
C
ol

or
in

g
C
on

TE
X
t

ex
pl

ai
n
in

g
lu

at
ex

 a
n
d

m
ki

v

H
an

s
H
ag

en

P
R
A
G
M

A
 A

D
E

1

Contents

Contents

Introduction

1 Basics

1.1 Color models 5

1.2 Using color 5

1.3 Using cmyk or rgb 6

1.4 Conversion 8

1.5 Definitions 10

1.6 Freezing colors 13

1.7 Color groups 14

1.8 Palets 14

1.9 Transparency 15

1.10 Interpolation 17

1.11 PDF 18

1.12 Unboxing 19

1.13 Color intents 20

1.14 Collections 21

1.15 Text color 23

1.16 Tikz 23

1.17 Implementation details 24

1.18 Grouping 25

1.19 Commands 25

2 Metafun

2.1 Defining and using 31

2.2 Passing colors 32

2.3 Grouping 33

2.4 Transparency 35

2.5 Shading 36

2.6 Text 40

2.7 Helpers 40

3 Graphics

3.1 Conversion 45

3.2 Recoloring 46

3.3 Profiles 48

3.4 Masks 49

2

Contents

3

Introduction

Introduction

This manual fits in the series where we discus fundamental subsystems like fonts and

languages. Here we will collect the more technical backgrounds. This document is not

meant as a manual for users who start with ConTEXt, for that we have other manuals.

Color has a rather long history in ConTEXt because we supported it right from the start.

In the times that dvi backend drivers were used, specials were the way to force color in

the result. However, each driver had different demands: some expected specific color

directives, others a sequence of for instance PostScript commands. When pdf showed

up, resource management entered the game. Because ot always used a backend driver

model in ConTEXt, it could easily be adapted. All management, for instance of nested

colors, was done in TEX code. If advanced color support hadn't been available right from

the start, we'd probably not be using TEX now.

In MkIV color support was implemented from scratch but in a for the user downward

compatible way. In that respect this manual is not going to reveal anything revolutionary.

Much of the work is now delegated to Lua and because of that directives are no longer

part of the (expanded) input stream. As a result color is now more robust and less

intrusive.

Because MetaPost support is well integrated, we also communicate colors to Meta­

Post. In MkIV the communication between the two engines was upgraded and hopefully

evolved into an (even) more convenient interface.

External graphics are in fact islands in the document flow: they manage their resources

like colors themselves. However, there are some ways to deal with the demands of

publishers and printers with respect to colors. These will be discussed too.

This document is still under construction. The functionality discussed here will stay and

more might show up. Of course there are errors, and they're all mine. The text is not

checked for spelling errors. Feel free to let me know what should get added.

Hans Hagen

PRAGMA ADE, Hasselt NL

2016

4

Introduction

5

Basics

1 Basics

1.1 Color models

When you work with displays, and most of us do, the dominant color model is rgb. As

far as I know cmyk electrowetting displays are still not in production and even there the

cmyk seems to have made place for rgb (at least in promotion movies). This is strange

since where rgb is used in cases where colors are radiated, cmyk shows up in reflective

situations (and epub readers are just that). But rgb and cmyk being complementary is

not the only difference: cmyk has an explicit black channel, and as a consequence you

cannot go from one to the other color space without loss.

In print cmyk is dominant but in order to get real good colors you can go with spot colors.

The ink is not mixed with others but applied in more or less quantity. A mixture of spot

colors and cmyk is used too. You can combine spot colors into a so called multitone color.

Often spot colors have names (for instance refering to Pantone) but they always have

a specification in another color space in order to be shown on screen. Think of “gold”

being a valid ink, but hard to render on screen, so some yellowish replacement is used

there when documents get prepared on screen.

In ConTEXt all these models are supported, either or not at the same time. In MkII you

had to turn on color support explicitly, if only because of the impact of the overhead on

performance, but in MkIV color is on by default. You can disable it with:

\setupcolors

[state=stop]

The three mentioned models are controlled by keys, and by default we have set:

\setupcolors

[rgb=yes,

cmyk=yes,

spot=yes]

Spot colors and their combinations in multitone colors are controlled by the same pa­

rameter. You can define colors in the hsv color space but in the end these become and

behave like rgb.

1.2 Using color

Normally you will use colors grouped. Most environments accept a color parameter

(some have textcolor or similar longer names too). In a running text you can use:

\color[red]{This will show up red.}

6

Basics

or:

\startcolor[red]

This will show up red.

\stopcolor

In case you don't want the grouping you can use:

\directcolor[red]

You can even use:

\colored[r=0.5]{also red}

In which case an anonymous color is used. An ungrouped variant of this is:

\directcolored[r=0.5]

You will seldom use these direct variants, but they might come in handy when you write

macros yourself where extra grouping starts interfering. In fact, it often makes sense

to use a bit more abstraction:

\definehighlight

[important]

[color=red]

First \highlight[important]{or} second \important {or} third.

This gives:

First or second or third..

1.3 Using cmyk or rgb

When you compare colors in different color spaces, you need to be aware of the fact that

when a black component is used in cmyk, conversion to rgb might give the same results

but going back from that to cmyk will look different from the original. Also, cmyk colors

are often tuned for specific paper.

\definecolor[demo:rgb:1][r=1.0,g=1.0]

\definecolor[demo:rgb:2][r=1.0,g=1.0,b=0.5]

\definecolor[demo:rgb:3][r=1.0,g=1.0,b=0.6]

\definecolor[demo:cmy:1][y=1.0]

\definecolor[demo:cmy:2][y=0.5]

\definecolor[demo:cmy:3][y=0.4]

In these definitions we have no black component. In figure 1.1 we see how these colors

translate to the other color spaces.

7

Basics

r=1.000,g=1.000,b=0.000 r=1.000,g=1.000,b=0.500 r=1.000,g=1.000,b=0.600

c=0.000,m=0.000,y=1.000,k=0.000 c=0.000,m=0.000,y=0.500,k=0.000 c=0.000,m=0.000,y=0.400,k=0.000

Both rgb and cmyk enabled

r=1.000,g=1.000,b=0.000 r=1.000,g=1.000,b=0.500 r=1.000,g=1.000,b=0.600

c=0.000,m=0.000,y=1.000,k=0.000 c=0.000,m=0.000,y=0.500,k=0.000 c=0.000,m=0.000,y=0.400,k=0.000

Only cmyk enabled.

r=1.000,g=1.000,b=0.000 r=1.000,g=1.000,b=0.500 r=1.000,g=1.000,b=0.600

c=0.000,m=0.000,y=1.000,k=0.000 c=0.000,m=0.000,y=0.500,k=0.000 c=0.000,m=0.000,y=0.400,k=0.000

Only rgb enabled.

r=1.000,g=1.000,b=0.000 r=1.000,g=1.000,b=0.500 r=1.000,g=1.000,b=0.600

c=0.000,m=0.000,y=1.000,k=0.000 c=0.000,m=0.000,y=0.500,k=0.000 c=0.000,m=0.000,y=0.400,k=0.000

Both rgb and cmyk disabled.

Figure 1.1 What happens when we disable color spaces.

8

Basics

\definecolor[demo:rgb:1][r=0.5,g=0.6,b=0.7]

\definecolor[demo:rgb:2][r=0.5,g=0.6,b=0.7]

\definecolor[demo:rgb:3][r=0.5,g=0.6,b=0.7]

\definecolor[demo:cmy:1][c=0.5,m=0.4,y=0.3]

\definecolor[demo:cmy:2][c=0.4,m=0.3,y=0.2,k=0.1]

\definecolor[demo:cmy:3][c=0.3,m=0.2,y=0.1,k=0.2]

When we define the colors as above, you can see a difference between the rgb and cmyk

values, but also between a black component versus black distributed over the colorants.

This is seen best in figure 1.2 when we compare the first and third colors alongside. In

figure 1.3 you see the whole repertoire.

Figure 1.2 The impact of black on a cmyk color.

