
minim-mp version 2025/1.7

author Esger Renkema
contact minim@elrenkema.nl

This package provides low-level mplib integration for plain lua(la)tex. In order
to use it, simply say \input minim-mp.tex (from plain tex) or \requirepack-
age {minim-mp} from latex. After this, \directmetapost [options] { mp
code } will result in a series of images corresponding to the beginfig() ...
endfig; statements in your mp code. Every image will be in a box of its own.

This package can also be used as a stand-alone metapost compiler. Saying
luatex --fmt=minim-mp your_file.mp

will create a pdf file of all images in your_file.mp, in order, with page sizes
adjusted to image dimensions. You might need generate the format first, this is
done with

luatex --ini minim-mp.ini
Use minim-lamp instead of minim-mp for a latex-based version of the minim-mp
format. With minim-lamp, for specifying the contents of the preamble, you
can use verbatimtex ... etex; statements at the top of your file. Conclud-
ing the preamble with \begin{document} is optional, as both \begin and
\end{document} will be inserted automatically if omitted.

TeX-MetaPost compatibility notes

All metapost code to-be-run will be read under a special catcode regime in which
most ‘special’ characters (including # and %) are inert. Any control sequences
will be expanded fully, however, as inside an \edef. Keep this in mind and define
any macros you want to use in a btex ... etex; environment as \protected.
With the latex package, latex’s ‘protected’ macros are safe-to-use, too.

Every call to \directmetapost opens and closes a separate metapost instance.
If you want your second call to remember the first, you will have to define a
persistent metapost instance. This will also give you more control over image
extraction. See below under „Metapost instances”. The options will also be
explained there (for simple cases, you will not need them).

LaTeX compatibility notes

The latex package minim-mp.sty contains the full plain interface, but also
provides a proper metapost environment as an alternative to \directmetapost.
The metapost environment has no persistent backing instance, but you can cre-
ate a similar environment envname that does with \newmetapostenvironment
[options] {envname}.

Inside the above environments, you can use \mpcolor {name} to insert the
proper colour values. Unlike in luamplib, this will work in any context where
metapost expects a colour. An \mpdim macro is present too, but quite superfluous
since the contents of the metapost environments are fully expanded before
metapost sees them: this means you can use \the and \the\dimexpr like
everywhere else. Tex’s registers can also be accessed from within metapost itself
(see below).

When the package is loaded with the option luamplib, minim-mp will try and
act as a drop-in replacement for luamplib. The effort made is not very great, but
it will define an mplibcode environment, as well as the \mplibcodeinherit,
\mplibshowlog, \mplibsetformat and \mplibnumbersystem switches; also
the macros \everymplib and \everyendmplib.

1

MetaFun compatibility notes

The metafun format is supported to the extent that it should not immediately
crash. Otherwise, useing metafun is neither supported nor recommended.

Metapost extensions
You can set the baseline of an image with baseline(p). There, p must either
be a point through which the baseline should pass, or a number (where an
x coordinate of zero will be added). Transformations will be taken into account,
hence the specification of two coordinates. The last given baseline will be used.

You can write to tex’s log directly with texmessage "hello";. You can feed it
a comma-separated list of strings and numbers, which will be passed through
string.format() first.

You can write direct pdf statements with special "pdf: statements" and
you can add comments to the pdf file with special "pdfcomment: comments".
Say special "latelua: lua code" to insert a late_lua whatsit. All three
specials can also be given as pre- or postscripts to another object. In that case,
they will be added before or after the object they are attached to. Do note that
all special statements will appear at the beginning of the image; use pre- and
postscripts to drawing statements if the order matters.

Partial paths and the even-odd rule

While metapost fills paths according to the winding number, the pdf format
also supports filling according to the even-odd rule. You can use this method
with the eofill and eofilldraw drawing statements. Multiple contours can be
filled at once if all but the last are drawn with nofill. The latter is especially
useful for cutting something out of a shape, as it saves you the hassle of stitching
the paths together.

The macros multi(draw|fill|filldraw|eofill|eofilldraw) take a list of
paths between parentheses and can be followed by the usual drawing options.
For example, multidraw (contours "example" of "tenbf") withpen cur-
rentpen scaled 1/10; will give the word in a thin outline.

