
Navigator Paul Isambert

zappathustra@free.fr

01/25/2010

Introduction

Navigator offers access to PDF features such as outlines (book-

marks), links, actions and embedded files ; it differs from other

existing packages on two main points : first, it doesn't depend on

any format and can be used with plain TEX, LaTEX, ConTeXt (with

some limitations, see here and here), and anywhere else ; second,

it defines commands to create PDF objects, and can be used as a

base to produce raw PDF code across pdfTEX, LuaTEX and XeTEX.

Note that PDF is a description language, and that not all PDF

viewers render it completely (not even Adobe Acrobat, actually) ;

thus, some of the features in Navigator might seem to produce

nothing when the file is read with a reader which doesn't fully

support PDF. Fortunately, the most common and useful features,

such as links and outlines, are generally supported.

Using Navigator

Navigator is loaded in the usual fashion, depending on the format :

\usepackage{navigator} in LaTEX, \usemodule[navigator] in

ConTEXt, and \input navigator anywhere else.

\finishpdffile Some of Navigator's operations can take place only at the end of

the file. These include producing the outline's hierarchy, sorting

embedded files, and writing some information about the docu-

ment. However, there are exceptions : first in LaTEX and ConTEXt,

this is done automatically (and for ConTEXt anyway file embed-

ding document settings aren't properly supported ; you can do

what Navigator does with the ConTEXt core, though) ; second,

even if you don't use LaTEX or ConTEX t, in XeTEX the outline hier-

archy is built at once, so this command isn't needed unless you

embed files or want to write some infos to the document's prop-

erties. Anyway the command can also be systematically issued

harmlessly.

1

Anchors

Anchors are positions used as the targets of links for navigation

within a PDF file (they are called destinations in PDF parlance).

They are to be used in association with the \jumplink command

or with outlines.

\anchor [<options>]<name>

This defines <name> as an anchor. In vertical mode, the destina-

tion is were the command is issued ; in horizontal mode, it also

depends on the up and left attributes below. In both cases, how-

ever, the value of fit might make a difference. The options that

follow are also used in the \outline command when it defines

an implicit anchor.

up <dimension> (Default: \baselineskip.)

In horizontal mode, anchors are placed on the baseline ; it means

they send below the intended line (more precisely : with the

intended line's baseline at the top of the screen). This attribute

makes a vertical correction, so the intended line is shown.

left <dimension> (Default: 0pt.)

Similar to up, but in the horizontal direction (moving leftward).

fit <xyz|fit|fith|fitv|fitb|fitbh|fitbv|fitr> (Default: xyz.)

All anchors target the page where they appear (fortunately), but

when jumping to an anchor how the page is displayed depends

on this parameter. The values have the following effect :

xyz The page is displayed so that the anchor is positioned

at the upper-left corner of the window. Also, if zoom is

specified, it is enforced.

fit The page is displayed so that it fits entirely in the window.

fith Same as fit, but only horizontally.

fitv Same as fit, vertically.

fitb The page is displayed so that its bounding box fits entirely

in the window. A page's bounding box is the smallest

rectancle enclosing its contents (including headers and

footers or marginal material, if any).

fitbh Same as fith for the bounding box.

fitbv Same as fitv for the bounding box.

fitr Displays the page so that the box where the anchor ap-

pears fits entirely in the window. This is disabled with

XeTEX, and subtler things might be possible in the future.

2

zoom <number> (No default.)

Sets the viewer's zoom when jumping to a destination. The num-

ber provided should be 1000 times the intended zoom (like magni-

fication in TEX) ; hence zoom = 1000 is the normal magnification,

i.e. a 100% zoom. The use of this attribute, as well as any value

but xyz for the previous one, might be extremely annoying for

the reader, because s/he might need to reset his or her zoom

after each jump. (Most viewers implement xyz so that it performs

its operation as best as possible without zooming ; hence, unless

the reader already uses a powerful zoom, the way the page is

displayed is predictable.)

\anchorname <name>

To avoid possible conflicts, Navigator tweaks the names you give

it for anchors ; if you ever need it, this command returns the real

PDF names of the anchor you call <name>.

