GNU PROLOG

A Native Prolog Compiler with Constraint Solving over Finite Domains

Edition 1.7, for GNU Prolog version 1.2.16
September 25, 2002

by Daniel Diaz

Copyright (C) 1999-2002 Daniel Diaz

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the Free Software Foundation', 59 Temple Place - Suite 330, Boston, MA 02111, USA.

Thttp://wuw.fsf.org/

CONTENTS

Contents

11 Acknowledgements|

[2__Introductionl

Using GNU Prolog]

3.2 The GNU Prolog interactive interpreter|
B.2.1 Starting/exiting the interactive interpreter]
3.2.2 The interactive interpreter read-execute-write loop|
8.2.3 Consulting a Prolog program|.
3.2.4 Interrupting a query| Lo

13.3 Adjusting the size of Prolog stacks| o oo
3.4 The GNU Prolog compiler|

3.4.2 Compilation scheme|.
3.4.3 Using the compiler|]
44 TRunning an executable
8.4.5 Generating a new interactive interpreter| Lo
3.4.6 The hexadecimal predicate name encoding|

Debugging]

4.2 The procedure box modell L Lo
4.3 Debugging predicates|. e
1.3.1 Running and stopping the debugger] o v oo v i i s
4.3.2 Leashing ports|.

4.3.3 Spy-points| e e
4.4 Debugging messages|

4.5 Debugger commands|o

46 e ebugger]

0.3.10 Syntax error| Lo
5.3.11 System error| e e e e e

|6 Prolog directives and control constructs|

6.1 rolog directives|
611 Introductionl« v v v ot
6.1.2 dynamic/1| e e
6.1.0 PUDLIC/L]. « o o o o e e e
6.1.4 multifile/d]. e
6.1.5 discontiguous/1| e e e e e

6.1.6 _ensure_linked/1|

11

13
13
13
13
14
16
17
18
19
20
20
20
22
25
26
27

29
29
29
31
31
31
31
32
32
34

35
35
35
37
37
37
38
38
39
39
39
40
40
40
40

2 CONTENTS
6.1.7 built_in/0, built_in/1, built_in £d/0, built infa/1. o o v oot .. 43
6.1.8 dinclude/1| e e 44
6.1.9 ensure loaded/1] e 44
0.1.10 op/3| e e e 44
[TIT char conversion/2]. o v v v v i 44
0.1.12 set_prolog flag/2| 45
6.1.13 initialization/d] e e 45
[6.1.14 foreign/2, foreign/1| 45
6.2 rolog control constructs| L L 46
[6.2.1 true/0, fail/0, /0] 46
16.2.2 (’,’)/2 - conjunction, (;)/2 - disjunction, (->)/2 - if-then| 46
6.2.3 call/al e e 47
6.2.4 catch/3, throw/1|. e 47
|7 Prolog built-in predicates| 49
7.1 Type testing] 49
[711 var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, |
[compound/1, callable/1, 1ist/1, partial list/1, list_or_partial list/1]. . 49
... 50
[7.2.1 (=)/2 - Prolog unification| L 50
7.2.2 unify with occurs_check/2|. 50
2.3 =)/2 - not Prolog unifiable| o0 oo 50
[7.3 Term comparison| L e e e e e e e 51
[7.3.1 Standard total ordering of terms|. L Lo 51
[7.3.2 (==)/2 - term 1dentical, (\==)/2 - term not identical, |
| (6<) /2 - term less than, (6=<)/2 - term less than or equal to |
| (@>) /2 - term greater than, (8>=)/2 - term greater than or equal to] 51
|2.3.3 comEare/3| .. 52
[74 Term processing] o o v i e 52
7.4.1 functor/3| e e 52
A, arg/3|. . . e 53
(43 (Go72-Univl. - o o oo 53
7.4.4 copy_term/2|. e e 54
4.5 setarg/4, setarg/3| 54
[7.5 Variable naming/mnumbering| oo 55
[51 name_singletonvars/i] 55
[[52 nmamequeryvars/2 55
E.5.3 bind variables/2, numbervars/3, numbervars/1|. L. 56
(54 termref/2 o 57
[(.6 _Arithmeticl. e 57
[7.6.1 Evaluation of an arithmetic expression| 57
[7.6.2 (is)/2 - evaluate expression| o 59

[7.6.3 (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal,

(<) /2 - arithmetic less than, (=<)/2 - arithmetic less than or equal to,

(>) /2 - arithmetic greater than, (>=)/2 - arithmetic greater than or equal to] . . 60
[7.7 Dynamic clause management| Lo oL Lo 60
[t.7. Introductionl e 60
[7.7.2 asserta/1,assertz/1| 61
[[73 retract/a] o o e 62
(.74 retractall/l e e 62
[1.7.5 clause/2|. e e 63
[(.7.6 abolish/1l e e e e 63
[[.8 Predicate information] 64
7.8.1 current_predicate/1] 64
[7.82 predicate property/2. v i i 65
[[.9 All solutionsl. e 66

CONTENTS 3

[7.9.2 findall/3| e e e e 66
[7.9.3 Dbagof/3,setof/3|. 66
[(10 Streamsl o e e e e e 67
[(.10.1 Introductionl oL e 67
7.10.2 current_input/1] L L 69
[[I03 curromtooutput/T] « . .« o v ooee e 69
[[104 setimput/I]. 69
|2.10.5 set_output/1] 70
10.6 open/4, open/3| e e e e e 70
.10. close/2, close/1|. L e 72
[7.10.8 flush output/1, flush_output/0. 72
[[I0.9 current_stream/d] 73

[7.10.10 stream property/2|. 73
[710.11 at_end of _stream/1, at_end of stream/0] v it 74

