
unicode-math-input — Allow entering Unicode symbols
in math formulas∗

user202729

Released 2024/01/25

Abstract

Allow entering Unicode symbols in math formulas.

1 Introduction
This package allows entering Unicode symbols in math formulas.

1.1 Existing packages
There are several existing packages, but other than unicode-math (which also changes the
output encoding) they does not cover a lot of characters and/or does not handle several
issues well.

We compare the situation with several existing packages:

• commonunicode:

– defines all characters to be active, which means it breaks usage of α in fancyvrb’s
Verbatim environment for example.

– changes the behavior of e.g. ½ in text mode in PDFLATEX.
– does not always select best option, for example ∄ always get mapped to

\not\exists even though the outcome is worse than \nexists.
– fakes several symbols such as ≝ even when there’s better option e.g. \eqdef,
– uses \ensuremath extensively, which means no error message when it’s used in

text mode,
– not as good symbol coverage.

• unixode:

– defines ′ to be \prime which is big and not usable, it should be ^{\prime}

similar to '’s definition.
– defines – (en dash) to be nothing, which breaks the character even in text

mode.
∗This file describes version v0.1.1, last revised 2024/01/25.

1

– does not define × or ± (they’re already valid in text mode in LATEX, but will
be silently omitted in math mode)

– does not handle consecutive superscript/subscript characters.
– you need to manually patch the source code a bit in order to make it work with

PDFLATEX. And even after that it will raise lots of warnings about redefining
Unicode characters.

• utf8x:

– incompatible with lots of packages.
– does not define ⨁ (\bigoplus)
– also does not handle consecutive superscript/subscript characters.

See also https://tex.stackexchange.com/a/628285.

1.2 Features
LATEX’s implementation of input encoding and font encoding is very complicated, ne-
cessitated by the fact that non-Unicode TEX engines handles each UTF-8 character as
multiple tokens and encTEX extension is not enabled in LATEX.1

There’s a few other issues that we don’t really need to deal with, because they are
in the next layer:

• What is the use of the command \IeC?

• https://tex.stackexchange.com/a/239575/250119

We don’t need to deal with \IeC as since TEX Live 2019, the mechanism is no longer
used and the Unicode character itself is written to auxiliary files.

We need to get the following things correct:

• \left⟨

In LuaLATEX in order to implement this we need to hard code the \Udelcode of the
character, so if \langle is redefined, the change will not follow.
An alternative is to overwrite the definition of \left built-in, but this is not used.

• \big⟨ (in amsmath package or outside)
In PDFLATEX there’s an issue of argument-grabbing (\big etc. is a macro so they
will only grab the first octet of the ⟨ character), so the macro must be patched.
Furthermore, the patching is done \AtBeginDocument in case amsmath etc. is loaded
after this package.
We handle \big \Big \bigg \Bigg and the \bigl, \bigr variants etc.
Pass the option ignore-patch-delimiter-commands to disable the behavior in case
of package clash.

• in unicode-math, a` renders as a^{\backprime} i.e. 𝑎‵. We will not modify the
default behavior i.e. 𝑎‘ in this package.

1Refer to https://tex.stackexchange.com/a/266282/250119 for a way to force-enable encTEX extension
in LATEX if you’re interested.

2

https://tex.stackexchange.com/a/628285
https://tex.stackexchange.com/q/31640/250119
https://tex.stackexchange.com/a/239575/250119
https://tex.stackexchange.com/a/266282/250119

• \section{$1 × 2$} (for writing to auxiliary file in table of contents) – as mentioned
above, since TEX Live 2019 this is correct by default.

• Some characters such as × or ½ in PDFLATEX are already usable outside math mode,
we try to not break the compatibility.

• The symbol should work correctly when appear at the start of an alignment entry,
e.g., the start of an align* cell.

• $2³⁴$ (consecutive Unicode characters for superscript/subscript, refer to https:

//tex.stackexchange.com/q/344160/250119.) Also need to handle ' similarly.

• This packages does modify the default definition of ' to allow G'² to work however.
Pass the option ignore-patch-prime to disable the behavior in case of package clash.

• The original implementation of ' is somewhat interesting that it allows sequences
such as G'^\bgroup 123\egroup to work, we will not emulate it here.

• Also need to handle Unicode prime symbols ′, ″ etc.

• To minimize errors, we make ≢ default to \nequiv, but fallback to \not\equiv if the
former is not available.
We should also take care of aliases – for example, ≰ should check \nle and \nleq

before fallback to \not\le or \not\leq.
Note that by default (or with amsmath or amssymb), \not does not smartly check
the following symbol, however with some packages such as unicode-math, txfonts
the \not does do that – in particular, it checks for the presence of control sequences
named \notXXX and \nXXX where XXX stands for the original control sequence/char-
acter.
It would be beneficial for amssymb to make \not smart, as for example \not\exists

looks worse than \nexists, however the package does not touch \not.

