
DejaGnu

The GNU Testing Framework

Rob Savoye
Free Software Foundation

DejaGnu: The GNU Testing Framework
by Rob Savoye

1.4.4 Edition
Copyright © 2002 by Free Software Foundation, Inc.

Revision History

Revision 0.6.2 2002-7-16 Revised by: rob@welcomehome.org
Add new tutorial as a new chapter.
Revision 0.6.1 2001-2-16 Revised by: rob@welcomehome.org
Add info on the new dejagnu.h file.
Revision 0.6 2001-2-16 Revised by: rob@welcomehome.org
Updated for new release.
Revision 0.5 2000-1-24 Revised by: rob@welcomehome.org
Initial version after conversion to DocBook.

Table of Contents
Abstract ... i
1. Overview ..1

What is DejaGnu ?..1
What’s New In This Release ...1

Windows Support...2
Design Goals ...2
A POSIX conforming test framework ...2

2. Getting DejaGnu up and running...5
Test your installation..5

Windows ..5
Getting the source code for the calc example ...5

Create a minimal project, e.g. calc ...6
A simple project without the GNU autotools...6
Using autoconf/autoheader/automake..6

Our first automated tests...8
Running the test for the calc example..8
The various config files or how to avoid warnings9
When trouble strikes ..10
Testing “Hello world” locally ...10

A first remote test ...11
Setup telnet to your own host...11
A test case for login via telnet...11
Remote testing “Hello world” ..12
Transferring files from/to the target..13
Preparing for crosscompilation ..13
Remote testing of calc ..14
Using Windows as host and vxWorks as target ...14

3. Running Tests ..15
Make check..15
Runtest ...15

Output States...15
Invoking Runtest ..16
Common Options ...19

The files DejaGnu produces..20
Summary File ..20
Log File...20
Debug Log File ..21

4. Customizing DejaGnu...23
Local Config File...23
Global Config File ..24
Board Config File..25
Remote Host Testing..26
Config File Values...28

Command Line Option Variables...28
Personal Config File ...29

5. Extending DejaGnu..31
Adding A New Testsuite...31
Adding A New Tool...31
Adding A New Target ...34
Adding A New Board..34
Board Config File Values ...35
Writing A Test Case..37
Debugging A Test Case ...38
Adding A Test Case To A Testsuite..39
Hints On Writing A Test Case ..39
Special variables used by test cases. ..40

iii

6. Unit Testing..41
What Is Unit Testing ?..41
The dejagnu.h Header File..41

7. Reference ..43
Obtaining DejaGnu ..43
Installation...43

Configuring DejaGnu...43
Installing DejaGnu..43

Builtin Procedures ..44
Core Internal Procedures...44
Procedures For Remote Communication ..53
Procedures For Using Utilities to Connect..65
Procedures For Target Boards ...72
Target Database Procedures ..75
Platform Dependant Procedures ..78
Utility Procedures...80
Libgloss, A Free BSP...84
Procedures for debugging your Tcl code. ...88

File Map ...91
8. Unit Testing API..93

C Unit Testing API ...93
Pass Function...93
Fail Function..93
Untested Function ..93
Unresolved Function..93
Totals Function..93

C++ Unit Testing API...93
Pass Method ..93
Fail Method..94
Untested Method ..94
Unresolved Method..94
Totals Method..94

iv

Abstract

This document describes the functionality of DejaGnu, the testing framework of the
GNU project. DejaGnu is written in Expect, which uses Tcl as a command language.
Expect acts as a very programmable shell. As with other Unix command shells, you
can run any program, but once the program is started, your test script has pro-
grammable control over its input and output. This does not just apply to the pro-
grams under test; expect can also run any auxiliary program, such as diff or sh, with
full control over its input and output.

DejaGnu itself is merely a framework for the creation of testsuites. Testsuites are dis-
tributed with each application.

i

Abstract

ii

Chapter 1. Overview

What is DejaGnu ?
DejaGnu is a framework for testing other programs. Its purpose is to provide a single
front end for all tests. Think of it as a custom library of Tcl procedures crafted to sup-
port writing a test harness. A Test Harness is the testing infrastructure that is created
to support a specific program or tool. Each program can have multiple testsuites, all
supported by a single test harness. DejaGnu is written in Expect, which in turn uses
Tcl -- Tool command language. There is more information on Tcl at the Scriptics1 web
site and the Expect web site is at NIST2.

Julia Menapace first coined the term “DejaGnu” to describe an earlier testing frame-
work at Cygnus Support she had written for GDB. When we replaced it with the
Expect-based framework, it was like DejaGnu all over again. More importantly, it was
also named after my daughter, Deja Snow Savoye3 (now 13 years old as of September
2003), who was a toddler during DejaGnu’s beginnings.

DejaGnu offers several advantages for testing:

• The flexibility and consistency of the DejaGnu framework make it easy to write
tests for any program, with either batch oriented, or interactive programs.

• DejaGnu provides a layer of abstraction which allows you to write tests that are
portable to any host or target where a program must be tested. For instance, a test
for GDB can run from any supported host system on any supported target system.
DejaGnu runs tests on many single board computers, whose operating software
ranges from a simple boot monitor to a real-time OS.

• All tests have the same output format. This makes it easy to integrate testing into
other software development processes. DejaGnu’s output is designed to be parsed
by other filtering script and it is also human readable.

• Using Tcl and Expect, it’s easy to create wrappers for existing testsuites. By in-
corporating existing tests under DejaGnu, it’s easier to have a single set of report
analyse programs..

Running tests requires two things: the testing framework and the testsuites them-
selves. Tests are usually written in Expect using Tcl, but you can also use a Tcl script
to run a testsuite that is not based on Expect. Expect script filenames conventionally
use .exp as a suffix; for example, the main implementation of the DejaGnu test driver
is in the file runtest.exp.)

What’s New In This Release
This release has a number of substantial changes over version 1.3. The most visible
change is that the version of Expect and Tcl included in the release are up-to-date
with the current stable net releases. The biggest change is years of modifications to
the target configuration system, used for cross testing. While this greatly improved
cross testing, is has made that subsystem very complicated. The goal is to have this
entirely rewritten using iTcl by the next release. Other changes are:

• More built-in support for building target binaries with the correct linker flags. Cur-
rently this only works with GCC as the cross compiler, preferably with a target
supported by Libgloss.

• Lots of little bug fixes from years of heavy use at Cygnus Solutions.

• DejaGnu now uses Automake for Makefile configuration.

• Updated documentation, now in SGML (using the free GNU DocBook tools4) for-
mat.

1

Chapter 1. Overview

• Windows support. There is beta level support for Windows that is still a work in
progress. This requires the Cygwin5 POSIX subsystem for Windows.

Windows Support

To use DejaGnu on Windows, you need to first install the Cygwin6 release. This works
as of the B20.1 release. Cygwin is a POSIX system for Windows. This covers both
utility programs and a library that adds POSIX system calls to Windows. Among
them is pseudo tty support for Windows that emulates the POSIX pty standard. The
latest Cygwin is always available from this location7. This works well enough to run
"make check" of the GNU development tree on Windows after a native build. But the
nature of ptys on Windows is still evolving. Your mileage may vary.

Design Goals
DejaGnu grew out of the internal needs of Cygnus Solutions, the company formerly
known as Cygnus Support. Cygnus maintained and enhanced a variety of free pro-
grams in many different environments and we needed a testing tool that:

• was useful to developers while fixing bugs;

• automated running many tests during a software release process;

• was portable among a variety of host computers;

• supported cross-development testing;

• permitted testing interactive programs, like GDB; and

• permitted testing batch oriented programs, like GCC.

Some of the requirements proved challenging. For example, interactive programs
do not lend themselves very well to automated testing. But all the requirements are
important: for instance, it is imperative to make sure that GDB works as well when
cross-debugging as it does in a native configuration.

Probably the greatest challenge was testing in a cross-development environment.
Most cross-development environments are customized by each developer. Even
when buying packaged boards from vendors there are many differences. The
communication interfaces vary from a serial line to Ethernet. DejaGnu was designed
with a modular communication setup, so that each kind of communication can be
added as required and supported thereafter. Once a communication procedure is
coded, any test can use it. Currently DejaGnu can use rsh, rlogin, telnet, tip, kermit
and mondfe for remote communications.

A POSIX conforming test framework
DejaGnu conforms to the POSIX 1003.3 standard for test frameworks. Rob Savoye
was a member of that committee.

The POSIX standard 1003.3 defines what a testing framework needs to provide, in or-
der to permit the creation of POSIX conformance test suites. This standard is primar-
ily oriented to running POSIX conformance tests, but its requirements also support
testing of features not related to POSIX conformance. POSIX 1003.3 does not specify a
particular testing framework, but at this time there is only one other POSIX conform-
ing test framework: TET. TET was created by Unisoft for a consortium comprised of
X/Open, Unix International and the Open Software Foundation.

The POSIX documentation refers to assertions. An assertion is a description of behav-
ior. For example, if a standard says “The sun shall shine”, a corresponding assertion

2

Chapter 1. Overview

might be “The sun is shining.” A test based on this assertion would pass or fail de-
pending on whether it is day or night. It is important to note that the standard being
tested is never 1003.3; the standard being tested is some other standard, for which
the assertions were written.

As there is no testsuite to test testing frameworks for POSIX 1003.3 conformance,
verifying conformance to this standard is done by repeatedly reading the standard
and experimenting. One of the main things 1003.3 does specify is the set of allowed
output messages and their definitions. Four messages are supported for a required
feature of POSIX conforming systems and a fifth for a conditional feature. DejaGnu
supports the use of all five output messages. In this sense a testsuite that uses exactly
these messages can be considered POSIX conforming. These definitions specify the
output of a test case:

PASS

A test has succeeded. That is, it demonstrated that the assertion is true.

XFAIL

POSIX 1003.3 does not incorporate the notion of expected failures, so PASS, in-
stead of XPASS, must also be returned for test cases which were expected to fail
and did not. This means that PASS is in some sense more ambiguous than if
XPASS is also used.

FAIL

A test has produced the bug it was intended to capture. That is, it has demon-
strated that the assertion is false. The FAIL message is based on the test case only.
Other messages are used to indicate a failure of the framework. As with PASS,
POSIX tests must return FAIL rather than XFAIL even if a failure was expected.

UNRESOLVED

A test produced indeterminate results. Usually, this means the test executed in
an unexpected fashion; this outcome requires that a human being go over results,
to determine if the test should have passed or failed. This message is also used
for any test that requires human intervention because it is beyond the abilities
of the testing framework. Any unresolved test should resolved to PASS or FAIL
before a test run can be considered finished.

Note that for POSIX, each assertion must produce a test result code. If the test
isn’t actually run, it must produce UNRESOLVED rather than just leaving that
test out of the output. This means that you have to be careful when writing tests
to not carelessly use Tcl commands like return---if you alter the flow of control of
the Tcl code you must insure that every test still produces some result code.

Here are some of the ways a test may wind up UNRESOLVED:

• A test’s execution is interrupted.

• A test does not produce a clear result. This is usually because there was an ER-
ROR from DejaGnu while processing the test, or because there were three or more
WARNING messages. Any WARNING or ERROR messages can invalidate the out-
put of the test. This usually requires a human being to examine the output to de-
termine what really happened---and to improve the test case.

• A test depends on a previous test, which fails.

• The test was set up incorrectly.

3

Chapter 1. Overview

UNTESTED

A test was not run. This is a place-holder, used when there is no real test case
yet.

The only remaining output message left is intended to test features that are specified
by the applicable POSIX standard as conditional:

UNSUPPORTED

There is no support for the tested case. This may mean that a conditional fea-
ture of an operating system, or of a compiler, is not implemented. DejaGnu also
uses this message when a testing environment (often a “bare board” target) lacks
basic support for compiling or running the test case. For example, a test for the
system subroutine gethostname would never work on a target board running only
a boot monitor.

DejaGnu uses the same output procedures to produce these messages for all test-
suites and these procedures are already known to conform to POSIX 1003.3. For a
DejaGnu testsuite to conform to POSIX 1003.3, you must avoid the setupxfail} pro-
cedure as described in the PASS section above and you must be careful to return
UNRESOLVED where appropriate, as described in the UNRESOLVED section above.

Notes
1. http://www.scriptics.com

2. http://expect.nist.gov

3. mailto:deja@welcomehome.org

4. http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro.html

5. http://www.cygwin.com/

6. http://www.cygwin.com/

7. http://www.cygwin.com/

4

Chapter 2. Getting DejaGnu up and running

This chapter was originally written by Niklaus Giger (ngiger@mus.ch) because he
lost a week to figure out how DejaGnu works and how to write a first test.

Follow these instructions as closely a possible in order get a good insight into how
DejaGnu works, else you might run into a lot of subtle problems. You have been
warned.

It should be no big problems installing DejaGnu using your package manager or from
the source code. Under a Debian/GNU/Linux systems just type (as root)

apt-get dejagnu

. These examples were run on a primary machine with a AMD K6 and a Mac Power-
book G3 serving as a remote target.

The tests for Windows were run under Windows NT using the actual Cygwin version
(1.3.x as of October 2001). It’s target system was a PPC embedded system running
vxWorks.

Test your installation
Create a new user called "dgt" (DejaGnuTest), which uses bash as it login shell. PS1
must be set to ’\u:\w\$ ’ in its ~/.bashrc. Login as this user, create an empty direc-
tory and change the working directory to it. e.g

dgt:~$ mkdir ~/dejagnu.test
dgt:~$ cd ~/dejagnu.test

Now you are ready to test DejaGnu’s main program called runtest. The expecteted
output is shown

Example 2-1. Runtest output in a empty directory

dgt:~/dejagnu.test$ runtest
WARNING: Couldn’t find the global config file.
WARNING: No tool specified Test
Run By dgt on Sun Nov 25 17:07:03 2001 Native configuration is i586-pc-linux-gnu
=== tests ===
Schedule of variations: unix
Running target unix Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.
ERROR: Couldn’t find tool config file for unix.
=== Summary ===

We will show you later how to get rid of all the WARNING- and ERROR-messages.
The files testrun.sum and testrun.log have been created, which do not interest us at
this point. Let’s remove them.
:~/dejagnu.test$ rm testrun.sum testrun.log

Windows

On Windows systems DejaGnu is part of a port of a lot of Unix tools to the Win-
dows OS, called Cygwin. Cygwin may be downloaded and installed from a mirror
of http://www.cygwin.com/. All examples were also run on Windows NT. If noth-
ing is said, you can assume that you should get the same output as on a Unix system.

You will need a telnet daemon if you want to use a Windows box as a remote target.
There seems to be a freeware telnet daemon at http://www.fictional.net/.

5

Chapter 2. Getting DejaGnu up and running

Getting the source code for the calc example

If you are running a Debian distribution you can find the examples under
/usr/share/doc/dejagnu/examples. These examples seem to be missing in Red
Hat’s RPM. In this case download the sources of DejaGnu and adjust the pathes to
the DejaGnu examples accordingly.

Create a minimal project, e.g. calc
In this section you will to start a small project, using the sample application calc,
which is part of your DejaGnu distribution

A simple project without the GNU autotools

The runtest program can be run standalone. All the autoconf/automake support is
just cause those programs are commonly used for other GNU applications. The key
to running runtest standalone is having the local site.exp file setup correctly, which
automake does.

The generated site.exp should like like:

set tool calc
set srcdir .
set objdir /home/dgt/dejagnu.test

Using autoconf/autoheader/automake

We have to prepare some input file in order to run autocon and automake. There is
book “GNU autoconf, automake and libtool” by Garry V. Vaughan, et al. NewRider,
ISBN 1-57870-190-2 which describes this process thoroughly.

From the calc example distributed with the DejaGnu documentation you should copy
the program file itself (calc.c) and some additional files, which you might examine a
little bit close to derive their meanings.

dgt:~/dejagnu.test$ cp -r /usr/share/doc/dejagnu/examples/calc/\
{configure.in,Makefile.am,calc.c,testsuite} .

In Makemake.am note the presence of the AUTOMAKE_OPTIONS = dejagnu. This
option is needed.

