Programmer’s Guide to the
Java" 2D API

Enhanced Graphics and Imaging for Java

Java™ 2 SDK, Standard Edition, 1.2 Version
May 3, 1999

X Sun

microsystems

A Sun Microsystems, Inc. Business
2550 Garcia Avenue

Mountain View, CA 94043 USA
415960-1300 fax 415 969-9131

0 1998, 1999 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND : Use, duplication, or disclosure by the U.S. Government is
subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-
7015(b)(6/95) and DFAR 227.7202-1(a).

The release described in this document may be protected by one or more U.S. patents, foreign
patents, or pending applications.

Sun, the Sun logo, Sun Microsystems, JDK, Java, and the Java Coffee Cup logo are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS PUBLICATION AT ANY TIME

Contents

JavaTM 2D API OVEeIVIEW. et 1
Enhanced Graphics, Text,and Imaging 1
RenderingModel 2
Coordinate Systems. i 2
Transforms. 4
FoNnts 4
IMAgES . . . 5
Fillsand Strokes 6
COMPOSItES 7
Backward Compatibility and Platform Independence ...8
Backward Compatibility 8
Platform Independence 10
The Java 2D APl Packages 10

Rendering with Graphics2D 15
Interfacesand Classes ..., 15
Rendering Concepts 16
Rendering Process. 17
Controlling Rendering Quality 17
Stroke Attributes 19
Fill Attributes. 21
ClippingPaths 22
Transformations. i 23
Composite Attributes. 25
Setting Up the Graphics2D Context 27
Setting Rendering Hints 27
Specifying Stroke Attributes 27
Specifying Fill Attributes L. 29

Setting the ClippingPath 32

Setting the Graphics2D Transform 33
Specifying a Composition Style. 34
Rendering Graphics Primitives 36
Drawinga Shape i 36
FillingaShape i 37
Rendering Text. i 38
Rendering Images. 38
Defining Custom Composition Rules 38
GEOMELNES . . . oo 39
InterffacesandClasses i, 39
Geometry ConCeptso i 41
Constructive Area Geometry 41
Boundsand HitTesting 42
Combining Areas to Create New Shapes 42
Creatinga CustomShape 43
Fontsand TextLayout 45
InterffacesandClasses i, 45
FontConcepts 47
TextLayout Concepts 48
Shaping Text i 49
Ordering TexXt. e 50
Measuring and Positioning Text 52
Supporting Text Manipulation. 52
Performing Text Layout in a Java Application 57
Managing TextLayout, 58
LayingOut Text. e 59
Displaying Dual Carets 59
Movingthe Caret 60
HitTestingo e 60
Highlighting Selections 61
Querying Layout Metrics. 61

Drawing Text Across Multiple Lines. 62

Vi

Implementing a Custom Text Layout Mechanism 63
Creating Font Derivations 65
IMagiNg 67
Interfacesand Classes 68
Imaging Interfaces. 68
Image DataClassesc ... 68
Image Operation Classes., 69
Sample Model Classes. 70
ColorModel Classes 71
ExceptionClasses 72
Immediate Mode Imaging Concepts 72
Terminology 74
Using Bufferedimages 74
Creating a Bufferedimage 75
Drawing in an OffscreenBuffer 75
Manipulating Bufferedimage Data Directly 78
Filtering a Bufferedimage 79
Rendering a Bufferedlmage. 79
Managing and Manipulating Rasters 79
Creatinga Raster., 80
Parentand ChildRasters 80
OperationsonaRaster. 80
The WritableRaster Subclass. 81
Image Data and DataBuffers 81
Extracting Pixel Data from a SampleModel 81
ColorModelsand ColorData. 82
Lookup Table. 83
Image Processing and Enhancement 83
Using an Image Processing Operation. 85
0] o 89
ClassesS ... 89
Color Concepts . ..o 90

Describing Colors 93

viii

Mapping Colors through sRGB and CIEXYZ............ 94
PriNtiNg. 97
Interfacesand Classes, 98
Printing Concepts i 98
Supporting Printing 99
Page Painters 100
Printable Jobs and Pageable Jobs. 101
Typical Life-Cycle of a PrinterJob. 102
Dialogs . . oo 103
Printing with Printables 104
Using Graphics2D for Rendering. 105
PrintingaFile.......... 106
Printing with Pageables and Books 109
UsingaPageableJob............... 110

Using Multiple Page Painters. 111

Preface

This guide describes the features provided by the Java 2D API and illustrates how
you can use the Java 2D API classes to enhance your applications. For additional
information about the Java 2D APIs, see:

* The Java Tutorial, 2nd Volume. Available online at:
http://java.sun.com/docs/books/tutorial/2d/index.html

* The 2D Text Tutorial. Available online from the Java Developer Connection:
http://developer.java.sun.com/developer/onlineTraining/
Graphics/2DText/

* The Java 2D Sample Programs. Available online at:
http://java.sun.com/products/java-media/2D/samples/index.htm]l

* The Java 2D Demo. Available from the Java 2D website:
http://java.sun.com/products/java-media/2D/index.html

This information in this guide is organized into seven chapters:

Overview —introduces the packages and key classes in the Java 2D API.

Rendering with Graphics2D—describes the Java 2D API classes in the
java.awt package and how to set up thr@phics2D rendering context.

Geometries—describes the Java 2D API classes injtha . awt.geom
package and how to define and manipulate 2D shapes and areas.

Fonts and Text Layout—describes the Java 2D API classes in the
java.awt.font package, how to specify and retrieve font information, and
how to display and manipulate international text using the Java 2D text lay-
out APlIs directly.

Imaging—describes the Java 2D API classes injthe . awt . image,
java.awt.image.codec, andjava.awt.image.renderable packages and
how to display and manipulate images and offscreen buffers.

Color—describes the Java 2D API classes injthe . awt.color package
and color management.

Printing—describes the Java 2D API classes injthe . awt.print pack-
age and the Java 2D API printing model.

Preface, Java 2 SDK, Standard Edition, 1.2 Version

1

JavdM 2D API Overview

The Java™ 2D API enhances the graphics, text, and imaging capabilities of the
Abstract Windowing Toolkit (AWT), enabling the development of richer user
interfaces and new types of Java applications.

Along with these richer graphics, font, and image APlIs, the Java 2D API supports
enhanced color definition and composition, hit detection on arbitrary geometric
shapes and text, and a uniform rendering model for printers and display devices.

The Java 2D API also enables the creation of advanced graphics libraries, such as
CAD-CAM libraries and graphics or imaging special effects libraries, as well as
the creation of image and graphic file read/write filters.

When used in conjunction with the Java Media Framework and other Java Media
APls, the Java 2D APIs can be used to create and display animations and other

multimedia presentations. The Java Animation and Java Media Framework APIs
rely on the Java 2D API for rendering support.

1.1 Enhanced Graphics, Text, and Imaging

Early versions of the AWT provided a simple rendering package suitable for ren-
dering common HTML pages, but not full-featured enough for complex graphics,
text, or imaging. As a simplified rendering package, the early AWT embodied spe-
cific cases of more general rendering concepts. The Java 2D API provides a more
flexible, full-featured rendering package by expanding the AWT to support more
general graphics and rendering operations.

For example, through th@aphics class you can draw rectangles, ovals, and
polygonsGraphics2D enhances the concept of geometric rendering by providing
a mechanism for rendering virtually any geometric shape. Similarly, with the Java
2D API you can draw styled lines of any width and fill geometric shapes with vir-
tually any texture.

JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version

Geometric shapes are provided through implementations eflpe interface,
for exampleRectangle2D andE111ipse2D. Curves and arcs are also specific
implementations ofhape.

Fill and pen styles are provided through implementations dfahec and
Stroke interfaces, for exampkasicStroke, GradientPaint, TexturePaint,
andColor.

AffineTransform definedinear transformations of 2D coordinates, including
scale, translate, rotate, and shear.

Clip regions are defined by the same implementations shtipe interface that
are used to define general clipping regions, for examgte&angle2D andGener-
alPath.

Color composition is provided by implementations oftbeposite interface,
for exampleAalphaComposiite.

A Font is defined by collections @flyphs, which are in turn defined by individ-
ual Shapes.

1.2 Rendering Model

The basic graphics rendering model has not changed with the addition of the Java

2D APIs. To render a graphic, you set up the graphics context and invoke a render-

ing method on théraphics object.

The Java 2D API claggaphics2D extendSiraphics to support more graphics
attributes and provide new rendering methods. Settingdnaghi cs2D context is
described in “Rendering with Graphics2D” on page 15.

The Java 2D API automatically compensates for differences in rendering devices
and provides a uniform rendering model across different types of devices. At the
application level, the rendering process is the same whether the target rendering
device is a display or a printer.

1.2.1 Coordinate Systems

The Java 2D API maintains two coordinate systems:

» User spaces a device-independent, logical coordinate system. Applications
use this coordinate system exclusively; all geometries passed into Java 2D
rendering routines are specified in user space.

Rendering Model 3

» Device spae is a device-dependent coordinate system that varies according
to the target rendering device.

The Java 2D system automatically performs the necessary conversions between
user space and the device space of the target rendering device. Although the coor-
dinate system for a monitor is very different from the coordinate system for a
printer, these differences are invisible to applications.

1.2.1.1 User Space

As shown in Figure 1-1, the user space origin is located in the upper-left corner of
the space, withk values increasing to the right agdralues increasing downward.

(0,0) iy
yV
Figure 1-1 User Space Coordinate System

User space represents a uniform abstraction of all possible device coordinate sys-
tems. The device space for a particular device might have the same origin and
direction as user space, or it might be different. Regardless, user space coordi-
nates are automatically transformed into the appropriate device space when a
graphic object is rendered. Often, the underlying platform device drivers are used
to perform this conversion.

1.2.1.2 Device Space

The Java 2D API defines three levels of configuration information that are main-
tained to support the conversion from user space to device space. This information
is encapsulated by three classes:

* GraphicsEnvironment

* GraphicsDevice

* GraphicsConfiguration

JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version

TheGraphicsEnvironment describes the collection of rendering devices visible

to a Java application on a particular platform. Rendering devices include screens,
printers, and image buffers. TheaphicsEnvironment also includes a list of all

of the available fonts on the platform.

A GraphicsDevice describes an application-visible rendering device, such as a
screen or printer. Each possible configuration of the device is represented by a
GraphicsConfiguration. For example, an SVGA display device can operate in
several modes: 640x480x16 colors, 640x480x256 colors, and 800x600x256 col-
ors. The SVGA screen is represented layaphicsDevice object and each of

the modes is represented bgraphicsConfiguration object.

A GraphicsEnvironment can contain one or motgaphicsDevices; in turn,
eachGraphicsDevice can have one or mot@aphicsConfigurations.

Between them, théraphicsEnvironment, GraphicsDevice, andGraphicsCon-
figuration represent all of the information necessary for locating a rendering
device or font on the Java platform and for converting coordinates from user space
to device space. An application can access this information, but does not need to
perform any transformations between user space and device space.

1.2.2 Transforms

The Java 2D API has a unified coordinate transformation model. All coordinate
transformations, including transformations from user to device space, are
represented byffineTransform objects AffineTransform defines the rules for
manipulating coordinates using matrices.

You can add anffineTransform to the graphics context to rotate, scale, trans-
late, or shear a geometric shape, text, or image when it is rendered. The added
transform is applied to any graphic object rendered in that context. The transform
is performed when user space coordinates are converted to device space coordi-
nates.

1.2.3 Fonts

A string is commonly thought of in terms of the characters that comprise the
string. When a string is drawn, its appearance is determined by the font that is
selected. However, the shapes that the font uses to display the string don't always
correspond to individual characters. For example, in professional publishing,
certain combinations of two or more characters are often replaced by a single
shape called bgature.

Rendering Model 5

The shapes that a font uses to represent the characters in the string are called
glyphs A font might represent a character such as a loweecasete using mul-
tiple glyphs, or represent certain character combinations such astfieal with

a single glyph. In the Java 2D API, a glyph is simplgrape that can be manipu-
lated and rendered in the same way as any Sthage.

A fontcan be thought of as a collection of glyphs. A single font might have many
versions, such as heavy, medium, oblique, gothic, and regular. These different ver-
sions are callethces All of the faces in a font have a similar typographic design
and can be recognized as members of the Jamdy. In other words, a collection

of glyphs with a particular style forms a font face, a collection of font faces forms

a font family, and a collection of font families forms the set of fonts available
within a particulaiGraphicsEnvironment.

In the Java 2D API, fonts are specified by a name that describes a particular font
face—for example, Helvetica Bold. This is different from the JDK 1.1 software,

in which fonts are described by logical names that map onto different font faces
depending on which font faces are available on a particular platform. For back-
ward compatibility, the Java 2D API supports the specification of fonts by logical
name as well as by font face name.

Using the Java 2D API, you can compose and render strings that contain multiple
fonts of different families, faces, sizes, and even languages. The appearance of the
text is kept logically separate from the layout of the t€sht objects are used to
describe the appearance, and the layout information is storestbayout and
TextAttributeSet objects. Keeping the font and layout information separate
makes it easier to use the same fonts in different layout configurations.

1.2.4 Images

Images are collections of pixels organized spatiallgix®| defines the appear-
ance of an image at a single display location. A two-dimensional array of pixels is
called araster.

The pixel's appearance can be defined directly or as an index into a color table for
the image.

In images that contain many colors (more than 256), the pixels usually directly
represent the color, alpha, and other display characteristics for each screen loca-
tion. Such images tend to be much larger than indexed-color images, but they look
more realistic.

In an indexed-color image, the colors in the image are limited to the colors speci-
fied in the color table, often resulting in fewer colors that can be used in the

JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version

image. However, an index typically requires less storage space than a color value,
so images stored as a set of indexed colors are usually smaller. This pixel format
is popular for images that contain only 16 or 256 colors.

Images in the Java 2D API have two primary components:

* The raw image data (the pixels)
» The information necessary for interpreting the pixels

The rules for interpreting the pixel are encapsulated 0ylarMode1 object—for
example, whether the values should be interpreted as direct or indexed colors. For
a pixel to be displayed, it must be paired with a color model.

A bandis one component of the color space for an image. For example, the Red,
Green, and Blue components are the bands in an RGB image. A pixel in a direct
color model image can be thought of as a collection of band values for a single
screen location.

Thejava.awt.image package contains sevetallorModel implementations,
including those for packed and component pixel representations.

A ColorSpace object encapsulates the rules that govern how a set of numeric
measurements corresponds to a particular colorCdhaSpace implementa-
tions in thejava. awt.color represent the most popular color spaces, including
RGB and gray scale. Note that a color spac®is collection of colors—it
defines the rules for how to interpret individual color values.

Separating the color space from the color model provides greater flexibility in
how colors are represented and converted from one color representation to
another.

1.2.5 Fills and Strokes

With the Java 2D API, you can rendgapes using different pen styles and fill
patterns. Because text is ultimately represented by a set of glyphs, text strings can
also be stroked and filled.

Pen styles are defined by objects that implemerdtheke interface. Strokes
enable you to specify different widths and dashing patterns for lines and curves.

Fill patterns are defined by objects that implementrthint interface. Th&olor
class, which was available in earlier versions of the AWT, is a simple type of
Paint object used to define solid-color fills. The Java 2D API provides two addi-
tional Paint implementationsTexturePaint andGradientPaint. Texture-

Rendering Model 7

Paint defines a fill pattern using a simple image fragment that is repeated
uniformly. GradientPaint defines a fill pattern as a gradient between two colors.

In Java 2D, rendering a shape’s outline and filling the shape with a pattern are two
separate operations:

« Using one of theiraw methods renders the shape’s contour or outline using
the pen style specified by tise roke attribute and the fill pattern specified by
thePaint attribute.

» Using thefi11 method fills the interior of the shape with the pattern specified
by thePaint attribute.

When a text string is rendered, the curreatnt attribute is applied to the glyphs

that form the string. Note, however, thitawString actually fills the glyphs that

are rendered. To stroke the outlines of the glyphs in a text string, you need to get
the outlines and render them as shapes usindythemethod.

1.2.6 Composites

When you render an object that overlaps an existing object, you need to determine
how to combine the colors of the new object with the colors that already occupy
the area where you are going to draw. The Java 2D API encapsulates rules for how
to combine colors in @mposite object.

Primitive rendering systems provide only basic Boolean operators for combining
colors. For example, a Boolean compositing rule might allow the source and des-
tination color values to be ANDed, ORed, or XORed. There are several problems
with this approach

* It's not “human friendly"—it’s difficult to think in terms of what the resulting
color will be if red and blue are ANDed, not added.

« Boolean composition does not support the accurate composition of colors in
different color spaces.

« Straight Boolean composition doesn't take into account the color models of
the colors. For example, in an indexed color model, the result of a Boolean
operation on two pixel values in an image is the composite of two indices, not
two colors.

The Java 2D API avoids these pitfalls by implementing alpha-blefdirgs that

take color model information into account when compositing colors.A1Alma-
Composite object includes the color model of both the source and destination col-
ors.

JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version

1.3 Backward Compatibility and Platform Independence

The Java 2D API maintains backward compatibility with JDK 1.1 software. Itis
also architected so that applications can maintain platform-independence.

1.3.1 Backward Compatibility

To ensure backward compatibility, the functionality of existing JDK graphics and
imaging classes and interfaces was maintained. Existing features were not
removed and no package designations were changed for existing classes. The Java
2D API enhances the functionality of the AWT by implementing new methods in
existing classes, extending existing classes, and adding new classes and interfaces
that don't affect the legacy APIs.

For example, much of the Java 2D API functionality is delivered through an
expanded graphics contegtaphics2D. To provide this extended graphics con-
text while maintaining backward compatibilittaphics2D extends th&raph-
ics class from the JDK 1.1 release.

The usage model of the graphics context remains unchanged. The AWT passes a
graphics context to an AWdomponent through the following methods:

* paint

e paintAll

e update

* print

e printAll

* getGraphics

A JDK 1.1 applet interprets the graphics context that’s passed in as an instance of
Graphics. To gain access to the new features implementeehaishics2D, a

Java 2D API-compatible applet casts the graphics contextrigphics2D

object:

public void Paint (Graphics g) {

Graphics2D g2 = (Graphics2D) g;

L For detailed information about alpha blending, see Section 17 Gonfiputer Graphics:
Principles and Practice2nd ed. J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes. Addison-
Wesley, 1990.

Backward Compatibility and Platform Independence 9

g2.setTransform (t);

In some cases, rather than extending a legacy class, the Java 2D API generalizes
it. Two techniques were used to generalize legacy classes:

« One or more parent classes were inserted in the hierarchy, and the legacy class
was updated to extend the new parent classes. This technique is used to add
general implemented methods and instance data to the legacy class.

* One or more interface implementations were added to the legacy class. This
technique is used to add general abstract methods to the legacy class.

For example, the Java 2D API generalizes the RAfftangle class using both
of these techniques. The hierarchy for rectangle now looks like:

java.lang.object
Fomm - java.awt.geom.RectangularShape
fom - java.awt.geom.Rectangle2D

Fomm - java.awt.Rectangle

In the JDK 1.1 softwar@®ectangle simply extende@bject. It now extends the
newRectangle2D class and implements bothape andSerializable. Two par-

ent classes were added to Reetangle hierarchy:RectangularShape and
Rectangle2D. Applets written for JDK 1.1 software are unaware of the new par-
ent classes and interface implementations, but are unaffected beeatise1e

still contains the methods and members that were present in earlier versions.

The Java 2D API adds several new classes and interfaces that are “orthogonal” to

the legacy API. These additions do not extend or generalize existing classes—they

are entirely new and distinct. These new classes and interfaces embody concepts
that had no explicit representation in the legacy API.

For example, the Java 2D API implements several3tege classes, including
Arc2D, CubicCurve2D, andQuadCurve2D. Although early versions of the AWT
could render arcs using tdeawArc andfi11Arc methods, there was no general
curve abstraction and no discrete classes that embodied arcs. These discrete
classes could be added to the Java 2D API without disrupting legacy applets
becauselrawArc andfil1Arc are still supported through tlkeaphics class.

10

JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version

1.3.2 Platform Independence

To enable the development of platform-independent applications, the Java 2D API
makes no assumptions about the resolution, color space, or color model of the tar-
get rendering device. Nor does the Java 2D API assume any patrticular image file
format.

