The algorithms bundle*

Rogério Brito
rbrito@ime.usp.br

August 24, 2009
Contents
1 Introduction| 1 3.11 Printing Messages|. . . . 8
3.12 Comments| 9
2 Installation| 2 3.13 An Example| 9
3.14 Options/Customization| 10
|3 Environment: algorithmic| 2
[3.1 The Simple Statement| . 3 {4 Environment: algorithm 14
B2 The if-then-else Statement] 3 41 General 14
.3~ The for Loop| 4 4.2 An Example 14
@ The while Loop| 5 4.3 Options|. 15
B.5 The repeat-until Loop| . . 5 X mizaion 15
B.6 The Infinite Loop| 6 - :
B The Logical Connectivey 6 [5 References in Algorithms| 16
iti C 7 6 Known Issues 17
8.9 _The Postconditionl. . . . 7
[3.10 Returning Values| 8 [7_General Hintsl| 18
List of Algorithms
1 Calculatey =x"[. o 15
2 Calculatey =x". oo o oo 17

1 Introduction

This package provides two environments, algorithmic and algorithm, which
are designed to be used together but may, depending on the necessities of the
user, be used separately.

*This document corresponds to algorithms v0.1, dated 2009/08/24.

mailto:rbrito@ime.usp.br

The algorithmic environment provides an environment for describing al-
gorithms and the algorithm environment provides a “float” wrapper for algo-
rithms (implemented using algorithmic or some other method at the users’s
option). The reason for two environments being provided is to allow the user
maximum flexibility.

This work may be distributed and/or modified under the conditions of the
GNU Lesser General Public License, either version 2 of the License, or (at your
option) any later version, as published by the Free Software Foundation. See the
file COPYING included in this package for further details.

Currently, this package consists of the following files:

e algorithms.ins: the driver file

e algorithms.dtx: the source file

e COPYING: the license file

e README: remarks about the package

e THANKS: mentions of thanks for contributors to the package

Starting with with the 2009-08-24 release, the package is now versioned and
this document corresponds to version v0.1.

If you use this package, the author would kindly appreciate if you mentioned
it in your documents, so as to let the package be better known and have more
contributors, to make it better for the community itself. This is not required by
the license: it’s just a friendly request.

2 Installation

The installation procedure of algorithms follows the usual practice of packages
shipped with a pair of .ins/.dtx—simply type the comand:

latex algorithms.ins

and the . sty files will be generated. Copy them to a place that is referenced by
your I&TgX distribution. To generate the documentation, type:

latex algorithms.dtx

3 The algorithmic Environment

Within an algorithmic a number of commands for typesetting popular algo-
rithmic constructs are available. In general, the commands provided can be
arbitrarily nested to describe quite complex algorithms. An optional argument
to the \begin{algorithmic} statement can be used to turn on line numbering
by giving a positive integer indicating the required frequency of line number-
ing. For example, \begin{algorithmic}[5] would cause every fifth line to be
numbered.

3.1 The Simple Statement
The simple statement takes the form

\STATE <text>

and is used for simple statements. For example,

\begin{algorithmic}
\STATE $S \leftarrow 0$
\end{algorithmic}

would produce
S0
With line numbering selected for every line, using,

\begin{algorithmicl}[1]
\STATE $S \leftarrow 0$
\end{algorithmic}

we would get
1: S0

Warning For users of earlier versions of algorithmic this construct is a cause of
an incompatibility. In the earlier version, instead of starting simple statements with
the \STATE command, simple statements were entered as free text and terminated with
\\ command. Unfortunately, this simpler method failed to survive the modifications
necessary for statement numbering. However, the \\ command can still be used to force
a line break within a simple statement.