Run aclocal to generate aclocal.m4, which is a collection of macros needed by config-
ure.in

dgt:~/dejagnu.test$ aclocal

autoconf is another part of the auto-tools. Run it to generate configure based on in-
formation contained in configure.in.

dgt:~/dejagnu.test$ autoconf

autoheader is another part of the auto-tools. Run it to generate calc.h.in.

dgt:~/dejagnu.test$ autoheader

The Makefile.am of this example was developed as port of the DejaGnu distribu-
tion. Adapt Makefile.am for this test. Replace the line “#noinst_PROGRAMS = calc”
to “bin_PROGRAMS = calc”. Change the RUNTESTDEFAULTFLAGS from “$$sr-
cdir/testsuite” to “./testsuite”.

6

Chapter 2. Getting DejaGnu up and running

Running automake at this point contains a series of warning in its output as shown
in the following example:

Example 2-2. Sample output of automake with missing files

dgt:~/dejagnu.test$ automake --add-missing
automake: configure.in: installing ‘./install-sh’
automake: configure.in: installing ‘./mkinstalldirs’
automake: configure.in: installing ‘./missing’
automake: Makefile.am: installing ‘./INSTALL’
automake: Makefile.am: required file ‘./NEWS’ not found
automake: Makefile.am: required file ‘./README’ not found
automake: Makefile.am: installing ‘./COPYING’
automake: Makefile.am: required file ‘./AUTHORS’ not found
automake: Makefile.am: required file ‘./ChangeLog’ not found
configure.in: 4: required file ‘./calc.h.in’ not found
Makefile.am:6: required directory ./doc does not exist

Create a empty directory doc and empty files INSTALL, NEWS, README, AU-
THORS, ChangeLog and COPYING. The default COPYING will point to the GNU
Public License (GPL). In a real project it would be time to add some meaningfull text
in each file.

Adapt calc to your environment by calling configure.

Example 2-3. Sample output of configure

dgt:~/dejagnu.test$./configure
creating cache ./config.cache
checking whether to enable maintainer-specific portions of Makefiles... no
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes
checking whether make sets ${MAKE}... yes
checking for working aclocal... found
checking for working autoconf... found
checking for working automake... found
checking for working autoheader... found
checking for working makeinfo... found
checking for gcc... gcc checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes
checking whether gcc accepts -g... yes
checking for a BSD compatible install... /usr/bin/install -c
checking how to run the C preprocessor... gcc -E
checking for stdlib.h... yes
checking for strcmp... yes
updating cache ./config.cache
creating ./config.status
creating Makefile creating calc.h

If you are familiar with GNU software, this output should not contain any surprise
to you. Any errors should be easy to fix for such a simple program.

Build the calc executable:

Example 2-4. Sample output building calc

dgt:~/dejagnu.test$ make
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -c calc.c
gcc -g -O2 -o calc calc.o

You prepared a few files and then called some commands. Respecting the right order
assures a automatic and correctly compiled calc program. The following example
resumes the correct order.

7

Chapter 2. Getting DejaGnu up and running

Example 2-5. Creating the calc program using the GNU autotools

dgt:~/dejagnu.test$ aclocal
dgt:~/dejagnu.test$ autoconf
dgt:~/dejagnu.test$ autoheader
dgt:~/dejagnu.test$ automake --add-missing
dgt:~/dejagnu.test$./configure
dgt:~/dejagnu.test$ make

Play with calc and verify whether it works correctly. A sample session might look
like this:

dgt:~/dejagnu.test$./calc
calc: version
Version: 1.1
calc: add 3 4
7
calc: multiply 3 4
12
calc: multiply 2 4
12
calc: quit

Look at the intentional bug that 2 times 4 equals 12.

The tests run by DejaGnu need a file called site.exp, which is automatically generated
if we call “make site.exp”. This was the purpose of the “AUTOMAKE_OPTIONS =
dejagnu” in Makefile.am.

Example 2-6. Sample output generating a site.exp

dgt: make site.exp
dgt:~/dejagnu.test$ make site.exp
Making a new site.exp file...

Our first automated tests

Running the test for the calc example

Now we are ready to call the automated tests

Example 2-7. Sample output of runtest in a configured directory

dgt:~/dejagnu.test$ make check
make check-DEJAGNU
make[1]: Entering directory ‘/home/dgt/dejagnu.test’ srcdir=‘cd . && pwd‘; export srcdir; \
EXPECT=expect; export EXPECT; \ runtest=runtest; \
if /bin/sh -c "$runtest --version" > /dev/null 2>&1; then \
$runtest --tool calc CALC=‘pwd‘/calc --srcdir ./testsuite ; \
else echo "WARNING: could not find \‘runtest’" 1>&2; :;\
fi
WARNING: Couldn’t find the global config file.
WARNING: Couldn’t find tool init file
Test Run By dgt on Sun Nov 25 21:42:21 2001
Native configuration is i586-pc-linux-gnu

=== calc tests ===

Schedule of variations:
unix

8

Chapter 2. Getting DejaGnu up and running

Running target unix
Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.
Using ./testsuite/config/unix.exp as tool-and-target-specific interface file.
Running ./testsuite/calc.test/calc.exp ...
FAIL: multiply2 (bad match)

=== calc Summary ===

of expected passes 5
of unexpected failures 1
/home/Dgt/dejagnu.test/calc version Version: 1.1
make[1]: *** [check-DEJAGNU] Fehler 1
make[1]: Leaving directory ‘/home/Dgt/dejagnu.test’ make: *** [check-am] Fehler 2

Did you see the line “FAIL:“? The test cases for calc catch the bug in the calc.c file. Fix
the error in calc.c later as the following examples assume a unchanged calc.c.

Examine the output files calc.sum and calc.log. Try to understand the testcases writ-
ten in ~/dejagnu.test/testsuite/calc.test/calc.exp. To understand Expect you might
take a look at the book "Exploring Expect", which is an excellent resource for learning
and using Expect. (Pub: O’Reilly, ISBN 1-56592-090-2) The book contains hundreds
of examples and also includes a tutorial on Tcl. Exploring Expect is 602 pages long.

The various config files or how to avoid warnings

DejaGnu may be customized by each user. It first searches for a file called ~/.dejag-
nurc. Create the file ~/.dejagnurc and insert the following line:

puts "I am ~/.dejagnurc"

Rerun make check. Test whether the output contains "I am ~/.dejagnurc". Create
~/my_dejagnu.exp and insert the following line:

puts "I am ~/my_dejagnu.exp"

In a Bash-Shell enter

dgt:~/dejagnu.test$ export DEJAGNU=~/my_dejagnu.exp

Run “make check” again. The output should not contain “WARNING: Couldn’t find
the global config file.”. Create the sub-directory lib. Create the file “calc.exp” in it and
insert the following line:

puts "I am lib/calc.exp"

The last warning “WARNING: Couldn’t find tool init file” should not be part
of the output of make check. Create the directory ~/boards. Create the file
~/boards/standard.exp and insert the following line:

puts "I am boards/standard.exp"

If the variable DEJAGNU is still not empty then the (abbreviated) output of “make
check” should look like this:

Example 2-8. Sample output of runtest with the usual configuration files

dgt:~/dejagnu.test$ make check
<...>
fi
I am ~/.dejagnurc
I am ~/my_dejagnu.exp

9

Chapter 2. Getting DejaGnu up and running

I am lib/calc.exp
Test Run By dgt on Sun Nov 25 22:19:14 2001
Native configuration is i586-pc-linux-gnu

=== calc tests ===
Using /home/Dgt/boards/standard.exp as standard board description\
file for build.
I am ~/boards/standard.exp
Using /home/Dgt/boards/standard.exp as standard board description\

file for host.
I am ~/boards/standard.exp

Schedule of variations:
unix

Running target unix
Using /home/Dgt/boards/standard.exp as standard board description\

file for target.
I am ~/boards/standard.exp
Using /usr/share/dejagnu/baseboards/unix.exp as board description file\
for target.
<...>

It is up to you to decide when and where to use any of the above mentioned con-
fig files for customizing. This chapters showed you where and in which order the
different config files are run.

When trouble strikes

Calling runtest with the ’-v’-flag shows you in even more details which files are
searched in which order. Passing it several times gives more and more details.

Example 2-9. Displaying details about runtest execution

runtest -v -v -v --tool calc CALC=‘pwd‘/calc --srcdir ./testsuite

Calling runtest with the ’--debug’-flag logs a lot of details to dbg.log where you can
analyse it afterwards.

In all test cases you can temporary adjust the verbosity of information by adding
the following Tcl-command to any tcl file that gets loaded by dejagnu, for instance,
~/.dejagnurc:

set verbose 9

Testing “Hello world” locally

This test checks, whether the built-in shell command “echo Hello
world” will really write “Hello world” on the console. Create the file
~/dejagnu.test/testsuite/calc.test/local_echo.exp. It should contain the following
lines

Example 2-10. A first (local) test case

set test "Local Hello World"
send "echo Hello World"
expect {

-re "Hello World" { pass "$test" }
}

Run runtest again and verify the output “calc.log”
10

Chapter 2. Getting DejaGnu up and running

A first remote test
Testing remote targets is a lot trickier especially if you are using an embedded target
which has no built in support for things like a compiler, ftp server or a Bash-shell.
Before you can test calc on a remote target you have to acquire a few basics skills.

Setup telnet to your own host

The easiest remote host is usually the host you are working on. In this example we
will use telnet to login in your own workstation. For security reason you should never
have a telnet deamon running on machine connected on the internet, as password
and usernames are transmitted in clear text. We assume you know how to setup your
machine for a telnet daemon.

Next try whether you may login in your own host by issuing the command “telnet
localhost.1”. In order to be able to distinguish between a normal session an a telnet
login add the following lines to /home/dgt/.bashrc.

if ["$REMOTEHOST"]
then

PS1=’remote:\w\$ ’
fi

Now on the machine a “remote” login looks like this:

Example 2-11. Sample log of a telnet login to localhost

dgt:~/dejagnu.test$ telnet localhost
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is ’^]’.
Debian GNU/Linux testing/unstable Linux
K6Linux login: dgt
Password:
Last login: Sun Nov 25 22:46:34 2001 from localhost on pts/4
Linux K6Linux 2.4.14 #1 Fre Nov 16 19:28:25 CET 2001 i586 unknown
No mail.
remote:~$ exit
logout
Connection closed by foreign host.

A test case for login via telnet

In order to define a correct setup we have add a line containing “set target unix”
either to ~/.dejagnurc or to ~/my_dejagnu.exp. In ~/boards/standard.exp add the
following four lines to define a few patterns for the DejaGnu telnet login procedure.

Example 2-12. Defining a remote target board

set_board_info shell_prompt "remote:"
set_board_info telnet_username "dgt"
set_board_info telnet_password "top_secret"
set_board_info hostname "localhost"

As DejaGnu will be parsing the telnet session output for some well known pattern
the output there are a lot of things that can go wrong. If you have any problems verify
your setup:

• Is /etc/motd empty?

• Is /etc/issue.net empty?

11

Chapter 2. Getting DejaGnu up and running

• Exists a empty ~/.hushlogin ?

• The LANG environment variable must be either empty or set to “C”.

To test the login via telnet write a sample test case. Create the file
~/dejagnu.test/testsuite/calc.test/remote_echo.exp and add the following few
lines:

Example 2-13. DejaGnu script for logging in into a remote target

puts "this is remote_echo.exp target for $target "
target_info $target
#set verbose 9
set shell_id [remote_open $target]
set test "Remote login to $target"
#set verbose 0
puts "Spawn id for remote shell is $shell_id"
if { $shell_id > 0 } {

pass "$test"
} else {

fail "Remote open to $target"
}

In the runtest output you should find something like:

Running ./testsuite/calc.test/local_echo.exp ...
Running ./testsuite/calc.test/remote_echoo.exp ...
this is remote_echo.exp target is unix
Spawn id for remote shell is exp7

Have again a look at calc.log to get a feeling how DejaGnu and expect parse the input.

Remote testing “Hello world”

Next you will transform the above “hello world” example to its remote equivalent.
This can be done by adding the following lines to our file remote_echo.exp.

Example 2-14. A first (local) remote "Hello world" test

set test "Remote_send Hello World"
set status [remote_send $target "echo \"Hello\" \"World\"\n"]
pass "$test"
set test "Remote_expect Hello World"
remote_expect $target 5 {

-re "Hello World" { pass "$test" }
}

Call make check. The output should contain “# of expected passes 9” and “# of unex-
cpected failures 1”.

Have a look at the procedures in /usr/share/dejagnu/remote.exp to have an
overview of the offered procedures and their features.

Now setup a real target. In the following example we assume as target a PowerBook
running Debian. As above add a test user "dgt", install telnet and FTP servers. In
order to distinguish it from the host add the line

PS1=’test:>’

to /home/dgt/.bash_profile. Also add a corresponding entry "powerbook" to
/etc/hosts and verify that you are able to ping, telnet and ftp to the target
"powerbook".

12

Chapter 2. Getting DejaGnu up and running

In order to let runtest run its test on the "powerbook" target change the following
lines in ~/boards/standard.exp:

Example 2-15. Board definition for a remote target

set_board_info protocol "telnet"
set_board_info telnet_username "dgt"
set_board_info telnet_password "top_secret"
set_board_info shell_prompt "test:> "
set_board_info hostname "powerbook"

Now call runtest again with the same arguments and verify whether all went okay
by taking a close look at calc.log.

Transferring files from/to the target

A simple procedure like this will do the job for you:

Example 2-16. Test script to transfer a file to a remote target

set test "Remote_download"
puts "Running Remote_download"
set verbose 9
set remfile /home/dgt/dejagnu2

set status [remote_download $target /home/dgt/.dejagnurc $remfile]
if { "$status" == "" } {

fail "Remote download to $remfile on $target"
} else {

pass "$test"
}

puts "status of remote_download ist $status"
set verbose 0

After running runtest again, check whether the file dejagnu2 exists on the target. This
example will only work if the rcp command works with your target. If you have a
working FTP-server on the target you can use it by adding the following lines to
~/boards/standard.exp:

Example 2-17. Defining a board to use FTP as file transport

set_board_info file_transfer "ftp"
set_board_info ftp_username "dgt"
set_board_info ftp_password "1234"

Preparing for crosscompilation

For crosscompiling you need working binutils, gcc and a base library like libc or
glib for your target. It is beyond the scope of this document to describe how to get
it working. The following examples assume a cross compiler for PowerPC which is
called linux-powerpc-gcc.

Add AC_CANONICAL_TARGET in dejagnu.test/configure.in at the following loca-
tion. Copy config.guess from /usr/share/automake to dejagnu.test.

AM_CONFIG_HEADER(calc.h)
AC_CANONICAL_TARGET([])
AM_INIT_AUTOMAKE(calc, 1.1)

13

Chapter 2. Getting DejaGnu up and running

You need to run automake 2.5 or later. Depending on your installation calling auto-
conf2.5 instead of autoconf is not needed. The sequence to regenerate all files is:

Example 2-18. Using autotools for cross development

$ autoconf2.5
$ autoheader
$ automake
$./configure --host=powerpc-linux --target=powerpc-linux
configure: WARNING: If you wanted to set the --build type, don’t use --host.

If a cross compiler is detected then cross compile mode will be used.
checking build system type... ./config.guess: ./config.guess: No such file or directory
configure: error: cannot guess build type; you must specify one
$ cp /usr/share/automake/config.guess .
$./configure --host=powerpc-linux --target=powerpc-linux
configure: WARNING: If you wanted to set the --build type, don’t use --host.
If a cross compiler is detected then cross compile mode will be used. \
checking build system type... i586-pc-linux-gnu
checking host system type... powerpc-unknown-linux-gnu
<...>
checking whether we are cross compiling... yes
<...>
Configuration:
Source code location: .
C Compiler: powerpc-linux-gcc
C Compiler flags: -g -O2

Everything should be ready to recompile for the target:

$ make
powerpc-linux-gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -c calc.c
powerpc-linux-gcc -g -O2 -o calc calc.o

Remote testing of calc

Not yet written, as I have problem getting libc6-dev-powerpc to work. Probably I
first have to build my cross compiler.

Using Windows as host and vxWorks as target

A more thorough walk-through will be written in a few weeks.

In order to test the vxWorks as a target I changed boards/standards.exp to reflect
my settings (IP, username, password). Then I reconfigured vxWorks to include
a FTP and telnet server (using the same username/password combination ad in
boards/standard.exp).

With this setup and some minor modification (e.g. replacing echo by printf)
in my test cases I could test my vxWorks system. It sure does not seem
to be a correct setup by DejaGnu standard. For instance, it still loading
/usr/share/dejagnu/baseboards/unix.exp instead of vxWorks. In any case I found
that (at least under Windows) I did not find out how the command line would let
me override settings in my personal config files.

