GNU SASL

Simple Authentication and Security Layer for the GNU system
for version 1.6.1, 1 May 2011

Simon Josefsson

This manual was last updated 1 May 2011 for version 1.6.1 of GNU SASL.
Copyright (©) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Simon Josefsson.

Permission is granted to copy, distribute and /or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

Table of Contents

1

Introduction........... 1
1.1 SASL OVervieW . ..ottt 1
1.2 Implementation 1
1.3 Features 2
1.4 Requirements 3
1.5 Supported Platforms......... 3
1.6 Getting help 5)
1.7 Commercial Support ...t 5
1.8 Downloading and Installing............. i 5

1.8.1 Installing under Windows ..., 7
1.8.2 Kerberos on WIndowsooiiiiiiiiiiiin. .. 7
1.9 Bug Reports........oo i 8
1.10 Contributingoiuuii 9

Preparation................................ ..., 10
2.1 Header.o 10
2.2 Initializationuiiii 10
2.3 Version Check. ... 12
2.4 Building the source 12
2.5 Autocont tests 13

2.5.1 Autoconf test via ‘pkg-config’............l 13
2.5.2 Standalone Autoconf test using Libtool................... 13

Using the Library 15
3.1 Choosing a mechanismcooiiiieeeennnnnaiinn... 19
3.2 Usingacallbackoo i 20

Properties............... 22

Mechanisms. 25
5.1 The EXTERNAL mechanism..............oiiiiiiiiiiiinn... 25
5.2 The ANONYMOUS mechanismcoovviiiiiiinininnnnn.. 25
5.3 The PLAIN mechaniSmooiiiiiiiiiinnnnnn... 26
5.4 The LOGIN mechanismiiiiiiiniian. .. 26
5.5 The CRAM-MDS5 mechaniSm.........c.cooviiiiiiiinnn... 26
5.6 The DIGEST-MD5 mechanismooiiiiiiineinn... 27
5.7 The SCRAM-SHA-1 mechanism...............ccovvii .. 27
5.8 The NTLM mechanism............. ... 28
5.9 The SECURID mechanismccouiiiiiiineein... 28
5.10 The GSSAPI mechanismc.oooiiiiiiiiiinn. .. 29
5.11 The GS2-KRB5 mechanismcoviiiiiiiiiiino.. 29

5.12 The KERBEROS_V5 mechanism............ccooviiiiiinin... 29

6 Global Functions 31
7 Callback Functions 33
8 Property Functions............................ 35
9 Session Functions.............................. 37
10 Utilities 40
11 Memory Handling............................ 43
12 Error Handling............................... 44
12.1 Error valueso 44
12.2 Error Strings....oouuutii 48
13 Examples 49
13.1 Example 1. ..o 49
13.2 Example 2. ..o 51
13.3 Example 3. ..o 54
134 Example 4. ... o7
14 Acknowledgements........................... 61
15 Invoking gsasl..............., 62
Appendix A Protocol Clarifications 65
A.1 Use of SASLprep in CRAM-MD5, 65
A.2 Use of SASLprep in LOGIN ... i, 65
Appendix B Old Functions..................... 66
B.1 Obsolete callback function prototypes...............c..ooe... 87
Appendix C Copying Information............. 93
C.1 GNU Free Documentation License 93
C.2 GNU Lesser General Public License.......................... 100
C.3 GNU General Public Licensecoiiiiii.... 108
Function and Data Index........................ 120

Concept Index.............. ... i, 122

ii

Chapter 1: Introduction 1

1 Introduction

This manual can be used in several ways. If read from the beginning to the end, it gives
the reader an understanding of the SASL framework and the GNU SASL implementation,
and how the GNU SASL library is used in an application. Forward references are included
where necessary. Later on, the manual can be used as a reference manual to get just the
information needed about any particular interface of the library. Experienced programmers
might want to start looking at the examples at the end of the manual, and then only read
up those parts of the interface which are unclear.

1.1 SASL Overview

SASL is a framework for application protocols, such as SMTP or IMAP, to add authenti-
cation support. For example, SASL is used to prove to the server who you are when you
access an IMAP server to read your e-mail.

The SASL framework does not specify the technology used to perform the authentication,
that is the responsibility for each SASL mechanism. Popular SASL mechanisms include
CRAM-MD5 and GSSAPI (for Kerberos V5).

Typically a SASL negotiation works as follows. First the client requests authentication
(possibly implicitly by connecting to the server). The server responds with a list of sup-
ported mechanisms. The client chose one of the mechanisms. The client and server then
exchange data, one round-trip at a time, until authentication either succeeds or fails. After
that, the client and server knows more about who is on the other end of the channel.

