
i

Programmer’s Guide to the
Java™ 2D API

Enhanced Graphics and Imaging for Java

JavaTM 2 SDK, Standard Edition, 1.2 Version

May 3, 1999

2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business





iii

is
27-

oreign

arks or

)

 1998, 1999 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND : Use, duplication, or disclosure by the U.S. Government
subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.2
7015(b)(6/95) and DFAR 227.7202-1(a).

The release described in this document may be protected by one or more U.S. patents, f
patents, or pending applications.

Sun, the Sun logo, Sun Microsystems, JDK, Java, and the Java Coffee Cup logo are tradem
registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S
DESCRIBED IN THIS PUBLICATION AT ANY TIME





1

2
 . 2
 . 4
 . 4
 . 5
 . 6
 . 7

8
10

0

5

5

6
. 17
7
19
1
22
23
25

27
7
9

Contents

JavaTM 2D API Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Enhanced Graphics, Text, and Imaging . . . . . . . . . . . . . . . 1

Rendering Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fonts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fills and Strokes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Composites  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Backward Compatibility and Platform Independence  . . . 8
Backward Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Platform Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Java 2D API Packages  . . . . . . . . . . . . . . . . . . . . . . . . 1

Rendering with Graphics2D  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Interfaces and Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Rendering Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Rendering Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Controlling Rendering Quality  . . . . . . . . . . . . . . . . . . . . . . . 1
Stroke Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fill Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Clipping Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Composite Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Setting Up the Graphics2D Context  . . . . . . . . . . . . . . . . . 27
Setting Rendering Hints  . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Specifying Stroke Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 2
Specifying Fill Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
v



vi

32
33
34

.36
.37
.38
.38

 39

39

1
41
42

2

3

5

45

47

8
.49
50
52
52
7

8
59
59
60
60
61
61
2

Setting the Clipping Path . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setting the Graphics2D Transform  . . . . . . . . . . . . . . . . . . . .
Specifying a Composition Style. . . . . . . . . . . . . . . . . . . . . . .

Rendering Graphics Primitives . . . . . . . . . . . . . . . . . . . . .36
Drawing a Shape  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Filling a Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Rendering Text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Rendering Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Defining Custom Composition Rules  . . . . . . . . . . . . . . . .38

Geometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interfaces and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Geometry Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Constructive Area Geometry . . . . . . . . . . . . . . . . . . . . . . . . .
Bounds and Hit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Combining Areas to Create New Shapes  . . . . . . . . . . . . .4

Creating a Custom Shape . . . . . . . . . . . . . . . . . . . . . . . . . .4

Fonts and Text Layout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

Interfaces and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Font Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Text Layout Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Shaping Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Ordering Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measuring and Positioning Text  . . . . . . . . . . . . . . . . . . . . . .
Supporting Text Manipulation . . . . . . . . . . . . . . . . . . . . . . . .
Performing Text Layout in a Java Application  . . . . . . . . . . .5

Managing Text Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Laying Out Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Displaying Dual Carets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Moving the Caret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Highlighting Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Querying Layout Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drawing Text Across Multiple Lines. . . . . . . . . . . . . . . . . . .6



vii

 67

68
68
. 68
. 69
. 70
71

. 72

74

4
75
5
8
79
79

. 80

. 80

. 80
. 81

1

83

3
. 85

 89

. 89

90
93
Implementing a Custom Text Layout Mechanism  . . . . . 63

Creating Font Derivations . . . . . . . . . . . . . . . . . . . . . . . . . 65

Imaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Interfaces and Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Imaging Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Image Data Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Image Operation Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Sample Model Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Color Model Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Exception Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Immediate Mode Imaging Concepts . . . . . . . . . . . . . . . . . 72
Terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using BufferedImages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Creating a BufferedImage . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drawing in an Offscreen Buffer  . . . . . . . . . . . . . . . . . . . . . . 7
Manipulating BufferedImage Data Directly . . . . . . . . . . . . . 7
Filtering a BufferedImage . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rendering a BufferedImage. . . . . . . . . . . . . . . . . . . . . . . . . .

Managing and Manipulating Rasters . . . . . . . . . . . . . . . . 79
Creating a Raster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Parent and Child Rasters . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Operations on a Raster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
The WritableRaster Subclass. . . . . . . . . . . . . . . . . . . . . . . . 

Image Data and DataBuffers . . . . . . . . . . . . . . . . . . . . . . . 8

Extracting Pixel Data from a SampleModel  . . . . . . . . . . 81

ColorModels and Color Data . . . . . . . . . . . . . . . . . . . . . . . 82
Lookup Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Image Processing and Enhancement  . . . . . . . . . . . . . . . . 8
Using an Image Processing Operation. . . . . . . . . . . . . . . . . 

Color. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Color Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Describing Colors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



viii

4

97

98

8
99
100
.101
2
03

05
06

110
11
Mapping Colors through sRGB and CIEXYZ. . . . . . . . . . . .9

Printing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Interfaces and Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Printing Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Supporting Printing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Page Painters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Printable Jobs and Pageable Jobs. . . . . . . . . . . . . . . . . . . . 
Typical Life-Cycle of a PrinterJob. . . . . . . . . . . . . . . . . . . .10
Dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Printing with Printables . . . . . . . . . . . . . . . . . . . . . . . . . .104
Using Graphics2D for Rendering. . . . . . . . . . . . . . . . . . . . .1
Printing a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Printing with Pageables and Books . . . . . . . . . . . . . . . . .109
Using a Pageable Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using Multiple Page Painters. . . . . . . . . . . . . . . . . . . . . . . .1



how
tional

n:

I.

d
ay-
Preface

This guide describes the features provided by the Java 2D API and illustrates
you can use the Java 2D API classes to enhance your applications. For addi
information about the Java 2D APIs, see:

• The Java Tutorial, 2nd Volume. Available online at:
http://java.sun.com/docs/books/tutorial/2d/index.html

• The 2D Text Tutorial. Available online from the Java Developer Connectio
http://developer.java.sun.com/developer/onlineTraining/

Graphics/2DText/

• The Java 2D Sample Programs. Available online at:
http://java.sun.com/products/java-media/2D/samples/index.html

• The Java 2D Demo. Available from the Java 2D website:
http://java.sun.com/products/java-media/2D/index.html

This information in this guide is organized into seven chapters:

Overview —introduces the packages and key classes in the Java 2D AP

Rendering with Graphics2D—describes the Java 2D API classes in the
java.awt package and how to set up theGraphics2D rendering context.

Geometries—describes the Java 2D API classes in thejava.awt.geom

package and how to define and manipulate 2D shapes and areas.

Fonts and Text Layout—describes the Java 2D API classes in the
java.awt.font package, how to specify and retrieve font information, an
how to display and manipulate international text using the Java 2D text l
out APIs directly.

Imaging—describes the Java 2D API classes in thejava.awt.image,
java.awt.image.codec, andjava.awt.image.renderable packages and
how to display and manipulate images and offscreen buffers.

Color—describes the Java 2D API classes in thejava.awt.color package
and color management.

Printing —describes the Java 2D API classes in thejava.awt.print pack-
age and the Java 2D API printing model.
ix



Preface, Java 2 SDK, Standard Edition, 1.2 Versionx



1

the

orts
ic
ces.

ch as
as

edia
her
PIs

en-
cs,
pe-
ore

ore

ng
ava
 vir-
JavaTM 2D API Overview

The Java™ 2D API enhances the graphics, text, and imaging capabilities of 
Abstract Windowing Toolkit (AWT), enabling the development of richer user
interfaces and new types of Java applications.

Along with these richer graphics, font, and image APIs, the Java 2D API supp
enhanced color definition and composition, hit detection on arbitrary geometr
shapes and text, and a uniform rendering model for printers and display devi

The Java 2D API also enables the creation of advanced graphics libraries, su
CAD-CAM libraries and graphics or imaging special effects libraries, as well 
the creation of image and graphic file read/write filters.

When used in conjunction with the Java Media Framework and other Java M
APIs, the Java 2D APIs can be used to create and display animations and ot
multimedia presentations. The Java Animation and Java Media Framework A
rely on the Java 2D API for rendering support.

1.1 Enhanced Graphics, Text, and Imaging

Early versions of the AWT provided a simple rendering package suitable for r
dering common HTML pages, but not full-featured enough for complex graphi
text, or imaging. As a simplified rendering package, the early AWT embodied s
cific cases of more general rendering concepts. The Java 2D API provides a m
flexible, full-featured rendering package by expanding the AWT to support m
general graphics and rendering operations.

For example, through theGraphics class you can draw rectangles, ovals, and
polygons.Graphics2D enhances the concept of geometric rendering by providi
a mechanism for rendering virtually any geometric shape. Similarly, with the J
2D API you can draw styled lines of any width and fill geometric shapes with
tually any texture.
1



JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version2

Java
der-

ices
 the
ring

ns
 2D
Geometric shapes are provided through implementations of theShape interface,
for exampleRectangle2D andEllipse2D. Curves and arcs are also specific
implementations ofShape.

Fill and pen styles are provided through implementations of thePaint and
Stroke interfaces, for exampleBasicStroke, GradientPaint, TexturePaint,
andColor.

AffineTransform defineslinear transformations of 2D coordinates, including

scale, translate, rotate, and shear.

Clip regions are defined by the same implementations of theShape interface that
are used to define general clipping regions, for exampleRectangle2D andGener-
alPath.

Color composition is provided by implementations of theComposite interface,
for exampleAlphaComposite.

A Font is defined by collections ofGlyphs, which are in turn defined by individ-
ualShapes.

1.2 Rendering Model

The basic graphics rendering model has not changed with the addition of the
2D APIs. To render a graphic, you set up the graphics context and invoke a ren
ing method on theGraphics object.

The Java 2D API classGraphics2D extendsGraphics to support more graphics
attributes and provide new rendering methods. Setting up aGraphics2D context is
described in “Rendering with Graphics2D” on page 15.

The Java 2D API automatically compensates for differences in rendering dev
and provides a uniform rendering model across different types of devices. At
application level, the rendering process is the same whether the target rende
device is a display or a printer.

1.2.1 Coordinate Systems

The Java 2D API maintains two coordinate systems:

• User spaceis a device-independent, logical coordinate system. Applicatio
use this coordinate system exclusively; all geometries passed into Java
rendering routines are specified in user space.



Rendering Model 3

ding

een
coor-

r of
.

e sys-
nd
rdi-
 a
sed

ain-
ation
• Device space is a device-dependent coordinate system that varies accor
to the target rendering device.

The Java 2D system automatically performs the necessary conversions betw
user space and the device space of the target rendering device. Although the
dinate system for a monitor is very different from the coordinate system for a
printer, these differences are invisible to applications.

1.2.1.1 User Space

As shown in Figure 1-1, the user space origin is located in the upper-left corne
the space, withx values increasing to the right andy values increasing downward

Figure 1-1 User Space Coordinate System

User space represents a uniform abstraction of all possible device coordinat
tems. The device space for a particular device might have the same origin a
direction as user space, or it might be different. Regardless, user space coo
nates are automatically transformed into the appropriate device space when
graphic object is rendered. Often, the underlying platform device drivers are u
to perform this conversion.

1.2.1.2 Device Space

The Java 2D API defines three levels of configuration information that are m
tained to support the conversion from user space to device space. This inform
is encapsulated by three classes:

• GraphicsEnvironment

• GraphicsDevice

• GraphicsConfiguration

y

x(0,0)



JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version4

e
ens,

 a
 a

in
col-

ace
ed to

ate
are

-
ed

orm
ordi-

the
at is
ways
ing,
ngle
TheGraphicsEnvironment describes the collection of rendering devices visibl
to a Java application on a particular platform. Rendering devices include scre
printers, and image buffers. TheGraphicsEnvironment also includes a list of all
of the available fonts on the platform.

A GraphicsDevice describes an application-visible rendering device, such as
screen or printer. Each possible configuration of the device is represented by
GraphicsConfiguration. For example, an SVGA display device can operate 
several modes: 640x480x16 colors, 640x480x256 colors, and 800x600x256 
ors. The SVGA screen is represented by aGraphicsDevice object and each of
the modes is represented by aGraphicsConfiguration object.

A GraphicsEnvironment can contain one or moreGraphicsDevices; in turn,
eachGraphicsDevice can have one or moreGraphicsConfigurations.

Between them, theGraphicsEnvironment, GraphicsDevice, andGraphicsCon-
figuration represent all of the information necessary for locating a rendering
device or font on the Java platform and for converting coordinates from user sp
to device space. An application can access this information, but does not ne
perform any transformations between user space and device space.

1.2.2 Transforms

The Java 2D API has a unified coordinate transformation model. All coordin
transformations, including transformations from user to device space,
represented byAffineTransform objects.AffineTransform defines the rules for
manipulating coordinates using matrices.

You can add anAffineTransform to the graphics context to rotate, scale, trans
late, or shear a geometric shape, text, or image when it is rendered. The add
transform is applied to any graphic object rendered in that context. The transf
is performed when user space coordinates are converted to device space co
nates.

1.2.3 Fonts

A string is commonly thought of in terms of the characters that comprise
string. When a string is drawn, its appearance is determined by the font th
selected. However, the shapes that the font uses to display the string don’t al
correspond to individual characters. For example, in professional publish
certain combinations of two or more characters are often replaced by a si
shape called aligature.



Rendering Model 5

ed

ny
t ver-
n

s

 font
e,
ces
k-

cal

tiple
of the

s is

e for

tly
loca-
look

peci-
The shapes that a font uses to represent the characters in the string are call
glyphs. A font might represent a character such as a lowercasea acute using mul-
tiple glyphs, or represent certain character combinations such as thefi in final with
a single glyph. In the Java 2D API, a glyph is simply aShape that can be manipu-
lated and rendered in the same way as any otherShape.

A fontcan be thought of as a collection of glyphs. A single font might have ma
versions, such as heavy, medium, oblique, gothic, and regular. These differen
sions are calledfaces. All of the faces in a font have a similar typographic desig
and can be recognized as members of the samefamily. In other words, a collection
of glyphs with a particular style forms a font face, a collection of font faces form
a font family, and a collection of font families forms the set of fonts available
within a particularGraphicsEnvironment.

In the Java 2D API, fonts are specified by a name that describes a particular
face—for example, Helvetica Bold. This is different from the JDK 1.1 softwar
in which fonts are described by logical names that map onto different font fa
depending on which font faces are available on a particular platform. For bac
ward compatibility, the Java 2D API supports the specification of fonts by logi
name as well as by font face name.

Using the Java 2D API, you can compose and render strings that contain mul
fonts of different families, faces, sizes, and even languages. The appearance
text is kept logically separate from the layout of the text.Font objects are used to
describe the appearance, and the layout information is stored inTextLayout and
TextAttributeSet objects. Keeping the font and layout information separate
makes it easier to use the same fonts in different layout configurations.

1.2.4 Images

Images are collections of pixels organized spatially. Apixel defines the appear-
ance of an image at a single display location. A two-dimensional array of pixel
called araster.

The pixel’s appearance can be defined directly or as an index into a color tabl
the image.

In images that contain many colors (more than 256), the pixels usually direc
represent the color, alpha, and other display characteristics for each screen 
tion. Such images tend to be much larger than indexed-color images, but they
more realistic.

In an indexed-color image, the colors in the image are limited to the colors s
fied in the color table, often resulting in fewer colors that can be used in the



JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version6

alue,
rmat

. For

ed,
irect
le

g

can

es.

di-
image. However, an index typically requires less storage space than a color v
so images stored as a set of indexed colors are usually smaller. This pixel fo
is popular for images that contain only 16 or 256 colors.

Images in the Java 2D API have two primary components:

• The raw image data (the pixels)

• The information necessary for interpreting the pixels

The rules for interpreting the pixel are encapsulated by aColorModel object—for
example, whether the values should be interpreted as direct or indexed colors
a pixel to be displayed, it must be paired with a color model.

A band is one component of the color space for an image. For example, the R
Green, and Blue components are the bands in an RGB image. A pixel in a d
color model image can be thought of as a collection of band values for a sing
screen location.

Thejava.awt.image package contains severalColorModel implementations,
including those for packed and component pixel representations.

A ColorSpace object encapsulates the rules that govern how a set of numeric
measurements corresponds to a particular color. TheColorSpace implementa-
tions in thejava.awt.color represent the most popular color spaces, includin
RGB and gray scale. Note that a color space isnot a collection of colors—it
defines the rules for how to interpret individual color values.

Separating the color space from the color model provides greater flexibility in
how colors are represented and converted from one color representation to
another.

1.2.5 Fills and Strokes

With the Java 2D API, you can renderShapes using different pen styles and fill
patterns. Because text is ultimately represented by a set of glyphs, text strings
also be stroked and filled.

Pen styles are defined by objects that implement theStroke interface. Strokes
enable you to specify different widths and dashing patterns for lines and curv

Fill patterns are defined by objects that implement thePaint interface. TheColor
class, which was available in earlier versions of the AWT, is a simple type of
Paint object used to define solid-color fills. The Java 2D API provides two ad
tionalPaint implementations,TexturePaint andGradientPaint. Texture-



Rendering Model 7

rs.

two

ng

d

o get

mine
upy
how

ing
 des-
ms

s in

s of
an
not

col-
Paint defines a fill pattern using a simple image fragment that is repeated
uniformly. GradientPaint defines a fill pattern as a gradient between two colo

In Java 2D, rendering a shape’s outline and filling the shape with a pattern are
separate operations:

• Using one of thedraw methods renders the shape’s contour or outline usi
the pen style specified by theStroke attribute and the fill pattern specified by
thePaint attribute.

• Using thefillmethod fills the interior of the shape with the pattern specifie
by thePaint attribute.

When a text string is rendered, the currentPaint attribute is applied to the glyphs
that form the string. Note, however, thatdrawString actually fills the glyphs that
are rendered. To stroke the outlines of the glyphs in a text string, you need t
the outlines and render them as shapes using thedraw method.

1.2.6 Composites

When you render an object that overlaps an existing object, you need to deter
how to combine the colors of the new object with the colors that already occ
the area where you are going to draw. The Java 2D API encapsulates rules for
to combine colors in aComposite object.

Primitive rendering systems provide only basic Boolean operators for combin
colors. For example, a Boolean compositing rule might allow the source and
tination color values to be ANDed, ORed, or XORed. There are several proble
with this approach

• It’s not “human friendly”—it’s difficult to think in terms of what the resulting
color will be if red and blue are ANDed, not added.

• Boolean composition does not support the accurate composition of color
different color spaces.

• Straight Boolean composition doesn’t take into account the color model
the colors. For example, in an indexed color model, the result of a Boole
operation on two pixel values in an image is the composite of two indices,
two colors.

The Java 2D API avoids these pitfalls by implementing alpha-blending1 rules that
take color model information into account when compositing colors.   AnAlpha-

Composite object includes the color model of both the source and destination
ors.



JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version8

is

nd

Java
in
rfaces

ses a

e of

n-
1.3 Backward Compatibility and Platform Independence

The Java 2D API maintains backward compatibility with JDK 1.1 software. It
also architected so that applications can maintain platform-independence.

1.3.1 Backward Compatibility

To ensure backward compatibility, the functionality of existing JDK graphics a
imaging classes and interfaces was maintained. Existing features were not
removed and no package designations were changed for existing classes. The
2D API enhances the functionality of the AWT by implementing new methods
existing classes, extending existing classes, and adding new classes and inte
that don’t affect the legacy APIs.

For example, much of the Java 2D API functionality is delivered through an
expanded graphics context,Graphics2D. To provide this extended graphics con-
text while maintaining backward compatibility,Graphics2D extends theGraph-
ics class from the JDK 1.1 release.

The usage model of the graphics context remains unchanged. The AWT pas
graphics context to an AWTComponent through the following methods:

• paint

• paintAll

• update

• print

• printAll

• getGraphics

A JDK 1.1 applet interprets the graphics context that’s passed in as an instanc
Graphics. To gain access to the new features implemented inGraphics2D, a
Java 2D API–compatible applet casts the graphics context to aGraphics2D

object:

public void Paint (Graphics g) {

Graphics2D g2 = (Graphics2D) g;

1. For detailed information about alpha blending, see Section 17.6 ofComputer Graphics:
Principles and Practice. 2nd ed. J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes. Addiso
Wesley, 1990.



Backward Compatibility and Platform Independence 9

alizes

class
o add

 This

r-

.

al” to
they
cepts

l
e

...

...
g2.setTransform (t);

}

In some cases, rather than extending a legacy class, the Java 2D API gener
it. Two techniques were used to generalize legacy classes:

• One or more parent classes were inserted in the hierarchy, and the legacy
was updated to extend the new parent classes. This technique is used t
general implemented methods and instance data to the legacy class.

• One or more interface implementations were added to the legacy class.
technique is used to add general abstract methods to the legacy class.

For example, the Java 2D API generalizes the AWTRectangle class using both
of these techniques. The hierarchy for rectangle now looks like:

java.lang.object
|
+-------java.awt.geom.RectangularShape
             |
             +---------java.awt.geom.Rectangle2D
                               |
                               +-------java.awt.Rectangle

In the JDK 1.1 software,Rectangle simply extendedObject. It now extends the
newRectangle2D class and implements bothShape andSerializable. Two par-
ent classes were added to theRectangle hierarchy:RectangularShape and
Rectangle2D. Applets written for JDK 1.1 software are unaware of the new pa
ent classes and interface implementations, but are unaffected becauseRectangle

still contains the methods and members that were present in earlier versions

The Java 2D API adds several new classes and interfaces that are “orthogon
the legacy API. These additions do not extend or generalize existing classes—
are entirely new and distinct. These new classes and interfaces embody con
that had no explicit representation in the legacy API.

