The square root of 2 ain't rational

 $A \ Casual \ Talk \ By$

Pete Agoras

Demonstration

A simple assumption

 $\begin{aligned} \frac{a}{b} &= \sqrt{2} \\ (\frac{a}{b})^2 &= 2 \\ \frac{a^2}{b^2} &= 2 \\ a^2 &= 2b^2 \\ (2k)^2 &= 2b^2 \\ 4k^2 &= 2b^2 \\ 2k^2 &= b^2 \\ 2k^2 &= b^2 \\ \frac{a}{b} &\neq \sqrt{2} \end{aligned}$

Some centuries B.C.

Pete Agoras

Demonstration

Its consequences

■ So what?

Demonstration

The problem

• And but so we said a and b have no common factor.

 $\frac{a}{b} = \sqrt{2}$ $\left(\frac{a}{b}\right)^2 = 2$ $\frac{a^2}{b^2} = 2$ $a^2 = 2b^2$ $\left(2k\right)^2 = 2b^2$ $4k^2 = 2b^2$ $2k^2 = b^2$ $\frac{a}{b} \neq \sqrt{2}$

All fractions are reducible

Suppose $\frac{c}{d}$ is a rational number. If c and d have no common factor, then a = b and b = d. If they have a common factor, divide both by their greatest common divisor. The result is $\frac{a}{b}$, with no common factor.

Back

Some centuries B.C.

An even square has an even root

An even number, by definition, is expressible in the form 2k, where k is any integer. On the other hand, an odd number is expressible by

2k + 1

Thus the square of an odd number is

 $(2k+1)^2$

i.e.

 $4k^2 + 4k + 1$

i.e.

 $2 \times 2(k^2 + k) + 1$

which is of the form 2k + 1 with $2(k^2 + k)$ as k. Hence, an odd number produces an odd square, and thus if a square is even its root is even too.

Back

■ You might have noticed that this page is slightly scaled to accommodate its content to the slide's declared vsize parameter. Actually, it is scaled because I stretch this paragraph so as to have too much content. Which is kind of paradoxical. Or just opportunistic.

Pete Agoras