3.2 The if-then-else Statement
The if-then-else construct takes the forms:

\IF{<condition>} <text> \ENDIF
\IF{<condition>} <text1> \ELSE <text2> \ENDIF
\IF{<condition1>} <text1> \ELSIF{<condition2>} <text2> \ELSE <text3> \ENDIF

In the third of these forms there is no limit placed on the number of
\ELSIF{<condition>} that may be used. For example,

\begin{algorithmic}

\IF{some condition is true}

\STATE do some processing

\ELSIF{some other condition is true}

\STATE do some different processing

\ELSIF{some even more bizarre condition is met}

\STATE do something else
\ELSE

\STATE do the default actions
\ENDIF

\end{algorithmic}

would produce

if some condition is true then
do some processing

else if some other condition is true then
do some different processing

else if some even more bizarre condition is met then
do something else

else
do the default actions

end if

with appropriate indentations.

3.3 The for Loop
The for loop takes two forms. Namely:

\FOR{<condition>} <text> \ENDFOR
\FORALL{<condition>} <text> \ENDFOR

For example,

\begin{algorithmic}

\FOR{$i=0$ to 10}

\STATE carry out some processing
\ENDFOR

\end{algorithmic}

produces
fori =0to 10 do
carry out some processing
end for
and

\begin{algorithmicl}[1]

\FORALL{i such that $0\leq i\leq 10$}
\STATE carry out some processing
\ENDFOR

\end{algorithmic}

produces

1: for all i such that 0 <i <10 do
2: carry out some processing
3: end for

3.3.1 The to Connective

As may be clear from the usage of loops above, we usually want to specify ranges
over which a variable will assume values. To help make this typographically
distinct, the algorithmic package now supports the to connective, which can
be used like:

\begin{algorithmic}

\FOR{$i=0$ \TO $108}

\STATE carry out some processing
\ENDFOR

\end{algorithmic}

to produce the output

fori =0to 10 do
carry out some processing
end for

3.4 The while Loop

The while loop takes the form

\WHILE{<condition>} <text> \ENDWHILE

For example,

\begin{algorithmic}

\WHILE{some condition holds}
\STATE carry out some processing
\ENDWHILE

\end{algorithmic}

produces

while some condition holds do
carry out some processing
end while

3.5 The repeat-until Loop
The repeat-until loop takes the form.

\REPEAT <text> \UNTIL{<condition>}

For example,

\begin{algorithmic}

\REPEAT

\STATE carry out some processing
\UNTIL{some condition is met}
\end{algorithmic}

produces

repeat
carry out some processing
until some condition is met

3.6 The Infinite Loop

The infinite loop takes the form.

\LOOP <text> \ENDLOOP

For example,

\begin{algorithmic}

\LOOP

\STATE this processing will be repeated forever
\ENDLOOP

\end{algorithmic}

produces

loop
this processing will be repeated forever
end loop

3.7 The Logical Connectives

The connectives and, or, xor and not can be used in boolean expressions in the
familiar, expected way:

<expression> \AND <expression>
<expression> \OR <expression>
<expression> \XOR <expression>
\NOT <expression>

according to their arity For example,

\begin{algorithmic}

1But there is nothing that prevents the user from violating the arity, from a syntatic point of view.

\IF{\NOT ($year \bmod 400$ \XOR $year \bmod 100$ \XOR $year \bmod 4$)}
\STATE $year$ does not represent a leap year.

\ENDIF

\end{algorithmic}

produces

if not (year mod 400 xor year mod 100 xor year mod 4) then
year does not represent a leap year.
end if

3.8 The Precondition

The precondition (that must be met if an algorithm is to correctly execute) takes
the form:

\REQUIRE <text>

For example,

\begin{algorithmic}
\REQUIRE $x \neq 0$ and $n \geq 0$
\end{algorithmic}

produces
Require: x #0and n >0

3.9 The Postcondition

The postcondition (that must be met after an algorithm has correctly executed)
takes the form:

\ENSURE <text>

For example,

\begin{algorithmic}
\ENSURE $x \neq 0$ and $n \geq 0$
\end{algorithmic}

produces
Ensure: x #0and n >0

3.10 Returning Values

The algorithmic environment offers a special statement for explicitly returning
values in algorithms. It has the syntax:

\RETURN <text>

For example,

\begin{algorithmic}
\RETURN $(x+y)/2$
\end{algorithmic}

produces
return (x+y)/2

3.10.1 The “true” and “false” Values

Since many algorithms have the necessity of returning true or false values,
algorithms, starting with version 2006-06-02, includes the keywords \TRUE and
\FALSE, which are intented to print the values in a standard fashion, like the
following snippet of an algorithm to decide if an integer 7 is even or odd:

\begin{algorithmic}
\IF{n is odd}
\RETURN \TRUE
\ELSE
\RETURN \FALSE
\ENDIF
\end{algorithmic}

The code above produces the following output:
if n is odd then
return true
else

return false
end if

3.11 Printing Messages

Another feature of the algorithmic environment is that it currently provides a
standard way of printing values (which is an operation used enough to merit its
own keyword). It has the syntax:

\PRINT <text>

For example,

\begin{algorithmic}
\PRINT \texttt{‘‘Hello, World!’’}
\end{algorithmic}

produces
print ‘‘Hello, World!”

3.12 Comments
Comments may be inserted at most points in an algorithm using the form:

\COMMENT{<text>}

For example,

\begin{algorithmic}
\STATE do something \COMMENT{this is a comment}
\end{algorithmic}

produces
do something {this is a comment}
Because the mechanisms used to build the various algorithmic structures make it
difficult to use the above mechanism for placing comments at the end of the first
line of a construct, the commands \IF, \ELSIF, \ELSE, \WHILE, \FOR, \FORALL,
\REPEAT and \LOOP all take an optional argument which will be treated as a
comment to be placed at the end of the line on which they appear. For exam-
ple,
repeat {this is comment number one}
if condition one is met then {this is comment number two}
do something
else if condition two is met then {this is comment number three}
do something else
else {this is comment number four}
do nothing
end if
until hell freezes over

3.13 An Example

The following example demonstrates the use of the algorithmic environment
to describe a complete algorithm. The following input

\begin{algorithmic}
\REQUIRE $n \geq 0%

\ENSURE $y = x"n$

\STATE $y \leftarrow 1$

\STATE $X \leftarrow x$

\STATE $N \leftarrow n$
\WHILE{$N \neq 0$}

\IF{N is even}

\STATE $X \leftarrow X \times X$
\STATE $N \leftarrow N / 2%
\ELSE[N is odd]

\STATE $y \leftarrow y \times X$
\STATE $N \leftarrow N - 1%
\ENDIF

\ENDWHILE

\end{algorithmic}

will produce
Require: n > 0
Ensure: y = x"
y—1
X —x
N—n
while N # 0 do
if N is even then
X—XxX
N« N/2
else {N is odd}
y<——y x X
N«—N-1
end if
end while

which is an algorithm for finding the value of a number taken to a non-negative
power.

3.14 Options and Customization

There is a single option, noend that may be invoked when the algorithmic
package is loaded. With this option invoked the end statements are omitted in
the output. This allows space to be saved in the output document when this is
an issue.

3.14.1 Changing Indentation

In the spirit of saving vertical space (which is especially important when sub-
mitting a paper for a journal, where space is frequently limited for authors), the
algorithmic environment offers, beginning with the version released in 2005-

10

05-08, a way to control the amount of indentation that is used by a given algo-
rithm.
The amount of indentation to be used is given by the command

\algsetup{indent=lenght}

where length is any valid length used by TgX. The default value of the indenta-
tion used by the algorithmic environment is 1 em (for “backward compatibility
reasons”), but a value of 2 em or more is recommended, depending on the pub-
lication. For example, the snippet

\algsetup{indent=2em}
\begin{algorithmic}[1]
\STATE $a \leftarrow 1$
\IF{a is even}
\PRINT ‘‘a is even’’