For example, the Java 2D API implements several newShape classes, including
Arc2D, CubicCurve2D, andQuadCurve2D. Although early versions of the AWT
could render arcs using thedrawArc andfillArc methods, there was no genera
curve abstraction and no discrete classes that embodied arcs. These discret
classes could be added to the Java 2D API without disrupting legacy applets
becausedrawArc andfillArc are still supported through theGraphics class.



JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version10

API
e tar-
e file

ro-
n or
n of

izes

gen-
es in
1.3.2 Platform Independence

To enable the development of platform-independent applications, the Java 2D
makes no assumptions about the resolution, color space, or color model of th
get rendering device. Nor does the Java 2D API assume any particular imag
format.

Truly platform-independent fonts are possible only when the fonts are built-in
(provided as part of the JDK software), or when they are mathematically or p
grammatically generated. The Java 2D API does not currently support built-i
mathematically generated fonts, but it does enable the programmatic definitio
entire fonts through their glyph set. Each glyph can in turn be defined by aShape

that consists of line segments and curves. Many fonts of particular styles and s
can be derived from a single glyph set.

1.4 The Java 2D API Packages

The Java 2D API classes are organized into the following packages:

• java.awt

• java.awt.geom

• java.awt.font

• java.awt.color

• java.awt.image

• java.awt.image.renderable

• java.awt.print

Packagejava.awt contains those Java 2D API classes and interfaces that are
eral in nature or that enhance legacy classes. (Obviously, not all of the class
java.awt are Java 2D classes.)

AlphaComposite BasicStroke Color

Composite CompositeContext Font

GradientPaint Graphics2D GraphicsConfiguration

GraphicsDevice GraphicsEnvironment Paint

PaintContext Rectangle Shape

Stroke TexturePaint Transparency



The Java 2D API Packages 11

ion

reci-
der-

nd
Package java.awt.geom contains classes and interfaces related to the definit
of geometric primitives:

Many of the geometric primitives have corresponding.Float and.Double
implementations. This was done to enable both floating single- and double-p
sion implementations. Double-precision implementations provide greater ren
ing precision at the expense of performance on some platforms.

Packagejava.awt.font contains classes and interfaces used for text layout a
the definition of fonts:

Packagejava.awt.color contains classes and interfaces for the definition of
color spaces and color profiles:

AffineTransform Arc2D Arc2D.Double

Arc2D.Float Area CubicCurve2D

CubicCurve2D.Double CubicCurve2D.Float Dimension2D

Ellipse2D Ellipse2D.Double Ellipse2D.Float

FlatteningPathIterator GeneralPath Line2D

Line2D.Double Line2D.Float PathIterator

Point2D Point2D.Double Point2D.Float

QuadCurve2D QuadCurve2D.Double QuadCurve2D.Float

Rectangle2D Rectangle2D.Double Rectangle2D.Float

RectangularShape RoundRectangle2D RoundRectangle2D.Double

RoundRectangle2D.Float

FontRenderContext GlyphJustificationInfo GlyphMetrics

GlyphVector GraphicAttribute ImageGraphicAttribute

LineBreakMeasurer LineMetrics MultipleMaster

OpenType ShapeGrapicAttribute TextAttribute

TextHitInfo TextLayout TransformAttribute

ColorSpace ICC_ColorSpace ICC_Profile

ICC_ProfileGray ICC_ProfileRGB



JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version12

 of
Thejava.awt.image andjava.awt.image.renderable packages contain
classes and interfaces for the definition and rendering of images:

Packagejava.awt.image was present in earlier versions of the AWT. The Java
2D API enhances the following legacy AWT image classes:

• ColorModel

• DirectColorModel

• IndexColorModel

These color model classes remain in thejava.awt.image package for backward
compatibility. To maintain consistency, the new color model classes are also
located in thejava.awt.image package.

Package java.awt.print contains classes and interfaces that enable printing
all Java 2D–based text, graphics, and images.

AffineTransformOp BandCombineOp BandedSampleModel

BufferedImage BufferedImageFilter BufferedImageOp

ByteLookupTable ColorConvertOp ColorModel

ComponentColorModel ComponentSampleModel ConvolveOp

ContextualRenderedImageFactory DataBuffer

DataBufferByte DataBufferInt DataBufferShort

DataBufferUShort DirectColorModel IndexColorModel

Kernel LookupOp LookupTable

MultiPixelPackedSampleModel PackedColorModel ParameterBlock

PixelInterleavedSampleModel Raster RasterOp

RenderableImage RenderableImageOp RenderableImageProducer

RenderContext RenderedImageFactory RenderedImage

RescaleOp SampleModel ShortLookupTable

SinglePixelPackedSampleModel TileObserver

WritableRaster WritableRenderedImage

Book Pageable PageFormat

Paper Printable PrinterGraphics



The Java 2D API Packages 13
PrinterJob



JavaTM 2D API Overview, Java 2 SDK, Standard Edition, 1.2 Version14



2

ocess

the
st of

a.

on.

ed
Rendering with Graphics2D

Graphics2D extendsjava.awt.Graphics to provide more sophisticated control
over the presentation of shapes, text, and images. The Java 2D rendering pr
is controlled through theGraphics2D object and its state attributes.

TheGraphics2D state attributes, such as line styles and transformations, are
applied to graphic objects when they are rendered. The collection of state
attributes associated with aGraphics2D is referred to as theGraphics2D context.
To render text, shapes, or images, you set up theGraphics2D context and then call
one of theGraphics2D rendering methods, such asdraw or fill.

2.1 Interfaces and Classes

The following tables list the interfaces and classes used in conjunction with
Graphics2D context, including the classes that represent state attributes. Mo
these classes are part of thejava.awt package.

Interface Description

Composite Defines methods to compose a draw primitive with the underlying graphics are
Implemented byAlphaComposite.

CompositeContext Defines the encapsulated and optimized environment for a composite operati
Used by programmers implementing custom compositing rules.

Paint Extends:Transparency
Defines colors for adraw or fill operation. Implemented byColor, Gradient-
Paint andTexturePaint.

PaintContext Defines the encapsulated and optimized environment for a paint operation. Us
by programmers implementing custom paint operations.
15



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version16

D

2.2 Rendering Concepts

To render a graphic object using the Java 2D API, you set up theGraphics2D con-
text and pass the graphic object to one of theGraphics2D rendering methods.

You can modify the state attributes that form theGraphics2D context to:

• Vary the stroke width.

• Change how strokes are joined together.

• Set a clipping path to limit the area that is rendered.

• Translate, rotate, scale, or shear objects when they are rendered.

• Define colors and patterns to fill shapes with.

• Specify how multiple graphics objects should be composed.

Stroke Generates aShape that encloses the outline of theShape to be rendered. Imple-
mented byBasicStroke.

Class Description

AffineTransform
(java.awt.geom)

Represents a 2D affine transform, which performs a linear mapping from 2
coordinates to other 2D coordinates.

AlphaComposite Implements:Composite
Implements basic alpha composite rules for shapes, text, and images.

BasicStroke Implements:Stroke
Defines the “pen style” to be applied to the outline of aShape.

Color Implements:Paint
Defines a solid color fill for aShape.

GradientPaint Implements:Paint
Defines a linear color gradient fill pattern for aShape. This fill pattern
changes from color C1 at point P1 to color C2 at point P2.

Graphics2D Extends:Graphics
Fundamental class for 2D rendering. Extends the originaljava.awt.Graph-

ics class.

TexturePaint Implements:Paint
Defines a texture or pattern fill for aShape. The texture or pattern is gener-
ated from aBufferedImage.

Interface Description



Rendering Concepts 17

e
icular

ssi-

ation
y.

to

s

er-

ce.

as
h as
Graphics2D defines several methods for adding and changing attributes in th
graphics context. Most of these methods take an object that represents a part
attribute, such as aPaint or Stroke object.

TheGraphics2D context holdsreferences to these attribute objects: they are not
cloned. If you alter an attribute object that is part of theGraphics2D context, you
need to call the appropriateset method to notify the context. Modifying an
attribute object during a rendering operation will cause unpredictable and po
bly unstable behavior.

2.2.1 Rendering Process

When a graphic object is rendered, the geometry, image, and attribute inform
are combined to calculate which pixel values must be changed on the displa

The rendering process for aShape can be broken down into four steps:

1. If theShape is to be stroked, theStroke attribute in theGraphics2D context
is used to generate a newShape that encompasses the stroked path.

2. The coordinates of theShape’s path are transformed from user space in
device space according to the transform attribute in theGraphics2D context.

3. The Shape’s path is clipped using the clip attribute in theGraphics2D
context.

4. The remainingShape, if any, is filled using thePaint and Composite

attributes in theGraphics2D context.

Rendering text is similar to rendering aShape, since the text is rendered as indi-
vidual glyphs and each glyph is aShape. The only difference is that the Java 2D
API must determine whatFont to apply to the text and get the appropriate glyph
from theFont before rendering.

Images are handled differently, transformations and clipping operations are p
formed on the image’s bounding box. The color information is taken from the
image itself and its alpha channel is used in conjunction with the currentCompos-

ite attribute when the image pixels are composited onto the rendering surfa

2.2.2 Controlling Rendering Quality

The Java 2D API lets you indicate whether you want objects to be rendered 
quickly as possible, or whether you prefer that the rendering quality be as hig



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version18

ll be
possible. Your preferences are specified as hints through theRenderingHints

attribute in theGraphics2D context. Not all platforms support modification of the
rendering mode so specifying rendering hints does not guarantee that they wi
used.

TheRenderingHints class supports the following types of hints:

• Alpha interpolation—can be set to default, quality, or speed.

• Antialiasing—can be set to default, on, or off.

• Color Rendering–can be set to default, quality, or speed.

• Dithering—can be set to default, disable, or enable.

• Fractional Metrics—can be set to default, on, or off.

• Interpolation—can be set to nearest-neighbor, bilinear, or bicubic.

• Rendering—can be set to default, quality, or speed.

• Text antialiasing—can be set to default, on, or off.

To set or change theRenderingHints attribute in theGraphics2D context, you
call setRenderingHints. When a hint is set to default, the platform rendering
default is used is used.



Rendering Concepts 19

le,

their

 that
w-

ve,
ov-
e on-
2.2.3 Stroke Attributes

Stroking aShape such as aGeneralPath object is equivalent to running a logical
pen along the segments of theGeneralPath. TheGraphics2D Stroke attribute
defines the characteristics of the mark drawn by the pen.

A BasicStroke object is used to define the stroke attributes for aGraphics2D

context.BasicStroke defines characteristics such as the line width, endcap sty
segment join-style, and the dashing pattern. To set or change theStroke attribute
in theGraphics2D context, you callsetStroke.

Figure 2-1 endcap styles supported byBasicStroke

Antialiasing

When graphics primitives are rendered on raster-graphics display devices, 
edges can appear jagged because ofaliasing. Arcs and diagonal lines take on a
jagged appearance because they are approximated by turning on the pixels
are closest to the path of the line or curve. This is particularly noticeable on lo
resolution devices, where the jagged edges appear in stark contrast to the
smooth edges of horizontal or vertical lines.

Antialiasing is a technique used to render objects with smoother-appearing
edges. Instead of simply turning on the pixel that is closest to the line or cur
the intensity of surrounding pixels is set in proportion to the amount of area c
ered by the geometry being rendered. This softens the edges and spreads th
off transition over multiple pixels. However, antialiasing requires additional
computing resources and can reduce rendering speed.

Aliasing Antialiasing

Chopped
(CAP_BUTT)

Round
(CAP_ROUND)

Squared
(CAP_SQUARED)



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version20

d

ed

e

Figure 2-2 Join styles supported byBasicStroke

For example, the first image in Figure 2-3 uses the miter join-style; the secon
image uses a round join-style, a round endcap style, and a dashing pattern.

Figure 2-3 Stroke Styles

TheGraphics2D rendering methods that use theStroke attribute aredraw,
drawArc, drawLine, drawOval, drawPolygon, drawPolyline, drawRect, and
drawRoundRect.When one of these methods is called, the outline of the specifi
Shape is rendered. TheStroke attribute defines the line characteristics and the
Paint attribute defines the color or pattern of the mark drawn by the pen.

For example, whendraw(myRectangle) is called:

1. TheStroke is applied to the rectangle’s outline.

2. The stroked outline is converted to aShape object.

3. ThePaint is applied to the pixels that lie within the contour of the outlin
Shape.

This process is illustrated in Figure 2-4:

Figure 2-4 Stroking a Shape

Bevel
(JOIN_BEVEL)

Round
(JOIN_ROUND)

Miter
(JOIN_MITER)

myRectangle Stroked Rectangle
(1)

Outline Shape
(2)

���
���
���

yyy
yyy
yyy

Painted Rectangle
(3)



Rendering Concepts 21

you

-

2.2.4 Fill Attributes

The fill attribute in theGraphics2D context is represented by aPaint object. You
add aPaint to theGraphics2D context by callingsetPaint.

When aShape or glyph is drawn (Graphics2D.draw, Graphics2D.drawString),
thePaint is applied to all of the pixels that lie inside of theShape that represents
the object’s stroked outline. When aShape is filled (Graphics2D.fill), the
Paint is applied to all of the pixels that lie within theShape’s contour.

Simple solid color fills can be set with thesetColor method.Color is the sim-
plest implementation of thePaint interface.

To fill Shapes with more complex paint styles such as gradients and textures,
use the Java 2DPaint classesGradientPaint andTexturePaint. These classes
eliminate the time-consuming task of creating complex fills using simple solid
color paints. Figure 2-5 illustrates two fills that could easily be defined byGradi-

entPaint andTexturePaint.

Figure 2-5 Complex Fill Styles

Whenfill is called to render aShape, the system:

1. Determines what pixels comprise theShape.

2. Gets the color of each pixel from thePaint object.

3. Converts the color to an appropriate pixel value for the output device.

4. Writes the pixel to that device.

����
��
��
��
��QQRR
SS
SS
TT
TT¢¢££
¤¤
¤¤
¥¥
¥¥



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version22

th

or a

rate
e
the
m

ext
ur-
2.2.5 Clipping Paths

A clipping path identifies the portion of aShape or Image that needs to be
rendered. When a clipping path is part of theGraphics2D context, only those
parts of aShape or Image that lie within the path are rendered.

To add a clipping path to theGraphics2D context, you callsetClip. Any Shape

can be used to define the clipping path.

To change the clipping path, you can either usesetClip to specify a new path or
call clip to change the clipping path to the intersection of the old clipping pa
and a newShape.

Batch Processing

To streamline the processing of pixels, the Java 2D API processes them in
batches. A batch can be either a contiguous set of pixels on a given scanline
block of pixels. This batch processing is done in two steps:

1. The Paint object’s createContext method is called to create a
PaintContext. ThePaintContext stores the contextual information about
the current rendering operation and the information necessary to gene
the colors. ThecreateContext method is passed the bounding boxes of th
graphics object being filled in user space and in device space,
ColorModel in which the colors should be generated, and the transfor
used to map user space into device space. TheColorModel is treated as a
hint because not allPaint objects can support an arbitraryColorModel.
(For more information aboutColorModels, see “Color” on page 89.”)

2. The getColorModel method is called to get theColorModel of the
generated paint color from thePaintContext.

The getRaster method is then called repeatedly to get theRaster that con-
tains the actual color data for each batch. This information is passed to the n
stage in the rendering pipeline, which draws the generated color using the c
rentComposite object.



Rendering Concepts 23

cts
onal
o the

of

es.
rm

e-
rent
2.2.6 Transformations

The Graphics2D context contains a transform that is used to transform obje
from user space to device space during rendering. To perform additi
transformations, such as rotation or scaling, you can add other transforms t
Graphics2D context. These additional transforms become part of the pipeline
transformations applied during rendering.

Graphics2D provides several different ways to modify the transform in the
Graphics2D context. The simplest is to call one of theGraphics2D transforma-
tion methods:rotate, scale, shear, ortranslate. You specify the characteris-
tics of the transform that you want to be applied during rendering, and
Graphics2D automatically makes the appropriate changes.

You can also explicitlyconcatenate anAffineTransform with the current
Graphics2D transform. AnAffineTransform performs a linear transformation
such as translation, scaling, rotation, or shearing on a set of graphics primitiv
When a transform is concatenated with an existing transform, the last transfo
specified is thefirst to be applied. To concatenate a transform with the current
transform, you pass anAffineTransform to Graphics2D.transform.

Graphics2D also provides a version ofdrawImage that takes anAffineTrans-
form as a parameter. This enables you to apply a transformation to an image
object when it is drawn without permanently modifying the transformation pip
line. The image is drawn as if you had concatenated the transform with the cur
transform in theGraphics2D context.



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version24

en-

s

s

ng

as

ce
2.2.6.1 Constructing an AffineTransform

AffineTransform provides a set of convenience methods for constructingAffin-

eTransform objects:

• getTranslateInstance

• getRotateInstance

• getScaleInstance

• getShearInstance

Affine Transforms

The Java 2D API provides one transform class,AffineTransform. Affine-
Transforms are used to transform text, shapes, and images when they are r
dered. You can also apply transforms toFont objects to create new font
derivations, as discussed in “Creating Font Derivations” on page 65.

An affine transformation performs a linear transformation on a set of graphic
primitives. It always transforms straight lines into straight lines and parallel
lines into parallel lines; however, the distance between points and the angle
between nonparallel lines might be altered.

Affine transformations are based on two-dimensional matrices of the followi
form:

 where  and

Transforms can be combined, effectively creating a series orpipeline of trans-
formations that can be applied to an object. This combination is referred to 
concatenation. When a transform is concatenated with an existing transform,
such as withAffineTransform.concatenate, the last transform specified is
thefirst to be applied. A transform can also bepre-concatenated with an exist-
ing transform. In this case, the last transform specified is thelast to be applied.

Pre-concatenation is used to perform transformations relative to device spa
instead of user space. For example, you could useAffineTransform.preCon-

catenate to perform a translation relative to absolute pixel space.

a c tx
b d ty

x′ ax cy tx+ += y′ bx dy ty+ +=



Rendering Concepts 25

nt to
an

ren-
gle
bina-

ss of
ed

le
To use these methods, you specify the characteristics of the transform you wa
create andAffineTransform generates the appropriate transform matrix. You c
also construct anAffineTransform by directly specifying the elements of the
transformation matrix.

2.2.7 Composite Attributes

When two graphic objects overlap, it is necessary to determine what colors to
der the overlapping pixels. For example, if a red rectangle and a blue rectan
overlap, the pixels that they share could be rendered red, blue, or some com
tion of the two. The color of the pixels in the overlapping area will determine
which rectangle appears to be on top and how transparent it looks. The proce
determining what color to render pixels shared by overlapping objects is call
compositing.

Two interfaces form the basis of the Java 2D compositing model:Composite and
CompositeContext.

To specify the compositing style that should be used, you add anAlphaCompos-

ite object to theGraphics2D context by callingsetComposite. AlphaCompos-
ite, an implementation of theComposite interface, supports a number of
different compositing styles. Instances of this class embody a compositing ru
that describes how to blend a new color with an existing one.

One of the most commonly used compositing rules in theAlphaComposite class
is SRC_OVER, which indicates that the new color (the source color) should be
blended over the existing color (the destination color).

AlphaComposite
Composition Rule Description Example
CLEAR Clear

DEST_IN Destination In

DEST_OUT Destination Out

DEST_OVER Destination Over

SRC Source

SRC_IN Source In

SRC_OUT Source Out

SRC_OVER Source Over



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version26

nt-
lors

ha
n.

 that

for-

for-
mple
2.2.7.1 Managing Transparency

A color’s alpha value is a measure of its transparency: it indicates, as a perce
age, how much of a previously rendered color should show through when co
overlap. Opaque colors (alpha=1.0) don’t allow any of the underlying color to
show through, while transparent colors (alpha=0.0) let all of it show through.

When text andShapes are rendered, the alpha value is derived from thePaint

attribute in theGraphics2D context. WhenShapes and text are antialiased, the
alpha value from thePaint in theGraphics2D context is combined with pixel
coverage information from the rasterized path. Images maintain their own alp
information—see “Transparency and Images” on page 26 for more informatio

When you construct anAlphaComposite object, you can specify an additional
alpha value. When you add thisAlphaComposite object to theGraphics2D con-
text, this extra alpha value increases the transparency of any graphic objects
are rendered—the alpha value of each graphic object is multiplied by theAlpha-

Composite’s alpha value.

2.2.7.2 Transparency and Images

Images can carry transparency information for each pixel in the image. This in
mation, called analpha channel, is used in conjunction with theComposite object
in theGraphics2D context to blend the image with existing drawings.

For example, Figure 2-6 contains three images with different transparency in
mation. In each case, the image is displayed over a blue rectangle. This exa
assumes that theGraphics2D context contains anAlphaComposite object that
usesSRC_OVER as the compositing operation.

