
— 1 —

ANT

A TYPE S ETT I N G S Y STE M

“ant is not TEX.”

Achim Blumensath

December 16, 2007

Contents

1. Invoking ant . 3

2. e markup language 4

3. AL – the ant language 4

3.1. Lexical conventions 5
3.2. Literals . 6
3.3. Expressions . 7
3.4. Statements . 9
3.5. Patterns . 9
3.6. Declarations . 10
3.7. Built in AL-commands 10

4. Typesetting commands 15

4.1. Program control . 15
4.2. Page layout . 16
4.3. Galleys and paragraphs 19
4.4. Boxes . 20

— 2 —

4.5. Parameters . 21
4.6. Fonts . 25
4.7. Tables . 28
4.8. Colour and graphics 29
4.9. Mathematics . 30
4.10. Macros and environments 32
4.11. Counters and references 33
4.12. Parsing . 35
4.13. Nodes . 36
4.14. Environment commands 36
4.15. Dimensions . 37

5. Overview over the source code 38

5.1. e runtime library 38
5.2. e typesetting library 40
5.3. e layout engine . 40
5.4. e parser . 42
5.5. e virtual machine 43

— 3 —

ant 0.8 1. Invoking ant

 is a typesetting system inspired by TEX. Although TEX does a very good job
when typesettingmathematical articles and books – the task it has been designed
for – it can become very difficult, cumbersome, or even impossible to meet the
typographical requirements of texts outside this narrow scope. For instance, the
current dra of the new output routine for LATEX consists of more than 100 pages.
Unfortunately, it is also very difficult to extend the functionality of TEX since its
source code is a total mess. Even aer 20 years there are only versions withminor
modifications available.
For these reasons I decided to rewrite  from scratch aiming for a simple,

clean, and modular design. In particular it is easily possible to replace parts of
 with other implementations, say, adding an  parser, output routines for
 files, or a different page layout algorithm.
e current version of  implements all themajor features of TEXbut a lot of

minor things are still missing. In addition,  provides several improvements
over TEX:

� a saner macro language (no catcodes);

� a builtin high-level scripting language;

�  support;

� support for various font formats including Type1, TrueType, and Open-
Type;

� partial support for advanced OpenType features;

� support for colour and graphics;

� simple page layout specifications;

� river detection.

1. Invoking ant

 translates its input file into a - or -file. Rudimentary support for Post-
Script and  output is also implemented. e program is invoked as

ant [options] �input file�
Currently, the following options are supported:

--help prints a help message.

--format=�format� selects the output format. Supported are dvi, xdvi, pdf
(default), ps, and svg. e latter two are only partially implemented.

— 4 —

3. AL – the ant language ant 0.8

--src-specials enables the generation of source specials.

--debug=�flags� enables debug messages. �flags� is a combination of the fol-
lowing letters:

a AL-commands l line breaking
b AL-bytecode m macro expansion
e the typesetting engine p page layout
g galley breaking s various stacks
i the current input

2. The markup language

e markup language of  is quite similar to the syntax of TEX. In particular,
the rules regarding tokens and braces are the same. One notable exception is
that  stores macros as plain strings without breaking them into tokens. is
solves all those issues TEX has with its catcodes. But beware that, if you define
the macro

\definecommand\foo[m]{\bar#1}

then \foo{text} will expand to \bartext.
Another difference between  and TEX is that one can use arithmetic ex-

pressions to specify skips or dimensions:

\hskip{2em + (4/7)*5cm}

3. AL – the ant language

e requirements on a markup language for authors are quite different from
those on a programming language for implementing these markup commands.
For instance, the TEX macro language serves rather well as a markup language
but it is quite unsuited for the implementation of packages. Besides the markup
language  therefore also provides a scripting language called AL. Syntactic-
ally AL resembles (a subset of) the Haskell programming language. But there
are two notable semantic differences: (i) evaluation in AL is strict, not lazy and
(ii) AL includes a solver for linear equations and, therefore, supports variables
whose value is not yet determined.

— 5 —

ant 0.8 3. AL – the ant language

3.1. Lexical conventions

We distinguish six classes of characters according to their  category:

White space (ws): Mn, Mc, Me, Zs, Zl, Zp, Cc, Cf, Cs, Co, Cn

Lowercase letters (lc): Ll, Lm, Lo

Uppercase letters (uc): Lu, Lt

Digits (dd): Nd, Nl, No

Symbols (sy): Pc, Pd, Ps, Pe, Pi, Pf, Po, Sm, Sc, Sk, So

Special characters (sp): " ' , ; _ () [] { }

Comments. A line comment starts with ;; and extends to the end of the line,
and block comments are delimited by [; and ;].

Identifiers. ere are three types of identifiers: lowercase and symbolic identi-
fiers represent variables while uppercase identifiers are used for symbols.

lid ��� lc �lc � uc�� tail�

uid ��� uc �lc � uc�� tail�

tail ��� _ �lc � uc�� � _ dd �� _ sy�

symbol ��� sy�

Examples:

lowercase_Identifier_2 op_+

Uppercase_12_*&/_45

<<|: ** +/-

e following symbols and keywords are reserved:

begin local declare_infix_left

do match declare_infix_non

else then declare_infix_right

elseif where declare_prefix

end with declare_postfix

if

= := | . :

— 6 —

3. AL – the ant language ant 0.8

3.2. Literals

Numbers. Numerical constants can be written either using decimal notation
or as fraction. Supported bases are 2, 8, 10, and 16. A sequence of digits may be
interleaved with arbitrary many underscores _.

number ��� decimal � fraction

fraction ��� natural / natural

natural ��� 0b bin � 0o oct � dec � 0x hex

decimal ��� 0b bin � . bin� � 0o oct � . oct� � dec � . dec� � 0x hex � . hex�
bin ��� 0b bd ��_ � bd�� bd�
oct ��� 0o od ��_ � od�� od�
dec ��� dd ��_ � dd�� dd�
hex ��� 0x hd ��_ � hd�� hd�
bd ��� 0 � 1
od ��� 0 � � � � � 7
dd ��� 0 � � � � � 9
hd ��� dd � a � � � � � f � A � � � � � F

Examples:

3.4 3/4 0xfa.4 0o64/0b101 1_000_000

Strings and characters. Character constants are enclosed in apostrophes ',
string constants are deliminated by double quotes ". A string constant is just
an abbreviation for a list of characters. e following escape sequences are re-
cognised:

\' U0027 apostrophe \t U0009 tabulator

\" U0022 double quote \ddd — character with 8 bit 

\\ U005C backslash ddd in decimal

\b U0007 bell \xhh — character with 8 bit 

\e U001B  hh in hexadecimal

\f U000C form feed \uhhhh — character with 16 bit 

\n U000A newline hhhh in hexadecimal

\r U000D carriage return

Symbols. Symbols are uppercase identifiers. e symbols True and False are
used as boolean values.

