gitinfo.sty

A package for accessing metadata
from the git pvcs

Brent Longborough

29th August, 2011

Version: 1.0

CONTENTS

Introduction
How gitinfoworks

Setup

Using the package
Packageoptions
Themetadata
Formemoirusers o

Etc
Acknowledgements & dependencies
Copyright & licence L.
Fromtheauthor

Revision 1.0: 117210e (2011-08-29)

1/7

INTRODUCTION

More and more, writers are using version control systems to manage the
progress of their works. One popular distributed version control system
commonly used today is git.

Among other blessings, gitprovides some useful metadata concerning
the history of the developers’ work, and, in particular, about the current state
of that work.

gitinfo allows writers to incorporate some of this metadata into their doc-
uments, to show from which point in their development a given formatted
copy was produced.

How gitinfo works

1. Whenever you commit work or check out a branch in git, git executes
a post-commit or post-checkout hook.

2. The gitinfo package includes a sample hook (placed in your git hooks
directory), which extracts metadata from git and writes it to a TgX file,
named gitHeadInfo.gin (‘gin’ for git info).

3. When you format your document, gitinfo reads gitHeadInfo.ginand
stores the metadada in a series of IXIEX commands.

4. You may use these commands to insert the metadata you need at any
point in the document.

It is important to note that gitinfo reads the metadata with the equivalent
of \input{./gitHeadInfo.gin}. Thisis necessary to avoid possible future
confusion in a TpXdistribution where more than one package includes its
metadata in this way; but it requires that for every document which uses
gitinfo, a gitHeadInfo.gin must be generated in the same directory.

If you actually want to use gitinfo, then please read on. But you may just
be reading this to see whether it will be useful; in this case, please skip the
next chapter and go on to (Using the package) on page E] If you like what
you see, you can come back to read (Setup) later.

2/7 Revision 1.0: 117210e (2011-08-29)

SETUP

gitinfo will be installed by your favourite package or distribution manager,
but before you can start to use it, you need to configure each of your git work-
ing copies by setting up hooks to capture the metadata. Every document in
your working copy that uses gitinfo will need a copy of gitHeadInfo.gin
in the same directory.

These copies can be generated by the git post-hooks, which need to be
configured once, at the start.

If you're familiar with tweaking git, you can probably work it out for
yourself. If not, I suggest you follow these steps:

1. First, you need a git repository and working tree. For this example,
let’s suppose that the root of the working tree is in ~/compsci

2. Copy the file post-xxx-sample.txt as post-checkout into the git
hooks directory in your working copy. In our example case, you should
end up with a file called ~/compsci/.git/hooks/post-checkout

3. With your favourite editor, edit the file you have just created. Very near
the start of the file, you will see two lines:

prefixes=". test docs”
prefixes=".”

The first line is an example of how you might configure for multiple
copies of gitHeadInfo.gin; the second is the default, and means “the
working copy root”.

If all of your documents will be kept in the root of the working
copy, you may leave this file alone. If not, you should delete the line

prefixes=".”, and edit the other line to include the paths, relative to
the working copy root, where the documents that need access to gitinfo
are kept.

Suppose, for example, that you have a project called ‘compsci’. Your
working copy is ~/compsci with two paths containing documents,
~/compsci/docs/essaysand~/compsci/docs/reference. Thenyou
might set up the prefixes like this:

prefixes="docs/essays docs/reference”

which will cause copies of the metadata to be saved in just those two
directories. In this example, it will not be accessible to documents kept
in the working copy’s root (designated by “.”, omitted in this case),

4. Test your setup with “git checkout master” (or another suitable branch
name). This should generate copies of gitHeadInfo.gin in the direc-
tories you intended.

5. Now make two more copies of this file in the same directory (hooks),

calling them post-commit and post-merge, and you're done.

Revision 1.0: 117210e (2011-08-29) 3/7

USING THE PACKAGE

Once you've set up your githooks, and done your first commit, merge, or
checkout to drive them, you can start incorporating the metadata into your

document.

The gitinfo package is loaded in the usual way:

\usepackage[< options >]{gitinfo}

Package options

The following options are available:

grumpy

missing=text

footinfo

pcount

4/7

By default, If gitinfo can’t find gitHeadInfo.gin (the
metadata file), it will set all the metadata to a common
value, “(None)”, issue a package warning, and carry on. If
the grumpy option is used, this warning becomes an error,
and processing stops.

If gitinfo can’t find gitHeadInfo.gin(the metadata file),
it will normally set all the metadata to a default com-
mon value, “(None)”. If you wish, you can change this
value to something else with, say missing=Help! or
missing={What a mess}.

If you have complex needs, as in the second example, don't
forget to enclose your text in {}s.

For memoir users, gitinfo will set certain items of metadata
into some memoir page footer categories, provided that (a)
the memoir package is loaded, and (b) this option is given.
No warning is given, and no action taken, if this parameter
is used with another document class. More detail is given
below (For memoir users).