[7.10.12 stream position/2[. 74

.10.13 set_stream_position/2 Lo 75

[[I0T4d seek/d] o o e 75

[7.10.15 character_count/2|.o e 76

[7.10.16 line_count/2[. L 7

[7.10.17 line_position/2] 7

7.10.18 stream_ line_column/3| L 7

7.10.19 set stream line column/3[.o 78

7.10.20 add_stream_alias/2 79

[7.10.21 current_alias/2[.o 79

7.10.22 add_streammirror/2[. L 79

7.10.23 remove stream mirror/2.o 80

[7.10.24 current mirror/2 80

[7.10.25 set_stream type/2| 81

[710.26 set stream eof acCtion/2] . . . « « v v v v e v e 81
[7.10.27 set_stream buffering/2[. L 82

[[11 Constant term streamsl . -+« o 82
[(11.1 Introductionl« . . . e 82

[7.11.2 open_input_atom _stream/2, open_input_chars_stream/2, |

| open_input_codes_stream/2[. L oo 83
[711.3 close_input_atom stream/1, close_input_chars_stream/1, |

| close_input_codes_stream/1| Lo o 83
[711.4 open_output_atom_stream/1, open_output_chars_stream/1, |

| open_output_codes_stream/1| Lo 84
[11.5 close output_atom_stream/2, close output_chars_stream/2, |
close_output_codes_stream/2[. Lo 84

[7.12 Character input/output| 85
.12.1 get_char/2, get_char/1, get_code/1, get code/2[. 85

[[122 get_key/2, get key/1 get_key no_echo/2, get keyno_echo/q| 86

[(.12.3 peek_char/2, peek_char/1, peek_code/1, peek_code/2|. 87

|f.12.4 unget_char/2, unget_char/1, unget_code/2, unget_code/1| 88
[712.5 put_char/2, put_char/1, put_code/1, put_code/2, n1/1,nl/0 88

[7.13 Byte input/output| 89
13.1 et_byte/2, get byte/1| 89

[[I32 Pookbyte/2, Pokbyto/T . « « o oo oo oo 90

[[13.3 ungetbyte/2, unget byte/1] 90

[[13.4 put_byte/2,putbyte/d] 91

[7.14 Term input/output| 91
[7141 read term/3, read term/2, read/2, read/d| o v oo 92

[7.14.2 read_atom/2, read_atom/1, read_integer/2, read_integer/1, |

| read_number/2, read number/1| 93
............................. 94

.14.4 syntax_error_info/4|. 95

4 CONTENTS

[(.14.5 last read start line column/2[. 95
[7.14.6 write_term/3, write_term/2, write/2, write/1, writeq/2, writeq/1,
write_canonical/2, write_canonical/1, display/2, display/1, print/2,
‘ print/1] 96
147 format/3, format/2] L 98
[7.14.8 portray_clause/2, portray_clause/1| 99
[[149 getprintstream/d] 100
[[I430 op/3] o 100
...................................... 102
.14.12 char_conversion/2|. e e e 102
7.14.13 current _char _conversion/2 103
[7.15 Input/output from/to constant terms| L L 104
[(.15.1 read_term_from atom/3, read from_atom/2, read token_ fromatom/2 104
[152 read term from chars/3, read from chars/2, read token from chars/2 104
[7.15.3 read_term_from_codes/3, read _from_codes/2, read_token _from_codes/2[. . . . 105
[7.15.4 write_term to_atom/3, write_to_atom/2, writeq to_atom/2,
write_canonical_to_atom/2, display_to_atom/2, print_to_atom/2,
format_to_atom/3|. 105
[7.15.5 write_term_to_chars/3, write_to_chars/2, writeq_to_chars/2,
write_canonical _to_chars/2, display_to_chars/2, print_to_chars/2,
format £o CRATS/3l o e e e e e e 106
[7.15.6 write_term to_codes/3, write_to_codes/2, writeq_to_codes/2,
write_canonical_to_codes/2, display_to_codes/2, print_to_codes/2,
format to codes/3| 106
[7.16 DEC-10 compatibility input/output| 107
CI61T Tntroduction] o v v v oot e 107
[7.16.2 see/1, tell/1,append/1|. 107
[[16.3 seeing/1, telling/1]. 108
[[16.4 seen/0, told/0] . . - « v v v vt 108
16.5 get0/1, get/1, skip/1| L 108
[[16.6 put/1, tab/I] oo 109
[7I7 Term expansion] o v v v v e e e e 109
[7.17.1 Definite clause grammars| Lo Lo 109
[7.17.2 expand_term/2, term expansion/2 111
|/1{3 phrase/3, phrase/2| 111
[718 Togic, control and exceptions]o i i 112
7.18.1 abort/0, stop/0, top_level/0, break/0, halt/1, halt/0 112
[[I82 once/1I, (\+)/1 - not provable, call_with args/1-11, call/2. 113
[[I83 repeat/0]. 113
[[A84 For/3]. 114
[7.19 Atomic term processing] o i it e e e e e e e e e e 114
7.19.1 atom_length/2| e 114
(192 atomconcat/3 115
[7.19.3 sub atom/Bl e 115
[7.19.4 char_code/2|. L 116
7.19.5 lower_upper/2| 116
[719.6 atom chars/2, atom codes/2] . . . « . o v vt 116
[7.19.7 number_atom/2, number_chars/2, number_codes/2| 117
.. 118
[7.19.9 atomhash/2|. e 119
[7.19.10 new_atom/3, new_atom/2, new_atom/1|. L. 119
7.19.11 current atom/1|. 120
[7.19.12 atom_property/2| 120
T30 TSt DrOGESSIE] - - - -« « « o o e e e e 121
[720.1 append/3|. 121
[7.20.2 member/2, memberchk/2 121
7.20.3 reverse/2| e 122

CONTENTS 5

[7.20.4 delete/3,select/3| 122
20.5 permutation/2] L L L e e e e e 122
.20.6 prefix/2, suffix/2] L L 123

7.20.7 sublist/2| e e 123

.. 124
[7.20.9 Tength/2|. 124
7.20.10 nth/3|. e e 124
[7.20.11 max_1list/2, min_list/2, sum_list/2/. 125
[720.12 sort/2, sort0/2, keysort/2 sort/1, sort0/1, keysort/1. 125

[(.21 Global variablesl. 126
[(21.1 Introductionl 126
[7.21.2 g assign/2, g_assignb/2, g link/2 127
[[213 gread/2. 128