— 7 —

ant 0.8 3. AL – the ant language

3.3. Expressions

Expressions consist of simple expressions combined by operators.Wedistinguish
between binary, prefix, and postfix operators.

expr ��� expr post-op� expr bin-op expr� simple-expr�� number simple-expr�� local lid� ; expr� local decl ; expr� local begin decl-list end expr� expr where decl-list end

. . .

Function application is written without parenthesis or commas:

foldl (+) 0 [0,1,2,3,4,5]

If a list of simple expressions starts with a number then the symbol * is inserted
between the number and the following terms, i.e.,

4 sind 45 is equivalent to 4 * sind 45.

e local and where constructs allow local definitions of functions and vari-
ables where local x1 . . . xn is an abbreviation for

local begin x1 := _; . . . xn := _; end

e following table lists all predefined operators in order of increasing priority:

priority assoc. operators priority assoc. operators

0 right $ 7 le * / mod

1 le >> 8 le ^

2 right || 9 right o

3 right && 9 le !!

4 non == <> > < >= <= function application

5 le land lor lxor lsr lsl prefix prefix operators: ~

5 right ++ postfix postfix operators

6 le + -

Simple expressions. Simple expressions are either literals, variables, or complex
expressions enclosed in parenthesis. We discuss the various cases separately.

— 8 —

3. AL – the ant language ant 0.8

simple-expr ��� lid � symbol � number � character � string � _ � . . .
e symbol _ indicates an unnamed variable without value. It is an abbreviation
for the expression

(local x ; x)

simple-expr ��� . . .� pre-op simple-expr� (expr)� (bin-op expr)� (expr bin-op)� (bin-op)

. . .

Partial application of binary operators are written in parenthesis. So (+) denotes
the function �x, y� � x � y and (+ 1) is the function x � x � 1.

simple-expr ��� . . .� (expr �, expr��)� [expr �, expr��]� [expr �, expr�� : expr]

. . .

Tuples are written with parenthesis and commas, lists are set in square brackets.
e tail of a list is separated by a colon :. Examples:

(1, 0, 0) [0,1,2,3] [x:xs]

e following control constructs are available:

simple-expr ��� . . .� begin stmt-list-expr end� do expr-stmt-list end� if expr then stmt-list-expr�elseif expr then stmt-list-expr��
else stmt-list-expr end� match expr with { match-body }

match-body ��� match-clause �| match-clause��
match-clause ��� pattern �& expr� := stmt-list-expr

stmt-list-expr ��� �stmt ,��expr

expr-or-stmt ��� expr � stmt

expr-stmt-list ��� �expr-or-stmt ;��expr-or-stmt

— 9 —

ant 0.8 3. AL – the ant language

Lambda expressions, i.e., unnamed functions, are written as list of patterns
and corresponding expressions similarly to match constructs:

expr ��� . . . � { fun-body }

fun-body ��� fun-clause �| fun-clause��
fun-clause ��� pattern� �& expr� := stmt-list-expr

For example:

{ [] := 0 | [x] := x | [x, y : _] := x + y }

{ x & x > 0 := 1

| x & x == 0 := 0

| x & x < 0 := ~1 }

3.4. Statements

A statement is an equation or an if statement of equations. Note that, for state-
ments, the else part of an if statement may be omitted.

stmt ��� expr = expr� if expr then stmt�elseif expr then stmt���else stmt� end

3.5. Patterns

pattern ��� _� lid� number� (pattern)� (pattern �, pattern��)� [pattern �, pattern��]� [pattern �, pattern�� : pattern]� lid = pattern� pattern = lid

Pattern can be used to check the structure of values and to access their compon-
ents. For instance, the pattern (0, x) can be matched with a pair whose first
component is the number 0 and whose second component will be bound to the
variable x.

— 10 —

3. AL – the ant language ant 0.8

3.6. Declarations

decl ��� lid pattern� �& expr� := stmt-list-expr� pattern bin-op pattern [& expr] :=

stmt-list-expr� lid�� declare_infix_left num lid�� declare_infix_non num lid�� declare_infix_right num lid�� declare_prefix lid�� declare_postfix lid�

e first two cases are used to declare functions. A list of identifiers x_0 . . . x_n
is an abbreviation for the declarations

x_0 := _; . . . x_n := _ .

e declare_. . . statements can be used to declare the priority and associativity
of operators.

3.7. Built in AL-commands

Control constructs. e function

errormsg

can be used to abort the computation with a given error message.

Types. To test the type of a value the following functions can be used:

is_unbound x is_symbol x
is_bool x is_function x
is_number x is_list x
is_char x is_tuple x

Logical operations. e operators for disjunction, conjunction, and negation
are

|| && not

Comparison operators. e operators

== <> > < >= <=

compare their arguments without modifying them. Equality == and inequal-

— 11 —

ant 0.8 3. AL – the ant language

ity <> are defined for all types. e other relations for numbers, characters, lists,
and tuples where the latter ones are ordered lexicographically.

min x y max x y

compute, respectively, the minimum and maximum of x and y.