• Similarly, '' default to ^{\dprime} if available, else fallback to ^{\prime\prime}.

• Whenever possible, we do not make the symbols have active catcode, only change
the mathcode, that way usage of the symbols in places such as fancyvrb environment
is minimally affected. (see test files for an example)

• We try to make minimum assumptions about the internal implementation details
of LATEX packages; nevertheless this is not always possible.

• Combining modifiers (such as U+00305 COMBINING OVERLINE in a̅ , which corresponds
to \overbar) are difficult to support (although with whole-file scanning + rescan-
sync or LuaTEX’s process_input_buffer callback it’s not impossible; an alterna-
tive is to use LuaTEX callback to modify the math list after it’s constructed,
see https://github.com/wspr/unicode-math/issues/555#issuecomment-1045207378

for an example), plus unicode-math does not support them anyway, so they will
not be supported.
They’re difficult to support because normally the modifier appear after the charac-
ter that it modifies but TEX requires the command (e.g. \overbar) to appear before
the character that it modifies.

3

https://tex.stackexchange.com/q/344160/250119
https://tex.stackexchange.com/q/344160/250119
https://github.com/wspr/unicode-math/issues/555#issuecomment-1045207378

As a special case, the 4 commands \enclosecircle \enclosesquare \enclosediamond
and \enclosetriangle are supported (simply because the TEX command can appear
after the character it modifies)

• The fraction slash U+2044 FRACTION SLASH, as in 1⁄2 rendering 1
2 , is also not imple-

mented because of similar difficulty as above.

• Symbols such as √ or ∛ will be equivalent to \sqrt command (taking an argument
to draw a square root) instead of \surd (the symbol itself), unlike unicode-math.
While sequences such as ⁵√{67} may feasibly be supported without breaking too
many things, implementation is difficult and we don’t see much use for it.

• Similarly, one might expect that ⏟ U+23DF BOTTOM CURLY BRACKET get mapped to
\underbrace, but the behavior of such command would be a bit unexpected (you
need to write ⏟{123}_{456} to get 123⏟

456
), so this will not be the default.

• the Unicode character is mapped indirectly to the control sequence, so that when
the user/some package redefines a control sequence such as \pi, the corresponding
Unicode character (π) will also change. This will incur a small loss in efficiency
however.
(modulo the issue with \Udelcode mentioned above)

• The character ⋯ is mapped to \cdots and … is mapped to \ldots. Note that
\dots behaves the same as \ldots without amsmath package loaded, but with it it
smartly detect which variant to use depends on the following character, for example
$\dots +$ prints ⋯ + but $\dots ,$ prints … ,.
There’s another discrepancy with the spacing around these 2 characters, see https:

//github.com/wspr/unicode-math/issues/571.

There are some issues however:

• 00 U+1D7D8 MATHEMATICAL DOUBLE-STRUCK DIGIT ZERO gets translated to \mathbb{0},
but this is incorrect by default unless the blackboard bold font happens to have
such a character.
(nevertheless, it’s difficult to change math font in the middle of the document
anyway. Refer to https://tex.stackexchange.com/q/30049/250119.)

• In the unicode-math source code there’s this remark:

The catcode setting is to work around (strange?) behaviour in LuaTEX
in which catcode 11 characters don’t have italic correction for maths. We
don’t adjust ascii chars, however, because certain punctuation should not
have their catcodes changed.

This feature is currently unimplemented.

• At the moment, following a Unicode superscript character, double superscript will
not be defined – that is, G²^3^4 will just display as G^{234} – while this is fixable,
we don’t see much point in detecting this error.

4

https://github.com/wspr/unicode-math/issues/571
https://github.com/wspr/unicode-math/issues/571
https://tex.stackexchange.com/q/30049/250119

2 Usage
Simply include the package.

1 \usepackage{unicode-math-input}

Because by default the unicode-math package will already allow entering Unicode
symbols in math formulas, this package will raise an error if unicode-math is already
loaded.

3 Advanced commands and options

\umiMathbf {...}

\umiMathit {...}

These functions are not to be used directly. But you can redefine them to customized
behavior of bold/italic/etc. Unicode characters.

For example you can \renewcommand\umiMathbf[1]{\mathbf{#1}} which is the default
behavior.

Or you can execute, for example, \renewcommand\umiMathscr[1]{\mathcal{#1}} to
use the calligraphic instead of the script alphabet for script characters.

More usefully, you may want to \renewcommand\umiMathbf{\bm} to make entered
characters such as 𝒂 appear bold italic in the output, remember to load package bm
if you want to do so (which is unicode-math behavior with [bold-style=ISO] package
option).