21. _array-_size/2| e 128

.21.5 g_inc/3, g_inc/2, g_inco/2, g_inc/1, g_dec/3, g_dec/2, g_.deco/2, g dec/1| . . . 129

7.22 Prolog state| 133
|?.22.1 set_prolog flag/2| 133
22,2 current_prolog_flag/2| e e e 134
..................................... 135
(224 currentbipmame/d] . . . o oo oo 135
[225 write pl state file/1, read pl state file/d|. 136

[(.23 Program state|[. 136
[723.T consult/1, ’.7/2 - program CONSUIY| « o v v v v e et 136
7.23.2 Toad/1| e e 137
[7.23.3 listing/1, listing/0f 138
[224 System statistics] 138
[[247 statistics/0, Statistics/2 v v v v v v vt 138
[7242 user time/1, system time/1, cpu_time/1, real time/1] 139

[7.25 Random number generator] 139
[7.25.1 set_seed/1, randomize/0| Lo 139
[7.20.2 get_seed/1| 140
[[253 random/1dl. 140
[71.25.4 random/3|. e e e e 140

17.26 File name processing] 141
7.26.1 absolute filemame/2| e 141
[7.26.2 decompose_filemname/4| 141
[726.3 prolog filemname/2 o vt vt 142
[7.27 Operating system interface] 0oL 142
27.1 argument_counter/1| L. 142
................................... 143
[[273 argument Tist/I] oot 143
[[274 environ/2 o 144
[7.27.5 make directory/1, delete directory/1, change directory/1] 144

|12 / .6 working directory/1f 144

277 directory files/2|. L L e e 145
[[278 rename File/2] o v i i i e 145
[7.27.9 delete file/1, unlink/1| 146
[7.27.10 file permission/2, fileexists/1|, 146
|2.2f.11 fileproperty/2 147
................................... 148
................................... 149
(2714 date time/d] o o o i 149
7.27.15 hostmname/1|. L 150
[1.27.16 os_version/1] L e e 150

7.27.17 architecture/1]. e 151

6 CONTENTS

[7.27.18 shell/2, shell/1, shell/0| 151
.................................. 152
.................................... 152
... 153
[72722 exec/5, exeC/a] 153
[7.27.23 fork prolog/1| 154
[F2T20 cToatopipe/d - « -« o o oo e 154
[T2725 wait/2] 155
7.27.26 prolog pid/1] 155
..................................... 156
8 o/ 1| . 156
7.27.29 select/Bl. e e e 156
[7.28 Sockets input/output]. 157
281 Tntroductionl ¢ o v v vt 157
7.28.2 _socket/2|. e e e 158
[71.28.3 _socket_close/1l. e e e e 158
[(28.4 socket bind/2] e 159
[71.28.5 socket_connect/4]l 159
[7.28.6 _socket_listen/2| e e e 160
7.28.7 socket_accept/4, socket_accept/3| L. 160
7.28.8 hostname_address/2 161
[7.29 Linedit management| 162
7.29.1 get_linedit_prompt/1|. 162
.29.2 set_linedit_prompt/1| L L 162

|2.29.3 add_linedit_comﬁletionz1| 162
[729.4 find linedit_completion/2] v o v v i it 163

[7.30 Source reader facility| oL 163
301 Tntroductionl o o 163
7.30.2 sr_open/3| e 164

.30.3 sr.change options/2|. 164
[730.4 srclose/dl o o 164
[7.30.50 sr read term/4| e 164
7.30.6 sr_current._descriptor/1|. oL Lo 164
|f.30.7 sr_get_stream/2| 164

30.8 sr_get_module/3| e e 164

.30.9 sr_get_filemname/2| Lo e e e 164
................................... 164
[T30.11 STget include Tist/T] . . « o v oo oo 164
[7.30.12 sr_get_include_stream 1ist/2] 164
|?.30.13 sr_get_size_counters/3| 164
............................... 164
7.30.15 sr_set_error_counters/3|o e 164
[7.30.16 sr_error_from_exception/2|. 164
[7.30.17 sr_write message/8, sr_write message/6, sr_writemessage/4] 164
[7.30.18 sr_write_error/6, sr_write_error/4, sr_write_error/2 164

|18 Finite domain solver and built-in predicates| 165

BI Tntroductionl. o 165
RI1 Finite Domain varfabled L o 165

8.2 KD variable parameters| 166
[8.2.1 fdmax_integer/1[. 166

2.2 fd vectormax/1 L e 166
8.2.3 fd set vectormax/1|. e e 167

B3 Tnitial value constraintd 167
8.3.1 fd domain/3, fd_domain bool/1f.o 167
8.3.2 fd domain/2|. L e 168

8.4 Typetesting] o e 168

CONTENTS 7

8.4.1 fd_var/1, non_fd_var/1, generic_var/1, non_genericvar/1 168
8.5 FD variable informationl 169
8.5.1 fd min/2, fd max/2, fd_size/2, fddom/2| 169
8.5.2 fd_has_extra_cstr/1, fd_has_vector/1, fd use vector/1|. 170
8.6 Arithmetic constraints| L L 170
8.6.1 FD arithmetic expressions| L L Lo 170

18.6.2 Partial AC: (#=)/2 - constraint equal, (#\=)/2 - constraint not equal

(#<) /2 - constraint less than, (#=<)/2 - constraint less than or equal

(#>) /2 - constraint greater than, (#>=)/2 - constraint greater than or equal| . . . 171

8.6.3 Full AC: (#=#)/2 - constraint equal, (#\=#)/2 - constraint not equal, |

(#<#) /2 - constraint less than, (#<#) /2 - constraint less than or equal, |

(#>#) /2 - constraint greater than, (#>=#)/2 - constraint greater than or equall. . 172