General arithmetic. e usual arithmetic operations

+ - * / ^ quot mod ~ abs

are supported. Addition + is defined for numbers, tuples, and lists:

num0 + num1� num0 � num1

�x0, . . ., xn� + �y0, . . ., yn�� �x0 � y0, . . ., xn � yn�
�x0, . . ., xn� + �y0, . . ., ym�� �x0, . . ., xn, y0, . . ., ym�

Subtraction - and the unary minus ~ can be used for numbers and tuples. Mul-
tiplication * and division / are defined for the following types:

num0 * num1� num0 � num1

num * �x0, . . ., xn�� �num * x0, . . ., num * xn�
�x0, . . ., xn� * num� �x0 * num, . . ., xn * num�
�x0, . . ., xn� * �y0, . . ., yn�� x0 * y0 � � � � � xn * yn

t * �x0, . . ., xn�� �
k�0

n �n
k
� �1 � t�n�ktkxk

num0 / num1� num0 � num1

�x0, . . ., xn� / num� �x0 / num, . . ., xn / num�
abs x evaluates to �x� if x is a number and to�

x
0

2
� � � � � xn�1

2 if x � �x0, . . ., xn�1�.
Integer arithmetic. For integers the following additional functions are defined.
ere are four functions to round numbers:

round x in case of ties off zero
truncate x in case of ties towards zero
ceiling x up
floor x down

e bitwise logical operations can be applied only to integers.

— 12 —

3. AL – the ant language ant 0.8

land x y bitwise and
lor x y bitwise or
lxor x y bitwise exclusive or
lneg x bitwise negation
lsr x y bitwise shi right
lsl x y bitwise shi le

Real arithmetic. In contrast to other functions on numbers, the following ones
are of limited precision.

pi the constant π
sqrt x square root
exp x ex

log x natural logarithm
sin x sine of x in radians
cos x cosine of x in radians
tan x tangent of x in radians
arcsin x arcsine of x in radians
arccos x arccosine of x in radians
arctan x arctangent of x in radians
sind x sine of x in degree
cosd x cosine of x in degree
tand x tangent of x in degree
arcsind x arcsine of x in degree
arccosd x arccosine of x in degree
arctand x arctangent of x in degree
sinh x hyperbolic sine of x
cosh x hyperbolic cosine of x
tanh x hyperbolic tangent of x
arcsinh x hyperbolic arcsine of x
arccosh x hyperbolic arccosine of x
arctanh x hyperbolic arctangent of x

Lists and tuples. Lists and tuples are treated like functions mapping indices to
values. at is, to access the nth element of a list or tuple one can apply the list
to the integer n. Note that indices start at 0.
e length of a list or tuple can be obtained by the function

length x .

If the argument is of some other type length returns 1. e function

— 13 —

ant 0.8 3. AL – the ant language

to_string x

converts its argument into a string. Amore general printf-like alternative is given
by the function

format_string format arg1 . . . argn

It supports the following conversion specifications:

s string
d decimal numeral
x lower case hexadecimal numeral
X upper case hexadecimal numeral
r lower case roman numeral
R upper case roman numeral
a lower case alphabetic numeral
A upper case alphabetic numeral

e functions

to_list x
to_tuple x

can be used to convert between tuples and lists.

dir angle angle vec

dir angle returns the unit vector in the given direction and angle �x, y� returns
the angle (in degrees) of the given vector.

Dictionaries. A dictionary is a finite mapping from symbols to arbitrary values.
For instance,

local d := { Foo := 1 | Bar := 2 };

d Foo

yields 1. In order to add a new entry to a dictionary or to modify an existing one
there exists the command

add_to_dict symbol value dictionary

It returns the new dictionary.

Characters. To test the category of a character the following functions can be
used:

— 14 —

3. AL – the ant language ant 0.8

char_is_letter c char_is_symbol c
char_is_mark c char_is_separator c
char_is_number c char_is_control c
char_is_punct c char_is_space c

char_is_space is a short hand for the disjunction of char_is_separator
and char_is_control. e  category of a character can be looked up
with the function

char_category c

It returns one of the following symbols

Lu Ll Lt Lm Lo

Mn Mc Me

Nd Nl No

Pc Pd Ps Pe Pi Pf Po

Sm Sc Sk So

Zs Zl Zp

Cc Cf Cs Co Cn

e name of a character can be obtained by

char_name c

To convert a character to uppercase, lowercase, or titlecase one can use

to_upper c
to_lower c
to_title c

Symbols. To convert a string into a symbol one can use the function

to_symbol str .

e function

generate_symbol x

creates a new unique symbol without textual representation. Its argument x is
ignored.

File operations. e command

serialise file name value

can be used to write an AL-value into a file. e return value is either True or
False depending on whether the operation was successful. Note that serialisa-

— 15 —

ant 0.8 4. Typesetting commands

tion of functions is not supported. Any functions in value will be replaced by an
‘unknown’ value. To read the value from a file you can use the command

unserialise file name .

4. Typesetting commands

is section contains a description of all typesetting commands.e commands
are grouped by topic and each section contains both markup commands and
AL-commands.

4.1. Program control

To call AL-commands within your document the following commands are
provided:

\beginALdeclarations �code� \endALdeclarations
\ALmacro �expr�
\ALcommand �expr�

A list of AL-declarations can be entered by surrounding them with \beginAL-

declarations and \endALdeclarations. e command \ALmacro evalu-
ates a given AL-expression and inserts the result – which should be a string –
at the current position into the input. \ALcommand is a more powerful version
of \ALmacro. Its argument is an AL-expression which should yield a function
of type

parse-state � parse-state.

is function is invoked with the current parse-state.

Example:

\beginALdeclarations

mirror :=

local arg;

do

ps_arg_expanded arg;

ps_insert_string (reverse arg);

end

\endALdeclarations

\definecommand\mirror{\ALcommand{mirror}}

— 16 —

4. Typesetting commands ant 0.8

defines a command \mirror that reverses its argument.
e command

\relax

does nothing.

\beginliteral �string� \endliteral
converts the string into glyphs without interpreting it.

\include �file name�
reads the given file. e command

\jobname

expands to the basename of the input file. To output error messages you can use
the following AL-commands:

ps_warningmessage
ps_errormessage

4.2. Page layout

 has a much more sophisticated algorithm for page layout than LATEX. Every
page is divided into several areas that can be filled with contents independently.
e command

\newpagelayout �name� �page-width� �page-height�
defines a new page layout with the given name and dimensions. All subsequent
\newpagearea commands affect this layout.