Truly platform-independent fonts are possible only when the fonts are built-in
(provided as part of the JDK software), or when they are mathematically or pro-
grammatically generated. The Java 2D API does not currently support built-in or
mathematically generated fonts, but it does enable the programmatic definition of
entire fonts through their glyph set. Each glyph can in turn be definedshy

that consists of line segments and curves. Many fonts of particular styles and sizes
can be derived from a single glyph set.

1.4 The Java 2D API Packages

The Java 2D API classes are organized into the following packages:

* java.awt

* java.awt.geom

* java.awt.font

* java.awt.color

* java.awt.image

* java.awt.image.renderable

* java.awt.print

Packagegava.awt contains those Java 2D API classes and interfaces that are gen-
eral in nature or that enhance legacy classes. (Obviously, not all of the classes in
java.awt are Java 2D classes.)

AlphaComposite BasicStroke Color
Composite CompositeContext Font
GradientPaint Graphics2D GraphicsConfiguration
GraphicsDevice GraphicsEnvironment Paint
PaintContext Rectangle Shape

Stroke TexturePaint Transparency

The Java 2D API Packages 11

Packagejava.awt.geom contains classes and interfaces related to the definition
of geometric primitives:

AffineTransform Arc2D Arc2D.Double

Arc2D.Float Area CubicCurve2D
CubicCurve2D.Double CubicCurve2D.Float Dimension2D

Ellipse2D Ellipse2D.Double Ellipse2D.Float
FlatteningPathlterator GeneralPath Line2D

Line2D.Double Line2D.Float Pathlterator

Point2D Point2D.Double Point2D.Float

QuadCurve2D QuadCurve2D.Double QuadCurve2D.Float
Rectangle2D Rectangle2D.Double Rectangle2D.Float
RectangularShape RoundRectangle2D RoundRectangle2D.Double

RoundRectangle2D.Float

Many of the geometric primitives have correspondiRtpat and.Double
implementations. This was done to enable both floating single- and double-preci-
sion implementations. Double-precision implementations provide greater render-
ing precision at the expense of performance on some platforms.

Packagejava.awt. font contains classes and interfaces used for text layout and
the definition of fonts:

FontRenderContext GlyphJustificationInfo GlyphMetrics
GlyphVector GraphicAttribute ImageGraphicAttribute
LineBreakMeasurer LineMetrics MultipleMaster
OpenType ShapeGrapicAttribute TextAttribute
TextHitInfo TextLayout TransformAttribute

Packaggava.awt.color contains classes and interfaces for the definition of
color spaces and color profiles:

ColorSpace ICC_ColorSpace ICC_Profile

ICC_ProfileGray ICC_ProfileRGB

JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version

Thejava.awt.image andjava.awt.image.renderable packages contain
classes and interfaces for the definition and rendering of images:

AffineTransformOp BandCombineOp BandedSampleModel
BufferedImage BufferedImageFilter BufferedImageOp
ByteLookupTable ColorConvertOp ColorModel
ComponentColorModel ComponentSampleModel ConvolveOp
ContextualRenderedImageFactory DataBuffer
DataBufferByte DataBufferInt DataBufferShort
DataBufferUShort DirectColorModel IndexColorModel
Kernel LookupOp LookupTable
MultiPixelPackedSampleModel PackedColorModel ParameterBlock
PixelInterleavedSampleModel Raster RasterOp
RenderableImage RenderableImageOp RenderableImageProducer
RenderContext RenderedImageFactory RenderedImage
RescaleOp SampleModel ShortLookupTable
SinglePixelPackedSampTleModel TileObserver
WritableRaster WritableRenderedImage

Packagejava.awt.image was present in earlier versions of the AWT. The Java
2D API enhances the following legacy AWT image classes:

e ColorModel
e DirectColorModel

e IndexColorModel

These color model classes remain inthea. awt . image package for backward
compatibility. To maintain consistency, the new color model classes are also
located in thejava.awt.image package.

Packagejava.awt.print contains classes and interfaces that enable printing of
all Java 2D—based text, graphics, and images.

Book Pageable PageFormat

Paper Printable PrinterGraphics

The Java 2D API Packages

PrinterJob

13

14

JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version

Rendering with GraphiCSéD

Graphics2D extendsjava.awt.Graphics to provide more sophisticated control
over the presentation of shapes, text, and images. The Java 2D rendering process
is controlled through theraphics2D object and its state attributes.

TheGraphics2D state attributes, such as line styles and transformations, are
applied to graphic objects when they are rendered. The collection of state
attributes associated withGaaphics2D is referred to as th@aphics2D context
To render text, shapes, orimages, you set ugthghics2b context and then call
one of theGraphics2b rendering methods, suchésaw or fi11.

2.1 Interfaces and Classes

The following tables list the interfaces and classes used in conjunction with the
Graphics2D context, including the classes that represent state attributes. Most of
these classes are part of ffa@a.awt package.

Interface Description

Composite Defines methods to compose a draw primitive with the underlying graphics area.
Implemented by1phaComposite.

CompositeContext Defines the encapsulated and optimized environment for a composite operation.
Used by programmers implementing custom compositing rules.

Paint ExtendsTransparency
Defines colors for @raw or fi11 operation. Implemented 3o T1or, Gradient-

Paint andTexturePaint.

PaintContext Defines the encapsulated and optimized environment for a paint operation. Used
by programmers implementing custom paint operations.

15

16

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

Interface Description

Stroke Generates shape that encloses the outline of thieape to be rendered. Imple-
mented byBasicStroke.

Class Description

AffineTransform

(java.awt.geom)

AlphaComposite

BasicStroke

Color

GradientPaint

Graphics2D

TexturePaint

Represents a 2D affine transform, which performs a linear mapping from 2D
coordinates to other 2D coordinates.

ImplementsComposite
Implements basic alpha composite rules for shapes, text, and images.

ImplementsStroke
Defines the “pen style” to be applied to the outline shape.

ImplementsPaint
Defines a solid color fill for &hape.

ImplementsPaint
Defines a linear color gradient fill pattern fosteape. This fill pattern
changes from color C1 at point P1 to color C2 at point P2.

ExtendsGraphics
Fundamental class for 2D rendering. Extends the origiaad . awt . Graph-
ics class.

ImplementsPaint
Defines a texture or pattern fill forshape. The texture or pattern is gener-
ated from aBufferedImage.

2.2 Rendering Concepts

To render a graphic object using the Java 2D API, you set urti¢hi cs2D con-
text and pass the graphic object to one ofitedhics2D rendering methods.

You can modify the state attributes that formchephics2D context to:

* Vary the stroke width.

» Change how strokes are joined together.

Set a clipping path to limit the area that is rendered.

Translate, rotate, scale, or shear objects when they are rendered.
Define colors and patterns to fill shapes with.

Specify how multiple graphics objects should be composed.

Rendering Concepts 17

Graphics2D defines several methods for adding and changing attributes in the
graphics context. Most of these methods take an object that represents a particular
attribute, such asraint or Stroke object.

TheGraphics2D context holdseferencego these attribute objects: they are not
cloned. If you alter an attribute object that is part of tir@phics2D context, you
need to call the appropriatet method to notify the context. Modifying an
attribute object during a rendering operation will cause unpredictable and possi-
bly unstable behavior.

2.2.1 Rendering Process

When a graphic object is rendered, the geometry, image, and attribute information
are combined to calculate which pixel values must be changed on the display.

The rendering process foiSaape can be broken down into four steps:

1. If theShape is to be stroked, thétroke attribute in theGraphics2D context
is used to generate a néhape that encompasses the stroked path.

2. The coordinates of thghape’s path are transformed from user space into
device space according to the transform attribute iGthghics2D context.

3. The shape’s path is clipped using the clip attribute in thaphics2D
context.

4. The remainingShape, if any, is filled using thePaint and Composite
attributes in th&raphics2D context.

Rendering text is similar to renderingtaape, since the text is rendered as indi-
vidual glyphs and each glyph ishape. The only difference is that the Java 2D
APl must determine whatont to apply to the text and get the appropriate glyphs
from theFont before rendering.

Images are handled differently, transformations and clipping operations are per-
formed on the image’s bounding box. The color information is taken from the
image itself and its alpha channel is used in conjunction with the cuteeibs -

ite attribute when the image pixels are composited onto the rendering surface.

2.2.2 Controlling Rendering Quality

The Java 2D API lets you indicate whether you want objects to be rendered as
quickly as possible, or whether you prefer that the rendering quality be as high as

18

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

possible. Your preferences are specified as hints througferitieringHints

attribute in theGraphics2D context. Not all platforms support modification of the
rendering mode so specifying rendering hints does not guarantee that they will be
used.

TheRenderingHints class supports the following types of hints:

« Alpha interpolation—can be set to default, quality, or speed.
 Antialiasing—can be set to default, on, or off.

» Color Rendering—can be set to default, quality, or speed.
 Dithering—can be set to default, disable, or enable.

* Fractional Metrics—can be set to default, on, or off.

« Interpolation—can be set to nearest-neighbor, bilinear, or bicubic.
* Rendering—can be set to default, quality, or speed.

« Text antialiasing—can be set to default, on, or off.

To set or change tiRenderingHints attribute in the&raphics2D context, you
call setRenderingHints. When a hint is set to default, the platform rendering
default is used is used.

Rendering Concepts 19

Antialiasing

When graphics primitives are rendered on raster-graphics display devices, their
edges can appear jagged becausdiaging Arcs and diagonal lines take on a
jagged appearance because they are approximated by turning on the pixels that
are closest to the path of the line or curve. This is particularly noticeable on low-
resolution devices, where the jagged edges appear in stark contrast to the
smooth edges of horizontal or vertical lines.

Antialiasingis a technique used to render objects with smoother-appearing
edges. Instead of simply turning on the pixel that is closest to the line or curve,
the intensity of surrounding pixels is set in proportion to the amount of area cov-
ered by the geometry being rendered. This softens the edges and spreads the on-
off transition over multiple pixels. However, antialiasing requires additional
computing resources and can reduce rendering speed.

a d

Aliasing Antialiasing

2.2.3 Stroke Attributes

Stroking aShape such as &eneralPath object is equivalent to running a logical
pen along the segments of GeralPath. TheGraphics2D Stroke attribute
defines the characteristics of the mark drawn by the pen.

A BasicStroke object is used to define the stroke attributes faraahics2D
context.BasicStroke defines characteristics such as the line width, endcap style,
segment join-style, and the dashing pattern. To set or change thiee attribute

in theGraphics2D context, you caletStroke.

| CGEEND |
Chopped Round Squared
(CAP_BUTT) (CAP_ROUND) (CAP_SQUARED)

Figure 2-1 endcap styles supportedBagicStroke

20

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

VAR ANEA

Bevel Round Miter
(JOIN_BEVEL) (JOIN_ROUND) (JOIN_MITER)
Figure 2-2 Join styles supported RysicStroke

For example, the first image in Figure 2-3 uses the miter join-style; the second
image uses a round join-style, a round endcap style, and a dashing pattern.

Figure 2-3 Stroke Styles

TheGraphics2D rendering methods that use #woke attribute arelraw,

drawArc, drawLine, drawOval, drawPolygon, drawPolyline, drawRect, and
drawRoundRect.When one of these methods is called, the outline of the specified
Shape is rendered. Thetroke attribute defines the line characteristics and the
Paint attribute defines the color or pattern of the mark drawn by the pen.

For example, whetraw(myRectangle) is called:
1. TheStroke is applied to the rectangle’s outline.

2. The stroked outline is converted tStape object.

3. ThePaint is applied to the pixels that lie within the contour of the outline
Shape.

This process is illustrated in Figure 2-4:

=
I
I

myRectangle Stroked Rectangle Outline Shape Painted Rectangle
(6h) 2 (©)

Figure 2-4 Stroking a Shape

Rendering Concepts 21

2.2.4 Fill Attributes

The fill attribute in theGraphics2D context is represented byPaint object. You
add aPaint to theGraphics2D context by callingetPaint.

When aShape or glyph is drawn ¢raphics2D.draw, Graphics2D.drawString),
thePaint is applied to all of the pixels that lie inside of teeape that represents
the object’s stroked outline. Wherslsape is filled Graphics2D.fi11), the
Paint is applied to all of the pixels that lie within tRieape’s contour.

Simple solid color fills can be set with thetColor methodColor is the sim-
plest implementation of theaint interface.

To fill Shapes with more complex paint styles such as gradients and textures, you

use the Java 2Baint classesradientPaint andTexturePaint. These classes
eliminate the time-consuming task of creating complex fills using simple solid-
color paints. Figure 2-5 illustrates two fills that could easily be definedrhy -
entPaint andTexturePaint.

- I
fiEEE)
‘EmEERy
AN B N
Figure 2-5 Complex Fill Styles

Whenfi11 is called to render $hape, the system:

1. Determines what pixels comprise 8tape.

2. Gets the color of each pixel from theint object.

3. Converts the color to an appropriate pixel value for the output device.
4

. Writes the pixel to that device.

22

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

Batch Processing

To streamline the processing of pixels, the Java 2D API processes them in
batches. A batch can be either a contiguous set of pixels on a given scanline or a
block of pixels. This batch processing is done in two steps:

1. The Paint object's createContext method is called to create a
PaintContext. ThePaintContext stores the contextual information about
the current rendering operation and the information necessary to generate
the colors. ThereateContext method is passed the bounding boxes of the
graphics object being filled in user space and in device space, the
ColorModel in which the colors should be generated, and the transform
used to map user space into device space.CbherModel is treated as a
hint because not akaint objects can support an arbitrafglorModel.

(For more information abo@lorModels, see “Color” on page 89.")

2. The getColorModel method is called to get th€olorModel of the
generated paint color from ti*@intContext.

The getRaster method is then called repeatedly to getRhecer that con-

tains the actual color data for each batch. This information is passed to the next
stage in the rendering pipeline, which draws the generated color using the cur-
rentComposite object.

2.2.5 Clipping Paths

A clipping path identifies the portion of a&hape or Image that needs to be
rendered. When a clipping path is part of theaphics2D context, only those
parts of aShape or Image that lie within the path are rendered.

To add a clipping path to thii@aphics2D context, you calketClip. Any Shape
can be used to define the clipping path.

To change the clipping path, you can eitherws&11ip to specify a new path or
call c11ip to change the clipping path to the intersection of the old clipping path
and a nevghape.

Rendering Concepts 23

2.2.6 Transformations

The Graphics2D context contains a transform that is used to transform objects
from user space to device space during rendering. To perform additional
transformations, such as rotation or scaling, you can add other transforms to the
Graphics2D context. These additional transforms become part of the pipeline of
transformations applied during rendering.

Graphics2D provides several different ways to modify the transform in the
Graphics2D context. The simplest is to call one of lraphics2D transforma-
tion methodsrotate, scale, shear, ortranslate. You specify the characteris-
tics of the transform that you want to be applied during rendering, and
Graphics2D automatically makes the appropriate changes.

You can also explicithizoncatenatenAffineTransform with the current
Graphics2D transform. AmffineTransform performs a linear transformation
such as translation, scaling, rotation, or shearing on a set of graphics primitives.
When a transform is concatenated with an existing transform, the last transform
specified is théirst to be applied. To concatenate a transform with the current
transform, you pass affineTransform to Graphics2D.transform.

Graphics2D also provides a version ofawImage that takes anaffineTrans-

form as a parameter. This enables you to apply a transformation to an image
object when it is drawn without permanently modifying the transformation pipe-
line. The image is drawn as if you had concatenated the transform with the current
transform in th&raphics2D context.

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

Affine Transforms

The Java 2D API provides one transform clags;ineTransform. Affine-
Transforms are used to transform text, shapes, and images when they are ren-
dered. You can also apply transformgsat objects to create new font
derivations, as discussed in “Creating Font Derivations” on page 65.

An affine transformation performs a linear transformation on a set of graphics
primitives. It always transforms straight lines into straight lines and parallel
lines into parallel lines; however, the distance between points and the angles
between nonparallel lines might be altered.

Affine transformations are based on two-dimensional matrices of the following
form:

{Z z % where x' = ax+ cy+ % andy = bx+dy+ty
t,

Transforms can be combined, effectively creating a seripipeline of trans-
formations that can be applied to an object. This combination is referred to as
concatenationWhen a transform is concatenated with an existing transform,
such as witt\ffineTransform.concatenate, the last transform specified is
thefirst to be applied. A transform can alsogye-concatenatedith an exist-

ing transform. In this case, the last transform specified isheo be applied.

Pre-concatenation is used to perform transformations relative to device space
instead of user space. For example, you could\fismeTransform.preCon-
catenate to perform a translation relative to absolute pixel space.

2.2.6.1 Constructing an AffineTransform

AffineTransform provides a set of convenience methods for construetifgn-
eTransform objects:

* getTranslatelnstance

* getRotateInstance

* getScalelnstance

getShearInstance

Rendering Concepts 25

To use these methods, you specify the characteristics of the transform you want to
create andffineTransform generates the appropriate transform matrix. You can
also construct anffineTransform by directly specifying the elements of the
transformation matrix.

2.2.7 Composite Attributes

When two graphic objects overlap, it is necessary to determine what colors to ren-
der the overlapping pixels. For example, if a red rectangle and a blue rectangle
overlap, the pixels that they share could be rendered red, blue, or some combina-
tion of the two. The color of the pixels in the overlapping area will determine
which rectangle appears to be on top and how transparent it looks. The process of
determining what color to render pixels shared by overlapping objects is called
compositing

Two interfaces form the basis of the Java 2D compositing madepos1ite and
CompositeContext.

To specify the compositing style that should be used, you agitbaaCompos-

ite object to th&raphics2D context by callingsetComposite. AlphaCompos-

ite, an implementation of theomposi te interface, supports a number of
different compositing styles. Instances of this class embody a compositing rule
that describes how to blend a new color with an existing one.

One of the most commonly used compositing rules inAhghaComposite class
is SRC_OVER, which indicates that the new color (the source color) should be
blended over the existing color (the destination color).

AlphaComposite

Composition Rule Description Example
CLEAR Clear

DEST_IN Destination In

DEST_OUT Destination Out

DEST_OVER Destination Over

SRC Source

SRC_IN Source In

SRC_OUT Source Out

SRC_OVER Source Over

26

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

2.2.7.1 Managing Transparency

A color'salphavalue is a measure of its transparency: it indicates, as a percent-
age, how much of a previously rendered color should show through when colors
overlap. Opaque coloralpha=1.0) don't allow any of the underlying color to
show through, while transparent colo#3gha=0.0) let all of it show through.

When text andhapes are rendered, the alpha value is derived fronpghat
attribute in theGraphics2D context. Whershapes and text are antialiased, the
alpha value from theaint in theGraphics2D context is combined with pixel
coverage information from the rasterized path. Images maintain their own alpha
information—see “Transparency and Images” on page 26 for more information.

When you construct axilphaComposite object, you can specify an additional

alpha value. When you add thisphaComposite object to th&raphics2D con-

text, this extra alpha value increases the transparency of any graphic objects that
are rendered—the alpha value of each graphic object is multiplied hyhe-
Composite’s alpha value.

2.2.7.2 Transparency and Images

Images can carry transparency information for each pixel in the image. This infor-
mation, called amlpha channelis used in conjunction with theomposi te object
in theGraphics2D context to blend the image with existing drawings.

For example, Figure 2-6 contains three images with different transparency infor-
mation. In each case, the image is displayed over a blue rectangle. This example
assumes that th@aphics2D context contains aailphaComposite object that
USesSRC_OVER as the compositing operation.

Figure 2-6 Transparency and Images

Setting Up the Graphics2D Context 27

In the first image, all of the pixels are either fully opaque (the dog’s body) or fully
transparent (the background). This effect is often used on Web pages. In the sec-
ond image, all of the pixels in the dog’s body are rendered using a uniform, non-
opague alpha value, allowing the blue background to show through. In the third
image, the pixels around the dogs face are fully opaque (alpha=1.0), but as the
distance from its face increases, the alpha values for the pixels decrease.

2.3 Setting Up the Graphics2D Context

To configure theGraphics2D context for rendering, you use tlt@aphics2D set
methods to specify attributes such as thenderingHints, Stroke, Paint,
clipping pathComposite, andTransform.

2.3.1 Setting Rendering Hints

A RenderingHints object encapsulates all of your preferences concerning how
an object is rendered. To set the rendering hints idrtighics2D context, you
create ®enderingHints object and pass it infiraphics2D.setRendering-

Hints.

Setting a rendering hint does not guarantee that a particular rendering algorithm
will be used: not all platforms support modification of the rendering mode.

