IXTEX for package and class authors
current version

© Copyright 2023-2025, KTEX Project Team.
All rights reserved.*

2025-04-01

Contents

1 Introduction 2

2 Writing classes and packages 2
2.1 Isit aclass or a package? 2
2.2 Using ‘docstrip’ and ‘doc”o oo, 3
2.3 Policy on standard classes oo, 3
2.4 Command Names e e 4
2.5 Programming support oo 4
2.6 Box commands and color L. 5
2.7 General style oo 5

3 The structure of a class or package 7
3.1 Identification e 8
3.2 Using classes and packages 9
3.3 Declaring options L L o s 9
34 Aminimalclassfile. o oL 11
3.5 Example: a local letter class 12
3.6 Example: a newsletterclass 12

4 Commands for class and package writers 13
4.1 Identification e 14
4.2 Loading files. L 15
4.3 Delayingcodeo 15
4.4 Creating and using keyval options 16
4.5 Passing options aroundo L Lo 18
4.6 Useful status tests 19
4.7 Safe file commands Lo 20
4.8 Reporting errors, etco Lo oL 21

*This file may distributed and /or modified under the conditions of the IXTEX Project Public
License, either version 1.3c of this license or (at your option) any later version. See the source

clsguide.

tex for full details.

5 Miscellaneous commands, etc. 22

5.1 Layout parameters o e 22
5.2 Casechanging 22
5.3 Better user-defined math display environments 22
5.4 Normalising spacing e 23
5.5 Querying localisation oo 23
5.6 Extended and expandable references of properties 24
5.7 Preparing link targets oo 27
6 Configuring the Output routine 27
7 Commands superseded for new material 29
7.1 Defining commands L o 29
7.2 Option declaration 0. 30
7.3 Commands within option code 31
7.4 Option processing v v i it 31

1 Introduction

ETEX 2 was released in 1994 and added a number of then-new concepts to
XTEX. For package and class authors, these are described in the document
clsguide-historic, which has largely remained unchanged. Since then, the
TEX team have worked on a number of ideas, firstly a programming language
for WTEX (L3 programming layer) and then a range of tools for authors which
build on that language. Here, we describe the current, stable set of tools pro-
vided by the INTEX kernel for package and class developers. We assume familiar-
ity with general IXTEX usage as a document author, and that the material here
is read in conjunction with usrguide, which provides information for general
TEX users on up-to-date approaches to creating commands, etc.

2 Writing classes and packages

This section covers some general points concerned with writing ITEX classes
and packages.

2.1 Is it a class or a package?

The first thing to do when you want to put some new ETEX commands in a file
is to decide whether it should be a document class or a package. The rule of
thumb is:

If the commands could be used with any document class, then make
them a package; and if not, then make them a class.

There are two major types of class: those like article, report or letter,
which are free-standing; and those which are extensions or variations of other
classes—for example, the proc document class, which is built on the article
document class.

Thus, a company might have a local ownlet class for printing letters with
their own headed note-paper. Such a class would build on top of the exist-
ing letter class but it cannot be used with any other document class, so we
have ownlet.cls rather than ownlet.sty.

The graphics package, in contrast, provides commands for including images
into a ITEX document. Since these commands can be used with any document
class, we have graphics.sty rather than graphics.cls.

2.2 Using ‘docstrip’ and ‘doc’

If you are going to write a large class or package for ITEX then you should
consider using the doc software which comes with BETEX. ETEX classes and
packages written using this can be processed in two ways: they can be run
through KBTEX, to produce documentation; and they can be processed with
docstrip, to produce the .cls or .sty file.

The doc software can automatically generate indexes of definitions, indexes
of command use, and change-log lists. It is very useful for maintaining and
documenting large TEX sources.

The documented sources of the IATEX kernel itself, and of the standard classes,
etc., are doc documents; they are in the .dtx files in the distribution. You can,
in fact, typeset the source code of the kernel as one long document, complete
with index, by running ITEX on source2e.tex. Typesetting these documents
uses the class file 1txdoc.cls.

For more information on doc and docstrip, consult the files docstrip.dtx,
doc.dtx, and The BTgX Companion. For examples of its use, look at the .dtx
files.

2.3 Policy on standard classes

Many of the problem reports we receive concerning the standard classes are not
concerned with bugs but are suggesting, more or less politely, that the design
decisions embodied in them are ‘not optimal’ and asking us to modify them.

There are several reasons why we should not make such changes to these files.
e However misguided, the current behavior is clearly what was intended
when these classes were designed.

e It is not good practice to change such aspects of ‘standard classes’ because
many people will be relying on them.

We have therefore decided not to even consider making such modifications, nor
to spend time justifying that decision. This does not mean that we do not agree
that there are many deficiencies in the design of these classes, but we have many
tasks with higher priority than continually explaining why the standard classes
for XTEX cannot be changed.

We would, of course, welcome the production of better classes, or of packages
that can be used to enhance these classes. So your first thought when you
consider such a deficiency will, we hope, be “what can I do to improve this?”

2.4 Command names

Prior to the introduction of the L3 programming layer described in the next
section, INTEX had three types of command.

There are the author commands, such as \section, \emph and \times: most
of these have short names, all in lower case.

There are also the class and package writer commands: most of these have long
mixed-case names such as the following.

\InputIfFileExists \RequirePackage \PassOptionsToClass

Finally, there are the internal commands used in the XTEX implementation, such
as \@tempcnta, \@ifnextchar and \@eha: most of these commands contain @
in their name, which means they cannot be used in documents, only in class
and package files.

Unfortunately, for historical reasons the distinction between these commands is
often blurred. For example, \hbox is an internal command which should only
be used in the IMTEX kernel, whereas \m@ne is the constant —1 and could have
been \MinusOne.

However, this rule of thumb is still useful: if a command has @ in its name then
it is not part of the supported ITEX language—and its behavior may change
in future releases! If a command is mixed-case, or is described in ETpX: A
Document Preparation System, then you can rely on future releases of ITEX
supporting the command.

2.5 Programming support

As noted in the introduction, the ITEX kernel today loads dedicated support
from programming, here referred to as the L3 programming layer but also often
called expl3. Details of the general approach taken by the L3 programming
layer are given in the document expl3, while a reference for all current code
interfaces is available as interface3. This layer contains two types of command:
a documented set of commands making up the API and a large number of private
internal commands. The latter all start with two underscores and should not
be used outside of the code module which defines them. This more structured
approach means that using the L3 programming layer does not suffer from the
somewhat fluid situation mentioned above with ‘@ commands’.

We do not cover the detail of using the L3 programming layer here. A good
introduction to the approach is provided at https://www.alanshawn.com/
latex3-tutorial/.

2.6 Box commands and color

Even if you do not intend to use color in your own documents, by taking note of
the points in this section you can ensure that your class or package is compatible
with the color package. This may benefit people using your class or package
and wish to use color.