Figure 2-6 Transparency and Images



Setting Up the Graphics2D Context 27

lly
 sec-
on-
ird

the

w

ithm

e is

the
the
In the first image, all of the pixels are either fully opaque (the dog’s body) or fu
transparent (the background). This effect is often used on Web pages. In the
ond image, all of the pixels in the dog’s body are rendered using a uniform, n
opaque alpha value, allowing the blue background to show through. In the th
image, the pixels around the dogs face are fully opaque (alpha=1.0), but as 
distance from its face increases, the alpha values for the pixels decrease.

2.3 Setting Up the Graphics2D Context

To configure theGraphics2D context for rendering, you use theGraphics2D set
methods to specify attributes such as theRenderingHints, Stroke, Paint,
clipping path,Composite, andTransform.

2.3.1 Setting Rendering Hints

A RenderingHints object encapsulates all of your preferences concerning ho
an object is rendered. To set the rendering hints in theGraphics2D context, you
create aRenderingHints object and pass it intoGraphics2D.setRendering-
Hints.

Setting a rendering hint does not guarantee that a particular rendering algor
will be used: not all platforms support modification of the rendering mode.

In the following example, antialiasing is enabled and the rendering preferenc
set to quality:

qualityHints = new
               RenderingHints(RenderingHints.KEY_ANTIALIASING,
               RenderingHints.VALUE_ANTIALIAS_ON);
qualityHints.put(RenderingHints.KEY_RENDERING,
               RenderingHints.VALUE_RENDER_QUALITY);
g2.setRenderingHints(qualityHints);

2.3.2 Specifying Stroke Attributes

A BasicStroke defines the characteristics applied to aShape’s outline, including
its width and dashing pattern, how line segments are joined together, and
decoration (if any) applied to the end of a line. To set the stroke attributes in



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version28

lts

d

at

s in
hes.
.

Graphics2D context, you create aBasicStroke object and pass it into
setStroke.

2.3.2.1 Setting the Stroke Width

To set the stroke width, you create aBasicStroke object with the desired width
and callsetStroke.

In the following example, the stroke width is set to twelve points and the defau
are used for the join and endcap decorations:

wideStroke = new BasicStroke(12.0f);
g2.setStroke(wideStroke);

2.3.2.2 Specifying Join and Endcap Styles

To set the join and endcap styles, you create aBasicStroke object with the
desired attributes.

In the following example, the stroke width is set to twelve points and the roun
join and endcap styles are used instead of the defaults:

roundStroke = new BasicStroke(4.0f, BasicStroke.CAP_ROUND,
              BasicStroke.JOIN_ROUND);
g2.setStroke(roundStroke);

2.3.2.3 Setting the Dashing Pattern

Complex dashing patterns can easily be defined with aBasicStroke object.
When you create aBasicStroke object, you can specify two parameters th
control the dashing pattern:

• dash—an array that represents the dashing pattern. Alternating element
the array represent the dash size and the size of the space between das
Element 0 represents the first dash, element 1 represents the first space

• dash_phase—an offset that defines where the dashing pattern starts.



Setting Up the Graphics2D Context 29

 In
e sec-

rawn
e

n

t of

ges
wo
In the following example, two different dashing patterns are applied to a line.
the first, the size of the dashes and the space between them is constant. Th
ond dashing pattern is more complex, using a six-element array to define the
dashing pattern.

float dash1[] = {10.0f};
BasicStroke bs = new BasicStroke(5.0f, BasicStroke.CAP_BUTT,
                 BasicStroke.JOIN_MITER, 10.0f, dash1, 0.0f);
g2.setStroke(bs);
Line2D line = new Line2D.Float(20.0f, 10.0f, 100.0f, 10.0f);
g2.draw(line);

float[] dash2 = {6.0f, 4.0f, 2.0f, 4.0f, 2.0f, 4.0f};
bs = new BasicStroke(5.0f, BasicStroke.CAP_BUTT,
     BasicStroke.JOIN_MITER, 10.0f, dash2, 0.0f);
g2.setStroke(bs);
g2.draw(line);

Both dashing patterns use a dash phase of zero, causing the dashes to be d
starting at the beginning of the dashing pattern. The two dashing patterns ar
shown in Figure Figure 2-7.

Figure 2-7 Dashing Patterns

2.3.3 Specifying Fill Attributes

ThePaint attribute in theGraphics2D context determines the fill color or patter
that is used when text andShapes are rendered.

2.3.3.1 Filling a Shape with a Gradient

TheGradientPaint class provides an easy way to fill a shape with a gradien
one color to another. When you create aGradientPaint, you specify a beginning
position and color, and an ending position and color. The fill color chan
proportionally from one color to the other along the line connecting the t
positions, as shown in Figure 2-8.



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version30

ts
the

ing

tition
Figure 2-8 Creating Gradient Fills

In the third star in Figure 2-8, both points lie within the shape. All of the poin
along the gradient line extending beyond P1 take the beginning color, and
points along the gradient line extending beyond P2 take the ending color.

To fill a shape with a gradient of one color to another:

1. Create aGradientPaint object.

2. CallGraphics2D.setPaint.

3. Create theShape.

4. CallGraphics2D.fill(shape).

In the following example, a rectangle is filled with a blue-green gradient.

GradientPaint gp = new GradientPaint(50.0f, 50.0f, Color.blue
                   50.0f, 250.0f, Color.green);
g2.setPaint(gp);
g2.fillRect(50, 50, 200, 200);

2.3.3.2 Filling a Shape with a Texture

The TexturePaint class provides an easy way to fill a shape with a repeat
pattern. When you create aTexturePaint, you specify aBufferedImage to use
as the pattern. You also pass the constructor a rectangle to define the repe
frequency of the pattern, as shown in Figure 2-9.

P1 P2

P1

P2

P1 P2



Setting Up the Graphics2D Context 31

a

Figure 2-9 Creating Texture Paints

To fill a shape with a texture:

1. Create aTexturePaint object.

2. CallGraphics2D.setPaint.

3. Create theShape.

4. CallGraphics2D.fill(shape).

In the following example, a rectangle is filled with a simple texture created from
buffered image.

// Create a buffered image texture patch of size 5x5
BufferedImage bi = new BufferedImage(5, 5,
                       BufferedImage.TYPE_INT_RGB);
Graphics2D big = bi.createGraphics();
// Render into the BufferedImage graphics to create the texture
big.setColor(Color.green);
big.fillRect(0,0,5,5);
big.setColor(Color.lightGray);
big.fillOval(0,0,5,5);

// Create a texture paint from the buffered image
Rectangle r = new Rectangle(0,0,5,5);
TexturePaint tp = new
TexturePaint(bi,r,TexturePaint.NEAREST_NEIGHBOR);

// Add the texture paint to the graphics context.
g2.setPaint(tp);

// Create and render a rectangle filled with the texture.

Pattern Image Rectangle Defining 
Repetition Frequency

Large Rectangle Filled with 
Resulting TexturePaint



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version32

e

nt

od-
g2.fillRect(0,0,200,200);
}

2.3.4 Setting the Clipping Path

To define a clipping path:

1. Create aShape that represents the area you want to render.

2. Call Graphics2D.setClip to use the shape as the clipping path for th
Graphics2D context.

To shrink the clipping path:

1. Create aShape that intersects the current clipping path.

2. Call clip to change the clipping path to the intersection of the curre
clipping path and the newShape.

In the following example, a clipping path is created from an ellipse and then m
ified by callingclip.

public void paint(Graphics g) {
  Graphics2D g2 = (Graphics2D) g;

// The width and height of the canvas
  int w = getSize().width;
  int h = getSize().height;
  // Create an ellipse and use it as the clipping path
  Ellipse2D e = new Ellipse2D.Float(w/4.0f,h/4.0f,
                                    w/2.0f,h/2.0f);
  g2.setClip(e);

// Fill the canvas. Only the area within the clip is rendered
  g2.setColor(Color.cyan);
  g2.fillRect(0,0,w,h);

// Change the clipping path, setting it to the intersection of
  // the current clip and a new rectangle.
  Rectangle r = new Rectangle(w/4+10,h/4+10,w/2-20,h/2-20);
  g2.clip(r);



Setting Up the Graphics2D Context 33

n-
  // Fill the canvas. Only the area within the new clip
  // is rendered
  g2.setColor(Color.magenta);
  g2.fillRect(0,0,w,h);
}

2.3.5 Setting the Graphics2D Transform

To transform aShape, text string, orImage you add a newAffineTransform to
the transformation pipeline in theGraphics2D context before rendering. The
transformation is applied when the graphic object is rendered.

For example, to draw a rectangle that is rotated 45 degrees:

1. Get a rotation transform by callingAffineTransform. getRotateInstance.

2. Call Graphics2D.setTransform to add the new transform to the
transformation pipeline.

3. Create aRectangle2D.Float object.

4. Call Graphics2D.draw to render the rectangle.

In the following example, an instance ofAffineTransform is used to rotate a
rectangle 45 degrees when it is rendered.

Rectangle2D rect = new Rectangle2D.Float(1.0,1.0,2.0,3.0);
AffineTransform rotate45 =
  AffineTransform.getRotateInstance(Math.PI/4.0,0.0,0.0)
g2.setTransform(rotate45);
g2.draw(rect);

In this example, anAffineTransform is used to rotate a text string around a ce
ter point:

// Define the rendering transform
AffineTransform at = new AffineTransform();
// Apply a translation transform to make room for the
// rotated text.
at.setToTranslation(400.0, 400.0);
g2.transform(at);



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version34

ing

ors
sition

ion
le, if
rlaps
last
// Create a rotation transform to rotate the text
at.setToRotation(Math.PI / 2.0);
// Render four copies of the string “Java” at 90 degree angles
for (int i = 0; i < 4; i++) {
    g2.drawString(“Java”, 0.0f, 0.0f);
    g2.transform(at);
}

You can transform an image in the same way—the transform in theGraphics2D

context is applied during rendering regardless of the type of graphic object be
rendered.

To apply a transform to an imagewithout changing the transform in the
Graphics2D context, you can pass anAffineTransform to drawImage:

AffineTransform rotate45 =
  AffineTransform.getRotateInstance(Math.PI/4.0,0.0,0.0)
g2.drawImage(myImage, rotate45);

Transforms can also be applied to aFont to create a modified version of the
Font, for more information see “Creating Font Derivations” on page 65.

2.3.6 Specifying a Composition Style

An AlphaComposite encapsulates composition rules that determine how col
should be rendered when one object overlaps another. To specify the compo
style for theGraphics2D context, you create anAlphaComposite and pass it into
setComposite. The most commonly used is composition style isSRC_OVER.

2.3.6.1 Using the Source Over Compositing Rule

TheSRC_OVER compositing rule composites the source pixel over the destinat
pixel such that the shared pixel takes the color of the source pixel. For examp
you render a blue rectangle and then render a red rectangle that partially ove
it, the overlapping area will be red. In other words, the object that is rendered
will appear to be on top.

To use theSRC_OVER composition rule:

1. Create anAlphaComposite object by callinggetInstance and specifying the



Setting Up the Graphics2D Context 35

 the

t is

ct

an
o be
SRC_OVER rule.

AlphaComposite ac =
AlphaComposite.getInstance(AlphaComposite.SRC_OVER);

2. Call setComposite to add theAlphaComposite object to theGraphics2D
context.

g2.setComposite(ac);

Once the composite object is set, overlapping objects will be rendered using
specified composition rule.

2.3.6.2 Increasing the Transparency of Composited Objects

AlphaComposite allows you to specify an additional constant alpha value tha
multiplied with the alpha of the source pixels to increase transparency.

For example, to create anAlphaComposite object that renders the source obje
50% transparent, specify an alpha of .5:

AlphaComposite ac =
AlphaComposite.getInstance(AlphaComposite.SRC_OVER, .5f);

In the following example, a source over alpha composite object is created with
alpha of .5 and added to the graphics context, causing subsequent shapes t
rendered 50% transparent.

public void paint(Graphics g) {
  Graphics2D g2 = (Graphics2D) g;

  g2.setColor(Color.red);
  g2.translate(100,50);
  // radians=degree * pie / 180
  g2.rotate((45*java.lang.Math.PI)/180);
  g2.fillRect(0,0,100,100);
  g2.setTransform(new AffineTransform());  // set to identity
  // Create a new alpha composite
  AlphaComposite ac =

AlphaComposite.getInstance(AlphaComposite.SRC_OVER,0.5f);
  g2.setComposite(ac);
  g2.setColor(Color.green);
  g2.fillRect(50,0,100,100);



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version36

he

lso

.)
  g2.setColor(Color.blue);
  g2.fillRect(125,75,100,100);
  g2.setColor(Color.yellow);
  g2.fillRect(50,125,100,100);
  g2.setColor(Color.pink);
  g2.fillRect(-25,75,100,100);
}

2.4 Rendering Graphics Primitives

Graphics2D provides rendering methods forShapes, Text, andImages:

• draw—strokes aShape’s path using theStroke andPaint objects in the
Graphics2D context.

• fill—fills a Shape using thePaint in theGraphics2D context.

• drawString—renders the specified text string using thePaint in the
Graphics2D context.

• drawImage—renders the specified image.

To stroke and fill a shape, you must call both thedraw andfill methods.

Graphics2D also supports the draw and fill methods from previous versions of t
JDK software, such asdrawOval andfillRect.

2.4.1 Drawing a Shape

The outline of anyShape can be rendered with theGraphics2D.draw method.
The draw methods from previous versions of the JDK software are a
supported: drawLine, drawRect, drawRoundRect, drawOval, drawArc,
drawPolyline, drawPolygon, draw3DRect.

When aShape is drawn, its path is stroked with theStroke object in the
Graphics2D context. (See “Stroke Attributes” on page 19 for more information
By setting an appropriateBasicStroke object in theGraphics2D context, you
can draw lines of any width or pattern. TheBasicStroke object also defines the
line’s endcap and join attributes.

To render shape’s outline:

1. Create aBasicStroke object



Rendering Graphics Primitives 37

ted:
2. CallGraphics2D.setStroke

3. Create theShape.

4. CallGraphics2D.draw(shape).

In the following example, aGeneralPath object is used to define a star and a
BasicStroke object is added to theGraphics2D context to define the star’s line
with and join attributes.

public void paint(Graphics g) {
  Graphics2D g2 = (Graphics2D) g;

  // create and set the stroke
  g2.setStroke(new BasicStroke(4.0f));

  // Create a star using a general path object
  GeneralPath p = new GeneralPath(GeneralPath.NON_ZERO);
  p.moveTo(- 100.0f, - 25.0f);
  p.lineTo(+ 100.0f, - 25.0f);
  p.lineTo(- 50.0f, + 100.0f);
  p.lineTo(+ 0.0f, - 100.0f);
  p.lineTo(+ 50.0f, + 100.0f);
  p.closePath();

  // translate origin towards center of canvas
  g2.translate(100.0f, 100.0f);

  // render the star's path
  g2.draw(p);
}

2.4.2 Filling a Shape

The Graphics2D.fill method can be used tofill  anyShape. When aShape is
filled, the area within its path is rendered with theGraphics2D context’s current
Paint attribute—aColor, TexturePaint, orGradientPaint.

The fill methods from previous versions of the JDK software are also suppor
fillRect, fill3DRect, fillRoundRect, fillOval, fillArc, fillPolygon,
clearRect.

To fill a Shape:



Rendering with Graphics2D, Java 2 SDK, Standard Edition, 1.2 Version38

ting

g

os-
1. Set the fill color or pattern on the graphics context using
Graphics2D.setColor or Graphics2D.setPaint.

1. Create theShape.

2. CallGraphics2D.fill to render theShape.

In the following example,setColor is called to define a green fill for a
Rectangle2D.

public void paint(Graphics g) {
  Graphics2D g2 = (Graphics2D) g;

  g2.setPaint(Color.green);
  Rectangle2D r2 = new Rectangle2D.Float(25,25,150,150);

   g2.fill(r2);
}

2.4.3 Rendering Text

To render a text string, you callGraphics2D.drawString, passing in the string
that you want to render. For more information about rendering text and selec
fonts, see “Fonts and Text Layout” on page 45.

2.4.4 Rendering Images

To render anImage, you create theImage and call Graphics2D.drawImage. For
more information about processing and rendering images, see “Imaging” on
page 67.

2.5 Defining Custom Composition Rules

You can create an entirely new type of compositing operation by implementin
theComposite andCompositeContext interfaces. AComposite object provides a
CompositeContext object that actually holds the state and performs the comp
iting work. MultipleCompositeContext objects can be created from oneCompos-
ite object to maintain the separate states in a multithreaded environment.



3

jects,
re part
ry

ny

ese

y

ath
Geometries

The Java 2D API provides several classes that define common geometric ob
such as points, lines, curves, and rectangles. These new geometry classes a
of the java.awt.geom package. For backward compatibility, the geomet
classes that existed in previous versions of the JDK software, such asRectangle,
Point, andPolygon, remain in thejava.awt package.

The Java 2D API geometries such asGeneralPath, Arc2D, and Rectangle2D

implement theShape interface defined injava.awt. Shape providesa common

protocol for describing and inspecting geometric path objects. A new interface,
PathIterator, defines methods for retrieving elements from a geometry.

Using the geometry classes, you can easily define and manipulate virtually a
two-dimensional object.

3.1 Interfaces and Classes

The following tables list the key geometry interfaces and classes. Most of th
interfaces and classes are part of thejava.awt.geom package. Some, likeShape,
are part of thejava.awt package, primarily to maintain backward compatibilit
with earlier versions of the JDK software.

Interface Description

PathIterator Defines methods for retrieving elements from a path.

Shape
(java.awt)

Provides a common set of methods for describing and inspecting geometric p
objects. Implemented byGeneralPath and other geometry classes.
39



Geometries, Java 2 SDK, Standard Edition, 1.2 Version40

ex-
le

Im-

b-

to

cu-

to

ci-

).
Class Description

Arc2D
Arc2D.Double
Arc2D.Float

Extends:RectangularShape
Represents an arc defined by a bounding rectangle, start angle, angular
tent, and a closure type. Implemented to specify arcs in float and doub
precision:Arc2D.Float andArc2D.Double.

Area Implements:Shape, Cloneable
Represents an area geometry that supports boolean operations.

CubicCurve2D
CubicCurve2D.Double
CubicCurve2D.Float

Implements:Shape
Represents a cubic parametric curve segment in (w) coordinate space.
plemented to specify cubic curves in float and double precision:
CubicCurve2D.Float andCubicCurve2D.Double.

Dimension2D Encapsulates a width and height dimension. Abstract superclass for all o
jects that store a 2D dimension.

Ellipse2D
Ellipse2D.Double
Ellipse2D.Float

Extends:RectangularShape
Represents an ellipse defined by a bounding rectangle. Implemented 
specify ellipses in float and double precision:Ellipse2D.Float and
Ellipse2D.Double.

FlatteningPathIterator Returns a flattened view of aPathIterator object.
Can be used to provide flattening behavior forShapes that don’t perform
the interpolation calculations themselves.

GeneralPath Implements:Shape
Represents a geometric path constructed from lines and quadratic and
bic curves.

Line2D
Line2D.Double
Line2D.Float

Implements:Shape
Represents a line segment in (x, y) coordinate space. Implemented to
specify lines in float and double precision:Line2D.Float and
Line2D.Double.

Point2D
Point2D.Double
Point2D.Float

A point representing a location in (x,y) coordinate space. Implemented
specify points in float and double precision:Point2D.Float and
Point2D.Double.

QuadCurve2D
QuadCurve2D.Double
QuadCurve2D.Float

Implements:Shape
Represents a quadratic parametric curve segment in (x, y) coordinate
space. Implemented to specify quadratic curves in float and double pre
sion:QuadCurve2D.Float andQuadCurve2D.Double.

Rectangle2D
Rectangle2D.Double
Rectangle2D.Float

Extends:RectangularShape
Represents a rectangle defined by a location (x, y) and dimension (w x h
Implemented to specify rectangles in float and double precision:
Rectangle2D.Float andRectangle2D.Double.



Geometry Concepts 41

ned

l

etric
API,
n

y),
-

3.2 Geometry Concepts

A Shape is an instance of any class that implements the Shape interface, such as

GeneralPath or Rectangle2D.Float. A Shape’s contour (outline) is referred to

as its path.

When a Shape is drawn, the pen style defined by the Stroke object in the

Graphics2D context is applied to the Shape’s path. When a Shape is filled, the

Paint in the Graphics2D context is applied to the area within its path. For more

information, see “Rendering with Graphics2D” on page 15.

A Shape’s path can be also used to define aclipping path. A clipping path deter-
mines what pixels are rendered—only those pixels that lie within the area defi
by the clipping path are rendered. The clipping path is part of theGraphics2D

context. For more information, see “Setting the Clipping Path” on page 32.

A GeneralPath is a shape that can be used to represent any two-dimensiona
object that can be constructed from lines and quadratic or cubic curves. For con-

venience, java.awt.geom provides additional implementations of the Shape

interface that represent common geometric objects such as rectangles, ellipses,

arcs, and curves. The Java2D API also provides a special type of shape that sup-

ports constructive area geometry.

3.2.1 Constructive Area Geometry

Constructive Area Geometry (CAG) is the process of creating new geom
objects by performing boolean operations on existing objects. In the Java 2D
a special type ofShape called anArea supports boolean operations. You ca
construct anArea from anyShape.