\newpagearea �x� �y� �width� �height� �max-top� �max-bot� �type��parameters�
adds a new area with the given dimensions to the page. e areas of a page are
filled in order with content.When areas overlap only that part of the current area
is considered that is not already filled withmaterial from another area. Currently,
there are four different area types.
If �type� is galley then the contents is taken from the galley specified by the

dictionary �parameters�.
name (string) name of the galley.

— 17 —

ant 0.8 4. Typesetting commands

top-skip (skip, default 1em) minimal whitespace above the text.

bottom-skip (skip, default 1em) minimal whitespace below the text.

min-size (skip, default 5em) minimal height. If there is less space le the
area remains empty.

grid-size (skip, default 1em) If non-zero all baseline positions are rounded
to a multiple of this value.

If �type� is direct then �parameters� contains  code for the contents of
the area. When this code is evaluated it can access the number of the current
page via the counter page. e marks from previous pages are given as global
AL-variables where the name is prefixed with OldMark, i.e., a mark named Foo
can be accessed by the command

local x;

do

ps_get_global x OldMarkFoo;

ps_insert_string x;

end

Similarly, marks found in the current page get the prefix NewMark.
If �type� is float then the area is used to display floats. e dictionary �para-

meters� contains the following entries:
alignment (default top) either top or bottom.

top-skip (skip, default 1em) minimal whitespace above the first float.

bottom-skip (skip, default 1em) minimal whitespace below the last float.

float-sep (dimension, default 1em) whitespace between floats.

Finally, �type� can be footnote in which case the area is used to display foot-
notes. e dictionary �parameters� contains the following entries:
separator ( code, default empty) code to typeset the separator above

the footnote area.

top-skip (skip, default 1em) minimal whitespace above the first footnote.

bottom-skip (skip, default 1em) minimal whitespace below the last foot-
note.

grid-size (skip, default 1em) If non-zero all baseline positions are rounded
to a multiple of this value.

— 18 —

4. Typesetting commands ant 0.8

line-params line dictionary.

par-params paragraph dictionary.

line-break-params line-break dictionary.

hyphen-params hyphenation dictionary.

To build a sequence of pages one uses the command

\shipoutpages [number-of-pages] �even-layout� �odd-layout�
�number-of-pages� specifies the number of pages to output. If it is zero then 
creates pages until all the galleys are empty. e other arguments indicate the
names of the page layouts used for even and odd numbered pages, respectively.
A float can be inserted by the following commands:

\floatbox �body�
\floatpar �body�
\floatgalley �body�

e difference between them lies in the mode the �body� is typeset in. \float-
box uses vertical mode, \floatpar horizontal mode, and \floatgalley para-
graph mode.

\nextpagelayout �layout�
changes the layout of the following page. Note that

\nextpagelayout{foo}

takes effect only in vertical mode. Otherwise, one has to put the command inside
a \vadjust command:

\vadjust{\nextpagelayout{foo}}

e corresponding AL-commands are

ps_shipout_pages number even odd
ps_new_page_layout name width height
ps_new_area name pos-x pos-y width height max-top max-bot type param

efile page-layout.ant contains two predefined page layouts and a helper
function returning the dimensions of common paper formats.

get_page_size format

returns a pair consisting of the dimensions of the paper format. Supported
formats are

— 19 —

ant 0.8 4. Typesetting commands

A_3 A_4 A_5 A_6

B_3 B_4 B_5 B_6

Letter Legal Executive

e predefined page layouts can be used with the routines

simple_page_layout page-size division baseline
two_column_page_layout page-size division baseline

e first one creates a galley named main and two page layouts left and right,
each consisting of a single text block with headers and footers. e second one
does the same, except that the text block consists of two columns.e parameter
page-size contains the paper size, division determines the margins (a good value
is 9), and baseline is the font height (including leading).

4.3. Galleys and paragraphs

e layout process of  consists of two steps. In the first one, a set of galleys is
constructed from the given paragraphs. Such a galley is a continuous run of text
of a fixed width but of unlimited length. In the second step, parts of these galleys
are used to assemble the actual pages.
To create a new galley of width �measure� one uses the command

\newgalley �name� �measure�
e corresponding AL-command is

ps_new_galley name measure

All material between the commands

\begingalley �name�
\endgalley

is appended to the galley �name�.
As in TEX the end of a paragraph is marked by either one of the following

commands:

\endgraf

\par

An empty line is automatically translated to the command sequence \par.

— 20 —

4. Typesetting commands ant 0.8

4.4. Boxes

\char �number�
\glyph �number�
\mathchar �math-code� �small-font� �small-char� �large-font� �large-char�

Prints a single glyph. \char expects a  number and \glyph the index
of the glyph. e arguments of \mathchar consists of the math-code, the font
family and the character. e first pair specifies the normal version, the second
one is used by scalable delimiters. Supported math-codes are:

letter operator inner

ordinary punct subscript

binop open superscript

relation close

For letter, the character is given by a  number while in the other cases
a glyph index is expected.

\penalty �number�
inserts a break point with the given penalty.

\discretionary * [penalty] �pre-break� �post-break� �no-break�
inserts a break point with the given parameters.e * indicates a break caused by
hyphenation.edefault for �penalty� is 0, if * is omitted, and hyphen-penalty
otherwise.

\hskip �skip�
\vskip �skip�
\kern �skip�

insert horizontal and vertical glue.

\ensurevskip �skip�
determines the amount of vertical glue at the end of the current galley and in-
creases it to �skip� if necessary.
\hbox {�body�}
\hbox to �width� {�body�}
\hbox spread �amount� {�body�}

create a horizontal box around �body�.
\vbox {�body�}

— 21 —

ant 0.8 4. Typesetting commands

\vbox to �width� {�body�}
\vbox spread �amount� {�body�}

create a vertical box around �body�.
\phantom �body�
\hphantom �body�
\vphantom �body�

create an empty box of the same width and/or height as that of �body�.
\hleaders �width� �body�

creates a box of width �width� that is filled with copies of �body�.
\vadjust * �body�

adds �body� below the line containing the \vadjust command. If * is present
the material will be inserted above the line.

\rule �width� �height� �depth�
creates a rule of the given dimensions.