In the following example, antialiasing is enabled and the rendering preference is
set to quality:

qualityHints = new
RenderingHints (RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
qualityHints.put(RenderingHints.KEY_RENDERING,
RenderingHints.VALUE_RENDER_QUALITY);
g2.setRenderingHints(qualityHints);

2.3.2 Specifying Stroke Attributes

A BasicStroke defines the characteristics applied tehape’s outline, including
its width and dashing pattern, how line segments are joined together, and the
decoration (if any) applied to the end of a line. To set the stroke attributes in the

28

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

Graphics2D context, you create @BasicStroke object and pass it into
setStroke.

2.3.2.1 Setting the Stroke Width
To set the stroke width, you createBasicStroke object with the desired width
and callsetStroke.

In the following example, the stroke width is set to twelve points and the defaults
are used for the join and endcap decorations:

wideStroke = new BasicStroke(12.0f);
g2.setStroke(wideStroke);

2.3.2.2 Specifying Join and Endcap Styles
To set the join and endcap styles, you creatBRasicStroke object with the
desired attributes.

In the following example, the stroke width is set to twelve points and the round
join and endcap styles are used instead of the defaults:

roundStroke = new BasicStroke(4.0f, BasicStroke.CAP_ROUND,
BasicStroke.JOIN_ROUND);
g2.setStroke(roundStroke);

2.3.2.3 Setting the Dashing Pattern

Complex dashing patterns can easily be defined witbasicStroke object.
When you create &asicStroke object, you can specify two parameters that
control the dashing pattern:

e dash—an array that represents the dashing pattern. Alternating elements in
the array represent the dash size and the size of the space between dashes.
Element O represents the first dash, element 1 represents the first space.

» dash_phase—an offset that defines where the dashing pattern starts.

Setting Up the Graphics2D Context 29

In the following example, two different dashing patterns are applied to a line. In
the first, the size of the dashes and the space between them is constant. The sec-
ond dashing pattern is more complex, using a six-element array to define the
dashing pattern.

float dashl[] = {10.0f};

BasicStroke bs = new BasicStroke(5.0f, BasicStroke.CAP_BUTT,
BasicStroke.JOIN_MITER, 10.0f, dashl, 0.0f);

g2.setStroke(bs);

Line2D Tine = new Line2D.Float(20.0f, 10.0f, 100.0f, 10.0f);

g2.draw(1line);

float[] dash2 = {6.0f, 4.0f, 2.0f, 4.0f, 2.0f, 4.0f};

bs = new BasicStroke(5.0f, BasicStroke.CAP_BUTT,
BasicStroke.JOIN_MITER, 10.0f, dash2, 0.0f);

g2.setStroke(bs);

g2.draw(1line);

Both dashing patterns use a dash phase of zero, causing the dashes to be drawn
starting at the beginning of the dashing pattern. The two dashing patterns are
shown in Figure Figure 2-7.

Figure 2-7 Dashing Patterns

2.3.3 Specifying Fill Attributes

ThePaint attribute in theGraphics2D context determines the fill color or pattern
that is used when text astdapes are rendered.

2.3.3.1 Filling a Shape with a Gradient

TheGradientPaint class provides an easy way to fill a shape with a gradient of
one color to another. When you createradientPaint, you specify a beginning
position and color, and an ending position and color. The fill color changes
proportionally from one color to the other along the line connecting the two
positions, as shown in Figure 2-8.

30 Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

P1 P2

Figure 2-8 Creating Gradient Fills

In the third star in Figure 2-8, both points lie within the shape. All of the points
along the gradient line extending beyond P1 take the beginning color, and the
points along the gradient line extending beyond P2 take the ending color.

To fill a shape with a gradient of one color to another:
1. Create @&radientPaint object.
2. CallGraphics2D.setPaint.
3. Create th&hape.
4. CallGraphics2D.fi11(shape).

In the following example, a rectangle is filled with a blue-green gradient.

GradientPaint gp = new GradientPaint(50.0f, 50.0f, Color.blue
50.0f, 250.0f, Color.green);

g2.setPaint(gp);

g2.fil11Rect (50, 50, 200, 200);

2.3.3.2 Filling a Shape with a Texture

The TexturePaint class provides an easy way to fill a shape with a repeating
pattern. When you createTaxturePaint, you specify aBufferedImage to use

as the pattern. You also pass the constructor a rectangle to define the repetition
frequency of the pattern, as shown in Figure 2-9.

Setting Up the Graphics2D Context 31

xexeiexaxexexexs exex

[] n
Pattern Image Rectangle Defining Large Rectangle Filled with
Repetition Frequency Resulting TexturePaint
Figure 2-9 Creating Texture Paints

To fill a shape with a texture:

1. Create gexturePaint object.
2. CallGraphics2D.setPaint.

3. Create th&hape.
4

. CallGraphics2D.fi11(shape).

In the following example, a rectangle is filled with a simple texture created from a
buffered image.

// Create a buffered image texture patch of size 5x5

BufferedImage bi = new BufferedImage(5, 5,
BufferedImage.TYPE_INT_RGB);

Graphics2D big = bi.createGraphics();

// Render into the BufferedImage graphics to create the texture

big.setColor(Color.green);

big.fi11Rect(0,0,5,5);

big.setColor(Color.1lightGray);

big.fil110val(0,0,5,5);

// Create a texture paint from the buffered image
Rectangle r = new Rectangle(0,0,5,5);
TexturePaint tp = new
TexturePaint(bi,r,TexturePaint.NEAREST_NEIGHBOR) ;

// Add the texture paint to the graphics context.
g2.setPaint(tp);

// Create and render a rectangle filled with the texture.

32

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

g2.fi1TRect(0,0,200,200) ;
}

2.3.4 Setting the Clipping Path

To define a clipping path:

1. Create a&hape that represents the area you want to render.

2. Call Graphics2D.setClip to use the shape as the clipping path for the
Graphics2D context.

To shrink the clipping path:

1. Create &hape that intersects the current clipping path.

2. Call c1ip to change the clipping path to the intersection of the current
clipping path and the neshape.

In the following example, a clipping path is created from an ellipse and then mod-
ified by callingcl1ip.

public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D) g;

// The width and height of the canvas
int w = getSize().width;
int h = getSize().height;
// Create an ellipse and use it as the clipping path
E11lipse2D e = new Ellipse2D.Float(w/4.0f,h/4.0f,
w/2.0f,h/2.0f);
g2.setClip(e);

// Fill the canvas. Only the area within the clip is rendered
g2.setColor(Color.cyan);
g2.fil11Rect(0,0,w,h);

// Change the clipping path, setting it to the intersection of
// the current clip and a new rectangle.

Rectangle r = new Rectangle(w/4+10,h/4+10,w/2-20,h/2-20);
g2.clip(r);

Setting Up the Graphics2D Context 33

// Fill the canvas. Only the area within the new clip
// is rendered

g2.setColor(Color.magenta);

g2.fil11Rect(0,0,w,h);

2.3.5 Setting the Graphics2D Transform

To transform ahape, text string, orimage you add a newAffineTransform to
the transformation pipeline in theraphics2D context before rendering. The
transformation is applied when the graphic object is rendered.

For example, to draw a rectangle that is rotated 45 degrees:

1. Getarotationtransform by callimgfineTransform. getRotateInstance.

2. Call Graphics2D.setTransform to add the new transform to the
transformation pipeline.

3. Create ®ectangle2D.Float object.

4. Call Graphics2D.draw to render the rectangle.

In the following example, an instanceAdffineTransform is used to rotate a
rectangle 45 degrees when it is rendered.

Rectangle2D rect = new Rectangle2D.Float(1.0,1.0,2.0,3.0);

AffineTransform rotate45 =
AffineTransform.getRotateInstance(Math.P1/4.0,0.0,0.0)

g2.setTransform(rotate45);

g2.draw(rect);

In this example, aaffineTransform is used to rotate a text string around a cen-
ter point:

// Define the rendering transform

AffineTransform at = new AffineTransform();

// Apply a translation transform to make room for the
// rotated text.

at.setToTranslation(400.0, 400.0);

g2.transform(at);

34

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

// Create a rotation transform to rotate the text
at.setToRotation(Math.PI / 2.0);
// Render four copies of the string “Java” at 90 degree angles
for (int i = 0; i < 4; i++) {

g2.drawString(“Java”, 0.0f, 0.0f);

g2.transform(at);

You can transform an image in the same way—the transform Grapeics2D
context is applied during rendering regardless of the type of graphic object being
rendered.

To apply a transform to an imagéthoutchanging the transform in the
Graphics2D context, you can pass afifineTransform to drawImage:

AffineTransform rotate45 =
AffineTransform.getRotateInstance(Math.PI1/4.0,0.0,0.0)
g2.drawImage(myImage, rotate45);

Transforms can also be applied tboat to create a modified version of the
Font, for more information see “Creating Font Derivations” on page 65.

2.3.6 Specifying a Composition Style

An AlphaComposite encapsulates composition rules that determine how colors
should be rendered when one object overlaps another. To specify the composition
style for theGraphics2D context, you create akllphaComposite and pass it into
setComposite. The most commonly used is composition styl&RiS OVER.

2.3.6.1 Using the Source Over Compositing Rule

The SRC_OVER compositing rule composites the source pixel over the destination
pixel such that the shared pixel takes the color of the source pixel. For example, if
you render a blue rectangle and then render a red rectangle that partially overlaps
it, the overlapping area will be red. In other words, the object that is rendered last
will appear to be on top.

To use theSRC_OVER composition rule:

1. Create an1phaComposite object by callinggetInstance and specifying the

Setting Up the Graphics2D Context 35

SRC_OVER rule.

AlphaComposite ac =
AlphaComposite.getInstance(AlphaComposite.SRC_OVER);

2. Call setComposite to add theAlphaComposite object to theGraphics2D
context.

g2.setComposite(ac);

Once the composite object is set, overlapping objects will be rendered using the
specified composition rule.

2.3.6.2 Increasing the Transparency of Composited Objects

AlphaComposite allows you to specify an additional constant alpha value that is
multiplied with the alpha of the source pixels to increase transparency.

For example, to create atiphaComposite object that renders the source object
50% transparent, specify an alpha of .5:

AlphaComposite ac =
AlphaComposite.getInstance(AlphaComposite.SRC_OVER, .5f);

In the following example, a source over alpha composite object is created with an
alpha of .5 and added to the graphics context, causing subsequent shapes to be
rendered 50% transparent.

public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D) g;

g2.setColor(Color.red);

g2.translate(100,50);

// radians=degree * pie / 180

g2.rotate((45*java.lang.Math.PI)/180);

g2.fi11Rect(0,0,100,100);

g2.setTransform(new AffineTransform()); // set to identity

// Create a new alpha composite

AlphaComposite ac =
AlphaComposite.getInstance(AlphaComposite.SRC_OVER,Q.5f);

g2.setComposite(ac);

g2.setColor(Color.green);

g2.fi11Rect(50,0,100,100);

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

g2.setColor(Color.blue);
g2.fi11Rect(125,75,100,100);
g2.setColor(Color.yellow);
g2.fi11Rect(50,125,100,100);
g2.setColor(Color.pink);
g2.fi11Rect(-25,75,100,100);

2.4 Rendering Graphics Primitives

Graphics2D provides rendering methods fhapes, Text, andImages:
e draw—strokes @&hape’s path using thétroke andPaint objects in the
Graphics2D context.
e fi11—fills a Shape using thePaint in theGraphics2D context.

* drawString—renders the specified text string using phént in the
Graphics2D context.

» drawImage—renders the specified image.
To stroke and fill a shape, you must call bothdiev andfi11 methods.

Graphics2D also supports the draw and fill methods from previous versions of the
JDK software, such ag-awOval andfil1Rect.

2.4.1 Drawing a Shape

The outline of anyShape can be rendered with th@raphics2D.draw method.

The draw methods from previous versions of the JDK software are also
supported: drawLine, drawRect, drawRoundRect, drawOval, drawArc,
drawPolyline, drawPolygon, draw3DRect.

When aShape is drawn, its path is stroked with tBeroke object in the
Graphics2D context. (See “Stroke Attributes” on page 19 for more information.)
By setting an appropriaasicStroke object in the&raphics2D context, you

can draw lines of any width or pattern. TH#&1icStroke object also defines the
line's endcap and join attributes.

To render shape’s outline:

1. Create ®asicStroke object

Rendering Graphics Primitives 37

2. CallGraphics2D.setStroke
3. Create theshape.
4. CallGraphics2D.draw(shape).

In the following example, @eneralPath object is used to define a star and a
BasicStroke object is added to theraphics2D context to define the star’s line
with and join attributes.

public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D) g;

// create and set the stroke
g2.setStroke(new BasicStroke(4.0f));

// Create a star using a general path object
GeneralPath p = new GeneralPath(GeneralPath.NON_ZERO);
p.moveTo(- 100.0f, - 25.0f);

p.lineTo(+ 100.0f, - 25.0f);

p.lineTo(- 50.0f, + 100.0f);

p.lineTo(+ 0.0f, - 100.07);

p.lineTo(+ 50.0f, + 100.0f);

p.closePath();

// translate origin towards center of canvas
g2.translate(100.0f, 100.0f);

// render the star's path
g2.draw(p);

2.4.2 Filling a Shape

The Graphics2D.fi11 method can be usedfith anyShape. When aShape is
filled, the area within its path is rendered with ¢lhephics2D context’s current
Paint attribute—aColor, TexturePaint, OrGradientPaint.

The fill methods from previous versions of the JDK software are also supported:
fil11Rect, fil13DRect, fillRoundRect, fi110val, fillArc, fil1Polygon,
clearRect.

To fill a Shape:

38

Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version

1. Set the fill color or pattern on the graphics context using
Graphics2D.setColor Or Graphics2D.setPaint.

1. Create th&hape.
2. CallGraphics2D.fi11 to render theshape.

In the following examplesetColor is called to define a green fill for a
Rectangle2D.

public void paint(Graphics g) {
Graphics2D g2 = (Graphics2D) g;

g2.setPaint(Color.green);
Rectangle2D r2 = new Rectangle2D.Float(25,25,150,150);

g2.fi11(r2);

2.4.3 Rendering Text

To render a text string, you callraphics2D.drawString, passing in the string
that you want to render. For more information about rendering text and selecting
fonts, see “Fonts and Text Layout” on page 45.

2.4.4 Rendering Images

To render arimage, you create th&mage and call Graphics2D.drawImage. For
more information about processing and rendering images, see “Imaging” on
page 67.

2.5 Defining Custom Composition Rules

You can create an entirely new type of compositing operation by implementing
theComposite andCompositeContext interfaces. AComposite object provides a
CompositeContext object that actually holds the state and performs the compos-
iting work. Multiple CompositeContext objects can be created from of@@npos-

ite object to maintain the separate states in a multithreaded environment.

3

Geometries

The Java 2D API provides several classes that define common geometric objects,
such as points, lines, curves, and rectangles. These new geometry classes are part
of the java.awt.geom package. For backward compatibility, the geometry
classes that existed in previous versions of the JDK software, sudtasngle,

Point, andPolygon, remain in thejava.awt package.

The Java 2D API| geometries such @sheralPath, Arc2D, and Rectangle2D
implement theShape interface defined injava.awt. Shape providesa common
protocol for describing and inspecting geometric path objects. A new interface,
PathIterator, defines methods for retrieving elements from a geometry.

Using the geometry classes, you can easily define and manipulate virtually any
two-dimensional object.

3.1 Interfaces and Classes

The following tables list the key geometry interfaces and classes. Most of these
interfaces and classes are part of jaea.awt.geom package. Some, likehape,

are part of thejava.awt package, primarily to maintain backward compatibility
with earlier versions of the JDK software.

Interface Description

PathIterator Defines methods for retrieving elements from a path.

%hape) Provides a common set of methods for describing and inspecting geometric path
java.awt

objects. Implemented generalPath and other geometry classes.

39

40

Class

Geometries, Java 2 SDK, Standard Edition, 1.2 Version

Description

Arc2D
Arc2D.Double
Arc2D.Float

Area

CubicCurve2D
CubicCurve2D.Double
CubicCurve2D.Float

Dimension2D

E1lipse2D
ET1Tipse2D.Double
E1lipse2D.Float

FlatteningPathIterator

GeneralPath

Line2D
Line2D.Double
Line2D.Float

Point2D
Point2D.Double
Point2D.Float

QuadCurve2D
QuadCurve2D.Double
QuadCurve2D.Float

Rectangle2D
Rectangle2D.Double
Rectangle2D.Float

ExtendsRectangularShape

Represents an arc defined by a bounding rectangle, start angle, angular ex-
tent, and a closure type. Implemented to specify arcs in float and double
precision:Arc2D.Float andArc2D.Double.

ImplementsShape, Cloneable
Represents an area geometry that supports boolean operations.

ImplementsShape

Represents a cubic parametric curve segment in (w) coordinate space. Im-
plemented to specify cubic curves in float and double precision:
CubicCurve2D.Float andCubicCurve2D.Double.

Encapsulates a width and height dimension. Abstract superclass for all ob-
jects that store a 2D dimension.

ExtendsRectangularShape

Represents an ellipse defined by a bounding rectangle. Implemented to
specify ellipses in float and double precisiéhlipse2D.Float and
ET11ipse2D.DoubTe.

Returns a flattened view ofPathIterator object.
Can be used to provide flattening behavior$bapes that don’t perform
the interpolation calculations themselves.

ImplementsShape
Represents a geometric path constructed from lines and quadratic and cu-
bic curves.

ImplementsShape

Represents a line segment in (x, y) coordinate space. Implemented to
specify lines in float and double precisiarine2D.Float and
Line2D.Double.

A point representing a location in (x,y) coordinate space. Implemented to
specify points in float and double precisi@nint2D.Float and
Point2D.Double.

ImplementsShape

Represents a quadratic parametric curve segment in (x, y) coordinate
space. Implemented to specify quadratic curves in float and double preci-
sion:QuadCurve2D.Float andQuadCurve2D.Double.

ExtendsRectangularShape

Represents a rectangle defined by a location (x, y) and dimension (w x h).
Implemented to specify rectangles in float and double precision:
Rectangle2D.Float andRectangle2D.Double.

Geometry Concepts 41

Class Description

RectangularShape ImplementsShape
Provides common manipulation routines for operating on shapes that
have rectangular bounds.

RoundRectangle2D ExtendsRectangularShape

RoundRectangle2D.Double panresents a rectangle with rounded corners defined by a location (x,),

RoundRectangle2D.Float X . . .
a dimension (w x h), and the width and height of the corner arc. Imple-
mented to specify round rectangles in float and double precision:
RoundRectangle2D.Float andRoundRectangle2D.Double.

3.2 Geometry Concepts

A Shape is an instance of any class that implements the Shape interface, such as
GeneralPath or Rectangle2D.Float. A Shape’s contour (outline) is referred to
as its path.

When a Shape is drawn, the pen style defined by the Stroke object in the
Graphics2D context is applied to the Shape’s path. When a Shape is filled, the
Paint in the Graphics2D context is applied to the area within its path. For more
information, see “Rendering with Graphics2D” on page 15.

A Shape’s path can be also used to defirdipping path A clipping path deter-
mines what pixels are rendered—only those pixels that lie within the area defined
by the clipping path are rendered. The clipping path is part @frttpghi cs2D

context. For more information, see “Setting the Clipping Path” on page 32.

A GeneralPath is a shape that can be used to represent any two-dimensional
object that can be constructiedm lines and quadratic or cubic curves. For con-
venience, java.awt.geom provides additional implementations of the Shape
interface that represent common geometric objects such as rectangles, ellipses,

arcs, and curves. The Java2D API also provides a special type of shape that sup-
ports constructive area geometry.

3.2.1 Constructive Area Geometry

Constructive Area Geometry (CAG) is the process of creating new geometric
objects by performing boolean operations on existing objects. In the Java 2D API,
a special type ofhape called anArea supports boolean operations. You can
construct arArea from anyShape.

Areas support the following Boolean operations:

* Union

42

Geometries, Java 2 SDK, Standard Edition, 1.2 Version

* |ntersection
» Subtraction
» Exclusive OR (XOR)

These operations are illustrated in Figure 3-1.

@0 CO

Overlapping Union Intersection Subtraction Exclusive OR
Circles
Figure 3-1 Boolean Operations

3.2.2 Bounds and Hit Testing

A bounding boxs a rectangle that fully encloses a shape’s geometry. Bounding
boxes are used to determine whether or not an object has been selected or “hit” by
the user.