14

Chapter 3. Running Tests

There are two ways to execute a testsuite. The most common way is when there is ex-
isting support in the Makefile . This support consists of a check target. The other way
is to execute the runtest program directly. To run runtest directcly from the command
line requires either all the correct options, or the Local Config File must be setup cor-
rectly.

Make check
To run tests from an existing collection, first use configure as usual to set up the build
directory. Then try typing:

make check

If the check target exists, it usually saves you some trouble. For instance, it can set up
any auxiliary programs or other files needed by the tests. The most common file the
check builds is the site.exp. The site.exp file contains various variables that DejaGnu
used to dertermine the configuration of the program being tested. This is mostly for
supporting remote testing.

The check target is supported by GNU Automake. To have DejaGnu support
added to your generated Makefile.in , just add the keyword dejagnu to the
AUTOMAKE_OPTIONS variable in your Makefile.am file.

Once you have run make check to build any auxiliary files, you can invoke the test
driver runtest directly to repeat the tests. You will also have to execute runtest di-
rectly for test collections with no check target in the Makefile .

Runtest
runtest is the executable test driver for DejaGnu. You can specify two kinds of things
on the runtest command line: command line options, and Tcl variables for the test
scripts. The options are listed alphabetically below.

runtest returns an exit code of 1 if any test has an unexpected result; otherwise (if all
tests pass or fail as expected) it returns 0 as the exit code.

Output States

runtest flags the outcome of each test as one of these cases. A POSIX Conforming
Test Framework for a discussion of how POSIX specifies the meanings of these cases.

PASS

The most desirable outcome: the test succeeded, and was expected to succeed.

XPASS

A pleasant kind of failure: a test was expected to fail, but succeeded. This may
indicate progress; inspect the test case to determine whether you should amend
it to stop expecting failure.

FAIL

A test failed, although it was expected to succeed. This may indicate regress;
inspect the test case and the failing software to ocate the bug.

15

Chapter 3. Running Tests

XFAIL

A test failed, but it was expected to fail. This result indicates no change in a
known bug. If a test fails because the operating system where the test runs lacks
some facility required by the test, the outcome is UNSUPPORTED instead.

UNRESOLVED

Output from a test requires manual inspection; the testsuite could not automati-
cally determine the outcome. For example, your tests can report this outcome is
when a test does not complete as expected.

UNTESTED

A test case is not yet complete, and in particular cannot yet produce a PASS or
FAIL. You can also use this outcome in dummy “tests” that note explicitly the
absence of a real test case for a particular property.

UNSUPPORTED

A test depends on a conditionally available feature that does not exist (in the
configured testing environment). For example, you can use this outcome to re-
port on a test case that does not work on a particular target because its operating
system support does not include a required subroutine.

runtest may also display the following messages:

ERROR

Indicates a major problem (detected by the test case itself) in running the test.
This is usually an unrecoverable error, such as a missing file or loss of com-
munication to the target. (POSIX testsuites should not emit this message; use
UNSUPPORTED, UNTESTED, or UNRESOLVED instead, as appropriate.)

WARNING

Indicates a possible problem in running the test. Usually warnings correspond
to recoverable errors, or display an important message about the following tests.

NOTE

An informational message about the test case.

Invoking Runtest

This is the full set of command line options that runtest recognizes. Arguments may
be abbreviated to the shortest unique string.

--all (-a)

Display all test output. By default, runtest shows only the output of tests that
produce unexpected results; that is, tests with status FAIL (unexpected failure),
XPASS (unexpected success), or ERROR (a severe error in the test case itself).
Specify --all to see output for tests with status PASS (success, as expected) XFAIL
(failure, as expected), or WARNING (minor error in the test case itself).

--build [string]

string is a full configuration “triple” name as used by configure. This is the type
of machine DejaGnu and the tools to be tested are built on. For a normal cross
this is the same as the host, but for a canadian cross, they are seperate.

16

Chapter 3. Running Tests

--host [string]

string is a full configuration “triple” name as used by configure. Use this option
to override the default string recorded by your configuration’s choice of host.
This choice does not change how anything is actually configured unless --build
is also specified; it affects only DejaGnu procedures that compare the host string
with particular values. The procedures ishost, istarget, isnative, and setupxfail} are
affected by --host. In this usage, host refers to the machine that the tests are to
be run on, which may not be the same as the build machine. If --build is also
specified, then --host refers to the machine that the tests wil, be run on, not the
machine DejaGnu is run on.

--host_board [name]

The host board to use.

--target [string]

Use this option to override the default setting (running native tests). string is a
full configuration “triple” name of the form cpu-vendor-os as used by configure.
This option changes the configuration runtest uses for the default tool names,
and other setup information.

--debug (-de)

Turns on the expect internal debugging output. Debugging output is displayed
as part of the runtest output, and logged to a file called dbg.log . The extra de-
bugging output does not appear on standard output, unless the verbose level is
greater than 2 (for instance, to see debug output immediately, specify --debug-v
-v}). The debugging output shows all attempts at matching the test output of the
tool with the scripted patterns describing expected output. The output generated
with --strace also goes into dbg.log .

--help (-he)

Prints out a short summary of the runtest options, then exits (even if you also
specify other options).

--ignore [name(s)]

The names of specific tests to ignore.

--objdir [path]

Use path as the top directory containing any auxiliary compiled test code. This
defaults to . . Use this option to locate pre-compiled test code. You can normally
prepare any auxiliary files needed with make.

--outdir [path]

Write output logs in directory path . The default is .}, the directory where you
start runtest. This option affects only the summary and the detailed log files
tool.sum and tool.log . The DejaGnu debug log dbg.log always appears
(when requested) in the local directory.

--reboot [name]

Reboot the target board when runtest initializes. Usually, when running tests on
a separate target board, it is safer to reboot the target to be certain of its state.
However, when developing test scripts, rebooting takes a lot of time.

--srcdir [path]

Use path as the top directory for test scripts to run. runtest looks in this directory
for any subdirectory whose name begins with the toolname (specified with --
tool). For instance, with --toolgdb}, runtest uses tests in subdirectories gdb.* (with

17

Chapter 3. Running Tests

the usual shell-like filename expansion). If you do not use --srcdir, runtest looks
for test directories under the current working directory.

--strace [number]

Turn on internal tracing for expect, to n levels deep. By adjusting the level, you
can control the extent to which your output expands multi-level Tcl statements.
This allows you to ignore some levels of case or if statements. Each procedure call
or control structure counts as one “level”. The output is recorded in the same file,
dbg.log , used for output from --debug.

--connect [program]

Connect to a target testing environment as specified by type, if the target is not
the computer running runtest. For example, use --connect to change the program
used to connect to a “bare board” boot monitor. The choices for type in the De-
jaGnu 1.4 distribution are rlogin, telnet, rsh, tip, kermit, and mondfe.

The default for this option depends on the configuration most convenient com-
munication method available, but often other alternatives work as well; you may
find it useful to try alternative connect methods if you suspect a communication
problem with your testing target.

--baud [number]

Set the default baud rate to something other than 9600. (Some serial interface
programs, like tip, use a separate initialization file instead of this value.)

--target_board [name(s)]

The list of target boards to run tests on.

--tool[name(s)]

Specifies which testsuite to run, and what initialization module to use. --tool is
used only for these two purposes. It is not used to name the executable program
to test. Executable tool names (and paths) are recorded in site.exp and you can
override them by specifying Tcl variables on the command line.

For example, including "--tool gcc" on the runtest command line runs tests from
all test subdirectories whose names match gcc.* , and uses one of the initial-
ization modules named config/*-gcc.exp . To specify the name of the com-
piler (perhaps as an alternative path to what runtest would use by default), use
GCC=binname on the runtest command line.

--tool_exec [name]

The path to the tool executable to test.

--tool_opts [options]

A list of additional options to pass to the tool.

--verbose (-v)

Turns on more output. Repeating this option increases the amount of output
displayed. Level one (-v) is simply test output. Level two (-v-v}) shows messages
on options, configuration, and process control. Verbose messages appear in the
detailed (*.log) log file, but not in the summary (*.sum) log file.

--version (-V)

Prints out the version numbers of DejaGnu, expect and Tcl, and exits without
running any tests.

18

Chapter 3. Running Tests

--D[0-1]

Start the internal Tcl debugger. The Tcl debugger supports breakpoints, single
stepping, and other common debugging activities. See the document "Debugger
for Tcl Applications" by Don Libes. (Distributed in PostScript form with expect
as the file expect/tcl-debug.ps. . If you specify -D1, the expect shell stops at a
breakpoint as soon as DejaGnu invokes it. If you specify -D0, DejaGnu starts as
usual, but you can enter the debugger by sending an interrupt (e.g. by typing
C-c).

testfile .exp[=arg(s)]

Specify the names of testsuites to run. By default, runtest runs all tests for the
tool, but you can restrict it to particular testsuites by giving the names of the .exp
expect scripts that control them. testsuite.exp may not include path information;
use plain filenames.

testfile .exp="testfile1 ..."

Specify a subset of tests in a suite to run. For compiler or assembler tests, which
often use a single .exp script covering many different source files, this option
allows you to further restrict the tests by listing particular source files to compile.
Some tools even support wildcards here. The wildcards supported depend upon
the tool, but typically they are ?, *, and [chars].

tclvar=value

You can define Tcl variables for use by your test scripts in the same style used
with make for environment variables. For example, runtest GDB=gdb.old defines
a variable called GDB; when your scripts refer to $GDB in this run, they use the
value gdb.old.

The default Tcl variables used for most tools are defined in the main DejaGnu
Makefile; their values are captured in the site.exp file.

Common Options

Typically, you don’t need must to use any command-line options. --tool used is only
required when there are more than one testsuite in the same directory. The default
options are in the local site.exp file, created by "make site.exp".

For example, if the directory gdb/testsuite contains a collection of DejaGnu tests
for GDB, you can run them like this:

eg$ cd gdb/testsuite
eg$ runtest --tool gdb

Test output follows, ending with:

=== gdb Summary ===

of expected passes 508
of expected failures 103
/usr/latest/bin/gdb version 4.14.4 -nx

You can use the option --srcdir to point to some other directory containing a collection
of tests:

eg$ runtest--srcdir /devo/gdb/testsuite

19

Chapter 3. Running Tests

By default, runtest prints only the names of the tests it runs, output from any tests
that have unexpected results, and a summary showing how many tests passed and
how many failed. To display output from all tests (whether or not they behave as
expected), use the --all option. For more verbose output about processes being run,
communication, and so on, use --verbose. To see even more output, use multiple --
verbose options. for a more detailed explanation of each runtest option.

Test output goes into two files in your current directory: summary output in
tool.sum , and detailed output in tool.log . (tool refers to the collection of tests; for
example, after a run with --tool gdb, look for output files gdb.sum and gdb.log .)

The files DejaGnu produces.
DejaGnu always writes two kinds of output files: summary logs and detailed logs.
The contents of both of these are determined by your tests.

For troubleshooting, a third kind of output file is useful: use --debug to request an
output file showing details of what Expect is doing internally.

Summary File

DejaGnu always produces a summary output file tool.sum . This summary shows
the names of all test files run; for each test file, one line of output from each pass
command (showing status PASS or XPASS) or fail command (status FAIL or XFAIL);
trailing summary statistics that count passing and failing tests (expected and unex-
pected); and the full pathname and version number of the tool tested. (All possible
outcomes, and all errors, are always reflected in the summary output file, regardless
of whether or not you specify --all .)

If any of your tests use the procedures unresolved, unsupported, or runtested, the
summary output also tabulates the corresponding outcomes.

For example, after runtest --tool binutils, look for a summary log in binutils.sum .
Normally, DejaGnu writes this file in your current working directory; use the
--outdir option to select a different directory.

Example 3-1. Here is a short sample summary log

Test Run By rob on Mon May 25 21:40:57 PDT 1992
=== gdb tests ===

Running ./gdb.t00/echo.exp ...
PASS: Echo test
Running ./gdb.all/help.exp ...
PASS: help add-symbol-file
PASS: help aliases
PASS: help breakpoint "bre" abbreviation
FAIL: help run "r" abbreviation
Running ./gdb.t10/crossload.exp ...
PASS: m68k-elf (elf-big) explicit format; loaded
XFAIL: mips-ecoff (ecoff-bigmips) "ptype v_signed_char" signed C types

=== gdb Summary ===
of expected passes 5
of expected failures 1
of unexpected failures 1
/usr/latest/bin/gdb version 4.6.5 -q

20

Chapter 3. Running Tests

Log File

DejaGnu also saves a detailed log file tool.log , showing any output generated by
tests as well as the summary output. For example, after runtest --tool binutils, look
for a detailed log in binutils.log . Normally, DejaGnu writes this file in your current
working directory; use the --outdir option to select a different directory.

Example 3-2. Here is a brief example showing a detailed log for G++ tests

Test Run By rob on Mon May 25 21:40:43 PDT 1992

=== g++ tests ===

--- Running ./g++.other/t01-1.exp ---
PASS: operate delete

--- Running ./g++.other/t01-2.exp ---
FAIL: i960 bug EOF

p0000646.C: In function ‘int warn_return_1 ()’:
p0000646.C:109: warning: control reaches end of non-void function
p0000646.C: In function ‘int warn_return_arg (int)’:
p0000646.C:117: warning: control reaches end of non-void function
p0000646.C: In function ‘int warn_return_sum (int, int)’:
p0000646.C:125: warning: control reaches end of non-void function
p0000646.C: In function ‘struct foo warn_return_foo ()’:
p0000646.C:132: warning: control reaches end of non-void function

--- Running ./g++.other/t01-4.exp ---
FAIL: abort

900403_04.C:8: zero width for bit-field ‘foo’
--- Running ./g++.other/t01-3.exp ---

FAIL: segment violation
900519_12.C:9: parse error before ‘;’
900519_12.C:12: Segmentation violation
/usr/latest/bin/gcc: Internal compiler error: program cc1plus got fatal signal

=== g++ Summary ===

of expected passes 1
of expected failures 3
/usr/latest/bin/g++ version cygnus-2.0.1

Debug Log File

With the --debug option, you can request a log file showing the output from Expect
itself, running in debugging mode. This file (dbg.log , in the directory where you
start runtest) shows each pattern Expect considers in analyzing test output.

This file reflects each send command, showing the string sent as input to the tool
under test; and each Expect command, showing each pattern it compares with the
tool output.

Example 3-3. The log messages begin with a message of the form

expect: does {tool output} (spawn_id n)
match pattern { expected pattern }?

For every unsuccessful match, Expect issues a no after this message; if other patterns
are specified for the same Expect command, they are reflected also, but without the
first part of the message (expect... match pattern).

21

Chapter 3. Running Tests

When Expect finds a match, the log for the successful match ends with yes, followed
by a record of the Expect variables set to describe a successful match.

Example 3-4. Here is an excerpt from the debugging log for a GDB test:

send: sent {break gdbme.c:34\n} to spawn id 6
expect: does {} (spawn_id 6) match pattern {Breakpoint.*at.* file
gdbme.c, line 34.*\(gdb\) $}? no
{.*\(gdb\) $}? no
expect: does {} (spawn_id 0) match pattern {return} ? no
{\(y or n\) }? no
{buffer_full}? no
{virtual}? no
{memory}? no
{exhausted}? no
{Undefined}? no
{command}? no
break gdbme.c:34
Breakpoint 8 at 0x23d8: file gdbme.c, line 34.
(gdb) expect: does {break gdbme.c:34\r\nBreakpoint 8 at 0x23d8:
file gdbme.c, line 34.\r\n(gdb) } (spawn_id 6) match pattern
{Breakpoint.*at.* file gdbme.c, line 34.*\(gdb\) $}? yes
expect: set expect_out(0,start) {18}
expect: set expect_out(0,end) {71}
expect: set expect_out(0,string) {Breakpoint 8 at 0x23d8: file
gdbme.c, line 34.\r\n(gdb) }
epect: set expect_out(spawn_id) {6}
expect: set expect_out(buffer) {break gdbme.c:34\r\nBreakpoint 8
at 0x23d8: file gdbme.c, line 34.\r\n(gdb) }

PASS: 70 0 breakpoint line number in file

This example exhibits three properties of Expect and DejaGnu that might be surpris-
ing at first glance:

• Empty output for the first attempted match. The first set of attempted matches
shown ran against the output {} --- that is, no output. Expect begins attempting to
match the patterns supplied immediately; often, the first pass is against incomplete
output (or completely before all output, as in this case).