\image [options] �file name�
inserts the given image. e �options� dictionary may contain the following op-
tions:

width (skip) the width of the image.

height (skip) the height of the image.

dpi (number) the resolution of the image.

 specials can be created with the AL-command

ps_dvi_special string

4.5. Parameters

e parameters governing the typesetting process are grouped into several dic-
tionaries. Each of these dictionaries can be modified by the command

\setparameter �parameter� �dictionary�
�parameter� is the name of the dictionary and �dictionary� its new value. A dic-
tionary consists of entries of the form

— 22 —

4. Typesetting commands ant 0.8

�key� [= �value�]
separated by semicolons or commas.
To modify parameters locally one can surround the corresponding section by

the commands

\begingroup

\endgroup

Most parameter dictionaries come in two versions: those with the prefix
this- refer only to the following paragraph while those without effect all para-
graphs. Currently the following parameter dictionaries are defined:

font

paragraph this-paragraph

line this-line

line-break this-line-break

hyphenation this-hyphenation

space this-space

math this-math

e font dictionary contains the following entries:

family (string) font family.

series (string) font series.

shape (string) font shape.

size (number) font size.

e paragraph and this-paragraph dictionaries contain the following
entries:

measure (skip) the line width.

par-indent (dimension) the indent of the first line.

par-fill-skip (dimension) the whitespace at the end of the last line.

left-skip (dimension) the le margin.

right-skip (dimension) the right margin.

left-par-shape specifies the le indentation of each line. Its value is a
comma-separated list of entries of the form:

�range� : �indent�

— 23 —

ant 0.8 4. Typesetting commands

right-par-shape similar to left-par-shape but for the right side.

par-skip (dimension) the whitespace between paragraphs.

left-annotation ( code) is value specifies material that is added to
the le of every line (useful, e.g., for line numbering, adding a vertical bar,
etc.). e code should evaluate to a box of width zero.

right-annotation ( code) is value specifies material that is added
to the right of every line. e code should evaluate to a box of width zero.

post-process-line (not implemented) code to annotate the lines of the
paragraph.

e line and this-line dictionaries contain the following entries:

baseline-skip (dimension) the distance between one baseline and the
next.

line-skip-limit (skip) the minimal distance between lines.

line-skip (dimension) If the current value of baseline-skip leads to less
than line-skip-limit space between two lines then this space is set to
line-skip.

leading (string) e method to determine the amount of space between
lines (see below).

club-penalty (number) e penalty for breaking aer the first line of a
paragraph.

widow-penalty (number) e penalty for breaking before the last line of a
paragraph.

Currently, there are four leading methods implemented:

fixed e distance between baselines is always baseline-skip.

register e distance between baselines is always a multiple of
baseline-skip.

TeX is is the TEX method based on baseline-skip, line-skip-limit,
and line-skip.

skyline eTEXmethod but the shape of the lines is taken into account when
calculating their minimal distance.

e line-break and this-line-break dictionaries contain the following
entries:

— 24 —

4. Typesetting commands ant 0.8

pre-tolerance (number)

tolerance (number)

looseness (integer) e line-breaking algorithms returns a paragraph that
has loosenessmore lines than the optimal solution.

line-penalty (number) penalty for the number of lines.

adj-demerits (number) demerits for two consecutive lines with different
spacing.

double-hyphen-demerits (number) the demerits for two consecutive
lines ending in a hyphen.

final-hyphen-demerits (number) the demerits for the second but last
line ending in a hyphen.

emergency-stretch (dimension) additional stretchability for each line, for
the case that no acceptable solution exists.

simple-breaking (bool) when true  uses a faster line-breaking al-
gorithm that yields slightly worse results. (It does not support breaking of
ligatures and river detection.)

river-demerits (number) the demerits for a river.

river-threshold (skip) minimal amount whitespace has to overlap to
count as a river.

e hyphenation and this-hyphenation dictionaries contain the following
entries:

hyphen-table (string) e name of the hyphenation table.

hyphen-penalty (number) e penalty for breaking words.

ex-hyphen-penalty (number) e penalty for consecutive hyphenated
lines.

left-hyphen-min (integer) e minimal number of letters before a word
break.

right-hyphen-min (integer) e minimal number of letters aer a word
break.

script-lang (string) e name of the current script and language systems.
ese names are font specific.

e space and this-space dictionaries contain the following entries:

— 25 —

ant 0.8 4. Typesetting commands

space-factor (number)

space-skip (dimension)

xspace-skip (dimension)

victorian-spacing (boolean) When true  increases the spacing aer
punctuation.

e math and this-math dictionaries contain the following entries:

thin-math-skip (dimension)

med-math-skip (dimension)

thick-math-skip (dimension)

script-space (dimension)

rel-penalty (number)

binop-penalty (number)

delimiter-factor (number)

delimiter-shortfall (skip)

null-delimiter-space (dimension)

4.6. Fonts

e text font is changed with the command

\setparameter{font} �font-specification�
(see below). To change the math fonts one can use the command

\setmathfont �font-specification�
where �font-specification� is a dictionary containing the entries
math-family (integer) the number of the math-family to change. If this key

is omitted all families are changed.

family (string) the font family.

series (string) the font series.

shape (string) the font shape.

text-size (number) the text size.

— 26 —

4. Typesetting commands ant 0.8

script-size (number) the script size.

script-script-size (number) the double script size.

e macros

\FontFamilyRoman

\FontFamilySans

\FontFamilyTypewriter

\FontFamilyMath

\FontFamilyExtensions

\FontFamilySymbols

contain the default families used by the font commands below.

\FontSeriesMedium

\FontSeriesBold

contain the default series used by the font commands below.

\FontShapeUpright

\FontShapeItalic

\FontShapeSlanted

\FontShapeSmallCaps

contain the default shapes used by the font commands below.

\FontSizeTiny

\FontSizeScript

\FontSizeFootnote

\FontSizeSmall

\FontSizeNormal

\FontSizeLargeI

\FontSizeLargeII

\FontSizeLargeIII

\FontSizeHugeI

\FontSizeHugeII

contain the default sizes used by the font commands below.

\rmfamily

\sffamily

\ttfamily

change the font family.

— 27 —

ant 0.8 4. Typesetting commands

\mdseries

\bfseries

change the font series.

\upshape

\itshape

\slshape

\scshape

change the font shape.

