The package for TgX and BEIEX

tuple

v0.2

2024/12/20

Christian TELLECHEA]

This extension provides common operations for tuples of numbers, in a expand-
able way, with a concise and easy-to-use "object.method” syntax.

“unbonpetit@netc.fr

mailto:unbonpetit@netc.fr

1 Preview

We consider the list of numbers (which we will now call a "tuple”):
12.7, 6.3, 11..7, 2.9, 5.5, 8.1, 4.3, 9.4, 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1
We can define an “object”, which we name for example "nn” with the instruction:

\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1,
3, 4.1}

This tuple “nn” will be used throughout this documentation and recalled in comments in all the codes where it occurs.

Here is its maximal value:

1) \tplexe{nn.max} \par 1) 13.6
2) \edef\foo{\tplexe{nn.max}}\meaning\foo 2) macro:->13.6

We can also calculate the median of the 5 smallest values, which supposes:
1. to sort the tuple (method sorted);
2. to retain only the values whith index 0 to 4 (method filter);
3. to find the median of the 5 numbers retained (method med).

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1} 13

1) \tplexe{nn.sorted.filter{idx<5}.med} \par 2) macro:->3
2) \edef\foo{\tplexe{nn.sorted.filter{idx<5}.med}}\meaning\foo

Without BIEX, this package is loaded with
\input tuple.tex

and under KIgX with
\usepackage{tuple}

This package does not rely on any other except the KIEX3 module "13fp”, which is now part of the KIEX kernel, in
particular to take advantage of its powerful macro \fpeval.

If we do not use KIgX, tuple will load the file expl3-generic.tex in order to have the 13fp module.

2 Declaring a tuple object

The macro \newtuple{(name)}{(list of numbers)} allows to construct a tuple “object” that is then accessed by its
(name).

The (name) accepts all alphanumeric characters [az][AZ][09], spaces and punctuation. Spaces preceding or following
it are removed. A macro is also allowed?

The (1ist of numbers) is fully expanded and then detokenized before being used by the constructor of the tuple object.
Empty elements are ignored.

For the sake of simplicity or spee the user is given the choice of specifying the type of numbers that make up the
tuple using the macro \tplsetmode ;

+ \tplsetmode{int} to request that all numbers be signed integers between —2%' + 1 and 23! — 1. Comparisons
during sorting are made with \ifnum, operations on numbers with \numexpr.

+ \tplsetmode{dec short} specifies “short” decimals, i.e. 8-digit intpart and 8-digit decpart. In this case, compar-
isons are made with \ifdim and operations on numbers by a rudimentary calculation engine embedded within
tuple.

« \tplsetmode{dec long}, which is the default mode, specifies “long” decimals in the sense of 13fp. In this mode,
comparisons and operations on numbers are performed by 13£p.

Whichever mode is selected, final calculations (standard deviation, mean, quartile, etc.) are performed by 13fp.

2The macro will never be modified by the package tuple: internally, this macro is detokenized to build a more complex name of a macro.
3The speed differences aren’t huge, but they do exist, see page

It is possible to define an empty tuple (i.e. one that does not contain any numbers), but many methods will return an
error if they are executed on an empty list.

On the other hand, it’s impossible to redefine an existing tuple (this requires the store method).

3 Methods

Here is the syntaxe to execute methods on a tuple:

\tplexe{(tuple name).{method 1).(method 2)...{method n)}

C 5

No spaces are allowed between the “.” and the name of a method. It is therefore illegal to write “. sorted”.
There are 3 types of datas for the tuple package:

1. numbers (and displayable datas);

2. tuple” objects;

3. the “storage” type which characterizes non-expandable methods performing assignments.

All methods in this package take a tuple as input (which is the result of the previous methods) and return a result whose
type determines which group the method belongs to:

« group 1 "tuple — number”;

« group 2 “tuple — tuple”. The methods in this group do not modify the initial tupl they act on a temporary
tuple that it is obviously possible to save with a method in the group below;

« group 3 "tuple — storage”;

The macro \tplexe and its argument are expandable, provided that the methods invoked are not in the group tuple
— storage”.