The clipping shorthands clipout and clipto take a list of paths as a ‘text’
parameter and either clip their ensemble out of the current picture, or the
current picture to the ensemble. You will have to ensure yourself that the path
has the right orientation for clipping (i.e. you may have to insert the proper
reverse operator yourself).

Tiling patterns

The specification withpattern(<name>) added to a fill statement will fill
the path with a pattern instead of a solid colour. If the pattern itself does
not contain any colour statements, it will have the colour given by withcolor.
Stroking operations (the draw part) will not be affected. Patterns will always
look the same, irrespective of any transformations you apply to the picture.

To define a pattern, sketch it between beginpattern(<name>) ... endpat-
tern(xstep, ystep); where <name> is a suffix and (xstep, ystep) are the
horizontal and vertical distances between applications of the pattern. Inside the
definition, you can draw the pattern using whatever coordinates you like; assign
a value to the matrix transformation to specify how the pattern should be
projected onto the page. This matrix will also be applied to xstep and ystep.

2

You can also change the internal variable tilingtype and the normal variable
painttype, although the latter will be set to 1 automatically if you use any
colour inside the pattern definition. Consult the pdf specification for more
information on these parameters.

You can use text inside patterns, as in this example:

% define the pattern
picture letter; letter = maketext("a");
beginpattern(a)
 draw letter rotated 45;
 matrix = identity rotated 45;
endpattern(12pt,12pt);
% use the pattern
beginfig(1)
 fill fullcircle scaled 3cm withpattern(a) withcolor 3/4red;
 draw fullcircle scaled 3cm withpen pencircle scaled 1;
endfig;

A small pattern library is available in the minim-hatching.mp file; see the
accompanying documentation sheet for an overview of patterns.

Box resources

Box resources (XForms) saved by tex can be included with boxresource nr.
(Note that nr is not a box number, but the index returned by \lastsavedboxre-
sourceindex.) The result will be an image object with the proper dimensions.
This image can be transformed in any way you like, but you cannot inspect the
contents of the resource within metapost.

Box resources can also be created from within metapost: <id> = saveboxre-
source (<attributes>) <picture> returns a number identifying the resource.
The <attributes> can be given in the same way as the arguments to setgstate
(see below). XForms defined through metapost are available to other metapost
instances but not to tex; they are drawn with the same command (boxresource
nr). There remains a subtle difference, however: metapost-defined box resources
are placed at their original origin, tex-defined resources at their lower left corner.

Advanced PDF graphics

You can use savegstate and restoregstate for inserting the q and Q operators;
these must always be paired, or horrible errors will occur. You may need them
if you use setgstate(<params>) for modifying the extended graphical state
(ExtGState). The params must be a comma-separated Key=value list, with all
values being suffixes. The latter restriction may require the use of additional
variables, but as this is a very low-level command, it is best to wrap it in a
more specialised macro anyway. The withgstate (<params>) can be added to
a drawing statement and includes saving/restoring the graphical state.

Note that while you could try and use setgstate for modifying variables like
the line cap or dash pattern, the result of doing so will be unpredictable, since
such changes will be invisible to metapost. Its intended use is restricted to
graphics parameters outside metapost’s scope.

3

Transparency

For applying transparency, setalpha(a) updates the CA and ca parameters as
a stand-alone command and withalpha(a) can be used in a drawing statement
where it will save/restore the graphical state around it. For applying trans-
parency to an ensemble of drawing statements, transparent (a) <picture>
instead of draw <picture> will create and insert the proper transparency group.
The transparency group attributes can be set with the string internal trans-
parency_group_attrs, while for all three macros the blend mode can be set
with the string internal blend_mode (it will be added whenever set).

Additions to plain.mp

Minim-mp provides a few elementary macros and constants that are conspicu-
ously absent from plain.mp; I hope their addition is uncontroversial. All are
provided in the file minim.mp. This file is safe for use with other metapost
processors.

The constants are pi (355/113), fullsquare, unitcircle and the cmyk-colours
cyan, magenta, yellow and key. The macros are clockwise, xshifted, yshif-
ted, hflip and vflip, where the flips are defined in such a way that p & hflip
p gives the expected result.