1.4 Conversion

A conversion to gray happens when rgb and cmyk are both disabled. The following

setting forces conversion. It disables both rgb and cmyk:

\setupcolors

[conversion=always]

The default setting is yeswhich means that colors will be reduced to gray in the backend.

This is an optimization which can result in slightly smaller output:

pdf sequence

cmyk 23 0 0 0 0.5 k 0 0 0 0.5 K

rgb 29 0.5 0.5 0.5 rg 0.5 0.5 0.5 RG

gray 11 0.5 g 0.5 G

The conversion to gray is controlled by:

\setupcolors

[factor=yes]

Like conversion the factor is a global setting. You can play with the factor values. The

default (yes) uses the factors used by color television:

𝑠 = 0.30𝑟 + 0.59𝑔 + 0.11𝑏

9

Basics

r=0.500,g=0.600,b=0.700 r=0.500,g=0.600,b=0.700 r=0.500,g=0.600,b=0.700

c=0.500,m=0.400,y=0.300,k=0.000 c=0.400,m=0.300,y=0.200,k=0.100 c=0.300,m=0.200,y=0.100,k=0.200

Both rgb and cmyk enabled

r=0.500,g=0.600,b=0.700 r=0.500,g=0.600,b=0.700 r=0.500,g=0.600,b=0.700

c=0.500,m=0.400,y=0.300,k=0.000 c=0.400,m=0.300,y=0.200,k=0.100 c=0.300,m=0.200,y=0.100,k=0.200

Only cmyk enabled.

r=0.500,g=0.600,b=0.700 r=0.500,g=0.600,b=0.700 r=0.500,g=0.600,b=0.700

c=0.500,m=0.400,y=0.300,k=0.000 c=0.400,m=0.300,y=0.200,k=0.100 c=0.300,m=0.200,y=0.100,k=0.200

Only rgb enabled.

r=0.500,g=0.600,b=0.700 r=0.500,g=0.600,b=0.700 r=0.500,g=0.600,b=0.700

c=0.500,m=0.400,y=0.300,k=0.000 c=0.400,m=0.300,y=0.200,k=0.100 c=0.300,m=0.200,y=0.100,k=0.200

Both rgb and cmyk disabled.

Figure 1.3 What happens when we disable color spaces (black component).

In figure 1.4 we demonstrate what happens when you use different values. Normally

you won't change the defaults but for experimenting we do provide the option:

10

Basics

\setupcolors

[factor=0.20:0.40:0.40]

There is one pitfall. Colors are finalized per page and as this is a backend feature the

value current when a page is shipped out is used. An exception are MetaPost graphics,

as they have local resources and are finalized immediately. This is hardly a limitation

because one will never set these numbers in the middle of a document.

r g b gray

0.30 0.59 0.11

0.30 0.11 0.59

0.59 0.30 0.11

0.11 0.30 0.59

0.11 0.59 0.30

0.59 0.11 0.30

0.20 0.40 0.40

0.30 0.60 0.10

0.20 0.30 0.20

0.40 0.40 0.40

Figure 1.4 Color to gray conversion using factors.

1.5 Definitions

The mostly used color definition command is \definecolor. Here we define the primary

colors:

\definecolor [red] [r=1]

\definecolor [green] [g=1]

\definecolor [blue] [b=1]

\definecolor [yellow] [y=1]

\definecolor [magenta] [m=1]

\definecolor [cyan] [c=1]

These can be visualized as follows:

\showcolorcomponents[red,green,blue,yellow,magenta,cyan,black]

color name transparency specification

white black red r=1.000,g=0.000,b=0.000

white black green r=0.000,g=1.000,b=0.000

white black blue r=0.000,g=0.000,b=1.000

white black yellow c=0.000,m=0.000,y=1.000,k=0.000

11

Basics

white black magenta c=0.000,m=1.000,y=0.000,k=0.000

white black cyan c=1.000,m=0.000,y=0.000,k=0.000

white black black s=0.000

Transparency is included in these tables but is, as already noted, in fact independent.

It can be defined with a color:

\definecolor [t:red] [r=1,a=1,t=.5]

\definecolor [t:green] [g=1,a=1,t=.5]

\definecolor [t:blue] [b=1,a=1,t=.5]

This time the transparency values show up too:

color name transparency specification

white black t:red a=1.000,t=0.500 r=1.000,g=0.000,b=0.000

white black t:green a=1.000,t=0.500 r=0.000,g=1.000,b=0.000

white black t:blue a=1.000,t=0.500 r=0.000,g=0.000,b=1.000

Because transparency is separated from color, we can define transparent behaviour as

follows:

\definecolor[t:only] [a=1,t=.5]

\dontleavehmode

\blackrule[width=4cm,height=1cm,color=darkgreen]%

\hskip-2cm

\color[t:only]{\blackrule[width=4cm,height=1cm,color=darkred]}%

\hskip-2cm

\color[t:only]{\blackrule[width=4cm,height=1cm]}

We skip back to create an overlay, so we get:

In the section about transparency a bit more will be said about the relation between

color and transparencies and how to cheat.

As soon as you need to typeset something for professional printing, spot colors will

show up so they are supported too. A spot color is not really a color but related to the

substance that gets put on the paper. This can be ink but also something metallic, like

silver, gold or some texture. In these cases we need something to represent it when not

printed on a suitable device so again we end up with a color. This is reflected in the way

spot colors are set up.

\definecolor [parentspot] [r=.5,g=.2,b=.8]

\definespotcolor [childspot-1] [parentspot] [p=.7,e=fancy]

12

Basics

\definespotcolor [childspot-2] [parentspot] [p=.4]

The three colors, two of them are spot colors, show up as follows:

color name transparency specification

white black parentspot r=0.500,g=0.200,b=0.800

white black childspot-1 p=0.700

white black childspot-2 p=0.400

The p is comparable to the s in gray scales. The e parameter can be used to specify a

name for the color. In the pdf file that name will become the separation name (a popular

commercial naming scheme is Pantone).

A combination of spotcolor is called a multitone color. These are defined as follows (we

also define a few spotcolors and use transparency):

\definespotcolor [spotone] [darkred] [p=1]

\definespotcolor [spottwo] [darkgreen] [p=1]

\definespotcolor [spotone-t] [darkred] [a=1,t=.5]

\definespotcolor [spottwo-t] [darkgreen] [a=1,t=.5]

\definemultitonecolor

[whatever]

[spotone=.5,spottwo=.5]

[b=.5]

\definemultitonecolor

[whatever-t]

[spotone=.5,spottwo=.5]

[b=.5]

[a=1,t=.5]

color name transparency specification

white black spotone p=1.000

white black spottwo p=1.000

white black spotone-t a=1.000,t=0.500 p=1.000

white black spottwo-t a=1.000,t=0.500 p=1.000

white black whatever p=.5,.5

white black whatever-t a=1.000,t=0.500 p=.5,.5

Transparencies combine as follows:

\blackrule[width=3cm,height=1cm,color=spotone-t]\hskip-1.5cm

\blackrule[width=3cm,height=1cm,color=spotone-t]

13

Basics

In case you want to specify colors in the hsv color space, you can do that too. The hue

parameter (h) is in degrees and runs from 0 upto 360 (larger values get divided). The

saturation (s) and value (v) parameters run from 0 to 1. The v parameter is mandate.

In figure 1.5 we show what the last two variables do.

\definecolor[somecolor][h=125,s=0.5,v=0.8]

s=0.6 v=0.6 s=0.4 v=0.6 s=0.6 v=0.4 s=0.4 v=0.4

Figure 1.5 Four hsv color circle running

from 0 to 360 degrees, with zero at the right.

If you need to use hexadecimal color specifications you can use these definitions:

\definecolor[mycolor][x=4477AA]

\definecolor[mycolor][h=4477AA]

\definecolor[mycolor][x=66]

\definecolor[mycolor][#4477AA]

The # is normally not accepted in TEX source code but when you get the specification

from elsewhere (e.g. xml) it can be convenient.

1.6 Freezing colors

We can clone colors and thereby overload color dynamically. You can however freeze

colors via the setup option expansion.

\definecolor[green] [r=.5]{({\green green -> red})}

\definecolor[green] [g=.5]{({\green green -> green})}

\definecolor[green] [blue]{({\green green -> blue})}

\definecolor[blue] [red]{({\green green -> red})}

\setupcolors[expansion=yes]%

\definecolor[blue] [red]%

\definecolor[green] [blue]%

\definecolor[blue] [r=.5]{({\green green -> blue})}

(green -> red) (green -> green) (green -> blue) (green -> red) (green -> blue)

14

Basics

1.7 Color groups

Nowadays we seldom use colorgroups but they are still supported. Groups are collec­

tions of distinctive colors, something we needed in projects where many graphics had

to be made and consistency between text and image colors was important. The groups

can be translated into similar collections in drawing programs used at that time.

\definecolorgroup

[redish]

[1.00:0.90:0.90, % 1

1.00:0.80:0.80, % 2

1.00:0.70:0.70, % 3

1.00:0.55:0.55, % 4

1.00:0.40:0.40, % 5

1.00:0.25:0.25, % 6

1.00:0.15:0.15, % 7

0.90:0.00:0.00] % 8

The redish color is called by number:

\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:1]\quad

\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:2]\quad

\blackrule[width=3cm,height=1cm,depth=0pt,color=redish:3]

The number of elements is normally limited and eight is about what is useful and still

distinguishes good enough when printed in black and white.

1.8 Palets

Color palets are handy when you want to use a set of (named) colors but also want to

switch efficiently between different definitions:

\definepalet

[standard]

[darkred=darkcyan,

darkgreen=darkmagenta,

darkblue=darkyellow]

The \setuppalet commands switches to a palet. When a requested color is not part of

a palet, a regular lookup happens. This is used as:

15

Basics

\blackrule[width=15mm,height=10mm,depth=0mm,color=darkred]\quad

\blackrule[width=15mm,height=10mm,depth=0mm,color=darkgreen]\quad

\blackrule[width=15mm,height=10mm,depth=0mm,color=darkblue]\quad

\setuppalet[standard]%

\blackrule[width=15mm,height=10mm,depth=0mm,color=darkred]\quad

\blackrule[width=15mm,height=10mm,depth=0mm,color=darkgreen]\quad

\blackrule[width=15mm,height=10mm,depth=0mm,color=darkblue]

Here we use color names but often you end up with more symbolic names:

\definepalet

[standard]

[important=darkred,

notabene=darkgreen,

warning=darkyellow]

As with the regular color commands, the palet mechanism is an old one but it is well

integrated. Instead of inheriting you can also use definitions:

\definepalet

[standard]

[important={r=.5},

notabene={g=.5},

warning={r=.5,g=.5}]

1.9 Transparency

We already discussed transparency as part of colors. In most cases we will choose type

normal (or 1) as transparency type, but there are more:

0 none

1 normal

2 multiply

3 screen

4 overlay

5 softlight

6 hardlight

7 colordodge

8 colorburn

9 darken

10 lighten

11 difference

12 exclusion

13 hue

14 saturation

15 color

16 luminosity

In figure 1.6 we compare these variants. Not all are as effective as their effect depends

on several factors. You can read more about it in the pdf specification.

16

Basics

0

1

2

34

5

6

7

8

9

1
0

1
1 1
2

1
3

14

15

0

1

2

34

5

6

7

8

9

1
0

1
1 1
2

1
3

14

15

backgrounds used transparencies used transparency

overlayed

Figure 1.6 The differences between the transparency options. The center is

explicitly filled with white.

Colors and transparencies are coupled by definitions. We will explain this by some ex­

amples. When we say:

\definecolor[clr1][r=.5]

A non-transparent color is defined and when we say:

\definecolor[clr2][g=.5,a=1,t=.5]

We defined a color with a transparency. However, color and transparency get separated

attributes. So when we nest them as in:

\color[clr1]{\bf RED \color[clr2] {GREEN}}

\color[clr2]{\bf GREEN \color[clr1] {RED} }

we get:

RED GREEN

GREEN RED

The transparency of the outer color is also applied to the inner color. If you don't want

that, you explicitly need to set them:

\definecolor[clr3][b=.5,a=1,t=1]

\color[clr1]{\bf RED \color[clr2] {GREEN} \color[clr3]{BLUE} }

\color[clr2]{\bf GREEN \color[clr1] {RED} \color[clr2]{GREEN}}

\color[clr3]{\bf BLUE \color[clr1] {RED} \color[clr2]{GREEN}}

we get:

RED GREEN BLUE

GREEN RED GREEN

BLUE RED GREEN

17

Basics

If you define a transparent-only color, you get transparent black:

\definecolor[clr4][a=1,t=.5]

So:

\color[clr1]{\bf RED \color[clr4] {RED}}

\color[clr4]{\bf BLACK \color[clr1] {RED}}

gives:

RED RED

BLACK RED

In addition to the already discussed definers and setters we also have a few special ones.

Personally I never needed them but they are the for completeness.

\definetransparency[tsp1][a=1,t=.5]

We apply this to some text:

\color [clr1]{\bf RED \transparent[tsp1] {RED} }

\transparent[tsp1]{\bf BLACK \color [clr1] {RED} }

\transparent[tsp1]{\bf BLACK \transparent[reset]{BLACK} }

and get:

RED RED

BLACK RED

BLACK BLACK

We can also only switch color:

\color[clr1]{\bf RED \color [clr2] {GREEN}}

\color[clr1]{\bf RED \coloronly[clr2] {GREEN}}

So the second line has no transparency:

RED GREEN

RED GREEN

The \starttransparent and \startcoloronly commands are the complements of \trans­

parent and \coloronly.

1.10 Interpolation

You can define intermediate colors in a way comparable with MetaPost .5[red,green]

kind of specifications. Here are some examples:

18

Basics

\definecolor [mycolor1] [.5(red,green)]

\definecolor [mycolor2] [.8(red,green)]

\definecolor [mycolor3] [.4(red,white)]

\definecolor [mycolor4] [.4(white,red)]

\showcolorcomponents[red,green,mycolor1,mycolor2,mycolor3,mycolor4]

color name transparency specification

white black red r=1.000,g=0.000,b=0.000

white black green r=0.000,g=1.000,b=0.000

white black mycolor1 r=0.500,g=0.500,b=0.000

white black mycolor2 r=0.200,g=0.800,b=0.000

white black mycolor3 r=1.000,g=0.400,b=0.400

white black mycolor4 s=0.720

An older method, still available is:

\defineintermediatecolor[mycolor5][0.5,red,green]

A variation on this are complementary colors:

\definecolor[mycolor1][.5(blue,red)]

\definecolor[mycolor2][-.5(blue,red)]

\definecolor[mycolor3][-(blue)]

\definecolor[mycolor4][-(red)]

\showcolorcomponents[blue,red,mycolor1,mycolor2,mycolor3,mycolor4]

color name transparency specification

white black blue r=0.000,g=0.000,b=1.000

white black red r=1.000,g=0.000,b=0.000

white black mycolor1 r=0.500,g=0.000,b=0.500

white black mycolor2 r=0.500,g=1.000,b=0.500

white black mycolor3 r=1.000,g=1.000,b=0.000

white black mycolor4 r=0.000,g=1.000,b=1.000

1.11 PDF

Although it is not perfect, pdf evolved in such a way that it will stay around for a while.

One reason is that it has become a standard, or more precisely a set of standards. De­

pending on what variant you choose color support is limited.

format gray rgb cmyk spot transparency

pdf/a-1a:2005 ⋆ ⋆ ⋆ ⋆

19

Basics

pdf/a-1b:2005 ⋆ ⋆ ⋆ ⋆
pdf/a-2a ⋆ ⋆ ⋆ ⋆ ⋆
pdf/a-2b ⋆ ⋆ ⋆ ⋆ ⋆
pdf/a-2u ⋆ ⋆ ⋆ ⋆ ⋆
pdf/a-3a ⋆ ⋆ ⋆ ⋆ ⋆
pdf/a-3b ⋆ ⋆ ⋆ ⋆ ⋆
pdf/a-3u ⋆ ⋆ ⋆ ⋆ ⋆
pdf/ua-1 ⋆ ⋆ ⋆ ⋆ ⋆
pdf/x-1a:2001 ⋆ ⋆ ⋆
pdf/x-1a:2003 ⋆ ⋆ ⋆
pdf/x-3:2002 ⋆ ⋆ ⋆ ⋆
pdf/x-3:2003 ⋆ ⋆ ⋆ ⋆
pdf/x-4 ⋆ ⋆ ⋆ ⋆ ⋆
pdf/x-4p ⋆ ⋆ ⋆ ⋆ ⋆
pdf/x-5g ⋆ ⋆ ⋆ ⋆ ⋆
pdf/x-5n ⋆ ⋆ ⋆ ⋆ ⋆
pdf/x-5pg ⋆ ⋆ ⋆ ⋆ ⋆

When you have set the format with \setupbackend to one of the known formats men­

tioned in the previous table, the color conversions will automatically kick in.

1.12 Unboxing

This paragraph is somewhat complex, so skip it when you don't feel comfortable with

the subject or when you've never seen low level ConTEXt code.

Colors are implemented using attributes. Attributes behave like fonts. This means that

they are kind of frozen once material is boxed. Consider that we define a box as follows:

\setbox0\hbox{\bf default {\darkred red \darkgreen green} default}

What do you expect to come out the next code? In MkII the ‘default’ inside the box will

be colored yellow but the internal red and and green words will keep their color.

\bf default {\darkyellow yellow {\box0} yellow} default

This is what we get in MkIV: default yellow default red green default yellow default

When we use fonts switches we don't expect the content of the box to change. So, in

the following the ‘default’ texts will not become bold.

\setbox0\hbox{default {\sl slanted \bi bold italic} default}

default {\bf bold {\box0} bold} default

Now we get: default bold default slanted bold italic default bold default.

20

Basics

Redoing a box with a new font is sort of tricky as by then all kind of manipulations have

been applied and the original inputs is long gone. But colors are easier to deal with and

therefore in MkIV we have a trick to make sure the outer color gets applied to the box:

default {\bf \darkyellow yellow {\attributedbox0} yellow} default

So, we get: default yellow yellow default. In MkIV you need to enable inheritance first

with:

\enabledirectives % only mkiv

[attributes.inheritance]

There is also an \attributedcopy macro. These macros signal the attribute resolver

that this box is to be treated special.

In MkII we have a similar situation which is why we had the option (only used deep down

in ConTEXt) to encapsulate a bunch of code with

\startregistercolor[foregroundcolor]

some macro code ... here foregroundcolor is applied ... more code

\stopregistercolor

This is for instance used in the \framed macro. First we package the content, fore­

groundcolor is not yet applied because the injected specials of literals can interfere

badly, but by registering the colors the nested color calls are tricked into thinking that

preceding and following content is colored. When packaged, we apply backgrounds,

frames, and foregroundcolor to the whole result. Because nested colors were aware of

the foregroundcolor they have properly reverted to this color when needed.

In MkIV the situation is reversed. Here we definitely need to set the foregroundcolor

because otherwise attributes are not set. This is no problem because contrary to MkII

colors don't interfere (no extra nodes). We could have flushed the framed content using

\attributedbox, but we don't want to enable inheritance by default because it comes

with some overhead.

The \attributedbox command is considered obsolete. In LMTX there is a \recolorbox

command that recolors a box. Because these commands are probably never needed

it made more sense to move the burden to a specific command than to add additional

overhead to the whole color mechanism. My experience is that unboxing and copying is

very rare in ConTEXt.

1.13 Color intents

If we do this:

\startoverlay

{\blackrule[color=darkred, height=2cm,width=4cm]}

21

Basics

{\blackrule[color=darkblue,height=1cm,width=3cm]}

\stopoverlay

we get:

The blue rectangle is drawn on top of the red one. In print, normally the printing engine

will make sure that there is no red below the blue. In case of transparent colors this is

somewhat tricky because then we definitely want to see part of what lays below.

You can control this process with the following commands:

\setupcolors

[intent=...]

The default setting is none but you can set the intent to overprint or knockout as well.

In a running text you can use the following commands:

\startcolorintent[overprint|knockout]

...

\stopcolorintent

\startoverprint

...

\stopoverprint

\startknockout

...

\stopknockout

In practice you will probably seldom need to deal with this so best leave the defaults as

they are.

1.14 Collections

Collections are predefined sets of colors. You find them in the files colo-imp-*.mkiv

and you can make such files yourself. When you define a color a command is generated

by default. When you load a collection, there is a danger that you redefine commands

unintended. For that reason most collections are wrapped in:

\startprotectedcolors

% definitions

22

Basics

\stopprotectedcolors

This prevents commands being defined and assumes that colors are accessed by using

the color parameter of setup commands or in the text with:

\color[somecolor]{this gets colored}

\startcolor[somecolor]

this gets colored

\stopcolorintent

The default set (rgb) is already preloaded with:

\usecolors[rgb] % preloaded

You can get a list of colors with

\showcolor[rgb]

This generates the list:

0.000 0.000 black

0.110 0.000 0.000 1.000 blue

0.700 0.000 1.000 1.000 cyan

0.066 0.000 0.000 0.600 darkblue

0.280 0.000 0.400 0.400 darkcyan

0.400 0.400 darkgray

0.354 0.000 0.600 0.000 darkgreen

0.164 0.400 0.000 0.400 darkmagenta

0.238 0.400 0.200 0.000 darkorange

0.180 0.600 0.000 0.000 darkred

0.356 0.400 0.400 0.000 darkyellow

0.900 0.900 gray

0.100 0.100 gray-1

0.200 0.200 gray-2

0.300 0.300 gray-3

0.400 0.400 gray-4

0.500 0.500 gray-5

0.600 0.600 gray-6

0.700 0.700 gray-7

0.800 0.800 gray-8

0.900 0.900 gray-9

0.590 0.000 1.000 0.000 green

0.555 0.500 0.500 1.000 lightblue

0.850 0.500 1.000 1.000 lightcyan

0.850 0.850 lightgray

0.795 0.500 1.000 0.500 lightgreen

23

Basics

0.705 1.000 0.500 1.000 lightmagenta

0.595 1.000 0.500 0.000 lightorange

0.650 1.000 0.500 0.500 lightred

0.945 1.000 1.000 0.500 lightyellow

0.410 1.000 0.000 1.000 magenta

0.088 0.000 0.000 0.800 middleblue

0.420 0.000 0.600 0.600 middlecyan

0.625 0.625 middlegray

0.472 0.000 0.800 0.000 middlegreen

0.246 0.600 0.000 0.600 middlemagenta

0.357 0.600 0.300 0.000 middleorange

0.240 0.800 0.000 0.000 middlered

0.534 0.600 0.600 0.000 middleyellow

0.595 1.000 0.500 0.000 orange

0.750 0.750 palegray

0.300 1.000 0.000 0.000 red

1.000 1.000 white

0.890 1.000 1.000 0.000 yellow

These are the collections shipped with ConTEXt. Some names are

crayola crayon colors

dem a demo set of groups and palets

ema an old coming from an Emacs user

rainbow a series of color groups by Alan

ral a set often used in industry (from Germany)

rgb a basic set of colors defined in the rgb color space

x11 (most of the) standard X11 rgb colors

You can look in these files to see what gets defined. Even if you don't use them they

might be illustrative,

1.15 Text color

Setting the color of the running text is done with:

\setupcolors

[textcolor=darkgray]

If needed you can also set the pagecolormodel there but its default value is none which

means that it will obey the global settings.

