
A guide to the zed style option

Mike Spivey

December 1990

1 Introduction

This document is a guide to the version of the zed style option for LATEX dated
11th December 1990. This new version of the style option is fully compatible
with the fuzz style option distributed with the my fuzz type-checker for Z,
but uses two fonts from the AMS in place of the special Z font distributed with
fuzz. Some of the symbols have been cobbled together by combining two or
more characters, but the results are good enough for rough drafts. The style
option requires the ‘old’ AMS fonts, and will not at present work with SliTEX
or the Schöpf-Mittelbach font selection scheme.

The rest of this guide is mostly extracted from the manual for fuzz, and
it assumes a basic knowledge of LATEX. I have not removed some information
about how the fuzz type-checker treats various constructs, in case you later
want to type-check a document you have formatted with the zed style option.
For information about the fuzz package and how to order it, see the end of this
guide.

This guide and the zed style option itself may be freely copied, distributed
and used for any purpose except direct commercial gain, provided that they
are copied and distributed as a whole and without modification. The author
accepts no liablility for their accuracy or fitness for any purpose.

2 Loading the zed style option

Every LATEX document should begin with a \documentstyle command. If the
document contains a Z specification, this command should include the style
option zed. For example:

\documentstyle[12pt,zed]{article}

Including zed as a style option loads macros from the file zed.sty and also
loads four fonts of extra mathematical symbols called msxm9, msym9, msxm10,
and msym10. Your LATEX installation must have these fonts for the zed style
option to work; if it doesn’t, or they are in the wrong place to be found by TEX,
then you will get an error message like this:

1

! Font \ninsxm=msxm9 not loadable ...

The zed style option can be used with any of the standard LATEX styles, and it
can appear either before or after the type-size option if one is used. It can be
combined with most of the standard style options, but it should not be combined
with fleqn, because zed already makes provision for setting mathematics flush
left. At present, zed does not work with SliTEX.

3 Making boxes

To print a schema, use the schema environment. Here is an example, showing
first the input, then the output from LATEX:

\begin{schema}{PhoneDB}
known: \power NAME \\ phone: NAME \pfun PHONE

\where
known = \dom phone

\end{schema}

PhoneDB
known : P NAME
phone : NAME 7→ PHONE

known = dom phone

The name of the schema appears as an argument to the environment, and
the horizontal dividing line between declarations and predicates is indicated
by \where. Successive lines in the declaration and predicate parts are sepa-
rated by the command \\. In this example, the Z symbols ‘P’, ‘ 7→’ and ‘dom’
have been entered as the commands \power, \pfun and \dom: for a complete
list of these commands, see Section 4 below.

Like the displaymath environment of LATEX, the schema environment (and
the others we shall come to in a moment) can appear in the middle of a para-
graph, and ordinarily should have no blank lines either before or after it. Blank
lines before the environment are ignored, but blank lines afterwards cause the
following text to begin a new paragraph.

For a schema without a predicate part, the command \where is simply omit-
ted, as in the following example:

\begin{schema}{Document[CHAR]}
left, right: \seq CHAR

\end{schema}

Document [CHAR]
left , right : seqCHAR

2

This example also shows how to set schemas with generic parameters.
For axiomatic descriptions, the axdef environment is used. Here is an ex-

ample:

\begin{axdef}
limit: \nat

\where
limit \leq 65535

\end{axdef}

limit : N

limit ≤ 65535

In both kinds of box, predicates and declarations can be split between lines
before or after infixed symbols, as shown in the following example:

\begin{axdef}
policy: \power_1 RESOURCE \fun RESOURCE

\where
\forall S: \power_1 RESOURCE @ \\

\t1 policy(S) \in S
\end{axdef}

policy : P1 RESOURCE → RESOURCE

∀S : P1 RESOURCE •
policy(S) ∈ S

The strange hint \t1 in this example makes the corresponding line in the output
have one helping of indentation. As things get more nested, you can say \t2,
\t3, and so on. But if you should ever get beyond t9, you’ll need to use braces
around the argument: \t{10}, and you’d better look for some way to simplify
your specification!

This system of tab stops is a little crude, but it is easier to use than the
alternatives, and usually gives acceptable results. The \tn commands are com-
pletely ignored by the type-checker, so you are free to use them as you like to
improve the look of your specification. The size of ‘helping’ you get with \tn is
a style parameter \zedindent, and the default is 2em.