Version 1.2 brought the following additions: save_pair, save_path etc. etc.
that save and declare in one go; the missing trigonometric functions tand,
arcsind, arccosd and arctand, and the unit circle segment drawing function
arc(𝜃0,𝜃ℓ) (taking a starting angle and arc length, both in degrees).

Version 1.6 brought empty for testing empty suffixes, typeof(v) expanding
to the type (numeric, pair etc.) of variable v, getbounds as complement to
setbounds, the (twodimensional) exterior product p extprod q and the test
collinear(p,q,r).

Running tex code

You can include tex snippets with either maketext "tex text" or btex ...
etex statements. The tex code will be executed in the current environment
without an extra grouping level. The result of either statement at the place
where it is invoked is an image object of the proper dimensions that can be
moved, scaled, rotated and mirrored. You can even specify a colour. Its contents,
however, will only be added afterwards and are invisible to metapost.

Arbitrary tex statements may be included in verbatimtex ... etex, which
may occur anywhere. These btex and verbatimtex statements are executed in
the order they are given.

When including tex code in metapost, do keep in mind that every metapost
snippet read by \directmetapost or \begin{metapost} will be expanded fully
(as inside an \edef) before execution. This may expand your macros too early!
The best solution is to define your own macros as \protected or using latex’s
more convoluted protection equivalent, although a well-placed \noexpand or, as
a last resort, wrapping the entire tex fragment in \unexpanded{...} will work
as well.

You can also use metapost’s infont operator, which restricts the text to-be-
typeset to a single font, but returns an picture containing a picture for each
character. The right-hand argument of infont should either be a (numerical)

4

font id or the (cs)name of a font (without backslash). A traditional font name
(e.g. ‘cmtt10’) is also accepted; this will silently load the font.

One possible use of the infont operator is setting text along curves:

beginfig(1)
 save t, w, r, a; picture t;
 t = "Running TeX from within MetaPost" infont "tenrm";
 w = xpart lrcorner t = 3.141593 r;
 for c within t :
 x := xpart (llcorner c + lrcorner c)/2;
 a := 90 - 180 x/w;
 draw c rotatedaround((x,0), a)
 shifted (-r*sind(a)-x, r*cosd(a));
 endfor
endfig;

R
un

ni
ng

TeX
from within M

etaPost

By default, the maketext operator is used for typesetting labels. You can, how-
ever, order de label macro to use infont instead by setting maketextlabels
to false.

Access to font contours

Both the maketext and infont operators return pictures that are opaque to
metapost. For accessing the contours that make up the characters in a string,
you will need the glyph g of f operator. It is a bit more versatile than its
traditional metapost counterpart: g may also be the name of the glyph instead
of its index, while f can either be a font id or font name (as with infont).

A variant of glyph of is the contours s of f macro, which first typesets the
string s in the same way as infont does (so that kerning and font shaping are
applied), but returns a (comma-separated) list of contours. This list is fit for
use in a for loop. Note that due to rounding errors, the glyph contours will not
match the output of infont exactly.

Be also aware that the contours returned by these operators may be disjoint: a
letter o, for example, will consists of two paths. This means you cannot recreate
the characters by just filling each contour, as that would turn the o into a
filled-in circle. Instead, you must use multifill on the entire output of glyph
of or contours of (see above under „Partial paths”).

Running lua code
You can call out to lua with runscript "lua code". For this purpose, each
metapost instance carries around its own lua environment so that assignments
you make are local to the instance. (The global environment can still be accessed
behind the _G variable.)

Every runscript environment is augmented with a small set of useful functions;
this set can be found in the M.mp_functions table (with M = require 'minim-
mp'; see below under „Lua interface”).

When using runscript, you must ensure its argument is a correct lua pro-
gram. As an escape hatch, raw strings can be passed to lua with runscript

5

("[[function_name]]" & raw_string). This will return the result of the func-
tion function_name applied to raw_string as a lua string.

Returning values from lua

If your lua snippet returns nothing, the runscript call will be invisible to
metapost. If on the other hand it does return a value, that value will have to
be translated to something metapost can understand. You can return a point,
colour or transform by returning an array of two to six elements (excluding
five). Numbers and strings will be returned as they are. For other return values,
tostring() will be called.