For memoir users, this option, when used together with
footinfo, will, in the affected footers, replace the folio
with one of the form x/y, where x is the folio and y is the
page count.

No warning is given, and no action taken, if this parameter
is used with another document class, or if the footinfo
option is omitted. More detail is given below (For memoir
users).

Revision 1.0: 117210e (2011-08-29)

The metadata

The metadata

The git metadata, for the current HEAD commit, is made available in the
document as a series of parameter-less XI[pXcommands. Here they are:

\gitAbbrevHash
\gitHash
\gitAuthorName
\gitAuthorEmail
\gitAuthorDate

\gitAuthorIsoDate
\gitAuthorUnixDate
\gitCommitterName
\gitCommitterEmail

\gitCommitterDate

\gitCommitterIsoDate

\gitCommitterUnixDate

\gitReferences

The seven-hex-char abbreviated commit hash
The full 40-hex-character commit hash

The name of the author of this commit

The email address of the author of this commit
The date this change was committed by the au-
thor, in the format yyyy-mm-dd

The date and time this change was committed
by the author, in ISO format, e.g. 2011-08-29
13:05:54 +0100

The date and time this change was commit-
ted by the author, as a Unix timestamp, e.g
1314619554

The name of the committer of this commit

The email address of the committer of this com-
mit

The date this change was committed by the
committer, in the format yyyy-mm-dd

The date and time this change was committed
by the committer, in ISO format, e.g. 2011-08-29
13:05:54 +0100

The date and time this change was commit-
ted by the committer, as a Unix timestamp, e.g
1314619554

Alist of any git references (tags, branches) asso-
ciated with this commit, e.g. (HEAD, master)

Three more commands are available, but their use should be consid-
ered experimental. gitinfo searches the git references metadata for anything
(probably a git tag) that looks like a number with a decimal point. The first
such number it finds is taken as a “Version Number” and made available in
three different formats, explained here:

\gitVtag The version number, without any decorations. If no version
number is found, empty (i.e. zero width).

\gitVtags The version number, with a leading space. If no version num-
ber is found, empty.

\gitVtagn The version number, with a leading space. If no version num-
ber is found, a space, followed by the default or specified value
of the missing package option.

Revision 1.0: 117210e (2011-08-29)

5/7

USING THE PACKAGE

For memoir users

If you use memoir, gitinfoprovides some preset page headers and footers for
you, if you specify the footinfo option as described above.

With the footinfo option, gitinfo redefines the plain,ruled, and headings
pagestyles.

For the plain and ruled pagestyles, the folio is moved from the centre to
the outer margin of the footer, and a revision stamp is placed in the inner
margin.

For the headings pagestyle, the folio is moved from the outer margin of
the header to the outer margin of the footer, and a revision stamp is placed
in the inner margin of the footer.

If, as well, you use the pcount option, a solidus, and the page count, are
appended to the folio.

The revision stamp id generated by this fragment:

Revision\gitVtags: \gitAbbrevHash{} (\gitAuthorDate)

which is set at tiny in the sans-serif font. You can see an example in the footer
of this page.

6/7 Revision 1.0: 117210e (2011-08-29)

ETC

Acknowledgements & dependencies

The TgEX.SE community has been a constant source of help, inspiration, and
amazement. In particular, I'd like to thank Joseph Wright, who rescued me
from the jaws of the TeX parser by explaining \expandafter.

I's also like to register my thanks to the owners of the packages on which
gitinfo depends: etoobox, kvoptions, and xstring.

The failings, of course, are all mine.

Copyright & licence

Copyright © 2011, Brent Longborough.

This work — gitinfo — may be distributed and/or modified under the
conditions of the LaTeX Project Public License: either version 1.3 of this li-
cense, or (at your option) any later version.

The latest version of this licenseisathttp://www.latex-project.org/
1ppl.txt, and version 1.3 or later is part of all distributions of IXIgXversion
2005/12/01 or later.

This work has the LPPL maintenance status ‘maintained’; the Current
Maintainer of this work is Brent Longborough.

This work consists of the files gitinfo.sty, gitsetinfo.sty, gitinfo.tex, git-
info.pdf, post-git-sample.txt, and gitHeadInfo.gin.

From the author

Although my limitations as a TgXnician mean that I've implemented gitinfo
in a rather simplistic way that needs some setup that is more complicated
than I wanted, I hope you find the package useful. I'll be very happy to
receive your comments by email.

Brent Longborough

brent+gitinfo (at) longborough (dot) org
and at TgX.SE

Revision 1.0: 117210e (2011-08-29) 7/7

http://tex.stackexchange.com
http://tex.stackexchange.com/users/73/joseph-wright
http://www.latex-project.org/lppl.txt
http://www.latex-project.org/lppl.txt
http://tex.stackexchange.com/users/344/brent-longborough

	Introduction
	How gitinfo works

	Setup
	Using the package
	Package options
	The metadata
	For memoir users

	Etc
	Acknowledgements & dependencies
	Copyright & licence
	From the author