8.6.4 fd_prime/1, fd not_prime/1|. e 173

8.7.1 Boolean FD expressions|. oo 173
18.7.2 (#\) /1 - constraint NOT, (#<=>)/2 - constraint equivalent |

(#\<=>) /2 - constraint different, (##)/2 - constraint XOR

(#==>) /2 - constraint imply, (#\==>)/2 - constraint not imply,

#/\)/2 - constraint AND, (#\/\)/2 - constraint NAND,
(#\/) /2 - constraint OR, (#\\/)/2 - constraint NOR]. 174
8.7.3 fd_cardinality/2, fd_cardinality/3, fd_at_least_one/1, fd_at _most_one/1, |
L fd_only one/1|. 175
[8:8 Symbolic constraintg 176
8.8.1 fd alldifferent/1] 176
8.8.2 fd.element/3| L e 176
8.8.3 fd element var/3|. e 177
[8.8.4 fd_atmost/3, fd_atleast/3, fd_exactly/3| 177
B85 fdrelation/2, fd relationc/2] i i 178
8.9 Labeling constraints| 179
B91 fd Tabeling/2, fd labeling/1, fd labelingff/1] 179
3.1 ptimization constraints|. L L L L 180
8.10.1 fd minimize/2, fd maximize/2|o Lo 180
|9 Interfacing Prolog and C| 183
9.1 Calling C from Prolog| 183
9.1.1 Introductionl L 183
[9.1.2 foreign/2 directive|. 183
D13 The CHINCHON - - - v ¢ v v v ottt e 184
9.1.4 Input arguments|. Lo 185
9.1.5 Output arguments|. 185
9.1.6 Input/output arguments| 185
0.1.7 Writing non-deterministic C code] v . . v v v 186
[9.1.8 Example: input and output arguments| L. 186
9.1.9 xample: non-deterministic code] oL 187
[0.1.10 Example: input/output arguments| 189
9.2 Manipulating Prolog terms| o 190
921 Introductionl 190
9.2.2 Managing Prolog atoms|. o 191
9.2.3 Reading Prolog terms| 191
9.2. nitying Prolog terms| 192
9.2.5 Creating Prolog terms| L o 194
9.2.6 Testing the type of Prolog terms|. 194
9.2.7 Comparing Prolog terms| 195
9.2.8 opying Prolog terms|. oo 195
[029 Comparing and evaluating arithmetic expressions| « o . o v v oo . . 196
9.3 Raising Prolog errors|. 196

9.3.1 Managing the error context|. Lo 196

8 CONTENTS
9.3.2 Instantiation errorl. L. Lo 196

9.3.3 Typeerror| 196

034 Domainerrorl 197

[0.3.5 Existence errorl 197

9.3.6 Permission errorl e 197

9.3.7 Representation error| o 197

038 TFvaluation errorl 198

9.53.9 Resource errorl e e e e e e e 198

19.3.10 Syntax error|o e e e e e e e e e 198

9.3.11 System error|o e 198

9.4 Calling Prolog from C| 199
941 Tntroductionl 199

9.4.2 Example: my_call/1-acall/lclonel. 200

9.4.3 xample: recovering the list of all operators| 202

9.5 Defining a new C main() function] 203
9.5.1 Example: asking for ancestors| oo 204
[References 207
[TIndex 209

1 Acknowledgements

I would like to thank the department of computing science? at the university of Paris 1 for allowing me
the time and freedom necessary to achieve this project.

I am grateful to the members of the Loco project® at INRIA Rocquencourt? for their encouragement.
Their involvement in this work led to useful feedback and exchange.

I would particularly like to thank Jonathan Hodgson® for the time and effort he put into the proofreading
of this manual. His suggestions, both regarding ISO technical aspects as well as the language in which it
was expressed, proved invaluable.

The on-line HTML version of this document was created using HEVEAS developed by Luc Maranget who
kindly devoted so much of his time extending the capabilities of HEVEA in order to handle such a sizeable
manual.

Jean-Christophe Aude kindly improved the visual aspect of both the illustrations and the GNU Prolog
web pages.

Thanks to Richard A. O’Keefe for his advice regarding the implementation of some Prolog built-in
predicates and for suggesting me the in-place installation feature.

Many thanks to the following contributors:

e Alexander Diemand” for his initial port to alpha/linux and more generally for his personal involve-
ment in the development of GNU Prolog.

Clive Cox® and Edmund Grimley Evans? for their port to ix86/SCO.

Nicolas Ollinger!® to for his port to ix86/FreeBSD.

Brook Milligan'! for his port to ix86/NetBSD and for general configuration improvements.

Andreas Stolcke!? for his port to ix86/Solaris.

e Lindsey Spratt!'? for his port to powerpc/Darwin (MacOS X).

Many thanks to all those people at GNU who helped me to finalize the GNU Prolog project.

Finally, I would like to thank everybody who tested preliminary releases and helped me to put the
finishing touches to this system.

2http://panoramix.univ-parisi.fr/CRINFO/
3http://loco.inria.fr/
dnttp://www.inria.fr/Unites/ROCQUENCOURT-eng.html
Shttp://www.sju.edu/~ jhodgson
Shttp://pauillac.inria.fr/-maranget/hevea/
7ax@apax.net

8clive@laluna.demon.co.uk
mttp://www.rano.org/
10nollinge@ens—lyon.fr

brook@nmsu. edu
2http://wuw.speech.sri.com/people/stolcke/
13spratt@alum.mit.edu

Mhttp://www.gnu.org

10

1 ACKNOWLEDGEMENTS

11

2 Introduction

GNU Prolog is a free Prolog compiler with constraint solving over finite domains developed by Daniel
Diaz'®. For recent information about GNU Prolog please consult the GNU Prolog page'S.

GNU Prolog is a Prolog compiler based on the Warren Abstract Machine (WAM) [8 []. It first compiles
a Prolog program to a WAM file which is then translated to a low-level machine independent language
called mini-assembly specifically designed for GNU Prolog. The resulting file is then translated to the
assembly language of the target machine (from which an object is obtained). This allows GNU Prolog
to produce a native stand alone executable from a Prolog source (similarly to what does a C compiler
from a C program). The main advantage of this compilation scheme is to produce native code and to be
fast. Another interesting feature is that executables are small. Indeed, the code of most unused built-in
predicates is not included in the executables at link-time.