Areas support the following Boolean operations:

• Union

RectangularShape Implements:Shape
Provides common manipulation routines for operating on shapes that
have rectangular bounds.

RoundRectangle2D
RoundRectangle2D.Double
RoundRectangle2D.Float

Extends:RectangularShape
Represents a rectangle with rounded corners defined by a location (x,
a dimension (w x h), and the width and height of the corner arc. Imple
mented to specify round rectangles in float and double precision:
RoundRectangle2D.Float andRoundRectangle2D.Double.

Class Description



Geometries, Java 2 SDK, Standard Edition, 1.2 Version42

ing
it” by

x,
• Intersection

• Subtraction

• Exclusive OR (XOR)

These operations are illustrated in Figure 3-1.

Figure 3-1 Boolean Operations

3.2.2 Bounds and Hit Testing

A bounding boxis a rectangle that fully encloses a shape’s geometry. Bound
boxes are used to determine whether or not an object has been selected or “h
the user.

TheShape interface defines two methods for retrieving a shape’s bounding bo
getBounds andgetBounds2D. ThegetBounds2D method returns aRectangle2D
instead of aRectangle, providing a higher-precision description of the shape’s
bounding box.

Shape also provides methods for determining whether or not:

• A specified point lies within the bounds of the shape (contains)

• A specified rectangle lies totally within the bounds of the shape (contains)

• A specified rectangle intersects the shape (intersects)

3.3 Combining Areas to Create New Shapes

Areas can be used to quickly construct complexShapes from simple shapes such
as circles and squares. To create a new complexShape by combiningAreas:

1. UsingShapes, construct theAreas to be combined.

Overlapping
Circles

Union Intersection Subtraction Exclusive OR



Creating a Custom Shape 43

ver-
an

stem

of
u can
2. Call the appropriate Boolean operators:add, subtract, intersect,
exclusiveOr.

For example, CAG could be used to create a pear like that shown inFigure 3-2.

Figure 3-2 Pear constructed from circles

The body of the pear is constructed by performing a union operation on two o
lappingAreas: a circle and an oval. The leaves are each created by performing
intersection on two overlapping circles and then joined into a singleShape

through a union operation. Overlapping circles are also used to construct the
through two subtraction operations.

3.4 Creating a Custom Shape

You can implement theShape interface to create a class that defines a new type
shape. It doesn’t matter how you represent the shape internally, as long as yo
implement theShape interface methods. TheShape must be able to generate a
path that specifies its contour.

For example, you could create a simple implementation ofShape that represents
polygons as arrays of points. Once the polygon is built, it could be passed todraw,
setClip, or any other method that expects aShape object as an argument.

ThePolygonPath class must implement theShape interface methods:

• contains

• getBounds

• getBounds2D

• getPathIterator

• intersects



Geometries, Java 2 SDK, Standard Edition, 1.2 Version44



4

t

ext
rt
ed

a
in

ost
Fonts and Text Layou

You can use the Java 2D API transformation and drawing mechanisms with t
strings. In addition, the Java 2D API provides text-related classes that suppo
fine-grain font control and sophisticated text layout. These include an enhanc
Font class and the newTextLayout class.

This chapter focuses on the new font and text layout capabilities supported
through interfaces and classes in java.awt, andjava.awt.font. For more
information about using these features, see the 2D Text Tutorial that’s avail-
able through the Java Developer Connection at http://devel-
oper.java.sun.com/developer/onlineTraining/Graphics/2DText/.

For information about text analysis and internationalization, refer to the
java.text documentation and the “Writing Global Programs” track in the Jav
Tutorial. For information about using the text layout mechanisms implemented
Swing, see thejava.awt.swing.text documentation and “Using the JFC/Swing
Packages” in the Java Tutorial.

Note: The information on international text layout contained in this chapter is
based on the paperInternational Text in JDK 1.2 by Mark Davis, Doug Felt, and
John Raley, copyright 1997, Taligent, Inc.

4.1 Interfaces and Classes

The following tables list the key font and text layout interfaces and classes. M
of these interfaces and classes are part of thejava.awt.font package. Some, like
Font, are part of thejava.awt package to maintain backward compatibility with
earlier versions of the JDK.
45



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version46

il-
a-

h

-

e-

line
ng,
Interface Description

MultipleMaster Represents Type 1 Multiple Master fonts. Implemented byFont objects that are
multiple master fonts to enable access to multiple master design controls.

OpenType Represents Open Type and True Type fonts. Implemented byFont objects that
are Open Type or True Type fonts to enable access to the font’ssfnt tables.

Class Description

Font
(java.awt)

Represents an instance of a font face from the collection of font faces ava
able on the host system. Supports the specification of detailed font inform
tion and provides access to information about the font and its glyphs.

FontRenderContext Encapsulates the information necessary to correctly measure text.

GlyphJustificationInfo Represents information about the justification properties of a glyph, suc
as weight, priority, absorb, and limit.

GlyphMetrics Provides metrics for a single glyph.

GlyphVector A collection of glyphs and their positions.

GraphicAttribute Base class for aTextLayout attribute that specifies a graphic to be embed
ded within text. Implemented byShapeGraphicAttribute andImage-
GraphicAttribute, which enableShapes andImages to be embedded in
aTextLayout. Can be subclassed to implement custom character replac
ment graphics.

ImageGraphicAttribute Extends:GraphicAttribute
A GraphicsAttribute used to drawImages within aTextLayout.

LineBreakMeasurer Breaks a block of text that spans multiple lines into
TextLayout objects that fit within a specified line length.

LineMetrics Provides access to the font metrics needed to lay out characters along a
and to lay out a set of lines. These metrics include ascent, descent, leadi
height, and baseline information.

ShapeGraphicAttribute Extends:GraphicAttribute
A GraphicsAttribute used to drawShapes within aTextLayout.

TextAttribute Defines attribute keys and values used for text rendering.

TextHitInfo Represents hit test information for characters in aTextLayout.



Font Concepts 47

font

t

ts
cify

rm,

rieve

.
It’s

with

, in-
4.2 Font Concepts

The Font class has been enhanced to support the specification of detailed
information and enable the use of sophisticated typographic features.

A Font object represents an instance of a font face from the collection of fon
faces available on the system. Examples of common font faces includeHelvet-

ica Bold andCourier Bold Italic.

Three names are associated with aFont—its logical name, family name, and font
face name:

• A Font object’slogical nameis a name mapped onto one of the specific fon
available on the platform. The logical font name is the name used to spe
aFont in JDK 1.1 and earlier releases. When specifying aFont in Java 2
SDK, you should use thefont face nameinstead of the logical name.You can
get the logical name from theFont by callinggetName. To get a list of the
logical names that are mapped onto the specific fonts available on a platfo
call java.awt.Toolkit.getFontList.

• A Font object’sfamily name is the name of the font family that determines
the typographic design across several faces, such as Helvetica. You ret
the family name through thegetFamily method.

• A Font objects’font face namerefers to an actual font installed on the system
This is the name you should use when specifying a font in Java 2 SDK. 
often referred to as just thefont name. You can retrieve the font name by
callinggetFontName. To determine which font faces are available on the
system, you can callGraphicsEnvironment.getAllFonts.

You can access information about aFont through thegetAttributes method. A
Font’s attributes include its name, size, transform, and font features such as
weight and posture.

A LineMetrics object encapsulates the measurement information associated
aFont, such as its ascent, descent, and leading:

TextLayout Implements:Cloneable
Provides an immutable graphical representation of styled character data
cluding bidirectional text.

Class Description



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version48

ce
t

st

line

osi-
the
-

ris-

ned

ra-
• Ascent is the distance from the baseline to the ascender line. This distan
represents the typical height of capital letters, but some characters migh
extend above the ascender line.

• Descent is the distance from the baseline to the descender line. The lowe
point of most characters will fall within the descent, but some characters
might extend below the descender line.

• Leadingis the recommended distance from the bottom of the descender
to the top of the next line.

Figure 4-1 Line Metrics

This information is used to properly position characters along a line, and to p
tion lines relative to one another. You can access these line metrics through 
getAscent, getDescent, andgetLeading methods. You can also access informa
tion about aFont’s height, baseline, and underline and strikethrough characte
tics throughLineMetrics.

4.3 Text Layout Concepts

Before a piece of text can be displayed, it must be properly shaped and positio
using the appropriate glyphs and ligatures. This process is referred to astext lay-
out. The text layout process involves:

• Shaping text using the appropriate glyphs and ligatures.

• Properly ordering the text.

• Measuring and positioning the text.

The information used to lay out text is also necessary for performing text ope
tions such as caret positioning, hit detection, and highlighting.

dfac 
ascender line 

descender line

next line

baseline

egbd



Text Layout Concepts 49

 be
opri-

size,
n be
ng on

iffer-

ays
bic;

For

sive
.

ge to
To develop software that can be deployed in international markets, text must
laid out in different languages in a way that conforms to the rules of the appr
ate writing system.

4.3.1 Shaping Text

A glyph is the visual representation of one or more characters. The shape,
and position of a glyph is dependent on its context. Many different glyphs ca
used to represent a single character or combination of characters, dependi
the font and style.

For example, in handwritten cursive text, a particular character can take on d
ent shapes depending on how it is connected to adjacent characters.

In some writing systems, particularly Arabic, the context of a glyph must alw
be taken into account. Unlike in English, cursive forms are mandatory in Ara
it is unacceptable to present text without using cursive forms.

Depending on the context, these cursive forms can differ radically in shape. 
example, the Arabic letterheh has the four cursive forms shown in Figure 4-2.

Figure 4-2 Cursive Forms in Arabic

Although these four forms are quite different from one another, such cur
shape-changing is not fundamentally different from cursive writing in English

In some contexts, two glyphs can change shape even more radically and mer
form a single glyph. This type of merged glyph is called aligature. For example,
most English fonts contain the ligature fi shown in Figure 4-3. The merged glyph
takes into account the overhang on the letter f and combines the characters in a
natural-looking way, instead of simply letting the letters collide.

Unconnected
Connect
on Right

Connect on
Both Sides

Connect
on Left



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version50

it is
the
the
ple,
gle

acter
ry in
ad

e

hs
t to
Figure 4-3 EnglishLigatures

Ligatures are also used in Arabic and the use of some ligatures is mandatory—
unacceptable to present certain character combinations without using
appropriate ligature. When ligatures are formed from Arabic characters,
shapes change even more radically than they do in English. For exam
Figure 4-4 illustrates how two Arabic characters are combined into a sin
ligature when they appear together.

Figure 4-4 ArabicLigatures

4.3.2 Ordering Text

In the Java programming language, text is encoded using Unicode char
encoding. Text that uses Unicode character encoding is stored in memo
logical order. Logical order is the order in which characters and words are re
and written. The logical order is not necessarily the same as thevisual order, the
order in which the corresponding glyphs are displayed.

The visual order for glyphs in a particular writing system (script) is called the
script order. For example, the script order for Roman text is left-to-right and th
script order for Arabic and Hebrew is right-to-left.

Some writing systems have rules in addition to script order for arranging glyp
and words on lines of text. For example, Arabic and Hebrew numbers run lef

a b



Text Layout Concepts 51

e
ase

d by
tion
 char-
 are
oxes

ayed
gi-

e
mi-

ly
right-

mon
on is
 at
ft,

like
right, even though the letters run right to left. (This means that Arabic and
Hebrew, even with no embedded English text, are truly bidirectional.)

A writing system’s visual order must be maintained even when languages ar
mixed together. This is illustrated in Figure 4-5, which displays an Arabic phr
embedded in an English sentence.

Note: In this and subsequent examples, Arabic and Hebrew text is represente
uppercase letters and spaces are represented by underscores. Each illustra
contains two parts: a representation of the characters stored in memory (the
acters in logical order) followed by a representation of how those characters
displayed (the characters in visual order). The numbers below the character b
indicate the insertion offsets.

Figure 4-5 Bidirectional Text

Even though they are part of an English sentence, the Arabic words are displ
in the Arabic script order, right-to-left. Because the italicized Arabic word is lo
cally after the Arabic in plain text, it is visually to the left of the plain text.

When a line with a mixture of left-to-right and right-to-left text is displayed, th
base direction is significant. The base direction is the script order of the predo
nant writing system. For example, if the text is primarily English with some
embedded Arabic, then the base direction is left-to-right. If the text is primari
Arabic with some embedded English or numbers, then the base direction is 
to-left.

The base direction determines the order in which segments of text with a com
direction are displayed. In the example shown in Figure 4-5, the base directi
left-to-right. There are three directional runs in this example: the English text
the beginning of the sentence runs left to right, the Arabic text runs right to le
and the period runs left to right.

Graphics are often embedded in the flow of text. These inline graphics behave
glyphs in terms of how they affect the text flow and line wrapping. Such inline



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version52

 so

 a
rd,

ave
ake
ple,

u
ngly.

In
pend-
d to
-

ual
oring
epend-

text

the
graphics need to be positioned using the same bidirectional layout algorithm
that they appear in the proper location in the flow of characters.

For more information about the precise algorithm used to order glyphs within
line, see the description of the Bidirectional Algorithm in The Unicode Standa
Version 2.0, Section 3.11.

4.3.3 Measuring and Positioning Text

Unless you are working with a monospace font, different characters in a font h
different widths. This means that all positioning and measuring of text has to t
into account exactly which characters are used, not just how many. For exam
to right-align a column of numbers displayed in a proportional font, you can’t
simply use extra spaces to position the text. To properly align the column, yo
need to know the exact width of each number so that you can adjust accordi

Text is often displayed using multiple fonts and styles, such as bold or italic. 
this case, even the same character can have different shapes and widths, de
ing on how it is styled. To properly position, measure, and render text, you nee
keep track of each individual characterandthe style applied to that character. For
tunately,TextLayout does this for you.

To properly display text in languages such as Hebrew and Arabic, each individ
character needs to be measured and positioned within the context of neighb
characters. Because the shapes and positions of the characters can change d
ing on the context, measuring and positioning such text without taking the con
into account produces unacceptable results.

4.3.4 Supporting Text Manipulation

To allow the user to edit the text that is displayed, you must be able to:

• Display a caret that indicates where new characters will be inserted when
user enters text.

• Move the caret and insertion point in response to user input.

• Detect user selections (hit detection).

• Highlight selected text.



Text Layout Concepts 53

nt,
t is
rted

l
tions
yed
rets
onds.

 the
f

)
erted
base
be

of
, the
4.3.4.1 Displaying Carets

In editable text, acaret is used to graphically represent the current insertion poi
the position in the text where new characters will be inserted. Typically, a care
shown as a blinking vertical bar between two glyphs. New characters are inse
and displayed at the caret's location.

Calculating the caret position can be complicated, particularly for bidirectiona
text. Insertion offsets on directional boundaries have two possible caret posi
because the two glyphs that correspond to the character offset are not displa
adjacent to one another. This is illustrated in Figure 4-6. In this figure, the ca
are shown as square brackets to indicate the glyph to which the caret corresp

Figure 4-6 Dual Carets

Character offset 8 corresponds to the location after the _ and before theA. If the
user enters an Arabic character, its glyph is displayed to the right of (before)
A; if the user enters an English character, its glyph is displayed to the right o
(after) the _.

To handle this situation, some systems display dual carets, a strong (primary
caret and a weak (secondary) caret. The strong caret indicates where an ins
character will be displayed when that character's direction is the same as the
direction of the text. The weak caret shows where an inserted character will 
displayed when the character's direction is the opposite of the base direction.Tex-

tLayout automatically supports dual carets;JTextComponent does not.

When you’re working with bidirectional text, you can’t simply add the widths 
the glyphs before a character offset to calculate the caret position. If you did
caret would be drawn in the wrong place, as shown in Figure 4-7.



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version54

the
con-

lay.

ect
xt,

tion
r in
s at
nal

into
ion
rrow
ft

e left

hen
t in
 18.
Figure 4-7 Caret Drawn Incorrectly

For the caret to be properly positioned, the widths of the glyphs to the left of 
offset need to be added and the current context taken into account. Unless the
text is taken into account, the glyph metrics won’t necessarily match the disp
(The context can affect which glyphs are used.)

4.3.4.2 Moving Carets

All text editors allow the user to move the caret with the arrow keys. Users exp
the caret to move in the direction of the pressed arrow key. In left-to-right te
moving the insertion offset is simple: the right arrow key increases the inser
offset by one and the left arrow key decreases it by one. In bidirectional text o
text with ligatures, this behavior would cause the caret to jump across glyph
direction boundaries and move in the reverse direction within different directio
runs.

To move the caret smoothly through bidirectional text, you need to take
account the direction of the text runs. You can’t simply increment the insert
offset when the right arrow key is pressed and decrement it when the left a
key is pressed. If the current insertion offset is within a run of right-to-le
characters, the right arrow key should decrease the insertion offset, and th
arrow key should increase it.

Moving the caret across a directional boundary is even more complicated.
Figure 4-8 illustrates what happens when a directional boundary is crossed w
the user is navigating with the arrow key. Stepping three positions to the righ
the displayed text corresponds to moving to the character offsets 7, 19, then



Text Layout Concepts 55

hould
re
o
more

ple,
 con-
is is

-

ting
at
Figure 4-8 Caret Movement

Certain glyphs should never have a caret between them; instead, the caret s
move as though the glyphs represented a single character. For example, the
should never be a caret between ano and an umlaut if they are represented by tw
separate characters. (See The Unicode Standard, Version 2.0, Chapter 5, for
information.)

TextLayout provides methods (getNextRightHit andgetNextLeftHit) that
enable you to easily move the caret smoothly through bidirectional text.

4.3.4.3 Hit Testing

Often, a location in device space must be converted to a text offset. For exam
when a user clicks the mouse on selectable text, the location of the mouse is
verted to a text offset and used as one end of the selection range. Logically, th
the inverse of positioning a caret.

When you’re working with bidirectional text, a single visual location in the dis
play can correspond to two different offsets in the source text, as shown in
Figure 4-9.

Figure 4-9 Hit Testing Bidirectional Text

Because a single visual location can correspond to two different offsets, hit tes
bidirectional text isn’t just a matter of measuring glyph widths until the glyph 



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version56

ter
o

n, an
ent

for
ght
ht
o a

e
be

us.
the correct location is found and then mapping that position back to a charac
offset. Detecting the side that the hit was on helps distinguish between the tw
alternatives.

You can perform hit testing usingTextLayout.hitTestChar. Hit information is
encapsulated in aTextHitInfo object and includes information about the side
that the hit was on.

4.3.4.4 Highlighting Selections

A selected range of characters is represented graphically by a highlight regio
area in which glyphs are displayed with inverse video or against a differ
background color.

Highlight regions, like carets, are more complicated for bidirectional text than
monodirectional text. In bidirectional text, a contiguous range of characters mi
not have a contiguous highlight region when displayed. Conversely, a highlig
region showing a visually contiguous range of glyphs might not correspond t
single, contiguous range of characters.

This results in two strategies for highlighting selections in bidirectional text:

• Logical highlighting —with logical highlighting, the selected characters ar
always contiguous in the text model, and the highlight region is allowed to
discontiguous. For an example of logical highlighting, see Figure 4-10.

• Visual highlighting—with visual highlighting, there might be more than one
range of selected characters, but the highlight region is always contiguo
For an example of visual highlighting, see Figure 4-11.

Figure 4-10 Logical Highlighting (contiguous characters)



Text Layout Concepts 57

e

ntrol

ou

ial.

n

t
re

t

Figure 4-11 Visual Highlighting (contiguous highlight region)

Logical highlighting is simpler to implement, since the selected characters ar
always contiguous in the text.

4.3.5 Performing Text Layout in a Java Application

Depending on which Java APIs you use, you can have as little or as much co
over text layout as you need:

• If you just want to display a block of text or need an editable text control, y
can useJTextComponent, which will perform the text layout for you.
JTextComponent is designed to handle the needs of most international
applications and supports bidirectional text For more information about
JTextComponent, see “Using the JFC/Swing Packages” in the Java Tutor

• If you want to display a simple text string, you can call
Graphics2D.drawString and let Java 2D lay out the string for you. You ca
also usedrawString to render styled strings and strings that contain
bidirectional text. For more information about rendering text through
Graphics2D, see “Rendering Graphics Primitives” on page 36.

• If you want to implement your own text editing routines, you can use
TextLayout to manage text layout, highlighting, and hit detection. The
facilities provided byTextLayout handle most common cases, including tex
strings with mixed fonts, mixed languages, and bidirectional text. For mo
information about using TextLayout, see “Managing Text Layout” on
page 58.

• If you want total control over how text is shaped and positioned, you can
construct your ownGlyphVectors usingFont and then render them through
Graphics2D. For more information about implementing your own text layou
mechanism, see “Implementing a Custom Text Layout Mechanism” on
page 63.



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version58

ost
d
l
ion
nes,

ers

rder

u

.

at
sing
can
ys-
Generally, you do not need to perform text layout operations yourself. For m
applications,JTextComponent is the best solution for displaying static an
editable text. However,JTextComponent does not support the display of dua
carets or discontiguous selections in bidirectional text. If your applicat
requires these features, or you prefer to implement your own text editing routi
you can use the Java 2D text layout APIs.