For generic definitions, there’s the gendef environment: for example,

\begin{gendef}[X,Y]
first: X \cross Y \fun X

\where
\forall x: X; y: Y @ \\

\t1 first(x,y) = x
\end{gendef}

3

[X ,Y]
first : X ×Y → X

∀ x : X ; y : Y •
first(x , y) = x

In this environment, the formal generic parmeters are an optional argument.
Omitting this argument results in a box with a solid double bar at the top,
which can be used for uniquely defining non-generic constants.

If a schema or other box contains more than one predicate below the line,
it often looks better to add a small vertical space between them. This can be
done with the command \also:

\begin{schema}{AddPhone}
\Delta PhoneDB \\ name?: NAME \\ number?: PHONE

\where
name? \notin known

\also
phone’ = phone \oplus \{name? \mapsto number?\}

\end{schema}

AddPhone
∆PhoneDB
name? : NAME
number? : PHONE

name? /∈ known

phone ′ = phone ⊕ {name? 7→ number?}

Some Z paragraphs do not appear in boxes, and for these the zed environ-
ment is used:

\begin{zed}
[NAME, DATE]

\also
REPORT ::= ok | unknown \ldata NAME \rdata

\also
\exists n: NAME @ \\

\t1 birthday(n) \in December.
\end{zed}

[NAME ,DATE]

REPORT ::= ok | unknown〈〈NAME 〉〉
∃n : NAME •

birthday(n) ∈ December .

4

This environment should be used for basic type definitions, constraints, ab-
breviation definitions, free type definitions, and the horizontal form of schema
definitions. As the example illustrates, a full stop or comma is allowed just
before the closing \end command of any of the Z environments, if that suits
your taste (or is forced on you by a publisher’s house rules). This punctuation
is ignored by the type-checker.

For large free type definitions, the syntax environment provides a useful
alternative to the zed environment, as the following example suggests:

\begin{syntax}
OP & ::= & plus | minus | times | divide

\also
EXP & ::= & const \ldata \nat \rdata \\

& | & binop \ldata OP \cross EXP \cross EXP \rdata
\end{syntax}

OP ::= plus | minus | times | divide

EXP ::= const〈〈N〉〉
| binop〈〈OP × EXP × EXP〉〉

Just as in the eqnarray environment of LATEX, the fields are separated by &
characters, and these are ignored by the type-checker.

4 Inside the boxes

The first thing to notice about the text inside the boxes is that multi-character
identifiers look better than they do with ordinary LATEX: instead of specifications,
you get specifications. The letters are not spread apart, and ligatures like fi
are used. This is achieved by an adjustment to the way TEX treats letters in
mathematical formulas, and no special commands are needed in the input file.
Embedded underline characters can be set with the _ command, which is also
used for dummy arguments of operators: not_known gives not known, and
_ + _ gives + .

The various special symbols of the Z language and library have mnemonic
names. Some of these names are the same as in ordinary LATEX, and some
symbols have new names more suggestive of their meaning in Z. The spaces
inserted around the symbols have been adjusted to make them look better in Z
specifications.

A few symbols have two names, reflecting two different uses for the symbol
in Z. The symbol o

9 is called \semi when it is used as an operation on schemas,
and \comp when it is used for composition of relations. The symbol \ is called
\hide as the hiding operator of the schema calculus, and \setminus for the set
difference operator. The symbol � is called project as the schema projection
operator, and \filter for filtering of sequences. The spaces around the schema

5

operations are a little larger, and the type-checker recognizes each name only in
the appropriate context.

For most symbols, two attributes are of interest: the syntactic class (In-Fun,
. . .) assigned to it by the type-checker, and the kind of symbol LATEX generates
from it. The first of these affects the parsing of an expression containing the
symbol, and the second affects the way spaces will be inserted when the expres-
sion is printed. In the description below, ‘thin’, ‘medium’ and ‘thick’ spaces
are the same as those produced by the LATEX commands \, and \: and \;
respectively.

Here are the mnemonics for the basic elements of the Z language:

P \power
× \cross
∈ \in
| | or \mid
• @ or \spot
θ \theta

λ \lambda
µ \mu
∆ \Delta
Ξ \Xi
=̂ \defs

The operators of propositional logic and the schema calculus are as follows.
Many of these names are already defined by LATEX, but the spacing is often
adjusted to make them look better in Z specifications.