\umiMathbf

\umiMathit

\umiMathbfit

\umiMathscr

\umiMathbfscr

\umiMathfrak

\umiMathbb

\umiMathbbit

\umiMathbffrak

\umiMathsf

\umiMathsfbf

\umiMathsfit

\umiMathsfbfit

\umiMathtt

\umiFrac {1} {2}

Not to be used directly, but you can redefine it such as \let\umiFrac\tfrac (or more
clearly, \renewcommand\umiFrac[2]{\tfrac{#1}{#2}}) to customize the appearance of Uni-
code characters like ½.

If you want to customize the appearance of individual symbols, consider using
\umiDeclareMathChar.

\umiFrac

\umiDeclareMathChar {α} {\alpha}

Does what it says. Will override existing definitions, if any.
Note that the Unicode character must be braced.
(You may choose to call \umiPatchCmdUnicodeArg \umiDeclareMathChar beforehand

so bracing is not necessary, but this is not really recommended)
This might or might not destroy the existing text-mode definition. For now, one way

to preserve it is \umiDeclareMathChar {²} {\TextOrMath{\texttwosuperior}{^2}}.

\umiDeclareMathChar

5

\umiDeclareMathDelimiter {⟨} \langle

You must use this in order to use the Unicode character with \left, \big, \bigl etc.
(because of the internal detail being that in XeLATEX and LuaLATEX, as this package
does not change the character catcode to be active, it’s necessary to set the delcode as
mentioned before)

In that case the second argument must be a single token.
Unfortunately, the command does not always work – it must detect the second

argument to be a delimiter, but if the detection fails it may not work.

\umiDeclareMathDelimiter

Note: There’s no need to provide \umiDeclareMathAlphabet, \umiDeclareMathAccent
or \umiDeclareMathRadical, for \umiDeclareMathChar suffices. It’s not supported to de-
fine control sequences, for that the typical \RenewDocumentCommand or \RenewCommandCopy

suffices.

\umiRefreshDelimiterList

You should normally not need this command.
As mentioned before, in LuaLATEX once a command is redefined, the Unicode char-

acter does not automatically update.
This command will check all the normal delimiter Unicode characters. In PDFLATEX

this command does nothing.
Another way is to use \umiDeclareMathDelimiter to manually refresh individual Uni-

code characters, this is also useful if you define an Unicode character that is not “nor-
mally” a delimiter.

\umiRefreshDelimiterList

Package option.
\umiRefreshDelimiterList will be run \AtBeginDocument. Pass this to disable it

running.
Only needed if there’s some package clash or if there’s spurious warning on “not

determined to be a delimiter” etc.

ignore-refresh-delimiter-list

\umiPatchCmdUnicodeArg \sqrt

\umiUnpatchCmdUnicodeArg \sqrt

After executing this command, the command specified in the argument (\sqrt in this
example) can be called with one argument being an Unicode character without needing
a brace.

(i.e. you can write \sqrt α instead of \sqrt{α}.)
Because of implementation detail,

• \sqrtα (without the space between \sqrt and α) works in PDFLATEX but not
LuaLATEX. (so this form is not recommended.)

• \sqrt α works in LuaLATEX without needing the patch. In other words, the patch
does nothing in Unicode engines.

The command being patched must take at least one mandatory argument as the
first argument, and it only affect that first argument. In other words, \sqrt[3]α can-
not be patched this way unless you do e.g. \newcommand\cbrt[1]{\sqrt[3]{#1}} then
\umiPatchCmdUnicodeArg\cbrt, then \cbrt α works (but \sqrt[3]α still doesn’t).

\umiPatchCmdUnicodeArg

\umiUnpatchCmdUnicodeArg

6

\umiPatchCmdUnicodeTwoArgs \frac

\umiUnpatchCmdUnicodeArg \frac

Similar to above, but for commands with (at least) two mandatory arguments.
Only affects these 2 mandatory arguments.

\umiPatchCmdUnicodeTwoArgs

\umiPatchCmdUnicodeArgExtraGroup \Big\umiPatchCmdUnicodeArgExtraGroup

Don’t use this command unless you know exactly what you’re doing.
Similar to \umiPatchCmdUnicodeArg, but open an implicit group before executing

anything and close the group after.
The command being patched must take exactly one argument.
This is useful because some TEX primitives such as ^ or \mathopen requires either

a single “character” or a group braced with {...} / \bgroup...\egroup – in particular,
\Big’s original definition is such that \Bigl being defined as \mathopen \Big can work,
and we must ensure it still work after the patch.

ignore-patch-delimiter-commands

Package option.
Pass this to avoid patching \Big etc. with the command above (only needed if there’s

some package clash).