The Shape interface defines two methods for retrieving a shape’s bounding box,
getBounds andgetBounds2D. ThegetBounds2D method returns Rectangle2D
instead of ®ectangle, providing a higher-precision description of the shape’s
bounding box.

Shape also provides methods for determining whether or not:

A specified point lies within the bounds of the shaqam€ains)
A specified rectangle lies totally within the bounds of the shagrec§ins)
» A specified rectangle intersects the shapedrsects)

3.3 Combining Areas to Create New Shapes

Areas can be used to quickly construct compkhapes from simple shapes such
as circles and squares. To create a new consptee by combiningareas:

1. UsingShapes, construct thareas to be combined.

Creating a Custom Shape 43

2. Call the appropriate Boolean operatorsdd, subtract, intersect,
exclusiveOr.

For example, CAG could be used to create a pear like that sho®tyire 3-2.

.

Figure 3-2 Pear constructed from circles

The body of the pear is constructed by performing a union operation on two over-
lappingAreas: a circle and an oval. The leaves are each created by performing an

intersection on two overlapping circles and then joined into a sthgfe

through a union operation. Overlapping circles are also used to construct the stem
through two subtraction operations.

3.4 Creating a Custom Shape

You can implement thehape interface to create a class that defines a new type of
shape. It doesn’t matter how you represent the shape internally, as long as you can
implement thesShape interface methods. Thghape must be able to generate a

path that specifies its contour.

For example, you could create a simple implementaticGhafe that represents
polygons as arrays of points. Once the polygon is built, it could be passedo
setClip, or any other method that expectshape object as an argument.

ThePolygonPath class must implement tis@ape interface methods:

e contains

« getBounds

« getBounds2D

o getPathIterator
e intersects

44

Geometries, Java 2 SDK, Standard Edition, 1.2 Version

A4

Fonts and Text Layout

You can use the Java 2D API transformation and drawing mechanisms with text
strings. In addition, the Java 2D API provides text-related classes that support
fine-grain font control and sophisticated text layout. These include an enhanced
Font class and the neVextLayout class.

This chapter focuses on the new font and text layout capabilities supported
through interfaces and classesjiva. awt, andjava.awt. font. For more
information about using these features, see the 2D Text Tutorial that's avail-
able through the Java Developer Connection at http://devel-
oper.java.sun.com/developer/onlineTraining/Graphics/2DText/.

For information about text analysis and internationalization, refer to the
java.text documentation and the “Writing Global Programs” track in the Java
Tutorial. For information about using the text layout mechanisms implemented in
Swing, see thgava.awt.swing.text documentation and “Using the JFC/Swing
Packages” in the Java Tutorial.

Note: The information on international text layout contained in this chapter is
based on the pap#rternational Text in JDK 1.By Mark Davis, Doug Felt, and
John Raley, copyright 1997, Taligent, Inc.

4.1 Interfaces and Classes

The following tables list the key font and text layout interfaces and classes. Most
of these interfaces and classes are part of ffva.awt . font package. Some, like
Font, are part of thgjava.awt package to maintain backward compatibility with
earlier versions of the JDK.

45

46

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

Interface Description
MultipleMaster Represents Type 1 Multiple Master fonts. Implementegdmt objects that are
multiple master fonts to enable access to multiple master design controls.
OpenType Represents Open Type and True Type fonts. Implement€&drxyobjects that
are Open Type or True Type fonts to enable access to the §ént'sables.
Class Description
Font Represents an instance of a font face from the collection of font faces avail-
(Java.awt) able on the host system. Supports the specification of detailed font informa-
tion and provides access to information about the font and its glyphs.
FontRenderContext Encapsulates the information necessary to correctly measure text.

GlyphJustificationInfo

GlyphMetrics
GlyphVector

GraphicAttribute

ImageGraphicAttribute

LineBreakMeasurer

LineMetrics

ShapeGraphicAttribute

TextAttribute

TextHitInfo

Represents information about the justification properties of a glyph, such
as weight, priority, absorb, and limit.

Provides metrics for a single glyph.

A collection of glyphs and their positions.

Base class for @extLayout attribute that specifies a graphic to be embed-
ded within text. Implemented tBhapeGraphicAttribute andImage-
GraphicAttribute, which enableshapes andImages to be embedded in
aTextLayout. Can be subclassed to implement custom character replace-

ment graphics.

ExtendsGraphicAttribute
A GraphicsAttribute used to dravImages within aTextLayout.

Breaks a block of text that spans multiple lines into
TextLayout objects that fit within a specified line length.

Provides access to the font metrics needed to lay out characters along a line
and to lay out a set of lines. These metrics include ascent, descent, leading,
height, and baseline information.

ExtendsGraphicAttribute
A GraphicsAttribute used to dravBhapes within aTextLayout.

Defines attribute keys and values used for text rendering.

Represents hit test information for charactersimxaLayout.

Font Concepts 47

Class Description

TextlLayout ImplementsCloneable
Provides an immutable graphical representation of styled character data, in-
cluding bidirectional text.

4.2 Font Concepts

The Font class has been enhanced to support the specification of detailed font
information and enable the use of sophisticated typographic features.

A Font object represents an instance of a font face from the collection of font
faces available on the system. Examples of common font faces inellgse: -
ica Bold andCourier Bold Italic.

Three names are associated wittoat—its logical name, family name, and font
face name:

« A Font object’slogical namds a name mapped onto one of the specific fonts
available on the platform. The logical font name is the name used to specify
aFont in JDK 1.1 and earlier releases. When specifyiAgna in Java 2
SDK, you should use thient face naménstead of the logical name.You can
get the logical name from tlrent by callinggetName. To get a list of the
logical names that are mapped onto the specific fonts available on a platform,
call java.awt.Toolkit.getFontList.

* A Font object’sfamily namds the name of the font family that determines
the typographic design across several faces, such as Helvetica. You retrieve
the family name through thgetFamily method.

» A Font objects’font face nameefers to an actual font installed on the system.
This is the name you should use when specifying a font in Java 2 SDK. It's
often referred to as just tfient name You can retrieve the font name by
calling getFontName. To determine which font faces are available on the
system, you can callraphicsEnvironment.getAlTFonts.

You can access information aboufant through thegetAttributes method. A
Font’s attributes include its name, size, transform, and font features such as
weight and posture.

A LineMetrics object encapsulates the measurement information associated with
aFont, such as its ascent, descent, and leading:

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

» Ascentis the distance from the baseline to the ascender line. This distance
represents the typical height of capital letters, but some characters might
extend above the ascender line.

» Descenis the distance from the baseline to the descender line. The lowest
point of most characters will fall within the descent, but some characters
might extend below the descender line.

 Leadingis the recommended distance from the bottom of the descender line
to the top of the next line.

---------------------- —— ascender line

baseline —
__________________________ —— descender line

Figure 4-1 Line Metrics

This information is used to properly position characters along a line, and to posi-
tion lines relative to one another. You can access these line metrics through the
getAscent, getDescent, andgetLeading methods. You can also access informa-
tion about &ont’s height, baseline, and underline and strikethrough characteris-
tics throughLineMetrics.

4.3 Text Layout Concepts

Before a piece of text can be displayed, it must be properly shaped and positioned
using the appropriate glyphs and ligatures. This process is referretext lay-
out The text layout process involves:

» Shaping text using the appropriate glyphs and ligatures.

* Properly ordering the text.

» Measuring and positioning the text.

The information used to lay out text is also necessary for performing text opera-
tions such as caret positioning, hit detection, and highlighting.

Text Layout Concepts 49

To develop software that can be deployed in international markets, text must be
laid out in different languages in a way that conforms to the rules of the appropri-
ate writing system.

4.3.1 Shaping Text

A glyphis the visual representation of one or more characters. The shape, size,
and position of a glyph is dependent on its context. Many different glyphs can be
used to represent a single character or combination of characters, depending on
the font and style.

For example, in handwritten cursive text, a particular character can take on differ-
ent shapes depending on how it is connected to adjacent characters.

In some writing systems, particularly Arabic, the context of a glyph must always
be taken into account. Unlike in English, cursive forms are mandatory in Arabic;
it is unacceptable to present text without using cursive forms.

Depending on the context, these cursive forms can differ radically in shape. For
example, the Arabic lettérehhas the four cursive forms shown in Figure 4-2.

5 < < &

U ted Connect Connect on Connect
nconnecte on Right Both Sides on Left
Figure 4-2 Cursive Forms in Arabic

Although these four forms are quite different from one another, such cursive
shape-changing is not fundamentally different from cursive writing in English.

In some contexts, two glyphs can change shape even more radically and merge to
form a single glyph. This type of merged glyph is calléidature. For example,

most English fonts contain the ligatdrahown in Figure 4-3. The merged glyph
takes into account the overhang on the Idtaard combines the characters in a
natural-looking way, instead of simply letting the letters collide.

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

Figure 4-3 EnglisiLigatures

Ligatures are also used in Arabic and the use of some ligatures is mandatory—it is
unacceptable to present certain character combinations without using the
appropriate ligature. When ligatures are formed from Arabic characters, the
shapes change even more radically than they do in English. For example,
Figure 4-4 illustrates how two Arabic characters are combined into a single
ligature when they appear together.

\J ™

a b

Figure 4-4 Arabid_igatures

4.3.2 Ordering Text

In the Java programming language, text is encoded using Unicode character
encoding. Text that uses Unicode character encoding is stored in memory in
logical order. Logical order is the order in which characters and words are read
and written. The logical order is not necessarily the same agishal order the

order in which the corresponding glyphs are displayed.

The visual order for glyphs in a particular writing system (script) is called the
script order For example, the script order for Roman text is left-to-right and the
script order for Arabic and Hebrew is right-to-left.

Some writing systems have rules in addition to script order for arranging glyphs
and words on lines of text. For example, Arabic and Hebrew numbers run left to

Text Layout Concepts 51

right, even though the letters run right to left. (This means that Arabic and
Hebrew, even with no embedded English text, are truly bidirectional.)

A writing system’s visual order must be maintained even when languages are
mixed together. This is illustrated in Figure 4-5, which displays an Arabic phrase
embedded in an English sentence.

Note: In this and subsequent examples, Arabic and Hebrew text is represented by
uppercase letters and spaces are represented by underscores. Each illustration
contains two parts: a representation of the characters stored in memory (the char-
acters in logical order) followed by a representation of how those characters are
displayed (the characters in visual order). The numbers below the character boxes
indicate the insertion offsets.

this 13 ARABIC _TEXT .

o1 2 3 4 ? 1 11 12 13 14 15 168 17 18 1F 20
]

¥
this is TXET CIBARA.

Figure 4-5 Bidirectional Text

Even though they are part of an English sentence, the Arabic words are displayed
in the Arabic script order, right-to-left. Because the italicized Arabic word is logi-
cally after the Arabic in plain text, it is visually to the left of the plain text.

When a line with a mixture of left-to-right and right-to-left text is displayed, the
base directioris significant. The base direction is the script order of the predomi-
nant writing system. For example, if the text is primarily English with some
embedded Arabic, then the base direction is left-to-right. If the text is primarily
Arabic with some embedded English or numbers, then the base direction is right-
to-left.

The base direction determines the order in which segments of text with a common
direction are displayed. In the example shown in Figure 4-5, the base direction is
left-to-right. There are three directional runs in this example: the English text at
the beginning of the sentence runs left to right, the Arabic text runs right to left,
and the period runs left to right.

Graphics are often embedded in the flow of text. These inline graphics behave like
glyphs in terms of how they affect the text flow and line wrapping. Such inline

52

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

graphics need to be positioned using the same bidirectional layout algorithm so
that they appear in the proper location in the flow of characters.

For more information about the precise algorithm used to order glyphs within a
line, see the description of the Bidirectional Algorithm in The Unicode Standard,
\ersion 2.0, Section 3.11.

4.3.3 Measuring and Positioning Text

Unless you are working with a monospace font, different characters in a font have
different widths. This means that all positioning and measuring of text has to take
into account exactly which characters are used, not just how many. For example,
to right-align a column of numbers displayed in a proportional font, you can’t
simply use extra spaces to position the text. To properly align the column, you
need to know the exact width of each number so that you can adjust accordingly.

Text is often displayed using multiple fonts and styles, such as bold or italic. In

this case, even the same character can have different shapes and widths, depend-
ing on how it is styled. To properly position, measure, and render text, you need to
keep track of each individual charactardthe style applied to that character. For-
tunately,TextLayout does this for you.

To properly display text in languages such as Hebrew and Arabic, each individual
character needs to be measured and positioned within the context of neighboring
characters. Because the shapes and positions of the characters can change depend-
ing on the context, measuring and positioning such text without taking the context
into account produces unacceptable results.

4.3.4 Supporting Text Manipulation

To allow the user to edit the text that is displayed, you must be able to:
« Display a caret that indicates where new characters will be inserted when the
user enters text.
« Move the caret and insertion point in response to user input.
« Detect user selections (hit detection).
« Highlight selected text.

Text Layout Concepts 53

4.3.4.1 Displaying Carets

In editable text, @aretis used to graphically represent the current insertion point,
the position in the text where new characters will be inserted. Typically, a caret is
shown as a blinking vertical bar between two glyphs. New characters are inserted
and displayed at the caret's location.

Calculating the caret position can be complicated, particularly for bidirectional
text. Insertion offsets on directional boundaries have two possible caret positions
because the two glyphs that correspond to the character offset are not displayed
adjacent to one another. This is illustrated in Figure 4-6. In this figure, the carets
are shown as square brackets to indicate the glyph to which the caret corresponds.

this_is_ARABIC TEXT .

o 1 2 & 2 &5 & 7 |} 1o 11 12 13 14 1% 16 1F 18 19 20

this_is [TXET CIBARA.

Figure 4-6 Dual Carets

Character offset 8 corresponds to the location after the _ and beférdfttize

user enters an Arabic character, its glyph is displayed to the right of (before) the
A; if the user enters an English character, its glyph is displayed to the right of
(after) the _

To handle this situation, some systems display dual carets, a strong (primary)
caret and a weak (secondary) caret. The strong caret indicates where an inserted
character will be displayed when that character's direction is the same as the base
direction of the text. The weak caret shows where an inserted character will be
displayed when the character's direction is the opposite of the base dirgetion.
tLayout automatically supports dual carelSextComponent does not.

When you're working with bidirectional text, you can't simply add the widths of
the glyphs before a character offset to calculate the caret position. If you did, the
caret would be drawn in the wrong place, as shown in Figure 4-7.

54

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

this_is_ARABIC_TEXT .

g 8 1o 1 12 13 14 1% 16 1F 18 19 20

]

this_is TXET CIBARA.

Figure 4-7 Caret Drawn Incorrectly

For the caret to be properly positioned, the widths of the glyphs to the left of the
offset need to be added and the current context taken into account. Unless the con-
text is taken into account, the glyph metrics won't necessarily match the display.
(The context can affect which glyphs are used.)

4.3.4.2 Moving Carets

All text editors allow the user to move the caret with the arrow keys. Users expect
the caret to move in the direction of the pressed arrow key. In left-to-right text,
moving the insertion offset is simple: the right arrow key increases the insertion
offset by one and the left arrow key decreases it by one. In bidirectional text or in
text with ligatures, this behavior would cause the caret to jump across glyphs at
direction boundaries and move in the reverse direction within different directional
runs.

To move the caret smoothly through bidirectional text, you need to take into
account the direction of the text runs. You can’t simply increment the insertion
offset when the right arrow key is pressed and decrement it when the left arrow
key is pressed. If the current insertion offset is within a run of right-to-left
characters, the right arrow key should decrease the insertion offset, and the left
arrow key should increase it.

Moving the caret across a directional boundary is even more complicated.

Figure 4-8 illustrates what happens when a directional boundary is crossed when
the user is navigating with the arrow key. Stepping three positions to the right in
the displayed text corresponds to moving to the character offsets 7, 19, then 18.

Text Layout Concepts 55

thlS is _ARABIC_TEXT.
0 ’j 91011121314151617*T

this_id 7IXET CIBARA]

Figure 4-8 Caret Movement

Certain glyphs should never have a caret between them; instead, the caret should
move as though the glyphs represented a single character. For example, there
should never be a caret betweenceand an umlaut if they are represented by two
separate characters. (See The Unicode Standard, Version 2.0, Chapter 5, for more
information.)

TextLayout provides methodggetNextRightHit andgetNextLeftHit) that
enable you to easily move the caret smoothly through bidirectional text.

4.3.4.3 Hit Testing

Often, a location in device space must be converted to a text offset. For example,
when a user clicks the mouse on selectable text, the location of the mouse is con-
verted to a text offset and used as one end of the selection range. Logically, this is
the inverse of positioning a caret.

When you're working with bidirectional text, a single visual location in the dis-
play can correspond to two different offsets in the source text, as shown in
Figure 4-9.

this 1S_AARABIC TEXT, .

o1 2 3 4 P 1 11 12 13 14 15 16 17 18 19 20
|

this_is>¥XET CIBARA.

Figure 4-9 Hit Testing Bidirectional Text

Because a single visual location can correspond to two different offsets, hit testing
bidirectional text isn't just a matter of measuring glyph widths until the glyph at

56

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

the correct location is found and then mapping that position back to a character
offset. Detecting the side that the hit was on helps distinguish between the two
alternatives.

You can perform hit testing usinmgxtLayout.hitTestChar. Hit information is
encapsulated in BextHitInfo object and includes information about the side
that the hit was on.

4.3.4.4 Highlighting Selections

A selected range of characters is represented graphically by a highlight region, an
area in which glyphs are displayed with inverse video or against a different
background color.

Highlight regions, like carets, are more complicated for bidirectional text than for
monodirectional text. In bidirectional text, a contiguous range of characters might
not have a contiguous highlight region when displayed. Conversely, a highlight
region showing a visually contiguous range of glyphs might not correspond to a
single, contiguous range of characters.

This results in two strategies for highlighting selections in bidirectional text:

* Logical highlighting—with logical highlighting, the selected characters are
always contiguous in the text model, and the highlight region is allowed to be
discontiguous. For an example of logical highlighting, see Figure 4-10.

« Visual highlighting—with visual highlighting, there might be more than one
range of selected characters, but the highlight region is always contiguous.
For an example of visual highlighting, see Figure 4-11.

this_ ARAB _TEXT .

0 g 15 16 1Y 18 19 2C

T
this XET BARAI

Figure 4-10 Logical Highlighting (contiguous characters)

Text Layout Concepts 57

RABIC

1 11 12 13 14 5 16 17 18 20

this
1] 3 4

0

CIBARA.

Figure 4-11 Visual Highlighting (contiguous highlight region)

Logical highlighting is simpler to implement, since the selected characters are
always contiguous in the text.

4.3.5 Performing Text Layout in a Java Application

Depending on which Java APIs you use, you can have as little or as much control
over text layout as you need:

If you just want to display a block of text or need an editable text control, you
can useTextComponent, which will perform the text layout for you.
JTextComponent is designed to handle the needs of most international
applications and supports bidirectional text For more information about
JTextComponent, see “Using the JFC/Swing Packages” in the Java Tutorial.

If you want to display a simple text string, you can call
Graphics2D.drawString and let Java 2D lay out the string for you. You can
also usalrawString to render styled strings and strings that contain
bidirectional text. For more information about rendering text through
Graphics2D, see “Rendering Graphics Primitives” on page 36.

If you want to implement your own text editing routines, you can use
TextLayout to manage text layout, highlighting, and hit detection. The
facilities provided byrextLayout handle most common cases, including text
strings with mixed fonts, mixed languages, and bidirectional text. For more
information about using TextLayout, see “Managing Text Layout” on

page 58.

If you want total control over how text is shaped and positioned, you can
construct your owig1yphVectors usingFont and then render them through
Graphics2D. For more information about implementing your own text layout
mechanism, see “Implementing a Custom Text Layout Mechanism” on
page 63.

58

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

Generally, you do not need to perform text layout operations yourself. For most
applications, JTextComponent is the best solution for displaying static and
editable text. HoweverjTextComponent does not support the display of dual
carets or discontiguous selections in bidirectional text. If your application
requires these features, or you prefer to implement your own text editing routines,
you can use the Java 2D text layout APIs.

4.4 Managing Text Layout

The TextLayout class supports text that contains multiple styles and characters
from different writing systems, including Arabic and Hebrew. (Arabic and
Hebrew are particularly difficult to display because you must reshape and reorder
the text to achieve an acceptable representation.)

TextLayout simplifies the process of displaying and measuring text even if you
are working with English-only text. By usingxtLayout, you can achieve high-
guality typography with no extra effort.