The simplest way to ensure ‘color safety’ is to always use KTEX box commands
rather than TEX primitives, that is use \sbox rather than \setbox, \mbox
rather than \hbox and \parbox or the minipage environment rather than \vbox.
The IMTEX box commands have new options which mean that they are now as
powerful as the TEX primitives.

As an example of what can go wrong, consider that in {\ttfamily <text>} the
font is restored just before the }, whereas in the similar looking construction
{\color{green} <text>} the color is restored just after the final }. Normally
this distinction does not matter at all; but consider a primitive TEX box assign-
ment such as:

\setbox0=\hbox{\color{green} <text>}

Now the color-restore occurs after the } and so is not stored in the box. Exactly
what bad effects this can have depends on how color is implemented: it can range
from getting the wrong colors in the rest of the document, to causing errors in
the dvi-driver used to print the document.

Also of interest is the command \normalcolor. This is normally just \relax
(i.e., does nothing) but you can use it rather like \normalfont to set regions of
the page such as captions or section headings to the ‘main document color’.

2.7 General style
TEX provides many commands designed to help you produce well-structured

class and package files that are both robust and portable. This section outlines
some ways to make intelligent use of these.

2.7.1 Loading other files

ITEX provides these commands:

\LoadClass \LoadClassWithOptions
\RequirePackage \RequirePackageWithOptions

https://www.alanshawn.com/latex3-tutorial/
https://www.alanshawn.com/latex3-tutorial/

for using classes or packages inside other classes or packages. We recommend
strongly that you use them, rather than the primitive \input command, for a
number of reasons.

Files loaded with \input <filename> will not be listed in the \listfiles list.

If a package is always loaded with \RequirePackage. .. or \usepackage then,
even if its loading is requested several times, it will be loaded only once. By
contrast, if it is loaded with \input then it can be loaded more than once;
such an extra loading may waste time and memory and it may produce strange
results.

If a package provides option-processing then, again, strange results are possi-
ble if the package is \input rather than loaded by means of \usepackage or
\RequirePackage. . ..

If the package foo.sty loads the package baz.sty by use of \input baz.sty
then the user will get a warning;:

LaTeX Warning: You have requested package ‘foo’,
but the package provides ‘baz’.

Thus, for several reasons, using \input to load packages is not a good idea.

For example, article.sty contains just the following lines:

\NeedsTeXFormat{LaTeX2e}
\@obsoletefile{article.cls}{article.sty}
\LoadClass{article}

You may wish to do the same or, if you think that it is safe to do so, you may
decide to just remove myclass.sty.

2.7.2 Make it robust

We consider it good practice, when writing packages and classes, to use INTEX
commands as much as possible.

Thus, instead of using \def... we recommend using one of \newcommand,
\renewcommand or \providecommand for programming and for defining doc-
ument interfaces \NewDocumentCommand, etc. (see usrguide for details of these
commands).

When you define an environment, use \NewDocumentEnvironment, etc., (or
\newenvironment, etc., for simple cases) instead of using \def\foo{...} and
\def\endfoo{...}.

If you need to set or change the value of a (dimen) or (skip) register, use
\setlength.

To manipulate boxes, use KTEX commands such as \sbox, \mbox and \parbox
rather than \setbox, \hbox and \vbox.

Use \PackageError, \PackageWarning or \PackageInfo (or the equivalent
class commands) rather than \@latexerr, \@warning or \wlog.

The advantage of this kind of practice is that your code is more readable and
accessible to other experienced IMTEX programmers.

2.7.3 Make it portable

It is also sensible to make your files are as portable as possible. To ensure this,
files must not have the same name as a file in the standard ETEX distribution,
however similar its contents may be to one of these files. It is also still lower
risk to stick to file names which use only the ASCII range: whilst IXTEX works
natively with UTF-8, the same cannot be said with certainty for all tools. For
the same reason, avoid spaces in file names.

It is also useful if local classes or packages have a common prefix, for example
the University of Nowhere classes might begin with unw. This helps to avoid
every University having its own thesis class, all called thesis.cls.

If you rely on some features of the I’ TEX kernel, or on a package, please specify
the release-date you need. For example, the keyval options (see Section 4.4)
were introduced in the June 2022 release so, if you use them then you should
put:

\NeedsTeXFormat{LaTeX2e}[2022-06-01]

2.7.4 Useful hooks

It is sometimes necessary for a package to arrange for code to be executed at
the start or end of the preamble, at the end of the document or at the start
of every use of an environment. This can be carried out by using hooks. As a
document author, you will likely be familiar with \AtBeginDocument, a wrapper
around the more powerful command \AddToHook. The I4TEX kernel provides
a large number of dedicated hooks (applying in a pre-defined location) and
generic hooks (applying to arbitrary commands): the interface for using these
is described in 1thooks. There are also hooks to apply to files, described in
1tfilehooks.

3 The structure of a class or package

The outline of a class or package file is:

Identification The file says that it is a I/ TEX 2¢ package or class, and gives a
short description of itself.

Preliminary declarations Here the file declares some commands and can also
load other files. Usually these commands will be just those needed for the
code used in the declared options.

Options The file declares and processes its options.

More declarations This is where the file does most of its work: declaring new
variables, commands and fonts; and loading other files.

3.1 Identification

The first thing a class or package file does is identify itself. Package files do this
as follows:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{<package>}[<date> <other information>]

For example:

\NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{latexsym}[1998-08-17 Standard LaTeX packagel

Class files do this as follows:

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{<class-name>}[<date> <other information>]

For example:

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{article}[2022-06-01 Standard LaTeX class]

The (date) should be given in the form ‘YYYY-MM-DD’ or ‘YYYY/MM/DD’ and
must be present if the optional argument is used. Exactly four digits are required
for the year and two each for the month and day. Where necessary, zeros should
be added to pad the month and day appropriately. If digits or separators are
missing, the date will likely be misinterpreted: the commands expect a valid
syntax to speed up the routine usage of the package or class and make no
provision for the case there is an error in the date specification.

This date is checked whenever a user specifies a date in their \documentclass
or \usepackage command. For example, if you wrote:

\documentclass{article}[2022-06-01]

then users at a different location would get a warning that their copy of article
was out of date.

The description of a class is displayed when the class is used. The description
of a package is put into the log file. These descriptions are also displayed by
the \1listfiles command. The phrase Standard LaTeX must not be used
in the identification banner of any file other than those in the standard IATEX
distribution.

3.2 Using classes and packages

A ETEX package or class can load a package as follows:
\RequirePackage [<options>]{<package>}[<date>]
For example:
\RequirePackage{ifthen}[2022-06-01]

This command has the same syntax as the author command \usepackage. It al-
lows packages or classes to use features provided by other packages. For example,
by loading the ifthen package, a package writer can use the ‘if. .. then...else...’
commands provided by that package.

A HBTEX class can load one other class as follows:
\LoadClass [<options>]{<class-name>}[<date>]
For example:
\LoadClass [twocolumn]{article}

This command has the same syntax as the author command \documentclass.
It allows classes to be based on the syntax and appearance of another class. For
example, by loading the article class, a class writer only has to change the
bits of article they don’t like, rather than writing a new class from scratch.