\umiBraceNext {abc...} αxyz...

In the example above, after some steps of execution of TEX, the state will be
abc... {α}xyz....

Formally: if the character following the first argument to \umiBraceNext is not rep-
resentable in a single byte and the engine is not Unicode, the character will be braced,
otherwise nothing happens. Then the argument is put back in the input stream.

This is an internal command mainly useful for defining the command above, for
example after

1 \let\oldbig\big

2 \def\big{\umiBraceNext{\oldbig}}

then \big⟨ will eventually execute \oldbig{⟨} which is the desired behavior (that \oldbig
expects one braced argument).

\umiBraceNext

Package option.
Do not patch the default definition of ' in math mode.
By default it’s patched to allow G'² and G²' to work. Only use this when there’s

some package clash.

ignore-patch-prime

\umiPatchPrime

\umiUnpatchPrime

As mentioned above, by default \umiPatchPrime is run \AtBeginDocument. But it can be
patched and unpatched manually.

Note that it’s undefined behavior if some package modifies the definition of active '

while it’s patched. To resolve conflict, unpatch ', load the package, then patch again.

\umiPatchPrime

\umiUnpatchPrime

7

4 Compatibility
This package should have tested with various TEX distribution versions on Overleaf.

5 Advanced remarks
As mentioned before, by design this package defines the Unicode character in math mode
to do whatever the corresponding LATEX command does at the time of use, so if you
redefine the meaning of \alpha, then the Unicode character α will change as well.

The other “standard” way to define commands in LATEX is to assign the mathcode to
the character/control sequence directly, using \DeclareMathSymbol etc. which is used to
define almost all the standard control sequences. For efficiency reasons or other reasons,
you may want to copy the definition of an existing control sequence (this way the definition
of the Unicode character is not changed when the control sequence changes), you can do
that by:

\umiDeclareMathCharCopy {±} \pm

Does what it says.
The second argument must be a single control sequence.

\umiDeclareMathCharCopy

\umiDeclareMathDelimiterCopy {‖} \Vert

Does what it says. Refer to \umiDeclareMathDelimiter for difference between this com-
mand and \umiDeclareMathCharCopy.

\umiDeclareMathDelimiterCopy

In case you want to explicitly specify a font/slot pair for an Unicode character, you
can use \DeclareMathSymbol etc. directly, then use one of the commands above to copy
it to the Unicode character.

Useful resources:

• https://tex.stackexchange.com/questions/98781/create-a-font-table-for-all-

available-characters-for-a-particular-font

• https://tex.stackexchange.com/questions/380775/font-table-for-opentype-

truetype-fonts

• https://ctan.org/pkg/fonttable (need double quotes if font name has spaces:
https://tex.stackexchange.com/a/506246/250119)

• Although there’s always texdoc encguide for the default (non-Unicode) encodings.

Index
The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

I
ignore-patch-delimiter-commands 7
ignore-patch-prime 7

ignore-refresh-delimiter-list 6

8

https://tex.stackexchange.com/questions/98781/create-a-font-table-for-all-available-characters-for-a-particular-font
https://tex.stackexchange.com/questions/98781/create-a-font-table-for-all-available-characters-for-a-particular-font
https://tex.stackexchange.com/questions/380775/font-table-for-opentype-truetype-fonts
https://tex.stackexchange.com/questions/380775/font-table-for-opentype-truetype-fonts
https://ctan.org/pkg/fonttable
https://tex.stackexchange.com/a/506246/250119

U
\umiBraceNext . 7
\umiDeclareMathChar 5
\umiDeclareMathCharCopy 8
\umiDeclareMathDelimiter 6
\umiDeclareMathDelimiterCopy 8
\umiFrac . 5
\umiMathbb . 5
\umiMathbbit . 5
\umiMathbf . 5
\umiMathbffrak . 5
\umiMathbfit . 5
\umiMathbfscr . 5
\umiMathfrak . 5

\umiMathit . 5
\umiMathscr . 5
\umiMathsf . 5
\umiMathsfbf . 5
\umiMathsfbfit . 5
\umiMathsfit . 5
\umiMathtt . 5
\umiPatchCmdUnicodeArg 6
\umiPatchCmdUnicodeArgExtraGroup 7
\umiPatchCmdUnicodeTwoArgs 7
\umiPatchPrime . 7
\umiRefreshDelimiterList 6
\umiUnpatchCmdUnicodeArg 6
\umiUnpatchPrime 7

9

	1 Introduction
	1.1 Existing packages
	1.2 Features

	2 Usage
	3 Advanced commands and options
	4 Compatibility
	5 Advanced remarks
	Index
	I
	U