¬ \lnot
∧ \land
∨ \lor
⇒ \implies
⇔ \iff
∀ \forall

∃ \exists
∃1 \exists_1
\ \hide
� \project
pre \pre
o
9 \semi

Here are the various sorts of fancy brackets:

{. . .} \{ ... \}
〈. . .〉 \langle ... \rangle
[[. . .]] \lbag ... \rbag

〈〈. . .〉〉 \ldata ... \rdata
. . . (| . . . |) ... \limg ... \rimg

Those are all the symbols ‘built-in’ to the Z language; now for the symbols
defined as part of the mathematical tool-kit. First come the symbols which are
not defined as infix operators, etc.:

\empty⋃
\bigcup⋂
\bigcap

dom \dom
ran \ran

N \nat
Z \num
N1 \nat_1
\#
a/ \dcat

Here are the infix function symbols; they are defined in LATEX as binary opera-
tors, so medium spaces are inserted automatically. The type-checker recognizes
them as of class In-Fun. Each symbol is shown with its priority:

6

7→ \mapsto 1
. . \upto 2
+ + 3
− - 3
∪ \cup 3
\ \setminus 3
a \cat 3
] \uplus 3
∗ * 4
div \div 4

mod \mod 4
∩ \cap 4
o
9 \comp 4
◦ \circ 4
� \filter 4
⊕ \oplus 5
C \dres 6
B \rres 6
−C \ndres 6
−B \nrres 6

The postfix function symbols (class Post-Fun) all produce superscripts:

∼ \inv
+ \plus

∗ \star
n \bsup n \esup

As an example, R \star is printed as R∗. For iteration, the commands \bsup ... \esup
should be used: for example, R \bsup n \esup is printed as Rn . The type-
checker regards this formula as equivalent to iter n R, as explained on page 112
of the ZRM.

The infix relation symbols (class In-Rel) are defined in LATEX as relations, so
thick spaces are inserted around them automatically:

6= \neq
/∈ \notin
⊆ \subseteq
⊂ \subset
< <

> >
≤ \leq
≥ \geq
partition \partition
in \inbag

There is only one prefix relation symbol (class Pre-Rel). It separates itself from
an argument with a thick space:

disjoint \disjoint

The infix generic symbols are seen by LATEX as relation symbols, so they are
surrounded by thick spaces. Of course, the type-checker itself assigns them class
In-Gen:

↔ \rel
7→ \pfun
→ \fun
7� \pinj

� \inj

7→→ \psurj
→→ \surj
�→ \bij
7 7→ \ffun
7 7� \finj

Prefix generic symbols are assigned class Pre-Gen by the type-checker; in LATEX,
they are defined as operator symbols, so that a thin space is inserted between
the symbol and a following generic parameter:

7

P1 \power_1
id \id
F \finset
F1 \finset_1

seq \seq
seq1 \seq_1
iseq \iseq
bag \bag

5 Fine points

In math mode, which is used for type-setting the contents of Z boxes, TEX
ignores all space characters in the input file. The spaces which appear between
elements of a mathematical formula are determined by TEX itself, working from
information about the symbols in the formula. Although this information has
been adjusted in the zed style option to make Z texts look as balanced as
possible, there are one or two situations in which TEX needs a little help.

Special care is needed when function application is indicated by juxtaposing
two identifiers, as in the expression rev words. This expression should be typed
as rev~words. Typing just rev words results in the output revwords, since TEX
ignores the space separating the two identifiers. In a formula, the character ~
inserts the same amount of space as the LATEX \, command, but it looks better
in the input file. The type-checker completely ignores both the ~ character and
the LATEX spacing commands, except that it issues a warning if it finds that a
needed one is missing, for example, between two identifiers. It is not necessary
to separate symbols like \dom and \ran from their arguments with a ~, because
TEX inserts the right amount of space automatically. For example, the input
\dom f produces dom f .

It is good style also to insert small spaces inside the braces of a set compre-
hension, as in this example:

\{~x: \nat | x \leq 10 @ x * x~\}

{ x : N | x ≤ 10 • x ∗ x }

This helps to distinguish it visually from a set display, which should not have
the space:

\{1, 2, 3\}

{1, 2, 3}

The space symbol ~ is ignored by the type-checker, so this is purely a matter
of appearance. It also looks better if you add small spaces inside the square
brackets of ‘horizontal’ schema texts.

TEX also needs help when a binary operator appears at the end of a line, as
in the following example:

8

\begin{zed}
directory’ = directory \cup {} \\

\t3 \{new_name? \mapsto new_number?\}
\end{zed}

directory ′ = directory ∪
{new name? 7→ new number?}

TEX will not recognize \cup as a binary operator and insert the correct space
unless it is surrounded by two operands, so the dummy operand {} has been
inserted: this is ignored by the type-checker. This problem affects only binary
operators; relation signs do not need to be surrounded by arguments to be
recognized by TEX.