• Interspersed tool output. The beginning of the log entry for the second attempted
match may be hard to spot: this is because the prompt {(gdb) } appears on the same
line, just before the expect: that marks the beginning of the log entry.

• Fail-safe patterns. Many of the patterns tested are fail-safe patterns provided by
GDB testing utilities, to reduce possible indeterminacy. It is useful to anticipate po-
tential variations caused by extreme system conditions (GDB might issue the mes-
sage virtual memory exhausted in rare circumstances), or by changes in the tested
program (Undefined command is the likeliest outcome if the name of a tested com-
mand changes).

The pattern {return} is a particularly interesting fail-safe to notice; it checks for an
unexpected RET prompt. This may happen, for example, if the tested tool can filter
output through a pager.

These fail-safe patterns (like the debugging log itself) are primarily useful while
developing test scripts. Use the error procedure to make the actions for fail-safe
patterns produce messages starting with ERROR on standard output, and in the
detailed log file.

22

Chapter 4. Customizing DejaGnu

The site configuration file, site.exp , captures configuration-dependent values and
propagates them to the DejaGnu test environment using Tcl variables. This ties the
DejaGnu test scripts into the configure and make programs. If this file is setup cor-
rectly, it is possible to execute a testsuite merely by typing runtest.

DejaGnu supports two site.exp files. The multiple instances of site.exp are loaded
in a fixed order built into DejaGnu. The first file loaded is the local file site.exp , and
then the optional global site.exp file as pointed to by the DEJAGNU environment
variable.

There is an optional master site.exp , capturing configuration values that apply to
DejaGnu across the board, in each configuration-specific subdirectory of the DejaGnu
library directory. runtest loads these values first. The master site.exp contains the
default values for all targets and hosts supported by DejaGnu. This master file is
identified by setting the environment variable DEJAGNU to the name of the file.
This is also refered to as the “global” config file.

Any directory containing a configured testsuite also has a local site.exp , capturing
configuration values specific to the tool under test. Since runtest loads these values
last, the individual test configuration can either rely on and use, or override, any of
the global values from the global site.exp file.

You can usually generate or update the testsuite’s local site.exp by typing make
site.exp in the testsuite directory, after the test suite is configured.

You can also have a file in your home directory called .dejagnurc . This gets loaded
first before the other config files. Usually this is used for personal stuff, like setting
the all_flag so all the output gets printed, or your own verbosity levels. This file is
usually restricted to setting command line options.

You can further override the default values in a user-editable section of any
site.exp , or by setting variables on the runtest command line.

Local Config File
It is usually more convenient to keep these manual overrides in the site.exp local
to each test directory, rather than in the global site.exp in the installed DejaGnu
library. This file is mostly for supplying tool specific info that is required by the test-
suite.

All local site.exp files have two sections, separated by comment text. The first sec-
tion is the part that is generated by make. It is essentially a collection of Tcl variable
definitions based on Makefile environment variables. Since they are generated by
make, they contain the values as specified by configure. (You can also customize
these values by using the --site option to configure.) In particular, this section con-
tains the Makefile variables for host and target configuration data. Do not edit this
first section; if you do, your changes are replaced next time you run make.

Example 4-1. The first section starts with

these variables are automatically generated by make
Do not edit here. If you wish to override these values
add them to the last section

In the second section, you can override any default values (locally to DejaGnu) for
all the variables. The second section can also contain your preferred defaults for all
the command line options to runtest. This allows you to easily customize runtest for
your preferences in each configured test-suite tree, so that you need not type options
repeatedly on the command line. (The second section may also be empty, if you do
not wish to override any defaults.)

23

Chapter 4. Customizing DejaGnu

Example 4-2. The first section ends with this line

All variables above are generated by configure. Do Not Edit

You can make any changes under this line. If you wish to redefine a variable in the
top section, then just put a duplicate value in this second section. Usually the val-
ues defined in this config file are related to the configuration of the test run. This is
the ideal place to set the variables host_triplet, build_triplet, target_triplet. All other
variables are tool dependant, i.e., for testing a compiler, the value for CC might be set
to a freshly built binary, as opposed to one in the user’s path.

Here’s an example local site.exp file, as used for GCC/G++ testing.

Example 4-3. Local Config File

these variables are automatically generated by make
Do not edit here. If you wish to override these values
add them to the last section
set rootme "/build/devo-builds/i586-pc-linux-gnulibc1/gcc"
set host_triplet i586-pc-linux-gnulibc1
set build_triplet i586-pc-linux-gnulibc1
set target_triplet i586-pc-linux-gnulibc1
set target_alias i586-pc-linux-gnulibc1
set CFLAGS ""
set CXXFLAGS "-isystem /build/devo-builds/i586-pc-linux-gnulibc1/gcc/../libio -isystem $srcdir/../libg++/src -isystem $srcdir/../libio -isystem $srcdir/../libstdc++ -isystem $srcdir/../libstdc++/stl -L/build/devo-builds/i586-pc-linux-gnulibc1/gcc/../libg++ -L/build/devo-builds/i586-pc-linux-gnulibc1/gcc/../libstdc++"
append LDFLAGS " -L/build/devo-builds/i586-pc-linux-gnulibc1/gcc/../ld"
set tmpdir /build/devo-builds/i586-pc-linux-gnulibc1/gcc/testsuite
set srcdir "${srcdir}/testsuite"
All variables above are generated by configure. Do Not Edit

This file defines the required fields for a local config file, namely the three config
triplets, and the srcdir. It also defines several other Tcl variables that are used exclu-
sivly by the GCC testsuite. For most test cases, the CXXFLAGS and LDFLAGS are
supplied by DejaGnu itself for cross testing, but to test a compiler, GCC needs to
manipulate these itself.

Global Config File
The master config file is where all the target specific config variables for a whole
site get set. The idea is that for a centralized testing lab where people have to share
a target between multiple developers. There are settings for both remote targets and
remote hosts. Here’s an example of a Master Config File (also called the Global config
file) for a canadian cross. A canadian cross is when you build and test a cross compiler
on a machine other than the one it’s to be hosted on.

Here we have the config settings for our California office. Note that all config values
are site dependant. Here we have two sets of values that we use for testing m68k-aout
cross compilers. As both of these target boards has a different debugging protocol, we
test on both of them in sequence.

Example 4-4. Global Config file

Make sure we look in the right place for the board description files.
if ![info exists boards_dir] {

set boards_dir {}
}
lappend boards_dir "/nfs/cygint/s1/cygnus/dejagnu/boards"

verbose "Global Config File: target_triplet is $target_triplet" 2

24

Chapter 4. Customizing DejaGnu

global target_list

case "$target_triplet" in {
{ "native" } {

set target_list "unix"
}
{ "sparc64-*elf" } {

set target_list "sparc64-sim"
}
{ "mips-*elf" } {

set target_list "mips-sim wilma barney"
}
{ "mips-lsi-elf" } {

set target_list "mips-lsi-sim{,soft-float,el}"
}
{ "sh-*hms" } {

set target_list { "sh-hms-sim" "bloozy" }
}

}

In this case, we have support for several cross compilers, that all run on this host. For
testing on operating systems that don’t support Expect, DejaGnu can be run on the
local build machine, and it can connect to the remote host and run all the tests for this
cross compiler on that host. All the remote OS requires is a working telnetd.

As you can see, all one does is set the variable target_list to the list of targets and
options to test. The simple settings, like for sparc64-elf only require setting the name
of the single board config file. The mips-elf target is more complicated. Here it sets
the list to three target boards. One is the default mips target, and both wilma bar-
ney are symbolic names for other mips boards. Symbolic names are covered in the
Adding A New Board chapter. The more complicated example is the one for mips-lsi-
elf . This one runs the tests with multiple iterations using all possible combinations
of the --soft-float and the --el (little endian) option. Needless to say, this last
feature is mostly compiler specific.

Board Config File
The board config file is where board specfic config data is stored. A board config
file contains all the higher-level configuration settings. There is a rough inheritance
scheme, where it is possible to base a new board description file on an existing one.
There are also collections of custom procedures for common environments. For more
information on adding a new board config file, go to the Adding A New Board chap-
ter.

An example board config file for a GNU simulator is as follows. set_board_info is
a procedure that sets the field name to the specified value. The procedures in square
brackets [] are helper procedures. Thes are used to find parts of a tool chain required to
build an executable image that may reside in various locations. This is mostly of use
for when the startup code, the standard C lobraries, or the tool chain itself is part of
your build tree.

Example 4-5. Board Config File

This is a list of toolchains that are supported on this board.
set_board_info target_install {sparc64-elf}

Load the generic configuration for this board. This will define any
routines needed by the tool to communicate with the board.
load_generic_config "sim"

We need this for find_gcc and *_include_flags/*_link_flags.

25

Chapter 4. Customizing DejaGnu

load_base_board_description "basic-sim"

Use long64 by default.
process_multilib_options "long64"

setup_sim sparc64

We only support newlib on this target. We assume that all multilib
options have been specified before we get here.
set_board_info compiler "[find_gcc]"
set_board_info cflags "[libgloss_include_flags] [newlib_include_flags]"
set_board_info ldflags "[libgloss_link_flags] [newlib_link_flags]"
No linker script.
set_board_info ldscript "";

Used by a few gcc.c-torture testcases to delimit how large the
stack can be.
set_board_info gcc,stack_size 16384
The simulator doesn’t return exit statuses and we need to indicate this
the standard GCC wrapper will work with this target.
set_board_info needs_status_wrapper 1
We can’t pass arguments to programs.
set_board_info noargs 1

There are five helper procedures used in this example. The first one, find gcc looks
for a copy of the GNU compiler in your build tree, or it uses the one in your path. This
will also return the proper transformed name for a cross compiler if you whole build
tree is configured for one. The next helper procedures are libgloss_include_flags
& libgloss_link_flags . These return the proper flags to compiler and link an exe-
cutable image using Libgloss, the GNU BSP (Board Support Package). The final pro-
cedures are newlib_include_flag & newlib_include_flag . These find the Newlib
C library, which is a reentrant standard C library for embedded systems comprising
of non GPL’d code.

Remote Host Testing

Note: Thanks to Dj Delorie for the original paper that this section is based on.

DejaGnu also supports running the tests on a remote host. To set this up, the remote
host needs an ftp server, and a telnet server. Currently foreign operating systems used
as remote hosts are VxWorks, VRTX, DOS/Windows 3.1, MacOS and Windows.

The recommended source for a Windows-based FTP server is to get IIS (either IIS 1
or Personal Web Server) from http://www.microsoft.com. When you install it, make
sure you install the FTP server - it’s not selected by default. Go into the IIS manager
and change the FTP server so that it does not allow anonymous FTP. Set the home
directory to the root directory (i.e. c:\) of a suitable drive. Allow writing via FTP.

It will create an account like IUSR_FOOBAR where foobar is the name of your ma-
chine. Go into the user editor and give that account a password that you don’t mind
hanging around in the clear (i.e. not the same as your admin or personal passwords).
Also, add it to all the various permission groups.

You’ll also need a telnet server. For Windows, go to the Ataman2 web site, pick up
the Ataman Remote Logon Services for Windows, and install it. You can get started
on the eval period anyway. Add IUSR_FOOBAR to the list of allowed users, set
the HOME directory to be the same as the FTP default directory. Change the Mode
prompt to simple.

26

Chapter 4. Customizing DejaGnu

Ok, now you need to pick a directory name to do all the testing in. For the sake of
this example, we’ll call it piggy (i.e. c:\piggy). Create this directory.

You’ll need a unix machine. Create a directory for the scripts you’ll need. For this ex-
ample, we’ll use /usr/local/swamp/testing. You’ll need to have a source tree some-
where, say /usr/src/devo. Now, copy some files from releng’s area in SV to your
machine:

Example 4-6. Remote host setup

cd /usr/local/swamp/testing
mkdir boards
scp darkstar.welcomehome.org:/dejagnu/cst/bin/MkTestDir .
scp darkstar.welcomehome.org:/dejagnu/site.exp .
scp darkstar.welcomehome.org:/dejagnu/boards/useless98r2.exp boards/foobar.exp
export DEJAGNU=/usr/local/swamp/testing/site.exp

You must edit the boards/foobar.exp file to reflect your machine; change the host-
name (foobar.com), username (iusr_foobar), password, and ftp_directory (c:/piggy)
to match what you selected.

Edit the global site.exp to reflect your boards directory:

Example 4-7. Add The Board Directory

lappend boards_dir "/usr/local/swamp/testing/boards"

Now run MkTestDir, which is in the contrib directory. The first parameter is the
toolchain prefix, the second is the location of your devo tree. If you are testing a
cross compiler (ex: you have sh-hms-gcc.exe in your PATH on the PC), do something
like this:

Example 4-8. Setup Cross Remote Testing

./MkTestDir sh-hms /usr/dejagnu/src/devo

If you are testing a native PC compiler (ex: you have gcc.exe in your PATH on the
PC), do this:

Example 4-9. Setup Native Remote Testing

./MkTestDir ” /usr/dejagnu/src/devo

To test the setup, ftp to your PC using the username (iusr_foobar) and password
you selected. CD to the test directory. Upload a file to the PC. Now telnet to your PC
using the same username and password. CD to the test directory. Make sure the file is
there. Type "set" and/or "gcc -v" (or sh-hms-gcc -v) and make sure the default PATH
contains the installation you want to test.

Example 4-10. Run Test Remotely

cd /usr/local/swamp/testing
make -k -w check RUNTESTFLAGS="--host_board foobar --target_board foobar -v -v" > check.out 2>&1

27

Chapter 4. Customizing DejaGnu

To run a specific test, use a command like this (for this example, you’d run this from
the gcc directory that MkTestDir created):

Example 4-11. Run a Test Remotely

make check RUNTESTFLAGS="--host_board sloth --target_board sloth -v compile.exp=921202-1.c"

Note: if you are testing a cross-compiler, put in the correct target board. You’ll also
have to download more .exp files and modify them for your local configuration. The
-v’s are optional.

Config File Values
DejaGnu uses a named array in Tcl to hold all the info for each machine. In the case
of a canadian cross, this means host information as well as target information. The
named array is called target_info, and it has two indices. The following fields are part
of the array.

Command Line Option Variables

In the user editable second section of the Personal Config File you can not only over-
ride the configuration variables captured in the first section, but also specify default
values for all on the runtest command line options. Save for --debug , --help , and
--version , each command line option has an associated Tcl variable. Use the Tcl set
command to specify a new default value (as for the configuration variables). The fol-
lowing table describes the correspondence between command line options and vari-
ables you can set in site.exp . Invoking Runtest, for explanations of the command-
line options.

Table 4-1. Tcl Variables For Command Line Options

runtest Tcl option variable description

--all all_flag display all test results if set

--baud baud set the default
baud rate to
something
other than 9600.

--connect connectmode rlogin, telnet,
rsh, kermit, tip,
or mondfe

--outdir outdir directory for
tool.sum and
tool.log.

--objdir objdir directory for
pre-compiled
binaries

--reboot reboot reboot the
target if set to
"1"; do not
reboot if set to
"0" (the
default).

28

Chapter 4. Customizing DejaGnu

runtest Tcl option variable description

--srcdir srcdir directory of test
subdirectories

--strace tracelevel a number: Tcl
trace depth

--tool tool name of tool to
test; identifies
init, test subdir

--verbose verbose verbosity level.
As option, use
multiple times;
as variable, set
a number, 0 or
greater.

--target target_triplet The canonical
configuration
string for the
target.

--host host_triplet The canonical
configuration
string for the
host.

--build build_triplet The canonical
configuration
string for the
build host.

--mail address Email the
output log to
the specified
address.

Personal Config File

The personal config file is used to customize runtest’s behaviour for each person. It’s
typically used to set the user prefered setting for verbosity, and any experimental Tcl
procedures. My personal ~/.dejagnurc file looks like:

Example 4-12. Personal Config File

set all_flag 1
set RLOGIN /usr/ucb/rlogin
set RSH /usr/local/sbin/ssh

Here I set all_flag so I see all the test cases that PASS along with the ones that FAIL. I
also set RLOGIN to the BSD version. I have Kerberos installed, and when I rlogin to
a target board, it usually isn’t supported. So I use the non secure version rather than
the default that’s in my path. I also set RSH to the SSH secure shell, as rsh is mostly
used to test unix machines within a local network here.