4.4 Managing Text Layout

The TextLayout class supports text that contains multiple styles and charact
from different writing systems, including Arabic and Hebrew. (Arabic and
Hebrew are particularly difficult to display because you must reshape and reo
the text to achieve an acceptable representation.)

TextLayout simplifies the process of displaying and measuring text even if yo
are working with English-only text. By usingTextLayout, you can achieve high-
quality typography with no extra effort.

TheTextLayout class manages the positioning and ordering of glyphs for you
You can useTextLayout to:

• Lay out monodirectional and bidirectional text

• Display and move carets

• Perform hit testing on text

• Highlight text selections

In some situations, you might want to compute the text layout yourself, so th
you can control exactly which glyphs are used and where they are placed. U
information such as glyph sizes, kerning tables, and ligature information, you
construct your own algorithms for computing the text layout, bypassing the s
tem’s layout mechanism. For more information, see “Implementing a Custom
Text Layout Mechanism” on page 63.

Text Layout Performance

TextLayout is designed so that there is no significant performance impact

when it’s used to display simple, monodirectional text. There is some addition-

al processing overhead when TextLayout is used to display Arabic or Hebrew

text. However, it’s typically on the order of microseconds per character and is

dominated by the execution of normal drawing code.



Managing Text Layout 59

yphs

 a

n a

t. If

c-
,

.

lyphs
nce.

the

f

4.4.1 Laying Out Text

TextLayout automatically lays out text, including bidirectional (BIDI) text, with
the correct shaping and ordering. To correctly shape and order the gl
representing a line of text,TextLayout must know the full context of the text:

• If the text fits on a single line, such as a single-word label for a button or
line in a dialog box, you can construct aTextLayout directly from the text.

• If you have more text than can fit on a single line or want to break text o
single line into tabbed segments, you cannot construct aTextLayout directly.
You must use aLineBreakMeasurer to provide sufficient context.

The base direction of the text is normally set by an attribute (style) on the tex
that attribute is missing,TextLayout follows the Unicode bidirectional algorithm
and derives the base direction from the initial characters in the paragraph.

4.4.2 Displaying Dual Carets

TextLayout maintains caret information such as the caretShape, position, and
angle. You can use this information to easily display carets in both monodire
tional and bidirectional text. When you’re drawing carets for bidirectional text
usingTextLayout ensures that the carets will be positioned correctly.

TextLayout provides default caretShapes and automatically supports dual carets
For italic and oblique glyphs,TextLayout produces angled carets, as shown in
Figure 4-12. These caret positions are also used as the boundaries between g
for highlighting and hit testing, which helps produce a consistent user experie

Figure 4-12 Angled Carets

Given an insertion offset, thegetCaretShapes method returns a two-element
array ofShapes: element 0 contains the strong caret and element 1 contains 
weak caret, if one exists. To display dual carets, you simply draw both caret
Shapes; the carets will be automatically be rendered in the correct positions.

If you want to use custom caretShapes, you can retrieve the position and angle o
the carets from theTextLayout and draw them yourself.



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version60

a

ow
r

 a

s a

ffset
In the following example, the default strong and weak caretShapes are drawn in
different colors. This is a common way to differentiate dual carets.

Shape[] caretShapes = layout.getCaretShapes(hit);
g2.setColor(PRIMARY_CARET_COLOR);
g2.draw(caretShapes[0]);
if (caretShapes[1] != null){
  g2.setColor(SECONDARY_CARET_COLOR);
  g2.draw(caretShapes[1]);
}

4.4.3 Moving the Caret

You can also useTextLayout to determine the resulting insertion offset when
user presses the left or right arrow key. Given aTextHitInfo object that
represents the current insertion offset, thegetNextRightHit method returns a
TextHitInfo object that represents the correct insertion offset if the right arr
key is pressed. ThegetNextLeftHit method provides the same information fo
the left arrow key.

In the following example, the current insertion offset is moved in response to
right arrow key.

TextHitInfo newInsertionOffset =
            layout.getNextRightHit(insertionOffset);
if (newInsertionOffset != null) {
  Shape[] caretShapes =
          layout.getCaretShapes(newInsertionOffset);
  // draw carets
  ...
  insertionOffset = newInsertionOffset;
}

4.4.4 Hit Testing

TextLayout provides a simple mechanism for hit testing text. ThehitTestChar

method takesx and y coordinates from the mouse as arguments and return
TextHitInfo object. TheTextHitInfo contains the insertion offset for the
specified position and the side that the hit was on. The insertion offset is the o



Managing Text Layout 61

the

o

t it
t,

ng
closest to the hit: if the hit is past the end of the line, the offset at the end of
line is returned.

In the following example,hitTestChar is called on aTextLayout and thenget-
InsertIndex is used to retrieve the offset.

TextHitInfo hit = layout.hitTestChar(x, y);
int insertIndex = hit.getInsertIndex();

4.4.5 Highlighting Selections

You can get aShape that represents the highlight region from theTextLayout.
TextLayout automatically takes the context into account when calculating the
dimensions of the highlight region.TextLayout supports both logical and visual
highlighting.

In the following example, the highlight region is filled with the highlight color
and then theTextLayout is drawn over the filled region. This is one simple way t
display highlighted text.

Shape highlightRegion = layout.getLogicalHighlightShape(hit1,
      hit2);
graphics.setColor(HIGHLIGHT_COLOR);
graphics.fill(highlightRegion);
graphics.drawString(layout, 0, 0);

4.4.6 Querying Layout Metrics

TextLayout provides access to graphical metrics for the entire range of tex
represents. Metrics available fromTextLayout include the ascent, descen
leading, advance, visible advance, and the bounding rectangle.

More than oneFont can be associated with aTextLayout: different style runs can
use different fonts. The ascent and descent values for aTextLayout are the
maximum values of all of the fonts used in theTextLayout. The computation of
theTextLayout's leading is more complicated; it’s not just the maximum leadi
value.



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version62

e
mes

t
ight
the

es.
in

t
le.
o-

the

his

gth
se
The advance of aTextLayout is its length: the distance from the left edge of th
leftmost glyph to the right edge of the rightmost glyph. The advance is someti
referred to as thetotal advance. The visible advanceis the length of the
TextLayout without its trailing whitespace.

The bounding box of aTextLayout encloses all of the text in the layout. I
includes all the visible glyphs and the caret boundaries. (Some of these m
hang over the origin or origin + advance). The bounding box is relative to
origin of theTextLayout, not to any particular screen position.

In the following example, the text in aTextLayout is drawn within the layout’s
bounding box.

graphics.drawString(layout, 0, 0);
Rectangle2D bounds = layout.getBounds();
graphics.drawRect(bounds.getX()-1, bounds.getY()-1,
         bounds.getWidth()+2, bounds.getHeight()+2);

4.4.7 Drawing Text Across Multiple Lines

TextLayout can also be used to display a piece of text that spans multiple lin
For example, you might take a paragraph of text, line-wrap the text to a certa
width, and display the paragraph as multiple lines of text.

To do this, you do not directly create theTextLayouts that represent each line of
text—LineBreakMeasurer generates them for you. Bidirectional ordering canno
always be performed correctly unless all of the text in a paragraph is availab
LineBreakMeasurer encapsulates enough information about the context to pr
duce correctTextLayouts.

When text is displayed across multiple lines, the length of the lines is usually
determined by the width of the display area. Line breaking (line wrapping) is 
process of determining where lines begin and end, given a graphical width in
which the lines must fit.

The most common strategy is to place as many words on each line as will fit. T
strategy is implemented inLineBreakMeasurer. Other more complex line break
strategies use hyphenation, or attempt to minimize the differences in line len
within paragraphs. The Java 2D API does not provide implementations of the
strategies.



Implementing a Custom Text Layout Mechanism 63

r-

es

n

s in

es
 the

-
yed.
ts
To break a paragraph of text into lines, you construct aLineBreakMeasurer with
the entire paragraph and then callnextLayout to step through the text and gene
ateTextLayouts for each line.

To do this, LineBreakMeasurer maintains an offset within the text. Initially, the
offset is at the beginning of the text. Each call tonextLayout moves the offset by
the character count of theTextLayout that was created. When this offset reach
the end of the text,nextLayout returnsnull.

The visible advance of eachTextLayout that the LineBreakMeasurer creates
doesn’t exceed the specified line width. By varying the width you specify whe
you callnextLayout, you can break text to fit complicated areas, such as an
HTML page with images in fixed positions or tab-stop fields. You can also pas
aBreakIterator to tell LineBreakMeasurer where valid breakpoints are; if you
don't supply one theBreakIterator for the default locale is used.

In the following example, a bilingual text segment is drawn line by line. The lin
are aligned to either to the left margin or right margin, depending on whether
base text direction is left-to-right or right-to-left.

Point2D pen = initialPosition;
LineBreakMeasurer measurer = new LineBreakMeasurer(styledText,
myBreakIterator);
while (true) {
  TextLayout layout = measurer.nextLayout(wrappingWidth);
  if (layout == null) break;
    pen.y += layout.getAscent();
    float dx = 0;
    if (layout.isLeftToRight())
      dx = wrappingWidth - layout.getAdvance();
    layout.draw(graphics, pen.x + dx, pen.y);
    pen.y += layout.getDescent() + layout.getLeading();
}

4.5 Implementing a Custom Text Layout Mechanism

TheGlyphVector class provides a way to display the results of custom layout
mechanisms. AGlyphVector object can be thought of as the output of an algo
rithm that takes a string and computes exactly how the string should be displa
The system has a built-in algorithm and the Java 2D API lets advanced clien
define their own algorithms.



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version64

s
tics

-

 cus-
lay
A GlyphVector object is basically an array of glyphs and glyph locations. Glyph
are used instead of characters to provide total control over layout characteris
such as kerning and ligatures. For example, when displaying the string “final”,
you might want to replace the leadingfi substring with the ligaturefi. In this
case, theGlyphVector object will have fewer glyphs than the number of charac
ters in the original string.

Figure 4-13 and Figure 4-14 illustrate howGlyphVector objects are used by lay-
out mechanisms. Figure 4-13 shows the default layout mechanism. Whendraw-

String is called on aString, the built-in layout algorithm:

• Uses the currentFont in theGraphics2D context to determine which glyphs
to use.

• Calculates where each glyph should be placed.

• Stores the resulting glyph and position information in aGlyphVector.

• Passes theGlyphVector to a glyph rendering routine that does the actual
drawing.

Figure 4-13 Using the Built-in Layout Algorithm

Figure 4-14 shows the process for using a custom layout algorithm. To use a
tom layout algorithm, you must assemble all of the information necessary to 
out the text. The basic process is the same:

• Using theFont, determine which glyphs to use

• Determine where to place the glyphs

• Store this layout information in aGlyphVector

final

GlyphVector

font

glyph-ids

x-posns

y-posns

drawString

Glyph
Renderer

Built-in
Layout
Algorithm

Simple
String



Creating Font Derivations 65

f

ring.
To render the text, you pass theGlyphVector to drawString, which in turn
passes it to the glyph renderer. In Figure 4-14, the custom layout algorithm
replaces thefi substring with the ligaturefi.

Figure 4-14 Using a Custom Layout Algorithm

4.6 Creating Font Derivations

Using theFont.deriveFont methods, you can create a newFont object with
different attributes from an existingFont object. Often, a transform is applied to
the existingFont to create a new derivedFont. To do this, you:

1. Create aFont object.,

2. Create theAffineTransform you want to apply to theFont.

3. CallFont.deriveFont, passing in theAffineTransform.

In this way, you could easily create aFont in a custom size or a skewed version o
an existingFont.

In the following code excerpt, anAffineTransform is applied to create a skewed
version of the font Helvetica. The new derived font is then used to render a st

// Create a transformation for the font.
AffineTransform fontAT = new AffineTransform();
fontAT.setToShear(-1.2, 0.0);
// Create a Font Object.
Font theFont = new Font("Helvetica", Font.PLAIN, 1);
// Derive a new font using the shear transform
theDerivedFont = theFont.deriveFont(fontAT);
// Add the derived font to the Graphics2D context
g2.setFont(theDerivedFont);

final

drawString

Glyph
Renderer

Client
Layout
Algorithm

GlyphVector
collection

Font
parameters



Fonts and Text Layout, Java 2 SDK, Standard Edition, 1.2 Version66
// Render a string using the derived font
g2.drawString(“Java”, 0.0f, 0.0f);



5

he

ase.

d

mag-
 2D

rage
ons.
Imaging

The Java 2D API supports three imaging models

• The producer/consumer (push) model provided in previous versions of t
JDK software.

• The immediate mode model introduced in the Java 2 SDK software rele

• The pipeline (pull) model compatible with the immediate mode model an
that will be fully implemented in the forthcoming Java Advanced Imaging
API.

The following table contrasts the features of each of these imaging models.

This chapter focuses on the objects and techniques of the immediate mode i
ing model.   The immediate mode imaging classes and interfaces of the Java
API provide techniques for dealing with pixel mapped images whose data is
stored in memory. This API supports accessing image data in a variety of sto
formats and manipulating image data through several types of filtering operati
67



Imaging, Java 2 SDK, Standard Edition, 1.2 Version68

six
model

e

e

a-

led
5.1 Interfaces and Classes

The immediate mode imaging APIs in the Java 2D API can be grouped into
categories: interfaces, image data classes, image operation classes, sample
classes, color model classes, and exceptions.

5.1.1 Imaging Interfaces

5.1.2 Image Data Classes

Interface Description

BufferedImageOp Describes single-input/single-output operations performed onBuffered-

Image objects. Implemented byAffineTransformOp, ColorConvertOp,
ConvolveOp, LookupOp, andRescaleOp.

RasterOp Defines single-input/single-output operations performed onRaster ob-
jects. Implemented byAffineTransformOp, BandCombineOp, ColorCon-
vertOp, ConvolveOp, LookupOp, andRescaleOp.

RenderedImage Defines a common protocol for objects that contain or can produce imag
data in the form ofRasters.

WritableRenderedImage Extends:RenderedImage
Defines a common protocol for objects that contain or can produce imag
data in the form ofRasters which can be modified.

TileObserver Defines a protocol for objects that want to be notified when the modific
tion state of aWritableRenderedImage changes.

Class Description

BufferedImage Extends:Image
Implements:WriteableRenderedImage
An image with an accessible data buffer. ABufferedImage has aColor-
Model and aRaster of image data.

ByteLookupTable Extends:LookupTable
A LookupTable that contains byte data.

DataBuffer Wraps one or more data arrays holding pixel data. Each data array is cal
abank.



Interfaces and Classes 69

g

PI)

t

.

p-

r-

-

-

5.1.3 Image Operation Classes

DataBufferByte Extends:DataBuffer (Final)
A data buffer that stores bytes of data. (Used in Java Advanced Imagin
API)

DataBufferInt Extends:DataBuffer (Final))
A data buffer that stores integer data.(Used in Java Advanced Imaging
API)

DataBufferShort Extends:DataBuffer (Final)
A data buffer that stores short data.(Used in Java Advanced Imaging A

DataBufferUShort Extends:DataBuffer (Final)
A data buffer that stores unsigned short data.

Kernel A matrix that describes how an input pixel and its surrounding pixels affec
the value of an output pixel in aConvolveOp filtering operation.

LookupTable Extends:Object
A table that maps values from single-banded pixel data to color values

Raster A rectangular array of pixels from which you can retrieve image data. A
Raster contains aDataBuffer and aSampleModel.

ShortLookupTable Extends:LookupTable
A lookup table that contains short data.

WritableRaster Extends:Raster
A Raster that you can modify.

Class Description

AffineTransformOp Implements:BufferedImageOp, RasterOp
A class that defines an affine transform to perform a linear ma
ping from 2D coordinates in a sourceImage or Raster to 2D co-
ordinates in the destination image orRaster. This class can
perform either bilinear or nearest neighbor affine transform ope
ations.

BandCombineOp Implements:RasterOp
Using a specified matrix, this operation performs an arbitrary lin
ear combination of bands in aRaster.

BufferedImageFilter Extends:ImageFilter
An ImageFilter that provides a simple means of using aBuff-
eredImageOp (a single-source/single-destination image oper
ator) to filter aBufferedImage or Raster.



Imaging, Java 2 SDK, Standard Edition, 1.2 Version70

l-

f

.

.

-

 as

el

ts
5.1.4 Sample Model Classes

ColorConvertOp Implements:BufferedImageOp, RasterOp
Performs a pixel-by-pixel color conversion of the data in the
source image.

ConvolveOp Implements:BufferedImageOp, RasterOp
Uses aKernel to perform a convolution on the source image. A
convolution is a spatial operation where the pixels surrounding
the input pixel are multiplied by a kernel value to generate the va
ue of the output pixel. TheKernel mathematically defines the re-
lationship between the pixels in the immediate neighborhood o
the input pixel and the output pixel.

LookupOp Implements:BufferedImageOp, RasterOp
Performs a lookup operation from the source to the destination
ForRasters, the lookup operates on sample values. ForBuff-

eredImages, the lookup operates on color and alpha components

RescaleOp Implements:BufferedImageOp, RasterOp
Performs a pixel-by-pixel rescaling of the data in the source im
age by multiplying each pixel value by a scale factor and then
adding an offset.

Class Description

BandedSampleModel Extends:ComponentSampleModel (Final)
Provides access to image data stored with like samples stored
bands in separate banks of aDataBuffer. A pixel consists of
one sample from each band.

ComponentSampleModel Extends:SampleModel
Provides access to image data stored with each sample of a pix
residing in a separate element of aDataBuffer. Different types of
pixel interleaving are supported.

MultiPixelPackedSampleModel Extends:SampleModel
Provides access to image data stored with multiple one-sample
pixels packed into one element of aDataBuffer.

PixelInterleavedSampleModel Extends:ComponentSampleModel
Provides access to image data stored with the sample data for
each pixel in adjacent elements of the data array, and all elemen
in a single bank of aDataBuffer.

Class Description



Interfaces and Classes 71

le
s

ng-
5.1.5 Color Model Classes

SampleModel An abstract class that defines a mechanism for extracting samp
data from an image without knowing how the underlying data i
stored in aDataBuffer.

SinglePixelPackedSampleModel Extends:SampleModel
Provides access to image data stored with all the samples belo
ing to an individual pixel packed into one element of a
DataBuffer.

Class Description

ColorModel Implements: Transparency

JDK1.1 class. An abstract class that defines methods for

translating from image pixel values to color components

such as red, green, and blue.

ComponentColorModel Extends: ColorModel

A ColorModel that can handle an arbitrary ColorSpace and an

array of color components to match the ColorSpace. This

class can be used to represent most color models on most

types of GraphicsDevices.

DirectColorModel Extends: PackedColorModel

JDK1.1 class. A ColorModel that represents pixel values that

have RGB color components embedded directly in the

bits of the pixel. This color model is similar to an X11

TrueColor visual. The default RGB ColorModel returned by

ColorModel.getRGBdefault is a DirectColorModel.

IndexColorModel Extends: ColorModel

JDK1.1 class. A ColorModel that represents pixel values that

are indices into a fixed color map in the sRGB ColorSpace.

PackedColorModel Extends: ColorModel

An abstract ColorModel that represents pixel values that

have color components embedded directly in the bits of a

pixel. DirectColorModel extends PackedColorModel to support

pixels that contain RGB color components.

Class Description



Imaging, Java 2 SDK, Standard Edition, 1.2 Version72

 in
r of

ipu-

ti-
5.1.6 Exception Classes

5.2 Immediate Mode Imaging Concepts

The immediate mode imaging model supports fixed-resolution images stored
memory. The model also supports filtering operations on image data. A numbe
classes and interfaces are used in this model.

Figure 5-1 BufferedImage and supporting classes

As shown in Figure 5-1,BufferedImage provides general image management. A
BufferedImage can be created directly in memory and used to hold and man
late image data retrieved from a file or URL. ABufferedImage can be displayed
using anyGraphics2D object for a screen device, or rendered to any other des

Class Description

ImagingOpException Extends: RuntimeException
Thrown if one of the BufferedImageOp or RasterOp filter

methods can’t process the image.

RasterFormatException Extends: RuntimeException
Thrown if there is invalid layout information in the Ras-

ter.



Immediate Mode Imaging Concepts 73

gular
ech-

pro-

al

s on
d-
nation using appropriateGraphics2D context. ABufferedImage object contains
two other objects: aRaster and aColorModel.

TheRaster class provides image data management. It represents the rectan
coordinates of the image, maintains image data in memory, and provides a m
anism for creating multiple subimages from a single image data buffer. It also
vides methods for accessing specific pixels within an image. A Raster object
contains two other objects, aDataBuffer and aSampleModel.

TheDataBuffer class holds pixel data in memory.

TheSampleModel class interprets data in the buffer and provides it as individu
pixels or rectangular ranges of pixels.

TheColorModel class provides a color interpretation of pixel data provided by
the image’s sample model.

The image package provides additional classes that define filtering operation
BufferedImage andRaster objects. Each image processing operation is embo
ied in a class that implements theBufferedImageOp interface, theRasterOp
interface, or both interfaces. The operation class definesfilter methods that per-
forms the actual image manipulation.

