
The packdoc package
v0.1

Jander Moreira
moreira.jander@gmail.com

https://github.com/jandermoreira/packdoc

2025/01/31

Contents

1 Introduction 1

2 Package usage and options 2

3 Documentation 2
3.1 Basic commands . 2
3.2 Elements . 4
3.3 Options for elements . 7
3.4 Preset elements . 9
3.5 Supplementary resources . 9

4 Change history support 11
4.1 Creating versions and changes . 11
4.2 Options for the Change History . 12

4.2.1 General options . 12
4.2.2 Change options . 12

5 \PDSet 14

6 Issues 14

Change History

0.1 (2025/01/31)
Initial version.

1 Introduction

The packdoc package was developed to assist in the writing of documents or manuals that
use LATEX. The intention is to simplify the documentation process by providing standard-
ized formatting for key components. This includes the ability to describe the syntax and

1

https://github.com/jandermoreira/packdoc

functionality of macros and environments, as well as available options and their usage. Ad-
ditionally, the package facilitates the inclusion of elements such as index entries, ensuring
a clear and consistent structure throughout the text.

This package is not intended to replace or compete with the use of .dtx and .ins files,
which is an important strategy for writing .sty files. The development of a package and
its documentation should be done independently. A very personal reason for this approach
is that my background is in Computer Science, and, as such, I have a strong inclination
towards writing well-formatted and well-documented code. Therefore, in the end, while
the style file created from .dtx and .ins files is functional, it often lacks attention to the
elegance in the look of the code. For this reason, I write .sty files and their documentation
completely separately.

This package offers the capability to document commands and environments, in addition
to supporting versioning through a change log.

2 Package usage and options

To use this package, it must be loaded with \usepackage.

\usepackage[⟨options⟩]{packdoc}

So far there is only one option to the package: presets. This is covered in Sec-
tion 3.4.

3 Documentation

3.1 Basic commands

A set of useful macros is provided to facilitate the creation of consistent documents and
ensure uniform formatting across the text.

\PackageName[⟨options⟩]{⟨name⟩}

This macro is designed to format ⟨name⟩ as the name of LATEXpackages and classes,
such as amsmath or article. The optional argument ⟨options⟩ allows for local ad-
justments to the style used for package names by modifying the package style.

Examples of useful packages include \PackageName{graphicx} and \PackageName{xcolor}.
Additionally, \PackageName[package style=\scshape\color{blue}]{babel} and
\PackageName{inputenc} are also important.

↪→

↪→

Examples of useful packages include graphicx and xcolor. Additionally, babel and inputenc are also
important.

\Argument[⟨options⟩]{⟨name⟩}

The \Argument macro is used to format generic arguments.
The optional argument color allows the color of the argument to be customized.
However, the font, size, and shape of arguments are currently hardcoded and
cannot be adjusted.

2

The \PackageName{article} class supports \Argument{options}, including settings like
paper size and the number of columns.↪→

The article class supports ⟨options⟩, including settings like paper size and the number of columns.

\MArg[⟨options⟩]{⟨name⟩}

“MArg” means mandatory argument, and the result is the same as \Argument
enclosed in braces. The same ⟨options⟩ available for \Argument also apply.

\OArg[⟨options⟩]{⟨name⟩}

“OArg” stands for optional argument, and the result is the same as \Argument
enclosed in square brackets. The same ⟨options⟩ available for \Argument also apply.

Mandatory argument: \MArg{arg}.\par
Optional argument: \OArg{arg}.

Mandatory argument: {⟨arg⟩}.
Optional argument: [⟨arg⟩].

Additionally, macros for arguments between angle brackets (e.g., <color = blue>) and
plain text (e.g., {newcounter}) are also available.

\AArg[⟨options⟩]{⟨name⟩}

“AArg” stands for optional argument between angular brackets. The same ⟨options⟩
for \Argument also apply.

Class \PackageName{beamer} can use overlays in slides. For example, \AArg[argument
color = red]{range} can be used in a itemized list and \Argument{range} can be
set to \PDInline{2} (only on slide 2) or \PDInline{2-5} (from slide 2 to 5), for
example.

