The 1tmarks.dtx code*

Frank Mittelbach, IXTEX Project!
June 1, 2025

Abstract

Marks are used to communicate information about the content of a page to the
output routine. For example, in order to construct running headers, the output
routine needs information about which section names are present on a page, and
this information is passed to it through the mark system. However, marks may
also be used for other purposes. This module provides a generalized mechanism for
marks of independent classes.

Contents
1 Introduction 2
2 Design-level and code-level interfaces 2
2.1 Use cases for conditionals L0 4
2.2 Understanding regions oL Lo 5
2.3 Debugging mark code L o 6
3 Application examples 7
4 Legacy I'TEX 2¢ interface 7
4.1 Legacy design-level and document-level interfaces 7
4.2 Legacy interface extensions L oL 8
5 Notes on the mechanism 8
6 Public interfaces for packages such as multicol 10
7 Internal functions for the standard output routine of BTEX 11
Index 12

*This file has version v1.1c dated 2025/05/22, © IATEX Project.
TE-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

1 Introduction

The TEX engines offer a low-level mark mechanism to communicate information about
the content of the current page to the asynchronous operating output routine. It works
by placing \mark commands into the source document. When the material for the current
page is assembled in box 255, TEX scans for such marks and sets the commands \topmark,
\firstmark and \botmark. The \firstmark receives the content of the first \mark seen
in box 255 and \botmark the content of the last mark seen. The \topmark holds the
content of the last mark seen on the previous page or more exactly the value of \botmark
from the previous page. If there are no marks on the current page then all three are
made equal to the \botmark from the previous page.

This mechanism works well for simple formats (such as plain TEX) whose output
routines are only called to generate pages. It fails, however, in BTEX (and other more
complex formats), because here the output routine is sometimes called without producing
a page, e.g., when encountering a float and placing it into one of the float regions. In that
case the output routine is called, determines where to place the float, alters the goal for
assembling text material (if the float was added to the top or bottom region) and then
it resumes collecting textual material.

As a result the \botmark gets updated and so \topmark no longer reflects the situ-
ation at the top of the next page when that page is finally boxed.

Another problem for IMTEX was that it wanted to use several “independent” marks
and in the early implementations of TEX there was only a single \mark command available.
For that reason IMTEX implemented its own mark mechanism where the marks always
contained two parts with their own interfaces: \markboth and \markright to set marks
and \leftmark and \rightmark to retrieve them.

However, this extended mechanism (while supporting scenarios such as chap-
ter /section marks) was far from general. The mark situation at the top of a page (i.e.,
\topmark) remained unusable and the two marks offered were not really independent of
each other because \markboth (as the name indicates) was always setting both.

The new mechanism overcomes both issues:

o It provides arbitrarily many, fully independent named marks, that can be allocated
and, from that point onwards, used.

o It offers access for each such marks to retrieve its top, first, and bottom values
separately.

e Furthermore, the mechanism is augmented to give access to marks in different
“regions” which may not be just full pages.

2 Design-level and code-level interfaces

The interfaces are mainly meant for package developers, but they are usable (with appro-
priate care) also in the document preamble, for example, when setting up special running
headers with fancyhdr, etc. They are therefore available both as CamelCase commands
as well as commands for use in the L3 programming layer. Both are described together
below.

\NewMarkClass

\mark_new_class:n

\InsertMark

\mark_insert:nn

insertmark

\TopMark
\FirstMark
\LastMark
\mark_use_top:nn
\mark_use_first:nn
\mark_use_last:nn

L D . S

Important!

\NewMarkClass {(class)}
\mark_new_class:n {(class)}

Declares a new {class) of marks to be tracked by BTEX. Each (class) must be declared
before it is used.
Mark classes can only be declared before \begin{document}.

\InsertMark {(class)} {(text)}
\mark_insert:nn {(class)} {(text)}

Adds a mark to the current galley for the (class), containing the (text).

It has no effect in places in which you can’t place floats, e.g., a mark inside a box or
inside a footnote never shows up anywhere.

If used in vertical mode it obeys I#TEX’s internal @nobreak switch, i.e., it does not
introduce a breakpoint if used after a heading. If used in horizontal mode it doesn’t
handle spacing (like, for example, \index or \label does, so it should be attached to
material that is typeset.

