, document commands must be declared to use those
instances in the document. \UselInstance calls instances directly, and this command
should be used internally in document-level mark-up.

\UseInstance

{{object type)} {(instance)} (arguments)
Uses an (instance) of the (object type), which will require (arguments) as determined
by the number specified for the (object type). The (instance) must have been declared
before it can be used, otherwise an error is raised.

\UseTemplate {(object type)} {(template)}
{(settings)} (arguments)
Uses the (template) of the specified (object type), applying the (settings) and ab-
sorbing (arguments) as detailed by the (object type) declaration. This in effect is the
same as creating an instance using \DeclareInstance and immediately using it with
\UseInstance, but without the instance having any further existence. It is therefore
useful where a template needs to be used once.
This function can also be used as the argument to instance key types:

\DeclareInstance { object } { template } { instance }
{
instance-key =
\UseTemplate { object2 } { template2 } { <settings> }

8 Changing existing definitions

Template parameters may be assigned specific defaults for instances to use if the instance
declaration doesn’t explicit set those parameters. In some cases, the document designer
will wish to edit these defaults to allow them to “cascade” to the instances. The alterna-
tive would be to set each parameter identically for each instance declaration, a tedious
and error-prone process.

\EditTemplateDefaults
{(object type)} {(template)} {(new defaults)}

Edits the (defaults) for a (template) for an (object type). The (new defaults),
given as a key—value list, replace the existing defaults for the (template). This means
that the change will apply to instances declared after the editing, but that instances
which have already been created are unaffected.

\EditInstance
{{object type)} {(instance)} {(new values)}

Edits the (values) for an (instance) for an (object type). The (new values), given
as a key—value list, replace the existing values for the (instance). This function is
complementary to \EditTemplateDefaults: \EditInstance changes a single instance
while leaving the template untouched.

9 When template parameters should be frozen

A class designer may be inheriting templates declared by someone else, either third-party
code or the KTEX kernel itself. Sometimes these templates will be overly general for the
purposes of the document. The user should be able to customize parts of the template
instances, but otherwise be restricted to only those parameters allowed by the designer.

\DeclareRestrictedTemplate \DeclareRestrictedTemplate
{(object type)} {(parent template)} {(new template)}
{(parameters)}

Creates a copy of the (parent template) for the (object type) called (new template).
The key—value list of (parameters) applies in the (new template) and cannot be
changed when creating an instance.

10 Ad hoc adjustment of templates

\SetTemplateKeys \SetTemplateKeys {(object type)} {(template)} {(keyvals)}

At point of use it may be useful to apply changed to individual instances. This is sup-
ported as each template key is made available for adjustment using \SetTemplateKeys.
For example, after

\DeclareObjectType{MyObj}{0}
\DeclareTemplateInterface{MyObj}{TemplateA}{0}
{
akey: tokenlist ,
bkey: function{2}
¥
\DeclareTemplateCode{MyObj}{TemplateA}{0}
{
akey = SomeTokens ,
bkey = \func:nn ,
¥

the template keys could be adjusted in an ad hoc fashion using

\SetTemplateKeys{MyObj}{TemplateA}
{
akey
bkey
+

OtherTokens ,
\AltFunc:nn

11 Getting information about templates and instances

\ShowInstanceValues \ShowInstanceValues {(object type)} {(instance)}

Shows the (values) for an (instance) of the given (object type) at the terminal.

\ShowTemplateCode \ShowTemplateCode {{object type)} {(template)}

Shows the (code) of a (template) for an (object type) in the terminal.

\ShowTemplateDefaults \ShowTemplateDefaults {(object type)} {(template)}

Shows the (default) values of a (template) for an (object type) in the terminal.

\ShowTemplateInterface \ShowTemplateInterface {({object type)} {(template)}

Shows the (keys) and associated (key types) of a (template) for an (object type) in
the terminal.

\ShowTemplateVariables \ShowTemplateVariables {(object type)} {(template)}

Shows the (variables) and associated (keys) of a (template) for an (object type) in
the terminal. Note that code and choice keys do not map directly to variables but to
arbitrary code. For choice keys, each valid choice is shown as a separate entry in the
list, with the key name and choice separated by a space, for example

Template ’example’ of object type ’example’ has variable mapping:
> demo unknown => \def \demo {7}

> demo ¢ => \def \demo {c}

> demo b => \def \demo {b}

> demo a => \def \demo {a}.

would be shown for a choice key demo with valid choices a, b and ¢, plus code for an
unknown branch.

12 Collections

The implementation of templates includes a concept termed “collections”. The idea is
that by activating a collection, a set of instances can rapidly be set up. An example use
case would be collections for frontmatter, mainmatter and backmatter in a book. This
mechanism is currently implemented by the commands \DeclareCollectionInstance,
\EditCollectionInstance and \UseCollection. However, while the idea of switchable
instances is a useful one, the team feel that collections are not the correct way to achieve
this, at least with the current approach. As such, the collection functions should be
regarded as deprecated: they remain available to support existing code, but will be
removed when a better mechanism is developed.

\ShowCollectionInstanceValues \ShowInstanceValues {(collection)} {{object type)} {(instance)}

Shows the (values) for an (instance) within a (collection) of the given (object
type) at the terminal. As for other collection commands, this should be regarded as
deprecated.

10

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
\AssignTemplateKeys 6
B

bool commands:
\1_tmpa_bool 5
C
\caption 2
clist commands:
\l_tmpa_clist 5
D
\DeclareCollectionInstance 10
\DeclareInstance 7, 8
\DeclareInstanceCopy 7
\DeclareObjectType 3
\DeclareRestrictedTemplate 9
\DeclareTemplateCode 3,5, 6
\DeclareTemplateInterface 35
dim commands:
\l_tmpa_dim 5
E
\EditCollectionInstance 10
\EditInstance 8
\EditTemplateDefaults 8
F
fp commands:
\l_tmpa_fpovvii 5
I
\IfInstanceExistF 7

11

\IfInstanceExistT 7
\IfInstanceExistTF 7
int commands:

\l_tmpa_int 5

K
\KeyValue 4
M
muskip commands:
\1_tmpa_muskip 5
S
\section, 2
\SetTemplateKeys 9
\ShowCollectionInstanceValues 10
\ShowInstanceValues 9, 10
\ShowTemplateCode 10
\ShowTemplateDefaults 10
\ShowTemplateInterface 10
\ShowTemplateVariables 10
skip commands:
\l_tmpa_skip 5
T
tl commands:
\l_tmpa_tl00, 5
U
use commands:

\use_i:nn 5
\UseCollection 10
\UseInstance 8
\UseTemplate 8

	1 What is a document?
	2 Objects, templates, and instances
	3 Object types
	4 Templates
	5 Multiple choices
	6 Instances
	7 Document interface
	8 Changing existing definitions
	9 When template parameters should be frozen
	10 Ad hoc adjustment of templates
	11 Getting information about templates and instances
	12 Collections
	Index
	A
	B
	C
	D
	E
	F
	I
	K
	M
	S
	T
	U