The following commands can be used in the common case that you want to
simply load a class or package file with exactly those options that are being
used by the current class.

\LoadClassWithOptions{<class-name>}[<date>]
\RequirePackageWithOptions{<package>}[<date>]

For example:

\LoadClassWithOptions{article}
\RequirePackageWithOptions{graphics}[1995/12/01]

3.3 Declaring options

Packages and classes can declare options and these can be specified by authors;
for example, the twocolumn option is declared by the article class. Note that
the name of an option should contain only those characters allowed in a ‘IATEX
name’; in particular it must not contain any control sequences.

XTEX supports two methods for creating options: a key—value system and a
‘simple text’ approach. The key—value system is recommended for new classes

and packages, and is more flexible in handling of option classes than the simple
text approach. Both option methods use the same basic structure within the
IXTEX source: declaration of options first then processing options in a second
step. Both also allow options to be passed on to other packages or an underlying
class. As the ‘classical’ simple text approach is conceptually more straight-
forward to illustrate, it is used here to show the general structure: see Section 4.4
for full details of the key—value approach.

An option is declared as follows:
\DeclareOption{<option>}{<code>}

For example, the dvips option (slightly simplified) to the graphics package is
implemented as:

\DeclareOption{dvips}{\input{dvips.def}}

This means that when an author writes \usepackage [dvips]{graphics}, the
file dvips.def is loaded. As another example, the adpaper option is declared
in the article class to set the \paperheight and \paperwidth lengths:

\DeclareOption{adpaper}{%
\setlength{\paperheight}{297mm}}
\setlength{\paperwidth}{210mm}%

}

Sometimes a user will request an option which the class or package has not
explicitly declared. By default this will produce a warning (for classes) or error
(for packages); this behavior can be altered as follows:

\DeclareOption*{<code>}

For example, to make the package fred produce a warning rather than an error
for unknown options, you could specify:

\DeclareOption*{}
\PackageWarning{fred}{Unknown option ‘\CurrentOption’}}
}

Then, if an author writes \usepackage [foo]{fred}, they will get a warning
Package fred Warning: Unknown option ‘foo’. As another example, the
fontenc package tries to load a file <ENC>enc.def whenever the (ENC') option
is used. This can be done by writing:

\DeclareOption*{%
\input{\CurrentOption enc.def}}
}

10

It is possible to pass options on to another package or class, using the com-
mand \PassOptionsToPackage or \PassOptionsToClass (note that this is a
specialised operation that works only for option names): see Section 4.5. For
example, to pass every unknown option on to the article class, you can use:

\DeclareOption*{%
\PassOptionsToClass{\CurrentOption}{article}’
}

If you do this then you should make sure you load the class at some later point,
otherwise the options will never be processed!

So far, we have explained only how to declare options, not how to execute them.
To process the options with which the file was called, you should use:

\ProcessOptions\relax

This executes the (code) for each option that was both specified and declared
(see Section 7.4 for details of how this is done).

For example, if the jane package file contains:

\DeclareOption{foo}{\typeout{Saw foo.l}}
\DeclareOption{baz}{\typeout{Saw baz.}}
\DeclareOption*{\typeout{What’s \CurrentOption?}}
\ProcessOptions\relax

and an author writes \usepackage [foo,bar]{jane}, then they will see the
messages Saw foo. and What’s bar?

3.4 A minimal class file

Most of the work of a class or package is in defining new commands, or changing
the appearance of documents. This is done in the body of the package, using
commands such as \newcommand or \setlength.

There are four things that every class file must contain: these are a definition of
\normalsize, values for \textwidth and \textheight and a specification for
page-numbering. So a minimal document class file! looks like this:

\NeedsTeXFormat{LaTeX2e}

\ProvidesClass{minimal}[2022-06-01 Standard LaTeX minimal class]

\renewcommand{\normalsize}{\fontsize{10pt}{12pt}\selectfont}

\setlength{\textwidth}{6.5in}

\setlength{\textheight}{8in}

\pagenumbering{arabic} % needed even though this class will
% not show page numbers

However, this class file will not support footnotes, marginals, floats, etc., nor
will it provide any of the 2-letter font commands such as \rm; thus most classes
will contain more than this minimum!

1This class is now in the standard distribution, as minimal.cls.

11

3.5 Example: a local letter class

A company may have its own letter class, for setting letters in the company
style. This section shows a simple implementation of such a class, although a
real class would need more structure.

The class begins by announcing itself as neplet.cls.

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{neplet}[2022-06-01 NonExistent Press letter class]

Then this next bit passes any options on to the letter class, which is loaded
with the adpaper option.

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{letter}}
\ProcessOptions\relax
\LoadClass [a4paper]{letter}

In order to use the company letter head, it redefines the firstpage page style:
this is the page style that is used on the first page of letters.

\renewcommand{\ps@firstpage}{%
\renewcommand{\@oddhead}{<letterhead goes here>}J,
\renewcommand{\Q@oddfoot}{<letterfoot goes here>}J

And that’s it!

3.6 Example: a newsletter class

A simple newsletter can be typeset with IATEX, using a variant of the article
class. The class begins by announcing itself as smplnews.cls.

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{smplnews}[2022-06-01 The Simple News newsletter class]

\newcommand{\headlinecolor}{\normalcolor}

It passes most specified options on to the article class: apart from the
onecolumn option, which is switched off, and the green option, which sets the
headline in green.

\DeclareOption{onecolumn}{\OptionNotUsed}
\DeclareOption{green}{\renewcommand{\headlinecolor}{\color{green}}}

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}

\ProcessOptions\relax

12

It then loads the class article with the option twocolumn.
\LoadClass[twocolumn]{article}

Since the newsletter is to be printed in colour, it now loads the color package.
The class does not specify a device driver option since this should be specified
by the user of the smplnews class.

\RequirePackage{color}

The class then redefines \maketitle to produce the title in 72 pt Helvetica bold
oblique, in the appropriate colour.

\renewcommand{\maketitle}{%

\twocolumn[%
\fontsize{72}{80}\fontfamily{phv}\fontseries{bl}/,
\fontshape{sl}\selectfont\headlinecolor
\@title

1%

It redefines \section and switches off section numbering.

\renewcommand{\section}{%
\@startsection
{section}{1}{Opt}{-1.5ex plus -lex minus -.2exl}}
{lex plus .2ex}{\large\sffamily\slshape\headlinecolor}j,
}

\setcounter{secnumdepth}{0}
It also sets the three essential things.

\renewcommand{\normalsize}{\fontsize{9}{10}\selectfont}
\setlength{\textwidth}{17.5cm}
\setlength{\textheight}{25cm}

In practice, a class would need more than this: it would provide commands for
issue numbers, authors of articles, page styles and so on; but this skeleton gives
a start. The 1tnews class file is not much more complex than this one.

4 Commands for class and package writers

This section describes briefly each of the commands for class and package writ-
ers. To find out about other aspects of the system, you should also read ETEX:
A Document Preparation System, The BETpX Companion and BTEX 2¢ for Au-
thors.