6 Bits and pieces

Specification documents often contain mathematical text which does not form
part of the specification proper. This section describes some environments for
setting various kinds of mathematics; they are provided for convenience, and
they are all ignored by the type-checker. Besides these environments for making
displays, run-in mathematics can be set with the usual math environment, or
with the commands $... $ or \(... \). All the Z symbols listed in Section 4
can be used with these commands.

The simplest display environment is provided by the commands \[... \].
This form acts just like \begin{zed} ... \end{zed}, except that the contents
are ignored by the type-checker. Here is an example:

\[
\exists PhoneDB @ \\

\t1 known = \empty
\]

∃PhoneDB •
known =

These commands generalize the standard LATEX commands with the same name,
because the displayed material can be several lines. Note, however, that the
contents are set as text style rather than display style mathematics.

A schema box with no name is generated by the schema* environment:

\begin{schema*}
x, y: \nat

\where
x > y

\end{schema*}

9

x , y : N

x > y

This form is often useful for showing the result of expanding a complex schema-
expression.

Another kind of mathematical display is provided by the argue environment.
This is like the zed environment, but the separation between lines is increased
a little, and page breaks may occur between lines. The intended use is for
arguments like this:

\begin{argue}
S \dres (T \dres R) \\

\t1 = \id S \comp \id T \comp R \\
\t1 = \id (S \cap T) \comp R & law about \id \\
\t1 = (S \cap T) \dres R.
\end{argue}

S C (T C R)
= idS o

9 idT o
9 R

= id(S ∩ T) o
9 R [law about id]

= (S ∩ T) C R.

When the left-hand side is long, I find this style better than the LATEX eqnarray
style, which wastes a lot of space. The second field on each line is optional.
Again, the argue environment is ignored by the type-checker.

Finally, there is the infrule environment, used for inference rules:

\begin{infrule}
\Gamma \shows P

\derive[x \notin freevars(\Gamma)]
\Gamma \shows \forall x @ P

\end{infrule}

Γ ` P
[x /∈ freevars(Γ)]

Γ ` ∀ x • P

The horizontal line is generated by \derive; the optional argument is a side-
condition of the rule.

7 Style parameters

A few style parameters affect the way Z text is set out; they can be changed at
any time if your taste doesn’t match mine.

10

\zedindent The indentation for mathematical text. By default, this is the
same as \leftmargini, the indentation used for list environments.

\zedleftsep The space between the vertical line on the left of schemas, etc.,
and the maths inside. The default is 1em.

\zedtab The unit of indentation used by \t. The default is 2em.

\zedbar The length of the horizontal bar in the middle of a schema. The default
is 6em.

\zedskip The vertical space inserted by \also. By default, this is the same as
that inserted by \medskip.

11

8 The fuzz package

The fuzz package consists of two parts – a style option compatible with the zed
style option described here, and an analysis and checking program. Using fuzz
together with LATEX, you can:

• Input Z specifications as ordinary ASCII files.

• Process them for laser printing or photo-typesetting.

• Check them for conformance with the Z language rules.

• Produce a listing showing the schemas in the specification with compo-
nents and their types.

The fuzz analysis program works on the same ASCII file as LATEX; it extracts
the formal text and checks it for conformance with the rules of the Z language,
producing clear error messages. Analysis of a 1300-line specification takes about
7 seconds on a SUN 3/75.

The fuzz distribution contains the LATEX style option, a special font of Z
symbols, object code for the analysis program, a library containing the standard
mathematical tool-kit, and some example specifications. To use fuzz, you will
need to have LATEX installed on your machine, but everything else you need is
included. fuzz is currently available under ‘no-nonsense’ licence conditions for
the IBM PC and other DOS machines, and for the SUN 3 and SUN 4 under
SUN UNIX. The PC version can also be used on the PS/2. We are willing to
produce versions for other machines according to demand.

12

Ordering information

You can order the fuzz package either by cutting out the coupon below and
sending it with your payment, or by sending an official order – we will send an
invoice. Please send all orders to the address below. Technical enquiries can be
sent to Mike Spivey at the same address, or by E-mail to mike@uk.ac.oxford.prg
.

fuzz package: order form

To: Mrs. A. Spivey, 34, Westlands Grove, Stockton Lane,
York, YO3 0EF, England.

Name:

Address:

Telephone:

Please send [] copies of the fuzz package for the following machines:

[] SUN 3 version: Cartridge tape £300

[] SUN 4 version: 3.5in disk £275

[] SUN 4 version: Cartridge tape £300

[] IBM PC version: 5.25in disk £200

[] IBM PC version: 3.5in disk £200

I enclose a cheque for £[], payable to Dr. J. M. Spivey.

Signed:

