compact fonts

what are the advantages



Before we had MKII

e It all started with rather plain \font definitions.
 More than just fonts need to be ‘switched’.

* So body font switching is wrapped into macros.

e Often in MKII more fonts get loaded than are needed.
 This comes cheap when using eight bit fonts.

* Design sizes complicate matters.

compact fonts — context 2024 meeting —



The MKII font model

» FEight bit fonts have a limited coverage.

« Hyphenation relates to font encoding.

* We need to handle font and input encodings.

» Using small caps and/or old style numerals demand a different font.
e This resulted in a multi-dimensional system.

* Design sizes have been complemented by a simpler model.

e At some point we had to support XqIEX, so support for features was intro-
duced.

* Loading fonts is delayed when possible so that we can mix with little over-
head.

compact fonts — context 2024 meeting —



The MKIV font model

 Font loading is delegated to Lua, we could not support Oriental TEX other-
wise.

* Dealing with font features is also up to Lua.

* More dynamic par building experiments demanded interplay with fonts.
 Fonts are often large so there is more aggressive sharing and caching.
 Runtime support for virtual fonts is integrated.

 Way more trickery is possible because we have full access.

 Users can tweak and extend fonts as they wish (given available glyphs).

* Features (like small caps) can be applied dynamically.

» Variable and color fonts were supported as soon as they showed up.

compact fonts — context 2024 meeting —




The LMTX font model

« We assume LuaMetaTEX to be used.

e We have better control over how the backend deals with fonts. This was
prototyped in MKIV but later removed.

 To a large extend the model used is the same.
 We have a bit more virtual font magic available.
» Tweaking math fonts has been extended and is also applied.

* Of course we also have expansion but we can change that on the spot.

compact fonts — context 2024 meeting —



Some new engine features

Math fonts are demanding and are ‘loaded’ three times per size (three
families) which means three times tweaking.

 For that reason compact math fonts were introduced: load once and select
(ssty) and scale (script and scriptscript) on the fly.

 That meant that some additional scaling parameters had to be introduced.

 Which in turn triggered dynamic scaling in text mode.

compact fonts — context 2024 meeting —



Some new engine features

 The engine supports \glyphscale, \glyphxscale, \glyphyscale, \glyph-
slant and \glyphweight.

 There are also \Umathxscale and \Umathyscale (per math style).

 These properties ar bound to glyphs which means that dimensions (when
needed) are calculated on the fly.

» Specific font (and other) glyph related features can be controlled locally:
left/right kerning and ligaturing, expansion, protrusion, italic correction
etc.

A new primitive \fontspecdef can efficiently change the current combi-
nation of properties.

compact fonts — context 2024 meeting —



Intermezzo: glyph nodes

 In TEX they only contain font and character fields (in addition to the com-
mon type, subtype and next fields.

 In LuaTgX they are larger and of course also have the new common prev
and attr fields plus two SyncTgX fields.

 In LuaMetaTgX glyph nodes are among the largest nodes, currently 14
times 8 bytes.

« There are 4 byte fields: font, data, state, options, hyphenate, expan-
sion, X _scale, y scale, scale, raise, left, right, x offset, y offset,
weight, slant and index (math).

 There are 2 byte fields: language, control, properties (math) and group
(math) and a few 1 byte fields: protected, LThmin, rhmin and discpart.

compact fonts — context 2024 meeting —



Intermezzo: font spec nodes

 The ‘spec’ in the \fontspecdef indicates a similarity with so called ‘glue
spec’, as they also use so called nodes as storage container.

 Of course such a font switch is a bit more costly than a regular \font
switch.

 There are some related query commands: fontspecid, fontspecified-
size, fontspecscale, fontspecxscale, fontspecyscale, fontspecslant
and fontspecweight.

e It is currently a 5 memory word node (5 times 8 bytes) with 4 byte fields:
state, identifier, scale, x scale, y scale, slant and weight.

compact fonts — context 2024 meeting —




Compact mode

 Compact font mode is enabled at the top of the document (before fonts get
defined):

\enableexperiments[fonts.compact]

* Often performance is the same, but for large fonts there is a gain. The
same is true for math fonts.

 The produced pdf code can (!) be more efficient which compensates the
larger overhead.

