Sample Problem Sheet

Nicola Talbot

July 10, 2017

1. Given

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

differentiate from first principles $f(x) = \cos x$.

- 2. Differentiate the following functions:
 - (a) $y = \arcsin(x)$ (b) $f(x) = g(x) \ln(g(x))$. (c) $y = \exp(4x)$
 - (d) $y = 2x^3 + 6x 1$
 - (u) y = 2x + 0
 - (e) $y = \frac{\sin x}{x}$.
- 3. Find the gradient of the unit circle $(x^2 + y^2 = 1)$.
- 4. Find $\frac{dy}{dx}$, given

$$y^2 = \frac{x^3}{2-x}$$

- 5. A coin is weighted so that heads is four times as likely as tails. Find the probability that: (a) tails appears, (b) heads appears
- 6. Under which of the following functions does $S = \{a_1, a_2\}$ become a probability space?
 - (a) $P(a_1) = \frac{1}{3}$, $P(a_2) = \frac{1}{2}$ (b) $P(a_1) = \frac{3}{4}$, $P(a_2) = \frac{1}{4}$ (c) $P(a_1) = 1$, $P(a_2) = 0$ (d) $P(a_1) = \frac{5}{4}$, $P(a_2) = -\frac{1}{4}$
- 7. Which of the following is the derivative of $x \sin(x)$? (Circle the correct answer.)
 - $\begin{aligned} \mathbf{A} & \sin(x) \\ \mathbf{B} & x\cos(x) \\ \mathbf{C} & \sin(x) + x\cos(x) \end{aligned}$
- 8. Describe what is meant by the term *inheritance* in object-oriented programming. Use examples.