Figure 5-2 illustrates the basic model for Java 2D API image processing:

Figure 5-2 Image Processing Model

The operations supported include:

• Affine transformation

• Amplitude scaling

• Lookup-table modification

• Linear combination of bands

• Color conversion

source
image

destination
image

filter

image-processing
operation



Imaging, Java 2 SDK, Standard Edition, 1.2 Version74

tly

ele-

lor
s:

tion

r all
ed in
zes
posi-
ith a
t the

m-
e.

ter-
• Convolution

Note that if you’re interested just in displaying and manipulating images, you
only need to understand theBufferedImage class and the filtering operation
classes. On the other hand, if you’re planning to write filters or otherwise direc
access image data, you’ll need to understand the classes associated withBuff-

eredImage.

5.2.1 Terminology

Here are some terms used throughout the following discussions:

Data Elements: primitive types used as units of storage of image data. Data 
ments are individual members of aDataBuffer array. The layout of elements in
the data buffer is independent of the interpretation of the data as pixels by an
image’sSampleModel.

Samples: distinct members of the pixels of an image. ASampleModel provides a
mechanism for converting elements in theDataBuffer to pixels and their sam-
ples.   The samples of a pixel may represent primary values in a particular co
model. For example, a pixel in an RGB color model consists of three sample
red, green, and blue.

Components: values of pixels independent of color interpretation. The distinc
between component and sample is useful withIndexColorModel, where pixel
components are indexes into theLookupTable.

Band: the set of all samples of one type in an image, such as all red samples o
green samples. Pixel data can be stored in a number of ways, the two support
the Java 2D API being banded and pixel interleaved. Banded storage organi
image data by bands, and a pixel is made up of sample data from the same 
tion in each band. Pixel interleaved storage organizes image data by pixels, w
single array containing all pixels, and bands consisting of the set of samples a
same index position in each pixel.

Primaries: distinct members of a color value in a specific color model; for exa
ple the RGB model forms color values from the primaries red, green, and blu

5.3 Using BufferedImages

TheBufferedImage class is the main class supporting the immediate imaging
mode. It manages an image in memory, providing ways to store pixel data, in
pret pixel data, and to render the pixel data to aGraphics or Graphics2D context.



Using BufferedImages 75

m-
nd
e
raw-

-

then
is
ed
copy
it,
5.3.1 Creating a BufferedImage

To create aBufferedImage, call theComponent.createImage method; this
returns aBufferedImage whose drawing characteristics match those of the co
ponent used to create it—the created image is opaque, has the foreground a
background colors of theComponent, and you can’t adjust the transparency of th
image. You could use this technique when you want to do double buffered d
ing for animation in a component; the discussion “Drawing in an Offscreen
Buffer” on page 78 gives more details.

    public Graphics2D createDemoGraphics2D(Graphics g) {
        Graphics2D g2 = null;
        int width = getSize().width;
        int height = getSize().height;

        if (offImg == null || offImg.getWidth() != width ||
                        offImg.getHeight() != height) {

offImg = (BufferedImage) createImage(width, height);
        }

        if (offImg != null) {
            g2 = offImg.createGraphics();
            g2.setBackground(getBackground());
        }

        // .. clear canvas ..
        g2.clearRect(0, 0, width, height);

        return g2;
    }

You can also create a blankBufferedImage in memory using one of several con
structor methods provided.

5.3.2 Drawing in an Offscreen Buffer

TheBufferedImage class can be used to prepare graphic elements offscreen
copy them to the screen. This technique is especially useful when a graphic 
complex or used repeatedly. For example, if you want to display a complicat
shape several times, you could draw it once into an offscreen buffer and then
it to different locations in the window. By drawing the shape once and copying
you can display the graphics more quickly.



Imaging, Java 2 SDK, Standard Edition, 1.2 Version76

w

off-
imi-
 a
ca-

t to

then
ied,
th

 is to

new
the
Thejava.awt package facilitates the use of offscreen buffers by letting you dra
to anImage object the same way that you draw to a window. All of the Java 2D
API rendering features can be used when drawing to offscreen images.

Offscreen buffers are often used for animation. For example, you could use an
screen buffer to draw an object once and then move it around in a window. S
larly, you could use an offscreen buffer to provide feedback as a user moves
graphic using the mouse. Instead of redrawing the graphic at every mouse lo
tion, you could draw the graphic once to an offscreen buffer, and then copy i
the mouse location as the user drags the mouse.1

Figure 5-3 Using an Offscreen Buffer

Figure 5-3 demonstrates how a program can draw to an offscreen image and
copy that image into a window multiple times. The last time the image is cop
it is transformed. Note that transforming the image instead of redrawing it wi
the transformation might produce unsatisfactory results.

5.3.2.1 Creating an Offscreen Buffer

The simplest way to create an image that you can use as an offscreen buffer
use theComponent.createImage method.

1. It is up to the programmer to “erase” the previous version of the image before making a
copy at a new location. This can be done by redrawing the background or copying
background from another offscreen buffer.



Using BufferedImages 77

tch
 a

or

a
ular
a
olors

larly

-

e-
lso
the
By creating an image whose color space, depth, and pixel layout exactly ma
the window into which you are drawing, the image can be efficiently blitted to
graphics device. This allowsdrawImage to do its job quickly.

You can also construct a BufferedImage object directly to use as an offscreen
buffer. This is useful when you need control over the offscreen image’s type 
transparency.

BufferedImage supports several predefined image types:

• TYPE_3BYTE_BGR

• TYPE_4BYTE_ABGR

• TYPE_4BYTE_ABGR_PRE

• TYPE_BYTE_BINARY

• TYPE_BYTE_GRAY

• TYPE_BYTE_INDEXED

• TYPE_CUSTOM

• TYPE_INT_ARGB_PRE

• TYPE_INT_ARGB

• TYPE_INT_BGR

• TYPE_INT_RGB

• TYPE_USHORT_555_RGB

• TYPE_USHORT_565_RGB

• TYPE_INT_GRAY

A BufferedImage object can contain an alpha channel. In Figure 5-3, an alph
channel is used to distinguish painted and unpainted areas, allowing an irreg
shape to appear over graphics that have already been painted (in this case, 
shaded rectangle). In other cases, you might use alpha channel to blend the c
of the new image into those in the existing image.

Note: unless you need alpha image data for transparency, as with the irregu
shaped images shown in Figure 5-2, you should avoid creating an off-screen
buffer with alpha. Using alpha where it’s unnecessary slows rendering perfor
mance.

GraphicsConfiguration provides convenience methods that automatically cr
ate buffered images in a format compatible with your configuration. You can a
query the graphics configuration associated with the graphics device on which
window resides to get the information you need to construct a compatibleBuff-

eredImage object.



Imaging, Java 2 SDK, Standard Edition, 1.2 Version78

er

-

u’re

ed
u-
5.3.2.2 Drawing in an Offscreen Buffer

To draw in a buffered image, you call itsBufferedImage.createGraphics
method, which returns aGraphics2D object. With this object, you can call all of
theGraphics2D methods to draw graphics primitives, place text, and render oth
images in the image. This drawing technique supports dithering and other
enhancements provided by the 2D imaging package. The following code illus
trates the use of offscreen buffering:

    public void update(Graphics g){
        Graphics2D g2 = (Graphics2D)g;
        if(firstTime){
            Dimension dim = getSize();
            int w = dim.width;
            int h = dim.height;
            area = new Rectangle(dim);
            bi = (BufferedImage)createImage(w, h);
            big = bi.createGraphics();
            rect.setLocation(w/2-50, h/2-25);
            big.setStroke(new BasicStroke(8.0f));
            firstTime = false;
        }

        // Clears the rectangle that was previously drawn.
        big.setColor(Color.white);
        big.clearRect(0, 0, area.width, area.height);

        // Draws and fills the newly positioned rectangle to the buffer.
        big.setPaint(strokePolka);
        big.draw(rect);
        big.setPaint(fillPolka);
        big.fill(rect);

        // Draws the buffered image to the screen.
        g2.drawImage(bi, 0, 0, this);

    }

5.3.3 Manipulating BufferedImage Data Directly

In addition to drawing directly in aBufferedImage, you can directly access and
manipulate the image’s pixel data in a couple of ways. These are useful if yo
implementing theBufferedImageOp filtering interface, as described in “Image
Processing and Enhancement” on page 83.

You can use theBufferedImage.setRGB methods to directly set the value of a
pixel or a pixel array to a specific RGB value. Note that no dithering is perform
when you modify pixels directly. You can also manipulate pixel data by manip



Managing and Manipulating Rasters 79

” on

h,
lating aWritableRaster object associated with aBufferedImage (see“Manag-
ing and Manipulating Rasters” on page 79).

5.3.4 Filtering a BufferedImage

You can apply a filtering operation to aBufferedImage using an object that
implementsBufferedImageOp interface. Filtering and the classes that provide
this filtering interface are discussed in “Image Processing and Enhancement
page 83.

5.3.5 Rendering a BufferedImage

To render a buffered image into a specific context, call one of thedrawImage

method of the context’sGraphics object. For example, when rendering within a
Component.paint method, you calldrawImage on the graphics object passed to
the method.

    public void paint(Graphics g) {

        if (getSize().width <= 0 || getSize().height <= 0)
            return;

        Graphics2D g2 = (Graphics2D) g;

        if (offImg != null && isShowing())  {
            g2.drawImage(offImg, 0, 0, this);
        }
    }

5.4 Managing and Manipulating Rasters

A BufferedImage object uses aRaster to manage its rectangular array of pixel
data. TheRaster class defines fields for the image’s coordinate system—widt
height, and origin. ARaster object itself uses two objects to manage the pixel
data, aDataBuffer and aSampleModel. TheDataBuffer is the object that stores
pixel data for the raster (as described on page 81), and theSampleModel provides
the interpretation of pixel data from theDataBuffer (as described on page 81).



Imaging, Java 2 SDK, Standard Edition, 1.2 Version80

an
ed
data
ca-

set

ese

d

mple
i-
5.4.1 Creating a Raster

In most cases, you don’t need to create aRaster directly, since one is supplied
with anyBufferedImage that you create in memory. However, one of theBuff-

eredImage constructor methods allows you to create aRaster by passing in a
WritableRaster.

TheRaster class provides a number of static factory methods for creatingRas-

ters with theDataBuffers andSampleModels you specify. You can use these
factories when implementingRasterOp filtering classes.

5.4.2 Parent and Child Rasters

TheRaster class incorporates the concept of parent and child rasters. This c
improve storage efficiency by allowing you to construct any number of buffer
images from the same parent. The parent and its children all refer to the same
buffer, and each child has a specific offset and bounds to identify its image lo
tion in the buffer. A child identifies its ownership through itsgetParent method.

To create a subraster, you use theRaster.createSubRaster method.When you
create a subraster, you identify the area of its parent that it covers and its off
from the parent’s origin.

5.4.3 Operations on a Raster

TheRaster class defines a number of ways to access pixels and pixel data. Th
are useful when you’re implementing theRasterOp interface, which provides ras-
ter-level filtering and manipulation of image data, or when implementing any
method that needs to perform low-level pixel manipulation.

TheRaster.getPixel methods let you get an individual pixel, which is returne
as individual samples in an array. TheRaster.getDataElements methods return a
specified run of uninterpreted image data from theDataBuffer. TheRaster.get-
Sample method returns samples of an individual pixel. ThegetSamples method
returns a band for a particular region of an image.

In addition to these methods, you can also access the data buffer and the sa
model through instance variables of theRaster class. These objects provide add
tional ways to access and interpret theRaster’s pixel data.



Image Data and DataBuffers 81

m-

n

ta
e up a
n a

g

 a
5.4.4 The WritableRaster Subclass

TheWritableRaster subclass provides methods for setting pixel data and sa
ples. TheRaster associated with aBufferedImage is actually aWrit-
ableRaster, thus providing full access to manipulate its pixel data.

5.5 Image Data and DataBuffers

TheDataBuffer belonging to aRaster represents an array of image data. Whe
you create aRaster directly or through theBufferedImage constructors, you
specify a width and height in pixels, along with aSampleModel for the image
data. This information is used to create aDataBuffer of the appropriate data type
and size.

There are three subclasses ofDataBuffer, each representing a different type of
data element:

• DataBufferByte (represents 8-bit values)

• DataBufferInt (represents 32-bit values)

• DataBufferShort (represents 16-bit values)

• DataBufferUShort (represents unsigned short values)

As defined earlier, elements are the discrete members of the array of the da
buffer, and components or samples are the discrete values that together mak
pixel. There can be various mappings between a particular type of element i
DataBuffer and a particular type of pixel represented by aSampleModel. It is the
responsibility of the variousSampleModel subclasses to implement that mappin
and provide a way to get specific pixels from a specificDataBuffer.

DataBuffer constructors provide ways to create buffers of a specific size and
specific number of banks.

While you can access image data in aDataBuffer directly, it’s generally easier
and more convenient to do so through the methods of theRaster andWrit-
ableRaster classes.

5.6 Extracting Pixel Data from a SampleModel

The abstractSampleModel class defines methods for extracting samples of an
image without knowing how the underlying data is stored. The class provides
fields for tracking the height and width of the image data in the associated



Imaging, Java 2 SDK, Standard Edition, 1.2 Version82

t
th

ata

ence

first

t
sent

e
d in
r

to
DataBuffer, and for describing the number of bands and the data type of tha
buffer. SampleModel methods provide image data as a collection of pixels, wi
each pixel consisting of a number of samples or components.

Thejava.awt.image package provides five types of sample models:

• ComponentSampleModel—used to extract pixels from images that store
sample data in separate data array elements in one bank of aDataBuffer.

• BandedSampleModel—used to extract pixels from images that store each
sample in a separate data element with bands stored in a sequence of d
elements

• PixelInterleavedSampleModel—used to extract pixels from images that
store each sample in a separate data element with pixels stored in a sequ
of data elements.

• MultiPixelPackedSampleModel—used to extract pixels from single banded
images that store multiple one-sample pixels in one data element.

• SinglePixelPackedSampleModel—used to extract samples from images
that store sample data for a single pixel in one data array element in the
bank of aDataBuffer.

Pixel data presented by theSampleModel may or may not correlate directly to a
color data representation of a particular color model, depending on the data
source. For example, in photographic image data, the samples may represen
RGB data. In image data from a medical imaging device, samples can repre
different types of data such as temperature or bone density.

There are three categories of methods for accessing image data. ThegetPixel

methods return a whole pixel as an array, with one entry for each sample. Th
getDataElement methods provide access to the raw, uninterpreted data store
theDataBuffer. ThegetSample methods provide access to pixel components fo
a specific band.

5.7 ColorModels and Color Data

In addition to theRaster object for managing image data, theBufferedImage

class includes aColorModel for interpreting that data as color pixel values. The
abstractColorModel class defines methods for turning an image’s pixel data in
a color value in its associatedColorSpace.

Thejava.awt.image package provides four types of color models:



Image Processing and Enhancement 83

xel.

; for

trast,

pha-
ly
o
iewer
• PackedColorModel—An abstractColorModel that represents pixel values
that have color components embedded directly in the bits of an integer pi
A DirectColorModel is a subclass ofPackedColorModel.

• DirectColorModel—aColorModel that represents pixel values that have
RGB color components embedded directly in the bits of the pixel itself.
DirectColorModel model is similar to an X11 TrueColor visual.

• ComponentColorModel—aColorModel that can handle an arbitrary
ColorSpace and an array of color components to match theColorSpace.

• IndexColorModel—aColorModel that represents pixel values that are
indices into a fixed color map in the sRGB color space.

ComponentColorModel andPackedColorModel are new in the Java 2 SDK soft-
ware release.

Based on data in theDataBuffer, theSampleModel provides theColorModel
with a pixel, which theColorModel then interprets as a color.

5.7.1 Lookup Table

A lookup table contains data for one or more channels or image components
example, separate arrays for R, G, and B. Thejava.awt.image package defines
two types of lookup tables that extend the abstractLookupTable class, one that
contains byte data and one that contains short data (ByteLookupTable and
ShortLookupData).

5.8 Image Processing and Enhancement

The image package provides a pair of interfaces that define operations onBuff-

eredImage andRaster objects:BufferedImageOp andRasterOp.

The classes that implement these interfaces includeAffineTransformOp, Band-
CombineOp, ColorConvertOp, ConvolveOp, LookupOp, RescaleOp. These
classes can be used to geometrically transform, blur, sharpen, enhance con
threshold, and color correct images.

Figure 5-4 illustrates edge detection and enhancement, an operation that em
sizes sharp changes in intensity within an image. Edge detection is common
used in medical imaging and mapping applications. Edge detection is used t
increase the contrast between adjacent structures in an image, allowing the v
to discriminate greater detail.



Imaging, Java 2 SDK, Standard Edition, 1.2 Version84

be
Figure 5-4 Edge detection and enhancement

The following code illustrates edge detection:

float[] elements = { 0.0f, -1.0f, 0.0f,
                    -1.0f, 4.f, -1.0f,
                    0.0f, -1.0f, 0.0f};
...

BufferedImage bimg = new
BufferedImage(bw,bh,BufferedImage.TYPE_INT_RGB);
Kernel kernel = new Kernel(3, 3, elements);
ConvolveOp cop = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP,
                                null);
cop.filter(bi,bimg);

Figure 5-5 demonstrates lookup table manipulation. A lookup operation can 
used to alter individual components of a pixel.

Figure 5-5 Lookup-table Manipulation

The following code demonstrates Lookup-table manipulation:



Image Processing and Enhancement 85

ity of
ise

nvo-
age
ted
d

byte reverse[] = new byte[256];
   for (int j=0; j<200; j++){

reverse[j]=(byte)(256-j);
}
ByteLookupTable blut=new ByteLookupTable(0, reverse);
LookupOp lop = new LookupOp(blut, null);

   lop.filter(bi,bimg);

Figure 5-6 illustrates rescaling. Rescaling can increase or decrease the intens
all points. Rescaling can be used to increase the dynamic range of an otherw
neutral image, bringing out detail in a region that appears neutral or flat.

Figure 5-6 Rescaling

The following code snippet illustrates rescaling:

RescaleOp rop = new RescaleOp(1.5f, 1.0f, null);
rop.filter(bi,bimg);

5.8.1 Using an Image Processing Operation

Convolution is the process that underlies most spatial filtering algorithms. Co
lution is the process of weighting or averaging the value of each pixel in an im
with the values of neighboring pixels.This allows each output pixel to be affec
by the immediate neighborhood in a way that can be mathematically specifie
with a kernel. Figure 5-7 illustrates Convolution.



Imaging, Java 2 SDK, Standard Edition, 1.2 Version86

ing
ed

a-
Figure 5-7 Blurring with Convolution

The following code fragment illustrates how to use one of the image process
classes,ConvolveOp. In this example, each pixel in the source image is averag
equally with the eight pixels that surround it.

float weight = 1.0f/9.0f;
float[] elements = new float[9]; // create 2D array

// fill the array with nine equal elements
for (i = 0; i < 9; i++) {
   elements[i] = weight;
}
// use the array of elements as argument to create a Kernel
private Kernel myKernel = new Kernel(3, 3, elements);
public ConvolveOp simpleBlur = new ConvolveOp(myKernel);

// sourceImage and destImage are instances of BufferedImage
simpleBlur.filter(sourceImage, destImage) // blur the image

The variablesimpleBlur contains a new instance ofConvolveOp that implements
a blur operation on aBufferedImage or aRaster. Suppose thatsourceImage
anddestImage are two instances ofBufferedImage. When you callfilter, the
core method of theConvolveOp class, it sets the value of each pixel in the destin
tion image by averaging the corresponding pixel in the source image with the
eight pixels that surround it.

The convolution kernel in this example could be represented by the following
matrix, with elements specified to four significant figures:

K
0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

=



Image Processing and Enhancement 87

e is
with
el of

ith
e in

he
ple
of its

xel

ensity

es,
sian

e is
When an image is convolved, the value of each pixel in the destination imag
calculated by using the kernel as a set of weights to average the pixel’s value
the values of surrounding pixels. This operation is performed on each chann
the image.

The following formula shows how the weights in the kernel are associated w
the pixels in the source image when the convolution is performed. Each valu
the kernel is tied to a spatial position in the image.

The value of a destination pixel is the sum of the products of the weights in t
kernel multiplied by the value of the corresponding source pixel. For many sim
operations, the kernel is a matrix that is square and symmetric, and the sum
weights adds up to one.2

The convolution kernel in this example is relatively simple. It weights each pi
from the source image equally. By choosing a kernel that weights the source
image at a higher or lower level, a program can increase or decrease the int
of the destination image. TheKernel object, which is set in theConvolveOp con-
structor, determines the type of filtering that is performed. By setting other valu
you can perform other types of convolutions, including blurring (such as Gaus
blur, radial blur, and motion blur), sharpening, and smoothing operations.
Figure 5-8 illustrates sharpening using Convolution.

Figure 5-8 Sharpening with Convolution

The following code snippet illustrates sharpening with Convolution:

2. If the sum of the weights in the matrix is one, the intensity of the destination imag
unchanged from the source.

K
i 1– j 1–, i j 1–, i 1+ j 1–,

i 1– j, i j, i 1+ j,
i 1– j 1+, i j 1+, i 1+ j 1+,

=



Imaging, Java 2 SDK, Standard Edition, 1.2 Version88
float[] elements = { 0.0f, -1.0f, 0.0f,
                    -1.0f,  5.f, -1.0f,
                     0.0f, -1.0f,  0.0f};
...