13

4.1 Identification

The first group of commands discussed here are those used to identify your class
or package file.

| \NeedsTeXFormat {(format-name)} [(release-date)] |

This command tells TEX that this file should be processed using a format with
name (format-name). You can use the optional argument (release-date) to
further specify the earliest release date of the format that is needed. When
the release date of the format is older than the one specified a warning will
be generated. The standard (format-name) is LaTeX2e. The (release-date), if
present, must be in the form ‘YYYY-MM-DD’ or ‘YYYY/MM/DD’.

Example:
\NeedsTeXFormat{LaTeX2e}[2022-06-01]

People often don’t know what date to put here. For the kernel, you can find out
the right one by consulting changes.txt and select the release date of a new
feature you are interested in. This is slightly different for packages as they are
released throughout the year: you will need to consult their change history.

\ProvidesClass {(class-name)} [{release-info)]
\ProvidesPackage {(package-name)} [(release-info)]

This declares that the current file contains the definitions for the document class
(class-name) or package (package-name).

The optional (release-info), if used, must contain:

e the release date of this version of the file, in the form YYYY-MM-DD;

e optionally followed by a space and a short description, possibly including
a version number.

The above syntax must be followed exactly so that this information can be
used by \LoadClass or \documentclass (for classes) or \RequirePackage or
\usepackage (for packages) to test that the release is not too old.

The whole of this (release-info) information is displayed by \listfiles and
should therefore not be too long.

Example:

\ProvidesClass{article}[2022-06-01 v1.0 Standard LaTeX class]
\ProvidesPackage{ifthen}[2022-06-01 v1.0 Standard LaTeX packagel

| \ProvidesFile {(file-name)} [(release-info)] |

This is similar to the two previous commands except that here the full filename,
including the extension, must be given. It is used for declaring any files other
than main class and package files.

14

Example:
\ProvidesFile{Tlenc.def}[2022-06-01 v1.0 Standard LaTeX file]

Note that the phrase Standard LaTeX must not be used in the identification
banner of any file other than those in the standard BTEX distribution.

4.2 Loading files

This group of commands can be used to create your own document class or
package by building on existing classes or packages.

\RequirePackage [(options-list)] {(package-name)} [(release-info)]
\RequirePackageWithOptions {(package-name)} [(release-info)]

Packages and classes should use these commands to load other packages.

The use of \RequirePackage is the same as the author command \usepackage.
Examples:

\RequirePackage{ifthen}[2022-06-01]
\RequirePackageWithOptions{graphics}[2022-06-01]

\LoadClass [({options-list)] {(class-name)} [(release-info)]
\LoadClassWithOptions {(class-name)} [(release-info)]

These commands are for use only in class files, they cannot be used in packages
files; they can be used at most once within a class file.

The use of \LoadClass is the same as the use of \documentclass to load a class
file.

Examples:

\LoadClass{article}[2022-06-01]
\LoadClassWithOptions{article}[2022-06-01]

The two WithOptions versions simply load the class (or package) file with ex-
actly those options that are being used by the current file (class or package).
See below, in 4.5, for further discussion of their use.

4.3 Delaying code

As noted earlier, a sophisticated hook system is available and described in
1thooks. Here, we document a small set of convenient short names for common
hooks.

These first two commands are also intended primarily for use within the (code)
argument of \DeclareOption or \DeclareOptionk.

15

\AtEnd0fClass {(code)}
\AtEndOfPackage {(code)}

These commands declare {code) that is saved away internally and then executed
after processing the whole of the current class or package file.

Repeated use of these commands is permitted: the code in the arguments is
stored (and later executed) in the order of their declarations.

\AtBeginDocument {{code)}
\AtEndDocument {{code)}

These commands declare (code) to be saved internally and executed while BTEX
is executing \begin{document} or \end{document}.

The (code) specified in the argument to \AtBeginDocument is executed near the
end of the \begin{document} code, after the font selection tables have been set
up. It is therefore a useful place to put code which needs to be executed after
everything has been prepared for typesetting and when the normal font for the
document is the current font.

The \AtBeginDocument hook should not be used for code that does any type-
setting since the typeset result would be unpredictable.

The (code) specified in the argument to \AtEndDocument is executed at the
beginning of the \end{document} code, before the final page is finished and
before any leftover floating environments are processed. If some of the (code) is
to be executed after these two processes, you should include a \clearpage at
the appropriate point in (code).

Repeated use of these commands is permitted: the code in the arguments is
stored (and later executed) in the order of their declarations.

4.4 Creating and using keyval options

As with any key—value input, using key—value pairs as package or class options
has two parts: creating the key options and setting (using) them. Options
created in this way may be used after package loading as general key—value
settings: this will depend on the nature of the underlying code.

| \DeclareKeys [{family)] {{declarations)} |

This command creates a series of options from a comma-separated (declarations)
list. Each entry in this list is a key—value pair, with the (key) having one or
more (properties). A small number of ‘basic’ (properties) are described below.
The full range of properties, provided by 13keys, can also be used for more
powerful processing. See interface3 for the full details.

The basic properties provided here are

e .code — execute arbitrary code

o .if — sets a TEX \if... switch

16

e .ifnot — sets an inverted TEX \if... switch

e .pass-to-packages — for class options, this specifies whether the option
should be treated “global” (read by packages from the global list); for
package options this property has no effect

e .store — stores a value in a macro

e .usage — defines whether the option can be given only when load-
ing (load), in the preamble (preamble) or has no limitation on scope
(general)

The part of the (key) before the (property) is the (name), with the (value)
working with the (property) to define the behavior of the option.

For example, with

\DeclareKeys [mypkg]
{
draft.if = Omypkg@draft ,
draft.usage = preamble ,
name.store = \@mypkg@name s
name.usage = load s
second-name.store = \@mypkg@other@name

three options would be created. The option draft can be given anywhere in the
preamble, and will set a switch called \if@mypkg@draft. The option name can
only be given during package loading, and will save whatever value it is given
in \@mypkg@name. Finally, the option second-name can be given anywhere, and
will save its value in \@mypkg@other@name.

Keys created before the use of \ProcessKeyOptions act as package options.

| \DeclareUnknownKeyHandler [{family)] {{code)} |

The command \DeclareUnknownKeyHandler may be used to define the behav-
ior when an undefined key is encountered. The (code) will receive the unknown
key name as #1 and the value as #2. These can then be processed as appro-
priate, e.g. by forwarding to another package. The entire option is available
as \CurrentOption, should it be necessary to pass on options which may or
may not contain an = sign. For example, this may be used to pass an unknown
option on to a non-keyval class such as article:

\DeclareUnknownKeyHandler{,
\PassOptionsToClass{\CurrentOption}{article}
}

l \ProcessKeyOptions [(family)] ‘

The \ProcessKeyOptions function is used to check the current option list
against the keys defined for (family). Global (class) options and local (package)

17

options are checked when this function is called in a package. The command
will process all options given the current package or class: there is no need to
also apply \ProcessOptions.

| \SetKeys [(famaly)] {(keyvals)}

Sets (applies) the explicit list of (keyvals) for the {family): if the latter is not
given, the value of \@currname is used. This command may be used within a
package to set options before or after using \ProcessKeyOptions.