A lot of work has been devoted to the ISO compatibility. Indeed, GNU Prolog is very close to the ISO
standard for Prolog!” [5].

GNU Prolog also offers various extensions very useful in practice (global variables, OS interface, sock-
ets,...). In particular, GNU Prolog contains an efficient constraint solver over Finite Domains (FD). This
opens contraint logic pogramming to the user combining the power of constraint programming to the
declarativity of logic programming. The key feature of the GNU Prolog solver is the use of a single (low-
level) primitive to define all (high-level) FD constraints. There are many advantages of this approach:
constraints can be compiled, the user can define his own constraints (in terms of the primitive), the solver
is open and extensible (as opposed to black-box solvers like CHIP),. .. Moreover, the GNU Prolog solver
is rather efficient, often more than commercial solvers.

GNU Prolog is inspired from two systems developed by the same author:

e wamcc: a Prolog to C compiler [3]. the key point of wamcc was its ability to produce stand alone
executables using an original compilation scheme: the translation of Prolog to C via the WAM.
Its drawback was the time needed by gcc to compile the produced sources. GNU Prolog can also
produce stand alone executables but using a faster compilation scheme.

e clp(FD): a constraint programming language over FD []. Its key feature was the use of a single
primitive to define FD constraints. GNU Prolog is based on the same idea but offers an extended
constraint definition language. In comparison to clp(FD), GNU Prolog offers new predefined con-
straints, new predefined heuristics, reified constraints,. . .

Here are some features of GNU Prolog;:
e Prolog system:
— conforms to the ISO standard for Prolog (floating point numbers, streams, dynamic code,. ..).

— a lot of extensions: global variables, definite clause grammars (DCG), sockets interface, oper-
ating system interface,. . .

— more than 300 Prolog built-in predicates.
— Prolog debugger and a low-level WAM debugger.
— line editing facility under the interactive interpreter with completion on atoms.
— powerful bidirectional interface between Prolog and C.
e Compiler:
— native-code compiler producing stand alone executables.

— simple command-line compiler accepting a wide variety of files: Prolog files, C files, WAM
files,. ..

15nttp://pauillac.inria.fr/~diaz
16http://www.gnu.org/software/prolog
Thttp://www.logic—programming.org/prolog_std.html

12

2 INTRODUCTION

direct generation of assembly code 15 times faster than wamcc + gcc.
most of unused built-in predicates are not linked (to reduce the size of the executables).
compiled predicates (native-code) as fast as wamcmcc on average.

consulted predicates (byte-code) 5 times faster than wamcc.

e Constraint solver:

FD variables well integrated into the Prolog environment (full compatibility with Prolog vari-
ables and integers). No need for explicit FD declarations.

very efficient FD solver (comparable to commercial solvers).
high-level constraints can be described in terms of simple primitives.

a lot of predefined constraints: arithmetic constraints, boolean constraints, symbolic con-
straints, reified constraints,. . .

several predefined enumeration heuristics.
the user can define his own new constraints.

more than 50 FD built-in constraints/predicates.

13

3 Using GNU Prolog

3.1 Introduction

GNU Prolog offers two ways to execute a Prolog program:

e interpreting it using the GNU Prolog interactive interpreter.
e compiling it to a (machine-dependent) executable using the GNU Prolog native-code compiler.

Running a program under the interactive interpreter allows the user to list it and to make full use of the
debugger on it (section [4f page . Compiling a program to native code makes it possible to obtain a
stand alone executable, with a reduced size and optimized for speed. Running a Prolog program compiled
to native-code is around 3-5 times faster than running it under the interpreter. However, it is not possible
to make full use of the debugger on a program compiled to native-code. Nor is it possible to list the
program. In general, it is preferable to run a program under the interpreter for debugging and then
use the native-code compiler to produce an autonomous executable. It is also possible to combine these
two modes by producing an executable that contains some parts of the program (e.g. already debugged
predicates whose execution-time speed is crucial) and interpreting the other parts under this executable.
In that case, the executable has the same facilities as the GNU Prolog interpreter but also integrates
the native-code predicates. This way to define a new enriched interpreter is detailed later (section

page .

3.2 The GNU Prolog interactive interpreter
3.2.1 Starting/exiting the interactive interpreter

GNU Prolog offers a classical Prolog interactive interpreter also called top-level. It allows the user to
execute queries, to consult Prolog programs, to list them, to execute them and to debug them. The
top-level can be invoked using the following command:

% gprolog [OPTION]... (the % symbol is the operating system shell prompt)
Options:
--init-goal GOAL execute GOAL before top_level /0
-—entry-goal GOAL execute GOAL inside top_level /0
--query-goal GOAL execute GOAL as a query for top_level/0
--help print a help and exit
--version print version number and exit

-- do not parse the rest of the command-line

The main role of the gprolog command is to execute the top-level itself, i.e. to execute the built-in
predicate top_level/0 (section |7.18.1} page[112)) which will produce something like:

GNU Prolog 1.2.9
By Daniel Diaz

Copyright (C) 1999-2001 Daniel Diaz
| 7-

The top-level is ready to execute your queries as explained in the next section.

To quit the top-level type the end-of-file key sequence (Ct1-D) or its term representation: end_-of file.
It is also possible to use the built-in predicate halt/0 (section [7.18.1] page|112).

However, before entering the top-level itself, the command-line is processed to treat all known options
(those listed above). All unrecognized arguments are collected together to form the argument list which

14 3 USING GNU PROLOG

will be available using argument_value/2 (section [7.27.2] page|143)) or argument_list/1 (section |7.27.3
page [143]). The -- option stops the parsing of the command-line, all remainding options are collected
into the argument list.

Several options are provided to execute a goal before entering the interaction with the user:

e The --init-goal option executes the GOAL as soon as it is encountered (while the commnad-line
is processed). GOAL is thus executed before entering top_level/O0.

e The —-entry-goal option executes the GOAL at the entry of top_level/0 just after the banner is
displayed.

e The --query-goal option executes the GOAL as if the user has typed in.