Note that lua strings will be returned as metapost code, not as metapost string
literals! If you want to return the latter, you must quote the string yourself; the
runscript environment contains a quote(s) function for this purpose, which
also escapes all double quotes in the string s. When returning dimensions, you
must be wary of arithmetic overflows: every useful dimension expressed in scaled
points will be too large for metapost. Use sp_to_pt(nr) instead, which converts
dimensions to points.

Passing values to lua

Do keep in mind that metapost and lua represent numbers in different ways
and that rounding errors may occur. For instance, metapost’s decimal ep-
silon returns 0.00002, which metapost understands as 1/65536, but lua as
1/50000. Use the metapost macro hexadecimal instead of decimal for passing
unambiguous numbers to lua.

Additionally, you should be aware that metapost uses slightly bigger points
than tex, so that epsilon when taken as a dimension is not quite equal to 1sp.
Use the metapost macro scaledpoints for passing to lua a metapost dimension
as an integral number of scaled points.

Strings can be passed to lua with the lua_string macro, which escapes the
necessary characters and then surrounds its argument with quotes. A generic
macro for passing values to lua, finally, is quote_for_lua, which automatically
converts strings, numbers, points and colours to (metapost) strings that lua can
understand.

Querying tex and lua variables

Stitching together lua snippets by hand is not very convenient. Therefore, minim-
mp provides three helper macros that should cover most lua interaction. For
running a single lua function, luafunction <suffix> (<arguments>) returns
the result of the function str <suffix> applied to any number of arguments,
which are quoted automatically. Variables can be queried with luavariable
<suffix> and set with setluavariable <suffix> = <value>;.

The details of metapost tokenisation make these macros rather powerful: you
can not only say e.g. luavariable tex.jobname to get the current jobname,
but even define a texvariable macro with

vardef texvariable @# = luavariable tex @# enddef;

and have texvariable jobname work as expected.

For accessing count, dimen, attribute or toks registers, the macros are tex.count
[number] or tex.count.name [etc. etc.] for getting and set tex.count [num-
ber] = value or set tex.count.name = value etc. for setting values.

6

Metapost instances

You can define a new persistent metapost instance with \newmetapostinstance
[options] \id. An instance can be closed with \closemetapostinstance
\id. The options are directly passed to lua, as a table, and can contain the
following keys:

Option Default Description
jobname ':metapost:' Used in error messages.
format 'plain.mp' Format to initialise the instance with.
mathmode 'scaled' One of scaled, decimal or double.
seed nil Random seed for this instance.
catcodes (internal value) Catcode table for btex ... etex.
env copy of _G Lua environment for runscript.

See below under „Lua interface” for greater control over these parameters.

Retrieving images from instances

Now that you have your own instance, you can run chunks of metapost code
in it with \runmetapost \id { code }. Any images that your code may have
contained will have to be extracted explicitly. This is possible in a number of
ways, although each image can be retrieved only once.

All metapost images have an \hbox as outermost container. Do not unpack this
box: doing so will cause its dimensions to be lost.

\getnextmpimage \id – Writes the first unretrieved image to the current
node list. There, the image will be contained in a single box node.

\getnamedmpimage \id {name} – Retrieves an image by name and writes it
to the current node list.

\boxnextmpimage \id box-nr – Puts the next unretrieved image in box
box-nr. The number may be anything tex can parse as a number.

\boxnamedmpimage \id box-nr {name} – Puts the image named name in box
box-nr.

Say \remainingmpimages \id for the number of images not yet retrieved and
\getallmpimages \id to insert all remaining images.

Finally, as a shorthand, \runmetapostimage \id { code } will add beginfig
... endfig; to your code and write the resulting image immediately to the
current list.

Associated token lists

Associated to every instance are four token registers containing tex and/or
metapost code to be inserted before or after each executed chunk. You can access
them with \everymp \id {pre|post} {tex|mp} (e.g. \everymp1{pre}{mp}).
The token lists where 𝚒𝚍 = 0 do not correspond to any instance and will apply
to every instance instead. All four token lists are empty by default if you use
minim-mp with plain tex. The latex package, on the other hand, uses them
for its own purposes, so take care in that case to use \tokspre and \toksapp
instead of overwriting their contents. As a bonus, when using the latex package,
you can use the environment name instead of the numerical \id.