For example, in SMTP communication happens like this:
250-mail.example.com Hello pc.example.org [192.168.1.42], pleased to meet you
250-AUTH DIGEST-MD5 CRAM-MD5 LOGIN PLAIN
250 HELP
AUTH CRAM-MD5
334 PDk5MDgwNDEZMDUwNTUyMTE1NDQ5LjBAbGY j YWxob3NOPg==
amFzIDBkZDRkODZkMDV jNjI40DRkYzc30TcwODEAZGISMGY3
235 2.0.0 OK Authenticated
Here the first three lines are sent by the server and contains the list of supported mech-
anisms (DIGEST-MD5, CRAM-MD5, etc). The next line is sent by the client to select
the CRAM-MDb5 mechanism. The server replies with a challenge, which is a message that
can be generated by calling GNU SASL functions. The client replies with a response,
which also is a message that can be generated by GNU SASL functions. Depending on the
mechanism, there can be more than one round trip, so do not assume all authentication
exchanges consists of one message from the server and one from the client. The server
accepts the authentication. At that point it knows it is talking to a authenticated client,
and the application protocol can continue.

Essentially, your application is responsible for implementing the framing protocol (e.g.,
SMTP or XMPP) according to the particular specifications. Your application uses GNU
SASL to generate the authentication messages.

1.2 Implementation

GNU SASL is an implementation of the Simple Authentication and Security Layer frame-
work and a few common SASL mechanisms.

Chapter 1: Introduction 2

GNU SASL consists of a library (1ibgsasl), a command line utility (gsasl) to access the
library from the shell, and a manual. The library includes support for the framework (with
authentication functions and application data privacy and integrity functions) and at least
partial support for the ANONYMOUS, CRAM-MD5, DIGEST-MD5, EXTERNAL, GS2-
KRB5, GSSAPI, LOGIN, NTLM, PLAIN, SCRAM-SHA-1 (and SCRAM-SHA-1-PLUS),
and SECURID mechanisms.

The library is easily ported because it does not do network communication by itself,
but rather leaves it up to the calling application. The library is flexible with regards to
the authorization infrastructure used, as it utilizes a callback into the application to decide
whether a user is authorized or not.

GNU SASL is developed for the GNU/Linux system, but runs on over 20 platforms
including most major Unix platforms and Windows, and many kind of devices including
iPAQ handhelds and S/390 mainframes.

GNU SASL is written in pure ANSI C89 to be portable to embedded and otherwise
limited platforms. The entire library, with full support for ANONYMOUS, EXTERNAL,
PLAIN, LOGIN and CRAM-MD5, and the front-end that supports client and server mode,
and the IMAP and SMTP protocols, fits in under 80kb on an Intel x86 platform, without
any modifications to the code. (This figure was accurate as of version 1.1.)

The design of the library and the intended interaction between applications and the
library through the official API is illustrated below.

—_ = =) EEEE—
s N < - - - - »{ ANONYMOUS

] GNU SASL

| Funcion Library AP € - - - - »{ EXTERNAL

Calls
gsasl_init () € ---- PLAIN
gsasl_callback_set ()
k€ - - - - | CRAM-MD5

|
Application |
| gsasl_client_start ()
|
|

gsasl_step () R s DIGEST-MD5
Gallback gsasl_finish () le - - - - »| GssAPI
I gsasl_done () < D
N /

—_ - = | —

Illustration 1.1: Logical overview showing how applications use authentication mecha-
nisms through an abstract interface.

1.3 Features

GNU SASL might have a couple of advantages over other libraries doing a similar job.

It’s Free Software
Anybody can use, modify, and redistribute it under the terms of the GNU
General Public License version 3.0 or later. The library uses the GNU Lesser
General Public License version 2.1 or later.

Chapter 1: Introduction 3

It’s thread-safe
No global variables are used and multiple library handles and session handles
may be used in parallel.

It’s internationalized
It handles non-ASCII usernames and passwords and user visible strings used in
the library (error messages) can be translated into the users’ language.

It’s portable
It should work on all Unix like operating systems, including Windows. The
library itself should be portable to any C89 system, not even POSIX is required.

It’s small The library has been rewritten with embedded platforms in mind. For example,
no API consumes more than around 250 bytes of stack space.

Note that the library does not implement any policy to decide whether a certain user is
“authenticated” or “authorized” or not. Rather, it uses a callback into the application to
answer these questions.

1.4 Requirements

The GNU SASL library does not have any required external dependencies, but some optional
features are enabled if you have a specific external library.

LibNTLM The NTLM mechanism requires the library LibNTLM, http://www.nongnu.org/libntlm/.

GSS-API The GSSAPI and GS2-KRB5 mechanisms requires a GSS-API library, see GNU
GSS (http://www.gnu.org/software/gss/). MIT Kerberos or Heimdal are
also supported.

LibIDN Processing of non-ASCII usernames and passwords requires the SASLprep im-
plementation in LibIDN (http://www.gnu.org/software/libidn/). This is
needed for full conformance with the latest SASL protocol drafts, but is op-
tional in the library for improved portability.

Libgerypt The GNU SASL library ships with its own cryptographic implementation, but it
can use the one in libgerypt (http://www.gnupg.org/) instead, if it is available.
This is typically useful for desktop machines which have libgerypt installed.

The command-line interface to GNU SASL requires a POSIX or Windows
platform for network connectivity. The command-line tool can make use of GnuTLS
(http://www.gnutls.org/) to support the STARTTLS modes of IMAP and SMTP, but
GnuTLS is not required.