Outlines (aka bookmarks)

Don't hold it against me if I use the words outline and bookmarks

alternatively. They are the same things, even though the

command is \outline. There is no need for a second run to get

bookmarks right.

\outline [<options>]<level>[<name>]<title>

This creates a bookmark with title <title>. In LuaTEX, <title> is

converted to UTF-16 (in octal form, so LuaTEX doesn't complain),

so you can use any character of Unicode (although the font used

by your reader is very unlikely to display anything besides the

basic plane). XeTEX seems to spot the right encoding sometimes.

As for pdfTEX, no conversion is performed, so Latin-1 at best may

succeed (the string is escaped nonetheless for characters with

special meanings in PDF).

The <level> defines how the bookmark fits in the hierarchy.

It is a number, and the smaller it is, the higher the bookmark. A

bookmark is a child to the nearest preceding bookmark with a

smaller <level>. The following example illustrates that (hope-

fully) :

\outline{1}{A chapter}

\outline{2}{A section}

\outline{3}{A subsection}

\outline{2}{Another section}

3

Now, there is a difference between pdfTEX and LuaTEX on the one

hand and XeTEX on the other. First, when using XeTEX, <level>

should be an integer ; no such restriction applies with the other

engines. That means that if you suddenly want to insert a book-

mark halfway between a chapter and a section in the hierarchy,

you don't need to renumber everything : just assign a decimal

number to it, for instance 1.5 in the previous example. That is

impossible with XeTEX (which will ignore the decimal part, so it is

also harmless). Second, with the latter engine, it is also impossible

to skip levels, i.e. the following example isn't allowed :

\outline{1}{A chapter}

\outline{3}{A subsection}

In that case, XeTEX (i.e. xdvipdfmx) will insert an intermediate

bookmark, called <No Title>, in red and italics (so you defi-

nitely can't miss it). With pdfTEX and LuaTEX, since levels are a

continuum, skipping a level doesn't make sense and the previous

example is perfectly legitimate (however, if a section follows the

subsection, its bookmark will appear at the same level as the

subsection's). Finally, with all engines, <level> can be zero or

negative.

Among the <options>, those pertaining to a bookmark's ap-

pearance are :

open <true|false> (Default: false.)

If set to true, the bookmark diplays its immediate children.

(You don't need to type `open = true' ; as with all other boolean

attributes, `open' suffices.)

bold <true|false> (Default: false.)

If true, the bookmark is displayed in a bold font.

italic <true|false> (Default: false.)

If true, the bookmark is displayed in an italic font (this is not

incompatible with the previous attribute).

color <red green blue> (Default: 0 0 0, i.e. black.)

A triplet of numbers between between 0 and 1 setting the book-

mark's color.

4

outlinecolor <red green blue> (Default: 0 0 0, i.e. black.)

Alias for color. (This name should be used when setting attributes

globally in the navigator parameter or elsewhere.)

By default, a bookmark creates an anchor, and clicking it

jumps to the position thus defined. If the optional <name> is

present, then you can refer to that anchor and reuse it, as if you'd

issued the \anchor command. Such an anchor, named or not, can

take the same options as seen above for the \anchor command,

for instance :

\outline[zoom = fith]{1}{A chapter}

...

\outline[left = 2em]{2}[mysection]{A section}

Two other options can modify a bookmark's behavior :

anchor <name> (No default.)

As just said, a bookmark creates an anchor. However, this is

not true if this attribute is set ; in this case, when clicked the

bookmark sends to the anchor called <name>, which need not be

already defined, of course. The attributes pertaining to anchor

settings, if any, are ignored, as is the optional name in the \out-

line command. In other words, the following two bookmarks are

equivalent :

\outline[anchor = mydest, fit = fitv]{1}[aname]{A title}

\outline[anchor = mydest]{1}{A title}

action <name> (No default.)

Like anchor, except the bookmark executes action <name> (and

doesn't send you anywhere). If both anchor and action are given,

the former wins. See the section on actions.