Kernel kernel = new Kernel(3,3,elements);
ConvolveOp cop = new ConvolveOp(kernel, ConvolveOp.EDGE_NO_OP,

null);
cop.filter(bi,bimg);



6

and
I

ree

r

o

et
Color

Color imaging is one of the fundamental components of any graphics system,
it is often a source of great complexity in the imaging model. The Java 2D AP
provides support for high-quality color output that is easy to use and allows
advanced clients to make sophisticated use of color.

The key color management classes in the Java 2D API areColorSpace, Color,
ColorModel:

• A ColorSpace represents a system for measuring colors, typically using th
separate numerical values or components. TheColorSpace class contains
methods for converting between the color space and two standard color
spaces,CIEXYZ and RGB.

• A Color is a fixed color, defined in terms of its components in a particula
ColorSpace. To draw aShape in a color, such as red, you pass aColor object
representing that color to theGraphics2D context.Color is defined in the
java.awt package.

• A ColorModel describes a particular way that pixel values are mapped t
colors. AColorModel is typically associated with anImage or
BufferedImage and provides the information necessary to correctly interpr
the pixel values.ColorModel is defined in thejava.awt.image package.

6.1 Classes

Class Description

ColorSpace Identifies the color space of aColor object,Image, BufferedImage, or
GraphicsDevice. Has methods to transform between RGB and CIEXYZ
color spaces.
89



Color, Java 2 SDK, Standard Edition, 1.2 Version90

ing
ce. It
ing
ata

ow

el

hat
xel.

g
s. A

ased

e
.

6.2 Color Concepts

A ColorModel is used to interpret pixel data in an image. This includes mapp
components in the bands of an image to components of a particular color spa
might also involve extracting pixel components from packed pixel data, retriev
multiple components from a single band using masks, and converting pixel d
through a lookup table.

To determine the color value of a particular pixel in an image, you need to kn
how color information is encoded in each pixel. TheColorModel associated with
an image encapsulates the data and methods necessary for translating a pix
value to and from its constituent color components.

The Java 2D API provides two color models in addition to theDirectColorModel

andIndexColorModel defined in the JDK 1.1 software release:

• ComponentColorModel can handle an arbitraryColorSpace and an array of
color components to match theColorSpace. This model can be used to
represent most color models on most types ofGraphicsDevices.

• PackedColorModel is a base class for models that represent pixel values t
have their color components embedded directly in the bits of an integer pi
A PackedColorModel stores the packing information that describes how
color and alpha components are extracted from the channel.The
DirectColorModel in the JDK 1.1 software release is aPackedColorModel.

6.2.0.1 ColorSpace

A ColorSpace object represents a system for measuring colors, typically usin
three separate numeric values. For example, RGB and CMYK are color space

ICC_ColorSpace Extends:ColorSpace
Represents device-independent and device-dependent color spaces b
on the ICC Profile Format Specification.

ICC_Profile A representation of color profile data for device independent and devic
dependent color spaces based on the ICC Profile Format Specification

ICC_ProfileGray Extends:ICC_Profile
A representation of color space type gray.

ICC_ProfileRGB Extends:ICC_Profile
A representation of color space type RGB.

Class Description



Color Concepts 91

r

lor

g it

r

 of
s

tween

er-
ms,

in a

s that
ersion
ColorSpace object serves as a colorspace tag that identifies the specific colo
space of aColor object or, through aColorModel object, of anImage, Buffered-
Image, orGraphicsConfiguration. ColorSpace provides methods that trans-
form Colors in a specific color space to and fromsRGB and to and from a well-
definedCIEXYZ color space.

All ColorSpace objects must be able to map a color from the represented co
space intosRGB and transform ansRGB color into the represented color space.
Since everyColor contains aColorSpace object, set explicitly or by default,
everyColor can also be converted tosRGB. EveryGraphicsConfiguration is
associated with aColorSpace object that in turn has an associatedColorSpace. A
color specified in any color space can be displayed by any device by mappin
throughsRGB as an intermediate color space.

The methods used for this process aretoRGB andfromRGB:

• toRGB transforms aColor in the represented color space to aColor in sRGB.

• fromRGB takes aColor in sRGB and transforms it into the represented colo
space.

Though mapping throughsRGB always works, it's not always the best solution.
For one thing,sRGB cannot represent every color in the full gamut ofCIEXYZ col-
ors. If a color is specified in some space that has a different gamut (spectrum
representable colors) thansRGB, then usingsRGB as an intermediate space result
in a loss of information. To address this problem, theColorSpace class can map
colors to and from another color space, the “conversion space”CIEXYZ.

The methodstoCIEXYZ andfromCIEXYZ map color values from the represented
color space to the conversion space. These methods support conversions be
any two color spaces at a reasonably high degree of accuracy, oneColor at a time.
However, it is expected that Java 2D API implementations will support high-p
formance conversion based on underlying platform color-management syste
operating on entire images. (SeeColorConvertOp in “Imaging” on page 67.)

Figure 6-1 and Figure 6-2 illustrate the process of translating a color specified
CMYK color space for display on an RGB color monitor. Figure 6-1 shows a
mapping throughsRGB. As this figure illustrates, the translation of the CMYK
color to an RGB color is not exact because of a gamut mismatch.1

1. Of course, the colors used in these diagrams are illustrative, not accurate. The point i
colors might not be mapped accurately between color spaces unless an appropriate conv
space is used.



Color, Java 2 SDK, Standard Edition, 1.2 Version92

e-
d
rbi-
d.

ofiles

a con-
pping
 ICC

 man-
ith
Figure 6-1 Mapping Through sRGB

Figure 6-2 shows the same process usingCIEXYZ as the conversion space. When
CIEXYZ is used, the color is passed through accurately.

Figure 6-2 Mapping Through CIEXYZ

6.2.0.2 ICC_Profile and ICC_ColorSpace

ColorSpace is actually an abstract class. The Java 2D API provides one impl
mentation,ICC_ColorSpace, which is based on ICC Profile data as represente
by theICC_Profile class. You can define your own subclasses to represent a
trary color spaces, as long as the methods discussed above are implemente
However, most developers can simply use the defaultsRGB ColorSpace or color
spaces that are represented by commonly available ICC Profiles, such as pr
for monitors and printers, or profiles embedded in image data.

“ColorSpace” on page 90 describes howColorSpace objects represent a color
space and how colors in the represented space can be mapped to and from 
version space. Color management systems are often used to handle the ma
between color spaces. A typical color management system (CMS) manages
profiles, which are similar toColorSpace objects; ICC profiles describe an input
space and a connection space, and define how to map between them. Color
agement systems are very good at figuring out how to map a color tagged w
one profile into the color space of another profile.

toRGB

fromRGB

toCIEXYZ

fromCIEXYZ

CMYK
ColorSpace

toRGB

fromRGB

toCIEXYZ

fromCIEXYZ

DeviceRGB
ColorSpacesRGB

Color
CMYK
Color

Device RGB
Color

toRGB

fromRGB

toCIEXYZ

fromCIEXYZ

CMYK
ColorSpace

toRGB

fromRGB

toCIEXYZ

fromCIEXYZ

DeviceRGB
ColorSpaceCIEXYZ

Color
CMYK
Color

Device RGB
Color



Color Concepts 93

 an

pes,

nnec-

 can

An

 RGB

s a
on-
ace

n-
color
n.

m-

need
s to
en,
The Java 2D API defines a class calledICC_Profile that holds data for an arbi-
trary ICC Profile.ICC_ColorSpace is an implementation of the abstractColor-

Space class.ICC_ColorSpace objects can be constructed fromICC_Profiles.
(There are some limitations—not all ICC Profiles are appropriate for defining
ICC_ColorSpace).

ICC_Profile has several subclasses that correspond to specific color space ty
such asICC_ProfileRGB andICC_ProfileGray. Each subclass ofICC_Profile
has a well-defined input space (such as an RGB space) and a well-defined co
tion space (likeCIEXYZ). The Java 2D API can use a platform's CMS to access
color profiles for various devices such as scanners, printers, and monitors. It
also use the CMS to find the best mapping between profiles.

6.2.1 Describing Colors

TheColor class provides a description of a color in a particular color space. 
instance ofColor contains the value of the color components and aColorSpace

object. Because aColorSpace object can be specified in addition to the color
components when a new instance ofColor is created, theColor class can handle
colors in any color space.

TheColor class has a number of methods that support a proposed standard
color space calledsRGB (seehttp://www.w3.org/pub/WWW/Graphics/Color/
sRGB.html). sRGB is the default color space for the Java 2D API. Several con-
structors defined by the Color class omit theColorSpace parameter. These con-
structors assume that the color's RGB values are defined insRGB, and use a default
instance ofColorSpace to represent that space.

The Java 2D API usessRGB as a convenience to application programmers, not a
reference color space for color conversion. Many applications are primarily c
cerned with RGB images and monitors, and defining a standard RGB color sp
makes writing such applications easier. TheColorSpace class defines the meth-
odstoRGB andfromRGB so that developers can easily retrieve colors in this sta
dard space. These methods are not intended to be used for highly accurate 
correction or conversions. See “ColorSpace” on page 90 for more informatio

To create a color in a color space other thansRGB, you use theColor constructor
that takes aColorSpace object and an array of floats that represent the color co
ponents appropriate to that space. TheColorSpace object identifies the color
space.

To display a rectangle of a certain color, such as the process color cyan, you
a way to describe this color to the system. There are a number of different way
describe a color; for example, a color could be described as a set of red, gre



Color, Java 2 SDK, Standard Edition, 1.2 Version94

led

ng
r

ess
ted
.

K
s of
cyan

r.
nd

r
ce.
nt
de-

d by
d
vel-

. To
ent
t

 that
t

n-
ail-
and blue (RGB) components, or a set of cyan, magenta, yellow, and black
(CMYK) components. These different techniques for specifying colors are cal
color spaces.

As you probably know, colors on a computer screen are generated by blendi
different amounts of red, green, and blue light. Therefore, using an RGB colo
space is standard for imaging on computer monitors. Similarly, four-color proc
printing uses cyan, magenta, yellow, and black ink to produce color on a prin
page; the printed colors are specified as percentages in a CMYK color space

Due to the prevalence of computer monitors and color printing, RGB and CMY
color spaces are both commonly used to describe colors. However, both type
color spaces have a fundamental drawback—they are device-dependent. The
ink used by one printer might not exactly match the cyan ink used by anothe
Similarly, a color described as an RGB color might look blue on one monitor a
purplish on another.

6.2.2 Mapping Colors through sRGB and CIEXYZ

The Java 2D API refers to RGB and CMYK as color space types. A particula
model of monitor with its particular phosphors defines its own RGB color spa
Similarly, a particular model of printer has its own CMYK color space. Differe
RGB or CMYK color spaces can be related to each other through a device-in
pendent color space.

Standards for the device-independent specification of color have been define
the International Commission on Illumination (CIE). The most commonly use
device-independent color space is the three-component XYZ color space de
oped by CIE. When you specify a color usingCIEXYZ, you are insulated from
device dependencies.

Unfortunately, it’s not always practical to describe colors in theCIEXYZ color
space—there are valid reasons for representing colors in other color spaces
obtain consistent results when a color is represented using a device-depend
color space such as a particular RGB space, it is necessary to show how tha
RGB space relates to a device-independent space likeCIEXYZ.

One way to map between color spaces is to attach information to the spaces
describes how the device-dependent space relates to the device-independen
space. This additional information is called aprofile. A commonly used type of
color profile is the ICC Color Profile, as defined by the International Color Co
sortium. For details, see the ICC Profile Format Specification, version 3.4 av
able athttp://www.color.org.



Color Concepts 95

Java
e in

n an
acter-
uce

.

tput
lor
dent
 In
phi-
d to
 a
Figure 6-3 illustrates how a solid color and a scanned image are passed to the
2D API, and how they are displayed by various output devices. As you can se
Figure 6-3, both the input color and the image have profiles attached.

Figure 6-3 Using Profiles to Map Between Color Spaces

6.2.2.1 Color Matching

Once the API has an accurately specified color, it must reproduce that color o
output device, such as a monitor or printer. These devices have imaging char
istics of their own that must be taken into account to make sure that they prod
the correct results. Another profile is associated with each output device to
describe how the colors need to be transformed to produce accurate results

Achieving consistent and accurate color requires that both input colors and ou
devices be profiled against a standard color space. For example, an input co
could be mapped from its original color space into a standard device-indepen
space, and then mapped from that space to the output device’s color space.
many respects, the transformation of colors mimics the transformation of gra
cal objects in an (x, y) coordinate space. In both cases, a transformation is use
specify coordinates in a “standard” space and then map those coordinates to
device-specific space for output.

Profile RGB
Monitor

Grayscale
Monitor

CMYK
Printer

Java 2D

Solid Color

Scanned Image

Profile

Profile

Profile

Profile
API



Color, Java 2 SDK, Standard Edition, 1.2 Version96



7

der

rs
are

ple-

the
Printing

The Java Printing API enables applications to:

• Print all AWT and Java 2D graphics, including composited graphics and
images.

• Control document-composition functions such as soft collating, reverse or
printing, and booklet printing.

•  Invoke printer-specific functions such as duplex (two-sided) printing and
stapling.

• Print on all platforms, including Windows and Solaris. This includes printe
directly attached to the computer as well as those that the platform softw
is able to access using network printing protocols.

Not all of these features are supported in the Java 2 SDK Printing API and im
mentation. The API will be extended to support all of these features in future
releases. For example, additional printer controls will be added by augmenting
set of named properties of a print job that the application can control.
97



Printing, Java 2 SDK, Standard Edition, 1.2 Version98

 pro-
sks

han
e able

age

e

age

he

age

nt
7.1 Interfaces and Classes

7.2 Printing Concepts

The Java Printing API is based on acallbackprinting model in which the printing
system, not the application, controls when pages are printed. The application
vides information about the document to be printed and the printing system a
the application to render each page as it needs them.

The printing system might request that a particular page be rendered more t
once or request that pages be rendered out of order. The application must b
to generate the proper page image, no matter which page the printing system
requests. In this respect, the printing system is similar to the window toolkit,
which can request components to repaint at any time, in any order.

Interface Description

Printable ThePrintable interface is implemented by eachpage painter, the application
class(es) called by the printing system to render a page. The system calls the p
painter’sprint method to request that a page be rendered.

Pageable ThePageable interface is implemented by a document that is to be printed by th
printing system. Through thePageable methods, the system can determine the
number of pages in the document, the format to use for each page, and the p
painter to use to render each page.

PrinterGraphics TheGraphics2D objects that a page painter uses to render a page implement t
PrinterGraphics interface. This enables an application to get thePrinterJob

object that is controlling the printing.

Class Description

Book Implements:Pageable
Represents a document in which pages can have different page formats and p
painters. This class uses thePageable interface to interact with aPrinterJob.

PageFormat Describes the size and orientation of a page to be printed, as well as thePaper

used to print it. For example,portrait andlandscape paper orientations are rep-
resented byPageFormat.

Paper Describes the physical characteristics of a piece of paper.

PrinterJob The principal class that controls printing. The application callsPrinterJob

methods to set up a job, display a print dialog to the user (optional), and to pri
the pages in the job.



Printing Concepts 99

n
rs.
stem
ack is

ters
this

ided
 ten

he
n

in
tion

gs

the
es a
The callback printing model is more flexible than traditional application-drive
printing models and supports printing on a wider range of systems and printe
For example, if a printer stacks output pages in reverse order, the printing sy
can ask the application to generate pages in reverse order so that the final st
in proper reading order.

This model also enables applications to print to a bitmap printer from compu
that don’t have enough memory or disk space to buffer a full-page bitmap. In
situation, a page is printed as a series of small bitmaps orbands. For example, if
only enough memory to buffer one tenth of a page is available, the page is div
into ten bands. The printing system asks the application to render each page
times, once to fill each band. The application does not need to be aware of t
number or size of the bands; it simply must be able to render each page whe
requested.

7.2.1 Supporting Printing

An application has to perform two tasks to support printing:

• Job control—initiating and managing the print job.

• Imaging—rendering each page when the printing system requests it.

7.2.1.1 Job Control

The user often initiates printing by clicking a button or selecting a menu item
an application. When a print operation is triggered by the user, the applica
creates aPrinterJob object and uses it to manage the printing process.

The application is responsible for setting up the print job, displaying print dialo
to the user, and starting the printing process.

7.2.1.2 Imaging

When a document is printed, the application has to render each page when 
printing system requests it. To support this mechanism, the application provid
page painterthat implements thePrintable interface. When the printing system
needs a page rendered, it calls the page painter’sprint method.

When a page painter’sprint method is called, it is passed aGraphics context to
use to render the page image. It is also passed aPageFormat object that specifies
the geometric layout of the page, and an integerpage indexthat identifies the ordi-
nal position of the page in the print job.



Printing, Java 2 SDK, Standard Edition, 1.2 Version100

iffer-

d

text

g

h.

oles
s

 coor-
d so

n
ire
The printing system supports bothGraphics andGraphics2D rendering, To print
Java 2DShapes, Text, andImages, you cast theGraphics object passed into the
print method to aGraphics2D.

To print documents in which the pages use different page painters and have d
ent formats, you use apageable job. To create a pageable job, you can use the
Book class or your own implementation of thePageable interface. To implement
simple printing operations, you do not need to use a pageable print job;Print-

able can be used as long as all of the pages share the same page format an
painter.

7.2.2 Page Painters

The principal job of a page painter is to render a page using the graphics con
that is provided by the printing system. A page painter implements thePrint-

able.print method:

public int print(Graphics g, PageFormat pf, int pageIndex)

The graphics context passed to theprint method is either an instance ofGraph-

ics or Graphics2D, depending on the packages loaded in your Java Virtual
Machine. To useGraphics2D features, you can cast theGraphics object to a
Graphics2D. TheGraphics instance passed toprint also implements thePrint-
erGraphics interface.

ThePageFormat passed to aPrintable describes the geometry of the page bein
printed. The coordinate system of the graphics context passed toprint is fixed to
the page: the origin of the coordinate system is at the upper left corner of the
paper,X increases to the right,Y increases downward, and the units are 1/72 inc
If the page is in portrait orientation, the x-axis aligns with the paper’s “width,”
while the y-axis aligns with the paper’s “height.” (Normally, but not always, a
paper’s height exceeds its width.) If the page is in landscape orientation, the r
are reversed: the x-axis aligns with the paper’s “height” and the y-axis with it
“width.”

Because many printers cannot print on the entire paper surface, thePageFormat

specifies theimageable area of the page: this is the portion of the page in which
it’s safe to render. The specification of the imageable area does not alter the
dinate system; it is provided so that the contents of the page can be rendere
that they don’t extend into the area where the printer can’t print.

The graphics context passed toprint has a clip region that describes the portio
of the imageable area that should be drawn. It is always safe to draw the ent
page into the context; the printing system will handle the necessary clipping.



Printing Concepts 101

t be
 get

.

es

he

 page
eral
d, the

use

For
inter
at

ent

r
ong
d.
However, to eliminate the overhead of drawing portions of the page that won’
printed, you can use the clipping region to limit the areas that you render. To
the clipping region from the graphics context, callGraphics.getClip. You are
strongly encouraged to use the clip region to reduce the rendering overhead

It is sometimes desirable to launch the entire printing operation “in the back-
ground” so that a user can continue to interact with the application while pag
are being rendered. To do this, callPrinterJob.print in a separate thread.

If possible, you should avoid graphics operations that require knowledge of t
previous image contents, such ascopyArea, setXOR, and compositing. These
operations can slow rendering and the results might be inconsistent.

7.2.3 Printable Jobs and Pageable Jobs

A Printable job provides the simplest way to print. Only one page painter is
used; the application provides a single class that implements thePrintable inter-
face. When it’s time to print, the printing system calls the page painter’sprint

method to render each page. The pages are requested in order, starting with
index 0. However, the page painter might be asked to render each page sev
times before it advances to the next page. When the last page has been printe
page painter’s print method returns NO_SUCH_PAGE.

In aPrintable job:

• All pages use the same page painter andPageFormat.   If a print dialog is
presented, it will not display the number of pages in the document beca
that information is not available to the printing system.

• The printing system always asks the page painter to print each page in
indexed order, starting with the page at index 0. No pages are skipped. 
example, if a user asks to print pages 2 and 3 of a document, the page pa
will be called with indices 0, 1, and 2. The printing system might request th
a page be rendered multiple times before moving to the next page.

• The page painter informs the printing system when the end of the docum
has been reached.

• All page painters are called in the same thread.

• Some printing systems might not be able to achieve the ideal output. Fo
example, the stack of pages emerging from the printer might be in the wr
order, or the pages might not be collated if multiple copies are requeste

A Pageable job is more flexible than aPrintable job. Unlike the pages in a
Printable job, pages in aPageable job can differ in layout and implementation.



Printing, Java 2 SDK, Standard Edition, 1.2 Version102

e a

rder
ages
and

he

ting
ving

ent
and

-

rint

he
and

inter
To manage aPageable job, you can use theBook class or implement your own
Pageable class. Through thePageable, the printing system can determine the
number of pages to print, the page painter to use for each page, and thePageFor-

mat to use for each page. Applications that need to print documents that hav
planned structure and format should usePageable jobs.