↪→

↪→

↪→

Class beamer can use overlays in slides. For example, <⟨range⟩> can be used in a itemized list and
⟨range⟩ can be set to 2 (only on slide 2) or 2-5 (from slide 2 to 5), for example.

\PArg{⟨name⟩}

“PArg” stands for mandatory plain text argument and is an \Argument between
brackets without any special format.

Plain argument: \PArg{article}

Plain argument: {article}

3

3.2 Elements

An element in the scope of this document refers to an item that can be highlighted and
referenced, such as macros, options and environments, for example.

To instance an element, the \PDNewElement macro must be used.

\PDNewElement{⟨element name⟩}{⟨element options⟩}

This macro creates a new element named ⟨element name⟩ and several other macros
to use it. The ⟨element options⟩ are a key/value list of options to change how the
item will look like.

\PDNewElement{EnumItemOption}{color = red!75!black}

I like to use the \PackageName{enumitem} package. It makes easier to fine tune the
lists appearance, such as using \EnumItemOption{itemsep} or
\EnumItemOption{parsep} to change the spaces between the items.

↪→

↪→

I like to use the enumitem package. It makes easier to fine tune the lists appearance, such as using
itemsep or parsep to change the spaces between the items.

When an element is created, several other macros are created for different needs.

Macro Description Ex0.1
\⟨element name⟩ Formats to element style. \MyElement{a4paper}
\⟨element name⟩Def Formats to element style,

sets a label and index the
element.

\MyElementDef{left}

\⟨element name⟩Ref Formats to element style
and hyperlinks to the def-
inition.

\MyElementRef{no align}

\⟨element name⟩Ind Formats to element style
and index the element.

\MyElementInd{showframe}

\⟨element name⟩RefInd Formats to element style,
hyperlinks to the defini-
tion and add an entry to
the index.

\MyElementRefInd{a4paper}

\⟨element name⟩Index Index the element with-
out any typeset.

\MyElementIndex{element}

\⟨element name⟩[⟨options⟩]{⟨item⟩}

A macro named after ⟨element name⟩ is created to typeset ⟨item⟩ in a consistent
way. The appearance will follow that defined when ⟨element name⟩ was created
with \PDNewElement, but can be overridden with ⟨options⟩ (see Section 3.3).

I like to use the \PackageName{enumitem} package. It makes easier to fine tune
lists, such as using \EnumItemOption{itemsep} or \EnumItemOption{parsep} to
change the spaces between them items.

↪→

↪→

4

I like to use the enumitem package. It makes easier to fine tune lists, such as using itemsep or
parsep to change the spaces between them items.

\⟨element name⟩Def[⟨options⟩]{⟨item⟩}

A macro \⟨element name⟩Def is used to define an ⟨item⟩, so it can be cross-referenced
and have index entries. The definition can be referenced by the \⟨element name⟩Ref
macro.
The appearance will follow that defined when ⟨element name⟩ was created with
\PDNewElement, but can be overridden with ⟨options⟩ (see Section 3.3).
The definition of an ⟨item⟩ can be stated with an environment called
⟨element name⟩def instead.

I wrote some code to extend the \PackageName{enumitem} package. Now
\EnumItemOptionDef{float} can be used to insert a list in a float.↪→

% The name 'float' has an anchor (label) and entries in the index.

I wrote some code to extend the enumitem package. Now float can be used to insert a list in a
float.

\⟨element name⟩Ref[⟨options⟩]{⟨text⟩}

The macro \⟨element name⟩Ref typesets the ⟨item⟩ and creates a link to its defini-
tion.
The appearance will follow that defined when ⟨element name⟩ was created with
\PDNewElement, but can be overridden with ⟨options⟩ (see Section 3.3).

Remember that the \EnumItemOptionRef{float} cannot be used if the list is already in
a float.↪→

% 'float' is a link to the definition

Remember that the float cannot be used if the list is already in a float.