4.5 Passing options around

These two commands are also very useful within the (code) argument of options.

\PassOptionsToPackage {(options-list)} {{package-name)}
\PassOptionsToClass {(options-list)} {(class-name)}

The command \PassOptionsToPackage passes the option names in (options-list)
to package (package-name). This means that it adds the (option-list) to the list
of options used by any future \RequirePackage or \usepackage command for
package (package-name).

Example:

\PassOptionsToPackage{foo,bar}{fred}
\RequirePackage [baz] {fred}

is the same as:
\RequirePackage [foo,bar,baz] {fred}

Similarly, \PassOptionsToClass may be used in a class file to pass options to
another class to be loaded with \LoadClass.

The effects and use of these two commands should be contrasted with those of
the following two (documented above, in 4.2):

\LoadClassWithOptions
\RequirePackageWithOptions

The command \RequirePackageWithOptions is similar to \RequirePackage,
but it always loads the required package with exactly the same option list as
that being used by the current class or package, rather than with any option
explicitly supplied or passed on by \PassOptionsToPackage.

The main purpose of \LoadClassWithOptions is to allow one class to simply
build on another, for example:

\LoadClassWithOptions{article}

18

This should be compared with the slightly different construction

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions\relax
\LoadClass{article}

As used above, the effects are more or less the same, but the first is a lot less
to type; also the \LoadClassWithOptions method runs slightly quicker.

If, however, the class declares options of its own then the two constructions are
different. Compare, for example:

\DeclareOption{landscape}{\@landscapetrue}
\ProcessOptions\relax
\LoadClassWithOptions{article}

with:

\DeclareOption{landscape}{\@landscapetrue}
\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions\relax

\LoadClass{article}

In the first example, the article class will be loaded with option landscape
precisely when the current class is called with this option. By contrast, in the
second example it will never be called with option landscape as in that case
article is passed options only by the default option handler, but this handler is
not used for landscape because that option is explicitly declared.

4.6 Useful status tests

A number of status tests are available which can be used by package and class
authors to query the presence and date of other code, the current kernel release
and other related ideas. Three forms of each test are provided, one requiring
arguments for both (true) and (false) branches, one requiring only a (true)
branch and one requiring only a (false) branch. These are indicated in their
names as TF, T and F, respectively. Here, we document only the TF versions:
the other forms are however also available.

\IfPackageLoadedTF {(package-name)} {({true code)} {(false code)}
\IfClassLoadedTF {(class-name)} {(true code)} {(false code)}
\IfFileLoadedTF {(file-name)} {(true code)} {(false code)?}

These commands test whether the named package, class or file has been loaded:
this is done by using information that must be contained in an appropriate
\Provides. .. line, as described in Section 3.1. In the case of \IfFileLoadedTF,
the full (file-name) must be provided; in contrast, no extension should be given
if testing for a package or class.

19

\IfPackageLoadedWithOptionsTF {(package-name)} {{options)} {(true code)} {(false code)}
\IfClassLoadedWithOptionsTF {(class-name)} {{options)} {(true code)} {(false code)}

These commands test whether the named package or class has been loaded with
exactly the {options) specified. In order to take the (true) branch, the package
or class must be loaded (giving a (true) result for \If...LoadedT) and the
option list used when loading it must be identical to the (options).

\IfPackageAtLeastTF {(package-name)} {(date)} {(true code)} {(false code)}
\IfClassAtLeastTF {(class-name)} {(date)} {{true code)} {(false code)}
\IfFileAtLeastTF {(file-name)} {(date)} {(true code)} {(false code)}

These tests are used to check whether the date information given in the
\Provides. .. line of a package, class or file is no earlier than the given (date).
The (date) is compared with that in the optional argument to \Provides. ..
(as described in Section 3.1); if \Provides... was missing or had no optional
argument, it is treated as 0000/00/00 (i.e. earlier than any other date). As
for \Provides. .., the (date) should be given in the form ‘YYYY-MM-DD’ or
‘YYyy/MM/DD’. If the package, class or file is not loaded, the (false) branch
will be taken; in contrast, if the (date) is not given in the required form, the
behavior is formally undefined.

l \IfFormatAtLeastTF {(date)} {(true code)} {{false code)} ‘

Tests the release (date) of the WTEX format and selects the appropriate branch.
The date used by the format is adjusted to incorporate any roll forward or back
that has been applied to it, so that the apparent date of the format will be that
after roll forward or back.

4.7 Safe file commands

These commands deal with file input; they ensure that the non-existence of a
requested file can be handled in a user-friendly way.

[\IfFileExists {(file-name)} {(true)} {{false)} |

If the file exists then the code specified in {true) is executed.
If the file does not exist then the code specified in {false) is executed.

This command does not input the file.

| \InputIfFileExists {(file-name)} {({true)} {{false)} |

This inputs the file (file-name) if it exists and, immediately before the input,
the code specified in (true) is executed.

If the file does not exist then the code specified in (false) is executed.

It is implemented using \IfFileExists.

20

4.8 Reporting errors, etc

These commands should be used by third party classes and packages to report
errors, or to provide information to authors.

\ClassError {(class-name)} {(error-text)} {(help-text)}
\PackageError {(package-name)} {{error-text)} {{help-text)}

These produce an error message. The (error-text) is displayed and the ? error
prompt is shown. If the user types h, they will be shown the (help-text).

Within the (error-text) and (help-text): \protect can be used to stop a com-
mand from expanding; \MessageBreak causes a line-break; and \space prints
a space.

Note that the (error-text) will have a full stop added to it, so do not put one
into the argument.

For example:

\newcommand{\foo}{FO0}

\PackageError{ethel}{/
Your hovercraft is full of eels,\MessageBreak
and \protect\foo\space is \foo

Hx
Oh dear! Something’s gone wrong.\MessageBreak
\space \space Try typing \space «return»
\space to proceed, ignoring \protect\foo.

produces this display:

! Package ethel Error: Your hovercraft is full of eels,
(ethel) and \foo is FO0O.

See the ethel package documentation for explanation.
If the user types h, this will be shown:

Oh dear! Something’s gone wrong.
Try typing «return» to proceed, ignoring \foo.

\ClassWarning {(class-name)} {{warning-text)}
\PackageWarning {(package-name)} {(warning-text)}
\ClassWarningNoLine {(class-name)} {{warning-text)}
\PackageWarningNoLine {(package-name)} {{warning-text)}
\ClassInfo {(class-name)} {(info-text)}

\PackageInfo {(package-name)} {{info-text)}

The four Warning commands are similar to the error commands, except that
they produce only a warning on the screen, with no error prompt.

21

The first two, Warning versions, also show the line number where the warning
occurred, whilst the second two, WarningNoLine versions, do not.