The above order is thus the order in which each kind of goal (init, entry, query) is executed. If there are
several goals of a same kind they are executed in the oder of appearance. Thus, all init goals are executed
(in the order of appearance) before all entry goals and all entry goals are executed before all query goals.

Each GOAL is passed as a shell argument (i.e. one shell string) and should not contain a terminal dot.
Example: --init-goal ’write(hello), nl’ under a sh-like. To be executed, a GOAL is transformed
into a term using read_term from atom(Goal, Term, [end of _term(eof)]). Respecting both the syn-
tax of shell strings and of Prolog can be heavy. For instance, passing a backslash character \ can be
difficult since it introduces an escape sequence both in sh and inside Prolog quoted atoms. The use of
back quotes can then be useful since, by default, no escape sequence is processed inside back quotes (this
behavior can be controlled using the back_quotes Prolog flag (section page [133)).

Since the Prolog argument list is created when the whole command-line is parsed, if a ——init-goal option
uses argument_value/2 or argument_list/1 it will obtained the original command-line arguments (i.e.
including all recognized arguments).

Here is an example of using execution goal options:

% gprolog --init-goal ’write(before), nl’ --entry-goal ’write(inside), nl’
--query-goal ’append([a,b]l, [c,d],X)’

will produce the following;:

before

GNU Prolog 1.2.9

By Daniel Diaz

Copyright (C) 1999-2001 Daniel Diaz
inside

| ?- append([a,b], [c,d],X).

X = [a,b,c,d]

yes
| 7=

3.2.2 The interactive interpreter read-execute-write loop

The GNU Prolog top-level is built on a classical read-execute-write loop that also allows for re-executions
(when the query is not deterministic) as follows:

e display the prompt, i.e. ’| ?-".
e read a query (i.e. a goal).

e execute the query.

3.2 The GNU Prolog interactive interpreter 15

e in case of success display the values of the variables of the query.

e if there are remaining alternatives (i.e. the query is not deterministic), display a ? and ask the user
who can use one of the following commands: RETURN to stop the execution, ; to compute the next
solution or a to compute all remaining solution.

Here is an example of execution of a query (“find the lists X and Y such that the concatenation of X and
Y is [a,b]”):

| ?- append(X,Y, [a,b,c]).

X=1

Y = [a,b,c] ? ; (here the user presses ; to compute another solution)

X = [al

Y = [b,c] 7 a (here the user presses a to compute all remaining solutions)

X = [a,b]

Y = [c] (here the user is not asked and the next solution is computed)
X = [a,b,c]

Y =[] (here the user is not asked and the next solution is computed)
no (no more solution)

In some cases the top-level can detect that the current solution is the last one (no more alternatives
remaining). In such a case it does not display the ? symbol (and does not ask the user). Example:

| 7= (X=1 ; X=2).

X=17 ; (here the user presses ; to compute another solution)
X=2 (here the user is not prompted since there are no more alternatives)
yes

The user can stop the execution even if there are more alternatives by typing RETURN.

| 7= (X=1 ; X=2).
X=17 (here the user presses RETURN to stop the execution)

yes

The top-level tries to display the values of the variables of the query in a readable manner. For instance,
when a variable is bound to a query variable, the name of this variable appears. When a variable is a
singleton an underscore symbol _ is displayed (_ is a generic name for a singleton variable, it is also called
an anonymous variable). Other variables are bound to new brand variable names. When a query variable
name X appears as the value of another query variable Y it is because X is itself not instantiated otherwise
the value of X is displayed. In such a case, nothing is output for X itself (since it is a variable). Example:

| 7- X=£f(A,B,_,A), A=k.

A
X

k (the value of A is displayed also in £/3 for X)
f(k,B,_,k) (since B is a variable which is also a part of X, B is not displayed)

| ?- functor(T,f,3), arg(1,T,X), arg(3,T,X).

|
I

£(X,_,X) (the 1°¢ and 37¢ args are equal to X, the 2"? is an anonymous variable)

| ?7- read_from_atom(’k(X,Y,X).’,T).

—
]

k(A,_,A) (the 1°¢ and 37¢ args are unified, a new variable name A is introduced)

16 3 USING GNU PROLOG

The top-level uses variable binding predicates (section page . To display the value of a variable,
the top-level calls write_term/3 with the following option list: [quoted(true) ,numbervars(false),
namevars (true)] (section page . A term of the form ’$VARNAME’ (Name) where Name is an
atom is displayed as a variable name while a term of the form >$VAR’ (N) where N is an integer is displayed
as a normal compound term (such a term could be output as a variable name by write_term/3). Example:

| 7- X="$VARNAME’ (°Y’), Y="$VAR’(1).

X
Y

Y (the term ’$VARNAME’ (°Y?) is displayed as Y)
*$VAR’ (1) (the term *$VAR’ (1) is displayed as is)

| 7- X=Y, Y="$VAR’(1).

X = ’$VAR’ (1)
Y = "$VAR’ (1)

In the first example, X is explicitly bound to >$VARNAME’ (°Y’) by the query so the top-level displays Y
as the value of X. Y is unified with >$VAR’ (1) so the top-level displays it as a normal compound term.
It should be clear that X is not bound to Y (whereas it is in the second query). This behavior should be
kept in mind when doing variable binding operations.

Finally, the top-level computes the user-time (section [7.24.2] page [139) taken by a query and displays it
when it is significant. Example:

| 7- retractall(p(.)), assertz(p(0)),

repeat,
retract(p(X)),
Yis X + 1,
assertz(p(Y)),
X = 1000, !.
X = 1000
Y = 1001
(180 ms) yes (the query took 180ms of user time)

3.2.3 Consulting a Prolog program

The top-level allows the user to consult Prolog source files. Consulted predicates can be listed, executed
and debugged (while predicates compiled to native-code cannot). For more information about the differ-
ence between a native-code predicate and a consulted predicate refer to the introduction of this section

(section page and to the part devoted to the compiler (section page [20)).