\⟨element name⟩Ind[⟨options⟩]{⟨item⟩}

The \⟨element name⟩ macro defines ⟨item⟩ and inserts entries to the index. Some-
times a secondary index entry is desired, so \⟨element name⟩Ind does the job. A
reference to the definition is not created.
The appearance will follow that defined when ⟨element name⟩ was created with
\PDNewElement, but can be overridden with ⟨options⟩ (see Section 3.3).

Here we describe some other important information about the
\EnumItemOptionInd{float} option.↪→

% 'float' has now new index entries, but it's not a link

Here we describe some other important information about the float option.

5

\⟨element name⟩RefInd[⟨options⟩]{⟨text⟩}

The \⟨element name⟩RefInd performs the job of both \⟨element name⟩Ind and
\⟨element name⟩Ind, so the index is affected and a reference to the definition is
created.
The appearance will follow that defined when ⟨element name⟩ was created with
\PDNewElement, but can be overridden with ⟨options⟩ (see Section 3.3).

Here we describe some other important information about the
\EnumItemOptionRefInd{float} option.↪→

% 'float' has now new index entries and is also a link

Here we describe some other important information about the float option.

An element can be defined, as previously stated, by calling \⟨element name⟩Def. This is
handy for inline definitions. An alternative way to define an element is to use an environ-
ment also created by \PDNewElement. This environment is named ⟨element name⟩def.

\begin{⟨element name⟩def}[⟨options⟩]{⟨item⟩}{⟨arguments⟩}{⟨complement⟩}
⟨element description⟩

\end{⟨element name⟩def}

This environment uses ⟨element name⟩’s styles to define an instance named ⟨item⟩,
along with its ⟨arguments⟩ and a ⟨complement⟩. The ⟨complement⟩ is any additional
text.
The header of the definition will use the following format:
⟨item⟩⟨args prefix⟩⟨arguments⟩⟨complement prefix⟩⟨complement⟩
The values for ⟨args prefix⟩ and ⟨complement prefix⟩ are set by arguments prefix
and complement prefix options respectively.
This environment will create an anchor to ⟨item⟩ and add it to the index.

% args prefix is \texttt{~=~} and complement prefix is \hfill
\begin{EnumItemOptiondef}{float}{\PDInline{true} | \PDInline{false}}{Default:

\PDInline{true}; initially: \PDInline{false}}↪→

By adding \EnumItemOption{float} to a list, it will be inserted in a float
environment.↪→

\end{EnumItemOptiondef}
% This definition can be linked with \<element>Def and item is indexed

float = true | false Default: true; initially: false

By adding float to a list, it will be inserted in a float environment.

Another environment is available to just typeset an item, without creating an anchor
and not adding entries to the index.

6

\begin{⟨element name⟩*}[⟨options⟩]{⟨item⟩}{⟨arguments⟩}{⟨complement⟩}
⟨element description⟩

\end{⟨element name⟩*}

The ⟨element name⟩env* environment has the same behavior as ⟨element name⟩env,
but no anchor is created and no entry is added to the index.

\begin{EnumItemOption*}{float}{\PDInline{true} | \PDInline{false}}{Default:
\PDInline{true}; initially: \PDInline{false}}↪→

By adding \EnumItemOption{float} to a list, it will be inserted in a float
environment.↪→

\end{EnumItemOption*}

float = true | false Default: true; initially: false

By adding float to a list, it will be inserted in a float environment.

3.3 Options for elements

Several options can be used to customize each element. These options are typically spec-
ified when the element is created with \PDNewElement, but can also be modified with
\PDSetElement. Options not specified at creation assume predefined default values, which
can also be changed with \PDSet.

\PDSetElement{⟨element name⟩}{⟨option list⟩}

After created with \PDNewElement, options can be changed a posteriori with
\PDSetElement

\PDNewElement{MyItem}{color = magenta, no single index, no group index}
An example of MyItem is \MyItem{PDExample}.\par
\PDSetElement{MyItem}{color = blue!80!black, font = \slshape}
This is another one: \MyItem{instance}.