Note that the library does not need a POSIX platform or network connectivity.

1.5 Supported Platforms
GNU SASL has at some point in time been tested on the following platforms. Daily online
build reports are available at http://autobuild. josefsson.org/gsasl/.

1. Debian GNU/Linux 3.0 (Woody)

GCC 2.95.4 and GNU Make. This is the main development platform. alphaev67-
unknown-linux-gnu, alphaev6-unknown-linux-gnu, arm-unknown-linux-gnu,

http://www.nongnu.org/libntlm/
http://www.gnu.org/software/gss/
http://www.gnu.org/software/libidn/
http://www.gnupg.org/
http://www.gnutls.org/
http://autobuild.josefsson.org/gsasl/

Chapter 1: Introduction 4

10.

11.

12.

13.

14.

15.

16.

17.

hppa-unknown-linux-gnu, hppa64-unknown-linux-gnu, 1686-pc-linux-gnu,
ia64-unknown-linux-gnu, m68k-unknown-linux-gnu, mips—unknown-linux-gnu,
mipsel-unknown-linux-gnu, powerpc-unknown-linux-gnu, s390-ibm-linux-gnu,
sparc-unknown-linux-gnu.

Debian GNU /Linux 2.1

GCC 2.95.1 and GNU Make. armv4l-unknown-linux-gnu.

Tru64 UNIX

Tru64 UNIX C compiler and Tru64 Make. alphaev67-dec-osf5.1, alphaev68-dec—
osfb.1.

SuSE Linux 7.1

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu.

SuSE Linux 7.2a

GCC 3.0 and GNU Make. ia64-unknown-linux-gnu.

RedHat Linux 7.2

GCC 2.96 and GNU Make. alphaev6-unknown-linux-gnu, alphaev67-unknown-
linux-gnu, ia64-unknown-linux-gnu.

RedHat Linux 8.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

RedHat Advanced Server 2.1

GCC 2.96 and GNU Make. i686-pc-linux-gnu.

Slackware Linux 8.0.01

GCC 2.95.3 and GNU Make. i686-pc-linux-gnu.

Mandrake Linux 9.0

GCC 3.2 and GNU Make. i686-pc-linux-gnu.

IRIX 6.5

MIPS C compiler, IRIX Make. mips-sgi-irix6.5.

AIX 4.3.2

IBM C for AIX compiler, AIX Make. rs6000-ibm-aix4.3.2.0.

Microsoft Windows 2000 (Cygwin)

GCC 3.2, GNU make. i686-pc-cygwin.

HP-UX 11

HP-UX C compiler and HP Make. ia64-hp-hpux11.22, hppa2.0w-hp-hpux11.11.
SUN Solaris 2.8

Sun WorkShop Compiler C 6.0 and SUN Make. sparc-sun-solaris2.8.
SUN Solaris 2.9

Sun Forte Developer 7 C compiler and GNU Make. sparc-sun-solaris2.9.
NetBSD 1.6

GCC 2.95.3 and GNU Make. alpha-unknown-netbsdl.6, i386-unknown-
netbsdelfl.6.

Chapter 1: Introduction 5

18. OpenBSD 3.1 and 3.2

GCC 2.95.3 and GNU Make. alpha-unknown-openbsd3.1, 1i386-unknown-
openbsd3. 1.

19. FreeBSD 4.7

GCC 2954 and GNU Make. alpha-unknown-freebsd4.7, 1i386-unknown-
freebsd4.7.

20. Cross compiled to uClinux/uClibc on Motorola Coldfire.
GCC 3.4 and GNU Make m68k-uclinux-elf.

If you port GNU SASL to a new platform, please report it to the author so this list can
be updated.

1.6 Getting help

A mailing list where users may help each other exists, and you can reach it by
sending e-mail to help-gsaslOgnu.org. Archives of the mailing list discussions, and
an interface to manage subscriptions, is available through the World Wide Web at
http://lists.gnu.org/mailman/listinfo/help-gsasl/.

1.7 Commercial Support

Commercial support is available for users of GNU SASL. The kind of support that can be
purchased may include:

e Implement new features. Such as a new SASL mechanism.

e Port GNU SASL to new platforms. This could include porting to an embedded plat-
forms that may need memory or size optimization.

e Integrating SASL as a security environment in your existing project.

e System design of components related to SASL.

If you are interested, please write to:

Simon Josefsson Datakonsult AB
Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GNU SASL and would like to be mentioned
here, contact the author (see Section 1.9 [Bug Reports|, page 8).

1.8 Downloading and Installing
The package can be downloaded from several places, including;:
ftp://ftp.gnu.org/gnu/gsasl/

The latest version is stored in a file, e.g., ‘gsasl-1.6.1.tar.gz’ where the ‘1.6.1" value
is the highest version number in the directory.

mailto:help-gsasl@gnu.org
http://lists.gnu.org/mailman/listinfo/help-gsasl/
ftp://ftp.gnu.org/gnu/gsasl/

Chapter 1: Introduction 6

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive.