\tiny

\scriptsize

\footnotesize

\small

\normalsize

\large

\Large

\LARGE

\huge

\Huge

change the font size.

\normalfont

restores the normal font.
To make fonts available to  you have to declare them. e AL-command

ps_declare_font font-file family series shape sizes parameters

tells  that the file font-file contains a font in the given family. e parameters
take the form of a dictionary containing the following entries. Each of them is
optional.

Encoding the encoding vector of the font.

HyphenGlyph the index of the hyphen glyph.

SkewGlyph the index of the skew glyph.

Scale an optional scaling factor for the font.

LetterSpacing amount of additional letter spacing.

Adjustments additional kerning and ligature commands.

— 28 —

4. Typesetting commands ant 0.8

AutoLigatures boolean to enable automatic creation of ligatures.

BorderKern list of tuples containing kerning values for margin kerning.

Example:

local ot_1 := ("\u0393", . . . "\u00a8");
do

ps_declare_font "cmti10.tfm" "Computer Modern Roman"

"medium" "italic" (10,12) { Encoding := ot_1 };

end

To define mathematical symbols one can use the following commands.

ps_define_math_symbol name math-code font glyph
ps_define_root_symbol name small-font small-glyph large-font

large-glyph
ps_define_math_accent name font glyph
ps_set_math_code char math-code small-font small-glyph large-font

large-glyph

4.7. Tables

e commands

\begintable

\endtable

\newtableentry

\newtablerow

can be used to typeset a table. e entries of a row are separated by
\newtableentry commands, and the rows by \newtablerow commands.
e position of a table entry is stored in five counters:

table-entry:left the first column

table-entry:right the last column

table-entry:top the first row

table-entry:baseline the row of the baseline of the entry

table-entry:bottom the last row

ese counters can be modified to create entries spanning several columns or
rows.

— 29 —

ant 0.8 4. Typesetting commands

4.8. Colour and graphics

You can change the colour with the commands

\setgreycolour �grey�
\setrgbcolour �red� �green� �blue�
\setcmykcolour �cyan� �magenta� �yellow� �black�

ey take effect until the end of the current box. e corresponding AL-com-
mands are

ps_set_colour colour
ps_set_bg_colour colour
ps_set_alpha alpha

Colours can be specified in one of three formats:

(Grey, x)
(RGB, red, green, blue)
(CMYK, cyan,magenta, yellow, black)

e following AL-commands can be used to draw lines or filled shapes.

ps_stroke path
ps_fill path
ps_clip path
ps_set_line_width width
ps_set_line_cap line-cap
ps_set_line_join line-join
ps_set_miter_limit limit

To construct paths  provides the following AL-commands:

make_path point
close_path cycle path
path_add_point point path
path_add_in_dir vector path
path_add_in_angle angle path
path_add_in_curl curl path
path_add_in_tension tension path
path_add_out_dir vector path
path_add_out_angle angle path
path_add_out_curl curl path
path_add_out_tension tension path

— 30 —

4. Typesetting commands ant 0.8

path_add_control_points point point path

You start a pathwith make_path at the given point. You can add new points with
path_add_point. For every point you can specify the tangent of the incoming
and the outgoing curve with the remaining commands. For instance, you can
draw a circle with radius 10 pt by

\vbox to 20pt{\vss\hbox to 20pt{%

\ALcommand{

local begin

u := 10pt;

circle :=

do

path_add_point (u,2u);

path_add_point (0,u);

path_add_point (u,0);

close_path True;

end

(make_path (2u,u));

end

do

ps_set_line_width 0.6pt;

ps_stroke circle

end

}}}

4.9. Mathematics

$ �math� $
\beginmath

\endmath

\begintext

\endtext

_ �subscript�
^ �superscript�

e usual math commands. \begintext and \endtext can be used to enter
text-mode when in math-mode. Note that both \beginmath and \endmath,
and \begintext and \endtext nest.

\frac �numerator� �denominator�

— 31 —

ant 0.8 4. Typesetting commands

\genfrac �le� �right� �thickness� �numerator� �denominator�
\sqrt �body�

create a fraction and a root.

\overline �body�
\underline �body�

put a line atop or below �body�.
\left �delimiter� �body� \middle �body� \right �delimiter�

adjusts the height of the delimiters to that of the �body�.
\displaystyle

\textstyle

\scriptstyle

\scriptscriptstyle

selects the math mode.

\mathord �body�
\mathop �body�
\mathbin �body�
\mathrel �body�
\mathopen �body�
\mathclose �body�
\mathpunct �body�
\mathinner �body�

sets the math-code of the �body�.
\indexposition �pos�
\limits

\nolimits

determines where the following sub- and superscripts are placed. �pos� can take
the values left, right, and vert. \limits and \nolimits are shorthands
for \indexposition{vert} and \indexposition{right}, respectively. For
example, the command

\prod\indexposition{left}^a_b \indexposition{vert}^c_d

\indexposition{right}^e_f

produces the output

— 32 —

4. Typesetting commands ant 0.8

�b
a

d

c

f

e

In addition, all the usual mathematical symbols are defined: \alpha, \sim,. . .

4.10. Macros and environments

\definecommand �name� [arguments] �body�
\definepattern �name� [arguments] �body�

define a new command. For \definecommand �name� has to be a command se-
quence in the sense of TEX, while in the case of \definepattern it can be any
sequence of symbols. Furthermore, expanding a command works the same way
as in TEX. e next symbol aer the command cannot be a letter and the fol-
lowing white space is deleted. For patterns, these restrictions do not hold. e
parameter �arguments� consists of a list of letters specifying the type of the argu-
ments:

m mandatory argument

s optional *

o optional argument with empty default

O{�default�} optional argument with default value

\savecommand �name�
\restorecommand �name�
\savepattern �name�
\restorepattern �name�

ese commands can be used to define commands and patterns locally:

\definecommand{\foo}{old}

\foo

\savecommand\foo

\definecommand{\foo}{new}

\foo

\restorecommand\foo

\foo

produces the output old new old.

\defineenvironment �name� [arguments] �begin-body� �end-body�
creates a new environment. Note that the arguments can be used in both bodies.