\ELSE
\PRINT ‘‘a is odd’’
\end{algorithmic}
produces
1 a1
2: if a is even then
3 print “a is even”
4: else
5: print “a is odd”
6: end if
while

\algsetup{indent=5em}
\begin{algorithmic}[1]
\STATE $a \leftarrow 1$
\IF{a is even}
\PRINT ‘‘a is even’’

\ELSE
\PRINT ‘‘a is odd’’
\end{algorithmic}

would produce
a1
: if a is even then
print “a is even”

1
2
3
4: else
5: print “ais odd”
6: end if
The intended use of this option is to allow the author to omit the end (see
Section [3.14] for details) statements without loosing readability, by increasing the

amount of indentation to a suitable level.

11

3.14.2 Changing Line Numbering

As mentioned in Section [B|and illustrated in Section algorithms already
provides you with the possibility of numbering lines.

Starting with the version released in 2005-07-05, you can now change two
aspects of line numbering: the size of the line numbers (which, by default, is
\footnotesize) and the delimiter used to separate the line number from the
code (which, by default, is :, i.e., a colon).

You can change the size of the line numbers using the command:

\algsetup{linenosize=size}

where size is any of the various commands provided by IATEX to change the size
of the font to be used. Among others, useful values are \tiny, \scriptsize,
\footnotesize and \small. Please see the complete list of sizes in your IATgX
documentation.

As another frequently requested feature, you can change the delimiter used
with the line numbers by issuing the command:

\algsetup{linenodelimiter=delimiter}

where delimiter is any “well-formed” string, including the empty string. With
this command, you can change the colon to a period (.) by issuing the command

\algsetup{linenodelimiter=.}

or even omit the delimiter, by specifying the empty string or a space (\), what-
ever seems best for your document.
As an example of such commands, the code produced by

\algsetup{
linenosize=\small,
linenodelimiter=.

}

\begin{algorithmicl}[1]
\STATE $i \leftarrow 10$
\RETURN i

\end{algorithmic}

would be something like

1. i< 10
2. return i

12

3.14.3 Customization

In order to facilitate the use of this package with foreign languages, all of the
words in the output are produced via redefinable macro commands. The default
definitions of these macros are:

\newcommand{\algorithmicrequire}{\textbf{Require:}}
\newcommand{\algorithmicensure}{\textbf{Ensure:}}
\newcommand{\algorithmicend}{\textbf{end}}
\newcommand{\algorithmicif}{\textbf{if}}
\newcommand{\algorithmicthen}{\textbf{thenl}}
\newcommand{\algorithmicelse}{\textbf{else}}
\newcommand{\algorithmicelsif}{\algorithmicelse\ \algorithmicif}
\newcommand{\algorithmicendif}{\algorithmicend\ \algorithmicif}
\newcommand{\algorithmicfor}{\textbf{for}}
\newcommand{\algorithmicforall}{\textbf{for all}}
\newcommand{\algorithmicdo}{\textbf{do}}
\newcommand{\algorithmicendfor}{\algorithmicend\ \algorithmicfor}
\newcommand{\algorithmicwhile}{\textbf{while}}
\newcommand{\algorithmicendwhile}{\algorithmicend\ \algorithmicwhile}
\newcommand{\algorithmicloop}{\textbf{loop}}
\newcommand{\algorithmicendloop}{\algorithmicend\ \algorithmicloop}
\newcommand{\algorithmicrepeat}{\textbf{repeat}}
\newcommand{\algorithmicuntil}{\textbf{until}}
\newcommand{\algorithmicprint}{\textbf{print}}
\newcommand{\algorithmicreturn}{\textbf{return}}
\newcommand{\algorithmictrue}{\textbf{true}}
\newcommand{\algorithmicfalse}{\textbf{false}}

If you would like to change the definition of these commands to another con-
tent, then you should use, in your own document, the standard ETEX command
renewcommand, with an usage like this:

\renewcommand{\algorithmicrequire}{\textbf{Input:}}
\renewcommand{\algorithmicensure}{\textbf{Output:}}

About the Way Comments Are Formatted The formatting of comments is im-
plemented via a single argument command macro which may also be redefined.
The default definition is

\newcommand{\algorithmiccomment} [1]{\{#1\}}
and another option that may be interesting for users familiar with C-like lan-

guages is to redefine the comments to be

\renewcommand{\algorithmiccomment}[1]{// #1}

13

Comments produced this way would be like this:
i«—i+1// Increments i

This second way to present comments may become the default in a future ver-
sion of this package.