Here is an example terminal session that downloads, configures, builds and install the
package. You will need a few basic tools, such as ‘sh’, ‘make’ and ‘cc’.

$ wget -q ftp://ftp.gnu.org/gnu/gsasl/gsasl-1.6.1.tar.gz
$ tar xfz gsasl-1.6.1.tar.gz

$ cd gsasl-1.6.1/

$./configure

$ make
$ make install

After that gsasl should be properly installed and ready for use.

A few configure options may be relevant, summarized in the table.

-—-disable-client

--disable-server
If your target system require a minimal implementation, you may wish to disable
the client or the server part of the code. This does not remove symbols from
the library, so if you attempt to call an application that uses server functions in
a library built with --disable-server, the function will return an error code.

--disable-obsolete
Remove backwards compatibility (see Appendix B [Old Functions|, page 66).
Use if you want to limit the size of the library.

--disable-anonymous
--disable-external
--disable-plain
--disable-login
--disable-securid
--disable-ntlm
--disable-cram-md5
--disable-digest-md5
--disable-gssapi
--disable-gs2
-—-enable-kerberos_vb
--disable-scram-shal
Disable or enable individual mechanisms (see Chapter 5 [Mechanisms], page 25).

--without-stringprep
Disable internationalized string processing. Note that this will result in a SASL
library that is only compatible with RFC 2222.

For the complete list, refer to the output from configure --help.

Chapter 1: Introduction 7

1.8.1 Installing under Windows

There are two ways to build GNU SASL on Windows: via MinGW or via Mi-
crosoft Visual Studio. Note that a binary release for Windows is available from
http://josefsson.org/gnutlsdwin/.

With MinGW, you can build a GNU SASL DLL and use it from other applications.
After installing MinGW (http://mingw.org/) follow the generic installation instructions
(see Section 1.8 [Downloading and Installing], page 5). The DLL is installed by default.

For

)

information on how to wuse the DLL in other applications, see:

http://www.mingw.org/mingwfaq.shtml#faq-msvcdll.

You can build GNU SASL as a native Visual Studio C++ project. This allows you to
build the code for other platforms that VS supports, such as Windows Mobile. You need
Visual Studio 2005 or later.

First download and unpack the archive as described in the generic installation instruc-
tions (see Section 1.8 [Downloading and Installing], page 5). Don’t run ./configure.
Instead, start Visual Studio and open the project file ‘1ib/win32/1libgsasl.sln’ inside
the GNU SASL directory. You should be able to build the project using Build Project.

Output libraries will be written into the 1ib/win32/1ib (or 1ib/win32/1ib/debug for
Debug versions) folder.

Warning! Unless you build GNU SASL linked with libgcrypt, GNU SASL uses the Win-
dows function CryptGenRandom for generating cryptographic random data. The function
is known to have some security weaknesses. See http://eprint.iacr.org/2007/419 for
more information. The code will attempt to use the Intel RND crypto provider if it is
installed, see ‘1ib/gl/gc-gnulib.c’.

1.8.2 Kerberos on Windows

Building GNU SASL with support for Kerberos via GSS-API on Windows is straight forward
if you use GNU GSS and GNU Shishi as the Kerberos implementation.

If you are using MIT Kerberos for Windows (KfW), getting GNU SASL to build with
Kerberos support is not straightforward because KfW does not follow the GNU coding
style and it has bugs that needs to be worked around. We provide instructions for this
environment as well, in the hope that it will be useful for GNU SASL users.

Our instructions assumes you are building the software on a dpkg-based GNU /Linux
systems (e.g., gNewSense) using the MinGW cross-compiler suite. These instructions were
compiled for KfW version 3.2.2 which were the latest as of 2010-09-25.

We assume that you have installed a normal build environment including the MinGW
cross-compiler. Download and unpack the KfW SDK like this:

$

$
$
$

mkdir ~/kfw

cd “/kfw

wget -q http://web.mit.edu/kerberos/dist/kfw/3.2/kfw-3.2.2/kfw-3-2-2-sdk.zip
unzip kfw-3-2-2-sdk.zip

Fix a bug in the "win-mac.h" header inside KfW by replacing #include <sys\foo.h>
with #include <sys/foo.h>:

perl -pi -e ’s,sys\\,sys/,’ “/kfw/kfw-3-2-2-final/inc/krb5/win-mac.h
Unpack your copy of GNU SASL:

http://josefsson.org/gnutls4win/
http://mingw.org/
http://www.mingw.org/mingwfaq.shtml#faq-msvcdll
http://eprint.iacr.org/2007/419

Chapter 1: Introduction 8

$ wget -q ftp://alpha.gnu.org/gnu/gsasl/gsasl-1.6.1.tar.gz
$ tar xfz gsasl-1.6.1.tar.gz
$ cd gsasl-1.6.1

Configure GNU SASL like this:
$ 1t_cv_deplibs_check_method=pass_all ./configure --host=i586-mingw32msvc --build=i686

The ’lt_cv_deplibs_check_method=pass_all’ setting is required because the KfW SDK
does not ship with Libtool *.1a files and is using non-standard DLL names. The -DSSIZE_
T_DEFINED is necessary because the win-mac.h file would provide an incorrect duplicate
definitions of ssize_t otherwise. By passing --with-gssapi-impl=kfw you activate other
bug workarounds, such as providing a GSS_C_NT_HOSTBASED_SERVICE symbol.