1.16 Tikz

In case you use the TikZ graphical subsystem you need to be aware of the the fact that

its color support is more geared towards LATEX. There is glue code that binds the ConTEXt

24

Basics

color system to its internal representation but there can still be problems. For instance,

not all color systems are supported so ConTEXt will try to remap, but only when it knows

that it has to do so. You can best not mix colorspaces when you use TikZ. If you really

want (and there is no real reason to do so) you can say:

\enabledirectives[colors.pgf]

and then (at the cost of some extra overhead) define colors as:

\definecolor[pgfcolora][blue!50!green]

\definecolor[pgfcolorb][red!50!blue]

1.17 Implementation details

The low level implementation of colors in MkIV is fundamentally different from MkII. In

MkIV something like this happens:

one \color[red]{two} three

becomes (with grouping):

one {<start color: red>two<stop color>} three

the start and stop points are in fact injections in the input: a special (for dvi) or literals

(for pdf) is inserted that turns the color on and off, but also information is carried along

about the state of color, so that we can properly nest as well as pick up the current color

after a page break. We never had real problems with this mechanism but one had to

keep in mind that injections like this could interfere with typesetting. This mechanism

didn't rely on the engine for housekeeping, all was done at the TEX end using so called

marks.

In MkIV we use attributes. This means that the sequence now looks like:

one {<set color attribute to red>two} three

The actual handling of color happens when a page is shipped out and there is no inter­

ference with typesetting. The work is mostly done in Lua.

Colorspaces (rgb, cmyk, spot) were already supported in MkII and of course still are in

MkIV. However, the colorspace is now a more independent property. At some point in

MkII we also implemented transparency as a property of a color. In MkIV transparency

is still defined with a color but handled independently. This means that where in MkII

color is just one axis, in MkIV we have three: colorspace (model), color and transparency.

This of course has a bit of a performance and memory hit, but in practice a user won't

notice it.

25

Basics

1.18 Grouping

The \color and \startcolor command group their arguments. There might be cases

where this interferes with your intentions, for instance when you want to set some vari­

able and use its value later on.

1 \scratchcounter=1

plus

1 \advance \scratchcounter by 1

equals

\the\scratchcounter

The summation works out okay: 1 plus 1 equals 2.

\color[darkblue]{1 \scratchcounter=1}

plus

\color[darkblue]{1 \advance \scratchcounter by 1}

equals

\color[darkgreen]{\the\scratchcounter}

Here the final result depends on the value of \scratchcounter: 1 plus 1 equals 3.

\start

\pushcolor[darkblue]1 \scratchcounter=1 \popcolor

plus

\pushcolor[darkblue]1 \advance \scratchcounter by 1 \popcolor

equals

\pushcolor[darkgreen]\the\scratchcounter \popcolor

\stop

Here we get: 1 plus 1 equals 2. The \pushcolor and \popcolor commands can be used

nested which give a bot of overhead. The \savecolor and \restorecolor commands are

variants that don't stack. They are a bit more efficient but if you use them nested you

probably also will use some grouping. Where the push--pop pair needs to be matched,

the save--restore pair doesn't impose that restriction.

1.19 Commands

There are quite some commands that relate to colors but you probably only need \de­

finecolor, \color and \startcolor . . .\stopcolor. Here we show the complete list.

Some commands are redundant, for instance \definenamedcolor is the same as \de­

finecolor.

\color {...}
*

* CONTENT

26

Basics

\colorcomponents

\colored [..,..=..,..]
1

{...}
2

1 inherits: \definecolor

2 CONTENT

\colored {...}
*

* CONTENT

\coloronly {...}
*

* CONTENT

\colorvalue

\comparecolorgroup

\comparepalet

\definecolor [..,..=..,..]
*

* r = NUMBER

g = NUMBER

b = NUMBER

c = NUMBER

m = NUMBER

y = NUMBER

k = NUMBER

h = NUMBER

s = NUMBER

v = NUMBER

w = NUMBER

x = NUMBER

a =

t = NUMBER

\definecolorgroup [...]
1

OPT

[x:y:z,..]
2

1 gray rgb cmyk spot

2 TRIPLET

\definecolor

\defineglobalcolor [..,..=..,..]
*

* inherits: \definecolor

27

Basics

\defineglobalcolor

\defineintermediatecolor [...,...]
1

[..,..=..,..]
2

OPT1 COLOR NUMBER

2 a = NUMBER

t = NUMBER

\definemultitonecolor [..,..=..,..]
1

[..,..=..,..]
2

[..,..=..,..]
3

OPT1 COLOR = NUMBER

2 inherits: \definecolor

3 inherits: \definespotcolor

\definenamedcolor [..,..=..,..]
*

* inherits: \definecolor

\definenamedcolor

\definepalet [..,..=..,..]
*

* NAME = COLOR

\definepalet

\defineprocesscolor [..,..=..,..]
*

* inherits: \definecolor

\definespotcolor [..,..=..,..]
*

* a =

t = NUMBER

e = TEXT

p = NUMBER

\definetransparency

\definetransparency [..,..=..,..]
*

* a =

t = NUMBER

\definetransparency

\directcolor

28

Basics

\directcolored [..,..=..,..]
*

* inherits: \definecolor

\directcolored

\doifblackelse

\doifcolor

\doifcolorelse

\doifdrawingblackelse

\doifelseblack

\doifelsecolor

\doifelsedrawingblack

\getpaletsize

\graycolor {...}
*

* CONTENT

\grayvalue

\MPcolor

\MPcoloronly

\MPoptions

\MPtransparency

\negatecolorbox

\paletsize

29

Basics

\processcolorcomponents

\pushcolor ... \popcolor

\savecolor ... \restorecolor

\setcolormodell [...]
*

* black bw gray rgb cmyk all none

\setupcolor

\setupcolors [..,..=..,..]
*

* state = start stop

spot = yes no

expansion = yes no

factor = yes no

rgb = yes no

cmyk = yes no

conversion = yes no always

pagecolormodel = auto none NAME

textcolor = COLOR

intent = overprint knockout none

\setuppalet

\showcolor

\showcolorbar

\showcolorcomponents

\showcolorgroup [...,...]
*

OPT* horizontal vertical number value name

\showcolorset

\showpalet [...,...]
*

OPT* horizontal vertical number value name

\startcolor ... \stopcolor

30

Basics

\startcolorintent [...]
*

... \stopcolorintent

* knockout overprint none

\startcoloronly ... \stopcoloronly

\startcolorset ... \stopcolorset

\startcurrentcolor ... \stopcurrentcolor

\startknockout ... \stopknockout

\startoverprint ... \stopoverprint

\startprotectedcolors ... \stopprotectedcolors

\starttextcolor ... \stoptextcolor

\starttextcolorintent ... \stoptextcolorintent

\starttransparent ... \stoptransparent

\switchtocolor

\transparencycomponents

\transparent {...}
*

* CONTENT

\usecolors

31

Metafun

2 Metafun

2.1 Defining and using

In MetaPost itself colors are defined as numbers or sets:

color red ; red := (1,0,0) ;

cmykcolor cyan ; cyan := (1,0,0,0) ;

numeric gray ; gray := 0.5 ;

You don't need much fantasy to see that this fits well in the data model of MetaPost.

In fact, transparency could be represented as a pair. The disadvantage of having no

generic color type is that you cannot mix them. In case you need to manipulate them,

you can check the type:

if cmykcolor cyan : ... fi ;

because MetaFun is tightly integrated in ConTEXt you can refer to colors known at the

TEX end by string. So,

string mycolor ; mycolor := "red" ;

and then:

fill fullcircle scaled 4cm withcolor mycolor ;

is quite okay. For completeness we also have namedcolor but it's not really needed:

fill fullcircle scaled 4cm withcolor namedcolor("red");

You can define spot colors too but normally you will refer to colors defined at the TEX

end.