\pdfdef <command><parameter text>{replacement text}

Most of the commands used in TEX will yield nothing good in

a bookmark's title. However, you may want to reuse the same

text to set that title and, say, a section heading. When redefined

with \pdfdef, <command> will expand to <replacement text>,

but only in a bookmark's title. For instance, after :

\pdfdef\TeX{TeX}

\pdfdef\emph#1{#1}

5

\pdfdef\whatever{\noexpand\whatever}

\TeX will produce ``TeX'' in a bookmark, \emph will simply return

its argument, and \whatever will represent itself. Note that un-

expandable commands and \protected commands don't require

any special treatment to represent themselves.

Links

Links (and annotations more generally) are clickable zones of a

PDF document, which trigger actions. Navigator offers a few types

of links and actions, and also allows you to create your own with

raw PDF objects. The <options> that appear in the commands

below are described at the end of this section.

\jumplink [<options>]<name><text>

This prints <text> and defines it as a clickable zone that sends to

the anchor called <name> (defined either with \anchor or \out-

line, although the anchor need not be already defined for the link

to work, obviously). For instance, clicking \anchor or \outline

in the previous parenthesis sends you to the page where those

commands are defined.

\urllink [<options>]<url><text>

This is the same thing as \jumplink, except the link sends to an

internet resource (any URI works, actually). For instance :

\urllink[border = 1, color = 1 0 0, dash = 3 2]

{http://www.tug.org}{Go to TUG!}

produces : Go to TUG ! If the uri or base attributes in the navigator

parameter are set, then <url> can be relative.

\javascriptlink [<options>]<JavaScript code><text>

A link which executes some JavaScript code (if the viewer can do

that). For instance :

\javascriptlink[highlight = push]

{app.alert("Hello!")}{Say hello!}

produces : Say hello !

6

http://www.tug.org

\actionlink [<options>]<name><text>

This executes the action called <name>. A named action is an

action that is defined elsewhere in the document (not necessarily

before) and given a name to refer to it. The next section introduces

two simple commands to create URL and JavaScript actions ;

however, an action is just a PDF object ; hence, <name> can be any

valid PDF object (of the right type, obviously), and you can define

such objects with the commands introduced in the last section of

this document. Navigator already defines four actions, namely :

firstpage, lastpage, prevpage and nextpage. The meaning should

be obvious, but if you have any doubt, just click !

\rawactionlink [<options>]<PDF code><text>

This is the same as \actionlink, except the action is defined

not in an external action but in <PDF code>, which should be an

action dictionary (without the enclosing << and >>, exactly as

with \pdfdictobject).

In the commands above, the <options> are used to set the ap-

pearance of the links. Here are the ones you can set :

border <number> (Default: 0.)

The width (in PostScript points) of the border drawn around the

link. Default 0 means no border. (In pdfTEX and LuaTEX, you can

use the \pdflinkmargin primitive to set the distance between

the link's border and its content, even if the border isn't drawn –

it makes the clickable zone larger.)

color <red green blue> (Default: 0 0 0, i.e. black.)

The color of the link's border, if any.

linkcolor <red green blue> (Default: 0 0 0, i.e. black.)

Alias for color. (This name should be used when setting attributes

globally in the navigator parameter or elsewhere.)

dash <numbers> (No default.)

The dash pattern of the link's border, can you believe it ? The

<numbers> should be a1 b1 a2 b2... where a's specify visible

parts of the border in PostScript points and b's specify hidden

parts. Then the pattern repeats itself. More or less. (Set dash to

1 0 if you want to override a default dash pattern.)

7

highlight <none|invert|outline|push> (Default: invert.)

This defines how the link flashes when clicked : none does noth-

ing, invert inverts its colors, outline inverts its border's colors

if any, and push gives the amazing illusion that the link is pushed

below the surface of the page (says the author of the PDF refer-

ence, except s/he didn't mention any amazing illusion).

pre <code> (No default.)

TEX code to be appended before <text>.

post <code> (No default.)