Build the software using:

$ make

If you have Wine installed and your kernel is able to invoke it automatically for Windows
programs, you can run the self tests. This is recommended to make sure the build is sane.

$ make check

You may get error messages about missing DLLs, like this error:

err:module:import_dll Library gssapi32.dll (which is needed by L"Z:\\home\\jas\\src\\g

If that happens, you need to make sure that Wine can find the appropriate DLL. The
simplest solution is to copy the necessary DLLs to “/.wine/drive_c/windows/system32/.

You may now copy the following files onto the Windows machine (e.g., through a USB
memory device):

lib/src/.libs/libgsasl-7.d11
src/.libs/gsasl.exe

The remaining steps are done on the Windows XP machine. Install KfW and configure
it for your realm. To make sure KfW is working properly, acquire a user ticket and then
remove it. For testing purposes, you may use the realm ’interop.josefsson.org’ with KDC
"interop.josefsson.org’ and username ’user’ and password 'pass’.

Change to the directory where you placed the files above, and invoke a command like
this:

gsasl.exe -d interop.josefsson.org

KfW should query you for a password, and the tool should negotiate authentication
against the server using GS2-KRB5.

1.9 Bug Reports

If you think you have found a bug in GNU SASL, please investigate it and report it.

e Please make sure that the bug is really in GNU SASL, and preferably also check that
it hasn’t already been fixed in the latest version.

e You have to send us a test case that makes it possible for us to reproduce the bug.

e You also have to explain what is wrong; if you get a crash, or if the results printed are

not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Chapter 1: Introduction 9

Please make an effort to produce a self-contained report, with something definite that
can be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

If your bug report is good, we will do our best to help you to get a corrected version of
the software; if the bug report is poor, we won’t do anything about it (apart from asking
you to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gsasl@gnu.org’

1.10 Contributing

If you want to submit a patch for inclusion — from solve a typo you discovered, up to adding
support for a new feature — you should submit it as a bug report (see Section 1.9 [Bug
Reports], page 8). There are some things that you can do to increase the chances for it to
be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the
copyright of your work to the Free Software Foundation. This is to protect the freedom
of the project. If you have not already signed papers, we will send you the necessary
information when you submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines
are common sense. Use it.
For code contributions, a number of style guides will help you:
e Coding Style. Follow the GNU Standards document (see (undefined) [top], page (un-
defined)).

If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code (see (undefined) [top], page (undefined))
before submitting your work.

e Use the unified diff format ‘diff -u’.
e Return errors. No reason whatsoever should abort the execution of the library. Even

memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

e Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

e Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

e Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

e Supply a ChangeLog and NEWS entries, where appropriate.

Chapter 2: Preparation 10

2 Preparation

To use GNU SASL, you have to perform some changes to your sources and the build system.
The necessary changes are small and explained in the following sections. At the end of this
chapter, it is described how the library is initialized, and how the requirements of the library
are verified.

A faster way to find out how to adapt your application for use with GNU SASL may be
to look at the examples at the end of this manual (see Chapter 13 [Examples]|, page 49).

2.1 Header

All interfaces (data types and functions) of the library are defined in the header file gsasl.h.
You must include this in all programs using the library, either directly or through some other
header file, like this:

#include <gsasl.h>

The name space is gsasl_x for function names, Gsasl* for data types and GSASL_x*
for other symbols. In addition the same name prefixes with one prepended underscore are
reserved for internal use and should never be used by an application.

2.2 Initialization

The library must be initialized before it can be used. The library is initialized by calling
gsasl_init (see Chapter 6 [Global Functions|, page 31). The resources allocated by the
initialization process can be released if the application no longer has a need to call ‘Libgsasl’
functions, this is done by calling gsasl_done. For example:

int
main (int argc, char *argv[])
{

Gsasl *ctx = NULL;

int rc;

rc = gsasl_init (&ctx);
if (rc '= GSASL_OK)
{
printf ("SASL initialization failure (%d): %s\n",
rc, gsasl_strerror (rc));
return 1;

}

In order to make error messages from gsasl_strerror be translated (see Section “Top”
in GNU Gettext) the application must set the current locale using setlocale before calling
gsasl_init. For example:

int
main (int argc, char *argv[])
{

Gsasl *ctx = NULL;

Chapter 2: Preparation 11

int rc;
setlocale (LC_ALL, "");

rc = gsasl_init (&ctx);
if (rc !'= GSASL_OK)
{
printf (gettext ("SASL initialization failure (%d): %s\n"),
rc, gsasl_strerror (rc));
return 1;