29

Chapter 4. Customizing DejaGnu

Notes
1. http://www.microsoft.com

2. http://ataman.com

30

Chapter 5. Extending DejaGnu

Adding A New Testsuite
The testsuite for a new tool should always be located in that tools source directory.
DejaGnu require the directory be named testsuite . Under this directory, the test
cases go in a subdirectory whose name begins with the tool name. For example, for a
tool named flubber, each subdirectory containing testsuites must start with "flubber.".

Adding A New Tool
In general, the best way to learn how to write (code or even prose) is to read some-
thing similar. This principle applies to test cases and to testsuites. Unfortunately,
well-established testsuites have a way of developing their own conventions: as test
writers become more experienced with DejaGnu and with Tcl, they accumulate more
utilities, and take advantage of more and more features of Expect and Tcl in general.

Inspecting such established testsuites may make the prospect of creating an entirely
new testsuite appear overwhelming. Nevertheless, it is quite straightforward to get
a new testsuite going.

There is one testsuite that is guaranteed not to grow more elaborate over time: both
it and the tool it tests were created expressly to illustrate what it takes to get started
with DejaGnu. The example/ directory of the DejaGnu distribution contains both an
interactive tool called calc, and a testsuite for it. Reading this testsuite, and experi-
menting with it, is a good way to supplement the information in this section. (Thanks
to Robert Lupton for creating calc and its testsuite---and also the first version of this
section of the manual!)

To help orient you further in this task, here is an outline of the steps to begin building
a testsuite for a program example.

• Create or select a directory to contain your new collection of tests. Change into that
directory (shown here as testsuite):

Create a configure.in file in this directory, to control configuration-dependent
choices for your tests. So far as DejaGnu is concerned, the important thing is to set
a value for the variable target_abbrev; this value is the link to the init file you will
write soon. (For simplicity, we assume the environment is Unix, and use unix as
the value.)

What else is needed in configure.in depends on the requirements of your tool,
your intended test environments, and which configure system you use. This exam-
ple is a minimal configure.in for use with GNU Autoconf.

• Create Makefile.in (if you are using Autoconf), or Makefile.am (if you are using
Automake), the source file used by configure to build your Makefile . If you are us-
ing GNU Automake.just add the keyword dejagnu to the AUTOMAKE_OPTIONS
variable in your Makefile.am file. This will add all the Makefile support needed
to run DejaGnu, and support the Make Check target.

You also need to include two targets important to DejaGnu: check, to run the tests,
and site.exp, to set up the Tcl copies of configuration-dependent values. This is
called the Local Config File The check target must run the runtest program to exe-
cute the tests.

The site.exp target should usually set up (among other things) the $tool variable
for the name of your program. If the local site.exp file is setup correctly, it is possible
to execute the tests by merely typing runtest on the command line.

31

Chapter 5. Extending DejaGnu

Example 5-1. Sample Makefile.in Fragment

Look for a local version of DejaGnu, otherwise use one in the path
RUNTEST = ‘if test -f $(top_srcdir)/../dejagnu/runtest; then \

echo $(top_srcdir) ../dejagnu/runtest; \
else \

echo runtest; \
fi‘

The flags to pass to runtest
RUNTESTFLAGS =

Execute the tests
check: site.exp all

$(RUNTEST) $(RUNTESTFLAGS) \
--tool ${example} --srcdir $(srcdir)

Make the local config file
site.exp: ./config.status Makefile

@echo "Making a new config file..."
-@rm -f ./tmp?
@touch site.exp

-@mv site.exp site.bak
@echo "## these variables are automatically\

generated by make ##" > ./tmp0
@echo "# Do not edit here. If you wish to\

override these values" >> ./tmp0
@echo "# add them to the last section" >> ./tmp0
@echo "set host_os ${host_os}" >> ./tmp0
@echo "set host_alias ${host_alias}" >> ./tmp0
@echo "set host_cpu ${host_cpu}" >> ./tmp0
@echo "set host_vendor ${host_vendor}" >> ./tmp0
@echo "set target_os ${target_os}" >> ./tmp0
@echo "set target_alias ${target_alias}" >> ./tmp0
@echo "set target_cpu ${target_cpu}" >> ./tmp0
@echo "set target_vendor ${target_vendor}" >> ./tmp0
@echo "set host_triplet ${host_canonical}" >> ./tmp0
@echo "set target_triplet ${target_canonical}">>./tmp0
@echo "set tool binutils" >> ./tmp0
@echo "set srcdir ${srcdir}" >> ./tmp0
@echo "set objdir ‘pwd‘" >> ./tmp0
@echo "set ${examplename} ${example}" >> ./tmp0
@echo "## All variables above are generated by\

configure. Do Not Edit ##" >> ./tmp0
@cat ./tmp0 > site.exp
@sed < site.bak \

-e ’1,/^## All variables above are.*##/ d’ \
>> site.exp

-@rm -f ./tmp?

• Create a directory (in testsuite) called config . Make a Tool Init File in this direc-
tory. Its name must start with the target_abbrev value, or be named default.exp
so call it config/unix.exp for our Unix based example. This is the file that con-
tains the target-dependent procedures. Fortunately, on Unix, most of them do not
have to do very much in order for runtest to run.

If the program being tested is not interactive, you can get away with this minimal
unix.exp to begin with:

32

Chapter 5. Extending DejaGnu

Example 5-2. Simple Batch Program Tool Init File

proc foo_exit {} {}
proc foo_version {} {}

If the program being tested is interactive, however, you might as well define a start
routine and invoke it by using an init file like this:

Example 5-3. Simple Interactive Program Tool Init File

proc foo_exit {} {}
proc foo_version {} {}

proc foo_start {} {
global ${examplename}
spawn ${examplename}
expect {

-re "" {}
}

}

Start the program running we want to test
foo_start

• Create a directory whose name begins with your tool’s name, to contain tests. For
example, if your tool’s name is gcc, then the directories all need to start with "gcc.".

• Create a sample test file. Its name must end with .exp . You can use
first-try.exp . To begin with, just write there a line of Tcl code to issue a
message.

Example 5-4. Testing A New Tool Config

send_user "Testing: one, two...\n"

• Back in the testsuite (top level) directory, run configure. Typically you do this
while in the build directory. You may have to specify more of a path, if a suitable
configure is not available in your execution path.

• e now ready to triumphantly type make check or runtest. You should see some-
thing like this:

Example 5-5. Example Test Case Run

Test Run By rhl on Fri Jan 29 16:25:44 EST 1993

=== example tests ===

Running ./example.0/first-try.exp ...
Testing: one, two...

=== example Summary ===

33

Chapter 5. Extending DejaGnu

There is no output in the summary, because so far the example does not call any of
the procedures that establish a test outcome.

• Write some real tests. For an interactive tool, you should probably write a real
exit routine in fairly short order. In any case, you should also write a real version
routine soon.

Adding A New Target
DejaGnu has some additional requirements for target support, beyond the
general-purpose provisions of configure. DejaGnu must actively communicate
with the target, rather than simply generating or managing code for the target
architecture. Therefore, each tool requires an initialization module for each target.
For new targets, you must supply a few Tcl procedures to adapt DejaGnu to the
target. This permits DejaGnu itself to remain target independent.

Usually the best way to write a new initialization module is to edit an existing initial-
ization module; some trial and error will be required. If necessary, you can use the
@samp{--debug} option to see what is really going on.

When you code an initialization module, be generous in printing information con-
trolled by the verbose procedure.

For cross targets, most of the work is in getting the communications right. Communi-
cations code (for several situations involving IP networks or serial lines) is available
in a DejaGnu library file.

If you suspect a communication problem, try running the connection interactively
from Expect. (There are three ways of running Expect as an interactive interpreter.
You can run Expect with no arguments, and control it completely interactively; or you
can use expect -i together with other command-line options and arguments; or you
can run the command interpreter from any Expect procedure. Use return to get back
to the calling procedure (if any), or return -tcl to make the calling procedure itself
return to its caller; use exit or end-of-file to leave Expect altogether.) Run the program
whose name is recorded in $connectmode, with the arguments in $targetname, to
establish a connection. You should at least be able to get a prompt from any target
that is physically connected.

Adding A New Board
Adding a new board consists of creating a new board config file. Examples are in
dejagnu/baseboards . Usually to make a new board file, it’s easiest to copy an exist-
ing one. It is also possible to have your file be based on a baseboard file with only
one or two changes needed. Typically, this can be as simple as just changing the
linker script. Once the new baseboard file is done, add it to the boards_DATA list
in the dejagnu/baseboards/Makefile.am , and regenerate the Makefile.in using au-
tomake. Then just rebuild and install DejaGnu. You can test it by:

There is a crude inheritance scheme going on with board files, so you can
include one board file into another, The two main procedures used to do this
are load_generic_config and load_base_board_description . The generic
config file contains other procedures used for a certain class of target. The board
description file is where the board specfic settings go. Commonly there are similar
target environments with just different processors.

Example 5-6. Testing a New Board Config File

make check RUNTESTFLAGS="--target_board= newboardfile ".

34

Chapter 5. Extending DejaGnu

Here’s an example of a board config file. There are several helper procedures used in
this example. A helper procedure is one that look for a tool of files in commonly
installed locations. These are mostly used when testing in the build tree, because the
executables to be tested are in the same tree as the new dejagnu files. The helper
procedures are the ones in square braces [], which is the Tcl execution characters.

Example 5-7. Example Board Config File

Load the generic configuration for this board. This will define a basic
set of routines needed by the tool to communicate with the board.
load_generic_config "sim"

basic-sim.exp is a basic description for the standard Cygnus simulator.
load_base_board_description "basic-sim"

The compiler used to build for this board. This has *nothing* to do
with what compiler is tested if we’re testing gcc.
set_board_info compiler "[find_gcc]"

We only support newlib on this target.
However, we include libgloss so we can find the linker scripts.
set_board_info cflags "[newlib_include_flags] [libgloss_include_flags]"
set_board_info ldflags "[newlib_link_flags]"

No linker script for this board.
set_board_info ldscript "-Tsim.ld";

The simulator doesn’t return exit statuses and we need to indicate this.
set_board_info needs_status_wrapper 1

Can’t pass arguments to this target.
set_board_info noargs 1

No signals.
set_board_info gdb,nosignals 1

And it can’t call functions.
set_board_info gdb,cannot_call_functions 1

Board Config File Values
These fields are all in the board_info These are all set by using the set_board_info
procedure. The parameters are the field name, followed by the value to set the field
to.

Table 5-1. Common Board Info Fields

Field Sample Value Description

compiler "[find_gcc]" The path to the compiler to
use.

cflags "-mca" Compilation flags for the
compiler.

ldflags "[libgloss_link_flags]
[newlib_link_flags]"

Linking flags for the
compiler.

ldscript "-Wl,-Tidt.ld" The linker script to use
when cross compiling.

35

Chapter 5. Extending DejaGnu

Field Sample Value Description

libs "-lgcc" Any additional libraries to
link in.

shell_prompt "cygmon>" The command prompt of
the remote shell.

hex_startaddr "0xa0020000" The Starting address as a
string.

start_addr 0xa0008000 The starting address as a
value.

startaddr "a0020000"

exit_statuses_bad 1 Whether there is an
accurate exit status.

reboot_delay 10 The delay between power
off and power on.

unreliable 1 Whether communication
with the board is
unreliable.

sim [find_sim] The path to the simulator
to use.

objcopy $tempfil The path to the objcopy
program.

support_libs "${prefix_dir}/i386-coff/" Support libraries needed
for cross compiling.

addl_link_flags "-N" Additional link flags,
rarely used.

These fields are used by the GCC and GDB tests, and are mostly only useful to some-
what trying to debug a new board file for one of these tools. Many of these are used
only by a few testcases, and their purpose is esoteric. These are listed with sample
values as a guide to better guessing if you need to change any of these.

Table 5-2. Board Info Fields For GCC & GDB

Field Sample Value Description

strip $tempfile Strip the executable of
symbols.

gdb_load_offset "0x40050000"

gdb_protocol "remote" The GDB debugging
protocol to use.

gdb_sect_offset "0x41000000";

gdb_stub_ldscript "-Wl,-Teva-stub.ld" The linker script to use
with a GDB stub.

gdb_init_command "set mipsfpu none"

gdb,cannot_call_functions 1 Whether GDB can call
functions on the target,

gdb,noargs 1 Whether the target can take
command line arguments.

36

Chapter 5. Extending DejaGnu

Field Sample Value Description

gdb,nosignals 1 Whether there are signals
on the target.

gdb,short_int 1

gdb,start_symbol "_start"; The starting symbol in the
executable.

gdb,target_sim_options "-sparclite" Special options to pass to
the simulator.

gdb,timeout 540 Timeout value to use for
remote communication.

gdb_init_command "print/x \$fsr = 0x0"

gdb_load_offset "0x12020000"

gdb_opts "--command gdbinit"

gdb_prompt "\\(gdb960\\)" The prompt GDB is using.

gdb_run_command "jump start"

gdb_stub_offset "0x12010000"

use_gdb_stub 1 Whether to use a GDB
stub.

use_vma_offset 1

wrap_m68k_aout 1

gcc,no_label_values 1

gcc,no_trampolines 1

gcc,no_varargs 1

gcc,stack_size 16384 Stack size to use with some
GCC testcases.

ieee_multilib_flags "-mieee";

is_simulator 1

needs_status_wrapper 1

no_double 1

no_long_long 1

noargs 1

nullstone,lib "mips-clock.c"

nullstone,ticks_per_sec 3782018

sys_speed_value 200

target_install {sh-hms}

Writing A Test Case
The easiest way to prepare a new test case is to base it on an existing one for a similar
situation. There are two major categories of tests: batch or interactive. Batch oriented
tests are usually easier to write.

The GCC tests are a good example of batch oriented tests. All GCC tests consist pri-
marily of a call to a single common procedure, Since all the tests either have no out-
put, or only have a few warning messages when successfully compiled. Any non-

37

Chapter 5. Extending DejaGnu

warning output is a test failure. All the C code needed is kept in the test directory.
The test driver, written in Tcl, need only get a listing of all the C files in the directory,
and compile them all using a generic procedure. This procedure and a few others
supporting for these tests are kept in the library module lib/c-torture.exp in the
GCC test suite. Most tests of this kind use very few expect features, and are coded
almost purely in Tcl.

Writing the complete suite of C tests, then, consisted of these steps:

• Copying all the C code into the test directory. These tests were based on the C-
torture test created by Torbjorn Granlund (on behalf of the Free Software Founda-
tion) for GCC development.

• Writing (and debugging) the generic Tcl procedures for compilation.

• Writing the simple test driver: its main task is to search the directory (using the
Tcl procedure glob for filename expansion with wildcards) and call a Tcl procedure
with each filename. It also checks for a few errors from the testing procedure.

Testing interactive programs is intrinsically more complex. Tests for most interactive
programs require some trial and error before they are complete.

However, some interactive programs can be tested in a simple fashion reminiscent
of batch tests. For example, prior to the creation of DejaGnu, the GDB distribution
already included a wide-ranging testing procedure. This procedure was very robust,
and had already undergone much more debugging and error checking than many
recent DejaGnu test cases. Accordingly, the best approach was simply to encapsulate
the existing GDB tests, for reporting purposes. Thereafter, new GDB tests built up a
family of Tcl procedures specialized for GDB testing.

Debugging A Test Case
These are the kinds of debugging information available from DejaGnu:

• Output controlled by test scripts themselves, explicitly allowed for by the test au-
thor. This kind of debugging output appears in the detailed output recorded in the
DejaGnu log file. To do the same for new tests, use the verbose procedure (which in
turn uses the variable also called verbose) to control how much output to generate.
This will make it easier for other people running the test to debug it if necessary.
Whenever possible, if $verbose is 0, there should be no output other than the out-
put from pass, fail, error, and warning. Then, to whatever extent is appropriate for
the particular test, allow successively higher values of $verbose to generate more
information. Be kind to other programmers who use your tests: provide for a lot of
debugging information.

• Output from the internal debugging functions of Tcl and Expect. There is a com-
mand line options for each; both forms of debugging output are recorded in the
file dbg.log in the current directory.

Use --debug for information from the expect level; it generates displays of the ex-
pect attempts to match the tool output with the patterns specified. This output can
be very helpful while developing test scripts, since it shows precisely the charac-
ters received. Iterating between the latest attempt at a new test script and the cor-
responding dbg.log can allow you to create the final patterns by “cut and paste”.
This is sometimes the best way to write a test case.