— 33 —

ant 0.8 4. Typesetting commands

\begin �name�
\end �name�

starts and ends an environment.
e corresponding AL-commands are:

ps_set_default_char_cmd execute expand
ps_define_command name execute expand
ps_define_pattern pattern execute expand
ps_save_command name
ps_restore_command name
ps_save_pattern pattern
ps_restore_pattern pattern
ps_lookup_command result name
ps_push_env name arguments
ps_pop_env arguments name
ps_set_env_args arguments
ps_top_env name arguments
ps_lookup_env result name
ps_define_env name execute-begin expand-begin execute-end expand-end

4.11. Counters and references

 has built in counters that can be used to number sections, theorems, etc.
e following markup commands are provided:

\newcounter [super-counter] �name�
\setcounter �name� �value�
\addtocounter �name� �value�
\getcounter �format� �name�

If �super-counter� is given the new counter is reset every time the value of the
super-counter changes. e format can be one of the following letters:

1 arabic number
a lowercase alphabetic letter
A uppercase alphabetic letter
i lowercase roman number
I uppercase roman number

r�text� repeats �text� i times
s�text 1�. . .�text n� returns �text i�

— 34 —

4. Typesetting commands ant 0.8

Some counters are predefined:

year the year

month the month (1 to 12)

day the day (1 to 31)

day-of-week day of the week (0 means Sunday)

e equivalent AL-commands are:

ps_new_counter name value super
ps_get_counter value name
ps_set_counter name value

In addition to counters there are also global variables that can be accessed only
via AL-commands.

ps_get_global result name
ps_set_global name value

ese can be used to hold AL-values that are globally needed. Each global vari-
able is referenced by a symbol. Example:

ps_set_global Counter 17

. . .
local x;

ps_get_global x Counter

efile references.ant provides an implementation of references on top of
these global variables. Furthermore, it contains commands to preserve the value
of global variables across runs of .
To declare that a global variable should be preserved in this way you can use

the command

ps_declare_persistent_global name

References can be created with the AL-command

ps_add_reference name value

Its value is retrieved by

ps_lookup_reference result name

e corresponding markup commands are

\addreference �name� �value�
\lookupreference �name�

— 35 —

ant 0.8 4. Typesetting commands

e file references.ant also provides the following two commands

\currentpage

\saveposition �command�
e first command expands to the number of the current page, the second one
defines a new macro �command� that expands to this number. (You need two
runs of  until these values are available.) ese commands are based on the
AL-commands

ps_get_current_page page
ps_get_current_position page
ps_get_current_line line

efirst command stores the number of the current page in page.e second one
stores a triple consisting of the current page number and the current coordinates.
e last command returns the number of the current line.

4.12. Parsing

To read the next argument one can use the following AL-commands:

ps_next_char char
ps_get_char char pos
ps_remove_chars num
ps_insert_string str
ps_location loc
ps_arg_expanded arg
ps_arg_execute arg mode
ps_arg_num arg
ps_arg_int arg
ps_arg_skip arg
ps_arg_dim arg
ps_arg_key_val arg
ps_opt_expanded arg default
ps_opt_key_val_int arg
ps_opt_int arg default
ps_arg_TeX_dim arg

e following commands run the parser on various inputs:

ps_execute_next_char finished
ps_execute_stream string

— 36 —

4. Typesetting commands ant 0.8

ps_execute_argument

ps_run_parser result mode

4.13. Nodes

e following commands provide low-level access to the interface of the typeset-
ting engine.

ps_current_modemode
ps_open_node_listmode
ps_close_node_list nodes mode
ps_add_node node

4.14. Environment commands

Most of the functions below return environment commands, i.e., functions of
type location� environment� environment.
Font parameters:

em env
ex env
mu env

Galleys:

new_galley name measure
select_galley name

Galley parameters:

set_par_params params
set_line_params params
set_line_break_params params
set_hyphen_params params
set_space_params params
set_math_params params
set_current_par_params params
set_current_line_params params
set_current_line_break_params params
set_current_hyphen_params params
set_current_space_params params

— 37 —

ant 0.8 4. Typesetting commands

set_current_math_params params
set_par_shape shape
set_colour colour

Page layout:

new_page_layout name page-width page-height
select_page_layout name

Fonts:

set_math_font definition
adapt_fonts_to_math_style

Space factor:

get_space_factor env char
adjust_space_factor char

4.15. Dimensions

e following constants are defined:

pt = 1 pc = 12pt
in = 72.27 pt sp = 1/65536pt
bp = 1/72 in dd = 1238/1157pt
cm = 1/2.54 in cc = 12dd
mm = 0.1 cm

ese are postfix operators, i.e., you can write 10pt, 2cm, etc.
A dimension consists of a base value together with two values that specify how

much it can be stretched and shrunk.

make_dim base stretch stretch-order shrink shrink-order
fixed_dim base
dim_zero

dim_1pt

dim_12pt

dim_fil

dim_fill

dim_ss

dim_filneg

dim_equal dim dim
dim_add dim dim

— 38 —

5. Overview over the source code ant 0.8

dim_neg dim
dim_sub dim dim
dim_mult num dim
dim_max dim dim
dim_min dim dim
dim_max_stretch dim
dim_max_shrink dim
dim_max_value dim
dim_min_value dim
dim_shift_base dim delta
dim_shift_base_upto dim delta
dim_inc_upto dim delta
dim_dec_upto dim delta
dim_resize_upto dim delta
adjustment_ratio dim size
dim_scale_badness ratio
dim_scale dim ratio
dim_scale_upto dim ratio

5. Overview over the source code

 consist of five parts whose detailed descriptions follow in the sections below.

(1) e runtime library contains -routines, functions to load fonts, and so
on.

(2) e typesetting library consists of the actual layout routines.

(3) e layout engine is an interpreter for a simple typesetting language.

(4) e parser translates the markup language into this internal language.

(5) Finally, there is a virtual machine for the scripting language.

5.1. The runtime library

eruntime library contains four groups ofmodules.ere aremodules defining
datatypes and algorithms.

Bitmap datatype for bitmaps.

Dim implementation of types for dimensions.

DynamicTrie implementation of generic tries.

— 39 —

ant 0.8 5. Overview over the source code

DynUCTrie implementation of  tries.

Trie implementation of packed tries.

PTable datatype for tables with a current element.