\AddToHook {insertmark} {(code)}

When marks are inserted, the mark content may need some special treatment, e.g., by
default \1abel, \index, and \glossary do not expand at this time (but only later if and
when the mark content is actually used. In order to allow packages to augment or alter
this setup there is a public hook insertmark that is executed at this point. It runs in
a group so local modification to commands are only applied to the (text) argument of
\InsertMark or \mark_insert:nn.

\TopMark [(region)] {(class)}
\FirstMark [(region)] {(class)}
\LastMark [(region)] {(class)}
\mark_use_top:nn {(region)} {(class)}
\mark_use_first:nn {(region)} {(class)}
\mark_use_last:nn {(region)} {(class)}

These functions expand to the appropriate mark (text) for the given (class) in the
specified (region). The default (region) in the design-level commands is page. Note
that with the L3 layer commands there are no optional arguments, i.e., both arguments
have to be provided.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (text) does not expand further when appearing in an x-type or e-type
argument expansion.

The “first” and “last” marks are those seen first and last in the current region/page,
respectively. The “top” mark is the last mark of the (class) seen in an earlier region,
i.e., the (text) what would be “current” at the very top of the region.

The commands are only meaningful inside the output routine, in other places their
result is (while not random) unpredictable due to the way BTEX cuts text material into
pages. There is, however, one exception: if you produce multiple columns using the
multicol package, it is possible to retrieve mark values from the regions first-column,
last-column, mcol-1, mcol-2,... directly after the environment has ended. This can,
for example, be useful if a multicols has been be used inside a box.

\IfMarksEqualTF *
\IfMarksEqualT *
\IfMarksEqualF *
\mark_if_eq:nnnnTF *
\mark_if_eq:nnnnnnTF *

Currently, (region) is one of page, previous-page, column, previous-column,
first-column, last-column, and mcol-1 (first column in a multicols), mcol-2 (sec-
ond column in a multicols), up to mcol-20 (twentieth column in a multicols). See
section 7?7 for discussion of how these regions behave and how one can make use of them.

\IfMarksEqualTF [(region)] {(class)} {(posi1)} {(pos2)} {(true)} {(false)}
\mark_if_eq:nnnnTF {(region)} {(class)} {(posi)} {(pos2)} {(true)} {(false)}
\mark_if_eq:nnnnnnTF {(regioni)} {(classi)} {(posi)}

{(regionz)} {(classz)} {(pos2)} {(true)} {(false)}
These conditionals allow you to compare the content of two marks and act based on the
result. The commands work in an expansion context, if necessary.

It is quite common when programming with marks to need to interrogate conditions
such as whether marks have appeared on a previous page, or if there are multiple marks
present on the current page, and so on. The tests above allow for the construction of a
variety of typical test scenarios, with three examples presented below.

The first two conditionals cover only the common scenarios. Both marks are picked
up from the same (region) (by default page) and they have to be of the same (class).'
The (pos;) argument can be either top, first, or last.

Important to note is that the comparison is not with respect to the textual content
of the marks but whether or not they originated from the same \InsertMark command
(or the L3 layer version \mark_insert:nn).

If you wish to compare marks across different regions or across different classes, you
have to do it using the generic test only available in the L3 programming layer or do it
manually, i.e., get the marks and then compare the values yourself.?

2.1 Use cases for conditionals
However, the basic version is enough for the following typical use cases:

Test for at most one mark of class myclass on current page: If the first and last
mark in a region are the same then either there was no mark at all, or there was
at most one. To test this on the current page:

\NewMarkClass{myclass}
\IfMarksEqualTF{myclass}{first}{last}
{ <zero or one mark> }{ <two or more marks> }

Test for no mark of class myclass in the previous page: If the top mark is the
same as the first mark, there is no mark in the region at all. If we wanted to
do this test for the previous page:

\IfMarksEqualTF [previous-page] {myclass}{top}{first}
{ <no marks> }{ <at least one mark> }

Comparing top and last would give you the same result.

Test for zero, one, or more than one: Combining the two tests from above you can
test for zero, one or more than one mark.

Lf an undeclared mark class is used the tests return true (not an error).
2If two undeclared mark classes are compared the result is always true; if a declared and an undeclared
mark class is used it is always false.