• Use --strace to see more detail at the Tcl level; this shows how Tcl procedure
definitions expand, as they execute. The associated number controls the depth of
definitions expanded.

38

Chapter 5. Extending DejaGnu

• Finally, if the value of verbose is 3 or greater,DejaGnu turns on the expect command
log_user. This command prints all expect actions to the expect standard output, to
the detailed log file, and (if --debug is on) to dbg.log .

Adding A Test Case To A Testsuite.
There are two slightly different ways to add a test case. One is to add the test case
to an existing directory. The other is to create a new directory to hold your test. The
existing test directories represent several styles of testing, all of which are slightly
different; examine the directories for the tool of interest to see which (if any) is most
suitable.

Adding a GCC test can be very simple: just add the C code to any directory beginning
with gcc . and it runs on the next

runtest --tool
gcc

.

To add a test to GDB, first add any source code you will need to the test directory.
Then you can either create a new expect file, or add your test to an existing one (any
file with a .exp suffix). Creating a new .exp file is probably a better idea if the test
is significantly different from existing tests. Adding it as a separate file also makes
upgrading easier. If the C code has to be already compiled before the test will run,
then you’ll have to add it to the Makefile.in file for that test directory, then run
configure and make.

Adding a test by creating a new directory is very similar:

• Create the new directory. All subdirectory names begin with the name of the tool to
test; e.g. G++ tests might be in a directory called g++.other . There can be multiple
test directories that start with the same tool name (such as g++).

• Add the new directory name to the configdirs definition in the configure.in file
for the testsuite directory. This way when make and configure next run, they in-
clude the new directory.

• Add the new test case to the directory, as above.

• To add support in the new directory for configure and make, you must also create
a Makefile.in and a configure.in .

Hints On Writing A Test Case
It is safest to write patterns that match all the output generated by the tested pro-
gram; this is called closure. If a pattern does not match the entire output, any output
that remains will be examined by the next expect command. In this situation, the pre-
cise boundary that determines which expect command sees what is very sensitive to
timing between the Expect task and the task running the tested tool. As a result, the
test may sometimes appear to work, but is likely to have unpredictable results. (This
problem is particularly likely for interactive tools, but can also affect batch tools---
especially for tests that take a long time to finish.) The best way to ensure closure is
to use the -re option for the expect command to write the pattern as a full regular
expressions; then you can match the end of output using a $. It is also a good idea to
write patterns that match all available output by using .*\ after the text of interest;
this will also match any intervening blank lines. Sometimes an alternative is to match
end of line using \r or \n, but this is usually too dependent on terminal settings.

Always escape punctuation, such as (or ", in your patterns; for example, write \(. If
you forget to escape punctuation, you will usually see an error message like

39

Chapter 5. Extending DejaGnu

extra
characters after close-quote.

If you have trouble understanding why a pattern does not match the program output,
try using the --debug option to runtest, and examine the debug log carefully.

Be careful not to neglect output generated by setup rather than by the interesting
parts of a test case. For example, while testing GDB, I issue a send set height 0\n com-
mand. The purpose is simply to make sure GDB never calls a paging program. The
set height command in GDB does not generate any output; but running any command
makes GDB issue a new (gdb) prompt. If there were no expect command to match this
prompt, the output (gdb) begins the text seen by the next expect command---which
might make that pattern fail to match.

To preserve basic sanity, I also recommended that no test ever pass if there was any
kind of problem in the test case. To take an extreme case, tests that pass even when the
tool will not spawn are misleading. Ideally, a test in this sort of situation should not
fail either. Instead, print an error message by calling one of the DejaGnu procedures
error or warning.

Special variables used by test cases.
There are special variables used by test cases. These contain other information from
DejaGnu. Your test cases can use these variables, with conventional meanings (as
well as the variables saved in site.exp . You can use the value of these variables, but
they should never be changed.

$prms_id

The tracking system (e.g. GNATS) number identifying a corresponding bugre-
port. (0} if you do not specify it in the test script.)

$item bug_id

An optional bug id; may reflect a bug identification from another organization.
(0 if you do not specify it.)

$subdir

The subdirectory for the current test case.

$expect_out(buffer)

The output from the last command. This is an internal variable set by Expect.
More information can be found in the Expect manual.

$exec_output

This is the output from a ${tool}_load command. This only applies to tools
like GCC and GAS which produce an object file that must in turn be executed to
complete a test.

$comp_output

This is the output from a ${tool}_start command. This is conventionally used
for batch oriented programs, like GCC and GAS, that may produce interesting
output (warnings, errors) without further interaction.

40

Chapter 6. Unit Testing

What Is Unit Testing ?
Most regression testing as done by DejaGnu is system testing. This is the complete
application is tested all at once. Unit testing is for testing single files, or small libraries.
In this case, each file is linked with a test case in C or C++, and each function or class
and method is tested in series, with the test case having to check private data or
global variables to see if the function or method worked.

This works particularly well for testing APIs and at level where it is easier to de-
bug them, than by needing to trace through the entire appication. Also if there is a
specification for the API to be tested, the testcase can also function as a compliance
test.

The dejagnu.h Header File
DejaGnu uses a single header file to assist in unit testing. As this file also produces
it’s one test state output, it can be run standalone, which is very useful for testing
on embedded systems. This header file has a C and C++ API for the test states, with
simple totals, and standardized output. Because the output has been standardized,
DejaGnu can be made to work with this test case, without writing almost any Tcl.
The library module, dejagnu.exp, will look for the output messages, and then merge
them into DejaGnu’s.

41

Chapter 6. Unit Testing

42

Chapter 7. Reference

Obtaining DejaGnu
You can obtain DejaGnu from the DejaGnu web site at the Free Software Foundation1,
which is at www.gnu.org/software/dejagnu/ 2

Installation
Once you have the DejaGnu source unpacked and available, you must first configure
the software to specify where it is to run (and the associated defaults); then you can
proceed to installing it.

Configuring DejaGnu

It is usually best to configure in a directory separate from the source tree, specifying
where to find the source with the optional --srcdir option to configure. DejaGnu uses
the GNU autoconf to configure itself. For more info on using autoconf, read the GNU
autoconf manual. To configure, execute the configure program, no other options
are required. For an example, to configure in a seperate tree for objects, execute the
configure script from the source tree like this:

../dejagnu-1.4.4/configure

DejaGnu doesn’t care at config time if it’s for testing a native system or a cross system.
That is determined at runtime by using the config files.

You may also want to use the configure option --prefix to specify where you want
DejaGnu and its supporting code installed. By default, installation is in subdirec-
tories of /usr/local , but you can select any alternate directory altdir by includ-
ing --prefix {altdir}} on the configure command line. (This value is captured in the
Makefile variables prefix and execprefix}.)

Save for a small number of example tests, the DejaGnu distribution itself does not
include any testsuites; these are available separately. Testsuites for the GNU devel-
opment tools are included in those releases. After configuring the top-level DejaGnu
directory, unpack and configure the test directories for the tools you want to test;
then, in each test directory, run make check to build auxiliary programs required by
some of the tests, and run the test suites.

Installing DejaGnu

To install DejaGnu in your filesystem (either in /usr/local , or as specified by your
--prefix option to configure), execute.

eg$ make install

make installdoes thes things for DejaGnu:

• Look in the path specified for executables $exec_prefix) for directories called lib
and bin . If these directories do not exist, make install creates them.

• Create another directory in the share directory, called dejagnu , and copy all the
library files into it.

• Create a directory in the dejagnu/share directory, called config , and copy all the
configuration files into it.

43

Chapter 7. Reference

• Copy the runtest shell script into $exec_prefix/bin .

• Copy runtest.exp into $exec_prefix/lib/dejagnu . This is the main Tcl code
implementing DejaGnu.

Builtin Procedures
DejaGnu provides these Tcl procedures.

Core Internal Procedures

Mail_file Procedure

mail_file (file to subject);

Open_logs Procedure

open_logs ();

Close_logs Procedure

close_logs ();

Isbuild Procedure

Tests for a particular build host environment. If the currently configured host matches
the argument string, the result is 1; otherwise the result is 0. host must be a full three-
part configure host name; in particular, you may not use the shorter nicknames sup-
ported by configure (but you can use wildcard characters, using shell syntax, to spec-
ify sets of names). If it is passed a NULL string, then it returns the name of the build
canonical configuration.

isbuild (pattern);

pattern

44

Chapter 7. Reference

Is_remote Procedure

is_remote (board);

is3way Procedure

Tests for a canadian cross. This is when the tests will be run on a remotly hosted cross
compiler. If it is a canadian cross, then the result is 1; otherwise the result is 0.

is3way ();

Ishost Procedure

Tests for a particular host environment. If the currently configured host matches the
argument string, the result is 1; otherwise the result is 0. host must be a full three-part
configure host name; in particular, you may not use the shorter nicknames supported
by configure (but you can use wildcard characters, using shell syntax, to specify sets
of names).

ishost (pattern);

Istarget Procedure

Tests for a particular target environment. If the currently configured target matches
the argument string, the result is 1 ; otherwise the result is 0. target must be a full
three-part configure target name; in particular, you may not use the shorter nick-
names supported by configure (but you can use wildcard characters, using shell syn-
tax, to specify sets of names). If it is passed a NULL string, then it returns the name
of the build canonical configuration.

istarget (args);

Isnative Procedure

Tests whether the current configuration has the same host and target. When it runs
in a native configuration this procedure returns a 1; otherwise it returns a 0.

isnative ();

45

Chapter 7. Reference

Unknown Procedure

unknown (args);

args

Clone_output Procedure

clone_output (message);

message

Reset_vars Procedure

reset_vars ();

Log_and_exit Procedure

log_and_exit ();

Log_summary Procedure

log_summary (args);

args

Cleanup Procedure

cleanup ();

46

Chapter 7. Reference

Setup_xfail Procedure

Declares that the test is expected to fail on a particular set of configurations. The
config argument must be a list of full three-part configure target name; in particular,
you may not use the shorter nicknames supported by configure (but you can use the
common shell wildcard characters to specify sets of names). The bugid argument is
optional, and used only in the logging file output; use it as a link to a bug-tracking
system such as GNATS.

Once you use setup_xfail , the fail and pass procedures produce the messages
XFAIL and XPASS respectively, allowing you to distinguish expected failures (and
unexpected success!) from other test outcomes.

Warning
Warning you must clear the expected failure after using setup_xfail
in a test case. Any call to pass or fail l clears the expected failure
implicitly; if the test has some other outcome, e.g. an error, you can
call clear_xfail to clear the expected failure explicitly. Otherwise, the
expected-failure declaration applies to whatever test runs next, leading
to surprising results.

setup_xfail (config bugid);

config

The config triplet to trigger whether this is an unexpected or expect failure.

bugid

The optional bugid, used to tie it this test case to a bug tracking system.

Record_test Procedure

record_test (type message args);

type

message

args

Pass Procedure

Declares a test to have passed. pass writes in the log files a message beginning with
PASS (or XPASS, if failure was expected), appending the argument string .

pass (string);

47

Chapter 7. Reference

string

The string to use for this PASS message.

Fail Procedure

Declares a test to have failed. fail writes in the log files a message beginning with
FAIL (or XFAIL, if failure was expected), appending the argument string .

fail (string);

string

The string to use for this FAIL message.

Xpass Procedure

Declares a test to have unexpectably passed, when it was expected to be a failure.
xpass writes in the log files a message beginning with XPASS (or XFAIL, if failure
was expected), appending the argument string .

xpass (string);

string

The string to use for this output state.

Xfail Procedure

Declares a test to have expectably failed. xfail writes in the log files a message
beginning with XFAIL (or PASS, if success was expected), appending the argument
string .

xpass (string);

string

The string to use for this output state.

Set_warning_threshold Procedure

Sets the value of warning_threshold. A value of 0 disables it: calls to warning will not
turn a PASS or FAIL into an UNRESOLVED.

set_warning_threshold (threshold);

48

Chapter 7. Reference

threshold

This is the value of the new warning threshold.

Get_warning_threshold Procedure

Returns the current value of {warning_threshold. The default value is 3. This
value controls how many warning procedures can be called before becoming
UNRESOLVED.

get_warning_threshold ();

Warning Procedure

Declares detection of a minor error in the test case itself. warning writes in the log
files a message beginning with WARNING, appending the argument string . Use
warning rather than perror for cases (such as communication failure to be followed
by a retry) where the test case can recover from the error. If the optional number is
supplied, then this is used to set the internal count of warnings to that value.

As a side effect, warning_threshold or more calls to warning in a single test case
also changes the effect of the next pass or fail command: the test outcome becomes
UNRESOLVED since an automatic PASS or FAIL may not be trustworthy after many
warnings. If the optional numeric value is 0, then there are no further side effects to
calling this function, and the following test outcome doesn’t become UNRESOLVED.
This can be used for errors with no known side effects.

warning (string number);

string

number

The optional number to set the error counter. Thius is only used to fake out the
counter when using the xfail procedure to control when it flips the output over
to UNRESOLVED state.

Perror Procedure

Declares a severe error in the testing framework itself. perror writes in the log files
a message beginning with ERROR, appending the argument string .

As a side effect, perror also changes the effect of the next pass or fail command:
the test outcome becomes UNRESOLVED, since an automatic PASS or FAIL cannot
be trusted after a severe error in the test framework. If the optional numeric value is
0, then there are no further side effects to calling this function, and the following test
outcome doesn’t become UNRESOLVED. This can be used for errors with no known
side effects.

perror (string number);

49

Chapter 7. Reference

string

number

The optional number to set the error counter. Thius is only used to fake out the
counter when using the xfail procedure to control when it flips the output over
to UNRESOLVED state.

Note Procedure

Appends an informational message to the log file. note writes in the log files a mes-
sage beginning with NOTE, appending the argument string . Use note sparingly.
The verbose should be used for most such messages, but in cases where a message
is needed in the log file regardless of the verbosity level use note .

note (string);

string

The string to use for this note.

Untested Procedure

Declares a test was not run. untested writes in the log file a message beginning
with UNTESTED, appending the argument string. For example, you might use this
in a dummy test whose only role is to record that a test does not yet exist for some
feature.

untested (string);

string

The string to use for this output state.

Unresolved Procedure

Declares a test to have an unresolved outcome. unresolved writes in the log file a
message beginning with UNRESOLVED, appending the argument string. This usu-
ally means the test did not execute as expected, and a human being must go over
results to determine if it passed or failed (and to improve the test case).

unresolved (string);

string

The string to use for this output state.

50

Chapter 7. Reference

Unsupported Procedure

Declares that a test case depends on some facility that does not exist in the testing
environment. unsupported writes in the log file a message beginning with UNSUP-
PORTED, appending the argument string.

unsupported (string);

string

The string to use for this output state.

Init_testcounts Procedure

init_testcounts ();

Incr_count Procedure

incr_count (name args);

name

args

transform Procedure

Generates a string for the name of a tool as it was configured and installed, given
its native name (as the argument toolname). This makes the assumption that all
tools are installed using the same naming conventions: For example, for a cross com-
piler supporting the m68k-vxworks configuration, the result of transform gcc is m68k-
vxworks-gcc.

transform (toolname);

toolname

The name of the cross-development program to transform.

Check_conditional_xfail Procedure

This procedure adds a conditional xfail, based on compiler options used to
create a test case executable. If an include options is found in the compiler flags,
and it’s the right architecture, it’ll trigger an XFAIL. Otherwise it’ll produce an
ordinary FAIL. You can also specify flags to exclude. This makes a result be a FAIL,

51

Chapter 7. Reference

even if the included options are found. To set the conditional, set the variable
compiler_conditional_xfail_data to the fields

"[message string] [targets list] [includes
list] [excludes list]"

(descriptions below). This is the checked at pass/fail decision time, so there is no
need to call the procedure yourself, unless you wish to know if it gets triggered.
After a pass/fail, the variable is reset, so it doesn’t effect other tests. It returns 1 if the
conditional is true, or 0 if the conditional is false.

check_conditional_xfail (message targets includes excludes);

message

This is the message to print with the normal test result.

targets

This is a string with the list targets to activate this conditional on.

includes

This is a list of sets of options to search for in the compiler options to activate
this conditional. If the list of sets of options is empty or if any set of the options
matches, then this conditional is true. (It may be useful to specify an empty list
of include sets if the conditional is always true unless one of the exclude sets
matches.)

excludes

This is a list of sets of options to search for in the compiler options to activate
this conditional. If any set of the options matches, (regardless of whether any of
the include sets match) then this conditional is de-activated.

