
Setting real-time CSP

Jim Davies

1 Introduction

The language and models of CSP have undergone a gradual evolution since the publication of
the first CSP textbook—Hoare’s Communicating Sequential Processes (Prentice-Hall, 1985).
The forthcoming text on real-time CSP will provide for some degree of standardisation.

In parallel, we hope to provide a standard set of macros for setting documents which use CSP
notation. This will allow users to exchange documents in electronic form, and will form part
of the user interface to the language tools.

The macros are defined by a style file called zed-csp.sty. This should work with LATEX2ε.
Inquiries, suggestions, or complaints should be addressed to

Jim.Davies@comlab.ox.ac.uk.

Note that this is a fairly quick fix of the style to enable myself and others to use the improved
facilities offered by the new version of LATEX. It has not been rigorously tested, although it
seems to work for me.

2 Symbols

We can divide the symbols used into three separate classes: symbols for the language itself,
symbols used in the definition of the semantics, and symbols used in the specification language.

2.1 The language of real-time CSP

The operators of real-time CSP are set using macros of the same name. The macros for
atomic operators begin with an uppercase letter; the same is true for those representing
indexed versions of parallel and choice operators. All other macros are lowercase throughout.
Some operators accept optional arguments, but no argument is compulsory.

When an operator with an optional argument appears within an optional argument, LATEXmay
require assistance if it is to parse the expression correctly. In these circumstances, we use an
extra pair of braces to delimit the process expression: e.g.,

\Ftf[{P \parallel[A] Q}].

bottom \Bottom ⊥
stop \Stop Stop

skip \Skip Skip

wait \Wait Wait

prefix \then →
external choice \extchoice 2

internal choice \intchoice u
hiding \hide \
parallel \parallel[A][B] |[A |B]|
interleaving \interleave |||
sharing \parallel[C] |[C]|
recursion \mu X \spot P µX • P

timeout \timeout[t] .{t}
transfer \transfer[t] ↙{t}
interrupt \interrupt 4
timer \at @

indexed external choice \Extchoice 2

indexed internal choice \Intchoice u
indexed alphabet parallel \Parallel ‖
indexed interleaving \Interleave |||

2.2 Parallel combinations

There are several ways to denote the parallel combination of two processes in CSP. Firstly,
we can describe the set of events upon which they must cooperate: e.g., in the process

P |[C]|Q

components P and Q must cooperate upon every event from the shared set C . Alternatively,
we can declare two alphabets

αP = A

αQ = B

2

and write

P ‖ Q

to denote the parallel combination in which P and Q must cooperate upon every event in
the intersection of their alphabets. Finally, we can add explicit alphabet information to the
parallel operator: e.g.,

P |[A |B]| Q

is equivalent to the above parallel combination, given the values chosen for αP and αQ .

2.3 Delays and timers

We write Wait t ; P to denote the process which will delay for time t before behaving as P .
The wait process is a delayed form of termination Skip: i.e.,

Wait 0 = Skip

To model a nondeterministic delay, we can use an internal choice operator indexed by a range
of time values:

u
t∈[t1,t2)

Wait t

A convenient abbreviation for this involves overloading the Wait operator: e.g.,

Wait [t1, t2)

abbreviates the above choice.

External events in a process description are performed in cooperation with the environment
of that process. It is therefore quite likely that an external event will not occur as soon as
the process is ready. The time elapsed between the offer of an event and its occurrence can
influence future behaviour; the rest of the process description should be allowed to refer to
this time.

Accordingly, real-time CSP includes a timer construct, or ‘passage-of-time’ operator. We
write

a@t → P a \at t \then P

to denote a process which is initially ready to engage in event a. The time variable t is
assigned the relative time at which a occurs. This is the same as the elapsed time between
control being passed to this process—at which point the offer of a is made—and the event a
actually occuring.

3

A useful extension to this, which adds nothing to the expressivity of the language but can
make for more intelligible process descriptions, is the offer timeout. We write

a@t{d} → P a \at t \{ d \} \then P

to denote a process which offers to perform a, and will store the time of occurrence in t , but
will withdraw the offer if it has not been accepted by time d . (This form of timeout was
suggested by Guy Leduc for his version of timed LOTOS.)