An example of MyItem is PDExample.
This is another one: instance.

package style = ⟨commands⟩ Initially: \sffamily

Sets how \PackageName will typeset classes and package names.

argument color = ⟨color⟩ Inititally: orange!50!black

Sets the color to typeset arguments (see \Argument).

prefix = ⟨text⟩ Initially empty

When an element is typeset, ⟨text⟩ is added before the item’s name. For example,
if an element is created for macros, prefix can be set to \textbackslash.

7

arguments prefix = ⟨text⟩ Initially empty

This options sets the text to be put between the item name and its arguments.
For macros, for example, it must be empty; for options it can be set to =.
This element is only typeset if the ⟨arguments⟩ are not empty (meaning anything
with width equal to zero).

complement prefix = ⟨text⟩ Initially: \hfill

The contents of ⟨text⟩ will be inserted between the ⟨arguments⟩ and the
⟨complement⟩.
This element is only typeset if the ⟨complement⟩ is not empty (meaning anything
with width equal to zero).

font = ⟨commands⟩ Initially: \ttfamily

These ⟨commands⟩ are prepended to every ⟨item⟩.

color = ⟨color⟩ Initially: .!75

This sets the color to be used with the ⟨item⟩.

index heading = ⟨text⟩ Initially: ⟨element name⟩

When an item is defined (\⟨element name⟩Def macro or ⟨element name⟩env), index
entries will be grouped under a main entry named ⟨text⟩.
Grouped index entries can be disabled with no group index.
This option is element-specific and will not work as a global option.

no group index = true | false Default: true; initially true

This option suppresses adding entries as groups to the index. Single entries are
not affected.

index remark = ⟨text⟩ Default: {˜(⟨element name⟩)}

Every index entry will be appended with ⟨text⟩ the item name.
Single entries can be removed with no single index.
This option is element-specific and will not work as a global option.

no single index = true | false Default: true; initially true

This option suppresses adding single entries to the index. Group entries are not
affected.

8

3.4 Preset elements

presets = true | false Default: true; initially: false

When packdoc is loaded with the presets option, some useful elements are auto-
matically created.

Element name Description
Option To use with options (as those passed within brackets).
Macro For macros, preceding them with a backslash.
Environment For general environments.

This document used these presets.

The preset elements include \Option{option}, \Macro{macro} and
\Environment{environment}.↪→

For example, \OptionRef{presets} is a package option. The \MacroRef{PDNewElement}
macro is used to create new elements and \Environment{tabular} is a well known
environment.

↪→

↪→

The preset elements include option, \macro and environment.
For example, presets is a package option. The \PDNewElement macro is used to create new elements
and tabular is a well known environment.

3.5 Supplementary resources

Code examples can be displayed with PDListing, while examples along with their corre-
sponding results can be shown using PDExample.

\begin{PDListing}
⟨code⟩

\end{PDListing}

This environment is used to display LATEX code.

This is an example code:

\begin{PDListing}
\usepackage{packdoc}

\end{PDListing}

This is an example code:

\usepackage{packdoc}

9

\begin{PDExample}
⟨code⟩

\end{PDExample}

This environment is used to present LATEX code along with its output.

This is an example of use:

\begin{PDExample}
Resources are macros, such as \Macro{Option}, and environments, such as

\Environment{PDExample}.↪→

\end{PDExample}

This is an example of use:

Resources are macros, such as \Macro{Option}, and environments, such as
\Environment{PDExample}.↪→

Resources are macros, such as \Option, and environments, such as PDExample.

Inline code can use \PDInline.

\PDInline{⟨code⟩}

This macro is used to display LATEX code. If braces are balanced,
the use \PDInline{{example}} ({example}) holds; when unbalanced,
\PDInline!{example! ({example) can be used. The use is equivalent to
\verb.

Someone can use \PDInline{\usepackage[presets]{packdoc}} instead of just
\PDInline{\usepackage{packdoc}}.↪→

Someone can use \usepackage[presets]{packdoc} instead of just \usepackage{packdoc}.