Text Layout Performance

TextLayout is designed so that there is no significant performance impact
when it’s used to display simple, monodirectional text. There is some addition-
al processing overhead when TextLayout is used to display Arabic or Hebrew
text. However, it’s typically on the order of microseconds per character and is
dominated by the execution of normal drawing code.

TheTextLayout class manages the positioning and ordering of glyphs for you.
You can us@extlLayout to:

» Lay out monodirectional and bidirectional text
* Display and move carets

» Perform hit testing on text
* Highlight text selections

In some situations, you might want to compute the text layout yourself, so that
you can control exactly which glyphs are used and where they are placed. Using
information such as glyph sizes, kerning tables, and ligature information, you can
construct your own algorithms for computing the text layout, bypassing the sys-
tem’s layout mechanism. For more information, see “Implementing a Custom
Text Layout Mechanism” on page 63.

Managing Text Layout 59

4.4.1 Laying Out Text

TextLayout automatically lays out text, including bidirectional (BIDI) text, with
the correct shaping and ordering. To correctly shape and order the glyphs
representing a line of textextLayout must know the full context of the text:

« If the text fits on a single line, such as a single-word label for a button or a
line in a dialog box, you can constructextLayout directly from the text.

« If you have more text than can fit on a single line or want to break text on a
single line into tabbed segments, you cannot constroetaLayout directly.
You must use aineBreakMeasurer to provide sufficient context.

The base direction of the text is normally set by an attribute (style) on the text. If
that attribute is missing,extLayout follows the Unicode bidirectional algorithm
and derives the base direction from the initial characters in the paragraph.

4.4.2 Displaying Dual Carets

TextLayout maintains caret information such as the cgiiepe, position, and
angle. You can use this information to easily display carets in both monodirec-
tional and bidirectional text. When you're drawing carets for bidirectional text,
usingTextLayout ensures that the carets will be positioned correctly.

TextLayout provides default carsthapes and automatically supports dual carets.

For italic and oblique glyph3extLayout produces angled carets, as shown in
Figure 4-12. These caret positions are also used as the boundaries between glyphs
for highlighting and hit testing, which helps produce a consistent user experience.

abedef

Figure 4-12 Angled Carets

Given an insertion offset, thgtCaretShapes method returns a two-element
array ofShapes: element O contains the strong caret and element 1 contains the
weak caret, if one exists. To display dual carets, you simply draw both caret
Shapes; the carets will be automatically be rendered in the correct positions.

If you want to use custom cargiiapes, you can retrieve the position and angle of
the carets from theextLayout and draw them yourself.

60 Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

In the following example, the default strong and weak cargtes are drawn in
different colors. This is a common way to differentiate dual carets.

Shape[] caretShapes = layout.getCaretShapes(hit);
g2.setColor (PRIMARY_CARET_COLOR);
g2.draw(caretShapes[0]);
if (caretShapes[1l] != nul1){
g2.setColor (SECONDARY_CARET_COLOR);
g2.draw(caretShapes[1]);
3

4.43 Moving the Caret

You can also useTextLayout to determine the resulting insertion offset when a
user presses the left or right arrow key. GivenTextHitInfo object that
represents the current insertion offset, geNextRightHit method returns a
TextHitInfo object that represents the correct insertion offset if the right arrow
key is pressed. ThgetNextLeftHit method provides the same information for
the left arrow key.

In the following example, the current insertion offset is moved in response to a
right arrow key.

TextHitInfo newInsertionOffset =
Tayout.getNextRightHit(insertionOffset);
if (newInsertionOffset != null) {
Shape[] caretShapes =
Tayout.getCaretShapes(newInsertionOffset);
// draw carets

insertionOffset = newInsertionOffset;

}

4.4.4 Hit Testing

TextLayout provides a simple mechanism for hit testing text. hheTestChar
method takex andy coordinates from the mouse as arguments and returns a
TextHitInfo object. TheTextHitInfo contains the insertion offset for the
specified position and the side that the hit was on. The insertion offset is the offset

Managing Text Layout 61

closest to the hit: if the hit is past the end of the line, the offset at the end of the
line is returned.

In the following examplehitTestChar is called on &extLayout and therget-
InsertIndex is used to retrieve the offset.

TextHitInfo hit
int insertIndex

Tlayout.hitTestChar(x, y);
hit.getInsertIndex();

4.45 Highlighting Selections

You can get dhape that represents the highlight region from thetLayout.
TextLayout automatically takes the context into account when calculating the
dimensions of the highlight regionextLayout supports both logical and visual
highlighting.

In the following example, the highlight region is filled with the highlight color
and then th@extLayout is drawn over the filled region. This is one simple way to
display highlighted text.

Shape highlightRegion = layout.getlLogicalHighlightShape(hitl,
hit2);

graphics.setColor(HIGHLIGHT_COLOR);

graphics.fill(highlightRegion);

graphics.drawString(layout, 0, 0);

4.4.6 Querying Layout Metrics

TextLayout provides access to graphical metrics for the entire range of text it
represents. Metrics available fromextLayout include the ascent, descent,
leading, advance, visible advance, and the bounding rectangle.

More than onéont can be associated withTaxtLayout: different style runs can
use different fonts. The ascent and descent values foexalLayout are the
maximum values of all of the fonts used in thextLayout. The computation of
theTextLayout's leading is more complicated; it's not just the maximum leading
value.

62

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

The advance of @extLayout is its length: the distance from the left edge of the
leftmost glyph to the right edge of the rightmost glyph. The advance is sometimes
referred to as thdotal advance The visible advanceis the length of the
TextLayout without its trailing whitespace.

The bounding box of @extLayout encloses all of the text in the layout. It
includes all the visible glyphs and the caret boundaries. (Some of these might
hang over the origin or origin + advance). The bounding box is relative to the
origin of theTextLayout, not to any particular screen position.

In the following example, the text inT@xtLayout is drawn within the layout’s
bounding box.

graphics.drawString(layout, 0, 0);

Rectangle2D bounds = layout.getBounds();

graphics.drawRect(bounds.getX()-1, bounds.getY()-1,
bounds.getWidth()+2, bounds.getHeight()+2);

4.4.7 Drawing Text Across Multiple Lines

TextLayout can also be used to display a piece of text that spans multiple lines.
For example, you might take a paragraph of text, line-wrap the text to a certain
width, and display the paragraph as multiple lines of text.

To do this, you do not directly create thiextLayouts that represent each line of
text—_ ineBreakMeasurer generates them for you. Bidirectional ordering cannot
always be performed correctly unless all of the text in a paragraph is available.
LineBreakMeasurer encapsulates enough information about the context to pro-
duce correctextlLayouts.

When text is displayed across multiple lines, the length of the lines is usually
determined by the width of the display area. Line breaking (line wrapping) is the
process of determining where lines begin and end, given a graphical width in
which the lines must fit.

The most common strategy is to place as many words on each line as will fit. This
strategy is implemented inineBreakMeasurer. Other more complex line break
strategies use hyphenation, or attempt to minimize the differences in line length
within paragraphs. The Java 2D API does not provide implementations of these
strategies.

Implementing a Custom Text Layout Mechanism 63

To break a paragraph of text into lines, you constructreeBreakMeasurer with
the entire paragraph and then ealktLayout to step through the text and gener-
ateTextLayouts for each line.

To do this, LineBreakMeasurer maintains an offset within the text. Initially, the
offset is at the beginning of the text. Each calhtxtLayout moves the offset by
the character count of thextLayout that was created. When this offset reaches
the end of the texhextlLayout returnsnull.

The visible advance of eathxtLayout thatthelLineBreakMeasurer creates
doesn’t exceed the specified line width. By varying the width you specify when
you callnextLayout, you can break text to fit complicated areas, such as an
HTML page with images in fixed positions or tab-stop fields. You can also pass in
aBreakIterator to tell LineBreakMeasurer where valid breakpoints are; if you
don't supply one thereakIterator for the default locale is used.

In the following example, a bilingual text segment is drawn line by line. The lines
are aligned to either to the left margin or right margin, depending on whether the
base text direction is left-to-right or right-to-left.

Point2D pen = initialPosition;
LineBreakMeasurer measurer = new LineBreakMeasurer(styledText,
myBreakIterator);
while (true) {
TextLayout layout = measurer.nextlLayout(wrappingWidth);
if (layout == null) break;
pen.y += layout.getAscent();
float dx = 0;
if (layout.isLeftToRight())
dx = wrappingWidth - Tayout.getAdvance();
layout.draw(graphics, pen.x + dx, pen.y);
pen.y += layout.getDescent() + Tayout.getlLeading();

4.5 Implementing a Custom Text Layout Mechanism

TheGlyphvector class provides a way to display the results of custom layout
mechanisms. AlyphVector object can be thought of as the output of an algo-
rithm that takes a string and computes exactly how the string should be displayed.
The system has a built-in algorithm and the Java 2D API lets advanced clients
define their own algorithms.

64

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

A GlyphVector object is basically an array of glyphs and glyph locations. Glyphs
are used instead of characters to provide total control over layout characteristics
such as kerning and ligatures. For example, when displaying the dtting ™,

you might want to replace the leadifig substring with the ligaturf. In this

case, th&lyphvector object will have fewer glyphs than the number of charac-
ters in the original string.

Figure 4-13 and Figure 4-14 illustrate halwphvector objects are used by lay-
out mechanisms. Figure 4-13 shows the default layout mechanism.daéwen
String is called on &tring, the built-in layout algorithm:

» Uses the currerftont in theGraphics2D context to determine which glyphs
to use.

 Calculates where each glyph should be placed.

« Stores the resulting glyph and position information @ yphvector.

» Passes thelyphvector to a glyph rendering routine that does the actual

drawing.
drastmng GlyphVector
font
i glyph-ids
i / Built-in
Simple N Glyph
i —| Layout R X-posns . i

String | Algorithm Renderer
| y-posns
|
|
|

Figure 4-13 Using the Built-in Layout Algorithm

Figure 4-14 shows the process for using a custom layout algorithm. To use a cus-
tom layout algorithm, you must assemble all of the information necessary to lay
out the text. The basic process is the same:

» Using theFont, determine which glyphs to use

» Determine where to place the glyphs

« Store this layout information in@yphVector

Creating Font Derivations 65

To render the text, you pass tig/phVector to drawString, which in turn
passes it to the glyph renderer. In Figure 4-14, the custom layout algorithm
replaces thé&i substring with the ligaturg.

drawString
|
|
Client |

Font e 1, GlyphVector __| Glyph
parameters 'I&ngﬁtthm ™ collection ™| Renderer

|
|
|
|

Figure 4-14 Using a Custom Layout Algorithm

4.6 Creating Font Derivations

Using theFont.deriveFont methods, you can create a n@&ant object with
different attributes from an existingpnt object. Often, a transform is applied to
the existingFont to create a new derivednt. To do this, you:

1. Create &ont object.,
2. Create thaffineTransform you want to apply to theont.

3. CallFont.deriveFont, passing in thaffineTransform

In this way, you could easily createrant in a custom size or a skewed version of
an existingront.

In the following code excerpt, axffineTransform is applied to create a skewed
version of the font Helvetica. The new derived font is then used to render a string.

// Create a transformation for the font.
AffineTransform fontAT = new AffineTransform();
fontAT.setToShear(-1.2, 0.0);

// Create a Font Object.

Font theFont = new Font("Helvetica", Font.PLAIN, 1);
// Derive a new font using the shear transform
theDerivedFont = theFont.deriveFont(fontAT);

// Add the derived font to the Graphics2D context
g2.setFont(theDerivedFont);

66

Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version

// Render a string using the derived font
g2.drawString(“Java”, 0.0f, 0.0f);

5

The Java 2D API supports three imaging models

Imaging}

« The producer/consumer (push) model provided in previous versions of the
JDK software.

* The immediate mode model introduced in the Java 2 SDK software release.

» The pipeline (pull) model compatible with the immediate mode model and
that will be fully implemented in the forthcoming Java Advanced Imaging

API.

The following table contrasts the features of each of these imaging models.

lrmmeediate Mode

(=]
ush Bodel image Buffer Model Pull Mool
Major = Iy - Bulfersdlimage e ndona il a g
Inberfaces’ - imageProdusar Rasler +Foandorslieima
Classas - lmagetanaumer - Bulfarsdimageps {darva T AP
simagelbssrenr s Ranteril =
WO 1 G, 1 7% fdawa™ 2'5 APl _mm:ﬂﬂ” "‘u-
~Tllad ima
Fros - Processing dnven by - Simiploat programming .;_.,,...,M.,..',.:,ﬂ Immging AR
Image avallabillty intoraco
[m.g oves rasbacek] - Comamondy usoed modol T —
~IMageEs processoed ,.q_.ﬂ":'u oy
Ime raeariLally Blloven lacy aviluatian
Cons »Msguires trammbar ‘Faguires mamory lare comple
(Bt nod processing) allocation af complats programming interfacy
od compistn Emages imagon Ware com
« More complex * Roquines processing of e plemariation
programiming intertacs COMpAELE ImagEe

This chapter focuses on the objects and techniques of the immediate mode imag-
The immediate mode imaging classes and interfaces of the Java 2D
API provide techniques for dealing with pixel mapped images whose data is
stored in memory. This API supports accessing image data in a variety of storage
formats and manipulating image data through several types of filtering operations.

ing model.

67

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

5.1 Interfaces and Classes

The immediate mode imaging APIs in the Java 2D API can be grouped into six
categories: interfaces, image data classes, image operation classes, sample model
classes, color model classes, and exceptions.

5.1.1 Imaging Interfaces

Interface Description

BufferedImageOp Describes single-input/single-output operations performegliéfered-
Image objects. Implemented byffineTransformOp, ColorConvertOp,
ConvolveOp, LookupOp, andRescaleOp.

RasterOp Defines single-input/single-output operations performedasner ob-
jects. Implemented byffineTransformOp, BandCombineOp, ColorCon-
vertOp, ConvolveOp, LookupOp, andRescaleOp.

RenderedImage Defines a common protocol for objects that contain or can produce image
data in the form oRasters.

WritableRenderedImage ExtendsRenderedImage
Defines a common protocol for objects that contain or can produce image
data in the form okasters which can be modified.

TileObserver Defines a protocol for objects that want to be notified when the modifica-
tion state of &ritableRenderedImage changes.

5.1.2 Image Data Classes

Class Description

BufferedImage ExtendsImage
ImplementsWriteableRenderedImage
An image with an accessible data buffeBuferedImage has aolor-
Model and aRaster of image data.

BytelLookupTable Extends:LookupTable
A LookupTable that contains byte data.

DataBuffer Wraps one or more data arrays holding pixel data. Each data array is called
abank

Interfaces and Classes

DataBufferByte

DataBufferInt

DataBufferShort

DataBufferUShort

Kernel

LookupTable

Raster

ShortLookupTable

WritableRaster

69

ExtendsDataBuffer (Final)
A data buffer that stores bytes of data. (Used in Java Advanced Imaging
API)

ExtendsDataBuffer (Final))
A data buffer that stores integer data.(Used in Java Advanced Imaging
API)

ExtendsDataBuffer (Final)
A data buffer that stores short data.(Used in Java Advanced Imaging API)

ExtendsDataBuffer (Final)
A data buffer that stores unsigned short data.

A matrix that describes how an input pixel and its surrounding pixels affect
the value of an output pixel inGanvolveOp filtering operation.

ExtendsDbject
A table that maps values from single-banded pixel data to color values.

A rectangular array of pixels from which you can retrieve image data. A
Raster contains dataBuffer and aSampleModel.

Extends:LookupTable
A lookup table that contains short data.

ExtendsRaster
A Raster that you can modify.

5.1.3 Image Operation Classes

Class Description

AffineTransformOp ImplementsBufferedImageOp, RasterOp
A class that defines an affine transform to perform a linear map-
ping from 2D coordinates in a sourt@age or Raster to 2D co-
ordinates in the destination imageraster. This class can
perform either bilinear or nearest neighbor affine transform oper-
ations.

BandCombineOp ImplementsRasterOp
Using a specified matrix, this operation performs an arbitrary lin-
ear combination of bands irRaster.

BufferedImageFilter ExtendsImageFilter

An ImageFilter that provides a simple means of usinguf f-
eredImageOp (asingle-source/single-destination image oper-
ator) to filter aBufferedImage OrRaster.

70

Class

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

Description

ColorConvertOp

ConvolveOp

LookupOp

RescaleOp

ImplementsBufferedImageOp, RasterOp
Performs a pixel-by-pixel color conversion of the data in the
source image.

ImplementsBufferedImageOp, RasterOp

Uses &ernel to perform a convolution on the source image. A
convolution is a spatial operation where the pixels surrounding
the input pixel are multiplied by a kernel value to generate the val-
ue of the output pixel. Theerne1 mathematically defines the re-
lationship between the pixels in the immediate neighborhood of
the input pixel and the output pixel.

ImplementsBufferedImageOp, RasterOp

Performs a lookup operation from the source to the destination.
ForRasters, the lookup operates on sample values.Buéf -
eredImages, the lookup operates on color and alpha components.

ImplementsBufferedImageOp, RasterOp

Performs a pixel-by-pixel rescaling of the data in the source im-
age by multiplying each pixel value by a scale factor and then
adding an offset.

5.1.4 Sample Model Classes

Class Description

BandedSampTeModel ExtendsComponentSampleModel (Final)
Provides access to image data stored with like samples stored as
bands in separate banks ddataBuffer. A pixel consists of
one sample from each band.

ComponentSampleModel ExtendsSampleModel

MultiPixelPackedSampleModel

PixelInterleavedSampleModel

Provides access to image data stored with each sample of a pixel
residing in a separate element @fecaBuffer. Different types of
pixel interleaving are supported.

ExtendsSampleModel
Provides access to image data stored with multiple one-sample
pixels packed into one element dfataBuffer.

ExtendsComponentSampleModel

Provides access to image data stored with the sample data for
each pixel in adjacent elements of the data array, and all elements
in a single bank of pataBuffer.

Interfaces and Classes

Class

71

Description

SampTeModel

An abstract class that defines a mechanism for extracting sample
data from an image without knowing how the underlying data is

stored in @ataBuffer.

SinglePixelPackedSampleModel ExtendsSampleModel

Provides access to image data stored with all the samples belong-

ing to an individual pixel packed into one element of a
DataBuffer.

5.1.5 Color Model Classes

Class Description

ColorModel Implements: Transparency
JDK1.1 class. An abstract class that defines methods for
translating from image pixel values to color components
such as red, green, and blue.

ComponentColorModel Extends: ColorModel

DirectColorModel

IndexColorModel

PackedCoTlorModel

A ColorModel that can handle an arbitrary colorspace and an
array of color components to match the colorspace. This
class can be used to represent most color models on most
types of GraphicsDevices.

Extends: PackedColorMode

JDK1.1class. A colorModel that represents pixel values that
have RGB color components embedded directly in the
bits of the pixel. This color model is similar to an X11
TrueColor visual. The default RGB colorMode1 returned by
ColorModel.getRGBdefault iS @ DirectColorModel.

Extends: colorModel
JDK1.1class. A colorModel that represents pixel values that
are indices into a fixed color map in the SRGB colorSpace.

Extends: ColorMode

An abstract ColorMode1 that represents pixel values that
have color components embedded directly in the bits of a
pixel. birectColorModel extends PackedColorModel t0 SUpport
pixels that contain RGB color components.

72 Imaging, Java 2 SDK, Standard Edition, 1.2 Version

5.1.6 Exception Classes

Class Description

ImagingOpException Extends: RuntimeException
Thrown if one of the BufferedimageOp or RasterOp filter
methods can’t process the image.

RasterFormatException Extends: RuntimeException

Thrown if there is invalid layout information in the Ras-
ter.

5.2 Immediate Mode Imaging Concepts

The immediate mode imaging model supports fixed-resolution images stored in
memory. The model also supports filtering operations on image data. A number of
classes and interfaces are used in this model.

Bufferedimage

Raster
ColorModel

SampleModel

ColorSpace
DataBuffer

Figure 5-1 BufferedImage and supporting classes

As shown in Figure 5-1BufferedImage provides general image management. A
BufferedImage can be created directly in memory and used to hold and manipu-
late image data retrieved from a file or URLBéfferedImage can be displayed
using anyGraphics2D object for a screen device, or rendered to any other desti-

Immediate Mode Imaging Concepts 73

nation using appropriat&raphics2D context. ABufferedImage object contains
two other objects: Raster and aColorModel.