3 Mathematical language

The semantic models of CSP come with a great deal of notational baggage. We need to define
operators to project information out of traces, refusals, and timed failures. There is also a
specification language based upon the timed semantics, and the names used for the models
themselves.

3.1 Logic, sets, and sequences

\defs =̂

\mu µ

\lambda λ

\exists ∃
\forall ∀
\spot •
\nat N
\num Z
\rat Q
\real R
\seq seq

\land ∧
\lor ∨
\Land

∧
\Lor

∨
\lnot ¬
\implies ⇒
\iff ⇔
\upto . .

\le 6

\ge >

\project �

\power P
\finset F
\cross ×
\union ∪
\inter ∩
\Union

⋃
\Inter

⋂
\dom dom

\ran ran

\emptyset ∅
\set{x} {x}

4

3.2 Operators on traces

empty trace \nil 〈〉
trace \trace{e_1,e_2} 〈e1, e2〉
catenation of traces \cat a

count \cnt ↓
during \during ↑
tick event \tick X

subsequence \subseq 4

data values \data ⇓

3.3 Projection functions

begin \Begin begin

end \End end

head \Head head

first \First first

tail \Tail tail

front \Front front

last \Last last

times \Times times

events \Events events

times and events are projection functions from timed traces to sequences of times and se-
quences of events respectively. head and tail may be applied to any sequence. begin and end
may be applied to timed traces and timed refusals. first is a synonym for head. front is the
dual of tail. last is the dual of head.

To denote the set of events mentioned in a timed or untimed trace or refusal, we prefix the
name of the object with α. For example, the set of events mentioned in the timed trace s
would be written αs . Earlier version of real-time CSP did this using the σ operator to avoid
confusion with process alphabets. Where there is scope for confusion, we suggest that this
practice is continued.

3.4 Semantic functions, models, and spaces

In Advanced CSP, we use long names for the semantic functions:

5

semantics \Semantics semantics
traces \Traces traces
failures \Failures failures
timed failures \TimedFailures timed failures
divergences \Divergences divergences
infinites \Infinites infinites

Any semantic function macro can be given an optional argument. This will be set within
semantic brackets: e.g., \Traces[P] yields traces [[P]]. To obtain the semantic brackets alone,
use the \semb macro; this takes a single compulsory argument. Alternatively, the macros
\leftsemb and \rightsemb produce left and right semantic brackets respectively.

In theoretical papers, we often need to refer to several models, functions, and associated
spaces. To make things easier on ourselves, we adopt short names for these mathematical
objects, using subscripts to identify the model concerned. For example, the objects associated
with the timed failures model are all subscripted with TF .

The models themselves have macros beginning \M:

traces \Mut MUT

failures \Muf MUF

failures-divergences \Mufd MUFD

timed failures \Mtf MTF

timed failures-stability \Mtfs MTFS

timed infinite \Mti MTI

The matching semantic functions use \F instead—e.g., \Fut for untimed traces—and the
observation spaces use \S.

3.5 Refinement and satisfaction

The satisfaction notation employed in Hoare’s Communicating Sequential Processes has been
retained. We also have a refinement relation between processes, possibly indexed by the name
of the model concerned.

The satisfaction relation is set as follows: P \sat S produces P sat S . The refinement
relation is produced by \lessdet (or refinedby, a synonymbol).

3.6 Specifications

To capture timing constraints at the level of the semantic models, we use a number of speci-
fication ‘macros’. These are set using LATEX macros which begin with an ‘m’ (for macro) and

6

are then capitalised.

internal \mInternal internal

refuses \mRef ref

at \mAt at

live \mLive live

open \mOpen open

from \mFrom from

until \mUntil until

live from \mLiveFrom live from

open from \mOpenFrom open from

name of last \mNameOfLast name of last

before \mBefore before

after \mAfter after

time of last \mTimeOfLast time of last

4 Discussion

4.1 Dependencies

You must have the AMS fonts available, and the amsfonts installation must have been per-
formed for LATEX2ε. This requires the mfnfss package; it takes about twenty seconds.

4.2 CSP and Z

You may have problems if you try to use the zed-csp package with fuzz or any style package
that uses the AMS fonts. The good news is that you shouldn’t need them. All of the AMS
symbols are defined in the zed-csp package, using the standard names.

7