\PDTilde

The \PDTilde generates a more visually appealing and accurately positioned single
tilde (˜) for representing a non-breaking space.
In context, some tildes can be compared:

Code Result Result (monotype)
ab\PDTilde cd ab˜cd ab˜cd

ab\~{}cd ab˜cd ab˜cd
ab\texttildelowcd (textcomp) ab~cd ab~cd

ab\textasciitildecd ab~cd ab~cd

10

4 Change history support

This package provides a straightforward yet flexible set of tools for tracking and managing
changes across different versions. Each version is uniquely identified by its version number
and has its release date.

A sample document, packdoc-change-history-example, is included with this package to
demonstrate the use of versions and change markings.

4.1 Creating versions and changes

Creating versions and changes is straightforward. A version is created with \PDNewVersion,
and each individual change is logged using \PDAddChange. The change history is then
produced with \PDPrintChanges.

\PDNewVersion{⟨version number⟩}{⟨version date⟩}

The \PDNewVersion macro creates a new version entry in the change log. The first
required parameter, ⟨version number⟩, is used to reference and group the changes
made in that version. The version number can follow standard formats, such as
1.0 or 2.5.1, for instance. For the ⟨version date⟩, a date in the YYYY-MM-DD
format is typically used. This date is purely for display in the log, so the specific
text format is flexible.

\PDNewVersion{1.0}{2025-01-01}

\PDAddChange{⟨version number⟩}{⟨description⟩}[⟨box options⟩]

The mandatory parameters for \PDAddChange include the ⟨version number⟩, which
must have been previously defined using \PDNewVersion, and a comma-separated
⟨description⟩ list that outlines the specifics of the change.
The primary component of the ⟨description⟩ is, of course, description. In addition
to this, several other options are available, which are outlined in Section 4.2.2.
The change boxes utilize the snaptodo package, meaning that the final optional
parameter, ⟨box options⟩, can be used to adjust the appearance or modify other
properties of the box.

\PDAddChange{1.0}{
updated,
description = {\Macro{SomeMacro} now allows floating point calculations.},

}

The change log is generated using the \PDPrintChanges macro, which functions simi-
larly to other macros, such as \printindex.

\PDPrintChanges[⟨options⟩]

\PDPrintChanges generates the change log using a fixed, predefined format. Its
position within the document is not important and can be determined based on
the author’s preference.

11

The ⟨options⟩ allow for customization of the version prefix, the header style,
and the entry style. (See Section 4.2.)

\PDPrintChanges[version prefix = {V}]

4.2 Options for the Change History

This section outlines the options available for the change history. These are categorized into
general options, which apply to the entire document, and specific options for the change
record, which are limited to the particular change being marked.

4.2.1 General options

The following are the general options. All of them are defined using \PDSet and can be
set either in the preamble or within the body of the text. They can also be used locally as
options for \PDPrintChanges and \PDAddChange.

version prefix = ⟨text⟩ Initially empty

The version prefix option sets a ⟨text⟩ that is added before the version number,
appearing both in the change listing and in the margin boxes.

header style = ⟨format⟩ Initially: \bfseries\footnotesize

This option defines the formatting commands for the style to be applied to each
header line in the change history.

entry style = ⟨format⟩ Initially: \footnotesize\RaggedRight

This option defines the formatting commands for the style to be applied to each
change in the change history.

4.2.2 Change options

The options specific to changes are used to define each individual change and therefore
have a local effect. However, some can be applied globally with \PDSet, as noted in their
description.

description = ⟨text⟩

The description of a change refers to the ⟨text⟩ that will be included in the change
history.
The description key can be omitted when the no listing option is applied.

12

type = ⟨type⟩

⟨type⟩ defines the type of change. Its value can be one of the following: new,
update, change, removal, or deprecation. In practice, the key type is optional
and one can specify directly the values of ⟨type⟩.
If no type is specified, the change defaults to new.