\IfMarksEqualTF{myclass}{top}{first}
{ <no marks> }
{\IfMarksEqualTF{myclass}{first}{last}
{ <exactly one mark> }{ <more than one mark> }}

If you need one of such tests more often (or if you want a separate command for it
for readability), then consider defining:

\providecommand\IfNoMarkTF [2] [page] {\IfMarksEqualTF [#1]{#2}{first}{last}}

2.2 Understanding regions

If a page has just been finished then the region page refers to the current page and
previous-page, as the name indicates, refers to the page before the current page. This
means you are able to access mark information for the current page as well as for the page
before (as long as you are inside the output routine) without the need to explicitly save
that information beforehand. The page region is the region that is most often queried,
which is why commands like \FirstMark use that region by default.

In single column documents the column is the same as the page region, but in
two-column documents (if not produced by multicols), column refers to the current
column that just got finished and previous-column to the one previously finished. Code
for running headers is (in standard ITEX) evaluated only after both columns have been
assembled, which is another way of saying that in that case previous-column refers to
the left column and column to the right column. However, to make these somewhat
easier to use, there are also aliased names for these two regions: first-column and
last-column.?

Note that you can only look backwards at already processed regions, e.g., in a
twoside document finishing a recto (odd, right-hand) page you can access the data
from the facing verso (left-hand) page, but if you are finishing a left-hand page you can’t
integrate data from the upcoming right-hand page. If such a scenario needs to be realized
then it is necessary to save the left-hand page temporarily instead of finalizing it, process
material for the right-hand page and once both are ready, attach running headers and
footers and shipout out both in one go.*

The situation starts getting rather complex if you allow for multiple columns in
the way they are supported by the multicol package. In this case you might have a
variable number of “columns” on a single page to be shipped out. And even if not, then
a multicols might start or end in the middle of the page; in either case, the regions
column and previous-column become rather meaningless and you should therefore not
use them.® Instead, the algorithm offers mcol-1, mcol-2, mcol-3, etc., to represent the
columns in the multicols on the current page to be shipped out. If there is more than
one multicols on the current page then in the output routine only the columns of the
last one will be accessible.

3The region is called “last-column” not “second-column” in anticipation of extending the mechanism to
multiple columns, where first and last would still make sense. There aren’t any previous-first-column
and previous-last-column regions to access the corresponding columns from the previous page.

4 As of now that scenario is not (yet) officially supported but it would be possible to achieve this using
the shipout hooks to store the verso page and then on the next shipout use the hook to shipout both
with running headers and footers attached.

5They return something, because they represent the last two columns of the multicols when you are
inside the output routine, but that is obviously of little use.

These provisions cover, out of the box, a number of layouts and use cases, but obvi-
ously not all. However, more cases can be supported by storing away mark information
during the processing. Here is the full algorithm:

e The column region is used by the “current column” that is being built (moving
through all columns with previous-column trailing behind (to handle top marks

properly).

e When the multicols starts, the column region is cleared, i.e., from that point on
it looks as if there have not been any marks so far. This will make sure that the
top mark in the first column is always empty.

e If the multicols extends beyond the current page, then the material designated
for the current page is split into columns. The column region is used to represent
each column in turn.

— First we copy the current data from column to previous-column. Then the
mark data from the current column is placed into the column region. Then
we alias column to mcol-1.

— These steps are repeated for all columns of the multicols environment.

— Finally, the first and the last column of that page is also made available as
first-column and last-column, respectively.

e All those marks inside any of the columns are also available in the page region.
Thus, if you are interested in the top, first, or last mark of a specific class on the
whole page you simply need to query for it in the page region.

e If the multicols continues across several pages then this algorithm above is re-
peated for each page, except that the column region is not cleared again. This
means that the top mark of the first column of the next page will be the last mark
of the last column from the previous page.

e When the multicols finishes the remaining material for the current page is bal-
anced to produce columns of roughly equal height.

e Again column and previous-column are used while this balancing happens and
mcol-1, mcol-2, etc., are used to represent the column regions and first-column
and last-column are set appropriately.

e Then the balanced set of columns is returned back to the page (since there may be
space for further material). In addition, all marks inside that material are reinserted
so that they become available in the page region.

o Asaside effect, it is possible (and useful in certain circumstances) to query for mark
classes directly after the multicols has ended without the need to be inside the
output routine. The regions that can be queried this way are mcol-1, mcol-2, etc.
(up to the number of columns the multicol had) and first-column and last-column.