}

In order to take advantage of the secure memory features in Libgerypt!, you need to
initialize secure memory in your application, and for some platforms even make your appli-
cation setuid root. See the Libgcrypt documentation for more information. Here is example
code to initialize secure memory in your code:

#include <gcrypt.h>

int
main (int argc, char *argv[])
{

Gsasl *ctx = NULL;

int rc;

/* Check version of libgcrypt. */
if (!gcry_check_version (GCRYPT_VERSION))
die ("version mismatch\n");

/* Allocate a pool of 16k secure memory. This also drops priviliges
on some systems. */
gcry_control (GCRYCTL_INIT_SECMEM, 16384, 0);

/* Tell Libgcrypt that initialization has completed. */
gcry_control (GCRYCTL_INITIALIZATION_FINISHED, 0);

rc = gsasl_init (&ctx);
if (rc != GSASL_OK)
{
printf ("SASL initialization failure (%d): %s\n",
rc, gsasl_strerror (rc));
return 1;

3

! Note that GNU SASL normally use its own internal implementation of the cryptographic functions. Take
care to verify that GNU SASL really use Libgcrypt, if this is what you want.

Chapter 2: Preparation 12

If you do not do this, keying material will not be allocated in secure memory (which, for
most applications, is not the biggest secure problem anyway). Note that the GNU SASL
Library has not been audited to make sure it stores passwords or keys in secure memory.

2.3 Version Check

It is often desirable to check that the version of the library used is indeed one which fits
all requirements. Even with binary compatibility, new features may have been introduced
but, due to problem with the dynamic linker, an old version may actually be used. So you
may want to check that the version is okay right after program startup.

gsasl_check_version

const char * gsasl_check_version (const char * req_version) [Function]
req_version: version string to compare with, or NULL.

Check GNU SASL Library version.
See GSASL_VERSION for a suitable req_version string.

This function is one of few in the library that can be used without a successful call
to gsasl_init().

Return value: Check that the version of the library is at minimum the one given as
a string in req_version and return the actual version string of the library; return
NULL if the condition is not met. If NULL is passed to this function no check is done
and only the version string is returned.

The normal way to use the function is to put something similar to the following early in
your main:

if (!gsasl_check_version (GSASL_VERSION))
{
printf ("gsasl_check_version failed:\n"
"Header file incompatible with shared library.\n");
exit(1);
X

2.4 Building the source

If you want to compile a source file including the ‘gsasl.h’ header file, you must make sure
that the compiler can find it in the directory hierarchy. This is accomplished by adding the
path to the directory in which the header file is located to the compilers include file search
path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured.
To solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
libgsasl. The following example shows how it can be used at the command line:

gcc —c foo.c ‘pkg-config libgsasl --cflags*
Adding the output of ‘pkg-config libgsasl --cflags’ to the compiler command line
will ensure that the compiler can find the ‘gsasl.h’ header file.

Chapter 2: Preparation 13

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--1ibs’ to pkg-config
libgsasl can be used. For convenience, this option also outputs all other options that
are required to link the program with the library (for instance, the ‘-1idn’ option). The
example shows how to link ‘foo.o’” with the library to a program foo.

gcc -o foo foo.o ‘pkg-config libgsasl --1ibs®
Of course you can also combine both examples to a single command by specifying both
options to pkg-config:
gcc -o foo foo.c ‘pkg-config libgsasl --cflags --libs°

2.5 Autoconf tests

If you work on a project that uses Autoconf (see (undefined) [top], page (undefined)) to help
find installed libraries, the suggestions in the previous section are not the entire story. There
are a few methods to detect and incorporate the GNU SASL Library into your Autoconf
based package. The preferred approach, is to use Libtool in your project, and use the
normal Autoconf header file and library tests.

2.5.1 Autoconf test via ‘pkg-config’

If your audience is a typical GNU/Linux desktop, you can often assume they have the
‘pkg-config’ tool installed, in which you can use its Autoconf M4 macro to find and set
up your package for use with Libgsasl. The following example illustrates this scenario.

AC_ARG_ENABLE (gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)
if test "$gsasl" != "no" ; then
PKG_CHECK_MODULES(GSASL, libgsasl >= 1.6.1,
[gsasl=yes],
[gsasl=no])

if test "$gsasl" != "yes" ; then

gsasl=no

AC_MSG_WARN([Cannot find GNU SASL, disabling])
else

gsasl=yes
AC_DEFINE(USE_GSASL, 1, [Define to 1 if you want GNU SASL.])
fi
fi
AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT ($gsasl)

2.5.2 Standalone Autoconf test using Libtool

If your package uses Libtool (see (undefined) [top|, page (undefined)), you can use the
normal Autoconf tests to find Libgsasl and rely on the Libtool dependency tracking to
include the proper dependency libraries (e.g., Libidn). The following example illustrates
this scenario.