% The three change markers are equivalent.
\PDAddChange{1.0}{

description = {A new feature has been implemented.},
}
\PDAddChange{1.0}{

new,
description = {A new feature has been implemented.},

}
\PDAddChange{1.0}{

type = new,
description = {A new feature has been implemented.},

}

title = ⟨text⟩

Using title, a ⟨text⟩ can be added to the box to provide additional relevant
information.

\PDAddChange{1.0}{
update,
title = {Paragraphs},
description = {A modification has been implemented regarding paragraphs.},

}

no page = true | false Default: true

The no page option is used to omit the page from the change log listing.
This option can be set globally with \PDSet.

\PDAddChange{1.0}{
deprecation,
description = {\Macro{OldThing} is no longer supported.},
no page,

}

no listing = true | false Default: true

The no listing option prevents the change from being added to the change log.
This option can be set globally with \PDSet.

\PDAddChange{1.0}{
deprecation,

13

description = {\Macro{OldThing} is no longer supported.},
no listing,

}

no box = true | false Default: true

The no box option prevents the change box from being displayed in the left margin.
This option can be set globally with \PDSet.

page = ⟨text⟩

By default, the page number where a change was recorded is included in the change
log. This can be modified using the page option, which allows for an alternative
⟨text⟩.
In a special case, an empty ⟨text⟩ is equivalent to no page.

\PDAddChange{1.0}{
update,
description = {A substantial amount of changes have been made.},
page = {Chapt.~5.},

}

5 \PDSet

Certain options, both general and specific to the changes, can be defined globally using
\PDSet.

\PDSet{⟨options⟩}

This macro enables certain settings for the change history and the changes them-
selves to be applied globally across the entire text, starting with the use of \PDSet.

\PDSet{
version prefix = {V}, % 0.1 is displayed V0.1
argument color = blue, % color for <argument>
no page, % all pages are suppressed from the Change History

}

6 Issues

As this is the initial version, it is premature to provide a list of known issues. Therefore,
any problems or suggestions may be submitted directly to me via email or by opening an
issue on github (https://github.com/jandermoreira/packdoc).

14

https://github.com/jandermoreira/packdoc

Index
\AArg (macro), 3
\Argument (macro), 2
argument color (option), 6
arguments prefix (option), 7

color (option), 7
complement prefix (option), 7

description (option), 11

entry style (option), 11
Environments

PDExample, 8
PDListing, 8

font (option), 7

header style (option), 11

index heading (option), 7
index remark (option), 7

Macros
\AArg, 3
\Argument, 2
\MArg, 2
\OArg, 2
\PackageName, 2
\PArg, 3
\PDAddChange, 10
\PDInline, 9
\PDNewElement, 3
\PDNewVersion, 10
\PDPrintChanges, 10
\PDSet, 12
\PDSetElement, 6
\PDTilde, 9

\MArg (macro), 2

no box (option), 12
no group index (option), 7
no listing (option), 12
no page (option), 11
no single index (option), 8

\OArg (macro), 2
Options

argument color, 6
arguments prefix, 7

color, 7
complement prefix, 7
description, 11
entry style, 11
font, 7
header style, 11
index heading, 7
index remark, 7
no box, 12
no group index, 7
no listing, 12
no page, 11
no single index, 8
package style, 6
page, 12
prefix, 7
presets, 8
title, 11
type, 11
version prefix, 11

package style (option), 6
\PackageName (macro), 2
page (option), 12
\PArg (macro), 3
\PDAddChange (macro), 10
PDExample (environment), 8
\PDInline (macro), 9
PDListing (environment), 8
\PDNewElement (macro), 3
\PDNewVersion (macro), 10
\PDPrintChanges (macro), 10
\PDSet (macro), 12
\PDSetElement (macro), 6
\PDTilde (macro), 9
prefix (option), 7
presets (option), 8

title (option), 11
type (option), 11

version prefix (option), 11

15

	Introduction
	Package usage and options
	Documentation
	Basic commands
	Elements
	Options for elements
	Preset elements
	Supplementary resources

	Change history support
	Creating versions and changes
	Options for the Change History
	General options
	Change options

	PDSet
	Issues