If no method is specified, an expandable, implicit and generic method of the group “tuple — number”, is executed and
returns the tuple.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,
o 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% 12.7,6.3,11.7,2.9,5.5, 8.1, 4.3, 9.4, 13.6, 2.9, 6.9, 11.2, 5.1, 7.7

\tplexe{nn} 10.1, 3, 4.1

4 Methods of the group tuple — number

4.1 Methods len, sum, min, max, mean, med and stdev

All these expandable methods do not accept any argument and return respectively the number of elements, their sum,
the minimum, the maximum, the mean, the median and the standard deviation.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% 1) len = 17

1) len = \tplexe{nn.len}\par 2) sum = 125.5

2) sum = \tplexe{nn.sum}\par 3) min = 2.9

3) min = \tplexe{nn.min}\par 4) max = 13.6

4) max = \tplexe{nn.max}\par 5) mean = 7.382352941176471
5) mean = \tplexe{nn.mean}\par 5) med = 6.9

5) med = \tplexe{nn.med}\par 6) stdev = 3.447460325944583
6) stdev = \tplexe{nn.stdev}

4.2 Method quantile

This expandable method has the syntax

quantile{(p)}

“They cannot do so, otherwise they would not be expandable!

where (p) must be a number between 0 and 1. The method returns the quantile according to the argument (p). The
method used is the average metho this is interpolation scheme “R7” described in this article.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% 1)4.3
1) \tplexe{nn.quantile{0.25}}\par 2)6.9
2) \tplexe{nn.quantile{@.5}}\par 2) 10.1

2) \tplexe{nn.quantile{0.75}}\par

Note that quantile{0.5} is equivalent to med.

It’s important to note that spaces before and after method arguments are ignored. It is therefore possible to write
.quantile {0.5}_.

4.3 Method get

This expandable method has the syntax
get{(index)}

The first index is 0 and the last is n — 1 where n is the number of elements in the tuple. Therefore, the argument of get
must be between 0 and n — 1. You can also use negative indexes, where —1 is the index of the last element, —2 that of
the penultimate element and so on up to —n.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% 1st number : 12.7
1st number : \tplexe{nn.get{0}}\par 13th number : 5.1
13th number : \tplexe{nn.get{12}}\par

last number : \tplexe{nn.get{\tplexe{nn.len}-1}}\par
last number : \tplexe{nn.get{-1}}% better than above

last number : 4.1
last number : 4.1

The argument of get is evaluated before being used: it is therefore possible to put the expandable macro \tplexe with
a final method returning an integer.

4.4 Method pos

This expandable method has the syntax
pos{{number)}[(n)]

and returns the index of the (n) occurrence of the (number) in the tuple. If the tuple does not contain the {number), -1
is returned. If the optional argument is not present, (n) is —1.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% index of 12.7: 0
index of 12.7 : \tplexe{nn.pos{12.7}}\par index of 2.9 : 3
index of 2.9 : \tplexe{nn.pos{2.9}}\par index of 2.9[2]: 9
index of 2.9[2]: \tplexe{nn.pos{2.9}[2]}\par index of 2.9[3]: -1
index of 2.9[3]: \tplexe{nn.pos{2.9}[3]}\par index of 31.8 : -1

index of 31.8 : \tplexe{nn.pos{31.8}}

4.5 Method show
This expandable method does not accept any arguments and is intended to convert a tuple object into a displayable
result. To do this:

« for each element, the macro \tplformat, requiring 2 mandatory arguments, is executed. The first argument passed
is the index of the element and the 2nd argument is the element itself;

« each result from the macro \tplformat is separated from the next by the content of the macro \tplsep.

By default, these two macros have the following code:

SIf p is the argument of the method, we define h = (n — 1)p + 1 where n is the length of the tuple.
The method returns the number equal to x|) + (h — | h]) (x| + X)), where xi. is the k™ number of the sorted tuple.

https://en.wikipedia.org/wiki/Quantile

\def\tplformat#1#2{#2}% #l=current index #2=current item
\def\tplsep{, }

The default behavior is therefore exactly the same as the implicit method that is executed last, and in particular, the
method is expandable.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,
% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% 12.7,6.3,11.7,2.9,5.5, 8.1, 4.3, 9.4, 13.6, 2.9, 6.9, 11.2, 5.1, 7.7,

\tplexe{nn.show} 10.1, 3, 4.1

These 2 macros can be reprogrammed to create more advanced formatting. Here we use the \tplfpcompare macro,
which is an alias of the \fp_compare :nNnTF macro of the 13fp module, to compare an element with a given value. In
the 2 examples given below, the method is no longer expandable due to the use of the \fbox and \textcolor macros.