7

Lua interface

In what follows, you should assume M to be the result of
M = require('minim-mp')

as this package does not claim a table in the global environment for itself.

You can open a new instance with nr = M.open {options}. This returns an
index in the M.instances table. Run code with M.run (nr, code) and close
the instance with M.close (nr). Images can be retrieved only with box_node
= M.get_image(nr, [name]); omit the name to select the first image. Say
nr_remaining = M.left(nr) for the number of remaining images.

Each metapost instance is a table containing the following entries:

jobname The jobname.
instance The primitive metapost instance.
results A linked list of unretrieved images.
status The last exit status (will never decrease).
catcodes Number of the catcode table used with btex ... etex.
env The lua environment for runscript.

Default values for the format and number system are available in the M.de-
fault_format and M.default_mathmode variables. The full initialisation se-
quence for new instances (i.e. the first metapost chunk, that is executed auto-
matically) is contained in the M.init_code table.

The table passed to env defaults to a copy of the global table _G, and will
be augmented with the contents of M.mp_functions. You can add your own
functions to this table, if you wish.

Adding new metapost specials

You can extend this package by adding new metapost specials. Specials should
have the form "identifier: instructions" and can be added as pre- or
postscript to metapost objects. A single object can carry multiple specials and a
special "..." statement is equivalent to an empty object with a single prefix.

Handling of specials is specified in three lua tables: M.specials, M.prescripts
and M.postscripts. The identifier above should equal the key of an entry
in the relevant table, while the value of an entry in one of these tables should
be a function with three parameters: the internal image processor state, the
instructions from above and the metapost object itself.

If the identifier of a prescript is present in the first table, the corresponding
function will replace normal object processing. Only one prescript may match
with this table. Functions in the the other two tables will run before or after
normal processing.

Specials can store information in the user table of the picture that is being
processed; this information is still available inside the finish_mpfigure callback
that is executed just before the processed image is surrounded by properly-
dimensioned boxes. If a user.save_fn function is defined, it will replace the
normal saving of the image to the image list and the image node list will be
flushed.

8

Logs and debugging

Metapost log output of every processed chunk of metapost code will be printed
to the main log file in a quoted form. The logs will be duplicated to the terminal
if an error occurs or if the variable M.on_line is true (the default is false,
but set to true in the stand-alone format files). Because a single error message
might trigger many others, log output to the terminal (but not the log file)
will be cut after a certain number of errors: this behaviour is governed by the
M.max_errprint variable (default 1; set to 0 to disable).

You can enable (global) debugging by saying debug_pdf to metapost, \de-
bugmetapost to tex or M.enable_debugging() to lua. This will write out a
summary of metapost object information to the pdf file, just above the pdf
instructions that object was translated into. For this purpose, the pdf will be
generated uncompressed. Additionally, the metapost code itself will be echoed to
the log, as well as runscript and maketext invocations, and a small summary
of every generated image will be written to log and terminal.

For debugging the results of maketext and the like, you can set the de-
bug_tex_bboxes variable to true and have their resulting bounding boxes
drawn on the pdf.

Licence
This package may be distributed under the terms of the European Union Public
Licence (EUPL) version 1.2 or later. An english version of this licence has been
included as an attachment to this file; copies in other languages can be obtained
at

https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12

9

https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12

	TeX-MetaPost compatibility notes
	LaTeX compatibility notes
	MetaFun compatibility notes
	Metapost extensions
	Partial paths and the even-odd rule
	Tiling patterns
	Box resources
	Advanced PDF graphics
	Transparency
	Additions to plain.mp

	Running tex code
	Access to font contours

	Running lua code
	Returning values from lua
	Passing values to lua
	Querying tex and lua variables

	Metapost instances
	Retrieving images from instances
	Associated token lists
	Lua interface
	Adding new metapost specials
	Logs and debugging

	Licence

$θ_0$

$θ_ℓ$

${\fam \ttfam \tentt id}=0$

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