To consult a program use the built-in predicate consult/1 (section page [136). The argument
of this predicate is a Prolog file name or user to specify the terminal. This allows the user to directly
input the predicates from the terminal. In that case the input shall be terminated by the end-of-file key
sequence (Ct1-D) or its term representation: end of file. A shorthand for consult(FILE) is [FILE].
Example:

3.2 The GNU Prolog interactive interpreter 17

| ?- [user].
{compiling user for byte code...}
even(0) .
even(s(s(X))):-
even(X) .
(here the user presses Ct1-D to end the input)
{user compiled, 3 lines read - 350 bytes written, 1180 ms}

| 7- even(X).

X=07 ; (here the user presses ; to compute another solution)
X =s(s(0) 7 ; (here the user presses ; to compute another solution)
X = s(s(s(s(0)))) 7 (here the user presses RETURN to stop the execution)

yes
| 7- listing.

even(0).
even(s(s(h))) :-
even(A).

When consult/1 (section page is invoked on a Prolog file it first runs the GNU Prolog
compiler (section page ' as a child process to generate a temporary WAM file for byte-code. If
the compilation fails a message is displayed and nothing is loaded. If the compilation succeeds, the
produced file is loaded into memory using load/1 (section page . Namely, the byte-code of
each predicate is loaded. When a predicate P is loaded if there is a previous definition for P it is removed
(i.e. all clauses defining P are erased). We say that P is redefined. Note that only consulted predicates
can be redefined. If P is a native-code predicate, trying to redefine it will produce an error at load-time:
the predicate redefinition will be ignored and the following message displayed:

native code procedure P cannot be redefined

Finally, an existing predicate will not be removed if it is not re-loaded. This means that if a predicate P
is loaded when consulting the file F, and if later the definition of P is removed from the file F, consulting
F again will not remove the previously loaded definition of P from the memory.

Consulted predicates can be debugged using the Prolog debugger. Use the debugger predicate trace/0
or debug/0 (section page to activate the debugger.

3.2.4 Interrupting a query

Under the top-level it is possible to interrupt the execution of a query by typing the interruption key
(Ct1-C). This can be used to abort a query, to stop an infinite loop, to activate the debugger,... When an
interruption occurs the top-level displays the following message: Prolog interruption (h for help) 7
The user can then type one of the following commands:

] Command \ Name \ Description ‘

a abort abort the current execution. Same as abort/0 (section [7.18.1] page[112))
e exit quit the current Prolog process. Same as halt/0 (section |7.18.1|7 pa@l?b
b break [invoke a recursive top-level. Same as break/0 (section [7.18.1] page [112)
c continue | resume the execution
t trace start the debugger using trace/0 (section 4.3.1} page 31
d debug start the debugger using debug/0 (section [4.3.1] page |31

hor? help display a summary of available commands

18 3 USING GNU PROLOG

3.2.5 The line editor

The line editor (linedit) allows the user to build/update the current input line using a variety of
commands. This facility is available if the 1inedit part of GNU Prolog has been installed. linedit is
implicitly called by any built-in predicate reading from a terminal (e.g. get_char/1, read/1,...). This
is the case when the top-level reads a query.

Bindings: each command of linedit is activated using a key. For some commands another key is also
available to invoke the command (on some terminals this other key may not work properly while the
primary key always works). Here is the list of available commands:

’ Key \ Alternate key \ Description ‘
Ctl-B — go to the previous character
Ctl-F — go to the next character
Esc-B Ctl-«— go to the previous word
Esc-F Ctl-— go to the next word
Ctl-A Home go to the beginning of the line
Ctl-E End go to the end of the line
Ctl-H Backspace delete the previous character
Ctl-D Delete delete the current character
Ctl-U Ctl-Home delete from beginning of the line to the current character
Ctl-K Ctl-End delete from the current character to the end of the line
Esc-L lower case the next word
Esc-U upper case the next word
Esc-C capitalize the next word
Ctl-T exchange last two characters
Ctl-v Insert switch on/off the insert/replace mode
Ctl-I Tab complete word (twice displays all possible completions)
Esc-Ctl-I Esc-Tab insert spaces to emulate a tabulation
Ctl-space mark beginning of the selection
Esc-W copy (from the begin selection mark to the current character)
Ctl-W cut (from the begin selection mark to the current character)
Ctl-Y paste
Ctl-P 1 recall previous history line
Ctl-N 1 recall next history line
Esc-P recall previous history line beginning with the current prefix
Esc-N recall next history line beginning with the current prefix
Esc-< Page Up recall first history line
Esc-> Page Down recall last history line
Ctl-C generate an interrupt signal (section [3.2.4] page|[17)
Ctl-D generate an end-of-file character (at the begin of the line)
RETURN validate a line
Esc-7 display a summary of available commands

History: when a line is entered (i.e. terminated by RETURN), linedit records it in an internal list called
history. It is later possible to recall history lines using appropriate commands (e.g. Ct1-P recall the last
entered line) and to modify them as needed. It is also possible to recall a history line beginning with a
given prefix. For instance to recall the previous line beginning with write simply type write followed
by Esc-P. Another Esc-P will recall an earlier line beginning with write,. ..

Completion: another important feature of 1inedit is its completion facility. Indeed, linedit maintains
a list of known words and uses it to complete the prefix of a word. Initially this list contains all predefined
atoms and the atoms corresponding to available predicates. This list is dynamically updated when a new
atom appears in the system (whether read at the top-level, created with a built-in predicate, associated
to a new consulted predicate,...). When the completion key (Tab) is pressed linedit acts as follows:

3.3 Adjusting the size of Prolog stacks 19

e use the current word as a prefix.

e collect all words of the list that begin with this prefix.

e complete the current word with the longest common part of all matching words.

e if more than one word matches emit a beep (a second Tab will display all possibilities).
Example:

| 7- argu
| ?- argument_

(here the user presses Tab to complete the word)

(linedit completes argu with argument_ and emits a beep)

(the user presses again Tab to see all possible completions)
argument_counter (1inedit shows 3 possible completions)
argument_list
argument_value

| ?- argument_ (linedit redisplays the input line)

| ?- argument_c (to select argument_counter the user presses ¢ and Tab)
| ?- argument_counter (linedit completes with argument_counter)

Finally, 1inedit allows the user to check that (square/curly) brackets are well balanced. For this, when
a close bracket symbol, i.e.),] or }, is typed, linedit determines the associated open bracket, i.e. (, [
or {, and temporarily repositions the cursor on it to show the match.