Boxing the first 10 elements:

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% [117), [29), (55, (&1, [43), [94], [13.6] [239], 6.9,
\def\tplformat#1#2{\ifnum#1<10 \fbox{#2}\else#2\fi} 11.2,5.1,7.7,10.1, 3, 4.1

\tplexe{nn.show}

Below-average items highlighted in red:

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,
% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}%
\edef\nnmean{\tplexe{nn.mean}}%

\def\tplformat#1#2{\tplfpcompare{#2}<{\nnmean}
{\textcolor{red}{#2}} 12.7;6.3;11.7;29;55;81;4.3;9.4;13.6;29;69;11.2;

[#2}% 5.1;7.7;10.1;3;4.1
3%
\def\tplsep{~; }%
\tplexe{nn.show}

5 Methods of the group tuple — tuple
Each time a tuple is generated or modified, the len, sum, min, max, mean, med, stdev and sorted methods are updated.

5.1 Method sorted

This expandable method does not accept any arguments and returns a tuple object with its elements sorted in ascending
order.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,
% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% 2.9, 2.9, 3, 4.1, 43, 5.1, 55, 6.3, 6.9, 7.7, 81, 94, 10.1, 11.2,

\tplexe{nn.sorted} 11.7,12.7, 13.6

5.2 Method set

The syntax of this expandable method is
set{(index1): (numberl),(index2) :(number2), ...}

In the tuple resulting from the previous methods, replaces the number at (index1) with (number1) and so on if several
assignments are specified in a comma-separated list.

Each (index) must be between 0 and n— 1, where n is the number of elements in the tuple passed as input to the method.
Negative indexes from —n to —1 are also permitted.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,
% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% 12.7, 10, 11.7, 2.9, 5.5, 50, 4.3, 9.4, 13.6, 2.9, 6.9, 11.2, 5.1, 7.7

\tplexe{nn.set{1:10,5:50,-1:-666}} 10.1, 3, -666

5.3 Method add

This expandable method, which adds a (insertion) at one or more specified indexes, has the syntax
add{(index1):(insertionl),(index2):(insertion2),...}
It should be noted that in this syntax, a (insertion) can be
« a single number “add{{index) : (number)}”
« a csv list of numbers that must be enclosed in braces “add{(index) :{n1,n2,n3...}}”
« atuple accessed by \tplexe: “add{(index): {\tplexe{(tuple name)}}}”.

As for (index), they can be between 0 and n, where n is the number of elements in the tuple. Negative indexes between
—n — 1 and —1 are also permitted:

+ a (index) equal to 0 or —n — 1 places the (insertion) at the beginning of the tuple passed as input;
« a (index) equal to n or —1 places the (insertion) at the end of the tuple;

« the (index) are not updated after each (insertion), but only after the last one. It is therefore not equivalent
to write “.add{1:100,2:200}” and “.add{1:100}.add{2:200}”. Indeed, 200 will be at index 3 in the first case,
whereas it will be at index 2 in the second.

Wnewtuplelnn}12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4, 1) add at first pos: 666, 667, 12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 43,
" 13.6. 2.9, 6.0, 11.2. 5.1, 7.7, 10.1, 3, 4.1}% 9.4,13.6,2.9,6.9,11.2,5.1,7.7, 10.1, 3, 4.1

1) add at first pos: \tplexe{nn.add{0:{666,667}}}\par 2) add index 11: 127, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4, 13.6, 2.9,
2) add index 11 : \tplexe{nn.add{11:{666,667}}}\par 6.9, 666, 667, 11.2, 5.1, 7.7, 10.1, 3, 4.1

3y add at last pos : \tplexe{nn.add{L:{666. 667}}} 3) add at last pos : 12.7, 63, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4, 13.6,