 The question is: will we make this default which means that we need a
directive that enables traditional mode.

compact fonts — context 2024 meeting —



Compact mode

The print version of “Math in ConTgXt” currently has 290 pages.

run time file size

normal 13.6 2.457.962
compact 10.6 2.456.630

105 font files loaded (see next page)

instances backend vectors hashes load time

normal 317 217 76 141 5.0
compact 110 43 41 2 1.9

compact fonts — context 2024 meeting —



105 font files loaded:

koeielettersot.ttf, lucidabrightmathot.otf, lucidabrightot.otf, lucidasanstypewriterot.otf,
latinmodernmath-companion.otf, ralphsmithsformalscript-companion.otf, texgyrebonummath-companion.otf,
texgyrepagellamath-companion.otf, texgyretermesmath-companion.otf, concrete-math.otf, ebgaramond-regular.otf,
garamond-math.otf, erewhon-math.otf, erewhon-regular.otf, euler-math.otf, kpmath-bold.otf, kpmath-regular.otf,
kpmono-regular.otf, kproman-regular.otf, libertinusmath-regular.otf, libertinusmono-regular.otf,
libertinusserif-regular.otf, cambria.ttc, xcharter-math.otf, xcharter-roman.otf, iwona-regular.otf,
iwonalight-regular.otf, kurier-regular.otf, kurierlight-regular.otf, antykwatorunska-bold.otf,
antykwatorunska-italic.otf, antykwatorunska-regular.otf, antykwatorunskacond-regular.otf,
antykwatorunskalight-regular.otf, latinmodern-math.otf, lmmonol®-regular.otf, lmmonoltcondl@-regular.otf,
Immonopropltl0-regular.otf, lmromanl@-regular.otf, texgyrebonum-math.otf, texgyredejavu-math.otf,
texgyrepagella-math.otf, texgyreschola-math.otf, texgyretermes-math.otf, texgyrebonum-bold.otf,
texgyrebonum-italic.otf, texgyrebonum-regular.otf, texgyrepagella-bold.otf, texgyrepagella-bolditalic.otf,
texgyrepagella-italic.otf, texgyrepagella-regular.otf, texgyreschola-regular.otf, texgyretermes-regular.otf,
ex-iwonal.tfm, ex-iwonam.tfm, ex-iwonar.tfm, mi-iwonabi.tfm, mi-iwonali.tfm, mi-iwonami.tfm, mi-iwonari.tfm,
rm-iwonab.tfm, rm-iwonal.tfm, rm-iwonam.tfm, rm-iwonar.tfm, sy-iwonalz.tfm, sy-iwonamz.tfm, sy-iwonarz.tfm,
ex-kurierl.tfm, ex-kurierm.tfm, ex-kurierr.tfm, mi-kurierhi.tfm, mi-kurierli.tfm, mi-kuriermi.tfm, mi-kurierri.tfm,
rm-kurierh.tfm, rm-kurierl.tfm, rm-kurierm.tfm, rm-kurierr.tfm, sy-kurierlz.tfm, sy-kuriermz.tfm, sy-kurierrz.tfm,
ex-anttcr.tfm, ex-anttl.tfm, ex-anttr.tfm, mi-anttbi.tfm, mi-anttcbi.tfm, mi-anttcri.tfm, mi-anttli.tfm,
mi-anttri.tfm, rm-anttb.tfm, rm-anttcb.tfm, rm-anttcr.tfm, rm-anttl.tfm, rm-anttr.tfm, sy-anttcrz.tfm,
sy-anttlz.tfm, sy-anttrz.tfm, dejavusans-bold.ttf, dejavusans.ttf, dejavusansmono-bold.ttf,
dejavusansmono-oblique.ttf, dejavusansmono.ttf, dejavuserif.ttf, stixtwomath-regular.ttf, stixtwotext-regular.ttf

compact fonts context 2024 meeting




Summary

e Compact font mode is the future, but it only works with LuaMetaTgX and
ConTgXt LMTX.

 The engine has to work harder, but the extra overhead can be neglected.
 Larger fonts have less impact.

 Using many fonts also has less impact.

* In math it is now the default anyway.

» We have larger nodes but the increase in memory usage is compensated
by less fonts.

* One has to use dimension related helpers in Lua (they do the scaling).

» The backend is more complex with respect to fonts so that compensates
the performance we gain on regular documents.

compact fonts — context 2024 meeting —