\startMPcode

fill fullcircle scaled 3cm withcolor

.5 * spotcolor("whatever",(.3,.4,.5)) ;

fill fullcircle scaled 2cm withcolor

spotcolor("whatever",(.3,.4,.5)) ;

fill fullcircle scaled 1cm withcolor

spotcolor("whatever",(.3,.4,.5)/2) ;

\stopMPcode

Multitones are defined as:

\startMPcode

fill fullcircle scaled 3cm withcolor

.5 * multitonecolor("whatever",(.3,.4,.5),(.5,.3,.4)) ;

32

Metafun

fill fullcircle scaled 2cm withcolor

multitonecolor("whatever",(.3,.4,.5),(.5,.3,.4)) ;

fill fullcircle scaled 1cm withcolor

multitonecolor("whatever",(.3,.4,.5)/2,(.5,.3,.4)/2) ;

\stopMPcode

Some pdf renderers have problems with fractions of such colors and even display the

wrong colors. So, in these examples the third alternative in the sets of three might be

more robust than the first. The result is shown in figure 2.1.

Figure 2.1 Spot and multitones di­

rectly defined in MetaFun.

2.2 Passing colors

Originally TEX and MetaPost were separated processes and even in LuaTEX they still

are. There can be many independent MetaPost instances present, but always there is

Lua as glue between them. In the early days of LuaTEX this was a one way channel: the

MetaPost output is available at the TEX end in Lua as a table and properties are used

to communicate extensions. In today's LuaTEX the MetaPost library has access to Lua

itself so that gives us a channel to TEX, although with some limitations.

Say that we have a color defined as follows:

\definecolor[MyColor][r=.25,g=.50,b=.75]

We can apply this to a rule:

\blackrule[color=MyColor,width=3cm,height=1cm,depth=0cm]

From this we get:

In TEX (code) we can do this:

\startMPcode

fill unitsquare xyscaled (3cm,1cm) withcolor \MPcolor {MyColor} ;

33

Metafun

\stopMPcode

When the code is pushed to MetaPost the color gets expanded, in this case to (0.25,

0.50, 0.75) because we specified an rgb color but the other colorspaces are supported

too.

Equally valid code is:

\startMPcode

fill unitsquare xyscaled (3cm,1cm) withcolor "MyColor" ;

\stopMPcode

This is very un-MetaPost as naturally it can only deal with numerics for gray scales,

triplets for rgb colors, and quadruplets for cmyk colors. In MetaFun (as present in Con­

TEXt MKIV) the withcolor operator also accepts a string, which is resolved to a color

specification.

For the record we note that when you use transparent colors, a more complex specifi­

cation gets passed with \MPcolor or resolved (via the string). The same is true for spot

and multitone colors. It will be clear that when you want to assign a color to a variable

you have to make sure the type matches. A rather safe way to define colors is:

def MyColor =

\MPcolor{MyColor}

enddef ;

and because we can use strings, string variables are also an option.

2.3 Grouping

The reason for discussing these details is that there is a rather fundamental concept of

grouping in TEX which can lead to unexpected side effects. The reason is that there is no

grouping at the Lua end, unless one uses a kind of stack, and that in MetaPost grouping

is an explicit feature.

\scratchcounter=123

\bgroup

\scratchcounter=456

\egroup

After this TEX code is expanded the counter has value 123. In MetaPost you can do the

following:

scratchcounter := 123 ;

34

Metafun

\begingroup

scratchcounter := 456 ;

\endgroup

but here the counter is 456 afterwards! You explicitly need to save a value:

scratchcounter := 123 ;

\begingroup

save scratchcounter ;

numeric scratchcounter ; % variables are numeric by default anyway

scratchcounter := 456 ;

\endgroup

The difference perfectly makes sense if you think about the kind of applications TEX and

MetaPost are used for. In Lua you can do this:

scratchcounter = 123

do

local scratchcounter = 456

end

and in fact, a then, else, while, repeat, do and function body also behave this way.

So, what is the impact on colors? Imagine that you do this:

\bgroup

\definecolor[MyColor][s=.5]

\startMPcode

pickup pencircle scaled 4mm ;

draw fullcircle scaled 30mm withcolor \MPcolor{MyColor} ;

draw fullcircle scaled 15mm withcolor "MyColor" ;

\stopMPcode

\egroup

\quad

\startMPcode

pickup pencircle scaled 4mm ;

draw fullcircle scaled 30mm withcolor \MPcolor{MyColor} ;

draw fullcircle scaled 15mm withcolor "MyColor" ;

\stopMPcode

We get the following colors:

35

Metafun

Because \MPcolor is a TEX macro, its value gets expanded when the graphic is calcu­

lated. After the group (first graphic) the color is restored. But, in order to access the

colors defined at the TEX end in MetaPost by name (using Lua) we need to make sure

that a defined color is registered at that end. Before we could use the string accessor in

MetaPost colors, this was never a real issue. We kept the values in a (global) Lua table

which was good enough for the cases where we wanted to access color specifications,

for instance for tracing. Such colors never changed in a document. But with the more

dynamic MetaPost graphics we cannot do that: there is no way that MetaPost (or Lua)

later on can know that the color was defined inside a group as clone. For daily usage it's

enough to know that we have found a way around it in ConTEXt at neglectable overhead.

In the rare case this mechanism fails, you can always revert to the \MPcolor method.

The following example was used when developing the string based color resolver. The

complication was in getting the color palets resolved right without too much overhead.

Again we demonstrate this because border cases might occur that are not catched (yet).

2.4 Transparency

Transparency is supported at the TEX end: either or not bound to colors. We already

saw how to use colors, here's how to apply transparency:

\startMPcode

fill fullsquare xyscaled (4cm,2cm) randomized 5mm

withcolor "darkred" ;

fill fullsquare xyscaled (2cm,4cm) randomized 5mm

withcolor "darkblue" withtransparency ("normal",0.5) ;

fill fullsquare xyscaled (4cm,2cm) randomized 5mm shifted (45mm,0)

withcolor "darkred" withtransparency ("normal",0.5) ;

36

Metafun

fill fullsquare xyscaled (2cm,4cm) randomized 5mm shifted (45mm,0)

withcolor "darkblue" withtransparency ("normal",0.5) ;

fill fullsquare xyscaled (4cm,2cm) randomized 5mm shifted (90mm,0)

withcolor "darkred" withtransparency ("normal",0.5) ;

fill fullsquare xyscaled (2cm,4cm) randomized 5mm shifted (90mm,0)

withcolor "darkblue" ;

\stopMPcode

We get a mixture of normal and transparent colors. Instead of normal you can also pass

a number (with 1 being normal).

2.5 Shading

Shading is available too. This mechanism is a bit more complex deep down because it

needs resources as well as shading vectors that adapt themselves to the current scale.

We will not go into detail about the shading properties here.

\startMPcode

comment("two shades with mp colors");

fill fullcircle scaled 5cm

withshademethod "circular"

withshadevector (2cm,1cm)

withshadecenter (.1,.5)

withshadedomain (.2,.6)

withshadefactor 1.2

withshadecolors (red,white)

;

fill fullcircle scaled 5cm shifted (6cm,0)

withshademethod "circular"

withcolor "red" shadedinto "blue"

;

\stopMPcode

You can use normal MetaPost colors as well as named colors.

37

Metafun

The color space of the first color determines if the second one needs to be converted, so

this is valid:

\startMPcode

comment("two shades with named colors");

fill fullcircle scaled 5cm

withshademethod "circular"

withshadecolors ((1,0,0),(0,0,1,0))

;

fill fullcircle scaled 5cm shifted (6cm,0)

withshademethod "circular"

withcolor (1,0,0,0) shadedinto "blue"

;

\stopMPcode

The first circle is in rgb colors and the second in cmyk.