2.9,6.9,11.2,5.1,7.7,10.1, 3, 4.1, 666, 667

\newtuple{X}{10,20,30,40,50,60}%

\newtuple{Y}{1,2,3,4}% 1)1, 2,3, 4, 10, 20, 30, 40, 50, 60
1) \tplexe{X.add{0:{\tplexe{Y}}}}\par 2) 10, 20, 1, 2, 3, 4, 30, 40, 50, 60
2) \tplexe{X.add{2:{\tplexe{Y}}}}\par 3) 10, 20, 30, 40, 50, 60, 1, 2, 3, 4
3) \tplexe{X.add{-1:{\tplexe{Y}}}}\par 4) 10, 100, 20, 200, 30, 40, 50, 60
4) \tplexe{X.add{1:100,2:200}}\par 5) 10, 100, 200, 20, 30, 40, 50, 60

5) \tplexe{X.add{1:100}.add{2:200}}

5.4 Method op

This expandable method, which performs an {operation) on all elements of the tuple, has the syntax
op{(operation)}

The (operation) is an expression not containing braces, evaluable by \fpeval once all occurrences of "val” have been
replaced by the value of each element, and all occurrences of “idx” by its index.

\newtuple{X}{10,20,30,40,50,60}%

1) \tplexe{X.op{val+5}}\par

2) \tplexe{X.op{val*val}}\par

3) \tplexe{X.op{val+idx}}\par

4) \tplexe{X.op{idx<4 ? val-1 : val+l }}

1) 15, 25, 35, 45, 55, 65
2) 100, 400, 900, 1600, 2500, 3600
3) 10, 21, 32, 43, 54, 65
4)9, 19, 29, 39, 51, 61

5.5 Method filter

Thi expandables method, which selects elements according to one or more criteria, has the syntax
filter{(test)}

and where (test) is a boolean not containing braces, evaluable by \fpeval once all occurrences of "val” have been
replaced by the value of each element, and all occurrences of "idx” by its index.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}% 1)6.3,2.9,5.5,8.1,4.3,9.4,2.9,6.9,5.1,7.7,3,4.1

1) \tplexe{nn.filter{val<10}}\par 2)6.3,5.5,8.1,9.4,6.9,5.1,7.7

2) \tplexe{nn.filter{val>5 && val<10}}\par 3)12.7,6.3,11.7,10.1, 3, 4.1

3) \tplexe{nn.filter{idx<3 || idx>13}}\par 4)12.7,11.7,5.5, 8.1, 4.3, 9.4, 13.6, 6.9, 11.2, 5.1, 7.7, 10.1, 3

4) \tplexe{nn.filter{val!=6.3 && val!=2.9 && val!=4.1}}

5.6 Method comp

This expandable method composes two tuples of the same length with an operation that the user specifies. Its syntax is
comp{{operation)}{{tuple name)}

where the tuple whose name is passed as the second argument must have the same length as the tuple passed as input
to the method.

The (operation) is an expression not containing braces, evaluable by \fpeval once all occurrences of “xa” have been
replaced by the value of each element of the input tuple, and all occurrences of *xb” by that of the tuple specified in the
2nd argument.

Product of 2 tuples and their "sumprod”:

\newtuple{A}{2,-4,3,7,-1}%

\newtuple{B}{-9,0,4,6,-2}% product -18, -0, 12, 42, 2
product \tplexe{A.comp{xa*xb}{B}}\par sumprod: 38

sumprod: \tplexe{A.comp{xa*xb}{B}.sum}

Calculation of the smallest distance to point A(2.5 ; -0.5) knowing the list of abscissas and the list of ordinates of a
trajectory (here elliptical):

\newtuple{ListX}{4,2,0.5,1,3,6.5}%
\newtuple{ListY}{2,1.5,0,-1.5,-2,0.5}% 1.58113883008419
\tplexe{ListX.comp{sqrt((xa-2.5)**2+(xb+0.5)**2)}{ListY}.min}

6 Methods in the group tuple — storage

As these methods don’t return a result because they perform an assignment, they are not expandable, and must be placed
in the last position. If this is not the case, all methods following them will be ignored.

6.1 Method split

This method cuts the tuple passed as input to the method after the specified index. The syntax is
split{(index)}{(tuplel)}{{tuple2)}

The tuple passed as input to the method is split after the (index): the part before the split is assigned, via newtuple|
to the tuple with name “tuplel” and the remaining part to the tuple with name “tuple2”. No check is made on the
existence of the 2 tuples, so existing tuples can be silently replaced.