Example 7-1. Specifying the conditional xfail data

set compiler_conditional_xfail_data { \
"I sure wish I knew why this was hosed" \

"sparc*-sun*-* *-pc-*-*" \
{"-Wall -v" "-O3"} \
{"-O1" "-Map"} \

}

What this does is it matches only for these two targets if "-Wall -v" or "-O3" is set, but
neither "-O1" or "-Map" is set. For a set to match, the options specified are searched
for independantly of each other, so a "-Wall -v" matches either "-Wall -v" or "-v -Wall".
A space seperates the options in the string. Glob-style regular expressions are also
permitted.

Clear_xfail Procedure

Cancel an expected failure (previously declared with setup_xfail) for a particular set
of configurations. The config argument is a list of configuration target names. It is
only necessary to call clear_xfail if a test case ends without calling either pass or fail,
after calling setup_xfail.

clear_xfail (config);

52

Chapter 7. Reference

config

The configuration triplets to clear.

Verbose Procedure

Test cases can use this function to issue helpful messages depending on the number
of --verbose options on the runtest command line. It prints string if the value of the
variable verbose is higher than or equal to the optional number. The default value for
number is 1. Use the optional -log argument to cause string to always be added to
the log file, even if it won’t be printed. Use the optional -x argument to log the test
results into a parsable XML file. Use the optional -n argument to print string without
a trailing newline. Use the optional -- argument if string begins with "-".

verbose (-log -x -n -r string number);

-x

-log

-n

--

string

number

Load_lib Procedure

Loads a DejaGnu library file by searching a fixed path built into DejaGnu. If DejaGnu
has been installed, it looks in a path starting with the installed library directory. If you
are running DejaGnu directly from a source directory, without first running make
install, this path defaults to the current directory. In either case, it then looks in the
current directory for a directory called lib . If there are duplicate definitions, the last
one loaded takes precedence over the earlier ones.

load_lib (filespec);

filespec

The name of the DejaGnu library file to load.

53

Chapter 7. Reference

Procedures For Remote Communication

lib/remote.exp defines these functions, for establishing and managing communi-
cations. Each of these procedures tries to establish the connection up to three times
before returning. Warnings (if retries will continue) or errors (if the attempt is aban-
doned) report on communication failures. The result for any of these procedures is
either -1, when the connection cannot be established, or the spawn ID returned by
the Expect command spawn.

It use the value of the connect field in the target_info array (was connectmode as
the type of connection to make. Current supported connection types are tip, kermit,
telnet, rsh, rlogin, and netdata. If the --reboot option was used on the runtest com-
mand line, then the target is rebooted before the connection is made.

Call_remote Procedure

call_remote (type proc dest args);

proc

dest

args

Check_for_board_status Procedure

check_for_board_status (variable);

variable

File_on_build Procedure

file_on_build (op file args);

op

file

54

Chapter 7. Reference

args

File_on_host Procedure

file_on_host (op file args);

op

file

args

Local_exec Procedure

local_exec (commandline inp outp timeout);

inp

outp

timeout

Remote_binary Procedure

remote_binary (host);

host

Remote_close Procedure

remote_close (shellid);

55

Chapter 7. Reference

shellid

This is the value returned by a call to remote_open . This closes the connection
to the target so resources can be used by others. This parameter can be left off if
the fileid field in the target_info array is set.

Remote_download Procedure

remote_download (dest file args);

dest

file

args

Remote_exec Procedure

remote_exec (hostname program args);

hostname

program

args

Remote_expect Procedure

remote_expect (board timeout args);

board

timeout

56

Chapter 7. Reference

args

Remote_file Procedure

remote_file (dest args);

dest

args

Remote_ld Procedure

remote_ld (dest prog);

dest

prog

Remote_load Procedure

remote_load (dest prog args);

dest

prog

args

Remote_open Procedure

remote_open (type);

57

Chapter 7. Reference

type

This is passed host or target . Host or target refers to whether it is a connection
to a remote target, or a remote host. This opens the connection to the desired
target or host using the default values in the configuration system. It returns
that spawn_id of the process that manages the connection. This value can be
used in Expect or exp_send statements, or passed to other procedures that need
the connection process’s id. This also sets the fileid field in the target_info array.

Remote_pop_conn Procedure

remote_pop_conn (host);

host

Remote_push_conn Procedure

remote_push_conn (host);

host

Remote_raw_binary Procedure

remote_raw_binary (host);

host

Remote_raw_close Procedure

remote_raw_close (host);

host

58

Chapter 7. Reference

Remote_raw_file Procedure

remote_raw_file (dest args);

dest

args

remote_raw_ld Procedure

remote_raw_ld (dest prog);

dest

prog

Remote_raw_load Procedure

remote_raw_load (dest prog args);

dest

prog

args

Remote_raw_open Procedure

remote_raw_open (args);

args

59

Chapter 7. Reference

Remote_raw_send Procedure

remote_raw_send (dest string);

dest

string

Remote_raw_spawn Procedure

remote_raw_spawn (dest commandline);

dest

commandline

Remote_raw_transmit Procedure

remote_raw_transmit (dest file);

dest

file

Remote_raw_wait Procedure

remote_raw_wait (dest timeout);

dest

timeout

60

Chapter 7. Reference

Remote_reboot Procedure

remote_reboot (host);

host

Remote_send Procedure

remote_send (dest string);

dest

string

Remote_spawn Procedure

remote_spawn (dest commandline args);

dest

commandline

args

Remote_swap_conn Procedure

remote_swap_conn (host);

61

Chapter 7. Reference

Remote_transmit Procedure

remote_transmit (dest file);

dest

file

Remote_upload Procedure

remote_upload (dest srcfile arg);

dest

srcfile

arg

Remote_wait Procedure

remote_wait (dest timeout);

dest

timeout

Standard_close Procedure

standard_close (host);

host

62

Chapter 7. Reference

Standard_download Procedure

standard_download (dest file destfile);

dest

file

destfile

Standard_exec Procedure

standard_exec (hostname args);

hostname

args

Standard_file Procedure

standard_file (destopargs);

Standard_load Procedure

standard_load (dest prog args);

dest

prog

63

Chapter 7. Reference

args

Standard_reboot Procedure

standard_reboot (host);

host

Standard_send Procedure

standard_send (dest string);

dest

string

Standard_spawn Procedure

standard_spawn (dest commandline);

dest

commndline

Standard_transmit Procedure

standard_transmit (dest file);

dest

64

Chapter 7. Reference

file

Standard_upload Procedure

standard_upload (dest srcfile destfile);

dest

srcfile

destfile

Standard_wait Procedure

standard_wait (dest timeout);

dest

timeout

Unix_clean_filename Procedure

unix_clean_filename (dest file);

dest

file

Procedures For Using Utilities to Connect

telnet, rsh, tip, kermit

65

Chapter 7. Reference

telnet Procedure

telnet (hostname port);

rlogin (hostname);

rsh Procedure

rsh (hostname);

hostname

This refers to the IP address or name (for example, an entry in /etc/hosts)
for this target. The procedure names reflect the Unix utility used to establish a
connection. The optional port is used to specify the IP port number. The value of
the netport field in the target_info array is used. (was $netport) This value has
two parts, the hostname and the port number, seperated by a :. If host or target
is used in the hostname field, than the config array is used for all information.

Tip Procedure

tip (port);

port

Connect using the Unix utility tip. Port must be a name from the tip configura-
tion file /etc/remote . Often, this is called hardwire, or something like ttya. This
file holds all the configuration data for the serial port. The value of the serial field
in the target_info array is used. (was $serialport) If host or target is used in the
port field, than the config array is used for all information. the config array is
used for all information.

Kermit Procedure

kermit (port bps);

port

Connect using the program kermit. Port is the device name, e.g. /dev/ttyb .

bps

bps is the line speed to use (in its per second) for the connection. The value of the
serial field in the target_info array is used. (was $serialport) If host or target

66

Chapter 7. Reference

is used in the port field, than the config array is used for all information. the
config array is used for all information.

kermit_open Procedure

kermit_open (dest args);

dest

args

Kermit_command Procedure

kermit_command (dest args);

dest

args

Kermit_send Procedure

kermit_send (dest string args);

dest

string

args

Kermit_transmit Procedure

kermit_transmit (dest file args);

67

Chapter 7. Reference

dest

file

args

Telnet_open Procedure

telnet_open (hostname args);

hostname

args

Telnet_binary Procedure

telnet_binary (hostname);

hostname

Telnet_transmit Procedure

telnet_transmit (dest file args);

dest

file

args

68

Chapter 7. Reference

Tip_open Procedure

tip_open (hostname);

hostname

Rlogin_open Procedure

rlogin_open (arg);

arg

Rlogin_spawn Procedure

rlogin_spawn (dest cmdline);

dest

cmdline

Rsh_open Procedure

rsh_open (hostname);

hostname

Rsh_download Procedure

rsh_download (desthost srcfile destfile);

desthost

69

Chapter 7. Reference

srcfile

destfile

Rsh_upload Procedure

rsh_upload (desthost srcfile destfile);

desthost

srcfile

destfile

Rsh_exec Procedure

rsh_exec (boardname cmd args);

boardname

cmd

args

Ftp_open Procedure

ftp_open (host);

host

70

Chapter 7. Reference

Ftp_upload Procedure

ftp_upload (host remotefile localfile);

host

remotefile

localfile

Ftp_download Procedure

ftp_download (host localfile remotefile);

host

localfile

remotefile

Ftp_close Procedure

ftp_close (host);

host

Tip_download Procedure

tip_download (spawnid file);

71

Chapter 7. Reference

spawnid

Download file to the process spawnid (the value returned when the connec-
tion was established), using the ~put command under tip. Most often used for
single board computers that require downloading programs in ASCII S-records.
Returns 1 if an error occurs, 0 otherwise.

file

This is the filename to downlaod.

Procedures For Target Boards

Default_link Procedure

default_link (board objects destfile flags);

board

objects

destfile

flags

Default_target_assemble Procedure

default_target_assemble (source destfile flags);

source

destfile

flags

72

Chapter 7. Reference

default_target_compile Procedure

default_target_compile (source destfile type options);

source

destfile

type

options

Pop_config Procedure

pop_config (type);

type

Prune_warnings Procedure

prune_warnings (text);

text

Push_build Procedure

push_build (name);

name

73

Chapter 7. Reference

push_config Procedure

push_config (type name);

type

name

Reboot_target Procedure

reboot_target ();

Target_assemble Procedure

target_assemble (source destfile flags);

source

destfile

flags

Target_compile Procedure

target_compile (source destfile type options);

source

destfile

type

74

Chapter 7. Reference

options

Target Database Procedures

Board_info Procedure

board_info (machine op args);

machine

op

args

Host_info Procedure

host_info (op args);

op

args

Set_board_info Procedure

set_board_info (entry value);

entry

value

75

Chapter 7. Reference

Set_currtarget_info Procedure

set_currtarget_info (entry value);

entry

value

Target_info Procedure

target_info (op args);

op

args

Unset_board_info Procedure

unset_board_info (entry);

entry

Unset_currtarget_info Procedure

unset_currtarget_info (entry);

entry

Push_target Procedure

This makes the target named name be the current target connection. The value of name
is an index into the target_info array and is set in the global config file.

push_target (name);

76

Chapter 7. Reference

name

The name of the target to make current connection.

Pop_target Procedure

This unsets the current target connection.

pop_target ();

List_targets Procedure

This lists all the supported targets for this architecture.

list_targets ();

Push_host Procedure

This makes the host named name be the current remote host connection. The value of
name is an index into the target_info array and is set in the global config file.

push_host (name);

name

Pop_host Procedure

This unsets the current host connection.

pop_host ();

Compile Procedure

This invokes the compiler as set by CC to compile the file file . The default options
for many cross compilation targets are guessed by DejaGnu, and these options can be
added to by passing in more parameters as arguments to compile. Optionally, this
will also use the value of the cflags field in the target config array. If the host is not
the same as the build machines, then then compiler is run on the remote host using
execute_anywhere.

compile (file);

77

Chapter 7. Reference

file

Archive Procedure

This produces an archive file. Any parameters passed to archive are used in addi-
tion to the default flags. Optionally, this will also use the value of the arflags field in
the target config array. If the host is not the same as the build machines, then then
archiver is run on the remote host using execute_anywhere.

archive (file);

file

Ranlib Procedure

This generates an index for the archive file for systems that aren’t POSIX yet. Any
parameters passed to ranlib are used in for the flags.

ranlib (file);

file

Execute_anywhere Procedure

This executes the cmdline on the proper host. This should be used as a replacement
for the Tcl command exec as this version utilizes the target config info to execute
this command on the build machine or a remote host. All config information for the
remote host must be setup to have this command work. If this is a canadian cross,
(where we test a cross compiler that runs on a different host then where DejaGnu is
running) then a connection is made to the remote host and the command is executed
there. It returns either REMOTERROR (for an error) or the output produced when
the command was executed. This is used for running the tool to be tested, not a test
case.

execute_anywhere (cmdline);

cmdline

78

Chapter 7. Reference

Platform Dependant Procedures

Each combination of target and tool requires some target-dependent procedures. The
names of these procedures have a common form: the tool name, followed by an un-
derbar _, and finally a suffix describing the procedure’s purpose. For example, a pro-
cedure to extract the version from GDB is called gdb_version.

runtest itself calls only two of these procedures, ${tool}_exit and ${tool}_version;
these procedures use no arguments.

The other two procedures, ${tool}_start and ${tool}_load}, are only called by the test
suites themselves (or by testsuite-specific initialization code); they may take argu-
ments or not, depending on the conventions used within each testsuite.

The usual convention for return codes from any of these procedures (although it is
not required by runtest) is to return 0 if the procedure succeeded, 1 if it failed, and -1
if there was a communication error.

${tool}_start Procedure

Starts a particular tool. For an interactive tool, ${tool}_start starts and initializes
the tool, leaving the tool up and running for the test cases; an example is gdb_start ,
the start function for GDB. For a batch oriented tool, ${tool}_start is optional; the
recommended convention is to let ${tool}_start run the tool, leaving the output in
a variable called comp_output . Test scripts can then analyze $comp_output to deter-
mine the test results. An example of this second kind of start function is gcc_start ,
the start function for GCC.

DejaGnu itself does not call ${tool}_start . The initialization module
${tool}_init.exp must call ${tool}_start for interactive tools; for
batch-oriented tools, each individual test script calls ${tool}_start (or makes
other arrangements to run the tool).

${tool}_start ();

${tool}_load Procedure

Loads something into a tool. For an interactive tool, this conditions the tool for a par-
ticular test case; for example, gdb_load loads a new executable file into the debugger.
For batch oriented tools, ${tool}_load may do nothing---though, for example, the
GCC support uses gcc_load to load and run a binary on the target environment.
Conventionally, ${tool}_load leaves the output of any program it runs in a variable
called $exec_output. Writing ${tool}_load can be the most complex part of extend-
ing DejaGnu to a new tool or a new target, if it requires much communication coding
or file downloading. Test scripts call ${tool}_load .

${tool}_load ();

${tool}_exit Procedure

Cleans up (if necessary) before DejaGnu exits. For interactive tools, this usually ends
the interactive session. You can also use ${tool}_exit to remove any temporary files
left over from the tests. runtest calls ${tool}_exit .

${tool}_exit ();

79

Chapter 7. Reference

${tool}_version Procedure

Prints the version label and number for ${tool}. This is called by the DejaGnu proce-
dure that prints the final summary report. The output should consist of the full path
name used for the tested tool, and its version number.

${tool}_version ();

Utility Procedures

Getdirs Procedure

Returns a list of all the directories in the single directory a single directory that match
an optional pattern.

getdirs (rootdir pattern);

args

pattern

If you do not specify pattern , Getdirs assumes a default pattern of *. You may
use the common shell wildcard characters in the pattern. If no directories match
the pattern, then a NULL string is returned

Find Procedure

Search for files whose names match pattern (using shell wildcard characters for file-
name expansion). Search subdirectories recursively, starting at rootdir. The result is
the list of files whose names match; if no files match, the result is empty. Filenames
in the result include all intervening subdirectory names. If no files match the pattern,
then a NULL string is returned.

find (rootdir pattern);

rootdir

The top level directory to search the search from.

pattern

A csh "glob" style regular expression reprsenting the files to find.