2.3 Debugging mark code

\DebugMarksOn \DebugMarksOn ... \DebugMarksOff
\DebugMarks0ff

\mark_debug_on:
\mark_debug_off:

Commands to turn the debugging of mark code on or off. The debugging output is
rather coarse and not really intended for normal use at this point in time.

\markboth
\markright

3 Application examples

If you want to figure out if a break was taken at a specific point, e.g., whether a heading
appears at the top of the page, you can do something like this:

\newcounter{breakcounter}

\NewMarkClass{break}

\newcommand\markedbreak [1] {\stepcounter{breakcounter},
\InsertMark{break}{\arabic{breakcounter}/,
\penalty #1\relax
\InsertMark{break}{-\arabic{breakcounter}}

To test if the break was taken you can test if \TopMark{break} is positive (taken) or
negative (not taken) or zero (there was never any marked break so far). The absolute
value can be used to keep track of which break it was (with some further coding).

to be extended with additional application examples

4 Legacy KBTEX 2¢ interface

Here we describe the interfaces that I2TEX 2¢ offered since the early nineties and some
minor extensions.

4.1 Legacy design-level and document-level interfaces

\markboth {(left)} {(right)}

\markright {(right)}

KTEX 2¢ uses two marks which aren’t fully independent. A “left” mark generated by
the first argument of \markboth and a “right” mark generated by the second argu-
ment of \markboth or by the only argument of \markright. The command \markboth
and \markright are in turn called from heading commands such as \chaptermark or
\sectionmark and their behavior is controlled by the document class.

For example, in the article class with twoside in force the \sectionmark will issue
\markboth with an empty second argument and \subsectionmark will issue \markright.
As a result the left mark will contain chapter titles and the right mark subsection titles.

Note, however, that in one-sided documents the standard behavior is that only
\markright is used, i.e., there will only be right-marks but no left marks!

\leftmark « \leftmark

\rightmark * \rightmark
These functions return the appropriate mark value from the current page and work as
before, that is \leftmark will get the last (!) left mark from the page and \rightmark
the first (!) right mark.

In other words they work reasonably well if you want to show the section title that
is current when you are about to turn the page and also show the first subsection title
on the current page (or the last from the previous page if there wasn’t one). Other
combinations can’t be shown using this interface.

The commands are fully expandable, because this is how they have been always
defined in I¥TEX. However, this is of course only true if the content of the mark they
return is itself expandable and does not contain any fragile material. Given that this
can’t be guaranteed for arbitrary content, a programmer using them in this way should
use \protected@edef and not \edef to avoid bad surprises as far as this is possible, or
use the new interfaces (\TopMark, \FirstMark, and \LastMark) which return the (text)
in \exp_not:n to prevent uncontrolled expansion.

4.2 Legacy interface extensions

The new implementation adds three mark classes: 2e-left, 2e-right and 2e-right-nonempty
and patches \markboth and \markright slightly so that they also update these new mark
classes, so that the new classes work with existing document classes.

As a result you can use \LastMark{2e-1left} and \FirstMark{2e-right} instead of
\leftmark and \rightmark. But more importantly, you can use any of the other retrieval
commands to get a different status value from those marks, e.g., \LastMark{2e-right}
would return the last subsection on the page (instead of the first as returned by
\rightmark).

The difference between 2e-right and 2e-right-nonempty is that the latter will
only be updated if the material for the mark is not empty. Thus \markboth{title}{}
as issued by, say, \sectionmark, sets a 2e-left mark with title and a 2e-right mark
with the empty string but does not add a 2e-right-nonempty mark.

Thus, if you have a section at the start of a page and you would ask for
\FirstMark{2e-right} you would get an empty string even if there are subsections
on that page. But 2e-right-nonempty would then give you the first or last subsection
on that page. Of course, nothing is simple. If there are no subsections it would tell you
the last subsection from an earlier page. We therefore need comparison tools, e.g., if top
and first are identical you know that the value is bogus, i.e., a suitable implementation
would be

\IfMarksEqualTF{2e-right-nonempty}{top}{first}
{ <appropriate action if there was no real mark> }
{\FirstMark{2e-right-nonempty}}

5 Notes on the mechanism

In contrast to vanilla TEX, e-TEX extends the mark system to allow multiple independent
marks. However, it does not solve the \topmark problem which means that BTEX still
needs to manage marks almost independently of TEX. The reason for this is that the
more complex output routine used by WTEX to handle floats (and related structures)

means that \topmark(s) remain unreliable. Each time the output routine is fired up,
TEX moves \botmark to \topmark, and while e-TEX extends this to multiple registers the
fundamental concept remains the same. That means that the state of marks needs to be
tracked by KTEX itself. An early implementation of this package used TEX’s \botmark
only to ensure the correct interaction with the output routine (this was before the e-TEX
mechanism was even available). However, other than in a prototype implementation for
I¥TEX3, this package was never made public.