Chapter 2: Preparation

AC_CHECK_HEADER(gsasl.h,
AC_CHECK_LIB(gsasl, gsasl_check_version,
[gsasl=yes AC_SUBST(GSASL_LIBS, -lgsasl)],
gsasl=no),
gsasl=no)
AC_ARG_ENABLE(gsasl,
AC_HELP_STRING([--disable-gsasl], [don’t use GNU SASL]),
gsasl=$enableval)

if test "$gsasl" != "no" ; then

AC_DEFINE(USE_SASL, 1, [Define to 1 if you want GNU SASL.])
else

AC_MSG_WARN([Cannot find GNU SASL, diabling])
fi

AC_MSG_CHECKING([if GNU SASL should be used])
AC_MSG_RESULT ($gsasl)

14

Chapter 3: Using the Library 15

3 Using the Library

Your application’s use of the library can be roughly modeled into the following steps: ini-
tialize the library, optionally specify the callback, perform the authentication, and finally
clean up. The following image illustrates this.

Control flow inside application (ﬁ

Specify callback: Multiplex

gsas| calback_set (ctx, myfunc); > severalclients... 1
-OR-

Accept incoming

server sessions..

[

Initialize library:
gsas|init(&ctx);

Cleanup
gsas|_done (ct);

A 4

fore
pthread_create (),

The third step may look complex, but for a simple client it will actually not involve any
code. If your application needs to handle several concurrent clients, or if it is a server that
needs to serve many clients simultaneous, things do get a bit more complicated.

For illustration, we will write a simple client. Writing a server would be similar, the
only difference is that, later on, instead of supplying a username and password, you need
to decide whether someone should be allowed to log in or not. The code for what we have
discussed so far make up the main function in our client (see Section 13.1 [Example 1],
page 49):

int main (int argc, char *argv[])

{
Gsasl *ctx = NULL;
int rc;

if ((rc = gsasl_init (&ctx)) != GSASL_0K)
{
printf ("Cannot initialize libgsasl (%d): %s",
rc, gsasl_strerror (rc));
return 1;

}
client (ctx);

gsasl_done (ctx);

return O;

¥

Here, the call to the function client correspond to the third step in the image above.

Chapter 3: Using the Library 16

For a more complicated application, having several clients running simultaneous, instead
of a simple call to client, it may have created new threads for each session, and call client
within each thread. The library is thread safe.

An actual authentication session is more complicated than what we have seen so far.
These are the steps: decide which mechanism to use, start the session, optionally specify
the callback, optionally set any properties, perform the authentication loop, and clean up.
Naturally, your application will start to talk its own protocol (e.g., SMTP or IMAP) after
these steps have concluded.

The authentication loop is based on sending tokens (typically short messages encoded
in base 64) back and forth between the client and server. It continues until authentication
succeeds or an error occurs. The format of the data to be transferred, the number of
iterations in the loop, and other details are specified by each mechanism. The goal of the
library is to isolate your application from the details of all different mechanisms.

Note that the library does not send data to the server itself, but returns it in an buffer.
You must send it to the server, following an application protocol profile. For example, the
SASL application protocol profile for SMTP is described in RFC 2554.

The following image illustrates the steps we have been talking about.

Control flow
for one SASL session

fork(),
pthread_create(),

Decide which mechanism o use:
mech = my_chose_mechanism(),

FRead token from peer:

readtoken (&in);
\ -OR-
in=MNULL
Start new authentication process: \

gsas|_client_start (ctx, mech, &session);
OH
gsasl| server_start (cte, mech, &session),

pd

Optionally set prope rties:
gsas|_property_set (session, GSASL_AUTHZID, "joe');

One step of the authentication:
rc = gsasl_steps4 (session, in, &out);

~a

Send token to peer:
e ==GSASL_NEEDS_MORE sendtoken {out);

rc I=GSASL_OK

Authentication
finished?

re l=GSASL_NEEDS MORE

Abort rc == GSASL_OK
|_finish ion);
. . -gsﬁ.?_'ll'!B- sessbn);) Finish authentication process:
printf (*Failure: #es'n", gsas|_strerror (rc)); .)
gsas| finish (session),

1
— P

Authenticated protocol exchange...
Forexampke SMTF or IMAF,

We will now show the implementation of the client function used before.

Chapter 3: Using the Library 17

void client (Gsasl *ctx)

{

}

Gsasl_session *session;
const char *mech = "PLAIN";
int rc;

/* Create new authentication session. */
if ((rc = gsasl_client_start (ctx, mech, &session)) != GSASL_OK)
{
printf ("Cannot initialize client (%d): %s\n",
rc, gsasl_strerror (rc));
return;

}

/* Set username and password in session handle. This info will be
lost when this session is deallocated below. */

gsasl_property_set (session, GSASL_AUTHID, "jas");

gsasl_property_set (session, GSASL_PASSWORD, "secret");

/* Do it. */
client_authenticate (session);

/* Cleanup. */
gsasl_finish (session);

This function is responsible for deciding which mechanism to use. In this case, the
‘PLAIN’ mechanism is hard coded, but you will see later how this can be made more flexible.
The function creates a new session, then it stores the username and password in the session
handle, then it calls another function client_authenticate to handle the authentication
loop, and finally it cleans up up. Let’s continue with the implementation of client_
authenticate.

void client_authenticate (Gsasl_session * session)