Which Procedure

Searches the execution path for an executable file binary, like the the BSD which util-
ity. This procedure uses the shell environment variable PATH. It returns 0 if the binary
is not in the path, or if there is no PATH environment variable. If binary is in the path,
it returns the full path to binary.

80

Chapter 7. Reference

which (file);

binary

The executable program or shell script to look for.

Grep Procedure

Search the file called filename (a fully specified path) for lines that contain a match
for regular expression regexp. The result is a list of all the lines that match. If no lines
match, the result is an empty string. Specify regexp using the standard regular expres-
sion style used by the Unix utility program grep.

Use the optional third argument line to start lines in the result with the line number
in filename . (This argument is simply an option flag; type it just as shown --line .)

grep (filename regexp --line);

filename

The file to search.

regexp

The Unix style regular expression (as used by the grep Unix utility) to search for.

--line

Prefix the line number to each line where the regexp matches.

Prune Procedure

Remove elements of the Tcl list list. Elements are fields delimited by spaces. The result
is a copy of list, without any elements that match pattern. You can use the common
shell wildcard characters to specify the pattern.

prune (list pattern);

list

A Tcl list containing the original data. Commonly this is the output of a batch
executed command, like running a compiler.

pattern

The csh shell "glob" style pattern to search for.

Slay Procedure

This look in the process table for name and send it a unix SIGINT, killing the process.
This will only work under Windows if you have Cygwin or another Unix subsystem
for Windows installed.

slay (name);

81

Chapter 7. Reference

name

The name of the program to kill.

Absolute Procedure

This procedure takes the relative path, and converts it to an absolute path.

absolute (path);

path

The path to convert.

Psource Procedure

This sources the file filename, and traps all errors. It also ignores all extraneous output.
If there was an error it returns a 1, otherwise it returns a 0.

psource (file);

filename

The filename to Tcl script to source.

Runtest_file_p Procedure

Search runtests for testcase and return 1 if found, 0 if not. runtests is a list of two
elements. The first is a copy of what was on the right side of the = if

foo.exp="..."

" was specified, or an empty string if no such argument is present. The second is
the pathname of the current testcase under consideration. This is used by tools like
compilers where each testcase is a file.

runtest_file_p (runtests testcase);

runtests

The list of patterns to compare against.

testcase

The test case filename.

82

Chapter 7. Reference

Diff Procedure

Compares the two files and returns a 1 if they match, or a 0 if they don’t. If verbose
is set, then it’ll print the differences to the screen.

diff (file_1 file_2);

file_1

The first file to compare.

file_2

The second file to compare.

Setenv Procedure

Sets the environment variable var to the value val.

setenv (var val);

var

The environment variable to set.

val

The value to set the variable to.

unsetenv Procedure

Unsets the environment variable var.

unsetenv (var);

var

The environment variable to unset.

Getenv Procedure

Returns the value of var in the environment if it exists, otherwise it returns NULL.

getenv (var);

var

The environment variable to get the value of.

83

Chapter 7. Reference

Prune_system_crud Procedure

For system system, delete text the host or target operating system might issue that
will interfere with pattern matching of program output in text. An example is the
message that is printed if a shared library is out of date.

prune_system_crud (system test);

system

The system error messages to look for to screen out .

text

The Tcl variable containing the text.

Libgloss, A Free BSP

Libgloss is a free BSP (Board Support Package) commonly used with GCC and G++
to produce a fully linked executable image for an embedded systems.

Libgloss_link_flags Procedure

libgloss_link_flags (args);

args

Libgloss_include_flags Procedure

libgloss_include_flags (args);

args

Newlib_link_flags Procedure

newlib_link_flags (args);

args

84

Chapter 7. Reference

Newlib_include_flags Procedure

newlib_include_flags (args);

args

Libio_include_flags Procedure

libio_include_flags (args);

args

Libio_link_flags Procedure

libio_link_flags (args);

args

G++_include_flags Procedure

g++_include_flags (args);

args

G++_link_flags Procedure

g++_link_flags (args);

args

85

Chapter 7. Reference

Libstdc++_include_flags Procedure

libstdc++_include_flags (args);

args

Libstdc++_link_flags Procedure

libstdc++_link_flags (args);

args

Get_multilibs Procedure

get_multilibs (args);

args

Find_binutils_prog Procedure

find_binutils_prog (name);

name

Find_gcc Procedure

find_gcc ();

86

Chapter 7. Reference

Find_gcj Procedure

find_gcj ();

Find_g++ Procedure

find_g++ ();

Find_g77 Procedure

find_g77 ();

Process_multilib_options Procedure

process_multilib_options (args);

args

Add_multilib_option Procedure

add_multilib_option (args);

args

Find_gas Procedure

find_gas ();

Find_ld Procedure

find_ld ();

87

Chapter 7. Reference

Build_wrapper Procedure

build_wrapper (gluefile);

gluefile

Winsup_include_flags Procedure

winsup_include_flags (args);

args

Winsup_link_flags Procedure

winsup_link_flags (args);

args

Procedures for debugging your Tcl code.

lib/debugger.exp defines these utility procedures:

Dumpvars Procedure

This takes a csh style regular expression (glob rules) and prints the values of the
global variable names that match. It is abbreviated as dv.

dumpvars (vars);

vars

The variables to dump.

Dumplocals Procedure

This takes a csh style regular expression (glob rules) and prints the values of the local
variable names that match. It is abbreviated as dl.

dumplocals (args);

88

Chapter 7. Reference

args

Dumprocs Procedure

This takes a csh style regular expression (glob rules) and prints the body of all procs
that match. It is abbreviated as dp.

dumprocs (pattern);

pattern

The csh "glob" style pattern to look for.

Dumpwatch Procedure

This takes a csh style regular expression (glob rules) and prints all the watchpoints.
It is abbreviated as dw.

dumpwatch (pattern);

pattern

The csh "glob" style pattern to look for.

Watcharray Procedure

watcharray (element type);

type

The csh "glob" style pattern to look for.

Watchvar Procedure

watchvar (var type);

89

Chapter 7. Reference

Watchunset Procedure

This breaks program execution when the variable var is unset. It is abbreviated as
wu.

watchunset (arg);

args

Watchwrite Procedure

This breaks program execution when the variable var is written. It is abbreviated as
ww.

watchwrite (var);

var

The variable to watch.

Watchread Procedure

This breaks program execution when the variable var is read. It is abbreviated as wr.

watchread (var);

var

The variable to watch.

Watchdel Procedure

This deletes a the watchpoint from the watch list. It is abbreviated as wd.

watchdel (args);

args

Print Procedure

This prints the value of the variable var . It is abbreviated as p.

print (var);

90

Chapter 7. Reference

var

Quit Procedure

This makes runtest exit. It is abbreviated as q.

quit ();

File Map
This is a map of the files in DejaGnu.

• runtest

• runtest.exp

• stub-loader.c

• testglue.c

• config

• baseboards

• lib/debugger.exp

• lib/dg.exp

• lib/framework.exp

• lib/ftp.exp

• lib/kermit.exp

• lib/libgloss.exp

• lib/mondfe.exp

• lib/remote.exp

• lib/rlogin.exp

• lib/rsh.exp

• lib/standard.exp

• lib/target.exp

• lib/targetdb.exp

• lib/telnet.exp

• lib/tip.exp

• lib/util-defs.exp

• lib/utils.exp

• lib/xsh.exp

• lib/dejagnu.exp

91

Chapter 7. Reference

Notes
1. http://www.gnu.org

2. http://www.gnu.org/software/dejagnu/

92

Chapter 8. Unit Testing API

C Unit Testing API
All of the functions that take a msg parameter use a C char * that is the message to be
dislayed. There currently is no support for variable length arguments.

Pass Function

This prints a message for a successful test completion.

pass (msg);

Fail Function

This prints a message for an unsuccessful test completion.

fail (msg);

Untested Function

This prints a message for an test case that isn’t run for some technical reason.

untested (msg);

Unresolved Function

This prints a message for an test case that is run, but there is no clear result. These
output states require a human to look over the results to determine what happened.

unresolved (msg);

Totals Function

This prints out the total numbers of all the test state outputs.

totals ();

C++ Unit Testing API
All of the methods that take a msg parameter use a C char * or STL string, that is the
message to be dislayed. There currently is no support for variable length arguments.

93

Chapter 8. Unit Testing API

Pass Method

This prints a message for a successful test completion.

TestState::pass (msg);

Fail Method

This prints a message for an unsuccessful test completion.

TestState::fail (msg);

Untested Method

This prints a message for an test case that isn’t run for some technical reason.

TestState::untested (msg);

Unresolved Method

This prints a message for an test case that is run, but there is no clear result. These
output states require a human to look over the results to determine what happened.

TestState::unresolved (msg);

Totals Method

This prints out the total numbers of all the test state outputs.

TestState::totals ();

94

	DejaGnu
	Table of Contents
	Abstract
	Chapter 1. Overview
	What is DejaGnu ?
	What's New In This Release
	Windows Support

	Design Goals
	A POSIX conforming test framework

	Chapter 2. Getting DejaGnu up and running
	Test your installation
	Windows
	Getting the source code for the calc example

	Create a minimal project, e.g. calc
	A simple project without the GNU autotools
	Using autoconf/autoheader/automake

	Our first automated tests
	Running the test for the calc example
	The various config files or how to avoid warnings
	When trouble strikes
	Testing Hello world locally

	A first remote test
	Setup telnet to your own host
	A test case for login via telnet
	Remote testing Hello world
	Transferring files from/to the target
	Preparing for crosscompilation
	Remote testing of calc
	Using Windows as host and vxWorks as target

	Chapter 3. Running Tests
	Make check
	Runtest
	Output States
	Invoking Runtest
	Common Options

	The files DejaGnu produces.
	Summary File
	Log File
	Debug Log File

	Chapter 4. Customizing DejaGnu
	Local Config File
	Global Config File
	Board Config File
	Remote Host Testing
	Config File Values
	Command Line Option Variables
	Personal Config File

	Chapter 5. Extending DejaGnu
	Adding A New Testsuite
	Adding A New Tool
	Adding A New Target
	Adding A New Board
	Board Config File Values
	Writing A Test Case
	Debugging A Test Case
	Adding A Test Case To A Testsuite.
	Hints On Writing A Test Case
	Special variables used by test cases.

	Chapter 6. Unit Testing
	What Is Unit Testing ?
	The dejagnu.h Header File

	Chapter 7. Reference
	Obtaining DejaGnu
	Installation
	Configuring DejaGnu
	Installing DejaGnu

	Builtin Procedures
	Core Internal Procedures
	Mailfile Procedure
	Openlogs Procedure
	Closelogs Procedure
	Isbuild Procedure
	Isremote Procedure
	is3way Procedure
	Ishost Procedure
	Istarget Procedure
	Isnative Procedure
	Unknown Procedure
	Cloneoutput Procedure
	Resetvars Procedure
	Logandexit Procedure
	Logsummary Procedure
	Cleanup Procedure
	Setupxfail Procedure
	Recordtest Procedure
	Pass Procedure
	Fail Procedure
	Xpass Procedure
	Xfail Procedure
	Setwarningthreshold Procedure
	Getwarningthreshold Procedure
	Warning Procedure
	Perror Procedure
	Note Procedure
	Untested Procedure
	Unresolved Procedure
	Unsupported Procedure
	Inittestcounts Procedure
	Incrcount Procedure
	transform Procedure
	Checkconditionalxfail Procedure
	Clearxfail Procedure
	Verbose Procedure
	Loadlib Procedure

	Procedures For Remote Communication
	Callremote Procedure
	Checkforboardstatus Procedure
	Fileonbuild Procedure
	Fileonhost Procedure
	Localexec Procedure
	Remotebinary Procedure
	Remoteclose Procedure
	Remotedownload Procedure
	Remoteexec Procedure
	Remoteexpect Procedure
	Remotefile Procedure
	Remoteld Procedure
	Remoteload Procedure
	Remoteopen Procedure
	Remotepopconn Procedure
	Remotepushconn Procedure
	Remoterawbinary Procedure
	Remoterawclose Procedure
	Remoterawfile Procedure
	remoterawld Procedure
	Remoterawload Procedure
	Remoterawopen Procedure
	Remoterawsend Procedure
	Remoterawspawn Procedure
	Remoterawtransmit Procedure
	Remoterawwait Procedure
	Remotereboot Procedure
	Remotesend Procedure
	Remotespawn Procedure
	Remoteswapconn Procedure
	Remotetransmit Procedure
	Remoteupload Procedure
	Remotewait Procedure
	Standardclose Procedure
	Standarddownload Procedure
	Standardexec Procedure
	Standardfile Procedure
	Standardload Procedure
	Standardreboot Procedure
	Standardsend Procedure
	Standardspawn Procedure
	Standardtransmit Procedure
	Standardupload Procedure
	Standardwait Procedure
	Unixcleanfilename Procedure

	Procedures For Using Utilities to Connect
	telnet Procedure
	rsh Procedure
	Tip Procedure
	Kermit Procedure
	kermitopen Procedure
	Kermitcommand Procedure
	Kermitsend Procedure
	Kermittransmit Procedure
	Telnetopen Procedure
	Telnetbinary Procedure
	Telnettransmit Procedure
	Tipopen Procedure
	Rloginopen Procedure
	Rloginspawn Procedure
	Rshopen Procedure
	Rshdownload Procedure
	Rshupload Procedure
	Rshexec Procedure
	Ftpopen Procedure
	Ftpupload Procedure
	Ftpdownload Procedure
	Ftpclose Procedure
	Tipdownload Procedure

	Procedures For Target Boards
	Defaultlink Procedure
	Defaulttargetassemble Procedure
	defaulttargetcompile Procedure
	Popconfig Procedure
	Prunewarnings Procedure
	Pushbuild Procedure
	pushconfig Procedure
	Reboottarget Procedure
	Targetassemble Procedure
	Targetcompile Procedure

	Target Database Procedures
	Boardinfo Procedure
	Hostinfo Procedure
	Setboardinfo Procedure
	Setcurrtargetinfo Procedure
	Targetinfo Procedure
	Unsetboardinfo Procedure
	Unsetcurrtargetinfo Procedure
	Pushtarget Procedure
	Poptarget Procedure
	Listtargets Procedure
	Pushhost Procedure
	Pophost Procedure
	Compile Procedure
	Archive Procedure
	Ranlib Procedure
	Executeanywhere Procedure

	Platform Dependant Procedures
	${tool}start Procedure
	${tool}load Procedure
	${tool}exit Procedure
	${tool}version Procedure

	Utility Procedures
	Getdirs Procedure
	Find Procedure
	Which Procedure
	Grep Procedure
	Prune Procedure
	Slay Procedure
	Absolute Procedure
	Psource Procedure
	Runtestfilep Procedure
	Diff Procedure
	Setenv Procedure
	unsetenv Procedure
	Getenv Procedure
	Prunesystemcrud Procedure

	Libgloss, A Free BSP
	Libglosslinkflags Procedure
	Libglossincludeflags Procedure
	Newliblinkflags Procedure
	Newlibincludeflags Procedure
	Libioincludeflags Procedure
	Libiolinkflags Procedure
	G++includeflags Procedure
	G++linkflags Procedure
	Libstdc++includeflags Procedure
	Libstdc++linkflags Procedure
	Getmultilibs Procedure
	Findbinutilsprog Procedure
	Findgcc Procedure
	Findgcj Procedure
	Findg++ Procedure
	Findg77 Procedure
	Processmultiliboptions Procedure
	Addmultiliboption Procedure
	Findgas Procedure
	Findld Procedure
	Buildwrapper Procedure
	Winsupincludeflags Procedure
	Winsuplinkflags Procedure

	Procedures for debugging your Tcl code.
	Dumpvars Procedure
	Dumplocals Procedure
	Dumprocs Procedure
	Dumpwatch Procedure
	Watcharray Procedure
	Watchvar Procedure
	Watchunset Procedure
	Watchwrite Procedure
	Watchread Procedure
	Watchdel Procedure
	Print Procedure
	Quit Procedure

	File Map

	Chapter 8. Unit Testing API
	C Unit Testing API
	Pass Function
	Fail Function
	Untested Function
	Unresolved Function
	Totals Function

	C++ Unit Testing API
	Pass Method
	Fail Method
	Untested Method
	Unresolved Method
	Totals Method