The new implementation now uses e-TEX’s marks as they have some advantages,
because with them we can leave the mark text within the galley and only extract the
marks during the output routine when we are finally shipping out a page or storing away
a column for use in the next page. That means we do not have to maintain a global data
structure that we have to keep in sync with informational marks in the galley but can
rely on everything being in one place and thus manipulations (e.g. reordering of material)
will take the marks with them without a need for updating a fragile linkage.

To allow for completely independent marks we use the following procedure:

e For every type of marks we allocate a mark class so that in the output routine TEX
can calculate for each class the current top, first, and bottom mark independently.
For this we use \newmarks, i.e., one marks register per class.

o As already mentioned firing up an output routine without shipping out a page
means that TEX’s top marks get wrong so it is impossible to rely on TEX’s approach
directly. What we do instead is to keep track of the real marks (for the last page
or more generally last region) in some global variables.

e These variables are updated in the output routine at defined places, i.e., when we
do real output processing but not if we use special output routines to do internal
housekeeping.

e The trick we use to get correctly updated variables is the following: the material
that contains new marks (for example the page to be shipped out) is stored in a
box. We then use TEX primitive box splitting functions by splitting off the largest
amount possible (which should be the whole box if nothing goes really wrong).
While that seems a rather pointless thing to do, it has one important side effect:
TEX sets up first and bottom marks for each mark class from the material it has
split off. This way we get the first and last marks (if there have been any) from the
material in the box.

e The top marks are simply the last marks from the previous page or region. And
if there hasn’t been a first or bottom mark in the box then the new top mark also
becomes new first and last mark for that class.

e That mark data is then stored in global token lists for use during the output routine
and legacy commands such as \leftmark or new commands such as \TopMark
simply access the data stored in these token lists.

That’s about it in a nutshell. Of course, there are some details to be taken care of—those
are discussed in the implementation sections.

6 Public interfaces for packages such as multicol

The functions in this section are public so that packages can make use of them. However,
this must be done with great care, e.g., \mark_update_structure_from_material:nn
updates the global mark structure and can therefore be used only in places where such
an update is meaningful, e.g., in special output routines. Elsewhere, a change to the
mark structure would break the whole mechanism and querying the marks would return
incorrect data.

\mark_update_structure_from_material:nn \mark_update_structure_from_material:nn {(region)} {(material with

\mark_copy_structure:nn

marks)}

Helper function that inspects the marks inside the second argument and assigns new
mark values based on that to the (region) given in the first argument. For this it first
copies the mark structure from (region) to previous—(region) and then takes all last
mark values currently in the region and makes them the new top mark values. Finally
it assigns new first and last values for all mark classes based on what was found in the
second argument.

As a consequence, the allowed values for (region) are page and column because
only they have previous-... counterparts.

Another important aspect to keep in mind is that marks are recognized only if they
appear on the top level, e.g., if we want to process material stored in boxes we need to
put it unboxed (using \unvcopy etc.) into the second argument.

\mark_copy_structure:nn {(alias)} {(source)}

Helper function that copies all mark values in the (source) region to (alias), i.e., make
the structures identical. Used to update the previous-... structures inside \mark_-
update_structure_from_material:nn and first-column and last-column structures
inside the internal commands __mark_update_singlecol_structures: or __mark__-
update_dblcol_structures:.

\mark_set_structure_to_err:n \mark_set_structure_to_err:n {(region)}

\mark_clear_structure:n

Helper function that sets all mark values in the (region) to an error message. This is
currently used for last-column at times where using marks from it would be question-
able/wrong, i.e., when we have just processed the first column in a two-column document.

\mark_clear_structure:n {(region)}

Helper function that sets all mark values in the (region) to empty. This is currently
used for column when a multicol environment starts; this is because it wouldn’t make
sense if the top mark in the first column returned the last mark from a previous multicol
(which may have been much earlier, with intermediate material).