The two Info commands are similar except that they log the information only
in the transcript file, including the line number. There are no NoLine versions
of these two.

Within the (warning-text) and (info-text): \protect can be used to stop a
command from expanding; \MessageBreak causes a line-break; and \space
prints a space. Also, these should not end with a full stop as one is automatically
added.

5 Miscellaneous commands, etc.

5.1 Layout parameters

\paperheight
\paperwidth

These two parameters are usually set by the class to be the size of the paper be-
ing used. This should be actual paper size, unlike \textwidth and \textheight
which are the size of the main text body within the margins.

5.2 Case changing

\MakeUppercase [(keyvals)] {(text)}
\MakeLowercase [(keyvals)] {(text)}
\MakeTitlecase [(keyvals)] {(text)}

As described in usrguide, case changing for text should be carried out using
the commands \MakeUppercase, \MakeLowercase and \MakeTitlecase. If you
need to change the case of programmatic material, the team strongly suggest
using the L3 programming layer commands in the 13str module. If you do not
wish to do this, you should use the TEX \uppercase and \lowercase primitives
in this situation only.

5.3 Better user-defined math display environments

l \ignorespacesafterend

Suppose that you want to define an environment for displaying text that is
numbered as an equation. A straightforward way to do this is as follows:

\newenvironment{texteqn}{’
\begin{equation}/,
\begin{minipage}{0.9\1inewidth}%
H%

22

\end{minipagel}’,
\end{equationl}V
}

However, if you have tried this then you will probably have noticed that it does
not work perfectly when used in the middle of a paragraph because an inter-word
space appears at the beginning of the first line after the environment.

You can avoid this problem using \ignorespacesafterend; it should be in-
serted as shown here:

\newenvironment{texteqn}{/
\begin{equation}/,
\begin{minipage}{0.9\1linewidth}}
H%
\end{minipage}
\end{equation}y,
\ignorespacesafterend

}

This command may also have other uses.

5.4 Normalising spacing

l \normalsfcodes

This command should be used to restore the normal settings of the parameters
that affect spacing between words, sentences, etc.

An important use of this feature is to correct a problem, reported by Donald Ar-
seneau, that punctuation in page headers has always (in all known TEX formats)
been potentially wrong whenever a page break happens while a local setting of
the space codes is in effect. These space codes are changed by, for example, the
command \frenchspacing) and the verbatim environment.

It is normally given the correct definition automatically in \begin{document}
and so need not be explicitly set; however, if it is explicitly made non-empty in
a class file then automatic default setting will be over-ridden.

5.5 Querying localisation

Localisation information is needed to customise a range of outputs. The INTEX
kernel does not itself manage localisation, which is well-served by the bundles
babel and polyglossia. To allow the kernel and other packages to access the
current localisation information provided by babel or polyglossia, the command
\BCPdata is defined by the kernel. The initial kernel definition expands to tag
parts for en-US, as the kernel does not track localisation but does start out
with a broadly US English setup. However, if babel or polyglossia are loaded, it
is redefined expand to the BCP-47 information from the appropriate package.
The supported arguments are the BCP-47 tag breakdowns:

23

o tag The full BCP-47 tag (e.g. en-US)

e language (e.g., de)

e region (e.g., AT)

e script (e.g., Latn)

e variant (e.g., 1901)

e extension.t (transformation, e.g., en-t-ja)

e extension.u (additional locale information, e.g., ar-u-nu-latn)

e extension.x (private use area, e.g., la-x-classic)

The information for the main language for a document is be provided if these
are prefixed by main., e.g. main.language will expand to the main language
even if another language is currently active.

In addition to the tag breakdown, the following semantic arguments are sup-
ported

e casing The tag for case changing, e.g. el-x-iota could be selected rather
than el to select a capital adscript iota on uppercasing an ypogegrammens

For example, the case changing command \MakeUppercase is (conceptually)
defined as

\ExpandArgs{e}\MakeUppercaseAux{\BCPdata{casing}}{#1}

where #1 is the user input and the first argument to \MakeUppercaseAux takes
two arguments, the locale and input text.

5.6 Extended and expandable references of properties

A property is something that IXTEX can track while processing the document,
such as a page number, a heading number, other counter values, a heading
title, a position on the page, etc. The current value of such properties can
be labeled and written to the aux-file. It can then be referenced in the next
compilation, similar to the way the standard \label/\ref commands work
(they record /reference a fixed set of properties: label, page, title, and target).

| \RecordProperties{(label)}{(list of properties)} |

This command writes the value(s) of the (list of properties) aux-file labeled by
(label). Recorded are either the values current when \RecordProperties is
called or the value current when the next shipout happens—which depends on
the declaration for each property. The arguments (label) and (list of properties)
can contain commands that are expanded. (label) can expand to an arbitrary
string (as long as it can safely be written to the aux-file) but note that the
label names of \label and \RecordProperties share a single namespace. This
means that you get a Label ‘A’ multiply defined warning with the following
code:

24

\label{A}\RecordProperties{A}{abspage}

l \RefProperty{(label) }H (property)} ‘

This command allows to reference the value of the property (property) recorded
in the previous run and labeled by (label). Differently to the standard \ref
command the command is expandable and the value can for example—if it is a
number—be used in an assignment.?

\section{A section}
\RecordProperties{mylabel}{pagenum, counter}
\RefProperty{mylabel}{counter} % outputs section
\setcounter{mycounter}{\RefProperty{mylabel}{pagenum}}

As \RefProperty is expandable it can not issue a rerun warning if a label is
not found. If needed such a warning can be forced by the following command:

| \RefUndefinedWarn{{label)}{(property)} |

IXTEX predefines a set of properties, this set contains also the properties stored
by the standard \label command. In the list below “default” indicates the
value returned when the value is not yet known (i.e., if it wasn’t recorded in
the previous run and “at shipout” means that this property is not recorded
immediately when \RecordProperties is used but during the next \shipout.

abspage (default: 0, at shipout) The absolute value of the current page:
starts at 1 and increases monotonically at each shipout.

page (default: 0, at shipout) The current page as given by \thepage: this
may or may not be a numerical value, depending on the current style.
Contrast with abspage. You get this value also with the standard
\label/\pageref.

pagenum (default: 0, at shipout) The current page as arabic number. This
is suitable for integer operations and comparisons.

label (default: ??) The content of \@currentlabel. This is the value that
you get also with the standard \label/\ref.

title (default: \textbf{??}) The content of \Qcurrentlabelname. This
command is filled beside others by the nameref package and some classes
(e.g. memoir) and typically gives the title defined in the document by some
sectioning command

target (default: (empty)) The content of \@currentHref. This command is
normally filled by hyperref and holds the name of the last destination it
created.

2For this to work the default value for the property would need to be a number too, because
recorded values aren’t known in the first INTEX run.