You cannot use spot colors but you can use transparency, so with:

\startMPcode

comment("three transparent shades");

fill fullcircle scaled 5cm

38

Metafun

withshademethod "circular"

withshadecolors ("red","green")

withtransparency ("normal",0.5)

;

fill fullcircle scaled 5cm shifted (30mm,0)

withshademethod "circular"

withshadecolors ("green","blue")

withtransparency ("normal",0.5)

;

fill fullcircle scaled 5cm shifted (60mm,0)

withshademethod "circular"

withshadecolors ("blue","yellow")

withtransparency ("normal",0.5)

;

\stopMPcode

we get:

You can define a shade and use it later on, for example:

\startMPcode

defineshade myshade

withshademethod "circular"

withshadefactor 1

withshadedomain (0,1)

withshadecolors (black,white)

withtransparency (1,.5)

;

fill fullcircle xyscaled(.75TextWidth,4cm)

shaded myshade ;

fill fullcircle xyscaled(.75TextWidth,4cm) shifted (.125TextWidth,0)

shaded myshade ;

fill fullcircle xyscaled(.75TextWidth,4cm) shifted (.25TextWidth,0)

39

Metafun

shaded myshade ;

\stopMPcode

This gives three transparent shaded shapes:

A very special shade is the following:

\startMPcode

fill fullsquare yscaled 5ExHeight xscaled TextWidth

withshademethod "linear"

withshadevector (0,1)

withshadestep (

withshadefraction .3

withshadecolors (red,green)

)

withshadestep (

withshadefraction .5

withshadecolors (green,blue)

)

withshadestep (

withshadefraction .7

withshadecolors (blue,red)

)

withshadestep (

withshadefraction 1

withshadecolors (red,yellow)

)

;

\stopMPcode

The result is a colorful band:

40

Metafun

2.6 Text

The text typeset with textext is processed in TEX using the current settings. A text can

of course have color directives embedded.

\startMPcode

numeric u ; u := 8mm ;

draw thetextext("RED", (0,0u)) withcolor darkred ;

draw thetextext("\darkgreen GREEN", (0,1u)) ;

draw thetextext("\darkblue BLUE", (0,2u)) withcolor darkred ;

draw thetextext("BLACK {\darkgreen GREEN}",(0,3u)) ;

draw thetextext("RED {\darkblue BLUE}",(0,4u)) withcolor darkred ;

\stopMPcode

In this example we demonstrate that you can also apply a color to the resulting picture.

RED
GREEN
BLUE

BLACK GREEN
RED BLUE

2.7 Helpers

There are several color related macros in MetaFun and these are discussed in the Meta­

Fun manual, so we only mention a few here.

\startMPcode

fill fullsquare xyscaled(TextWidth,4cm)

withcolor darkred ;

fill fullsquare xyscaled(TextWidth,3cm)

withcolor complementary darkred ;

fill fullsquare xyscaled(TextWidth,2cm)

withcolor complemented darkred ;

fill fullsquare xyscaled(TextWidth,1cm)

withcolor grayed darkred ;

\stopMPcode

This example code is shown in figure 2.2. The complementary operator subtracts the

given color from white, the complemented operator calculates its values from opposites

(so a zero becomes a one). In figure 2.3 a more extensive example is shown.

41

Metafun

Figure 2.2 The complementary, complemented and grayed methodscompared.

I don't understand about complementary colors And what they say Side by side they both get bright Together they both get gray

complemented

I don't understand about complementary colors And what they say Side by side they both get bright Together they both get gray

complementary

Figure 2.3 Two methods to complement colors compared (text: Fiona Apple).

As we discussed before, the different color models in MetaPost cannot be mixed in ex­

pressions. We therefore have two macros that expand into white or black in the right

colorspace.

\startMPcode

fill fullsquare xyscaled(TextWidth,4cm)

withcolor darkred ;

fill fullsquare xyscaled(TextWidth,3cm)

withcolor complementary darkred ;

fill fullsquare xyscaled(TextWidth,2cm)

withcolor complemented darkred ;

fill fullsquare xyscaled(TextWidth,1cm)

withcolor grayed darkred ;

\stopMPcode

\startMPcode

fill fullsquare xyscaled(TextWidth,4cm)

withcolor .5[(.5,0,0), whitecolor (.5,0,0)] ;

fill fullsquare xyscaled(TextWidth,3cm)

withcolor .5[(.5,0,0), blackcolor (.5,0,0)] ;

fill fullsquare xyscaled(TextWidth,2cm)

withcolor .5[(.5,0,0,0), whitecolor (.5,0,0,0)] ;

42

Metafun

fill fullsquare xyscaled(TextWidth,1cm)

withcolor .5[(.5,0,0,0), blackcolor (.5,0,0,0)] ;

\stopMPcode

There are two macros that can be used to resolve string to colors: resolvedcolor and

namedcolor. A resolved color is expanded via Lua while a named color is handled in the

backend, when the result is converted to pdf. The resolved approach is more recent and

is the same as a string color specification.

\startMPcode

fill fullcircle scaled 4cm withcolor .5 resolvedcolor "darkred" ;

fill fullcircle scaled 3cm withcolor .5 resolvedcolor "gray" ;

fill fullcircle scaled 2cm withcolor .5 namedcolor "darkblue" ;

fill fullcircle scaled 1cm withcolor .5 namedcolor "gray" ;

\stopMPcode

There is a drawoptions macro that can be used to define properties in one go.

\startMPcode

drawoptions(withcolor "darkgreen");

fill fullcircle scaled 4cm ;

fill fullcircle scaled 3cm withcolor white ;

fill fullcircle scaled 2cm ;

\stopMPcode

We get:

43

Metafun

The drawback of this approach is that, because we use so called pre- and postscripts for

achieving special effects (like spotcolors and shading) successive withcolor calls can

interfere in a way that unexpected results turn up. A way out is to use properties:

\startMPcode

property p[] ;

p1 = properties(withcolor "darkred") ;

p2 = properties(withcolor "white") ;

fill fullcircle scaled 4cm withproperties p1 ;

fill fullcircle scaled 3cm withproperties p2 ;

fill fullcircle scaled 2cm withproperties p1 ;

\stopMPcode

This results in:

44

Metafun

45

Graphics

3 Graphics

3.1 Conversion

There is not that much to tell about graphics and color simply because from the per­

spective of TEX a graphic is just a blob with dimensions that travels through the system

and in the backend gets included as-is. This means that when there is a problem with

an image you have to go back to the source of that image and fix it there.

It can happen that you need to manipulate an image and in a fully automated workflow

that can be cumbersome. For that reason ConTEXt has a mechanism for converting

graphics.

original target

bmp default pdf

eps default gray.pdf pdf

gif default pdf

jpg cmyk.pdf gray.pdf

png cmyk.pdf gray.pdf recolor.png

ps default gray.pdf pdf

svg default pdf png

svgz default pdf png

tif default pdf

Some of these converters are applied automatically. For instance if you include an eps

image, ConTEXt will try to convert it into a pdf file and only do that once (unless the

image changed). Of course it needs a conversion program, but as long as you have

GhostScript, GraphicMagick and InkScape on your machine it should work out well.

You can also define your own converters (we use a verbose variant):

\startluacode

-- of course we need options

local resolutions = {

[interfaces.variables.low] = "150x150",

[interfaces.variables.medium] = "300x300",

[interfaces.variables.high] = "600x600",

}

figures.programs.lowrespng = {

command = "gm",

argument = [[convert -resample %resolution% "%oldname%" "%newname%"]],

}

46

Graphics

figures.converters["png"]["lowres.png"] = function(oldname,newname,resolution)

runprogram (

figures.programs.lowrespng.command,

figures.programs.lowrespng.argument,

{

oldname = oldname,

newname = newname,

resolution = resolutions[resolution] or "150x150"

}

)

end

\stopluacode

Usage is as follows:

\externalfigure[mill.png][conversion=lowres.png]

3.2 Recoloring

You can think of more complex conversions, like converting a gray scale image to a

colored one.