{

char buf [BUFSIZ] = "";
char *p;
int rc;

/* This loop mimics a protocol where the server sends data
first. */

do
{
printf ("Input base64 encoded data from server:\n");
fgets (buf, sizeof (buf) - 1, stdin);
if (buf[strlen (buf) - 1] == ’\n’)
buf [strlen (buf) - 1] = ’\0’;

Chapter 3: Using the Library 18

rc = gsasl_step64 (session, buf, &p);

if (rc == GSASL_NEEDS_MORE || rc == GSASL_0K)
{
printf ("Output:\n%s\n", p);
free (p);
}
}
while (rc == GSASL_NEEDS_MORE);

printf ("\n");

if (rc '= GSASL_OK)
{
printf ("Authentication error (%d): %s\n",
rc, gsasl_strerror (rc));
return;

3

/* The client is done. Here you would typically check if the
server let the client in. If not, you could try again. */

printf ("If server accepted us, we’re done.\n");

}

This last function needs to be discussed in some detail. First, you should be aware that
there are two versions of this function, that differ in a subtle way. The version above (see
Section 13.2 [Example 2], page 51) is used for application profiles where the server sends
data first. For some mechanisms, this may waste a roundtrip, because the server needs
input from the client to proceed. Therefor, today the recommended approach is to permit
client to send data first (see Section 13.1 [Example 1], page 49). Which version you should
use depends on which application protocol you are implementing.

Further, you should realize that it is bad programming style to use a fixed size buffer.
On GNU systems, you may use the getline functions instead of fgets. However, in
practice, there are few mechanisms that use very large tokens. In typical configurations,
the mechanism with the largest tokens (GSSAPI) can use at least 500 bytes. A fixed buffer
size of 8192 bytes may thus be sufficient for now. But don’t say I didn’t warn you, when a
future mechanism doesn’t work in your application, because of a fixed size buffer.

The function gsasl_step64 (and of course also gasl_step) returns two non-error return
codes. GSASL_OK is used for success, indicating that the library considers the authentication
finished. That may include a successful server authentication, depending on the mechanism.
You must not let the client continue to the application protocol part unless you receive
GSASL_OK from these functions. In particular, don’t be fooled into believing authentication
were successful if the server replies “OK” but these functions have failed with an error.
The server may have been hacked, and could be tricking you into sending confidential data,
without having successfully authenticated the server.

Chapter 3: Using the Library 19

The non-error return code GSASL_NEEDS_MORE is used to signal to your application that
you should send the output token to the peer, and wait for a new token, and do another
iteration. If the server concludes the authentication process, with no data, you should call
gsasl_step64 (or gsasl_step) specifying a zero-length token.

If the functions (gsasl_step and gsasl_step64) return any non-error code, the content
of the output buffer is undefined. Otherwise, it is the callers responsibility to deallocate
the buffer, by calling free. Note that in some situations, where the buffer is empty, NULL
is returned as the buffer value. You should treat this as an empty buffer.

3.1 Choosing a mechanism

Our earlier code was hard coded to use a specific mechanism. This is rarely a good idea.
Instead, it is recommended to select the best mechanism available from the list of mecha-
nisms supported by the server. Note that without TLS or similar, the list may have been
maliciously altered, by an attacker. This means that you should abort if you cannot find
any mechanism that exceeds your minimum security level. There is a function gsasl_
client_suggest_mechanism (see Chapter 6 [Global Functions], page 31) that will try to
pick the “best” available mechanism from a list of mechanisms. Our simple interactive
example client (see Section 13.3 [Example 3], page 54) includes the following function to
decide which mechanism to use. Note that the code doesn’t blindly use what is returned
from gsasl_client_suggest_mechanism, rather it lets some logic (in this case the user,
through an interactive query) decide which mechanism is acceptable.

const char *client_mechanism (Gsasl *ctx)

{
static char mech[GSASL_MAX_MECHANISM_SIZE + 1] = "";
char mechlist[BUFSIZ] = "";
const char *suggestion;

printf ("Enter list of server supported mechanisms, separate by SPC:\n");
fgets (mechlist, sizeof (mechlist) - 1, stdin);

suggestion = gsasl_client_suggest_mechanism (ctx, mechlist);
if (suggestion)
printf ("Library suggests use of ‘Ys’.\n", suggestion);

printf ("Enter mechanism to use:\n");
fgets (mech, sizeof (mech) - 1, stdin);
mech[strlen (mech) - 1] = ’\0’;

return mech;

}
When running this example code, it might look like in the following output.

Enter list server supported mechanisms, separate by SPC:
CRAM-MD5 DIGEST-MD5 GSSAPI FOO BAR

Library suggests use of ‘GSSAPI’.

Enter mechanism to use:

Chapter 3: Using the Library 20

CRAM-MD5

Input base64 encoded data from server:

ZmbvcemQ=

Output:
amFzIDkyY2UINWESMTM2ZTY4NZEyMTUyZTF jYmFmN jVkZ jgx

If server accepted us, we’re done.

3.2 Using a callback

Our earlier code specifi