25

pagetarget (default: (empty), at shipout) The content of \@currentHpage.
This command is filled by hyperref (version v7.01c or newer) and holds the
name of the last page anchor it created.

counter (default: (empty)) The content of \@currentcounter. This com-
mand contains after a \refstepcounter the name of the counter.

xpos, ypos (default: 0, at shipout) These properties records the z and y
coordinates of a point previously stored with \pdfsavepos/\savepos.
E.g. (if bidi is used it can be necessary to save the position before and
after the label):

\pdfsavepos
\RecordProperties{myposition}{xpos,ypos}’
\pdfsavepos

Class and package authors can define more properties to store other values they
are interested in.

\NewProperty{(name)}{(setpoint)H{ (default) }{{code)}
\SetProperty{(name)}{(setpoint)}(default)}{(code)}

These commands declare or change a property (name)®. If a new property is
declared within a package it is suggested that its name is always structured as
follows: (package-name)/{property-name). (setpoint) is either now or shipout
and decides if the value is written directly or at the next shipout. (default)
is used if the property is referenced but not yet known, e.g., in the first run.
(code) is the code executed when storing the value. For example, the pagenum
property is declared as

\NewProperty{pagenum}{shipout}{0}{\the\value{pagel}}

The commands related to properties are offered as a set of CamelCase com-
mands for traditional ITEX 2¢ packages (and for use in the document preamble
if needed) as well as expl3 commands for modern packages, that use the L3
programming layer of ITEX. The expl3 commands and more details can be
found in 1tproperties-doc.pdf.

5.6.1 Templates (prototype document commands)

Templates as defined by IATEX are a mechanism to cleanly separate the three
layers needed for writing a document

1. authoring of the text with mark-up;

2. document layout design;

30nly change properties that you have declared. The declarations of standard properties
of IATEX and properties of other packages should never be altered!

26

3. implementation (with TEX programming) of the design.

They allow document authors to modify design without altering code, and allow
programmers to make portable changes to classes.

Implementing this mechanism requires a number of steps and a family of com-

mands which allow variation in outcomes. A typical use of templates will

make use of most or all of \NewTemplateType, \DeclareTemplateInterface,

\DeclareTemplateCode, \DeclareInstance and \UselInstance, plus poten-

tially some more specialised commands. These are described in 1ttemplates-doc
in full detail.

5.7 Preparing link targets

Active links in a document need targets to which they can jump to. Such
targets are often created automatically (if the package hyperref is loaded) by
the \refstepcounter command but there are also cases where class or package
authors need to add a target manually, for example, in unnumbered sectioning
commands or in environments. For this XTEX provides the following commands.
Without hyperref they do nothing or insert only a whatsits (to ensure that
spacing doesn’t change when hyperref is loaded), with hyperref they add the
necessary targets. Details about the behavior and the arguments of the following
commands can by found in the hyperref package in hyperref-linktarget.pdf.

\MakeLinkTarget [(prefix)]{(counter)}
\MakeLinkTarget [(prefiz)]{}
\MakeLinkTarget*{(target name)}

This command prepares the creations of targets.

\LinkTargetOn
\LinkTargetOff

These commands allow to enable and disable locally the creation of targets.
This can be useful to suppress targets otherwise created automatically by
\refstepcounter.

l \NextLinkTarget{(target name)} ‘

This changes the name of the next target that will be created.

6 Configuring the Output routine

For nearly 40 years IXTEX’s output routine (the mechanism to paginate the
document and attach footnotes, floats and headers & footers) was a largely
hardwired algorithm with a limited number of configuration possibilities. Pack-
ages or classes that attempted to alter one or the other aspect of the process

27

had to overwrite the internals with the usual problems: incompatibilities and
out of date code whenever something was changed in BTEX.

To improve this situation and to support the production of accessible PDF
documents we started in 2024 to refactor the output routine and have added a
number of hooks and sockets, so that packages that want to adjust the output
routine can do so safely without the dangers associated with that in the past.

For packages, we implemented the following hooks:

build/page/before, build/page/after These two hooks enable packages to
prepend or append code to the page processing in the output routine.
They are implemented as mirrored hooks.

Technically, they are executed at the start and the end of the internal
KBTEX 2¢ \@outputpage command, respectively. A number of packages
alter that command to place code in exactly these two places—they can
now simply add their code to the hooks instead.

build/page/reset Packages that set up special conventions for text in the
main galley (such as catcode changes, etc.) can use this hook to undo
these changes within the output routine, so that they aren’t applied to
unrelated material, e.g., the text for running header or footers.

build/column/before, build/column/after These two hooks enable pack-
ages to prepend or append code to the column processing in the output
routine. They are implemented as mirrored hooks.

Technically, they are executed at the start and the end of the internal
XTEX 2¢ \@makecol command, respectively. A number of packages alter
\@makecol to place code in exactly these two places—they can now simply
add their code to the hooks instead.

We also added a number of sockets for configuring the algorithm and to support
tagging. One socket that is of interest for class files but also for user in the
document preamble is build/column/outputbox. It defines how the column
text, the column floats (top and bottom) and the footnotes are combined, i.e.
their order and spacing. To change the layout all one has to do is to assign a
different predefined plug to the socket with

\AssignSocketPlug{build/column/outputbox}{({plug-name)}
The predeclared plugs are the following:

space-footnotes-floats After the galley text there is a vertical \vfill fol-
lowed by the footnotes, followed by the bottom floats, if any.

footnotes-space-floats As before but the \vfill is between footnotes and
floats.

floats-space-footnotes Floats are directly after the text, then a space and
then footnotes at the bottom.

28

space-floats-footnotes Both floats and footnotes are pushed to the bottom
with footnotes coming last.*

floats-footnotes All excess space is distributed across the existing glue on
the page, e.g., within the text galley, the separation between blocks, etc.
The order is text, floats, footnotes.

footnotes-floats As the previous one but floats and footnotes are swapped.
This is the ITEX default for newer documents, i.e., this plug is assigned
to the socket when \DocumentMetadata is used.

footnotes-floats-legacy As the previous one but BTEX’s bottom skip bug is
not corrected, i.e., in ragged bottom designs where footnotes are supposed
to be directly attached to the text, they suddenly appear at the bottom
of the page when the page is ended with \newpage or \clearpage. While
this is clearly a bug, it was the case since the days of BTEX 2.09; thus for
compatibility we continue to support this behavior.

There are a few more configuration possibilities but they are so specialized that
we have only documented them in the ITEX source in chapter 54 (which can
be viewed with texdoc source2e).

7 Commands superseded for new material

A small number of commands were introduced as part of N TEX 2¢ in the mid-
1990s, are widely used but have been superseded by more modern methods.
These are covered here as they are likely to be encountered routinely in existing
classes and packages.

7.1 Defining commands

The *-forms of these commands should be used to define commands that are
not, in TEX terms, long. This can be useful for error-trapping with commands
whose arguments are not intended to contain whole paragraphs of text.

\DeclareRobustCommand {{c¢md)} [{num)] [{default)] {{definition)}
\DeclareRobustCommand* {(cmd)} [(num)]l [{default)] {(definition)}

This command takes the same arguments as \newcommand but it declares a
robust command, even if some code within the (definition) is fragile. You can use
this command to define new robust commands, or to redefine existing commands
and make them robust. A log is put into the transcript file if a command is
redefined.