4 The algorithm Environment

4.1 General

When placed within the text without being encapsulated in a floating environ-
ment algorithmic environments may be split over a page boundary, greatly
detracting from their appearance In addition, it is useful to have algorithms
numbered for reference and for lists of algorithms to be appended to the list
of contents. The algorithm environment is meant to address these concerns by
providing a floating environment for algorithms.

4.2 An Example
To illustrate the use of the algorithm environment, the following text

\begin{algorithm}
\caption{Calculate $y = x"n$}
\label{algl}

\begin{algorithmic}

\REQUIRE $n \geq O \vee x \neq 0%
\ENSURE $y = x~n$

\STATE $y \leftarrow 1$

\IF{$n < 0%}

\STATE $X \leftarrow 1 / x$
\STATE $N \leftarrow -n$

\ELSE

\STATE $X \leftarrow x$

\STATE $N \leftarrow n$

\ENDIF

\WHILE{$N \neq 0$}

\IF{N is even}

\STATE $X \leftarrow X \times X$
\STATE $N \leftarrow N / 2$
\ELSE[N is oddl

\STATE $y \leftarrow y \times X$
\STATE $N \leftarrow N - 1$
\ENDIF

\ENDWHILE

\end{algorithmic}
\end{algorithm}

2This is the expected behaviour for floats in IATEX. If you don’t care about having your algorithm
split between pages, then one option that you have is to ignore the algorithm environment.

14

produces Algorithm [I| which is a slightly modified version of the earlier algo-
rithm for determining the value of a number taken to an integer power. In this
case, provided the power may be negative provided the number is not zero.

Algorithm 1 Calculate y = x”
Require: n >0V x #0
Ensure: y = x"
y—1
if n < 0 then
X —1/x
N« —n
else
X «—x
N—n
end if
while N # 0 do
if N is even then
X—XxX
N« N/2
else // N is odd
y — y x X
N«—N-1
end if
end while

The command \listofalgorithms may be used to produce a list of algo-
rithms as part of the table contents as shown at the beginning of this document.
An auxiliary file with a suffix of .1loa is produced when this feature is used.

4.3 Options

The appearance of the typeset algorithm may be changed by use of the options:
plain, boxed or ruled during the loading of the algorithm package. The default
option is ruled.

The numbering of algorithms can be influenced by providing the name of
the document component within which numbering should be recommenced.
The legal values for this option are: part, chapter, section, subsection,
subsubsection or nothing. The default value is nothing which causes algo-
rithms to be numbered sequentially throughout the document.

4.4 Customization

In order to facilitate the use of this package with foreign languages, methods
have been provided to facilitate the necessary modifications.

15

The title used in the caption within algorithm environment can be set by use
of the standard \floatname command which is provided as part of the float
package which was used to implement this package. For example,

\floatname{algorithm}{Procedure}

would cause Procedure to be used instead of Algorithm within the caption of
algorithms.

In a manner analogous to that available for the built in floating environments,
the heading used for the list of algorithms may be changed by redefining the
command listalgorithmname. The default definition for this command is

\newcommand{\listalgorithmname}{List of Algorithms}

4.4.1 Placement of Algorithms

One important fact that many users may not have noticed is that the algorithm
environment is actually built with the float package and float, in turn, uses
David Carlisle’s here style option. This means that the floats generated by the
algorithm environment accept a special option, namely, [H], with a capital ‘H’,
instead of the usual ‘h” offered by plain IAIEX.