The (index) must lie between 0 and n — 2 if positive, or between —n and —2 if negative, n being the number of elements
in the tuple passed as input.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}%

\tplexe{nn.split{5}{n1}{n2}}% tuple before: 12.7, 6.3, 11.7, 2.9, 5.5, 8.1

tuple before: \tplexe{nl}\par tuple after : 4.3, 9.4, 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1

tuple after : \tplexe{n2}

6.2 Method store

This macro is used to store the result of the last method. If this result is a tuple, the syntax is
store{(tuple name)}
and if the result is a number or a displayable data from the show method:

store{(macro)}

No check is made on the existence of the tuple or macro. It is therefore possible to silently replace an existing tuple or
macro.

%\newtuple{nn}{12.7, 6.3, 11.7, 2.9, 5.5, 8.1, 4.3, 9.4,

% 13.6, 2.9, 6.9, 11.2, 5.1, 7.7, 10.1, 3, 4.1}%

1) \tplexe{nn.sorted.filter{val>11l}.store{nnl}}%

\tplexe{nnl}\par

2) \tplexe{nnl.len.store\nnlen}% 1) 11.2, 11.7, 12.7, 13.6

\meaning\nnlen\par 2) macro:->4

3) \def\tplformat#1#2{\fbox{#2}}\def\tplsep{ }% 3) macro:->\fbox {11.2} \fbox {11.7} \fbox {12.7} \fbox {13.6}
\tplexe{nnl.show.store\nnshow}% 4) macro:->11.2, 11.7, 12.7, 13.6

\meaning\nnshow\par

4) \edef\nndisp{\tplexe{nnl}}%
\meaning\nndisp% generic method

To store the result of the generic method, you have to use \edef because \tplexe{(tuple).store(macro)} is incorrect
since in this case, the store method applies to a tuple.

7 Tuple generation

To generate a tuple, we can use the expandable macro \gentuple which is intended to be called in the 2nd argument of
\newtuple. Its syntax is

\gentuple{(initial values)},\genrule({generation rule);\while||\until{condition)}
where:

o the (initial values) are optional. If present, they must be followed by a comma. The macro \gentuple deter-
mines their number i by counting (i must be at most equal to 9). These initial values will be copied at the beginning
of the tuple and subsequently, are intended to be used in the (generation rule) for recurrence purposes;

« the (generation rule) is an expression not containing braces, evaluable by \fpeval once in the previous i values,
all occurrences of \1 have been replaced by the first value, \2 by the second value, etc. In addition, each occurrence
of \1 is replaced by the value of the current index.

« the (condition) is a boolean not containing braces, evaluable by \fpeval once all occurrences of “val” have
been replaced by the value of the computed element, and all occurrences of "\i” by its index. If the keyword
after ; is \while, the loop is of the type while{condition)...endwhile whereas if this keyword is \until, it is a
repeat...until{condition) loop.

Generating the first 10 even integers:

\gentuple{\genrule (\i+1)*2 ; \until \i=9 }\par 2,4, 6, 8,10, 12, 14, 16, 18, 20
or\par or
\gentuple{\genrule (\i+1)*2 ; \while \i<10 } 2,4, 6,8, 10,12, 14, 16, 18, 20

Generation of 15 random integers between 1 and 10:

\gentuple{\genrule randint(1,10) ; \until \i=14 } 53,2,54,7,6,4,3,55,8,7,1,3

Generate squares of integers up to 500:

\gentuple{\genrule\i*\i; \while val<500 } 0,1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225,
256, 289, 324, 361, 400, 441, 484

Generation of the first 10 terms of the Fibonacci sequence:

\gentuple{1,1,\genrule\1+\2; \until \i=9 } 1,1,2,3,5, 8,13, 21, 34, 55
Generation of the first 10 terms of ug = 1;u; =1;uy = -1l and u, = U,_3up_1 — ufl_zz
\gentuple{1,1,-1,\genrule\1*\3-\2¥\2; \until \i=10} 1,1,-1,-2, -3, -1, -7, 20, -69, 83, -3101

Generation of the Syracuse sequence (aka the “3n + 1 sequence”) of 15:

\gentuple{15,\genrule \1/2=trunc(\1/2) ? \1/2 : 3+\1+1 ; \until val=1}% 15,46, 23, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2,
\meaning\syr lundefined

Maximum altitude and length of the Syracuse sequence of 27:

\newtuple{syr27}
{\gentuple{27,\genrule \1/2=trunc(\1/2) ? \1/2 : 3*\1+1 ; \until val=1}}% length = 112
length = \tplexe{syr27.len}\par max alt = 9232

max alt = \tplexe{syr27.max}

8 Conclusion

8.1 Motivation

Somewhat surprisingly, very little exists to manipulate and operate on lists of numbers@

The main challenge was to provide expandable macros and also an original syntax in the world of TgX of the type
(object).{method 1).{method 2)...{method n), where you can chain methods executed on an “object” which is a
tuple of numbers. I don’t know if any packages offer this kind of syntax, but it’s actually quite intuitive. As I'm fairly
unfamiliar with programming expandable macros, I almost gave up many times. But I've finally found a mouse-hole
that makes it all work pretty much, except for the numerous bugs that are probably lurking everywhere.

I'd like to thank anyone who finds one for pointing it out to me by e-mail, or even suggesting new features.

8.2 Execution speed

When you get into optimizing execution speed, especially for expandable macros, you don’t get out! It’s a pit of questions
about macro arguments, about little — or big — tricks that save time, and a headache about how to juggle with delimited
arguments and find them later!

I hope I didn’t fall into this trap, because I've barely entered it. In any case, TgX is not made for massive calculations,
since it is first and foremost a typesetting software. For calculations, powerful tools that beat TgX hands down exist in
abundance.

In any case, "expandable macro” goes a bit against “execution speed”. For information, I put below the compilation
times, in seconds, of the creation of tuples containing n random integers. It depends on the computer used, of course,
but the orders of magnitude are quite revealing. We can clearly see that it is illusory to exceed a thousand numbers
because the time to create a tuple then increases rapidl That said, who would use TgX for calculations on so many
numbers?

This table illustrates the creation speeds of a tuple of random signed integers between —1000 and 1000. As a reminder,
creating a tuple involves sorting its elements (by quick sort), calculating the sum of the numbers and the sum of squares.
The 3 modes can thus be compared for larger or smaller tuples.

Nb items int dec:short | dec:long

25 | 0.001s 0.001 s 0.006 s

50 | 0.002s 0.004 s 0.016 s

100 | 0.005s 0.008 s 0.031s

200 | 0.019s 0.027 s 0.082's

400 | 0.082s 0.103 s 0.227 s

800 | 0.427 s 0.513 s 0.769 s

1600 | 3.349 s 3.939s 4.355s

“There is one package, commalists-tools, but it’s clearly too limited. Like all its author’s packages that flood CTAN, it simply aligns, linearly
and without any real programmation, the high-level macros of the packages tikz, listofitems, xstring, xint and simplekv.

"Not to mention that, in addition to that, the tuple is immediately recreated and recalculated after being modified by the methods set, add, op,
filter, split and comp

8.3 Example: state population

The tuple \Wpop contains the population of each state in the world, in millions of inhabitant:

\newtuple\Wpop{%

43.4, 2.8, 46.3, 37.8, 0.1, 46.1, 2.8, 0.1, 26.7, 9.0, 10.5, 0.4, 1.5,
174.7, 0.3, 9.5, 11.7, 0.4, 14.1, 0.8, 12.6, 3.2, 2.7, 217.6, 0.5, 6.6,
23.8, 13.6, 0.6, 17.1, 29.4, 39.1, 5.9, 18.8, 19.7, 1425.2, 7.5, 0.7,
52.3, 0.9, 6.2, 5.2, 29.6, 4.0, 11.2, 0.2, 1.3, 10.5, 26.2, 105.6, 5.9,
1.2, 0.1, 11.4, 18.4, 114.5, 6.4, 1.8, 3.8, 1.3, 1.2, 129.7, 0.9, 5.5,
64.9, 0.3, 0.3, 2.5, 2.8, 3.7, 83.3, 34.8, 10.3, 0.1, 0.4, 0.2, 18.4,
14.5, 2.2, 0.8, 11.9, 10.8, 10.0, 0.4, 1441.7, 279.8, 89.8, 46.5, 5.1,
9.3, 58.7, 2.8, 122.6, 11.4, 19.8, 56.2, 0.1, 4.3, 6.8, 7.7, 1.8, 5.2,