SymbolSet simple list-based type to store sets of symbols.

Hyphenation implementation of hyphenation tries.

Substitute routines for pattern matching and substitution.

JustHyph routines for justification and hyphenation.

ere are modules for font handling.

FontMetric datatype for font metrics.

Encodings encoding tables for , , , and .

GlyphMetric datatype for glyph metrics.

GlyphBitmap simple bitmap datatype to store glyph images.

LoadFont loading of fonts.

LoadImage loading of images.

FontFT loading of fonts via the FreeType library.

FontPK loading of -fonts.

FontTFM loading of  font metrics.

FontVirtual support for virtual fonts.

FreeType bindings for the FreeType library.

OpenType routines to parse OpenType tables.

Type1 routines to embed Type1 fonts.

ere are modules for document formats.

Graphic datatypes for the primitive graphic commands.

PageDescription the datatype typeset documents are stored in.

Bezier routines to compute Bezier splines.

GenerateDVI routine to write  files.

PDF routines to load and write  files.

GeneratePDF routine to output a document as  file.

GeneratePostScript routine to write PostScript files.

GenerateSVG routine to output a document as  file.

And there are modules for file handling.

UCStream wrapper to read files and strings.

— 40 —

5. Overview over the source code ant 0.8

Logging output routines for error and debugging messages.

KPathSea bindings for the kpathsea library which implements a database for
file name lookup.

5.2. The typesetting library

e typesetting library consists of the following modules:

Box definition of the various types of boxes.

Builder generic datatype for an engine assembling boxes.

Compose implements several builders for paragraphs.

HBox layout routines for horizontal boxes.

VBox layout routines for vertical boxes.

MathLayout all the various functions to layout mathematical material.

Glyph layout routines for accents and extendable glyphs.

Table layout routines for tables.

ParLayout the linebreaking algorithm.

Galley datatype for galleys.

Page datatypes for the page layout algorithm.

PageLayout the page layout algorithms.

AreaGalley layout of galley areas.

FloatVertical layout for float areas.

Footnote layout for footnote areas.

5.3. The layout engine

e layout engine consists of the following modules:

Environment definition of the state of the layout engine.

Node definition of the engine commands.

Evaluate implementation of the commands of the engine.

Fonts database for the installed fonts and the font selection mechanism.

HyphenTable is is a generated file which contains the hyphenation trie.

Job datatype to describe the current job. It contains the names of the input
and output files, the date, and so on.

— 41 —

ant 0.8 5. Overview over the source code

Output converts the pages into the format expected by the output routine and
writes the  file.

e engine translates an abstract description of the document into a sequence
of pages. e commands of this description are defined in the module Node :

`Nodes �commands�
`Command �loc� �env-modification�
`CommandBox �loc� �contents�
`GfxCommand �loc� �gfx-command�
`NewGalley �loc� �name� �measure�
`NewLayout �loc� �name� �width� �height�
`NewArea �loc� �name� �x� �y� �width� �height� �max-top� �max-bot� �contents�
`ShipOut �loc� �even-layout� �odd-layout� �number�
`AddToGalley �loc� �name� �contents�
`PutGalleyInVBox �loc� �align� �name�
`ModifyGalleyGlue �loc� �function�
`Paragraph �loc� �contents�
`BeginGroup �loc�
`EndGroup �loc�
`Float �loc� �area� �contents�
`Glyph �loc� �index�
`Letter �loc� �code�
`Space �loc�
`Glue �loc� �width� �height� �implicit� �discardable�
`Break �loc� �penalty� �hyphen� �pre-break� �post-break� �no-break�
`Rule �loc� �width� �height� �depth�
`Image �loc� �file� �width� �height�
`Accent �loc� �accent� �body�
`HBox �loc� �contents�
`HBoxTo �loc� �width� �contents�
`HBoxSpread �loc� �amount� �contents�
`VBox �loc� �contents�
`VBoxTo �loc� �width� �contents�

— 42 —

5. Overview over the source code ant 0.8

`VBoxSpread �loc� �amount� �contents�
`Phantom �loc� �horiz� �vert� �contents�
`HLeaders �loc� �width� �contents�
`VInsert �loc� �below� �contents�
`Table �loc� �contents�
`TableEntry �loc� �le� �right� �top� �baseline� �bottom� �contents�
`Math �loc� �contents�
`MathCode �loc� �math-code� �contents�
`MathChar �loc� �math-char�
`SubScript �loc� �script�
`SuperScript �loc� �script�
`Fraction �loc� �numerator� �denominator� �le� �right� �rule�
`Underline �loc� �body�
`Overline �loc� �body�
`MathAccent �loc� �font-family� �character� �body�
`Root �loc� �font-family� �character� �font-family� �character� �body�
`LeftRight �loc� �contents�
`MathStyle �loc� �style�
`IndexPosition �loc� �pos�

5.4. The parser

e parser consists of the following modules:

CharCode contains mappings from characters to cat-codes.

Group implementations of \begingroup and \endgroup.

Mode commands to switch between the modes.

ParseState the state of the parser.

Parser the basic parsing routines.

ParseArgs parsing routines for command arguments.

Macro implementation of macros and environments.

Counter implementation of counters.

ALBindings AL-bindings for the various typesetting commands.

— 43 —

ant 0.8 5. Overview over the source code

ALCoding conversion routines to and from AL-types.

ALDim AL-wrapper for dimensions.

ALEnvironment AL-wrapper for the environment of the engine.

ALGraphics AL-wrapper for graphic commands.

ALNodes AL-wrapper for nodes.

ALParseState AL-wrapper for the parse-state.

Primitives implementation of all primitive  commands.

Run is module contains the main entry point for the parser.

5.5. The virtual machine

e virtual machine consists of the following modules:

Types definitions of all types.

Opaque definitions to extend the virtual machine by user defined opaque
types.

Lexer the lexer.

Parser the parser.

Scope datatype for scopes.

Compile the compiler.

Evaluate the core of the machine that evaluates expressions.

Machine a collection of helper functions for evaluation of expressions.

Serialise functions to write AL-values into a file and retrieve them again.

Primitives definitions of all primitive AL-commands.

Ali the main module for a primitive standalone AL-interpreter.