10

\mark_get_marks_for_reinsertion:nNN \mark_get_marks_for_reinsertion:nNN {(source)}

(token-list-var for collecting first marks)

(token-list-var for collecting last marks)

Helper function for extracting marks that would otherwise get lost, for example when
they are hidden inside a box. This helper does not update mark structures and can
therefore be used outside the output routine as well.

It collects all the top-level marks from inside the (source) and then adds suitable
\mark_insert:nn commands to each of the two token lists. These token lists can then
be executed at the right place to reinsert the marks, e.g., directly after the box. This is,
for example, going to be used® by multicol when a short balanced multicols is returned
to the galley for typesetting.

If the (source) consists of a single vertical box (plus possibly followed by some glue
but nothing else) then the box is unpacked and the top-level marks are collected from
its content. However, if it is not a vertical box or there are other data then nothing is
unpacked and you have to do the unpacking yourself to get at the marks inside.

It is quite likely that one only needs a single token list for returning the \mark_-
insert:nn statements. If that is the case this command may change to take only two
arguments.

7 Internal functions for the standard output routine

of BWTEX

The functions in this section are tied to the output routine and used in the interface to
IXTEX 2¢ and perhaps at some later time within a new output routine for BTEX. They
are not (yet) meant for general use and are therefore made internal, even though we
already use them in multicol. Internal means that @@ automatically gets replaced in the
code (and in the documentation) so we have to give it a suitable value.

1 (@@=mark)

__mark_update_singlecol_structures: __mark_update_singlecol_structures:

TEX 2¢ integration function in case we are doing single column layouts. It assumes that
the page content is already stored in \@outputbox and processes the marks inside that
box. It is called as part of \@opcol.

__mark_update_dblcol_structures: __mark_update_singlecol_structures:

TEX 2¢ integration function mark used when we are doing double column documents.
It assumes that the page content is already stored in \@outputbox and processes the
marks inside that box. It then does different post-processing depending on the start of
the switch \if@firstcolumn. If we are in the second column it also has to update page
marks, otherwise it only updates column marks. It too is called as part of \@opcol.

6Probably not before 2025, though.

11

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
\AddToHook 3
B
\botmark 2
C
\chaptermark 7
D
\DebugMarksOff 6
\DebugMarksOn 6
E
Nedef 8
exp commands:
\exp_mot:n 8
F
\FirstMark 3
\firstmark 2
G
\gLoSSATY . .t 3
I
\IfMarksEqualF 4
\IfMarksEqualT 4
\IfMarksEqualTF 4
\index 3
\InsertMark 3
insertmark, 3
L
\label 3
\LastMark 8
\leftmark 8
M
\mark 2
mark commands:
\mark_clear_structure:n 10
\mark_copy_structure:nn 10
\mark_debug_off: 6
\mark_debug_on: 6
\mark_get_marks_for_reinsertion:nNN
.......................... 11

12

\mark_if_eq:nnnnnnTF 4
\mark_if_eq:nnnnTF 4
\mark_insert:nn 3
\mark_new_class:n 3
\mark_set_structure_to_err:n 10
\mark_update_structure_from_-
material:nn 10
\mark_use_first:nn 3
\mark_use_last:nn 3
\mark_use_top:nn 3
mark internal commands:
__mark__update_dblcol_structures:
.......................... 10
__mark_update_dblcol_structures:
.......................... 11
__mark_update_singlecol_-
structures: 10
\markboth 7
\markright 7
N
\NewMarkClassouo... 3
\newmarks0.0... 9
R
\rightmark 8
S
\sectionmark 8
\subsectionmark 7
T
TEX and ETEX 2 commands:
\@opcol 11
\@outputbox 11
\botmark 9
\if@firstcolumn 11
\protected@edef 8
\topmark 9
\topmark(s) 9
\unexpanded 3
\TopMark 3
\topmark 2
U
\UDVCOPY « v vt v e e e 10

	Contents
	1 Introduction
	2 Design-level and code-level interfaces
	2.1 Use cases for conditionals
	2.2 Understanding regions
	2.3 Debugging mark code

	3 Application examples
	4 Legacy LaTeX2ε interface
	4.1 Legacy design-level and document-level interfaces
	4.2 Legacy interface extensions

	5 Notes on the mechanism
	6 Public interfaces for packages such as multicol
	7 Internal functions for the standard output routine of LaTeX
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	R
	S
	T
	U