TEX code to be appended after <text>. This and pre allows you

to achieve coherent formatting of links. For instance :

\def\weblink{\urllink[pre = \bgroup\bf, post = \egroup]}

Go to \weblink{http://www.tug.org}{TUG} and

upload to \weblink{http://ctan.org}{CTAN}.

produces : Go to TUG and upload to CTAN.

raw <PDF code> (No default.)

Raw PDF code to be inserted in the link's dictionary.

\annotation [<options>]<PDF code><text>

This creates an annotation tied to <text>. <PDF code> goes into

the annotation's dictionary ; note that the annotation thus created

doesn't even have a Subtype entry (a link, as described in this

section, is one of the many subtypes of annotation). Depending

on the <options>, the Border entry, the C entry (for color) and

the H (for highlight) might be specified.

There is one more type of action link, \openfilelink; it takes

the same options as the commands described here, but it is

introduced in the section on embedded files, because it is related

to them.

Actions

The commands in this section allow you to create actions and

refer to it somewhere else in your document. That is a convenient

approach for actions that are used repeatedly. Note that the PDF

file itself is also improved, because in it too actions thus defined

appear only once.

8

http://www.tug.org
http://ctan.org

You might think that not much types of actions can be

designed : only internet addresses and JavaScript. But those are

only predefined patterns to be used even when one doesn't know

anything about PDF. Other types of actions require that you write

real PDF code, more precisely so-called action dictionaries ; these

are but dictionary objects, and Navigator allows you to create

them with \pdfdictobject. Then the name you give to that

object is a valid action name and can be used with \actionlink.

In other words, there is no \whateveraction command,

because that's what \pdfdictobject does.

\urlaction <name><url>

Defines <name> as an action which sends to the address <url>

on the internet. (Actually, any URI can be used, not only URLs.)

As with \urllink, if the uri or base attributes in the navigator

parameter are set, then <url> can be relative.

\javascriptaction <name><JavaScript code>

Defines <name> as an action which executes <JavaScript code>

(if the viewer can do that).

Thus the following are equivalent to the previous two exam-

ples with \urllink and \javascriptlink :

\urlaction {tug}{http://www.tug.org}

\actionlink{tug}{Go to TUG!}

\javascriptaction{hello}{app.alert("Hello!")}

\actionlink{hello}{Say hello!}

Embedded files

Navigator provides a simple command to embed files in a PDF

document. Embedded file can also be opened with an action link,

but only if they are PDF files. However, no proper support is

offered for file embedding in ConTEXt.

\embeddedfile [<description>]<object name>[<alternate filename>]<file>

This embeds <file> in the current document ; the name displayed

by the viewer will be <file> or <alternate filename>, if used

(do not forget the file's extension in that alternate name). The

use of an alternate name is useful if <file> contains a path.

The viewer might also display an optional <description>. (The

command name \embeddedfile, cumbersome when compared

9

to the more obvious \embedfile, is meant to avoid a possible

conflict with Heiko Oberdiek's embedfile.)

The command creates a PDF object called <object name> ;

its Type is Filespec, and it points to another object of type

EmbeddedFile (containing the actual file). That object isn't used

anywhere in Navigator for the moment, but it is available in case

you need it, for instance when writing raw PDF.

\openfilelink [<options>]<file>[<page>]<text>

This is an action link, so see the description of the <options>

above. When clicked, it opens <file> on page <page> (first page

if <page> is omitted). That file should be embedded elsewhere in

the document with \embeddedfile, and it should be a PDF file ;

<file> should match the <file> argument in \embeddedfile,

or <alternate filename> if given.

Settings

Many of the commands introduced in the previous sections can

take options. If an option is not given, its default value is used

instead ; you may want to set those default values, and to do so

you have to change the attributes of the navigator parameter :

\setparameter navigator:

<attribute> = <value>

<attribute> = <value>

...