2.4, 5.5, 7.0, 2.7, 0.7, 31.1, 21.5, 34.7, 0.5, 24.9, 0.5, 0.4, 5.0, Number of state: 204

Mean: 39.66338235294118

1.3 ,129.4, 0.1, 3.5, 0.6, 38.2,
7.1 ,28.2, 229.2, 2.1, 5.5, 4.7,
40.2 ,10.2, 3.3, 2.7, 51.7, 3.3,
0.2 ,0.03, 0.2, 37.5, 18.2, 7.1,

34.9, 55.0, 2.6, 31.2, 17.7, 0.3, 5.3,
245.2, 4.5, 10.5, 6.9, 34.7, 119.1,

1.0, 19.6, 144.0, 14.4, 0.0, 0.2, 0.1,
0.1, 9.0, 6.1, 0.0, 5.7, 2.1, 0.8, 18.7,

Median: 7.6
Standard deviation: 146.8985787142461
Quintile #1 : 0.8

61.0 ,11.3, 47.5, 21.9, 5.5, 49.4, 0.6, 10.7, 8.9, 24.3, 10.3, 71.9, 1.4, Quintile#4:37.62

9.3 ,0.1, 1.5, 12.6, 86.3, 6.6, 0.0, 0.0, 49.9, 37.9, 9.6, 68.0, 69.4,
341.8 ,0.1, 3.4, 35.7, 0.3, 29.4, 99.5, 0.6, 35.2, 21.1, 17.0}

Number of state: \tplexe{\Wpop.len}\par

Mean: \tplexe{\Wpop.mean}\par

Median: \tplexe{\Wpop.med}\par

Standard deviation: \tplexe{\Wpop.stdev}\par

Quintile \#1 : \tplexe{\Wpop.quantile{0.2}}\par

Quintile \#4 : \tplexe{\Wpop.quantile{0.8}}

We modify the tuple \Wpop, retaining only “moderately” populated states. We arbitrarily consider their population
between 10 and 100 millions:

\tplexe{\Wpop.filter{val>=10 && val<=100}.store\Wpop}%
Number: \tplexe{\Wpop.len}\par

Number: 79
xigz;n}tsleizizﬁsapémezzéisazr Mean: 32.33037974683544
: p pop. p Median: 26.7

Standard deviation: \tplexe{\Wpop.stdev}\par
Quintile \#1 : \tplexe{\Wpop.quantile{0.2}}\par
Quintile \#4 : \tplexe{\Wpop.quantile{0.8}}

Standard deviation: 21.22899470798109
Quintile #1 : 12.6
Quintile #4 : 48.26

Distribution over 6 equal intervals:\par Distribution over 6 equal intervals:

\begin{tabular}{lc}\\\hline

From 10 to 25 & \tplexe{\Wpop.filter{val<25}.len}\\ From 10 to 25 38

From 25 to 40 & \tplexe{\Wpop.filter{val>=25 && val<40}.len}\\ From 25 to 40 19

From 40 to 55 & \tplexe{\Wpop.filter{val>=40 & val<55}.len}\\ From40to 55 10

From 55 to 70 & \tplexe{\Wpop.filter{val>=55 && val<70}.len}\\ From 55 to 70 7

From 70 to 85 & \tplexe{\Wpop.filter{val>=70 && val<85}.len}\\ From 70 to 85 2

From 85 to 100& \tplexe{\Wpop.filter{val>=85}.len}\\\hline From85t0 100 3
\end{tabular}

8.4 TODO list

To be implemented more or less quickly:

1. insertion sorting to sort almost-sorted tuples obtained using the add, set, op methods (risky as it depends on the
operation!).

2. merge sorting to add one tuple to another;

3. other speed optimization?

8The data comes from https://www.unfpa.org/data/world-population-dashboard

https://www.unfpa.org/data/world-population-dashboard

	Preview
	Declaring a tuple object
	Methods
	Methods of the group tuple -2.5mu number
	Methods len, sum, min, max, mean, med and stdev
	Method quantile
	Method get
	Method pos
	Method show

	Methods of the group tuple -2.5mu tuple
	Method sorted
	Method set
	Method add
	Method op
	Method filter
	Method comp

	Methods in the group tuple -2.5mu storage
	Method split
	Method store

	Tuple generation
	Conclusion
	Motivation
	Execution speed
	Example: state population
	TODO list