This option works as a stronger request of “please put the float here”: instead
of just a suggestion for IXTEX, it actually means “put this float HERE”, which is
something desired by many. The two algorithms typeset in this document use
this option.

Warning You can't use the ‘H’ positioning option together with the usual ‘h’ (for
“here”), ‘b’ (for “bottom”) etc. This is a limitation (as far as I know) of the float.sty
package.

5 Labels and References in Algorithms

With the release of 2005-07-05, now algorithmic accepts labels and references to

specific lines of a given algorithm, so you don’t have to hardcode the line num-

bers yourself when trying to explain what the code does in your texts. Thanks

to Arnaud Legrand for the suggestion and patch for this highly missed feature.
An example of its use is shown in Algorithm

16

Algorithm 2 Calculate y = x"
Require: n >0V x #0
Ensure: y = x"

1: y<4*1

2: if n < 0 then

3 X«—1/x

4 N« —n

5: else

6 X —x

7: N«—n

8: end if

9: while N # 0 do
10: if N is even then
11: X—XxX
12: N« N/2
13: else

14: y—yxX
15: N+ N-1
16: end if

17: end while

See that, in line we deal with the case of N being even, while, in line
we give treatment to the case of N being odd. The numbers you see on this
document were generated automatically from the source document.

6 Issues Between algorithms and tocbibind ormemoir

It has been discussed| in late 2005 that algorithms may have bad interactions
with the tocbibind or the memoir|package (which includes tocbibind).

A workaround has been suggested for the problem. After including some-
thing like

\usepackage [nottoc] {tocbibind}

in the preamble of your document, you can put, after \begin{document}, the
following snippet of code:

\renewcommand{\listofalgorithms}{\begingroup
\tocfile{List of Algorithms}{loa}
\endgroup}

\makeatletter
\let\l@algorithm\l@figure
\makeatother

which should make the command \listofalgorithms work as expected.

17

http://www.ctan.org/tex-archive/help/Catalogue/entries/tocbibind.html
http://www.ctan.org/tex-archive/help/Catalogue/entries/memoir.html
http://groups.google.com/group/comp.text.tex/browse_thread/thread/4094e0c4f4fbd83e/a80a3f4666c794f0?fwc=1
http://www.ctan.org/tex-archive/help/Catalogue/entries/tocbibind.html
http://www.ctan.org/tex-archive/help/Catalogue/entries/memoir.html

7 Hints for Typesetting Algorithms

Here are some short hints on typesetting algorithms:

e Don’t overcomment your pseudo-code. If you feel that you need to com-
ment too much, then you are probably doing something wrong: you
should probably detail the inner workings of the algorithm in regular text
rather than in the pseudo-code;

e Similarly, don’t regard pseudo-code as a low-level programming lan-
guage: don’t pollute your algorithms with punctuation marks like semi-
colons, which are necessary in C, C++ and Java, but not in pseudo-code.
Remember: your readers are not compilers;

e Always document what the algorithm receives as an input and what it
returns as a solution. Don’t care to say in the \REQUIRE or in the \ENSURE
commands how the algorithm does what it does. Put this in the regular
text of your book/paper/lecture notes;

o If you feel that your pseudo-code is getting too big, just break it into sub-
algorithms, perhaps abstracting some tasks. Your readers will probably
thank you.

Of course, you should follow those hints with common sense. Well, anything
should be done with common sense.

18

	Introduction
	Installation
	Environment: algorithmic
	The Simple Statement
	The if-then-else Statement
	The for Loop
	The while Loop
	The repeat-until Loop
	The Infinite Loop
	The Logical Connectives
	The Precondition
	The Postcondition
	Returning Values
	Printing Messages
	Comments
	An Example
	Options/Customization

	Environment: algorithm
	General
	An Example
	Options
	Customization

	References in Algorithms
	Known Issues
	General Hints