\par

This is the YaX syntax , it is a little bit special, and if you don't want

to learn it the traditional comma-separated list is also possible :

\setparameterlist{navigator}

{<attribute> = <value>,

<attribute> = <value>...}

(If a <value> is true it can be omitted.) Learning YaX might still

be a good idea, though, since then you can use the meta attribute,

which wasn't shown when the options for the commands above

were explained, because it can be used anywhere. For instance :

\setparameterlist{mylink1}

{meta = navigator,

10

http://tug.ctan.org/cgi-bin/ctanPackageInformation.py?id=yax

color = 1 0 0}

\setparameterlist{mylink2}

{meta = navigator,

color = 0 1 0}

...

\actionlink[meta = mylink1]{...}{...}

\actionlink[meta = mylink2]{...}{...}

There you define two types of links, and you can change their set-

tings at once by changing the parameters mylink1 and mylink2

instead of the links themselves (which might be numerous).

Note how mylink1 and mylink2 define navigator as the meta-

parameter. That is not necessary, but the action links wouldn't

inherit your global default settings otherwise (unless the meta-

parameter of mylink1 and mylink2 itself had navigator as its

meta-parameter, or a meta-parameter which... got it ?). The navi-

gator parameter itself can have a meta-attribute too.

At last, here are the attributes that can be set (some make sense in

individual commands only, and not in the navigator parameter,

but you can still set them) :

up, left, fit, zoom: see the section on anchors (note that they

also affect outlines when outlines create implicit anchors).

outlinecolor, open, bold, italic, action, anchor: those are

options for outlines. (In a given outline, one can use the color

attribute instead of outlinecolor; in the navigator parameter,

however, one should use only the latter.)

border, linkcolor, highlight, dash, raw, pre, post: those af-

fect action links. (The remark on outlinecolor above holds for

linkcolor here.)

And here are attributes that aren't associated with commands,

but instead specify options and pieces of information for the

entire document. Note that they do not work in ConTEXt, but that

can be done easily without Navigator.

author <string> (No default.)

The author of the document. This shows up in the document's

properties. The string is dealt with as described for an \outline's

title.

11

title <string> (No default.)

Same as author, with the document's title.

keywords <string> (No default.)

Same thing again, with keywords.

subject <string> (No default.)

One more time for the world, this time with the subject addressed

by your document.

date <date> (Default: current date.)

The creation date ; the date should be formatted as explained in

the PDF Reference, so have fun. Anyway that is set automatically

by TEX (and can't be set with XeTEX).

moddate <date> (Default: current date.)

Same as date, for the modification date.

creator <string> (Default: TeX.)

The software that produced the document's original format.

producer <string> (Default: pdfTEX, LuaTEX or XeTEX.)

The software that turned the original document into PDF (cannot

be set with XeTEX).

rawinfo <PDF code> (No default.)

Entries you want to add by yourself to the document's Info

dictionary.

layout <onepage|onecolumn|twopage|twocolumn|twopage*|twocolumn*>

(No default.)

This sets how the document should be displayed when opened :

onepage The window displays only one page, with no contin-

uous transition to the next one.

onecolumn The window displays only one page, with a continu-

ous transition to the next.

twopage The window displays two pages, odd-numbered pages

on the right, without a continuous transition.

twocolumn Same as twopage with a continuous transition.

twopage* Same as twopage with odd-numbered pages on the

left.

twocolumn* Same as twopage* with a continuous transition.

12

http://www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/PDF32000_2008.pdf

mode <outlines|bookmarks|thumbnails|thumbs|attachments|files|oc>

(No default.)

This sets what panel the reader should display when the document

is opened :

outlines The reader shows the document's outlines.

bookmarks Same as outlines.

thumbnails Thumbnail images are shown.

thumbs Same as thumbnails.

attachments Show the attached files.

files Same as attachments.

oc The Optional Content Group panel is displayed ; quite

useless if you don't have any OCG's (Navigator might

offer support one day).

uri <address> (No default.)

The base address that will be used with relative references. See

\urllink and \urlaction.

base <address> (No default.)

Alias for uri.

openaction <name> (No default.)

The <name> of the action to be performed when the document is

opened.

rawcatalog <PDF code> (No default.)

Raw PDF code to be added to the document's catalog.