\startluacode

figures.programs.recolor = {

command = "gm",

argument = [[convert -recolor "%color%" "%oldname%" "%newname%"]],

}

figures.converters["png"]["recolor.png"] =

function(oldname,newname,resolution,arguments)

figures.programs.run (

figures.programs.recolor.command,

figures.programs.recolor.argument,

{

oldname = oldname,

newname = newname,

color = arguments or ".5 0 0 .7 0 0 .9 0 0",

}

)

end

\stopluacode

This can be applied as follows. The resolution and color parameters get passed to the

converter. This method is actually built in already.

\useexternalfigure[mill][mill.png][conversion=recolor.png]

47

Graphics

\startcombination[3*2]

{\externalfigure[mill][arguments=.5 0 0 .7 0 0 .9 0 0]}{\figurefilearguments}

{\externalfigure[mill][arguments=.7 0 0 .9 0 0 .5 0 0]}{\figurefilearguments}

{\externalfigure[mill][arguments=.9 0 0 .5 0 0 .7 0 0]}{\figurefilearguments}

{\externalfigure[mill][arguments=.5 0 0 .9 0 0 .7 0 0]}{\figurefilearguments}

{\externalfigure[mill][arguments=.7 0 0 .5 0 0 .9 0 0]}{\figurefilearguments}

{\externalfigure[mill][arguments=.9 0 0 .7 0 0 .5 0 0]}{\figurefilearguments}

\stopcombination

The results are shown in figure 3.1. In this case we pass the colors to be use in a kind

of matrix notation that GraphicMagick needs.

.5 0 0 .7 0 0 .9 0 0 .7 0 0 .9 0 0 .5 0 0 .9 0 0 .5 0 0 .7 0 0

.5 0 0 .9 0 0 .7 0 0 .7 0 0 .5 0 0 .9 0 0 .9 0 0 .7 0 0 .5 0 0

Figure 3.1 Recoloring bitmap images.

Recoloring an image this way is actually not the best solution because there is an internal

mechanism that does the same. This trick (currently) only works with spot colors.

\definecolor [my-blue] [c=1,m=.38,y=0,k=.64] % pms 2965 uncoated m

\definecolor [my-yellow] [c=0,m=.28,y=1,k=.06] % pms 124 uncoated m

48

Graphics

\definespotcolor [my-blue-100] [my-blue] [p=1]

\definespotcolor [my-yellow-100] [my-yellow] [p=1]

\definespotcolor [my-blue-50] [my-blue] [p=.5]

\definespotcolor [my-yellow-50] [my-yellow] [p=.5]

\definemultitonecolor [my-mix] [my-blue=.12,my-yellow=.28] [c=.1,m=.1,y=.3,k=.1]

These colors show up as:

my-blue

my-blue-50

my-blue-100

my-yellow

my-yellow-50

my-yellow-100

my-mix

\startcombination[4*1]

{\externalfigure[demofig]} {no color}

{\externalfigure[demofig][color=my-mix]} {indexed duotone}

{\externalfigure[demofig][color=my-blue-100]} {spot color}

{\externalfigure[demofig][color=my-yellow-100]} {spot color}

\stopcombination

This time we don't call an external program but we add an indexed color map to the

image. The result can be seen in figure 3.2.

no color indexed duotone spot color spot color

Figure 3.2 Reindexing bitmap images.

3.3 Profiles

Color profiles are used to control the printing process. There is some (limited) support

for that built in. An example of a setup that we use in a project is the following:

49

Graphics

\setupexternalfigures

[order={pdf,eps,png,jpg},

conversion=cmyk.pdf,

method=auto]

So, we prefer pdf vector images, if needed converted from eps. When there is no vector

image we check for a png and as last resort for a jpg. The method is set to auto which

means that we check if the image file indeed is reflected in the suffix. This is needed

because in a workflow with tens of thousands of images there can be bad ones.

The conversion parameter will make ConTEXt check if there is a cmyk.pdf converter

defined and when that is the case, it's applied. That specific converter will add a color

profile to the image. You can set the profiles with:

\enabledirectives[graphics.conversion.rgbprofile=srgb.icc]

\enabledirectives[graphics.conversion.cmykprofile=isocoated_v2_eci.icc]

and these happens to be the defaults. You have to make sure that the files are present,

preferable in t:/texmf/colors/icc/context. If you add profiles you need to make sure

that colorprofiles.lua is updated accordingly.

Just for completeness, in our situation, we also have set:

\enabledirectives[graphics.conversion.eps.cleanup.ai]

\enabledirectives[graphics.extracheck]

The first directive will make sure that confusing sections (for instance meant to the

drawing program) are stripped from an eps file, and the second one forces some extra

checking on the image (just to make sure that the engine doesn't exit on bad images).

3.4 Masks

A png bitmap image can have a mask that permits a background to shine through but you

can also apply that effect to a regular png image. The next examples use two (pre)de­

fined masks:

\registerfiguremask [mymask1] {

{

{ 0, 100, 0x00 },

{ 101, 200, 0x7F },

{ 201, 255, 0xFF },

}

}

\registerfiguremask [mymask2] {

210

50

Graphics

}

The first mask maps the (grayscale) image values onto a mask value by range while the

second just passes a criterium. The argument to \registerfiguremask is a number,

table or string in Lua speak

For the examples we define two colors:

\definecolor[mymaskcolor1][darkred]

\definecolor[mymaskcolor2][.75(darkblue,white)]

We now include two images:

\externalfigure

[2019-sneaky-bw-lowres.png]

[background=color,

backgroundcolor=mymaskcolor1,

mask=mymask1,

width=\measure{combination}]

and

\externalfigure

[2019-sneaky-bw-lowres.png]

[background=color,

backgroundcolor=mymaskcolor2,

mask=mymask2,

width=\measure{combination}]

The result is shown in figure 3.3 and shows that one has probably experiment a bit with

the values. The first shows the original and the last the predefined ‘demomask’ that

uses a table with four ranges.

original table number demomask

Figure 3.3 Masks

We can also use an image as mask. Take these three definitions:

51

Graphics

\externalfigure

[mill.png]

[height=5cm]

\externalfigure

[2019-sneaky-bw-lowres.png]

[height=5cm]

\externalfigure

[mill.png]

[mask=2019-sneaky-bw-lowres.png,height=5cm]

In figure 3.4 the third example has both images stacked.

Figure 3.4 Masks

Next we show how to make an image lighter or darker. For this we use the range key.

It can be assigned a number (fraction) or a name that serves as lookup in a registry. As

with masks these are Lua definitions. AN example of a range definition is:

For an rgb you can provide two or six values. In figure 3.5 we show a lighter, normal,

darker and limited example. In figure 3.6 we apply them to a jpeg image.

\registerfigurerange [myrange] {

{ 0.2, 1.2 }

}

52

Graphics

range=0.80 default range=1.20 range=myrange

Figure 3.5 Ranges

range=0.80 default range=1.20 range=myrange

Figure 3.6 Ranges

C
ol

or
in

g
C
on

TE
X
t

ex
pl

ai
n
in

g
lu

at
ex

 a
n
d

m
ki

v

H
an

s
H
ag

en

P
R
A
G
M

A
 A

D
E

work in progress

T
h
is
 b

oo
k

is
 a

bo
u
t
co

lo
rs

 a
n
d

h
ow

 t
o

u
se

th
em

 i
n
 C

on
TE

X
t

M
kI

V,
 i

n
cl

u
di

n
g

M
et

a­

Fu
n
.

A
lt
h
ou

gh
 t

h
e

ba
si
cs

 a
re

 n
ot

 t
h
at

co
m

pl
ex

,
a

bi
t
of

 i
n
si
gh

t
in

 h
ow

 t
h
ey

 a
re

im
pl

em
en

te
d

an
d

w
h
at

 c
an

 b
e
do

n
e
m

ig
h
t

h
el

p
in

 c
re

at
in

g
m

or
e

in
te

re
st

in
g

lo
ok

in
g

do
cu

m
en

ts
.