3.3 Adjusting the size of Prolog stacks

GNU Prolog uses several stacks to execute a Prolog program. Each stack has a static size and cannot be
dynamically increased during the execution. For each stack there is a default size but the user can define
a new size by setting an environment variable. When a GNU Prolog program is run it first consults these
variables and if they are not defined uses the default sizes. The following table presents each stack of
GNU Prolog with its default size and the name of its associated environment variable:

Stack Default | Environment | Description

name | size (Kb) variable

local 4096 LOCALSZ control stack (environments and choice-points)
global 8192 GLOBALSZ heap (compound terms)

trail 3072 TRAILSZ conditional bindings (bindings to undo at backtracking)
cstr 3072 CSTRSZ finite domain constraint stack (FD variables and constraints)

If the size of a stack is too small an overflow will occur during the execution. In that case GNU Prolog
emits the following error message before stopping:

S stack overflow (size: N Kb, environment variable used: E)

where S is the name of the stack, N is the current stack size in Kb and E the name of the associated
environment variable. When such a message occurs it is possible to (re)define the variable E with the
new size. For instance to allocate 8192 Kb to the local stack under a Unix shell use:

LOCALSZ=8192; export LOCALS (under sh or bash)
setenv LOCALSZ 8192 (under csh or tcsh)

This method allows the user to adjust the size of Prolog stacks. However, in some cases it is preferable
not to allow the user to modify these sizes. For instance, when providing a stand alone executable whose
behavior should be independent of the environment in which it is run. In that case the program should
not consult environment variables and the programmer should be able to define new default stack sizes.
The GNU Prolog compiler offers this facilities via several command-line options such as --local-size

or --fixed-sizes (section page [22)).

20 3 USING GNU PROLOG

Finally note that GNU Prolog stacks are virtually allocated (i.e. use virtual memory). This means that
a physical memory page is allocated only when needed (i.e. when an attempt to read/write it occurs).
Thus it is possible to define very large stacks. At the execution, only the needed amount of space will be
physically allocated.

3.4 The GNU Prolog compiler
3.4.1 Different kinds of codes

One of the main advantages of GNU Prolog is its ability to produce stand alone executables. A Prolog
program can be compiled to native code to give rise to a machine-dependent executable using the GNU
Prolog compiler. However native-code predicates cannot be listed nor fully debugged. So there is an
alternative to native-code compilation: byte-code compilation. By default the GNU Prolog compiler
produces native-code but via a command-line option it can produce a file ready for byte-code loading.
This is exactly what consult/1 does as was explained above (section page . GNU Prolog also
manages interpreted code using a Prolog interpreter written in Prolog. Obviously interpreted code is
slower than byte-code but does not require the invocation of the GNU Prolog compiler. This interpreter
is used each time a meta-call is needed as by call/1 (section page [47). This also the case of
dynamically asserted clauses. The following table summarizes these three kinds of codes:

| Type | Speed [Debug ? | For what |
interpreted-code | slow yes meta-call and dynamically asserted clauses
byte-code medium yes consulted predicates
native-code fast no compiled predicates

3.4.2 Compilation scheme

Native-code compilation: a Prolog source is compiled in several stages to produce an object file that
is linked to the GNU Prolog libraries to produce an executable. The Prolog source is first compiled to
obtain a WAM [§] file. For a detailed study of the WAM the interested reader can refer to “Warren’s Ab-
stract Machine: A Tutorial Reconstruction”!® [I]. The WAM file is translated to a machine-independent
language specifically designed for GNU Prolog. This language is close to a (universal) assembly language
and is based on a very reduced instruction set. For this reason this language is called mini-assembly
(MA). The mini-assembly file is then mapped to the assembly language of the target machine. This
assembly file is assembled to give rise to an object file which is then linked with the GNU Prolog libraries
to provide an executable. The compiler also takes into account Finite Domain constraint definition files.
It translates them to C and invoke the C compiler to obtain object files. The following figure presents
this compilation scheme:

8http://www.isg.sfu.ca/ hak/documents/wam.html

3.4 The GNU Prolog compiler

21

Prolog
files

pl 2wam

WAM
files

wankma

mini-assembly
files

ma2asm

-

FD constraint
definition files

assembly
files

¢

fd2c

assenbl er

'

Cfiles

object
files

C conpi l er

1@ - =

l'i nker

executable

I

Prolog/FD libraries
and user libraries

22 3 USING GNU PROLOG

Obviously all intermediate stages are hidden to the user who simply invokes the compiler on his Prolog
file(s) (plus other files: C,...) and obtains an executable. However, it is also possible to stop the
compiler at any given stage. This can be useful, for instance, to see the WAM code produced (perhaps
when learning the WAM). Finally it is possible to give any kind of file to the compiler which will insert
it in the compilation chain at the stage corresponding to its type. The type of a file is determined using
the suffix of its file name. The following table presents all recognized types/suffixes:

] Suffix of the file \ Type of the file \ Handled by: ‘
.pl, .pro Prolog source file pl2wam
.wam WAM source file wam2ma
.ma Mini-assembly source file ma2asm
.8 Assembly source file the assembler
.¢c, .C, .CC, .cc, .cxx, .c++, .cpp | C or C++ source file the C compiler
.fd Finite Domain constraint source file | £d2c
any other suffix (.o, .a,...) any other type (object, library,...) | the linker (C linker)

Byte-code compilation: the same compiler can be used to compile a source Prolog file for byte-code.
In that case the Prolog to WAM compiler is invoked using a specific option and produces a WAM for
byte-code source file (suffixed .wbc) that can be later loaded using load/1 (section page [137).
Note that this is exactly what consult/1 (section page does as explained above (section

page .

3.4.3 Using the compiler

The GNU Prolog compiler is a command-line compiler similar in spirit to a Unix C compiler like gcc.
To invoke the compiler use the gplc command as follows:

% g