PDF objects

Here are commands that let you create and use PDF objects (and

which Navigator actually uses internally). Of course they are

useless unless you know how PDF works (if you do, then you might

note that what I call here objects actually are indirect objects).

Named actions used with \actionlink being objects, they

behave as any other object with the commands below ; for one

thing, they respond positively to \ifpdfobject, and you can't

create an object with the same name.

\pdfobject <name><code>

Creates a raw PDF object with name <name>. There shouldn't

already exist an object with the same name (unless it is just

reserved).

13

\pdfdictobject <name><code>

Same as \pdfobject, except a dictionary object is created. This

command is totally equivalent to the previous one with <code>

enclosed between << and >>. With this you can write custom

named actions, i.e. <name> can be used with \actionlink.

\pdfstreamobject [<raw code>]<name><stream>

Creates a PDF stream object, with optional <raw code> added to

the dictionary.

\pdffileobject [<raw code>]<name><file>

Same as \pdfstreamobject, except the stream is the contents of

<file>.

\pdfreserveobject <name>

Reserves an object with name <name>. That is totally useless (but

harmless too) with XeTEX. In pdfTEX and LuaTEX, it is needed to

refer to an object that isn't created yet.

\pdfensureobject <name>

If <name> isn't an object (reserved or created), this command

reserves it. Otherwise it does nothing.

\pdfobjectnumber <name>

Returns the number of object <name> (which must be reserved at

least). In XeTEX, it actually returns nothing, because you can't use

object numbers there, but fortunately in pdfTEX and LuaTEX it isn't

very useful either ; the next command is much more interesting.

(If <name> doesn't exist, this command returns 0 ; an object can't

have number 0 in PDF, but that makes more sense than returning

an error message, which would never make it to the terminal and

spoil the PDF file instead.)

\pdfrefobject <name>

Makes an indirect reference to object <name>. For instance :

\urlaction{tug}{http://www.tug.org}

and then somewhere while writing PDF code :

/A \pdfrefobject{myobj}

(As with \pdfobjectnumber, if <name> doesn't exist, i.e. it hasn't

14

been reserved or created, this command returns 0 0 R, an im-

possible object that is better than an error message. With XeTEX,

though, the reference is made anyway.)

\pdfobjectstatus <name>

Returns 0 if <name> isn't an object, 1 if it is a reserved object and

2 if the object has been created.

\ifpdfobject <name><true><false>

Executes <true> if <name> is an object (reserved or created) and

<false> otherwise.

\pdfstring <string>

This transforms <string> into a valid PDF string : in XeTEX this

actually does nothing, whereas in pdfTEX the string is escaped,

and in LuaTEX it is converted to UTF-16 in octal form. Note that

this operation is already performed in a bookmark's title, in the

description of an embedded file, in \javascriptaction and in

various attributes of the navigator parameter, so you shouldn't

use it there ; it might be otherwise useful when writing raw PDF

code.

Typeset with LuaTeX v.0.66

in Lucida and Lucida Console

(Charles Bigelow and Kris Holmes)

15

	Introduction
	Using Navigator
	\finishpdffile

	Anchors
	\anchor
	up
	left
	fit
	zoom

	\anchorname

	Outlines (aka bookmarks)
	\outline
	open
	bold
	italic
	color
	outlinecolor
	anchor
	action

	\pdfdef

	Links
	\jumplink
	\urllink
	\javascriptlink
	\actionlink
	\rawactionlink
	border
	color
	linkcolor
	dash
	highlight
	pre
	post
	raw

	\annotation

	Actions
	\urlaction
	\javascriptaction

	Embedded files
	\embeddedfile
	\openfilelink

	Settings
	author
	title
	keywords
	subject
	date
	moddate
	creator
	producer
	rawinfo
	layout
	mode
	uri
	base
	openaction
	rawcatalog

	PDF objects
	\pdfobject
	\pdfdictobject
	\pdfstreamobject
	\pdffileobject
	\pdfreserveobject
	\pdfensureobject
	\pdfobjectnumber
	\pdfrefobject
	\pdfobjectstatus
	\ifpdfobject
	\pdfstring