For example, if \seq is defined as follows:

4There are two more permutations, but neither of them has ever been requested so they
aren’t set up by default — doing that in a class would be trivial though.

29

\DeclareRobustCommand{\seq} [2] [n]{%
\ifmmode
#1_{1}\ldots#1_{#2}Y
\else
\PackageWarning{fred}{You can’t use \protect\seq\space in text}/
\fi
}

Then the command \seq can be used in moving arguments, even though
\ifmmode cannot, for example:

\section{Stuff about sequences \seq{x}}

Note also that there is no need to put a \relax before the \ifmmode at the
beginning of the definition; this is because the protection given by this \relax
against expansion at the wrong time will be provided internally.

\CheckCommand {(c¢cmd)} [{num)] [{default)] {({definition)}
\CheckCommand* {(cmd)} [(num)] [(default)] {({definition)}

This takes the same arguments as \newcommand but, rather than define (¢md), it
just checks that the current definition of {cmd) is exactly as given by (definition).
An error is raised if these definitions differ.

This command is useful for checking the state of the system before your package
starts altering the definitions of commands. It allows you to check, in particular,
that no other package has redefined the same command.

7.2 Option declaration

The following commands deal with the declaration and handling of options to
document classes and packages using a classical ‘simple text’ approach. Every
option name must be a ‘ETEX name’.

There are some commands designed especially for use within the {code) argu-
ment of these commands (see below).

l \DeclareOption {({option-name)} {(code)}

This makes (option-name) a ‘declared option’ of the class or package in which
it is put.

The (code) argument contains the code to be executed if that option is specified
for the class or package; it can contain any valid KTEX 2¢ construct.

Example:

\DeclareOption{twoside}{\@twosidetrue}

30

| \DeclareOption* {({code)}

This declares the (code) to be executed for every option which is specified for,
but otherwise not explicitly declared by, the class or package; this code is called
the ‘default option code’ and it can contain any valid I#TEX 2¢ construct.

If a class file contains no \DeclareOption* then, by default, all specified but
undeclared options for that class will be silently passed to all packages (as will
the specified and declared options for that class).

If a package file contains no \DeclareOption* then, by default, each specified
but undeclared option for that package will produce an error.

7.3 Commands within option code

These two commands can be used only within the (code) argument of ei-
ther \DeclareOption or \DeclareOption*. Other commands commonly used
within these arguments can be found in the next few subsections.

l \CurrentOption

This expands to the name of the current option.

| \OptionNotUsed |

This causes the current option to be added to the list of ‘unused options’.

7.4 Option processing

l \ProcessOptions

This command executes the (code) for each selected option.

We shall first describe how \ProcessOptions works in a package file, and then
how this differs in a class file.

To understand in detail what \ProcessOptions does in a package file, you have
to know the difference between local and global options.

e Local options are those which have been explicitly specified for this
particular package in the (options) argument of any of these:

\PassOptionsToPackage{<options>} \usepackage[<options>]
\RequirePackage [<options>]

e Global options are any other options that are specified by the author in
the (options) argument of \documentclass[<options>].

For example, suppose that a document begins:

31

\documentclass [german,twocolumn] {article}
\usepackage{gerhardt}

whilst package gerhardt calls package fred with:

\PassOptionsToPackage{german,dvips,adpaper}{fred}
\RequirePackage [errorshow] {fred}

then:

e fred’s local options are german, dvips, adpaper and errorshow;

e fred’s only global option is twocolumn.
When \ProcessOptions is called, the following happen.

e First, for each option so far declared in fred.sty by \DeclareOption, it
looks to see if that option is either a global or a local option for fred: if
it is then the corresponding code is executed.

This is done in the order in which these options were declared in fred.sty.

e Then, for each remaining local option, the command \ds@<option> is exe-
cuted if it has been defined somewhere (other than by a \DeclareOption);
otherwise, the ‘default option code’ is executed. If no default option code
has been declared then an error message is produced.

This is done in the order in which these options were specified.

Throughout this process, the system ensures that the code declared for an option
is executed at most once.

Returning to the example, if fred.sty contains:

\DeclareOption{dvips}{\typeout{DVIPS}}
\DeclareOption{german}{\typeout{GERMAN}}
\DeclareOption{french}{\typeout{FRENCH}}
\DeclareOption*{\PackageWarning{fred}{Unknown ¢\CurrentOption’}}
\ProcessOptions\relax

then the result of processing this document will be:

DVIPS

GERMAN

Package fred Warning: Unknown ‘a4dpaper’.
Package fred Warning: Unknown ‘errorshow’.

Note the following:

e the code for the dvips option is executed before that for the german
option, because that is the order in which they are declared in fred.sty;

32

e the code for the german option is executed only once, when the declared
options are being processed;

e the adpaper and errorshow options produce the warning from the code
declared by \DeclareOption* (in the order in which they were specified),
whilst the twocolumn option does not: this is because twocolumn is a
global option.

In a class file, \ProcessOptions works in the same way, except that: all options
are local; and the default value for \DeclareOption* is \OptionNotUsed rather
than an error.

Note that, because \ProcessOptions has a *-form, it is wise to follow the
non-star form with \relax, as in the previous examples, since this prevents
unnecessary look ahead and possibly misleading error messages being issued.

l \ProcessOptions* ‘

This is like \ProcessOptions but it executes the options in the order specified
in the calling commands, rather than in the order of declaration in the class or
package. For a package this means that the global options are processed first.

| \ExecuteOptions {({options-list)} |

It can be used to provide a ‘default option list’ just before \ProcessOptions.
For example, suppose that in a class file you want to set up the default design
to be: two-sided printing; 11pt fonts; in two columns. Then it could specify:

\ExecuteOptions{1l1ipt,twoside,twocolumn}

33

	Contents
	1 Introduction
	2 Writing classes and packages
	2.1 Is it a class or a package?
	2.2 Using `docstrip' and `doc'
	2.3 Policy on standard classes
	2.4 Command names
	2.5 Programming support
	2.6 Box commands and color
	2.7 General style

	3 The structure of a class or package
	3.1 Identification
	3.2 Using classes and packages
	3.3 Declaring options
	3.4 A minimal class file
	3.5 Example: a local letter class
	3.6 Example: a newsletter class

	4 Commands for class and package writers
	4.1 Identification
	4.2 Loading files
	4.3 Delaying code
	4.4 Creating and using keyval options
	4.5 Passing options around
	4.6 Useful status tests
	4.7 Safe file commands
	4.8 Reporting errors, etc

	5 Miscellaneous commands, etc.
	5.1 Layout parameters
	5.2 Case changing
	5.3 Better user-defined math display environments
	5.4 Normalising spacing
	5.5 Querying localisation
	5.6 Extended and expandable references of properties
	5.7 Preparing link targets

	6 Configuring the Output routine
	7 Commands superseded for new material
	7.1 Defining commands
	7.2 Option declaration
	7.3 Commands within option code
	7.4 Option processing