In aPageable job:

• Different pages can use different page painters andPageFormats.

• The printing system can ask page painters to print pages in an arbitrary o
and some pages might be skipped. For example, if a user asks to print p
2 and 3 of a document, the page painter will be called with indices 1 and 2
page index 0 will be skipped.

• Pageable jobs do not need to know in advance how many pages are in t
document. However, unlikePrintable jobs, they must be able to render
pages in any order. There might be gaps in the sequencing and the prin
system might request that a page be rendered multiple times before mo
to the next page. For example, a request to print pages 2 and 3 of a docum
might result in a sequence of calls that request pages with indices 2,2,1,1,
1.

7.2.4 Typical Life-Cycle of a PrinterJob

An application steers thePrinterJob object through a sequence of steps to com
plete a printing job. The simplest sequence used by an application is:

1. Get a newPrinterJob object by callingPrinterJob.getPrinterJob.

2. Determine whatPageFormat to use for printing. A defaultPageFormat can
be obtained by callingdefaultPage or you can invokepageDialog to present
a dialog box that allows the user to specify a format.

3. Specify the characteristics of the job to be printed to thePrinterJob. For a
Printable job, call setPrintable; for a Pageable job, call setPageable.
Note that aBook object is ideal for passing tosetPageable.

4. Specify additional print job properties, such as the number of copies to p
or the name of the job to print on the banner page.

5. Call printDialog to present a dialog box to the user. This is optional. T
contents and appearance of this dialog can vary across different platforms
printers. On most platforms, the user can use this dialog to change the pr
selection. If the user cancels the print job, theprintDialog method returns



Printing Concepts 103

s

g

s

ca-
s,
ay a
 A

you
FALSE.

6. CallPrinterjob.print to print the job. This method in turn callsprint on
the appropriate page painters.

A job can be interrupted during printing if:

• A PrinterException is thrown—the exception is caught by theprint

method and the job is halted. A page painter throws aPrinterException if
it detects a fatal error.

• PrinterJob.cancel is called—the printing loop is terminated and the job i
canceled. Thecancel method can be called from a separate thread that
displays a dialog box and allows the user to cancel printing by clicking a
button in the box.

Pages generated before a print job is stopped might or might not be printed.

The print job is usually not finished when theprint method returns. Work is typ-
ically still being done by a printer driver, print server, or the printer itself. The
state of thePrinterJob object might not reflect the state of the actual job bein
printed.

Because the state of aPrinterJob changes during its life cycle, it is illegal to
invoke certain methods at certain times. For example, callingsetPageable after
you’ve calledprint makes no sense. When illegal calls are detected, thePrint-

erJob throws ajava.lang.IllegalStateException.

7.2.5 Dialogs

The Java Printing API requires that applications invoke user-interface dialog
explicitly. These dialogs might be provided by the platform software (such as
Windows) or by a Java 2 SDK software implementation. For interactive appli
tions, it is customary to use such dialogs. For production printing application
however, dialogs are not necessary. For example, you wouldn’t want to displ
dialog when automatically generating and printing a nightly database report.
print job that requires no user interaction is sometimes called asilent print job.

7.2.5.1 Page setup dialog

You can allow the user to alter the page setup information contained in aPage-

Format by displaying a page setup dialog. To display the page setup dialog, 
call PrinterJob.pageDialog. The page setup dialog is initialized using the



Printing, Java 2 SDK, Standard Edition, 1.2 Version104

hen

u

 on

er
parameter passed topageDialog. If the user clicks the OK button in the dialog,
thePageFormat instance is cloned, altered to reflect the user’s selections, and t
returned. If the user cancels the dialog,pageDialog returns the original unaltered
PageFormat.

7.2.5.2 Print dialog

Typically, an application presents a print dialog to the user when a print men
item or button is activated. To display this print dialog, you call thePrinterJob’s

printDialog method. The user’s choices in the dialog are constrained based
the number and format of the pages in thePrintable or Pageable that have been
furnished to thePrinterJob. If the user clicks OK in the print dialog,printDia-
log returnsTRUE. If the user cancels the print dialog,FALSE is returned and the
print job should be considered abandoned.

7.3 Printing with Printables

To provide basic printing support:

1. Implement thePrintable interface to provide a page painter that can rend
each page to be printed.

2. Create aPrinterJob.

3. CallsetPrintable to tell thePrinterJob how to print your document.

4. Callprint on thePrinterJob object to start the job.

In the following example, aPrintable job is used to print five pages, each of
which displays a green page number. Job control is managed in themain method,
which obtains and controls thePrinterJob. Rendering is performed in the page
painter’sprint method.

import java.awt.*; import java.awt.print.*;
public class SimplePrint implements Printable
{
private static Font fnt = new Font("Helvetica",Font.PLAIN,24);

  public static void main(String[] args)
  {
    // Get a PrinterJob
    PrinterJob job = PrinterJob.getPrinterJob();



Printing with Printables 105

t

radi-
    // Specify the Printable is an instance of SimplePrint
    job.setPrintable(new SimplePrint());
    // Put up the dialog box
    if (job.printDialog())
    {
      // Print the job if the user didn't cancel printing
      try { job.print(); }
      catch (Exception e)
        { /* handle exception */ }
    }
    System.exit(0);
  }

  public int print(Graphics g, PageFormat pf, int pageIndex)
  throws PrinterException
  {
    // pageIndex 0 to 4 corresponds to page numbers 1 to 5.
    if (pageIndex >= 5) return Printable.NO_SUCH_PAGE;
    g.setFont(fnt);
    g.setColor(Color.green);
    g.drawString("Page " + (pageIndex+1), 100, 100);
    return Printable.PAGE_EXISTS;
  }
}

7.3.1 Using Graphics2D for Rendering

You can invokeGraphics2D functions in you page painter’s print method by firs
casting theGraphics context to aGraphics2D.

In the following example, the page numbers are rendered using a red-green g
ent. To do this, aGradientPaint is set in theGraphics2D context.

import java.awt.*; import java.awt.print.*;
public class SimplePrint2D implements Printable
{
private static Font fnt = new Font("Helvetica",Font.PLAIN,24);

private Paint pnt = new GradientPaint(100f, 100f, Color.red,
                      136f, 100f, Color.green, true);

  public static void main(String[] args)
  {



Printing, Java 2 SDK, Standard Edition, 1.2 Version106

ge, it

d the
 time

ld
ta.

le

ren-
    // Get a PrinterJob
    PrinterJob job = PrinterJob.getPrinterJob();
    // Specify the Printable is an instance of SimplePrint2D
    job.setPrintable(new SimplePrint2D());
    // Put up the dialog box
    if (job.printDialog())
    {
      // Print the job if the user didn't cancel printing
      try { job.print(); }
      catch (Exception e) { /* handle exception */ }
    }
  System.exit(0);
  }

  public int print(Graphics g, PageFormat pf, int pageIndex)
  throws PrinterException
  {
    // pageIndex 0 to 4 corresponds to page numbers 1 to 5.
    if (pageIndex >= 5) return Printable.NO_SUCH_PAGE;
    Graphics2D g2 = (Graphics2D) g;
    // Use the font defined above
    g2.setFont(fnt);
    // Use the gradient color defined above
    g2.setPaint(pnt);
    g2.drawString("Page " + (pageIndex+1), 100f, 100f);
    return Printable.PAGE_EXISTS;
  }
}

7.3.2 Printing a File

When a page painter’s print method is invoked several times for the same pa
must generate the same output each time.

There are many ways to ensure that repeated requests to render a page yiel
same output. For example, to ensure that the same output is generated each
the printing system requests a particular page of a text file, page painter cou
either store and reuse file pointers for each page or store the actual page da

In the following example, a “listing” of a text file is printed. The name of the fi
is passed as an argument to themain method. ThePrintListingPainter class
stores the file pointer in effect at the beginning of each new page it is asked to



Printing with Printables 107

mem-
der. When the same page is rendered again, the file pointer is reset to the re
bered position.

import java.awt.*;
import java.awt.print.*;
import java.io.*;

public class PrintListing
{
  public static void main(String[] args)
  {
    // Get a PrinterJob
    PrinterJob job = PrinterJob.getPrinterJob();
    // Ask user for page format (e.g., portrait/landscape)
    PageFormat pf = job.pageDialog(job.defaultPage());
    // Specify the Printable is an instance of
    // PrintListingPainter; also provide given PageFormat
    job.setPrintable(new PrintListingPainter(args[0]), pf);
    // Print 1 copy
    job.setCopies(1);
    // Put up the dialog box
    if (job.printDialog())
    {
      // Print the job if the user didn't cancel printing
      try { job.print(); }
      catch (Exception e) { /* handle exception */ }
    }
    System.exit(0);
  }
}

class PrintListingPainter implements Printable
{
  private RandomAccessFile raf;
  private String fileName;
  private Font fnt = new Font("Helvetica", Font.PLAIN, 10);
  private int rememberedPageIndex = -1;
  private long rememberedFilePointer = -1;
  private boolean rememberedEOF = false;

  public PrintListingPainter(String file)
  {
    fileName = file;
    try



Printing, Java 2 SDK, Standard Edition, 1.2 Version108
    {
      // Open file
      raf = new RandomAccessFile(file, "r");
    }
    catch (Exception e) { rememberedEOF = true; }
  }

  public int print(Graphics g, PageFormat pf, int pageIndex)
  throws PrinterException
  {
  try
  {
    // For catching IOException
    if (pageIndex != rememberedPageIndex)
    {
      // First time we've visited this page
      rememberedPageIndex = pageIndex;
      // If encountered EOF on previous page, done
      if (rememberedEOF) return Printable.NO_SUCH_PAGE;
      // Save current position in input file
      rememberedFilePointer = raf.getFilePointer();
    }
    else raf.seek(rememberedFilePointer);
    g.setColor(Color.black);
    g.setFont(fnt);

int x = (int) pf.getImageableX() + 10;
int y = (int) pf.getImageableY() + 12;

    // Title line
    g.drawString("File: " + fileName + ", page: " +
                (pageIndex+1),  x, y);
    // Generate as many lines as will fit in imageable area
    y += 36;

while (y + 12 < pf.getImageableY()+pf.getImageableHeight())
    {
      String line = raf.readLine();
      if (line == null)
      {
        rememberedEOF = true;
        break;

}
        g.drawString(line, x, y);
        y += 12;
      }
      return Printable.PAGE_EXISTS;
    }
    catch (Exception e) { return Printable.NO_SUCH_PAGE;}



Printing with Pageables and Books 109

f a

 be
the

hare

ienta-

ame

rns

 The
ation

ll
  }
}

7.4 Printing with Pageables and Books

Pageable jobs are suited for applications that build an explicit representation o
document, page by page. TheBook class is a convenient way to usePageables,
but you can also build your ownPageable structures ifBook does not suit your
needs. This section shows you how to useBook.

Although slightly more involved,Pageable jobs are preferred overPrintable
jobs because the printing system has more flexibility. A major advantage ofPage-

ables is that the number of pages in the document is usually known and can
displayed to the user in the print dialog box. This helps the user to confirm that
job is specified correctly or to select a range of pages for printing.

A Book represents a collection of pages. The pages in a book do not have to s
the same size, orientation, or page painter. For example, aBook might contain two
letter size pages in portrait orientation and a letter size page in landscape or
tion.

When aBook is first constructed, it is empty. To add pages to aBook, you use the
append method. This method takes aPageFormat object that defines the page’s
size, printable area, and orientation and a page painter that implements the
Printable interface.

Multiple pages in aBook can share the same page format and painter. Theappend

method is overloaded to enable you to add a series of pages that have the s
attributes by specifying a third parameter, the number of pages.

If you don’t know the total number of pages in aBook, you can pass
UNKNOWN_NUMBER_OF_PAGES to theappend method. The printing system will then
call your page painters in order of increasing page index until one of them retu
NO_SUCH_PAGE.

ThesetPage method can be used to change a page’s page format or painter.
page to be changed is identified by a page index that indicates the page’s loc
in theBook.

You callsetPageable and pass in theBook to prepare the print job. ThesetPage-
able andsetPrintable methods are mutually exclusive; that is, you should ca
one or the other but not both when preparing thePrinterJob.



Printing, Java 2 SDK, Standard Edition, 1.2 Version110
7.4.1 Using a Pageable Job

In the following example, aBook is used to reproduce the first simple printing
example. (Because this case is so simple, there is little benefit in using aPageable

job instead of aPrintable job, but it illustrates the basics of using aBook.) Note
that you still have to implement thePrintable interface and perform page ren-
dering in the page painter’sprint method.

import java.awt.*;
import java.awt.print.*;

public class SimplePrintBook implements Printable
{
private static Font fnt = new Font("Helvetica",Font.PLAIN,24);

  public static void main(String[] args)
  {
    // Get a PrinterJob
    PrinterJob job = PrinterJob.getPrinterJob();
    // Set up a book
    Book bk = new Book();

bk.append(new SimplePrintBook(), job.defaultPage(), 5);
    // Pass the book to the PrinterJob
    job.setPageable(bk);
    // Put up the dialog box
    if (job.printDialog())
    {
      // Print the job if the user didn't cancel printing
      try { job.print(); }
      catch (Exception e) { /* handle exception */ }
    }
    System.exit(0);
  }

  public int print(Graphics g, PageFormat pf, int pageIndex)
  throws PrinterException
  {
    g.setFont(fnt);
    g.setColor(Color.green);
    g.drawString("Page " + (pageIndex+1), 100, 100);
    return Printable.PAGE_EXISTS;
  }
}



Printing with Pageables and Books 111

er
e and
7.4.2 Using Multiple Page Painters

In the following example, two different page painters are used: one for a cov
page and one for content pages. The cover page is printed in landscape mod
the contents pages are printed in portrait mode.

import java.awt.*;
import java.awt.print.*;

public class PrintBook
{
  public static void main(String[] args)
  {
    // Get a PrinterJob
    PrinterJob job = PrinterJob.getPrinterJob();
    // Create a landscape page format
    PageFormat pfl = job.defaultPage();
    pfl.setOrientation(PageFormat.LANDSCAPE);
    // Set up a book
    Book bk = new Book();
    bk.append(new PaintCover(), pfl);
    bk.append(new PaintContent(), job.defaultPage(), 2);
    // Pass the book to the PrinterJob
    job.setPageable(bk);
    // Put up the dialog box
    if (job.printDialog())
    {
      // Print the job if the user didn't cancel printing
      try { job.print(); }
      catch (Exception e) { /* handle exception */ }
    }
  System.exit(0);
  }
}

class PaintCover implements Printable
{
  Font fnt = new Font("Helvetica-Bold", Font.PLAIN, 72);

  public int print(Graphics g, PageFormat pf, int pageIndex)
  throws PrinterException
  {
    g.setFont(fnt);
    g.setColor(Color.black);



Printing, Java 2 SDK, Standard Edition, 1.2 Version112
 int yc = (int) (pf.getImageableY() +
              pf.getImageableHeight()/2);
    g.drawString("Widgets, Inc.", 72, yc+36);
    return Printable.PAGE_EXISTS;
  }
}
class PaintContent implements Printable
{
  public int print(Graphics g, PageFormat pf, int pageIndex)
  throws PrinterException
  {
    Graphics2D g2 = (Graphics2D) g;
    int useRed = 0;
   int xo = (int) pf.getImageableX();

int yo = (int) pf.getImageableY();
// Fill page with circles or squares, alternating red & green
for (int x = 0; x+28 < pf.getImageableWidth(); x += 36)

    for (int y = 0; y+28 < pf.getImageableHeight(); y += 36)
    {
      if (useRed == 0) g.setColor(Color.red);
      else g.setColor(Color.green);
      useRed = 1 - useRed;

if (pageIndex % 2 == 0) g.drawRect(xo+x+4, yo+y+4, 28, 28);
      else g.drawOval(xo+x+4, yo+y+4, 28, 28);
    }
    return   Printable.PAGE_EXISTS;
  }
}


	Contents
	Preface
	1.1 Enhanced Graphics, Text, and Imaging
	1.2 Rendering Model
	1.2.1 Coordinate Systems
	1.2.1.1 User Space
	1.2.1.2 Device Space

	1.2.2 Transforms
	1.2.3 Fonts
	1.2.4 Images
	1.2.5 Fills and Strokes
	1.2.6 Composites

	1.3 Backward Compatibility and Platform Independence
	1.3.1 Backward Compatibility
	1.3.2 Platform Independence

	1.4 The Java 2D API Packages
	2.1 Interfaces and Classes
	2.2 Rendering Concepts
	2.2.1 Rendering Process
	2.2.2 Controlling Rendering Quality
	2.2.3 Stroke Attributes
	2.2.4 Fill Attributes
	2.2.5 Clipping Paths
	2.2.6 Transformations
	2.2.6.1 Constructing an AffineTransform

	2.2.7 Composite Attributes
	2.2.7.1 Managing Transparency
	2.2.7.2 Transparency and Images


	2.3 Setting Up the Graphics2D Context
	2.3.1 Setting Rendering Hints
	2.3.2 Specifying Stroke Attributes
	2.3.2.1 Setting the Stroke Width
	2.3.2.2 Specifying Join and Endcap Styles
	2.3.2.3 Setting the Dashing Pattern

	2.3.3 Specifying Fill Attributes
	2.3.3.1 Filling a Shape with a Gradient
	2.3.3.2 Filling a Shape with a Texture

	2.3.4 Setting the Clipping Path
	2.3.5 Setting the Graphics2D Transform
	2.3.6 Specifying a Composition Style
	2.3.6.1 Using the Source Over Compositing Rule
	2.3.6.2 Increasing the Transparency of Composited Objects


	2.4 Rendering Graphics Primitives
	2.4.1 Drawing a Shape
	2.4.2 Filling a Shape
	2.4.3 Rendering Text
	2.4.4 Rendering Images

	2.5 Defining Custom Composition Rules
	3.1 Interfaces and Classes
	3.2 Geometry Concepts
	3.2.1 Constructive Area Geometry
	3.2.2 Bounds and Hit Testing

	3.3 Combining Areas to Create New Shapes
	3.4 Creating a Custom Shape
	4.1 Interfaces and Classes
	4.2 Font Concepts
	4.3 Text Layout Concepts
	4.3.1 Shaping Text
	4.3.2 Ordering Text
	4.3.3 Measuring and Positioning Text
	4.3.4 Supporting Text Manipulation
	4.3.4.1 Displaying Carets
	4.3.4.2 Moving Carets
	4.3.4.3 Hit Testing
	4.3.4.4 Highlighting Selections

	4.3.5 Performing Text Layout in a Java Application

	4.4 Managing Text Layout
	4.4.1 Laying Out Text
	4.4.2 Displaying Dual Carets
	4.4.3 Moving the Caret
	4.4.4 Hit Testing
	4.4.5 Highlighting Selections
	4.4.6 Querying Layout Metrics
	4.4.7 Drawing Text Across Multiple Lines

	4.5 Implementing a Custom Text Layout Mechanism
	4.6 Creating Font Derivations
	5.1 Interfaces and Classes
	5.1.1 Imaging Interfaces
	5.1.2 Image Data Classes
	5.1.3 Image Operation Classes
	5.1.4 Sample Model Classes
	5.1.5 Color Model Classes
	5.1.6 Exception Classes

	5.2 Immediate Mode Imaging Concepts
	5.2.1 Terminology

	5.3 Using BufferedImages
	5.3.1 Creating a BufferedImage
	5.3.2 Drawing in an Offscreen Buffer
	5.3.2.1 Creating an Offscreen Buffer
	5.3.2.2 Drawing in an Offscreen Buffer

	5.3.3 Manipulating BufferedImage Data Directly
	5.3.4 Filtering a BufferedImage
	5.3.5 Rendering a BufferedImage

	5.4 Managing and Manipulating Rasters
	5.4.1 Creating a Raster
	5.4.2 Parent and Child Rasters
	5.4.3 Operations on a Raster
	5.4.4 The WritableRaster Subclass

	5.5 Image Data and DataBuffers
	5.6 Extracting Pixel Data from a SampleModel
	5.7 ColorModels and Color Data
	5.7.1 Lookup Table

	5.8 Image Processing and Enhancement
	5.8.1 Using an Image Processing Operation

	6.1 Classes
	6.2 Color Concepts
	6.2.0.1 ColorSpace
	6.2.0.2 ICC_Profile and ICC_ColorSpace
	6.2.1 Describing Colors
	6.2.2 Mapping Colors through sRGB and CIEXYZ
	6.2.2.1 Color Matching


	7.1 Interfaces and Classes
	7.2 Printing Concepts
	7.2.1 Supporting Printing
	7.2.1.1 Job Control
	7.2.1.2 Imaging

	7.2.2 Page Painters
	7.2.3 Printable Jobs and Pageable Jobs
	7.2.4 Typical Life-Cycle of a PrinterJob
	7.2.5 Dialogs
	7.2.5.1 Page setup dialog
	7.2.5.2 Print dialog


	7.3 Printing with Printables
	7.3.1 Using Graphics2D for Rendering
	7.3.2 Printing a File

	7.4 Printing with Pageables and Books
	7.4.1 Using a Pageable Job
	7.4.2 Using Multiple Page Painters