TheRaster class provides image data management. It represents the rectangular
coordinates of the image, maintains image data in memory, and provides a mech-
anism for creating multiple subimages from a single image data buffer. It also pro-
vides methods for accessing specific pixels within an image. A Raster object
contains two other objectspataBuffer and aSampleModel.

TheDataBuffer class holds pixel data in memory.

TheSampleModel class interprets data in the buffer and provides it as individual
pixels or rectangular ranges of pixels.

TheColorModel class provides a color interpretation of pixel data provided by
the image’s sample model.

The image package provides additional classes that define filtering operations on
BufferedImage andRaster objects. Each image processing operation is embod-
ied in a class that implements thefferedImageOp interface, th&asterOp

interface, or both interfaces. The operation class defifiéser methods that per-
forms the actual image manipulation.

Figure 5-2 illustrates the basic model for Java 2D APl image processing:

image-processing
operation
filter
§ource > de;tmatlon
image image
Figure 5-2 Image Processing Model

The operations supported include:

» Affine transformation

Amplitude scaling

Lookup-table modification
Linear combination of bands

Color conversion

74

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

« Convolution

Note that if you're interested just in displaying and manipulating images, you
only need to understand tRefferedImage class and the filtering operation
classes. On the other hand, if you're planning to write filters or otherwise directly
access image data, you'll need to understand the classes associased fvith
eredImage.

5.2.1 Terminology
Here are some terms used throughout the following discussions:

Data Elements: primitive types used as units of storage of image data. Data ele-
ments are individual members obataBuffer array. The layout of elements in

the data buffer is independent of the interpretation of the data as pixels by an
image’sSampleModel.

Samples: distinct members of the pixels of an imageami1eModel provides a
mechanism for converting elements in thheaBuffer to pixels and their sam-

ples. The samples of a pixel may represent primary values in a particular color
model. For example, a pixel in an RGB color model consists of three samples:
red, green, and blue.

Components: values of pixels independent of color interpretation. The distinction
between component and sample is useful ®itexColorModel, where pixel
components are indexes into thwkupTable.

Band: the set of all samples of one type in an image, such as all red samples or all
green samples. Pixel data can be stored in a number of ways, the two supported in
the Java 2D API being banded and pixel interleaved. Banded storage organizes
image data by bands, and a pixel is made up of sample data from the same posi-
tion in each band. Pixel interleaved storage organizes image data by pixels, with a
single array containing all pixels, and bands consisting of the set of samples at the
same index position in each pixel.

Primaries: distinct members of a color value in a specific color model; for exam-
ple the RGB model forms color values from the primaries red, green, and blue.

5.3 Using Bufferedimages

TheBufferedImage class is the main class supporting the immediate imaging
mode. It manages an image in memory, providing ways to store pixel data, inter-
pret pixel data, and to render the pixel data traphics or Graphics2D context.

Using Bufferedimages 75

5.3.1 Creating a Bufferedlmage

To create 8ufferedImage, call theComponent.createImage method; this

returns aBufferedImage whose drawing characteristics match those of the com-
ponent used to create it—the created image is opaque, has the foreground and
background colors of theomponent, and you can't adjust the transparency of the
image. You could use this technique when you want to do double buffered draw-
ing for animation in a component; the discussion “Drawing in an Offscreen
Buffer” on page 78 gives more detalils.

public Graphics2D createDemoGraphics2D(Graphics g) {
Graphics2D g2 = null;
int width = getSize().width;
int height = getSize().height;

if (offImg == null || offImg.getWidth() != width ||
offImg.getHeight() != height) {
offImg = (BufferedImage) createImage(width, height);
}

if (offImg != null) {
g2 = offImg.createGraphics();
g2.setBackground(getBackground());
}

// .. clear canvas ..
g2.clearRect(@0, 0, width, height);

return g2;

You can also create a blaBkfferedImage in memory using one of several con-
structor methods provided.

5.3.2 Drawing in an Offscreen Buffer

TheBufferedImage class can be used to prepare graphic elements offscreen then
copy them to the screen. This technique is especially useful when a graphic is
complex or used repeatedly. For example, if you want to display a complicated
shape several times, you could draw it once into an offscreen buffer and then copy
it to different locations in the window. By drawing the shape once and copying it,
you can display the graphics more quickly.

76

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

Thejava.awt package facilitates the use of offscreen buffers by letting you draw
to anImage object the same way that you draw to a window. All of the Java 2D
API rendering features can be used when drawing to offscreen images.

Offscreen buffers are often used for animation. For example, you could use an off-
screen buffer to draw an object once and then move it around in a window. Simi-
larly, you could use an offscreen buffer to provide feedback as a user moves a
graphic using the mouse. Instead of redrawing the graphic at every mouse loca-
tion, you could draw the graphic once to an offscreen buffer, and then copy it to
the mouse location as the user drags the mbuse.

e
_“"i]_I"E H_|[.Il£j_ WIndﬁw

i R’ = S A v B - i i

Figure 5-3 Using an Offscreen Buffer

Figure 5-3 demonstrates how a program can draw to an offscreen image and then
copy that image into a window multiple times. The last time the image is copied,
it is transformed. Note that transforming the image instead of redrawing it with
the transformation might produce unsatisfactory results.

5.3.2.1 Creating an Offscreen Buffer

The simplest way to create an image that you can use as an offscreen buffer is to
use theComponent.createImage method.

L Itis up to the programmer to “erase” the previous version of the image before making a new

copy at a new location. This can be done by redrawing the background or copying the
background from another offscreen buffer.

Using Bufferedimages 77

By creating an image whose color space, depth, and pixel layout exactly match
the window into which you are drawing, the image can be efficiently blitted to a
graphics device. This allowds-awImage to do its job quickly.

You can also construct BufferedImage object directly to use as an offscreen
buffer. This is useful when you need control over the offscreen image’s type or
transparency.

BufferedImage supports several predefined image types:

* TYPE_3BYTE_BGR

« TYPE_4BYTE_ABGR

« TYPE_4BYTE_ABGR_PRE
« TYPE_BYTE_BINARY

» TYPE_BYTE_GRAY

« TYPE_BYTE_INDEXED

« TYPE_CUSTOM

« TYPE_INT_ARGB_PRE

» TYPE_INT_ARGB

o TYPE_INT_BGR

» TYPE_INT_RGB

« TYPE_USHORT_555_RGB
» TYPE_USHORT_565_RGB
* TYPE_INT_GRAY

A BufferedImage object can contain an alpha channel. In Figure 5-3, an alpha
channel is used to distinguish painted and unpainted areas, allowing an irregular
shape to appear over graphics that have already been painted (in this case, a
shaded rectangle). In other cases, you might use alpha channel to blend the colors
of the new image into those in the existing image.

Note: unless you need alpha image data for transparency, as with the irregularly
shaped images shown in Figure 5-2, you should avoid creating an off-screen
buffer with alpha. Using alpha where it's unnecessary slows rendering perfor-
mance.

GraphicsConfiguration provides convenience methods that automatically cre-
ate buffered images in a format compatible with your configuration. You can also
guery the graphics configuration associated with the graphics device on which the
window resides to get the information you need to construct a compatftile
eredImage object.

78

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

5.3.2.2 Drawing in an Offscreen Buffer

To draw in a buffered image, you call BisfferedImage.createGraphics

method, which returns@raphics2D object. With this object, you can call all of
theGraphics2D methods to draw graphics primitives, place text, and render other
images in the image. This drawing technique supports dithering and other
enhancements provided by the 2D imaging package. The following code illus-
trates the use of offscreen buffering:

public void update(Graphics g){

Graphics2D g2 = (Graphics2D)g;

if(firstTime){
Dimension dim = getSize();
int w = dim.width;
int h = dim.height;
area = new Rectangle(dim);
bi = (BufferedImage)createImage(w, h);
big = bi.createGraphics(Q);
rect.setlLocation(w/2-50, h/2-25);
big.setStroke(new BasicStroke(8.0f));
firstTime = false;

}

// Clears the rectangle that was previously drawn.
big.setColor(Color.white);
big.clearRect(0, 0, area.width, area.height);

// Draws and fills the newly positioned rectangle to the buffer.
big.setPaint(strokePolka);

big.draw(rect);

big.setPaint(fil1Polka);

big.fill(rect);

// Draws the buffered image to the screen.
g2.drawImage(bi, 0, 0, this);

5.3.3 Manipulating Bufferedimage Data Directly

In addition to drawing directly in BufferedImage, you can directly access and
manipulate the image’s pixel data in a couple of ways. These are useful if you're
implementing th&ufferedImageOp filtering interface, as described in “Image
Processing and Enhancement” on page 83.

You can use thBufferedImage.setRGB methods to directly set the value of a
pixel or a pixel array to a specific RGB value. Note that no dithering is performed
when you modify pixels directly. You can also manipulate pixel data by manipu-

Managing and Manipulating Rasters 79

lating awritableRaster object associated withBafferedImage (see“Manag-
ing and Manipulating Rasters” on page 79).

5.3.4 Filtering a Bufferedimage

You can apply a filtering operation t@®afferedImage using an object that
implementsBufferedImageOp interface. Filtering and the classes that provide

this filtering interface are discussed in “Image Processing and Enhancement” on
page 83.

5.3.5 Rendering a Bufferedimage

To render a buffered image into a specific context, call one afrth@mage
method of the contextSraphics object. For example, when rendering within a
Component.paint method, you calirawImage on the graphics object passed to
the method.

public void paint(Graphics g) {

if (getSize().width <= 0 || getSize().height <= 0)
return;

Graphics2D g2 = (Graphics2D) g;

if (offImg != null && isShowing()) {
g2.drawImage(offImg, 0, 0, this);
}

5.4 Managing and Manipulating Rasters

A BufferedImage Object uses Raster to manage its rectangular array of pixel
data. TheRaster class defines fields for the image’s coordinate system—width,
height, and origin. Raster object itself uses two objects to manage the pixel
data, eDataBuffer and aSampleModel. TheDataBuffer is the object that stores
pixel data for the raster (as described on page 81), anshtipd eMode1 provides
the interpretation of pixel data from tbetaBuffer (as described on page 81).

80

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

5.4.1 Creating a Raster

In most cases, you don't need to creakasxer directly, since one is supplied
with anyBufferedImage that you create in memory. However, one ofgihef-
eredImage constructor methods allows you to creakagter by passing in a
WritableRaster.

TheRaster class provides a number of static factory methods for crerding
ters with theDataBuffers andSampleModels you specify. You can use these
factories when implementirRpster0p filtering classes.

5.4.2 Parent and Child Rasters

TheRaster class incorporates the concept of parent and child rasters. This can
improve storage efficiency by allowing you to construct any number of buffered
images from the same parent. The parent and its children all refer to the same data
buffer, and each child has a specific offset and bounds to identify its image loca-
tion in the buffer. A child identifies its ownership throughgiégParent method.

To create a subraster, you useRhgter.createSubRaster method.When you
create a subraster, you identify the area of its parent that it covers and its offset
from the parent’s origin.

5.4.3 Operations on a Raster

TheRaster class defines a number of ways to access pixels and pixel data. These
are useful when you're implementing tResterOp interface, which provides ras-
ter-level filtering and manipulation of image data, or when implementing any
method that needs to perform low-level pixel manipulation.

TheRaster.getPixel methods let you get an individual pixel, which is returned
as individual samples in an array. TRester.getDataElements methods return a
specified run of uninterpreted image data frombBuffer. TheRaster.get-
Sample method returns samples of an individual pixel. g&esamp1es method
returns a band for a particular region of an image.

In addition to these methods, you can also access the data buffer and the sample
model through instance variables of ttester class. These objects provide addi-
tional ways to access and interpretRheter’s pixel data.

Image Data and DataBuffers 81

5.4.4 The WritableRaster Subclass

ThewritableRaster subclass provides methods for setting pixel data and sam-
ples. Theraster associated with BufferedImage is actually awrit-
ableRaster, thus providing full access to manipulate its pixel data.

5.5 Image Data and DataBuffers

TheDataBuffer belonging to ®aster represents an array of image data. When
you create &aster directly or through th8ufferedImage constructors, you
specify a width and height in pixels, along witBaap1eMode1 for the image

data. This information is used to createaaaBuffer of the appropriate data type
and size.

There are three subclasse®afaBuffer, each representing a different type of
data element:

» DataBufferByte (represents 8-bit values)

» DataBufferInt (represents 32-bit values)

» DataBufferShort (represents 16-bit values)

» DataBufferUShort (represents unsigned short values)

As defined earlier, elements are the discrete members of the array of the data
buffer, and components or samples are the discrete values that together make up a
pixel. There can be various mappings between a particular type of element in a
DataBuffer and a particular type of pixel represented I8aapl1eModel. It is the
responsibility of the variouSamp1eMode1 subclasses to implement that mapping

and provide a way to get specific pixels from a spegifiaBuffer.

DataBuffer constructors provide ways to create buffers of a specific size and a
specific number of banks.

While you can access image data maaBuffer directly, it's generally easier
and more convenient to do so through the methods @h#er andwri t-
ableRaster classes.

5.6 Extracting Pixel Data from a SampleModel

The abstractampleModel class defines methods for extracting samples of an
image without knowing how the underlying data is stored. The class provides
fields for tracking the height and width of the image data in the associated

82

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

DataBuffer, and for describing the number of bands and the data type of that
buffer. SampleModel methods provide image data as a collection of pixels, with
each pixel consisting of a number of samples or components.

The java.awt.image package provides five types of sample models:

» ComponentSampleModel—used to extract pixels from images that store
sample data in separate data array elements in one bankwfBaffer.

* BandedSampleModel—used to extract pixels from images that store each
sample in a separate data element with bands stored in a sequence of data
elements

* PixelInterleavedSampleModel—used to extract pixels from images that
store each sample in a separate data element with pixels stored in a sequence
of data elements.

e MultiPixelPackedSampleModel—used to extract pixels from single banded
images that store multiple one-sample pixels in one data element.

* SinglePixelPackedSampleModel—used to extract samples from images
that store sample data for a single pixel in one data array element in the first
bank of abataBuffer.

Pixel data presented by tRempleMode1 may or may not correlate directly to a
color data representation of a particular color model, depending on the data
source. For example, in photographic image data, the samples may represent
RGB data. In image data from a medical imaging device, samples can represent
different types of data such as temperature or bone density.

There are three categories of methods for accessing image dagatPihe:1
methods return a whole pixel as an array, with one entry for each sample. The
getDataElement methods provide access to the raw, uninterpreted data stored in
theDataBuffer. ThegetSample methods provide access to pixel components for

a specific band.

5.7 ColorModels and Color Data

In addition to theRaster object for managing image data, theferedImage

class includes aolorMode for interpreting that data as color pixel values. The
abstractColorModel class defines methods for turning an image’s pixel data into
a color value in its associatédlorSpace.

Thejava.awt.image package provides four types of color models:

Image Processing and Enhancement 83

» PackedColorMode1—An abstractolorModel that represents pixel values
that have color components embedded directly in the bits of an integer pixel.
A DirectColorModel is a subclass dfackedColorModeT.

* DirectColorModel—aColorModel that represents pixel values that have
RGB color components embedded directly in the bits of the pixel itself.
DirectColorModel model is similar to an X11 TrueColor visual.

* ComponentColorModel—aColorModel that can handle an arbitrary
ColorSpace and an array of color components to matchcti@erSpace.

e IndexColorModel—aColorModel that represents pixel values that are
indices into a fixed color map in the sRGB color space.

ComponentColorModel andPackedColorModel are new in the Java 2 SDK soft-
ware release.

Based on data in tliataBuffer, theSampleModel provides the&oTorModel
with a pixel, which th&olorMode1 then interprets as a color.

5.7.1 Lookup Table

A lookup table contains data for one or more channels or image components; for
example, separate arrays for R, G, and B. jHva. awt.image package defines

two types of lookup tables that extend the abstrestupTable class, one that
contains byte data and one that contains short Biatal(ookupTable and
ShortLookupData).

5.8 Image Processing and Enhancement

The image package provides a pair of interfaces that define operatigun&fon
eredImage andRaster objectsBufferedImageOp andRasterOp.

The classes that implement these interfaces in@&tieneTransformOp, Band-
CombineOp, ColorConvertOp, ConvolveOp, LookupOp, RescaleOp. These

classes can be used to geometrically transform, blur, sharpen, enhance contrast,
threshold, and color correct images.

Figure 5-4 illustrates edge detection and enhancement, an operation that empha-
sizes sharp changes in intensity within an image. Edge detection is commonly
used in medical imaging and mapping applications. Edge detection is used to
increase the contrast between adjacent structures in an image, allowing the viewer
to discriminate greater detail.

84

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

Figure 5-4 Edge detection and enhancement

The following code illustrates edge detection:

float[] elements = { 0.0f, -1.0f, 0.0f,
-1.0f, 4.f, -1.0f,
0.0f, -1.0f, 0.0f};

BufferedImage bimg = new

BufferedImage (bw,bh,BufferedImage. TYPE_INT_RGB);

Kernel kernel = new Kernel(3, 3, elements);

ConvolveOp cop = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP,
null);

cop.filter(bi,bimg);

Figure 5-5 demonstrates lookup table manipulation. A lookup operation can be
used to alter individual components of a pixel.

Figure 5-5 Lookup-table Manipulation

The following code demonstrates Lookup-table manipulation:

Image Processing and Enhancement 85

byte reverse[] = new byte[256];
for (int j=0; j<200; j++){
reverse[j]=(byte) (256-3j);
}
ByteLookupTable blut=new BytelLookupTable(@, reverse);
LookupOp lop = new LookupOp(blut, null);
lop.filter(bi,bimg);

Figure 5-6 illustrates rescaling. Rescaling can increase or decrease the intensity of
all points. Rescaling can be used to increase the dynamic range of an otherwise
neutral image, bringing out detail in a region that appears neutral or flat.

Figure 5-6 Rescaling

The following code snippet illustrates rescaling:

RescaleOp rop = new RescaleOp(1.5f, 1.0f, null);
rop.filter(bi,bimg);

5.8.1 Using an Image Processing Operation

Convolution is the process that underlies most spatial filtering algorithms. Convo-
lution is the process of weighting or averaging the value of each pixel in an image
with the values of neighboring pixels.This allows each output pixel to be affected
by the immediate neighborhood in a way that can be mathematically specified
with a kernel. Figure 5-7 illustrates Convolution.

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

Figure 5-7 Blurring with Convolution

The following code fragment illustrates how to use one of the image processing
classesConvolveOp. In this example, each pixel in the source image is averaged
equally with the eight pixels that surround it.

float weight = 1.0f/9.0f;
float[] elements = new float[9]; // create 2D array

// fill the array with nine equal elements
for (i =0; i <9; i++) {

elements[i] = weight;
}
// use the array of elements as argument to create a Kernel
private Kernel myKernel = new Kernel(3, 3, elements);
public ConvolveOp simpleBlur = new ConvolveOp(myKernel);

// sourcelmage and destImage are instances of BufferedImage
simpleBlur.filter(sourcelmage, destImage) // blur the image

The variablesimpleBlur contains a new instance oénvolveOp that implements

a blur operation on BufferedImage Or aRaster. Suppose thatourceImage
anddestImage are two instances @lifferedImage. When you calfilter, the
core method of th€onvolveOp class, it sets the value of each pixel in the destina-
tion image by averaging the corresponding pixel in the source image with the
eight pixels that surround it.

The convolution kernel in this example could be represented by the following
matrix, with elements specified to four significant figures:

0.1111 0.1111 0.1111
K =0.1111 0.1111 0.1111
0.1111 0.1111 0.1111

Image Processing and Enhancement 87

When an image is convolved, the value of each pixel in the destination image is
calculated by using the kernel as a set of weights to average the pixel’s value with
the values of surrounding pixels. This operation is performed on each channel of
the image.

The following formula shows how the weights in the kernel are associated with
the pixels in the source image when the convolution is performed. Each value in
the kernel is tied to a spatial position in the image.

i-1,j-1 i,j-1 i+1j-1
K=1i-1] i i+1,]
i-1,j+1 i,j+1 i+1j+1

The value of a destination pixel is the sum of the products of the weights in the
kernel multiplied by the value of the corresponding source pixel. For many simple
operations, the kernel is a matrix that is square and symmetric, and the sum of its
weights adds up to orfe.

The convolution kernel in this example is relatively simple. It weights each pixel
from the source image equally. By choosing a kernel that weights the source
image at a higher or lower level, a program can increase or decrease the intensity
of the destination image. Tlkernel object, which is set in thenvolveOp con-
structor, determines the type of filtering that is performed. By setting other values,
you can perform other types of convolutions, including blurring (such as Gaussian
blur, radial blur, and motion blur), sharpening, and smoothing operations.

Figure 5-8 illustrates sharpening using Convolution.

Figure 5-8 Sharpening with Convolution

The following code snippet illustrates sharpening with Convolution:

2. If the sum of the weights in the matrix is one, the intensity of the destination image is
unchanged from the source.

88

Imaging, Java 2 SDK, Standard Edition, 1.2 Version

float[] elements = { 0.0f, -1.0f, 0.0f,
-1.0f, 5.f, -1.0f,
0.0f, -1.0f, 0.0f};

Kernel kernel = new Kernel(3,3,elements);

ConvolveOp cop = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP,
null);

cop.filter(bi,bimg);

6

Color

Color imaging is one of the fundamental components of any graphics system, and
it is often a source of great complexity in the imaging model. The Java 2D API
provides support for high-quality color output that is easy to use and allows
advanced clients to make sophisticated use of color.

The key color management classes in the Java 2D ARb&seSpace, Color,
ColorModel:

* A ColorSpace represents a system for measuring colors, typically using three
separate numerical values or components.CbherSpace class contains
methods for converting between the color space and two standard color
spacesCIEXYZ and RGB.

« A Color is a fixed color, defined in terms of its components in a particular
ColorSpace. To draw aShape in a color, such as red, you pasSador object
representing that color to tiseaphics2D context.Color is defined in the
java.awt package.

* A ColorModel describes a particular way that pixel values are mapped to
colors. AColorModel is typically associated with dmage or
BufferedImage and provides the information necessary to correctly interpret
the pixel valuesColorModel is defined in thgava.awt.image package.

6.1 Classes

Class Description

ColorSpace Identifies the color space ofcalor object,Image, BufferedImage, Or
GraphicsDevice. Has methods to transform between RGB and CIEXYZ
color spaces.

89

90

Color, Java 2 SDK, Standard Edition, 1.2 Version

Class Description

ICC_ColorSpace ExtendsColorSpace
Represents device-independent and device-dependent color spaces based
on the ICC Profile Format Specification.

ICC_Profile A representation of color profile data for device independent and device
dependent color spaces based on the ICC Profile Format Specification.

ICC_ProfileGray ExtendsICC_Profile
A representation of color space type gray.

ICC_ProfileRGB ExtendsICC_Profile
A representation of color space type RGB.

6.2 Color Concepts

A ColorModel is used to interpret pixel data in an image. This includes mapping
components in the bands of an image to components of a particular color space. It
might also involve extracting pixel components from packed pixel data, retrieving
multiple components from a single band using masks, and converting pixel data
through a lookup table.

To determine the color value of a particular pixel in an image, you need to know
how color information is encoded in each pixel. Tdtd orMode1 associated with

an image encapsulates the data and methods necessary for translating a pixel
value to and from its constituent color components.

The Java 2D API provides two color models in addition toliieectColorMode]
andIndexColorModel defined in the JDK 1.1 software release:

* ComponentColorModel can handle an arbitratplorSpace and an array of
color components to match thelorSpace. This model can be used to
represent most color models on most typesraphicsDevices.

» PackedColorModel is a base class for models that represent pixel values that
have their color components embedded directly in the bits of an integer pixel.
A PackedColorModel stores the packing information that describes how
color and alpha components are extracted from the channel.The
DirectColorModel in the JDK 1.1 software release i®ackedColorModel.

6.2.0.1 ColorSpace

A ColorSpace object represents a system for measuring colors, typically using
three separate numeric values. For example, RGB and CMYK are color spaces. A

Color Concepts 91

ColorSpace oObject serves as a colorspace tag that identifies the specific color
space of &olor object or, through &olorMode1 object, of armage, Buffered-
Image, Or GraphicsConfiguration. ColorSpace provides methods that trans-
form Colors in a specific color space to and freRGB and to and from a well-
definedCIEXYZ color space.

All ColorSpace objects must be able to map a color from the represented color
space intaRGB and transform asRGB color into the represented color space.
Since everyolor contains &olorSpace object, set explicitly or by default,
everyColor can also be converted 4RGB. EveryGraphicsConfiguration is
associated with @olorSpace object that in turn has an associatedorSpace. A

color specified in any color space can be displayed by any device by mapping it
throughsRGB as an intermediate color space.

The methods used for this processw@amGB andfromRGB:

* toRGB transforms &olor in the represented color space tocdor in sRGB.

« fromRGB takes &olor in sRGB and transforms it into the represented color
space.

Though mapping througérRGB always works, it's not always the best solution.

For one thingsRGB cannot represent every color in the full gamutkexyz col-

ors. If a color is specified in some space that has a different gamut (spectrum of
representable colors) thaRGB, then usingRGB as an intermediate space results

in a loss of information. To address this problem,di®rSpace class can map
colors to and from another color space, the “conversion sQaggyz.

The methodsoCIEXYZ andfromCIEXYZ map color values from the represented

color space to the conversion space. These methods support conversions between
any two color spaces at a reasonably high degree of accuracgpdmeat a time.
However, it is expected that Java 2D APl implementations will support high-per-
formance conversion based on underlying platform color-management systems,
operating on entire images. (S&dorConvertOp in “Imaging” on page 67.)

Figure 6-1 and Figure 6-2 illustrate the process of translating a color specified in a
CMYK color space for display on an RGB color monitor. Figure 6-1 shows a
mapping througBRGB. As this figure illustrates, the translation of the CMYK

color to an RGB color is not exact because of a gamut misnatch.

1 Of course, the colors used in these diagrams are illustrative, not accurate. The point is that
colors might not be mapped accurately between color spaces unless an appropriate conversion
space is used.

92

Color, Java 2 SDK, Standard Edition, 1.2 Version

CMYK DeviceRGB
CMYK ColorSpace SRGB ColorSpace Device RGB
Color Color Color
toRGB toRGB
fromRGB fromRGB
toCIEXYZ toCIEXYZ
fromCIEXYZ fromCIEXYZ
Figure 6-1 Mapping Through sRGB

Figure 6-2 shows the same process usiixYZ as the conversion space. When
CIEXYZ is used, the color is passed through accurately.

CMYK DeviceRGB
CMYK ColorSpace CIEXYZ ColorSpace Device RGB
Color Color Color
toRGB toRGB
fromRGB fromRGB
woexz | toCIEXYZ
fromCIEXYZ fromCIEXYZ
Figure 6-2 Mapping Through CIEXYZ

6.2.0.2 ICC_Profile and ICC_ColorSpace

ColorSpace is actually an abstract class. The Java 2D API provides one imple-
mentation,ICC_ColorSpace, which is based on ICC Profile data as represented

by theICC_Profile class. You can define your own subclasses to represent arbi-
trary color spaces, as long as the methods discussed above are implemented.
However, most developers can simply use the de$aalt ColorSpace or color

spaces that are represented by commonly available ICC Profiles, such as profiles
for monitors and printers, or profiles embedded in image data.

“ColorSpace” on page 90 describes haworSpace objects represent a color

space and how colors in the represented space can be mapped to and from a con-
version space. Color management systems are often used to handle the mapping
between color spaces. A typical color management system (CMS) manages ICC
profiles, which are similar too1orSpace objects; ICC profiles describe an input
space and a connection space, and define how to map between them. Color man-
agement systems are very good at figuring out how to map a color tagged with
one profile into the color space of another profile.

Color Concepts 93

The Java 2D API defines a class calleéd_Profile that holds data for an arbi-
trary ICC ProfileICC_ColorSpace is an implementation of the abstraeior-

Space classICC_ColorSpace objects can be constructed fradC_Profiles.

(There are some limitations—not all ICC Profiles are appropriate for defining an
ICC_ColorSpace).

ICC_Profile has several subclasses that correspond to specific color space types,
such agCC_ProfileRGB andICC_ProfileGray. Each subclass af.C_Profile

has a well-defined input space (such as an RGB space) and a well-defined connec-
tion space (likeeIEXYZ). The Java 2D API can use a platform's CMS to access
color profiles for various devices such as scanners, printers, and monitors. It can
also use the CMS to find the best mapping between profiles.

6.2.1 Describing Colors

TheColor class provides a description of a color in a particular color space. An
instance ofolor contains the value of the color components addlarSpace
object. Because @1orSpace object can be specified in addition to the color
components when a new instancecotor is created, th€olor class can handle
colors in any color space.

TheColor class has a number of methods that support a proposed standard RGB
color space callesRGB (seehttp://www.w3.org/pub/Www/Graphics/Color/
sRGB.htm1). sRGB is the default color space for the Java 2D API. Several con-
structors defined by the Color class omitth&orSpace parameter. These con-
structors assume that the color's RGB values are definsR&i#) and use a default
instance ofolorSpace to represent that space.

The Java 2D API usesRGB as a convenience to application programmers, not as a
reference color space for color conversion. Many applications are primarily con-
cerned with RGB images and monitors, and defining a standard RGB color space
makes writing such applications easier. ThorSpace class defines the meth-
odstoRGB andfromRGB so that developers can easily retrieve colors in this stan-
dard space. These methods are not intended to be used for highly accurate color
correction or conversions. See “ColorSpace” on page 90 for more information.

To create a color in a color space other traB, you use th€olor constructor

that takes &@olorSpace object and an array of floats that represent the color com-
ponents appropriate to that space. TéierSpace object identifies the color
space.

To display a rectangle of a certain color, such as the process color cyan, you need
a way to describe this color to the system. There are a number of different ways to
describe a color; for example, a color could be described as a set of red, green,

94

Color, Java 2 SDK, Standard Edition, 1.2 Version

and blue (RGB) components, or a set of cyan, magenta, yellow, and black
(CMYK) components. These different techniques for specifying colors are called
color spaces

As you probably know, colors on a computer screen are generated by blending
different amounts of red, green, and blue light. Therefore, using an RGB color
space is standard for imaging on computer monitors. Similarly, four-color process
printing uses cyan, magenta, yellow, and black ink to produce color on a printed
page; the printed colors are specified as percentages in a CMYK color space.

Due to the prevalence of computer monitors and color printing, RGB and CMYK
color spaces are both commonly used to describe colors. However, both types of
color spaces have a fundamental drawback—they are device-dependent. The cyan
ink used by one printer might not exactly match the cyan ink used by another.
Similarly, a color described as an RGB color might look blue on one monitor and
purplish on another.

6.2.2 Mapping Colors through sRGB and CIEXYZ

The Java 2D API refers to RGB and CMYK as color space types. A particular
model of monitor with its particular phosphors defines its own RGB color space.
Similarly, a particular model of printer has its own CMYK color space. Different
RGB or CMYK color spaces can be related to each other through a device-inde-
pendent color space.

Standards for the device-independent specification of color have been defined by
the International Commission on lllumination (CIE). The most commonly used
device-independent color space is the three-component XYZ color space devel-
oped by CIE. When you specify a color us@igxyz, you are insulated from

device dependencies.

Unfortunately, it's not always practical to describe colors ircttexyz color
space—there are valid reasons for representing colors in other color spaces. To
obtain consistent results when a color is represented using a device-dependent
color space such as a particular RGB space, it is necessary to show how that
RGB space relates to a device-independent spacerlixez.

One way to map between color spaces is to attach information to the spaces that
describes how the device-dependent space relates to the device-independent
space. This additional information is callegrafile. A commonly used type of

color profile is the ICC Color Profile, as defined by the International Color Con-
sortium. For details, see the ICC Profile Format Specification, version 3.4 avail-
able athttp://www.color.org.

Color Concepts 95

Figure 6-3illustrates how a solid color and a scanned image are passed to the Java
2D API, and how they are displayed by various output devices. As you can see in
Figure 6-3, both the input color and the image have profiles attached.

Solid Color

' Profile | — — = | Profile

1 Java 2D | | Profile
API

RGB
Monitor

Grayscale
Monitor

Scanned Image
?‘ | Profile ! L Profile

Figure 6-3 Using Profiles to Map Between Color Spaces

6.2.2.1 Color Matching

Once the API has an accurately specified color, it must reproduce that color on an
output device, such as a monitor or printer. These devices have imaging character-
istics of their own that must be taken into account to make sure that they produce
the correct results. Another profile is associated with each output device to
describe how the colors need to be transformed to produce accurate results.

Achieving consistent and accurate color requires that both input colors and output
devices be profiled against a standard color space. For example, an input color
could be mapped from its original color space into a standard device-independent
space, and then mapped from that space to the output device’s color space. In
many respects, the transformation of colors mimics the transformation of graphi-
cal objects in anx, y) coordinate space. In both cases, a transformation is used to
specify coordinates in a “standard” space and then map those coordinates to a
device-specific space for output.

96

Color, Java 2 SDK, Standard Edition, 1.2 Version

v

Printing

The Java Printing API enables applications to:

e Print all AWT and Java 2D graphics, including composited graphics and
images.

» Control document-composition functions such as soft collating, reverse order
printing, and booklet printing.

« Invoke printer-specific functions such as duplex (two-sided) printing and
stapling.

* Print on all platforms, including Windows and Solaris. This includes printers
directly attached to the computer as well as those that the platform software
is able to access using network printing protocols.

Not all of these features are supported in the Java 2 SDK Printing API and imple-
mentation. The API will be extended to support all of these features in future
releases. For example, additional printer controls will be added by augmenting the
set of named properties of a print job that the application can control.

97

Printing, Java 2 SDK, Standard Edition, 1.2 Version

7.1 Interfaces and Classes

Interface Description

Printable ThePrintable interface is implemented by eaghge painterthe application
class(es) called by the printing system to render a page. The system calls the page
painter'sprint method to request that a page be rendered.

Pageable ThePageable interface is implemented by a document that is to be printed by the
printing system. Through thRageable methods, the system can determine the
number of pages in the document, the format to use for each page, and the page
painter to use to render each page.

PrinterGraphics TheGraphics2D objects that a page painter uses to render a page implement the

PrinterGraphics interface. This enables an application to getrthénterJob
object that is controlling the printing.

Class Description

Book ImplementsPageable
Represents a document in which pages can have different page formats and page
painters. This class uses tregeable interface to interact with BrinterJob.

PageFormat Describes the size and orientation of a page to be printed, as wellPagdhe
used to print it. For examplportrait andlandscapepaper orientations are rep-
resented byageFormat.

Paper Describes the physical characteristics of a piece of paper.

PrinterJob The principal class that controls printing. The application ealiaterJob
methods to set up a job, display a print dialog to the user (optional), and to print
the pages in the job.

7.2 Printing Concepts

The Java Printing API is based oreallbackprinting model in which the printing
system, not the application, controls when pages are printed. The application pro-
vides information about the document to be printed and the printing system asks
the application to render each page as it needs them.

The printing system might request that a particular page be rendered more than
once or request that pages be rendered out of order. The application must be able
to generate the proper page image, ho matter which page the printing system
requests. In this respect, the printing system is similar to the window toolkit,

which can request components to repaint at any time, in any order.

Printing Concepts 99

The callback printing model is more flexible than traditional application-driven
printing models and supports printing on a wider range of systems and printers.
For example, if a printer stacks output pages in reverse order, the printing system
can ask the application to generate pages in reverse order so that the final stack is
in proper reading order.

This model also enables applications to print to a bitmap printer from computers
that don’t have enough memory or disk space to buffer a full-page bitmap. In this
situation, a page is printed as a series of small bitmalpasnais For example, if

only enough memory to buffer one tenth of a page is available, the page is divided
into ten bands. The printing system asks the application to render each page ten
times, once to fill each band. The application does not need to be aware of the
number or size of the bands; it simply must be able to render each page when
requested.

7.2.1 Supporting Printing

An application has to perform two tasks to support printing:

 Job control—initiating and managing the print job.
» Imaging—rendering each page when the printing system requests it.

7.2.1.1 Job Control

The user often initiates printing by clicking a button or selecting a menu item in
an application. When a print operation is triggered by the user, the application
creates @rinterJob object and uses it to manage the printing process.

The application is responsible for setting up the print job, displaying print dialogs
to the user, and starting the printing process.

7.2.1.2 Imaging

When a document is printed, the application has to render each page when the
printing system requests it. To support this mechanism, the application provides a
page paintetthat implements therintable interface. When the printing system
needs a page rendered, it calls the page paipteirs method.

When a page painterisint method is called, it is passediaaphics context to
use to render the page image. It is also passede®ormat object that specifies
the geometric layout of the page, and an intgggge indesthat identifies the ordi-
nal position of the page in the print job.

100

Printing, Java 2 SDK, Standard Edition, 1.2 Version

The printing system supports bathaphics andGraphics2D rendering, To print
Java 2Dshapes, Text, andImages, you cast th&raphics object passed into the
print method to &raphics2D.

To print documents in which the pages use different page painters and have differ-
ent formats, you usepageable jobTo create a pageable job, you can use the

Book class or your own implementation of thegeable interface. To implement
simple printing operations, you do not need to use a pageable priptjal;

able can be used as long as all of the pages share the same page format and
painter.

7.2.2 Page Painters

The principal job of a page painter is to render a page using the graphics context
that is provided by the printing system. A page painter implemenes-the-
able.print method:

public int print(Graphics g, PageFormat pf, int pageIndex)

The graphics context passed to plrént method is either an instance@ph-
ics orGraphics2D, depending on the packages loaded in your Java Virtual
Machine. To us€raphics2D features, you can cast tGeaphics object to a
Graphics2D. TheGraphics instance passed torint also implements therint-
erGraphics interface.

ThePageFormat passed to &rintable describes the geometry of the page being
printed. The coordinate system of the graphics context pasgedda is fixed to

the page: the origin of the coordinate system is at the upper left corner of the
paperXincreases to the righy,increases downward, and the units are 1/72 inch.

If the page is in portrait orientation, the x-axis aligns with the paper’s “width,”
while the y-axis aligns with the paper’s “height.” (Normally, but not always, a
paper’s height exceeds its width.) If the page is in landscape orientation, the roles
are reversed: the x-axis aligns with the paper’s “height” and the y-axis with its
“width.”

Because many printers cannot print on the entire paper surfacagéfermat

specifies thémageable are@f the page: this is the portion of the page in which

it's safe to render. The specification of the imageable area does not alter the coor-
dinate system; it is provided so that the contents of the page can be rendered so
that they don't extend into the area where the printer can'’t print.

The graphics context passediant has a clip region that describes the portion
of the imageable area that should be drawn. It is always safe to draw the entire
page into the context; the printing system will handle the necessary clipping.

Printing Concepts 101

However, to eliminate the overhead of drawing portions of the page that won't be
printed, you can use the clipping region to limit the areas that you render. To get
the clipping region from the graphics context, Galliphics.getClip. You are
strongly encouraged to use the clip region to reduce the rendering overhead.

It is sometimes desirable to launch the entire printing operation “in the back-
ground” so that a user can continue to interact with the application while pages
are being rendered. To do this, calinterJob.print in a separate thread.

If possible, you should avoid graphics operations that require knowledge of the
previous image contents, suchcapyArea, setXOR, and compositing. These
operations can slow rendering and the results might be inconsistent.

7.2.3 Printable Jobs and Pageable Jobs

A Printable job provides the simplest way to print. Only one page painter is

used; the application provides a single class that implements-tineable inter-

face. When it's time to print, the printing system calls the page paipteris

method to render each page. The pages are requested in order, starting with page
index 0. However, the page painter might be asked to render each page several
times before it advances to the next page. When the last page has been printed, the
page painter’s print method returns NO_SUCH_PAGE.

In aPrintable job:

» All pages use the same page painterrag@Format. If a print dialog is
presented, it will not display the number of pages in the document because
that information is not available to the printing system.

« The printing system always asks the page painter to print each page in
indexed order, starting with the page at index 0. No pages are skipped. For
example, if a user asks to print pages 2 and 3 of a document, the page painter
will be called with indices 0, 1, and 2. The printing system might request that
a page be rendered multiple times before moving to the next page.

» The page painter informs the printing system when the end of the document
has been reached.

 All page painters are called in the same thread.

« Some printing systems might not be able to achieve the ideal output. For
example, the stack of pages emerging from the printer might be in the wrong
order, or the pages might not be collated if multiple copies are requested.

A Pageable job is more flexible than @rintable job. Unlike the pages in a
Printable job, pages in ®ageable job can differ in layout and implementation.

102

Printing, Java 2 SDK, Standard Edition, 1.2 Version

To manage &ageable job, you can use thg»ok class or implement your own
Pageable class. Through theageable, the printing system can determine the
number of pages to print, the page painter to use for each page, aagetu -

mat to use for each page. Applications that need to print documents that have a
planned structure and format should Bsgeable jobs.

In aPageable job:

« Different pages can use different page paintersPageFormats.

» The printing system can ask page painters to print pages in an arbitrary order

and some pages might be skipped. For example, if a user asks to print pages
2 and 3 of a document, the page painter will be called with indices 1 and 2 and
page index O will be skipped.

Pageable jobs do not need to know in advance how many pages are in the
document. However, unlikerintable jobs, they must be able to render

pages in any order. There might be gaps in the sequencing and the printing
system might request that a page be rendered multiple times before moving
to the next page. For example, a request to print pages 2 and 3 of a document
might result in a sequence of calls that request pages with indices 2,2,1,1, and
1.

7.2.4 Typical Life-Cycle of a PrinterJob

An application steers thainterJob object through a sequence of steps to com-
plete a printing job. The simplest sequence used by an application is:

1.
2.

Get a newrinterJob object by callingPrinterJob.getPrinterJob.

Determine whapageFormat to use for printing. A defaulpageFormat can
be obtained by callingefaultPage or you can invok@ageDialog to present
a dialog box that allows the user to specify a format.

. Specify the characteristics of the job to be printed torthinterJob. For a

Printable job, call setPrintable; for a Pageable job, call setPageable.
Note that ook object is ideal for passing tetPageable.

Specify additional print job properties, such as the number of copies to print
or the name of the job to print on the banner page.

CallprintDialog to present a dialog box to the user. This is optional. The
contents and appearance of this dialog can vary across different platforms and
printers. On most platforms, the user can use this dialog to change the printer
selection. If the user cancels the print job, thentDialog method returns

Printing Concepts 103

FALSE.

6. CallPrinterjob.print to print the job. This method in turn calisint on
the appropriate page painters.

A job can be interrupted during printing if:

* A PrinterException is thrown—the exception is caught by gheint
method and the job is halted. A page painter thromsi aterException if
it detects a fatal error.

* PrinterJob.cancel is called—the printing loop is terminated and the job is
canceled. Theancel method can be called from a separate thread that
displays a dialog box and allows the user to cancel printing by clicking a
button in the box.

Pages generated before a print job is stopped might or might not be printed.

The print job is usually not finished when g nt method returns. Work is typ-
ically still being done by a printer driver, print server, or the printer itself. The
state of theerinterJob object might not reflect the state of the actual job being
printed.

Because the state oPainterJob changes during its life cycle, it is illegal to
invoke certain methods at certain times. For example, callitRageable after
you've calledprint makes no sense. When illegal calls are detectedilne -
erJob throws ajava.lang.I1legalStateException.

7.2.5 Dialogs

The Java Printing API requires that applications invoke user-interface dialogs
explicitly. These dialogs might be provided by the platform software (such as
Windows) or by a Java 2 SDK software implementation. For interactive applica-
tions, it is customary to use such dialogs. For production printing applications,
however, dialogs are not necessary. For example, you wouldn’t want to display a
dialog when automatically generating and printing a nightly database report. A
print job that requires no user interaction is sometimes cakédrdprint job.

7.2.5.1 Page setup dialog

You can allow the user to alter the page setup information containeddr-a
Format by displaying a page setup dialog. To display the page setup dialog, you
call PrinterJob.pageDialog. The page setup dialog is initialized using the

104

Printing, Java 2 SDK, Standard Edition, 1.2 Version

parameter passed fageDialog. If the user clicks the OK button in the dialog,
thePageFormat instance is cloned, altered to reflect the user’s selections, and then
returned. If the user cancels the dialpggeDialog returns the original unaltered
PageFormat.

7.2.5.2 Print dialog

Typically, an application presents a print dialog to the user when a print menu
item or button is activated. To display this print dialog, you callRhénterJob’s
printDialog method. The user’s choices in the dialog are constrained based on
the number and format of the pages in Bréntable or Pageable that have been
furnished to th@rinterJob. If the user clicks OK in the print dialogrintDia-

log returnsTRUE. If the user cancels the print dial¢gLSE is returned and the

print job should be considered abandoned.

7.3 Printing with Printables

To provide basic printing support:
1. Implement therintable interface to provide a page painter that can render
each page to be printed.
2. Create @rinterJob.
3. CallsetPrintable to tell thePrinterJob how to print your document.

4. Callprint on thePrinterJob object to start the job.

In the following example, arintable job is used to print five pages, each of
which displays a green page number. Job control is managed ifathenethod,
which obtains and controls tireinterJob. Rendering is performed in the page
painter'sprint method.

import java.awt.*; import java.awt.print.¥;
public class SimplePrint implements Printable
{

private static Font fnt = new Font("Helvetica",Font.PLAIN,24);

public static void main(String[] args)
{
// Get a PrinterJob
PrinterJob job = PrinterJob.getPrinterJob();

Printing with Printables 105

// Specify the Printable is an instance of SimplePrint
job.setPrintable(new SimplePrint());
// Put up the dialog box
if (job.printDialog())
{
// Print the job if the user didn't cancel printing
try { job.print(Q; }
catch (Exception e)
{ /* handle exception */ }
}
System.exit(0);
}

public int print(Graphics g, PageFormat pf, int pageIndex)
throws PrinterException
{
// pagelndex @ to 4 corresponds to page numbers 1 to 5.
if (pageIndex >= 5) return Printable.NO_SUCH_PAGE;
g.setFont(fnt);
g.setColor(Color.green);
g.drawString("Page " + (pagelndex+1l), 100, 100);
return Printable.PAGE_EXISTS;

7.3.1 Using Graphics2D for Rendering

You can invokeGraphics2D functions in you page painter’s print method by first
casting thé&raphics context to &raphics2D.

In the following example, the page numbers are rendered using a red-green gradi-

ent. To do this, @radientPaint is set in th&raphics2D context.

import java.awt.*; import java.awt.print.¥;
public class SimplePrint2D implements Printable
{

private static Font fnt = new Font("Helvetica",Font.PLAIN,24);

private Paint pnt = new GradientPaint(100f, 100f, Color.red,
136f, 100f, Color.green, true);

public static void main(String[] args)

{

106

Printing, Java 2 SDK, Standard Edition, 1.2 Version

// Get a PrinterJob
PrinterJob job = PrinterJob.getPrinterJob();
// Specify the Printable is an instance of SimplePrint2D
job.setPrintable(new SimpTlePrint2D());
// Put up the dialog box
if (job.printDialog())
{
// Print the job if the user didn't cancel printing
try { job.print(Q; }
catch (Exception e) { /* handle exception */ }
3
System.exit(0);
}

public int print(Graphics g, PageFormat pf, int pageIndex)
throws PrinterException
{
// pagelndex @ to 4 corresponds to page numbers 1 to 5.
if (pageIndex >= 5) return Printable.NO_SUCH_PAGE;
Graphics2D g2 = (Graphics2D) g;
// Use the font defined above
g2.setFont(fnt);
// Use the gradient color defined above
g2.setPaint(pnt);
g2.drawString("Page " + (pageIndex+1l), 100f, 100f);
return Printable.PAGE_EXISTS;

7.3.2 Printing a File

When a page painter’s print method is invoked several times for the same page, it
must generate the same output each time.

There are many ways to ensure that repeated requests to render a page yield the
same output. For example, to ensure that the same output is generated each time
the printing system requests a particular page of a text file, page painter could
either store and reuse file pointers for each page or store the actual page data.

In the following example, a “listing” of a text file is printed. The name of the file
is passed as an argument todlhén method. TherintListingPainter class
stores the file pointer in effect at the beginning of each new page it is asked to ren-

Printing with Printables 107

der. When the same page is rendered again, the file pointer is reset to the remem-
bered position.

import java.awt.*;
import java.awt.print.*;
import java.io.*;

public class PrintListing

{
public static void main(String[] args)
{
// Get a PrinterJob
PrinterJob job = PrinterJob.getPrinterJob();
// Ask user for page format (e.g., portrait/landscape)
PageFormat pf = job.pageDialog(job.defaultPage());
// Specify the Printable is an instance of
// PrintListingPainter; also provide given PageFormat
job.setPrintable(new PrintListingPainter(args[0]), pf);
// Print 1 copy
job.setCopies(1);
// Put up the dialog box
if (job.printDialog())
{
// Print the job if the user didn't cancel printing
try { job.print(Q; }
catch (Exception e) { /* handle exception */ }
}
System.exit(0);
3
}

class PrintListingPainter implements Printable
{
private RandomAccessFile raf;
private String fileName;
private Font fnt = new Font("Helvetica", Font.PLAIN, 10);
private int rememberedPageIndex = -1;
private long rememberedFilePointer = -1;
private boolean rememberedEOF = false;

public PrintListingPainter(String file)
{

fileName = file;

try

108

Printing, Java 2 SDK, Standard Edition, 1.2 Version

{
// Open file
raf = new RandomAccessFile(file, "r'");
}
catch (Exception e) { rememberedEOF = true; }

}

public int print(Graphics g, PageFormat pf, int pageIndex)
throws PrinterException

{

try

{
// For catching IOException
if (pageIndex != rememberedPageIndex)
{

// First time we've visited this page
rememberedPageIndex = pagelndex;
// If encountered EOF on previous page, done
if (rememberedEOF) return Printable.NO_SUCH_PAGE;
// Save current position in input file
rememberedFilePointer = raf.getFilePointer();
}
else raf.seek(rememberedFilePointer);
g.setColor(Color.black);
g.setFont(fnt);
int x (int) pf.getImageableX() + 10;
int y = (int) pf.getImageableY() + 12;
// Title line
g.drawString("File: + fileName + ", page: " +
(pagelndex+1l), x, Yy);
// Generate as many lines as will fit in imageable area
y += 36;
while (y + 12 < pf.getImageableY()+pf.getImageableHeight())
{
String line = raf.readLine();
if (line == null)

{
rememberedEOF = true;
break;
3
g.drawString(line, x, y);
y += 12;
}
return Printable.PAGE_EXISTS;

}
catch (Exception e) { return Printable.NO_SUCH_PAGE;}

Printing with Pageables and Books 109

}
}

7.4 Printing with Pageables and Books

Pageable jobs are suited for applications that build an explicit representation of a
document, page by page. Tk class is a convenient way to sgeables,

but you can also build your owrageable structures iBook does not suit your
needs. This section shows you how to Bisek.

Although slightly more involvedRageable jobs are preferred overintable

jobs because the printing system has more flexibility. A major advantageyef
abTles is that the number of pages in the document is usually known and can be
displayed to the user in the print dialog box. This helps the user to confirm that the
job is specified correctly or to select a range of pages for printing.

A Book represents a collection of pages. The pages in a book do not have to share
the same size, orientation, or page painter. For examplmlamight contain two

letter size pages in portrait orientation and a letter size page in landscape orienta-
tion.

When aBook is first constructed, it is empty. To add pagesHRook, you use the
append method. This method take®ageFormat object that defines the page’s
size, printable area, and orientation and a page painter that implements the
Printable interface.

Multiple pages in &ook can share the same page format and painterappend
method is overloaded to enable you to add a series of pages that have the same
attributes by specifying a third parameter, the number of pages.

If you don’t know the total number of pages iRoak, you can pass
UNKNOWN_NUMBER _OF _PAGES to theappend method. The printing system will then

call your page painters in order of increasing page index until one of them returns
NO_SUCH_PAGE.

ThesetPage method can be used to change a page’s page format or painter. The
page to be changed is identified by a page index that indicates the page’s location
in theBook.

You call setPageable and pass in thBook to prepare the print job. TheetPage-
able andsetPrintable methods are mutually exclusive; that is, you should call
one or the other but not both when preparingethieterlob.

110

Printing, Java 2 SDK, Standard Edition, 1.2 Version

7.4.1 Using a Pageable Job

In the following example, Book is used to reproduce the first simple printing
example. (Because this case is so simple, there is little benefit in uBigable
job instead of @rintable job, but it illustrates the basics of usin@eok.) Note
that you still have to implement tieeintable interface and perform page ren-
dering in the page paintesint method.

import java.awt.*;
import java.awt.print.*;

public class SimplePrintBook implements Printable
{
private static Font fnt = new Font("Helvetica",Font.PLAIN,24);
public static void main(String[] args)
{
// Get a PrinterJob
PrinterJob job = PrinterJob.getPrinterJob();
// Set up a book
Book bk = new Book();
bk.append(new SimplePrintBook(), job.defaultPage(), 5);
// Pass the book to the PrinterJob
job.setPageable(bk);
// Put up the dialog box
if (job.printDialog())
{
// Print the job if the user didn't cancel printing
try { job.print(Q; }
catch (Exception e) { /* handle exception */ }
3
System.exit(0);
}

public int print(Graphics g, PageFormat pf, int pageIndex)
throws PrinterException
{

g.setFont(fnt);

g.setColor(Color.green);

g.drawString("Page " + (pageIndex+1), 100, 100);

return Printable.PAGE_EXISTS;

Printing with Pageables and Books 111

7.4.2 Using Multiple Page Painters

In the following example, two different page painters are used: one for a cover
page and one for content pages. The cover page is printed in landscape mode and
the contents pages are printed in portrait mode.

import java.awt.*;
import java.awt.print.*;

public class PrintBook
{
public static void main(String[] args)
{
// Get a PrinterJob
PrinterJob job = PrinterJob.getPrinterJob();
// Create a landscape page format
PageFormat pfl = job.defaultPage();
pfl1.setOrientation(PageFormat.LANDSCAPE);
// Set up a book
Book bk = new Book();
bk.append(new PaintCover(), pfl);
bk.append(new PaintContent(), job.defaultPage(), 2);
// Pass the book to the PrinterJob
job.setPageable(bk);
// Put up the dialog box
if (job.printDialog())
{
// Print the job if the user didn't cancel printing
try { job.print(Q; }
catch (Exception e) { /* handle exception */ }
}
System.exit(0);
3
}

class PaintCover implements Printable

{
Font fnt = new Font("Helvetica-Bold", Font.PLAIN, 72);

public int print(Graphics g, PageFormat pf, int pagelIndex)
throws PrinterException
{

g.setFont(fnt);

g.setColor(Color.black);

112 Printing, Java 2 SDK, Standard Edition, 1.2 Version

int yc = (int) (pf.getImageableY() +
pf.getImageableHeight()/2);
g.drawString("Widgets, Inc.", 72, yc+36);
return Printable.PAGE_EXISTS;
}
3
class PaintContent implements Printable
{
public int print(Graphics g, PageFormat pf, int pageIndex)
throws PrinterException
{
Graphics2D g2 = (Graphics2D) g;
int useRed = 0;
int xo = (int) pf.getImageableX();
int yo = (int) pf.getImageableY();
// Fill page with circles or squares, alternating red & green
for (int x = 0; x+28 < pf.getImageableWidth(); x += 36)
for (int y = 0; y+28 < pf.getImageableHeight(); y += 36)
{
if (useRed == @) g.setColor(Color.red);
else g.setColor(Color.green);
useRed = 1 - useRed;
if (pageIndex % 2 == @) g.drawRect(xo+x+4, yo+y+4, 28, 28);
else g.drawOval(xo+x+4, yo+y+4, 28, 28);
3
return Printable.PAGE_EXISTS;

	Contents
	Preface
	1.1 Enhanced Graphics, Text, and Imaging
	1.2 Rendering Model
	1.2.1 Coordinate Systems
	1.2.1.1 User Space
	1.2.1.2 Device Space

	1.2.2 Transforms
	1.2.3 Fonts
	1.2.4 Images
	1.2.5 Fills and Strokes
	1.2.6 Composites

	1.3 Backward Compatibility and Platform Independence
	1.3.1 Backward Compatibility
	1.3.2 Platform Independence

	1.4 The Java 2D API Packages
	2.1 Interfaces and Classes
	2.2 Rendering Concepts
	2.2.1 Rendering Process
	2.2.2 Controlling Rendering Quality
	2.2.3 Stroke Attributes
	2.2.4 Fill Attributes
	2.2.5 Clipping Paths
	2.2.6 Transformations
	2.2.6.1 Constructing an AffineTransform

	2.2.7 Composite Attributes
	2.2.7.1 Managing Transparency
	2.2.7.2 Transparency and Images

	2.3 Setting Up the Graphics2D Context
	2.3.1 Setting Rendering Hints
	2.3.2 Specifying Stroke Attributes
	2.3.2.1 Setting the Stroke Width
	2.3.2.2 Specifying Join and Endcap Styles
	2.3.2.3 Setting the Dashing Pattern

	2.3.3 Specifying Fill Attributes
	2.3.3.1 Filling a Shape with a Gradient
	2.3.3.2 Filling a Shape with a Texture

	2.3.4 Setting the Clipping Path
	2.3.5 Setting the Graphics2D Transform
	2.3.6 Specifying a Composition Style
	2.3.6.1 Using the Source Over Compositing Rule
	2.3.6.2 Increasing the Transparency of Composited Objects

	2.4 Rendering Graphics Primitives
	2.4.1 Drawing a Shape
	2.4.2 Filling a Shape
	2.4.3 Rendering Text
	2.4.4 Rendering Images

	2.5 Defining Custom Composition Rules
	3.1 Interfaces and Classes
	3.2 Geometry Concepts
	3.2.1 Constructive Area Geometry
	3.2.2 Bounds and Hit Testing

	3.3 Combining Areas to Create New Shapes
	3.4 Creating a Custom Shape
	4.1 Interfaces and Classes
	4.2 Font Concepts
	4.3 Text Layout Concepts
	4.3.1 Shaping Text
	4.3.2 Ordering Text
	4.3.3 Measuring and Positioning Text
	4.3.4 Supporting Text Manipulation
	4.3.4.1 Displaying Carets
	4.3.4.2 Moving Carets
	4.3.4.3 Hit Testing
	4.3.4.4 Highlighting Selections

	4.3.5 Performing Text Layout in a Java Application

	4.4 Managing Text Layout
	4.4.1 Laying Out Text
	4.4.2 Displaying Dual Carets
	4.4.3 Moving the Caret
	4.4.4 Hit Testing
	4.4.5 Highlighting Selections
	4.4.6 Querying Layout Metrics
	4.4.7 Drawing Text Across Multiple Lines

	4.5 Implementing a Custom Text Layout Mechanism
	4.6 Creating Font Derivations
	5.1 Interfaces and Classes
	5.1.1 Imaging Interfaces
	5.1.2 Image Data Classes
	5.1.3 Image Operation Classes
	5.1.4 Sample Model Classes
	5.1.5 Color Model Classes
	5.1.6 Exception Classes

	5.2 Immediate Mode Imaging Concepts
	5.2.1 Terminology

	5.3 Using BufferedImages
	5.3.1 Creating a BufferedImage
	5.3.2 Drawing in an Offscreen Buffer
	5.3.2.1 Creating an Offscreen Buffer
	5.3.2.2 Drawing in an Offscreen Buffer

	5.3.3 Manipulating BufferedImage Data Directly
	5.3.4 Filtering a BufferedImage
	5.3.5 Rendering a BufferedImage

	5.4 Managing and Manipulating Rasters
	5.4.1 Creating a Raster
	5.4.2 Parent and Child Rasters
	5.4.3 Operations on a Raster
	5.4.4 The WritableRaster Subclass

	5.5 Image Data and DataBuffers
	5.6 Extracting Pixel Data from a SampleModel
	5.7 ColorModels and Color Data
	5.7.1 Lookup Table

	5.8 Image Processing and Enhancement
	5.8.1 Using an Image Processing Operation

	6.1 Classes
	6.2 Color Concepts
	6.2.0.1 ColorSpace
	6.2.0.2 ICC_Profile and ICC_ColorSpace
	6.2.1 Describing Colors
	6.2.2 Mapping Colors through sRGB and CIEXYZ
	6.2.2.1 Color Matching

	7.1 Interfaces and Classes
	7.2 Printing Concepts
	7.2.1 Supporting Printing
	7.2.1.1 Job Control
	7.2.1.2 Imaging

	7.2.2 Page Painters
	7.2.3 Printable Jobs and Pageable Jobs
	7.2.4 Typical Life-Cycle of a PrinterJob
	7.2.5 Dialogs
	7.2.5.1 Page setup dialog
	7.2.5.2 Print dialog

	7.3 Printing with Printables
	7.3.1 Using Graphics2D for Rendering
	7.3.2 Printing a File

	7.4 Printing with Pageables and Books
	7.4.1 Using a Pageable Job
	7.4.2 Using Multiple Page Painters

